
On the Complexity of Alternative
Solutions

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der

Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Diplom-Mathematiker Michael Krüger

geboren am 9. Januar 1980 in Jena

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224759881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gutachter

1. PD Dr. Harald Hempel, Friedrich-Schiller-Universität Jena

2. Prof. Dr. Jörg Rothe, Heinrich-Heine-Universität Düsseldorf

Tag der letzten Prüfung des Rigorosums: 12. 07. 2008

Tag der öffentlichen Verteidigung: 23. 07. 2008

Zusammenfassung

Diese Dissertation untersucht die Komplexität alternativer Lösungen. Das heißt,
wir betrachten die Frage, ob eine oder mehrere gegebene Lösungen eines Pro-
blems, das Finden weiterer Lösungen vereinfacht. In der Praxis relevant ist die-
se Fragestellung zum Beispiel wenn sich eine mit großem Aufwand berechnete
Lösung eines schwierigen Problems im Nachhinein als unzureichend erweist. In
diesem Falle ist es notwendig nach alternativen Lösungen zu suchen, wobei nun
die bereits gefundene Lösung als Ausgangspunkt der Berechnung genutzt werden
kann. Darüber hinaus hat die untersuchte Aufgabenstellung eine Bedeutung in
der Erstellung von (auch hier immer beliebteren) japanischen Rätseln wie Sudo-
ku, Kakkuro oder Nurikabe. Beispielsweise werden im Fall von Sudoku, ausgehend
von einem vollständig ausgefüllten Gitter (Startlösung), Ziffern so gestrichen dass
die Startlösung die eindeutige Lösung des Rätsels bleibt. Dazu muss während des
Streichprozesses wiederholt geprüft werden, ob es neben der Startlösung alterna-
tive Lösungen gibt.

Im ersten Teil der Arbeit (Kapitel 3 und 4) betrachten wir die Klasse der NP-
vollständigen Probleme. Wir formalisieren den Begriff der Lösung mittels soge-
nannter Verifier und das Problem alternativer Lösungen für NP-Sprachen. Indem
wir die Härte des Problems alternativer Lösungen für einige Probleme zeigen, mo-
tivieren wir die Vermutung, dass eine gegebene Lösung das Finden alternativer
Lösungen nicht vereinfacht. Wir entwickeln den Begriff des universellen Verifiers,
der es ermöglicht, einen geeigneten Lösungsbegriff für ein Problem formal zu cha-
rakterisieren. Darüber hinaus zeigen wir, dass es möglich ist, mit einer einzigen
sogenannten ∃r∀lgp-Reduzierung einen Lösungsbegriff für ein Problem als geeignet
zu identifizieren sowie die Härte des Problems alternativer Lösungen für jede An-
zahl gegebener Lösungen zu zeigen. Unter Benutzung dieser Reduzierung, erhärten
wir die obige Vermutung, indem wir für eine große Zahl NP-vollständiger Proble-
me wie zum Beispiel 0/1-Integer Programming, 3Dimensional Matching,
Minimum Edge Cost Flow und Vertex Cover zeigen, dass bezüglich eines
geeigneten Lösungsbegriffes alternative Lösungen nicht leicht zu berechnen sind.

Darüber hinaus übertragen wir die Theorie für NP-Probleme auch auf die Klasse
RE der aufzählbaren Sprachen (Kapitel 5) und die Klassen Σp

i der Polynomialzeit-
hierarchie (Kapitel 6). Für RE zeigen wir damit, dass das Problem alternativer
Lösungen für RE wenig sinnvoll ist, da wir für jedes RE-Problem einen geeigne-
ten Lösungsbegriff finden, der höchstens eine Lösung zulässt. Die Situation in der
Polynomialzeithierarchie ist vermutlich ähnlich zum NP-Fall. Für Σp

2 können wir

iii

die Härte des Problems alternativer Lösungen für einige typische Probleme zei-
gen, z.B. für Generalized Subset Sum und Strongest Implicant Core.
Deshalb und wegen der starken strukturellen Ähnlichkeit zu NP (Die Polynomi-
alzeithierarchie ist eine Verallgemeinerung von NP, insbesondere gilt Σp

1 = NP)
vermuten wir auch hier, dass alternative Lösungen im Allgemeinen genauso schwer
zu finden sind, wie eine erste Lösung.

Der Hauptteil der Arbeit beschäftigt sich also mit Entscheidungsproblemen aus
NP, RE und der Polynomialzeithierarchie und kommt zu dem Ergebnis, dass alter-
native Lösungen schwer zu berechnen sind. In Kapitel 7 untersuchen wir deshalb
die Frage, ob eine gegebene Lösung möglicherweise dabei hifreich ist, eine alter-
native Lösung näherungsweise zu berechnen, also zu approximieren. Es zeigt sich,
dass es im Falle der Approximierbarkeit durchaus Probleme gibt, bei denen eine
alternative Lösung leichter zu approximieren ist. Neben der Betrachtung einiger
Probleme, bei denen das trivialerweise der Fall ist (eine minimale Änderung der
gegebenen optimalen Lösung liefert stets eine gute Approximation) geben wir
einige gehaltvolle positive Resultate an, zum Beispiel für MinMaxMatching
und Minimum Steiner Tree. Im Gegensatz dazu, zeigen wir für Probleme wie
Minimum Independent Dominating Set und Minimum Traveling Sales-
person Problem, dass alternative Lösungen nicht besser approximierbar sind,
als eine erste Lösung.

Im letzten Kapitel (Kapitel 8) beantworten wir eine offene Frage aus einem
verwandten Gebiet, nämlich dem Gebiet der inversen Probleme. Das inverse Pro-
blem zu einem NP-Problem besteht darin, für eine gegebene Menge von Lösungen
zu entscheiden, ob es eine Probleminstanz mit genau den gegebenen Lösungen
gibt. Dazu kann man oft zunächst einen Kandidaten berechnen, der mindestens
die gegebenen Lösungen hat und diskutiert anschließend, ob dieser Kandidat al-
ternative Lösungen hat. Hat der Kandidat keine alternativen Lösungen, so ist er
solch eine gesucht Probleminstanz, und falls der Kandidat alternative Lösungen
besitzt, dann gibt es keine solche Instanz. Wir beantworten die Frage nach der
Komplexität des inversen Problems von 3Dimensional Matching, indem wir
seine coNP-Vollständigkeit zeigen. Damit ist die coNP-Vollständigkeit auch für das
letzte der sechs NP-Basisprobleme (von Garey und Johnson) 3Satisfiability,
3Dimensional Matching, Vertex Cover, Clique, Hamiltonian Cycle
und Partition gezeigt. Darüber hinaus untersuchen wir noch die Verträglichkeit
unseres Begriffes für geeignete Lösungen mit inversen Problemen und geben starke
Argumente für eine gewisse Unverträglichkeit an.

Acknowledgements

I would like to thank everybody who supported me during my work on this thesis.
First of all I want to thank my supervisor Harald Hempel for suggesting to work
in this field and the excellent guidance during my time as PhD student and the
work on my diploma thesis. He was a steady source for advice and inspiration,
but also for encouragement.

Special thanks to my colleague and friend Tobias Berg, who had a helping hand,
ear, or brain whenever it was needed. By helping to paper my new flat, being a
challenging jogging partner and much more he was (and is) a great support outside
the university. His contribution to this work is surely even higher valued. The
door to his office was open whenever something had to be discussed, examined,
explained or proofread, which was an enormous help especially in tough times.

Furthermore, my thank goes to all members of our “lunch group”. The interes-
ting, entertaining, or enlightening lunch talks with Harald, Tobi, Marcus, Dave,
Karsten, Madlen, Christian, Ronny, and all the friends I might have forgotten
here, were a welcome change from staring at the monitor.

Many thanks also go to Mick who abused his universities online-access to almost
all journals to provide me with a lot of needed papers.

I also want to mention all the people who shared the office with me. Thanks for
the good time and the useful hints about this and that go to Hannes, Somnath,
Nadja, Matthias, and Thomas.

Last, but not least, I am very grateful to all of my friends and family members.
Without their steady support, this thesis would have been impossible.

Contents

List of Figures viii

1 Introduction 2
1.1 Motivation and overview . 2
1.2 Previous work . 4

2 Preliminaries 6
2.1 Words and languages . 6
2.2 Turing machines . 7
2.3 Complexity classes and reductions 7
2.4 Graph theory . 8
2.5 Propositional logic . 9

3 Alternative Solutions in NP I - Concepts to Show Hardness 10
3.1 Preliminaries . 10
3.2 First hardness results by auto-reductions 13

3.2.1 Kernel . 13
3.2.2 Minimum Edge Cost Flow 14
3.2.3 Subset Sum . 15

3.3 Generating parsimonious reduction 15
3.3.1 Basic definitions and properties 16
3.3.2 Easier auto-reductions using gp-reductions 17
3.3.3 Hardness results by auto-gp-reductions 18
3.3.4 Connected subgraph problems 20
3.3.5 Inter-gp-reduction . 21

3.4 Bibliographical remarks . 22
3.5 Conclusions . 23

4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction 24
4.1 Definitions and properties . 25
4.2 The ∃r∀lgp-completeness of the six basic NP-complete problems . 30

4.2.1 3Satisfiability . 30
4.2.2 Hamiltonian Cycle . 30
4.2.3 Tiling . 32
4.2.4 Exact-3-Cover . 35

vi

4.2.5 3Dimensional Matching 41
4.2.6 Partition . 45
4.2.7 Vertex Cover . 46
4.2.8 Clique . 48

4.3 A list of ∃r∀lgp-complete problems 49
4.3.1 0/1-Integer Programming 49
4.3.2 Dominating Set . 49
4.3.3 Independent Set . 50
4.3.4 Kernel . 51
4.3.5 Knapsack . 52
4.3.6 Minimum Edge Cost Flow 53
4.3.7 Set Packing . 54
4.3.8 Shortest Weight Constrained Path 54
4.3.9 Steiner Tree . 55
4.3.10 Traveling Salesman Problem 55

4.4 An extraordinary problem - Hamiltonian cycles in cubic graphs . 56
4.4.1 Computing a second Hamiltonian cycle 57
4.4.2 Alternative verifiers for CHC 58

4.5 Conclusions . 63

5 Alternative Solutions in RE 65
5.1 Preliminaries . 65
5.2 Alternative solutions and universal verifiers in RE 67
5.3 Conclusions . 73

6 Alternative Solutions in the Polynomial-Time Hierarchy 74
6.1 Preliminaries . 74
6.2 Σp

i -SAT and Πp
i -SAT . 75

6.3 Some ∃r∀lgp-complete problems in Σp
2 80

6.3.1 Generalized Subset Sum 80
6.3.2 MinDNF . 81
6.3.3 Monotone Minimum Weight Word 82
6.3.4 Strongest Implicant Core 82

6.4 Conclusions . 83

7 Approximation of Alternative Solutions 84
7.1 Preliminaries . 84

7.1.1 A short introduction to approximation algorithms 84
7.1.2 The approximation problem for alternative solutions . . . 88

7.2 Approximability Results . 88
7.2.1 Maximum Cut . 89
7.2.2 Maximum Satisfiability 90
7.2.3 Minimum Independent Dominating Set 91
7.2.4 Minimum Maximal Matching 92

7.2.5 Minimum Steiner Tree 93
7.2.6 Minimum Traveling Salesperson Problem 99
7.2.7 Minimum Metric Traveling Salesperson Problem 102
7.2.8 Cubic Longest Cycle 103

7.3 Conclusions . 103

8 Inverse-3Dimensional Matching is coNP-Complete 105
8.1 Preliminaries . 105

8.1.1 Inverse problems . 106
8.1.2 3Dimensional Matching 107
8.1.3 3Satisfiability . 108

8.2 Inverse-3DM is coNP-complete 109
8.3 Inverse problems and universal verifiers 114

8.3.1 Preliminaries . 114
8.3.2 A plausible conjecture . 115

8.4 Conclusions . 116

Bibliography 117

List of Figures

4.1 A depiction of the gadget Hj for the clause Cj. 31
4.2 A depiction of a tile type. 33
4.3 A proper tiling of the 2× 3 grid using six different tile types. . . . 33
4.4 A rough sketch of the X3C-instance we will construct. 36
4.5 A depiction of the gadget G. 37
4.6 An example for the appearance of the gadgets H. 38
4.7 Two possible colorings of the gadget G. 43
4.8 Illustration of the coloring of the gadgets G1, . . . , Gm. 44
4.9 Two valid colorings of the gadgets H. 44
4.10 An example of the constructed graph G. 47
4.11 A depiction of a modified edge e. 50
4.12 An example for the gp-reduction from X3C to MECF. 53
4.13 One step of Thomason’s Algorithm. 57
4.14 The K3,3 - a cubic graph G with exactly six Hamiltonian cycles. . 61
4.15 The graphs Gn for n = 0 and n = 1. 62
4.16 The family of graphs Hi, i ≥ 3. 62
4.17 Hamiltonian cycles of H2j. 63
4.18 A subgraph, that doubles the number of Hamiltonian colorings. . 63

7.1 An illustration of the first and second step of algorithm B. 95
7.2 An illustration of the third step of algorithm B. 95
7.3 A depiction of the graph Ĝ based on G. 97

1

Chapter 1

Introduction

1.1 Motivation and Overview

Computational theory has developed several concepts to deal with NP-complete
problems, e.g., fast exponential-time exact algorithms, fixed-parameter algorithms,
approximation algorithms, and heuristics. To get an idea of this thesis’ contribu-
tion to the field of coping with NP-completeness, consider the following scenario
that actually happened to a colleague.

Imagine you are working in automotive supply industry. You are given a large
network representing the tree of cables in a car. The network contains two types
of vertices, namely control unit vertices and route vertices. Using an edge (cable)
e causes the costs c(e). Your task is to find a tree that connects all control units
and whose edge cost sum is below a given limit. As a skilled computer scientist
you quickly realize that the given problem equals Steiner Tree, which is an NP-
complete problem. You decide to implement an exponential-time algorithm and
after several days of computation you proudly present the solution the algorithm
has found. But the engineer rejects the tree you found because of technical reasons
and without further explanations asks for another one, just saying “Having a valid
tree, it should be easy to generate further ones”.

The topic of this thesis is the question if the engineer was right, that is, does
having a solution of a given instance help in finding alternative solutions.

After stating some notions and giving some basic definitions in Chapter 2, we
start studying this question for decision problems from NP (Chapter 3). We
formalize the notion of solution using verifiers and define the alternative solution
problem n + A of a problem A for each natural number as follows.

• Given: An instance x with n different solutions y1, . . . , yn.

• Question: Is there another solution yn+1 for x ?

In order to do so we concentrate on the verifier (notion of solutions) that appears
to be the most natural one. Using a rather naive approach, we gather some first

2

Chapter 1 Introduction

results, which are all negative, that is, all alternative solution problems n + A are
NP-complete for NP-complete problems A like e.g. Kernel and Subset Sum.
In order to achieve these results we give a many one reduction A ≤p

m n + A, for
each natural number n. Since hardness of n + A is derived from its basis problem
A we call this kind of reduction an auto-reduction.

Using another type of reduction we can achieve the same result by giving only
one so-called generating parsimonious reduction (gp-reduction) from A to 1 + A,
which is still an auto-reduction. Using the generating parsimonious reduction one
can also transfer hardness results from one problem to another. In particular,
having the NP-completeness for all n + A, n ∈ N, one gp-reduction from A to B
is sufficient to gain the NP-completeness for all n + B, n ∈ N. We call this kind
of reduction an inter -reduction.

In Chapter 4, instead of immediately applying these concepts, we first concen-
trate on another interesting issue, namely the question for the proper notion of
solutions. Formally solutions are characterized via verifiers, but there exists an
infinite number of verifiers for each NP-problem. So, which is the right one? Can
we formally justify the use of the natural verifiers? We provide an answer to
this question, by introducing the notion of universal verifiers. A verifier VA for a
problem A is called universal if all verifiers for A can be gp-reduced to VA. Based
on gp-reductions we develop the ∃r∀lgp-reduction which allows for showing the
NP-completeness of all alternative solution problems n+A and for identifying the
used verifier as proper (universal). Using these concepts we show that the natural
verifier is universal and that the alternative solution problem is NP-complete for
a lot of languages, e.g., 0/1-Integer Programming, 3Dimensional Match-
ing Minimum Edge Cost Flow and Vertex Cover. These results motivate
the conjecture that the alternative solution problems defined with respect to nat-
ural verifiers are hard for all NP-problems and that all natural verifiers are also
universal. A counterexample to this conjecture seems to be the problem if finding
Hamiltonian cycles in cubic graphs with its natural verifier. We discuss this es-
pecial problem and try to find a way out of this seeming contradiction by finding
another natural and universal verifier.

In Chapter 5, we transfer these concepts from NP to RE. Without problems,
we can define the respective notions for RE. We also manage to show that all
alternative solution versions of a special version of the halting problem are RE-
complete and that its natural verifier is universal. But in case of the standard
halting problem it turns out that the natural verifier is not universal. Instead,
another unnatural verifier is universal for the standard halting problem, which
collides with our understanding of universal verifiers as proper verifiers. We find
a reason for that in the property, that each RE-problem has a quite natural ver-
ifier such that for each instance exists at most one solution. Eying such verifiers
discussing alternative solutions in RE is more or less senseless.

In Chapter 6 we use our theory to discuss the classes Σp
i from the polynomial-

time hierarchy. Again, we can easily transfer all notions and it turns out that
the situation in Σp

i is close to the case of NP. We show the Σp
i -completeness

3

Chapter 1 Introduction

for all alternative solution problems of Σp
i -SAT and find out that the associated

natural verifiers are universal. In case of Σp
2 we furthermore obtain the same result

for several more languages, like Generalized Subset Sum and Strongest
Implicant Core. We conjecture that the classes Σp

i behave similar to NP, that
is, all alternative solution problems are hard and the natural verifiers are universal.

After focusing on decision problems and obtaining mostly negative results in
the Chapters 3, 4, 5, and 6, in Chapter 7 we also consider the approximability
of alternative solution for some optimization versions of NP-problems. Here, a
given optimal solution often helps in approximating the second best solution, more
precisely, approximating the optimal solution without hints is often substantially
harder than approximating the second best solution knowing the optimal solution,
for instance, for Minimum Steiner Tree and MinMaxMatching. We also
give examples for problems for which approximating the second best solution
(using the optimal solution) is as hard as approximating the optimal solution
(without hints), namely Minimum Traveling Salesperson Problem and
Minimum Independent Dominating Set.

Finally, in Chapter 8 we give an interesting result in the field of inverse problems.
The inverse problem is, given a set of solutions, to decide whether there exists
an instance having exactly those solutions. We show the coNP-completeness for
the inverse problem of 3Dimensional Matching which completes the coNP-
completeness results [KS99, Che03, Krü05] for the six basic NP-complete problems
from [GJ79]. Using Satisfiability as an example, we also give strong arguments
for the fact, that two different universal verifiers for the same problem sometimes
induce inverse problems of different complexity1.

1.2 Previous work

The problem of finding alternative solutions was firstly stated and studied by Ueda
and Nagao in the context of puzzles like, e.g., Sudoku, Kakkuro, and Nonogram
[UN96]. The question for alternative solutions is of crucial interest for designing
such puzzles, because they are supposed to have unique solutions. In several pa-
pers, the group of Ueda and Nagao showed the NP-completeness of the puzzles,
Slither Link, Sudoku, Fillomino, Kakkuro, Nonogram, and their alternative solu-
tion versions [UN96, Set02, YS02]. As a byproduct, they also showed the hardness
of the alternative solution problems of Satisfiability, 3Satisfiability, 3Di-
mensional Matching and Hamiltonian Cycle. Their concepts were also
used to show the NP-completeness of Cryptarisms, Minesweeper, and the respec-
tive alternative solution problems, in [McP03, dB04]. Unfortunately, we discov-
ered the mentioned results after we independently developed some of the above
concepts and results.

1In contrast, the alternative solution problems defined with respect to two different universal
verifiers are equally hard.

4

Chapter 1 Introduction

Some singular results about approximating the second best solution using the
known optimal solution can be found in [BST99] and [AH98]. In [BST99], the au-
thors give a polynomial-time approximation scheme for approximating the second
best longest cycle in a Hamiltonian cubic graph, and in [AH98], it is shown that
the second best version of MAP (finding maximum a posteriori assignments), a
problem in the field of artificial intelligence, admits no constant approximation,
unless P = NP.

Another approach to our introductory scenario for NP-problems was studied in,
e.g., [SM93, vdPLSvdV99]. Instead of exhaustively computing one solution and,
afterwards, deriving alternative solutions from this optimal solution (which is our
approach), it is tried to efficiently compute the k best solutions in the first ex-
haustive step and thus, to provide alternative solutions, a priori. In particular, in
[SM93] a fast exponential-time algorithm computing the k best solutions of Chi-
nese Postman is given and in [vdPLSvdV99] the authors give an algorithm for
the k-best Minimum Traveling Salesperson Problem. The k-best version
has also been studied for some P-problems, e.g., Minimum Cut and Perfect
Matching [HQ85].

5

Chapter 2

Preliminaries

In this chapter we define the basic concepts and notions that are used in this
thesis. Almost all of them can be found in the standard books on computational
complexity, for instance [BDG90, BDG88, Pap94, WW86]. The graph-theoretical
parts can be found in [Wes96]. We assume that the reader is familiar with the
basic set theoretic and logical concepts and notations.

2.1 Words and languages

Let N denote the set of natural numbers and N+ = N \ {0} the set of positive
natural numbers.

In complexity theory, problems (languages) are sets of words over a finite alpha-
bet. Unless otherwise noted, we always use Σ = {0, 1} as our standard alphabet.
The empty word is denoted by ε. The symbol Σn denotes the set of all words
consisting of n letters from Σ. The set Σ∗ =

⋃
i∈NΣn contains all finite words

over Σ. The length of a word x is denoted by |x|. The complement of a language
A ⊆ Σ∗ is denoted by A.

Let ≤lex denote the quasi lexicographical ordering on Σ∗. For words u and v,
u ≤lex v if and only if either u = v, or |u| ≤ |v|, or |u| = |v| and there exist some
w, u′, v′ ∈ Σ∗ such that u = w0u′ and v = w1v′.

The elements of the treated problems are often graphs, formulas, sets, functions
or other structures, but not words. To fit in the above scheme we use easily
computable encodings of graphs, formulas, sets, functions, etc. to strings from Σ∗

such that the size of the encoding properly reflects the size of the encoded object.
It is not hard to show the existence of such encodings. To avoid formalism we
speak of graphs, formulas, sets, functions etc. as members of problems instead of
their encodings as words.

We often deal with languages A of pairs or tuples of words, which do also not
fit into the scheme of languages as subsets of Σ∗. In this case, we use pairing
functions σk from (Σ∗)k to Σ∗, k ∈ N, which are polynomial-time computable and
polynomial-time invertible. To focus on the essential parts of argumentations, we
just write (x1, . . . , xk) ∈ A, when we mean σk((x1, . . . , xk)) ∈ A.

6

Chapter 2 Preliminaries

2.2 Turing machines

Our computational model is the concept of multi-tape Turing machines. We refer
to [WW86] for a formal definition of Turing machines. We just mention the
following conventions. A Turing machine M has two halting states, an accepting
and a rejecting halting state, and we say that a Turing machine halts if and only
if it reaches one of its halting states. We say that a Turing machine accepts
(rejects) an input x if and only if the computation of M on the input x reaches
the accepting (rejecting) halting state.

Let f be a mapping from N to N. Then we say that a Turing machine works
in time f if and only if it halts after at most f(|x|) computational steps, for all
inputs x ∈ Σ∗. Following this, a Turing machine works in polynomial-time if and
only if it works in time p for some polynomial p. When dealing with running
times of algorithms we assume, without loss of generality, that polynomials are
monotonically increasing.

We will use deterministic and nondeterministic Turing machines. The compu-
tation of a nondeterministic or deterministic Turing machine M on the input x is
denoted by M(x). A deterministic Turing machine (DTM) M accepts a language
A ⊆ Σ∗ if and only if, for all x ∈ Σ∗, M(x) accepts if x ∈ A and M(x) rejects if
x 6∈ A. A nondeterministic Turing machine accepts a language A ⊆ Σ∗ if and only
if, for all inputs x ∈ Σ∗, there is an accepting path in the computation of M(x) if
and only if x ∈ A.

The program of a Turing machine is a finite text of a certain structure over a
finite alphabet. So, the set P of programs for Turing machines is countable and
there is a bijection g : P → N. It is not hard to see, that there also exist such
bijections that are computable and invertible in polynomial-time, so-called Gödel
numberings for Turing machines. For this thesis, we fix one Gödel numbering and
denote the machine with the Gödel number i with Mi.

A Turing machine M can be equipped with an oracle A ⊆ Σ∗. Such an oracle
Turing machine MA has a special query tape in order to test membership of words
in A. When the machine reaches a special query state it receives the answer “Yes”
if the word on the query tape is in A and “No”, otherwise. This answer requires
only one computational step.

2.3 Complexity classes and reductions

A complexity class is a set of problems with the same complexity in terms of
resources of a computational model, for instance Turing machines. The class P is
the set of problems that can be accepted by a DTM in polynomial time. Similarly,
NP contains the problems that are accepted by a nondeterministic polynomial-
time Turing machine. The class UP is the set of all problems that can be accepted
by a nondeterministic polynomial-time Turing machine, whose computation, for
all inputs x ∈ Σ∗, has at most one accepting computational path.

7

Chapter 2 Preliminaries

The class REC contains exactly those problems that can be accepted by a DTM
in finite time. The class RE is the collection of problems A for which there exists
a DTM M such that the computation of M on input x halts and accepts after a
finite number of steps if x ∈ A, but on the other hand, if x 6∈ A the machine does
not halt.

A DTM M with an output tape computes a function g : Σ∗ → Σ∗ if and only
if the computation M(x) halts with the string g(x) on the output tape, for all
x ∈ Σ∗. A function g, computable by some Turing machine, is called recursive.

A DTM M computes a function g : Σ∗ → Σ∗ in time f : N → N if and only
M computes g and halts after at most f(|x|) computational steps, for all x ∈ Σ∗.
The class FP contains all functions that are computable by a DTM in time p, for
some polynomial p. A function is computable in linear-time if it can be computed
by a DTM in time c · n, for some natural number c.

A problem A is called many-one reducible to a problem B (A ≤m B) if and
only if there exists a total recursive function f , such that x ∈ A ↔ f(x) ∈ B,
for all x ∈ Σ∗. A many-one reduction via f is called a polynomial-time many-one
reduction (≤p

m) if and only if f ∈ FP. When dealing with the classes P and NP
we always use the polynomial-time many-one reduction. For simplification, in this
case, we just use the term many-one reduction. A problem A is called complete
for a complexity class C via a type of reduction ≤ if and only if A ∈ C and B ≤ A,
for all B ∈ C.

2.4 Graph theory

An undirected graph G is an ordered pair (V, E), where V (vertices) is a finite
set and E (edges) is a subset of {{u, v} : u 6= v ∧ u, v ∈ V }. If {u, v} ∈ E, we
say that u and v are connected by an edge. The number of edges, a vertex v is
contained in, is called degree of v and denoted by dG(v). A directed G graph is
an ordered pair (V, A), where V (vertices) is a finite set and A (arcs) is a subset
of V × V \ {(u, u) : u ∈ V }. An element (u, v) of A is called an arc from u to v.
To distinguish between directed and undirected graphs, we call directed graphs
digraphs and mean undirected graphs, when we just say graph.

An (un)directed path from u to v in a directed (undirected) graph G is a se-
quence of vertices u = w0, w1, . . . , wk−1, wk = v such that there is an arc (edge)
from wi to wi+1 in G, for all 0 ≤ i ≤ k − 1. A simple path is a path, where
wi 6= wj, for all i 6= j. A cycle is a path from u to v, where u = v and wi 6= wj,
for all i and j with i 6= j and {i, j} 6= {0, k}. A cycle that traverses all vertices
of a graph G is called a Hamiltonian cycle of G. Sometimes, we identify a cycle
with the set of participating edges or arcs.

For a given undirected graph G = (V, E) and a subset V ′ ⊆ V of vertices,
we defined the subgraph G[V ′] of G that is induced by V ′ as G[V ′] = (V ′, E ′),
where E ′ = {{u, v} : {u, v} ∈ A and u, v ∈ V ′}. Analogous, for a directed graph
G = (V,A), the subgraph graph G[V ′] induced by a set V ′ ⊆ V of vertices is

8

Chapter 2 Preliminaries

G[V ′] = (V ′, A′), where A′ = {(u, v) : (u, v) ∈ A and u, v ∈ V ′}.
The graph consisting of n vertices and all possible edges between these vertices

is called the complete graph with n vertices and denoted by Kn. The graph
that is just a simple cycle with n vertices is referred to as Cn. For a graph
G = (V, E) the term G denotes the complement of G, that is G = (V, E) with
E = {{u, v} : {u, v} ⊆ V ∧ u 6= v} \ E.

2.5 Propositional logic

The literals of a variable x are x and ¬x. A clause C over a variable set X is a
formula C = `1 ∨ `2 ∨ · · · ∨ `n, n ∈ N, where `j is a literal of a variable from X,
for all 1 ≤ j ≤ n. A Boolean formula F over the variable set X is in conjunctive
normal form (CNF) if F = C1 ∧ C2 ∧ · · · ∧ Cm, m ∈ N, where Ci is a clause over
X, for all 1 ≤ i ≤ m. A Boolean formula in CNF is called a 3CNF-formula if and
only if all clauses contain exactly three literals.

A monomial T over a variable set X is a formula T = `1 ∧ `2 ∧ · · · ∧ `n, n ∈ N,
where `j is a literal of a variable from X, for all 1 ≤ j ≤ n. A Boolean formula F
over the variable set X is in disjunctive normal form (DNF) if F = T1∨T2∨· · ·∨Tm,
m ∈ N, where Ti is a monomial over X, for all 1 ≤ i ≤ m. Monomials and clauses
over a variable set X are often represented as sets of literals of variables from X.
A Boolean formula in DNF is called a 3DNF-formula if and only if all monomials
contain exactly three literals.

9

Chapter 3

Alternative Solutions in NP I -
Concepts to Show Hardness

The objective of this thesis is to examine the complexity of the problem of al-
ternative solution, which is to decide, given an instance and several solutions, if
there are further solutions for the given instance. In this chapter we settle the
very basics by formalizing the notion of the alternative solution problems (ASP’s)
for an NP-problem. Given an NP-problems A, we define an ASP n + A, for each
natural number n of given solutions.

We present some concepts to show the hardness of all alternative solution prob-
lems n + A. This can be done by reducing the NP-problem A to its ASP’s n + A,
so called auto-reductions. Note that to do so, an infinite number of reductions
is needed. Moreover, we introduce a type of reduction, by which this result can
be achieved with a single reduction, the generating parsimonious reduction. The
generating parsimonious reduction also allows for comparing the complexity of the
ASP’s of different NP-problems, the so called inter-reduction. We also show that
for all so-called connected subgraph problems A, all alternative solution problems
n + A are hard. Note that some of the introduced notions and results have been
found independently in [UN96, Set02, YS02], where the focus is on alternative
solutions of puzzles and games.

For each of the presented concepts to show the hardness of ASP’s, we give some
examples, ending up in a list of problems with NP-complete ASP’s suggesting that
the ASP’s of NP-complete problems might be hard in general.

3.1 Preliminaries

In this section we formally define the notion of solutions for NP-problems, using
the concept of NP-verifiers. Then, we formally introduce the problems of alterna-
tive solutions for NP-problems and state some simple properties.

Obviously, the first step in studying the complexity of alternative solutions of
NP-complete problems is to formalize the notion of a solution. To do so we use

10

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

the following well-known characterization of the class NP.

Theorem 3.1.1. A language A is in NP if and only if there exist a language
B from P and a polynomial p such that for all x ∈ Σ∗, x ∈ A ↔ (∃y) [|y| ≤
p(|x|) ∧ (x, y) ∈ B].

So, an NP-computation can be imagined as a two phased process. The exis-
tential quantifier represents the first phase, nondeterministically guessing a poly-
nomial length bounded solution y for x. In the second (deterministic) phase the
P-predicate B verifies if y actually is a solution for x.

Languages from P that can play the role of the language B in Theorem 3.1.1
are called polynomial-time verifiers.

Definition 3.1.2. 1. A polynomial-time acceptable language V is called a poly-
nomial-time verifier (or NP-verifier) if and only if there exists a polynomial
p satisfying, (∀x, y ∈ Σ∗)[(x, y) ∈ V → |y| ≤ p(|x|)].

2. The language L(V) accepted by a polynomial-time verifier V is defined as
L(V) = {x ∈ Σ∗ : (∃y ∈ Σ∗)[(x, y) ∈ V)]}.

Throughout this thesis we will use the term verifier as a shorthand for polyno-
mial-time verifier.

Now, we can introduce the term of a solution for a language A from NP with
respect to a verifier VA for A.

Definition 3.1.3. Let A be a language from NP and let VA be a verifier such that
L(VA) = A. We call a string y a solution for an instance x of A (with respect
to VA), if (x, y) ∈ VA. The set of solutions for an instance x is denoted with
VA(x) = {y ∈ Σ∗ : (x, y) ∈ VA}.

Note that the concept of solutions for instances of an NP-language A depends
on the chosen verifier VA. The common descriptions of NP-problems A often fit
the scheme that is given in Theorem 3.1.1. For instance, SAT is the set of CNF-
formulas F such that there exists an assignment α with F (α) = 1. The choice of
the verifier VSAT = {(F, α) : F is a CNF-formula and F (α) = 1} for SAT seems
to be very natural.

First, when studying solutions of NP-problems, we will examine solutions with
respect to those verifiers that we feel are the most natural ones.

Now, we are able to define the alternative solution problem for an NP-problem
with an associated verifier.

Definition 3.1.4. Let A be a problem in NP with a verifier VA and let n ≥ 1 be
a natural number. The alternative solution problem (ASP) n + AVA

for A is the
following:

Given: A tuple (x, y1, . . . , yn) such that all yi are pairwise different solutions for
x, i.e., for all 1 ≤ i ≤ n, (x, yi) ∈ VA and for all 1 ≤ i < j ≤ n, yi 6= yj.

11

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

Question: Is there another solution yn+1 for x, i.e., is there a string yn+1 such
that (x, yn+1) ∈ VA and for all 1 ≤ i ≤ n, yi 6= yn+1 ?

By formal means we furthermore define 0 + AVA
as A.

As mentioned above, when it comes to discussing concrete problems we will
determine the most natural verifier and discuss solutions with respect to this
verifier. After fixing the natural verifier VA for a problem A we will write n + A
as a shorthand for n + AVA

.
In the remainder of this section we will state some properties of the operation

“+”. The next theorem gives a (quite obvious) upper bound for the complexity
of n + A for any natural number n and NP-problem A.

Theorem 3.1.5. Let A be a problem from NP, let VA be a verifier for A, and let
n be a natural number. Then n + A (defined with respect to VA) is also in NP.

Proof. Consider the following predicate Vn+A:

Vn+A ={((x, y1, . . . , yn), y) : (∀ 1 ≤ i ≤ n)[(x, yi) ∈ VA], (∀ 1 ≤ i 6= j ≤ n)[yi 6= yj],

(∀ 1 ≤ i ≤ n)[yi 6= y] ∧ (x, y) ∈ VA}.
So, Vn+A accepts a strings y as a solution for an instance (x, y1, . . . , yn) with

(x, yi) ∈ VA, 1 ≤ i ≤ n, if and only if y is a solution for x ((x, y) ∈ VA) different
from y1, . . . , yn. It is not hard to see that Vn+A is a polynomial-time verifier for
n + A. Hence, by Theorem 3.1.1 n + A is in NP.

Note that the given verifier Vn+A for n+A arises from VA in a very canonical way.
So in the following, for a given problem A and an associated verifier VA we will use
the above defined verifier Vn+A as standard verifier for n+A. Later we will develop
the concept of universal verifiers, which formally characterizes “proper”verifiers
(see Chapter 4). For all treated problems A we will then see that if VA is a proper
(universal) verifier for A, then the verifier Vn+A is also proper (universal) for n+A,
which strongly legitimates the use of Vn+A as standard verifier for n + A.

The following theorem provides an associativity-like property of “+”.

Theorem 3.1.6. Let A be a language from NP with an associated verifier VA.
Then for each pair of natural numbers n and m, n + (m + A), and (n + m) + A
are many-one equivalent via linear-time functions.

Proof. The proof can be done by formally applying the definition of +nm + A and
rephrasing the resulting expression. Then, the transformation between n+(m+A)
and (n + m) + A is a simple rearrangement of brackets. We omit the details.

By combining the transitivity of many-one equivalence and the commutativity of
the addition of natural numbers with Theorem 3.1.6, we obtain a commutativity-
like property of “+”in the following sense.

Corollary 3.1.7. Let A be a language from NP. Then for each pair of natural
numbers n and m, n + (m + A) and m + (n + A) are many-one equivalent via
linear-time functions.

12

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

3.2 First hardness results by auto-reductions

In this section we give some first results, which are based on a simple idea. When
we manage to reduce an NP-complete problem A to the alternative solution prob-
lem n+A, which is by Theorem 3.1.5 also in NP, then we have the NP-completeness
of n + A. We call this kind of reduction an auto-reduction. The idea behind all
reductions is to add n new solutions to a given instance without affecting its orig-
inal solutions. As an example, we apply this idea to show the NP-completeness
of the ASP’s for Kernel, Minimum Edge Cost Flow, and Subset Sum. To
reduce redundancy in commentarial sentences, we only give the definition of the
treated problems and the used verifiers without further explanations.

3.2.1 Kernel

Problem Description (Kernel)

Given: A digraph G = (V, A).

Question: Does G have a kernel, i.e., is there a set S ⊆ V such that there is no
arc between any two vertices from S and for each vertex u ∈ V \ S there is
a kernel vertex v ∈ S such that (u, v) is an arc in A ?

Standard Verifier:

VKernel = {(G,S) : G is a digraph and S is a kernel of G}.
Theorem 3.2.1. For each n ∈ N+, n + Kernel is NP-complete.

Proof. We will give a many-one reduction Kernel ≤p
m n + Kernel, for each

natural number n. Since Kernel was shown to be NP-complete in [Chv73], the
claim follows immediately. Let n ∈ N+ and let G = (V, A) be an instance for
Kernel.

We define a graph G′ = (V ′, A′) based on G = (V, A) as follows: Add n new
vertices k1, k2, . . . , kn to V , i.e., V ′ = V ∪{k1, k2, . . . , kn}. For each new vertex ki,
add the arcs {(ki, v) : v ∈ V } and {(v, ki) : v ∈ V } to A. Finally, we add all of
the n(n− 1) possible arcs between the n new vertices. So

A′ =A ∪ {(ki, v) : v ∈ V ∧ 1 ≤ i ≤ n} ∪ {(v, ki) : v ∈ V ∧ 1 ≤ i ≤ n}
∪ {(ki, kj) : 1 ≤ i, j ≤ n ∧ i 6= j}.

Observe that all the sets {ki}, 1 ≤ i ≤ n, are kernels of G′ = (V ′, A′). A kernel
consisting of two or more elements can not contain one of the n new vertices, since
each new vertex is joined by an arc with all other vertices in V ′. Hence, every
kernel of G′ different from the n kernels above is contained in the original vertex
set V . It is easy to see that such a kernel is also a kernel of G and, conversely,
a kernel of G is also a kernel of G′. Hence, the polynomial-time computable
mapping G 7→ (G′, k1, k2, . . . , kn) realizes the desired reduction from Kernel to
n + Kernel.

13

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

3.2.2 Minimum Edge Cost Flow (MECF)

Problem Description (Minimum Edge Cost Flow)

Given: A 7-tuple (G, s, t, c, p, R,B), where G = (V,A) is a digraph, s (source)
and t (sink) are specified vertices, c (capacity) and p (price) are mappings
from A to N+, and R, B are positive integers.

Question: Is there a flow function f : A → N such that

1. f(a) ≤ c(a) for all a ∈ A,

2. for each v ∈ V \ {s, t}, ∑(u,v)∈A f((u, v)) =
∑

(v,u)∈A f((v, u)), i.e., flow
is conserved in v,

3.
∑

(u,t)∈A f((u, t))−∑
(t,u)∈A f((t, u)) ≥ R, i.e., the net flow into t is at

least R, and

4. if A′ = {a ∈ A : f(a) 6= 0}, then
∑

a∈A′ p(a) ≤ B ?

Standard Verifier:

VMECF ={((G, s, t, c, p, R, B), f) : G = (V,A) is a digraph, s, t ∈ V , c and p

are mappings from A to N+, R, B ∈ N+, and f is a flow function

with the above properties}.

Theorem 3.2.2. For each n ∈ N+, n + Minimum Edge Cost Flow is NP-
complete.

Proof. Let n ∈ N+. We prove the NP-hardness of n+MECF by a reduction from
MECF, whose NP-completeness was shown in [EJ77]. Let (G, s, t, c, p, R,B) be
an instance for MECF. We add n new vertices x1, x2, . . . , xn and the 2n new
arcs {(s, xi) : 1 ≤ i ≤ n} ∪ {(xi, t) : 1 ≤ i ≤ n} to G and let G′ denote the
new graph. The capacity of all new arcs is R. The price is bB/2c for the arcs
{(s, xi) : 1 ≤ i ≤ n} and dB/2e for the arcs {(xi, t) : 1 ≤ i ≤ n}. Let c′ and p′

denote the changed capacity and price functions of G′.
The n flow functions f1, f2, . . . , fn that map the arcs (s, xi), (xi, t) to R and

all other arcs to zero are solutions for the modified instance (G′, s, t, c′, p′, R, B).
Using one pair of new arcs ((s, xi), (xi, t)) costs B, hence the n above flow func-
tions are the only possible ones using the new arcs. So it is obvious that there is
a solution for (G′, s, t, c′, p′, R,B) different from f1, f2, . . . , fn if and only if there
exists a solution for (G, s, t, c, p, R, B). Hence, the polynomial-time computable
mapping (G, s, t, c, p, R, B) 7→ ((G′, s, t, c′, p′, R, B), f1, f2, . . . , fn) realizes the re-
duction.

14

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

3.2.3 Subset Sum (SS)

Problem Description (Subset Sum)

Given: A finite set A, a size function s from A to N+, and a positive integer B.

Question: Is there a subset A′ ⊆ A such that
∑

a∈A′ s(a) = B ?

Standard Verifier:

VSS ={((A, s, B), A′) : A is a finite set, s is a mapping from A to N+, B

is from N+, and A′ is a subset of A such that
∑

a∈A′
s(a) = B}.

Theorem 3.2.3. For each n ∈ N+, n + Subset Sum is NP-complete.

Proof. Let n be some natural number. We give a many-one reduction from
Subset Sum to n + Subset Sum. The needed fact that Subset Sum is NP-
complete was shown in [Kar72]. Let (A, s,B) be an instance for Subset Sum.

We define a new instance for Subset Sum as follows: Add n new elements
b1, . . . , bn to A. Denote this new set by A′. Define the new size-function s′(a) =
s(a), for all a ∈ A, and s′(bi) = B, for all 1 ≤ i ≤ n. Obviously, all sub-
sets {bi}, 1 ≤ i ≤ n, are solutions for (A ∪ {b1, . . . , bn}, s′, B). It is also not
hard to see that there are no further solutions that contain one of the elements
b1, . . . , bn. Hence, each additional solution of (A ∪ {b1, . . . , bn}, s′, B) is also a
solution of (A, s, B) and vice versa. Thereore, the function that maps (A, s, B)
to ((A′, s′, B), {b1}, . . . , {bn}) realizes the desired reduction from Subset Sum to
n + Subset Sum.

3.3 Generating parsimonious reduction

So far, we have shown the NP-completeness of the alternative solutions problems
n + A, n ∈ N+, for several NP-complete problems A, by giving a reduction A ≤p

m

n+A, for all n ∈ N+. Surely, we could follow this idea and discuss a lot more NP-
complete problems in the same way. Since this approach provides no deeper insight
into the field of alternative solutions, it appears to be unsatisfactory. Instead we
want to find ways to discuss the complexity of alternative solutions that provide
a better understanding of this area.

As a first step, in this section we try to find a notion of a reduction between
NP-problems with associated verifiers that also provides a connection between
the complexity of alternative solutions of the treated problems. In particular, we
would like to have a result of the form

(A, VA) ≤? (B, VB) → (∀n ∈ N+)[n + AVA
≤p

m n + BVB
], (3.1)

15

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

for a sought-after type of reduction ≤?.

It turns out, that the generating parsimonious reduction, which is a many-
one-reduction that furthermore provides a (generating) function that transforms
solutions between the involved problems, is such a type of reduction. For the
introduction of the generating parsimonious reduction, we refer to the next section.
Note that the generating parsimonious reduction will also help to give easier auto-
reductions.

3.3.1 Basic definitions and properties

Here, we give the definition of the generating parsimonious reduction and gather
some basic properties.

Definition 3.3.1 ([LL78]). Let A and B be problems from NP with associated
verifiers VA and VB. We call (A, VA) generating parsimoniously reducible (gp-
reducible) to (B, VB) ((A, VA) ≤p

gp (B, VB)) if and only if there exists a pair (f, g)
of polynomial-time computable functions f : Σ∗ → Σ∗ and g : Σ∗ × Σ∗ → Σ∗ such
that for all x ∈ Σ∗:

1. x ∈ A ↔ f(x) ∈ B and

2. gx, defined via gx(y) = g(x, y), is a bijection between VA(x) and VB(f(x)).

Note that the first requirement follows from the second one. However, we ex-
plicitly state it to point out that gp-reducibility implies many-one reducibility.
Since the function gx generates solutions for f(x) from solutions for x, we call g a
generating function. Note furthermore that the reduction depends on the choice
of the verifiers VA and VB.

It is immediate that the gp-reduction is reflexive, since (A, VA) ≤p
gp (A, VA) via

f = id and gx = id, for all x ∈ Σ∗. The transitivity of the gp-reduction is stated
in the following lemma.

Lemma 3.3.2 ([LL78]). The gp-reduction is transitive.

Proof. Let Ai, i ∈ {1, 2, 3}, be from NP with respective verifiers VAi
.

Let A1 ≤p
gp A2 via (f 1, g1) and A2 ≤p

gp A3 via (f 2, g2) and let x be an arbi-
trary instance of A1. So f 1 maps x to an instance f 1(x) of A2 such that g1

x is
a bijection between VA1(x) and VA2(f

1(x)). Analogously, f 2 maps f 1(x) to the
instance f 2(f 1(x)) of A3 such that g2

f1(x) is a bijection between VA2(f
1(x)) and

VA3(f
2(f 1(x))). Since the composition of two bijective functions is also bijective,

g2
f1(x) ◦ g1

x is a bijection between VA1(x) and VA3(f
2(f 1(x))). Due to the fact that

the composition of two polynomial-time computable functions is also polynomial-
time computable, we have that A1 ≤p

gp A3 via (f 2 ◦ f 1, g2
f1(x) ◦ g1

x).

16

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

In Theorem 3.1.6 and Corollary 3.1.7 it was stated that n + (m + A) and (n +
m) + A as well as n + (m + A) and m + (n + A) are many-one equivalent via
realtime functions. Having a closer look at the proofs, it can easily be seen that
both assertions can be slightly strengthened by using the gp-reduction. In both
cases, all we have to do is to add the identity as generating function gx, for all
x ∈ Σ∗.

Corollary 3.3.3. Let A be a language from NP. Then n+(m+A) and (n+m)+A
are gp-equivalent1, for all natural numbers n and m via linear-time functions.

Corollary 3.3.4. Let A be a language from NP. Then for each pair of natural
numbers n and m, n + (m + A) and m + (n + A) are gp-equivalent via linear-time
functions.

3.3.2 Easier auto-reductions using gp-reductions

In Section 3.2 we have shown the NP-completeness of all n + A for several NP-
complete problems A by giving infinitely many reductions A ≤p

m n + A, n ≥ 1.
In this section we will see that proving one gp-reduction A ≤p

gp 1 + A implies
the same result. Since a reduction A ≤p

gp 1 + A produces an instance with one
additional solution with respect to VA it is not surprising that repeated application
of this reduction produces an instance with several additional solutions, which is
the basic idea of the upcoming proof.

Theorem 3.3.5. Let A be a problem in NP and let VA be a verifier for A. If A
is gp-reducible to 1 + A, then A is gp-reducible to n + A, for each natural number
n.

Proof. Let Vn+A denote the standard verifier for n + A based on VA as defined in
the proof of Theorem 3.1.5. Let furthermore, A ≤p

gp 1 + A via (f, g).
We prove the theorem by induction over n. For n = 0 and n = 1 the claim

is trivial. Let A ≤p
gp n + A for a fixed natural number n. To conclude that

A ≤p
gp (n + 1) + A, it suffices to show that n + A is generating parsimoniously

reducible to (n + 1) + A via some functions f ′ and g′, because of the transitivity
of gp-reductions.

Let z = (x, y1, . . . , yn) be an instance for n + A. Let f(x) = (x′, y′). Then,
we define f ′(z) := (x′, y′, gx(y1), . . . , gx(yn)) and g′z(y) := gx(y), for all y ∈ Σ∗.
Since f and g are polynomial-time computable, both functions f ′ and g′ are also
in FP. Moreover, the property that g is injective on VA(x) carries over to g′ on
Vn+A(z) ⊆ VA(x). It remains to show that g′z(Vn+A(z)) = V(n+1)+A(f ′(z)), that is,
g′z maps the set of solutions (w.r.t. VA) for x different from y1, . . . , yn onto the set
of solutions (w.r.t. VA) for x′ different from y′, gx(y1), . . . , gx(yn).

1Analogous to many-one equivalence, gp-equivalence stands for gp-reducibility in both direc-
tions.

17

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

In order to show that g′z(Vn+A(z)) ⊆ V(1+n)+A(f ′(z)) let y ∈ Vn+A(z). It follows
that y1, . . . , yn, and y are pairwise different solutions for x w.r.t. VA. Hence,
gx(y1), . . . , gx(yn), and gx(y) are pairwise different solutions for f(x) = (x′, y′)
w.r.t. V1+A because A ≤p

gp 1 + A via (f, g). By the definition of (n + 1) + A, we
have that gx(y) = g′z(y) ∈ V1+n+A(f ′(z)).

For the converse direction assume that s ∈ V1+n+A(f ′(z)). It follows that
gx(y1), . . . , gx(yn), and s are pairwise different solutions for (x′, y′) w.r.t. V1+A.
Since gx is a bijection between VA(x) and V1+A((x′, y′)), there exists a string
y ∈ VA(x) such that gx(y) = s and y differs from y1, . . . , yn. Hence, y ∈ Vn+A(z)
and thus, s ∈ gx(Vn+A(z)) = g′z(Vn+A(z)).

3.3.3 Hardness results by auto-gp-reductions

In the previous section we stated that giving only one gp-reduction 1 + A ≤p
gp A

for an NP-complete problem A is sufficient to prove the NP-completeness for all
n+A, n ∈ N+ (Theorem 3.3.5). As an example we will show the NP-completeness
of n+SAT and n+Partition by giving one auto-gp-reduction.

Satisfiability

Problem Description (Satisfiability)

Given: A formula F in CNF.

Question: Is F satisfiable ?

Standard Verifier:

VSAT = {(F, α) : F is a CNF-formula and F (α) = 1}.

The following result was firstly stated in [YS02].

Theorem 3.3.6. For each n ∈ N+, n + SAT is NP-complete.

Proof. We prove the claim by giving a generating parsimonious reduction from
SAT to 1 + SAT. Let F be an instance for SAT, i.e., a Boolean formula in CNF
on the variable set V = {x1, . . . , xn} and let C1, C2, . . . , Cm denote the clauses of
F .

Based on F , we describe a formula F ′ over the variable set V ′ = V ∪ {y}. The
formula F ′ consists of the modified clauses C ′

i = Ci ∨ y and of the additional
clauses C ′

m+i = (¬y ∨ xi), for 1 ≤ i ≤ n. Observe that an assignment β with
β(y) = 1 satisfies F ′ if and only if β(y) = β(x1) = · · · = β(xn) = 1.

Observe furthermore, that an assignment β′ with β′(y) = 0 satisfies F ′ if and
only if β′ satisfies the clauses C ′

1, C
′
2, . . . , C

′
m, that is, the restriction of β′ to the

variable set V satisfies F .

18

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

Now, let f denote the assignment that maps F to (F ′, one), where one denotes
the assignment one(z) = 1, for all z ∈ V ′. Let furthermore gF denote the function
that maps an assignment α : V → {0, 1} to the assignment α′ : V ∪ {y} → {0, 1}
as follows:

α′(z) =

{
0, if z = y

α(z), otherwise
.

By the above observations we have that the set of satisfying assignments of F ′

is VSAT(F ′) = {one} ∪ gF (VSAT(F)), that is, SAT ≤p
gp 1 + n via f and g.

Partition

Problem Description (Partition)

Given: A finite multiset A of positive integers.

Question: Is there a partition {A′, A′′} of A such that
∑

k∈A′
k =

∑
k∈A′′

k ?

Standard Verifier:

VPartition ={(A, {A′, A′′} : A is a finite multiset of positive integers and

{A′, A′′} is a partition of A such that
∑

k∈A′
k =

∑

k∈A′′
k}.

Note that the only difference between sets and multisets is the fact that an
element of a multiset additionally has a multiplicity, which is a natural number,
indicating how many memberships the element has in the multiset. The join A

⊎
B

of two multisets A, B is composed by adding the multiplicities of the members
from A and B. For instance, the join of {1, 2, 3} and {2, 3, 4} is {1, 2, 2, 3, 3, 4}.
While computing a sum over a multiset A each element appears k times, if k is
its multiplicity.

The given definitions of Partition and VPartition might appear more com-
plicated than the more common ones (e.g. see [GJ79]), where Partition typ-
ically consists of a set A of elements and a size-function s, assigning a natural
number to each element. A solution in this sense, is a set A′ ⊂ A such that∑

a∈A′ s(a) =
∑

a∈A\A′ s(a). From our point of view, this definition has a draw-
back. Suppose that there are two elements a1, a2 ∈ A having the same weight
and let A′ be a solution such that a1 ∈ A′ and a2 6∈ A′. Against our intuitive
understanding of solutions, there are alternative solutions A′ \ {a1} ∪ {a2} and
A \A′ that actually describe the same situation. Since our definition avoids such
trivial alternative solutions, it seems to be more practical for studying alternative
solutions.

Theorem 3.3.7. For each n ∈ N+, n + Partition defined with respect to
VPartition is NP-complete.

19

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

Proof. We give a gp-reduction Partition ≤p
gp 1 + Partition. Since Partition

was shown to be NP-complete in [Kar72], the theorem follows immediately from
Theorem 3.3.5. Let A be an instance for Partition and let S denote the sum∑

a∈A a. Note that if S is odd then A 6∈ Partition. So suppose S is even. If A
includes an element a = S/2 there is exactly one solution, namely the partition
{{a}, A \ {a}}. Such instances are mapped to a fixed member of 1 + Partition
having one solution. In this case, the partition {{a}, A \ {a}} is mapped to this
solution.

In the following assume that a 6= S/2, for all a ∈ A. We define f(A) :=
(A

⊎{S/2, S/2}, {A, {S/2, S/2}}). It is easy to see that {A, {S/2, S/2}} is a par-
tition for (A

⊎{S/2, S/2}). For each alternative partition {A1, A2}, it holds that
S/2 ∈ A1 and S/2 ∈ A2. Hence, the function g that maps a partition {A′, A′′}
of A to the partition {A′ ⊎{S/2}, A′′ ⊎{S/2}} of A

⊎{S/2, S/2} is a bijection
between the partitions of A and the partitions of A

⊎{S/2, S/2} that differ from
{A, {S/2, S/2}}. Thus, we have Partition ≤p

gp 1 + Partition via f and g.

3.3.4 Connected subgraph problems

This short section deals with a class of problems for which the completeness of the
ASP’s is very easy to see, so called connected subgraph problems. The antetype
for this class is the problem Clique:

Problem Description (Clique)

Given: A graph G = (V,E) and a natural number k.

Question: Is there a clique of size at least k in G, i.e., is there a set C of vertices
such that G[C] is isomorphic to the complete graph K|C| ?

Standard Verifier:

VClique ={((G, k), C) : G is a graph, k ∈ N, and C is a k-clique of G}.

It is very easy to see that Clique ≤p
gp 1 + Clique, since the mapping

f : (G, k) 7→ ((G ∪Kk, k), Kk)

combined with g = id realizes the reduction. By Theorem 3.3.5 it follows that
n + A is NP-complete, for each natural number n.

It is obvious, that the same idea also works for problems like Longest Cycle,
Longest Path, or Induced Path that ask for connected subgraphs with a local
property that is independent of the rest of the graph.

Theorem 3.3.8. For each n ∈ N+, n + Clique, n + Longest Cycle, n +
Longest Path, and n + Induced Path are NP-complete.

20

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

3.3.5 Inter-gp-reduction

The starting point for the discussion of gp-reductions was the wish for a reduction
≤? between two NP-problems A and B with associated verifiers VA and VB such
that (A, VA) ≤? (B, VB) implies n + A ≤p

m n + B, for all positive natural numbers
n.

The following theorem states that the gp-reduction actually is such a reduction.
It is even slightly stronger, because we get gp-reducibility between n + A and
n + B. Since we can transfer the hardness of the ASP’s from one NP-complete
problem to another, we call this type of reduction an inter-reduction.

Theorem 3.3.9. Let A and B be problems in NP with associated verifiers VA and
VB. If A ≤p

gp B then it holds that n + A ≤p
gp n + B, for each natural number n.

Proof. First, recall the standard verifier for n + A, that was defined in the proof
of Theorem 3.1.5. If VA is a natural verifier for A then we use the verifier

Vn+A ={((x, y1, . . . , yn), y) : (∀ 1 ≤ i ≤ n)[(x, yi) ∈ VA], (∀ 1 ≤ i 6= j ≤ n)[yi 6= yj],

(∀ 1 ≤ i ≤ n)[yi 6= y] ∧ (x, y) ∈ VA}.

as standard verifier for n + A. Analogous, we get the standard verifier Vn+B for
n + B.

Note that the assertion is trivial for n = 0. Now, let A ≤p
gp B via (f, g) and let

n ∈ N+. Recall that A ≤p
gp B via (f, g) means that f maps an instance x for A

to f(x) such that gx is a bijection between VA(x) and VB(f(x)).
To show that n + A ≤p

gp n + B, we will give functions f ′ and g′ based on f and
g that realize this reduction. Let f ′ be the function that maps a given instance
z = (x, y1, y2, . . . , yn) for n + A to f ′(z) = (f(x), gx(y1), gx(y2), . . . , gx(yn)). It
is easy to see that if y1, y2, . . . , yn are no pairwise different solutions for x then
gx(y1), gx(y2), . . . , gx(yn) are no pairwise different solutions for f(x) and thus in
this case, Vn+A(z) = Vn+B(f(z)) = ∅.

So suppose that all yi are pairwise different solutions for x. Since gx is a bi-
jection between VA(x) and VB(f(x)) as well as between {y1, y2, . . . , yn} ⊆ VA(x)
and {gx(y1), gx(y2), . . . , gx(yn)} ⊆ VB(f(x)), gx is a bijection between Vn+A(z) =
VA(x) \ {y1, y2, . . . , yn} and Vn+B(f ′(z)) = VB(f(x)) \ {gx(y1), gx(y2), . . . , gx(yn)}.

So by defining g′z(y) := gx(y), we gain n + A ≤p
gp n + B via f ′ and g′.

Note that we now have a very simple proof for Theorem 3.3.5 by combining
Theorem 3.3.9 with Corollary 3.3.3.

For hardness results by inter-reduction we refer to Chapter 4, where the question
of the complexity of alternative solutions is embedded in a discussion about the
“right” verifier for NP-problems.

A closer look at the proof of the NP-completeness of SAT [Coo71] shows that
cook implicitly proved the following stronger theorem that states that SAT is also
complete for NP with respect to gp-reductions.

21

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

Theorem 3.3.10. [LL78] If A is a language from NP with a verifier VA then
(A, VA) is generating parsimoniously reducible to (SAT, VSAT), where

VSAT = {(F, α) : F is a CNF-formula and F (α) = 1}.

Proof. Let A be a language from NP with a verifier VA and let pA be the polynomial
that bounds the length of solutions y for each instance x, i.e., for each pair (x, y)
such that (x, y) ∈ VA, we have |y| ≤ pA(|x|). We consider the nondeterministic
machine M ′ that given an input string x, in a first step guesses all strings y with
|y| ≤ pA(|x|) and then deterministically verifies if (x, y) ∈ VA. So each accepting
path of the computation of M ′(x) represents a solutions y for the instance x and
for each solution y of x there is an accepting path of M ′(x). This yields a bijection
between the accepting paths of M ′(x) and the solutions of x. Applying Cook’s
construction to the machine M ′ and the input x provides a formula fM ′(x) = F
such that each satisfying assignment of F corresponds to exactly one accepting
path of the computation of M ′(x) and vice versa. As seen above, there is also
a bijection between the accepting paths of the computation of M ′ on the input
x and the solutions VA(x). Combining both bijections, we gain a bijection gx

between VA(x) and the satisfying assignments VSAT(F) of fM ′(x) = F . Hence,
(A, VA) ≤p

gp (SAT, VSAT) via fM ′ and g.

Later (in Chapter 4), we will benefit from this theorem in the context of uni-
versal verifiers.

3.4 Bibliographical remarks

As already mentioned in the beginning of this chapter, some of the mentioned con-
cepts have been introduced similarly by Ueda and Nagao [UN96, Set02, YS02].
They were especially interested in alternative solutions of puzzles like, e.g., Fil-
lomino, Kakkuro, Nonogram and Sudoku, because puzzles shall have unique solu-
tions and thus, the question for alternative solutions is crucial for puzzles.

In order to discuss these problems, the group of Ueda and Nagao very simi-
larly defined the notions of ASP’s for NP-problems 3.1.4, showed one direction of
Corollary 3.1.6 (associativity of “+”) and introduced the gp-reduction (they call
it ASP-reduction) in order to show equivalents of Theorem 3.3.5 (auto-reduction)
and Theorem 3.3.9 (inter-reduction). Using these notions and properties, they
showed the NP-completeness of the ASP’s of Hamiltonian Cycle, Satisfia-
bility, 3Satisfiability, and 3Dimensional Matching which were used to
show that the ASP’s of the puzzles Fillomino, Kakkuro, Nonogram, Slither Rink,
and Sudoku are NP-complete.

Unfortunately, in the beginning of our work on this thesis we did not know
about the mentioned Japanese group and their results and redeveloped some of
these concepts independently. One could say that this degrades the corresponding
parts of our thesis. We rather consider this as a substantiation of our results. We

22

Chapter 3 Alternative Solutions in NP I - Concepts to Show Hardness

designed a very new formalization and found that another group with a very
similar objective came to almost the same notions and concepts independently,
which supports our ideas.

To the best of our knowledge the results not mentioned above, are new.

3.5 Conclusions

We have provided several ways to show NP-completes of all ASP’s for an NP-
complete problem. There are two types of auto-reductions, that is, on the one
hand giving infinitely many auto-many-one reductions (one per ASP) and on the
other hand giving one auto-gp-reduction. Furthermore, one can identify a given
problem as a connected (induced) subgraph problem or show the NP-completeness
for all ASP’s by giving one inter-gp-reduction. As examples for these concepts, we
have shown that all alternative solution problems of Kernel, Minimum Edge
Cost Flow, Subset Sum, Partition, Clique, Induced Path, Longest
Cycle, and Longest Path are NP-complete. The group of Ueda and Nagao
has furthermore shown, that the ASP’s of Hamiltonian Cycle, Satisfiabil-
ity, 3Satisfiability, 3Dimensional Matching, and of the puzzles Fillomino,
Kakkuro, Nonogram, Slither Rink, and Sudoku are also NP-complete. This list2

gives reason to conjecture that all alternative solution problems of NP-complete
problems are NP-complete, when defined with respect to their natural verifier.
However, since the notion of a natural verifier is not formally definable, we ab-
stain from formulating and discussing this conjecture and refer to the next chap-
ter, where we replace the informal notion of a natural verifier by the notion of a
universal verifier.

Moreover, we have seen that Cook’s proof for the NP-completeness of SAT
can be transferred to gp-reductions, that is, each NP-problem with any verifier
is gp-reducible to (SAT, VSAT). This will be of major importance in the next
chapter.

Note that all hardness results of this chapter will recur in the next chapter as
a by-product of showing that the used natural verifiers are universal verifiers.

2Anticipant, we say that we treat even more problems in the next chapter and show NP-
completeness for their alternative solution problems.

23

Chapter 4

Alternative Solutions in NP II -
Universal Verifiers and
∃r∀lgp-Reduction

In the previous chapters we always used the natural verifier to characterize the so-
lutions for an instance of an NP-problem. Although the choices of the used verifiers
seemed to be canonical, using exactly these verifiers has no formal justification: It
is possible, that there are different characterizations of given problems, leading to
different natural verifiers. Or it might be the case that an NP-problem A has no
canonical characterization of the form A = {x : (∃y)|y| ≤ p(|x|)∧B(x, y)} with a
P-problem B, that motivates the choice of B as the natural verifier. We are aware
of the fact that for a very large majority of the known NP-problems, these doubts
are baseless and there exist very canonical natural verifiers. However, we would
prefer a formal characterization of proper verifiers, that on the one hand resolves
all doubts about the choice of verifiers and on the other hand furthermore provides
a possibility to formally state assertions of the form “For all NP-problems with
the associated proper verifier it holds that...”, which is in most cases impossible
using the informal notion of natural verifiers.

A concept called universal relations that might be useful was introduced in
[AB92]. The authors define properties called joinability, couplability and the exis-
tence of a so called building block for relations (verifiers) of NP-problems. Then,
it is shown that all NP-problems B with any relation VB can be reduced to each
pair (A, VA) of an NP-problem A with a relation VA that satisfies these properties.
Because of this universal reducibility, such relations are called universal relations.
Unfortunately, in contrast to the concept of gp-reductions, the reduction used in
[AB92] does not provide a bijection between solutions, but only a projection from
one solutions set to another. It is not hard to see, that thus universal relations are
not very useful for our strongly solution based approach. In this chapter we intro-
duce the similar notion of universal verifiers based on the gp-reduction, which is
a more promising candidate to replace the informal notion of the natural verifier.

We furthermore introduce a notion of reduction, the so-called ∃r∀lgp-reduction,
that is helpful in showing verifiers to be universal. We also prove that giving

24

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

such a reduction besides identifying the used verifier as universal also provides
the NP-completeness of all ASP’s defined with respect to this verifier. Then,
we give such a reduction for a long list of NP-complete problems, showing their
natural verifiers to be universal and answering our initial question by showing the
NP-completeness of the associated alternative solution problems. So we will see
that the formal notion of the universal verifier seems to be a proper substitute for
the informal natural verifier, since almost all natural verifiers will turn out to be
universal.

4.1 Definitions and properties

Many verifiers of NP-problems have the property that a given solution leads to
one or more trivial alternative solutions. For instance, consider the verifier for
Hamiltonian Cycle that identifies a Hamiltonian permutation of the vertices
of a given graph G as a solution for G. Hence, each cyclic permutation of a
given Hamiltonian permutation leads to another Hamiltonian permutation, which
is another solution. Furthermore, it is not hard to modify a natural verifier such
that the modified verifier induces trivial alternative solutions. For instance, let
VA be a natural verifier for A without trivial alternative solutions and let V ′

A be
the verifier that characterizes a string yz as a solutions for a given instance x if
and only if VA(x, y) and z ∈ {0, 1}k. Hence, each solution with respect to V ′

A is
one of 2k versions yz, z ∈ {0, 1}k, of one solution y with respect to VA and there
obviously are trivial alternative solutions. In the following we will use w.r.t. as
abbreviation for with respect to.

Our idea of a proper verifier for an NP-problem is that such a verifier should
reflect the intrinsic solutions of the problem (which is obviously also an informal
phrase). So verifiers, where one known solutions leads to trivial alternative solu-
tions reflecting the same intrinsic solution of the treated instances, shall be ruled
out. In order to do so we concentrate on the numbers of solutions a certain ver-
ifier induces. Consider a verifier V that induces pairs of solutions such that one
solution trivially leads to the other one. It follows that all instances have an even
number of solutions. The same argumentation leads to the fact that the above
constructed verifier V ′

A induces a number of solutions divisible by 2k. So we have
seen, that such improper verifiers are restricted concerning their possible numbers
of solutions. In contrast a proper verifier probably has a very general solution
structure in terms of the possible numbers of solutions. Since the gp-reduction
transfers some solution structure (at least the number of solutions), we feel that
this reduction might be the right choice to distinguish between proper and im-
proper verifiers. Let for instance B be an NP-problem with a verifier VB with
a general structure and a verifiers V ′

B with an even number of solutions. Hence
(B, VB) is not gp-reducible to (B, V ′

B) because an instance x with one solution
w.r.t. VB can not be mapped to an instance x′ with one solution w.r.t. V ′

B.

Following the presented intuition, we say that a verifier VA for A ∈ NP is

25

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

universal, if (A, V ′
A) can be gp-reduced to (A, VA), for all verifiers V ′

A for A.

Definition 4.1.1. Let A be from NP. A verifier VA for A is called a universal
verifier for A if and only if (A, V ′

A) ≤p
gp (A, VA) for each A-verifier V ′

A.

Note that the universal verifier for a language A is not unique. In fact, there
might be many universal verifiers for the same language. For instance, if VA is a
universal verifier for A it is easy to show that

V ′
A = {(x, y1) : (x, y) ∈ VA}

is also universal. However, for each pair VA and V ′
A of universal verifiers for A holds

(A, VA) ≤p
gp (A, V ′

A) and (A, V ′
A) ≤p

gp (A, VA), which implies that the associated
ASP’s have the same complexity (Theorem 3.3.9). So from our point of view
different universal verifiers are basically the same1.

Proving a verifier to be universal seems to be a very hard task, since there is
an infinite number of verifiers for each NP-problem. The following notion of a
reduction will finally help to show verifiers to be universal. This reduction is a
slightly modified version of a verifier-independent witness isomorphic reduction
from [FHT97].

Definition 4.1.2. Let A and B be NP-problems. We call A ∃r∀lgp-reducible to
B (A ≤∃r∀lgp B) if and only if there exists a verifier VB for B such that for all
verifiers VA for A, it holds that (A, VA) ≤p

gp (B, VB). In this situation we say that
A is ∃r∀lgp-reducible to B via VB.

It is easy to see that A is ∃r∀lgp-reducible to A via VA if and only if VA is
universal for A.

When dealing with reductions, we often firstly discuss its properties as relation.
As just mentioned the reflexivity of the ∃r∀lgp-reduction is strongly connected
with the existence of universal verifiers.

Corollary 4.1.3. The ∃r∀lgp-reduction is reflexive if and only if there exists a
universal verifier for each problem from NP.

Although we will later give universal verifiers for a lot of NP-complete problems,
we do not know whether all NP-complete problems have universal verifiers or not.
So the question, if the ∃r∀lgp-reduction is reflexive, remains open. At least, we
can show that the ∃r∀lgp-reduction is transitive.

Lemma 4.1.4. If A ≤∃r∀lgp B and B ≤∃r∀lgp C via VC then A ≤∃r∀lgp C via VC,
i.e., the ∃r∀lgp-reduction is transitive.

Proof. Let A ≤∃r∀lgp B via VB and B ≤∃r∀lgp C via VC . Hence (A, VA) ≤p
gp (B, VB)

for each A-verifier VA and (B, VB) ≤p
gp (C, VC). Since generating parsimonious

reductions are transitive (see Lemma 3.3.2) it holds that (A, VA) ≤p
gp (C, VC) for

each A-verifier VA.

1In contrast, when comparing different universal verifiers concerning the complexity of their
inverse problems (see e.g. [Che03]), they might behave different (see Chapter 8).

26

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

The following corollary is a simple conclusion from the definitions of universal
verifiers and ∃r∀lgp-reductions.

Corollary 4.1.5. If A ≤∃r∀lgp B via VB and B ≤∃r∀lgp A via VA then VA is
universal for A and VB is universal for B.

Proof. By Lemma 4.1.4 we have A ≤∃r∀lgp A via VA and B ≤∃r∀lgp B via VB,
which means that VA is universal for A and VB is universal for B.

In analogy to many other reductions we define a notion of completeness for
∃r∀lgp-reductions.

Definition 4.1.6. A language A from a class C is called ∃r∀lgp-complete for C
if and only if B ≤∃r∀lgp A, for all B ∈ C.

Since the class of our main interest is NP, we will use ∃r∀lgp-complete as a
shorthand for the term ∃r∀lgp-complete for NP throughout this chapter.

Let us assume that A is a ∃r∀lgp-complete problem and let B be an arbitrary
NP-problem. It follows that B is ∃r∀lgp-reducible to A via a verifier V B

A for A that
depends on B. Up to here, we can not expect that there exists a single verifier VA

for A such that all NP-problems are ∃r∀lgp-reducible to A via that verifier VA. If
all problems from NP are ∃r∀lgp-reducible to A via one and the same verifier VA,
we call A ∃r∀lgp-complete via VA.

The following theorem provides the existence of such a single verifier VA for
each ∃r∀lgp-complete problem A.

Theorem 4.1.7. Let A ∈ NP be ∃r∀lgp-complete. There exists a verifier VA such
that B ≤∃r∀lgp A via VA, for all B ∈ NP, that is, A is ∃r∀lgp-complete via VA.

Proof. Let A be ∃r∀lgp-complete. It follows that A ≤∃r∀lgp A via a verifier VA. Let
B be an arbitrary NP-problem. Since A is ∃r∀lgp-complete, B is ∃r∀lgp-reducible
to A via a verifier V B

A for A. By the fact that A is ∃r∀lgp-reducible to A via
VA and by the transitivity of the ∃r∀lgp-reduction (Lemma 4.1.4) it follows that
B ≤∃r∀lgp A via VA.

It is a simple fact that the ∃r∀lgp-completeness of a problem A via a verifier VA

implies that VA is universal for A.

Observation 4.1.8. If a problem A is ∃r∀lgp-complete via VA, then VA is uni-
versal for A.

Proof. Assume that A is ∃r∀lgp-complete. It follows that A is ∃r∀lgp-reducible
to A via a verifier VA. That verifier is by Definition 4.1.1 a universal verifier for
A.

Analogously to other reductions the upcoming lemma follows from the transi-
tivity of ∃r∀lgp-reducibility.

27

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Lemma 4.1.9. If A ≤∃r∀lgp B via VB for a ∃r∀lgp-complete problem A, then B
is ∃r∀lgp-complete (via VB).

Proof. Let A be ∃r∀lgp-complete and let C be an arbitrary NP-problem. It follows
that C is ∃r∀lgp-reducible to A via an A-verifier VA . Since A is ∃r∀lgp-reducible
to B via VB, by the transitivity of the ∃r∀lgp-reduction (Lemma 4.1.4), it follows
that C ≤∃r∀lgp B via VB. Thus, we have that B is ∃r∀lgp-complete via VB.

Since we know that each ∃r∀lgp-complete problem A has a universal verifier VA

(Observation 4.1.8) and that all problems from NP are ∃r∀lgp-reducible to A via
that verifier VA (Theorem 4.1.7) we can slightly weaken the precondition of the
above lemma.

Lemma 4.1.10. Let A be a ∃r∀lgp-complete problem with a universal verifier VA

and let B be a language from NP with a verifier VB. If (A, VA) ≤p
gp (B, VB), it

holds that B is ∃r∀lgp-complete via VB.

Proof. Due to Lemma 4.1.9 it suffices to show that A is ∃r∀lgp-reducible to
B via VB, i.e., (A, V ′

A) ≤p
gp (B, VB) for each verifier V ′

A for A. So let V ′
A be

an arbitrary verifier for A. Since A is ∃r∀lgp-complete via VA we have that
(A, V ′

A) ≤p
gp (A, VA). By the transitivity of the ≤p

gp reduction (Lemma 3.3.2)
we have (A, V ′

A) ≤p
gp (B, VB). Thus, A ≤∃r∀lgp B via VB.

Hence, we can show ∃r∀lgp-completeness for a problem B via an associated
verifier VB by giving one gp-reduction from (A, VA) to (B, VB), where A is ∃r∀lgp-
complete via VA. So far, we have no such ∃r∀lgp-complete problem. Thus, (a
transcription of) the generalized version of Cook’s Theorem 3.3.10 is of particular
interest again, since it provides a first ∃r∀lgp-complete problem.

Theorem 4.1.11 ([Coo71]). SAT is ∃r∀lgp-complete via VSAT.

Proof. In Theorem 3.3.10 we have seen that (A, VA) is generating parsimoniously
reducible to (SAT, VSAT) for each NP-problem A and associated verifier VA. In
terms of ∃r∀lgp-reduction that means that SAT is ∃r∀lgp-complete via VSAT.

Note that Theorem 4.1.11 implies that VSAT is a universal verifier for SAT and
thus provides a first universal verifier.

Now, we can furthermore state a connection between the complexity of alter-
native solutions and the ∃r∀lgp-reduction respectively ∃r∀lgp-completeness that
belatedly explains the importance of the class of ∃r∀lgp-complete problems.

Theorem 4.1.12. Let A be ∃r∀lgp-complete via VA. Then, n + A (defined with
respect to VA) is NP-complete for all n ∈ N+.

Proof. Let A be ∃r∀lgp-complete via VA. It follows that (SAT, VSAT) is gp-
reducible to (A, VA) and hence, by Theorem 3.3.9, we have that n+SAT ≤p

m n+A
for all n ∈ N+, where n + SAT and n + A are defined w.r.t. VSAT and VA. Thus,
by the NP-completeness of n+SAT, for all n ∈ N+ (see Theorem 3.3.6), the claim
is immediate.

28

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

By combining Observation 4.1.8 with Theorem 4.1.12, we immediately have the
following corollary.

Corollary 4.1.13. Let A be ∃r∀lgp-complete via VA. Then, VA is universal for
A and n + A (defined with respect to VA) is NP-complete for all n ∈ N+.

So by showing ∃r∀lgp-completeness for a problem A via a verifier VA we answer
two questions at once. We show that the used verifier VA is universal for A and on
the other hand, we show the NP-completeness of all alternative solution problems
n+A, n ∈ N+, according to this universal verifier. In the remainder of this chapter
we will show the ∃r∀lgp-completeness of a lot of NP-complete problems via their
natural verifiers. As we have seen in Observation 4.1.8, this implies that the
used natural verifiers are universal verifiers. So we gain a formal justification for
the use of these verifiers in characterizing the ASP’s of the treated NP-problems.
Moreover, Corollary 4.1.13 provides that all these ASP’s are also NP-complete
which negatively answers the initial question for the complexity of computing
alternative solutions.

Before doing so, we have to keep a promise we gave in Chapter 3. When we
formally introduced the ASP n + B for an NP-problem B w.r.t. a verifier VB, we
also introduced the verifier

Vn+B ={((x, y1, . . . , yn), y) : (∀ 1 ≤ i ≤ n)[(x, yi) ∈ VB], (∀ 1 ≤ i 6= j ≤ n)[yi 6= yj],

(∀ 1 ≤ i ≤ n)[yi 6= y] ∧ (x, y) ∈ VB}.

as standard verifier for n + B and claimed that for all treated problems B a
universal verifier VB for B leads to a universal verifier Vn+B for n + B. Since we
will show the universality of the verifiers for the treated problems by giving gp-
reductions from ∃r∀lgp-complete problems (for instance SAT), it suffices to prove
the following theorem.

Theorem 4.1.14. If universality of VB for B was shown by a gp-reduction from
(A, VA) to (B, VB) for a ∃r∀lgp-complete problem A with a universal verifier VA,
then Vn+B is also universal for n + B, for all n ∈ N+.

Proof. Let n ∈ N+. By Theorem 4.1.11 we have that SAT is ∃r∀lgp-complete
via VSAT. Furthermore, by the proof of Theorem 3.3.6 in combination with Theo-
rem 3.3.5 we know that (SAT, VSAT) ≤p

gp (n + SAT, Vn+SAT), which implies that
n + SAT is ∃r∀lgp-complete via Vn+SAT.

Due to the ∃r∀lgp-completeness of A via VA and the gp-reduction (A, VA) ≤p
gp

(B, VB), we have that (SAT, VSAT) ≤p
gp (B, VB). By Theorem 3.3.9 it follows that

(n+SAT, Vn+SAT) ≤p
gp (n+B, Vn+B). Now, the ∃r∀lgp-completeness of n+B via

Vn+B follows from the ∃r∀lgp-completeness of n+SAT via Vn+SAT (Lemma 4.1.10).
Thus, the assertion is immediate by Observation 4.1.8.

29

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

4.2 The ∃r∀lgp-completeness of the six basic
NP-complete problems

In the previous section we provided a concept to give an exhaustive answer to
the question of alternative solutions for NP-problems (Corollary 4.1.13) by giving
one gp-reduction and thus showing ∃r∀lgp-completeness. Namely, giving one gp-
reduction (A, VA) ≤p

gp (B, VB) for a problem A that is ∃r∀lgp-complete via VA

suffices to identify the verifier VB as universal for B and to show that all n + B
defined with respect to the universal verifier VB are NP-complete.

In this section, following this concept, we will discuss the six basic NP-complete
problems listed in [GJ79], that are of especial interest as typical representa-
tives for the class of NP-complete problems. In particular these problems are
3SAT, Hamiltonian Cycle, 3Dimensional Matching, Partition, Ver-
tex Cover, and Clique. In order to show the ∃r∀lgp-completeness of these
problems we will establish and use ∃r∀lgp-completeness results for some more
problems.

Note that, since gp-reductions are special cases of many-one- or parsimonious
reductions, in giving gp-reductions we can often benefit from known many-one- or
parsimonious reductions that turn out to also be gp-reductions or that provide a
basis for a gp-reduction.

To avoid unnecessary commentarial sentences, in most cases we only give the
problem definition and the used verifier without further explanations.

4.2.1 3Satisfiability (3SAT)

Problem Description (3Satisfiability)

Given: A Boolean formula F in 3CNF.

Question: Is F satisfiable ?

Standard Verifier:

V3SAT = {(F, α) : F is a Boolean 3CNF-formula and F (α) = 1}.

The desired gp-reduction (SAT, VSAT) ≤p
gp (3SAT, V3SAT) can be found in

[YS02]. The following theorem is an immediate corollary of this reduction and
Theorem 4.1.11.

Theorem 4.2.1. 3SAT is ∃r∀lgp-complete (via V3SAT).

4.2.2 Hamiltonian Cycle (HC)

Problem Description (Hamiltonian Cycle)

30

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Given: A graph G = (V,E).

Question: Is there a Hamiltonian cycle in G ?

Standard Verifier:

VHC = {(G,C) : G is a graph and C is a Hamiltonian cycle of G}.

In [Set02] the authors give a gp-reduction (3SAT, V3SAT) ≤p
gp (HC, VHC) im-

plying ∃r∀lgp-completeness of HC. However, we give a very nice shorter proof
that is inspired by the proof of Πp

2-completeness of a Hamiltonian cycle problem
in [KL95].

Theorem 4.2.2. Hamiltonian Cycle is ∃r∀lgp-complete via VHC.

Proof. Due to Lemma 4.1.10 it suffices to give a gp-reduction (3SAT, V3SAT) ≤p
gp

(HC, VHC). Let F be a 3CNF-formula consisting of the clauses C1 ∧ · · · ∧Cm over
the variable set X = {x1, . . . , xn}. The formula F will be mapped to a graph
f(F) = GF , which will be described in the following.

For each variable xi, GF contains a vertex xi and for each clause Cj, there is a
gadget Hj (see Figure 4.1) in GF .

uj
1

uj
2

uj
3

vj
1

vj
2

vj
3

Figure 4.1: A depiction of the gadget Hj for the clause Cj.

The only vertices of the gadget Hj that are joining edges with the rest of the
graph are the vertices uj

1, u
j
2, u

j
3 and vj

1, v
j
2, v

j
3. By discussing all possible cases, it

is not hard to see that each Hj has the following properties:

1. If a Hamiltonian cycle enters Hj in uj
k, k ∈ {1, 2, 3}, then it leaves Hj in vj

k.

2. For each k ∈ {1, 2, 3}, there is exactly one path from uj
k to vj

k that visits all
vertices of Hj.

3. For all 1 ≤ k1 < k2 ≤ 3, there is exactly one combination of two disjoint
paths from uj

k1
to vj

k1
and from uj

k2
to vj

k2
such that all vertices of Hj are

visited by one of the paths.

4. There is exactly one triple of disjoint paths P1, P2, and P3 through Hj where
P` leads from uj

` to vj
` , 1 ≤ ` ≤ 3, such that all vertices of Hj are visited by

a path.

31

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

So, no matter how often and in which row(s) a potential Hamiltonian cycle tries
to traverse the gadget, there is always a unique possibility to do so.

Now, we add edges such that there are two paths from x1 to x2. Finally, the
choice between both paths will represent the assignment of the variable x1.

To describe the first path, say x1 appears in the k1th, k2th, . . . , krth literal of
the clauses Cj1 , Cj2 , . . . , Cjr , respectively. We add the edge {x1, u

j1
k1
}, the edges

{vj`

k`
, u

j`+1

k`+1
}, for all 1 ≤ ` ≤ r − 1, and the edge {vjr

kr
, x2}. So this path starts

in x1 traverses all gadgets Hj corresponding to those clauses that contain x1 and
finishes in x2. This path shall represent assigning 1 to x1. Analogously, we add a
second path from x1 to x2 traversing those clauses which include ¬x1. This path
shall represent assigning 0 to x1.

In the same way we add a pair of paths from x2 to x3, . . . , from xn−1 to xn and
from xn to x1. This concludes the construction of the graph GF .

So the basic idea of the construction is the following. A potential Hamiltonian
cycle goes from xi to xi+1, for 1 ≤ i ≤ n − 1, and from xn to x1 always using
one of the two possible paths. Note that the structure of the graph GF and the
properties of the gadget make sure that there is no Hamiltonian cycle of GF that
differs from this scheme. The used paths represent an assignment α of the variable
set X = {x1, . . . , xn}. No matter how often and where the cycle traverses some
gadgets H1, . . . , Hm, there is always a unique way that visits all vertices of the
gadgets. It is not hard to see that such a path visits the gadget Hj if and only
if one of its literals is satisfied by α. Furthermore, it is obvious that such a cycle
is a Hamiltonian cycle if and only if it traverses all gadgets, i.e., the associated
assignment satisfies all clauses.

Hence, we have that GF has exactly one Hamiltonian cycle Cα for each satis-
fying assignment α of F and conversely, each Hamiltonian cycle C of GF induces
an satisfying assignment αC of F . So, when we define gF (α) = Cα we have
(3SAT, V3SAT) ≤p

gp (HC, VHC) via f and g, where f(F) = GF .

4.2.3 Tiling

In this section we will give a short introduction to tiling problems in order to
finally show the ∃r∀lgp-completeness of 3Dimensional Matching (For more
detailed information about tiling problems we refer to [vEB97]). The geometrical
character of a tiling problem T is often helpful in finding reductions from T to dif-
ferent kinds of problems. Since a certain type of a tiling problem will turn out to
be ∃r∀lgp-complete, we gain a useful possibility to prove ∃r∀lgp-completeness of a
problem A by giving a gp-reduction from this tiling problem to A. Finally we will
use this method to show the ∃r∀lgp-completeness of 3Dimensional Matching.

The most basic notion in tiling problems is a tile. A tile is a square which is
divided into four triangles by the two diagonals. A certain coloring of the four
triangles is called a tile type (see also Figure 4.2).

32

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Definition 4.2.3 ([vEB97]). Let C be a finite set of colors. A tile type d is a
four-tuple (dn, de, ds, dw) of colors from C. For a tile type d = (dn, de, ds, dw) we
define north(d) := dn, east(d) := de, south(d) := ds, and west(d) = dw.

Following the idea of the colored triangles, we say that dn, de, ds, and dw are
the colors of the triangles in the north, east, south, and west, respectively.

Figure 4.2: A depiction of a tile type with the colors (green, blue, red, white).

Note that the tile types are orientated, that is, rotating or reflecting tile types
in general leads to a different tile type

Tiling problems deal with the question, if a certain region R of the 2-dimensional
grid can be tiled using a given set D of tile types (see Figure 4.3). That question
leads to the notion of a D-tiling.

Definition 4.2.4 ([vEB97]). Let R be a region of the two-dimensional square
grid and let D be a set of tile types. A mapping t : R → D is called a D-tiling of
R if and only if any two tiles that share a horizontal or vertical edge in the grid
have the same color in the triangles adjacent to this edge.

Figure 4.3: A proper tiling of the 2× 3 grid using six different tile types.

So, a tiling problem is to decide, given a region R and a set of tile types D,
whether a D-tiling of R exists, or not. Sometimes there are some additional

33

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

constrains, such as a given coloring of parts of the border of the region R, which
has to be extended by a D-tiling. Depending on the choice of the range of regions
R and the additional constraints tiling problems can be NP-complete, PSPACE-
complete and even RE-complete [vEB97, Ber66].

We will focus on the following NP-complete tiling problem.

Problem Description (Tiling)

Given: A set of tile types D, a natural number n in unary representation and a
coloring c of the upper and lower border of the n× n grid.

Question: Is there a D-tiling of the n× n grid, extending the given coloring on
the border ?

Standard Verifier:

VTiling ={((D,n, c), t) : D is a set of tile types, n ∈ N is in unary represen-

tation, c is a coloring of the upper and lower border of the n× n

grid, and t is a D-tiling of the n× n grid that respects c}.

Similar to SAT (Theorem of Cook [Coo71]) the NP-completeness of Tiling
was shown by simulating the work of a nondeterministic polynomial-time Turing
machine on an arbitrary input using tiles [GJP77]. A published version of this
result can be found in [vEB97]. Analogous to the case of SAT this reduction
turns out to be a gp-reduction. Without going into details we want to describe
the idea of that reduction.

Let A be an arbitrary NP-problem and let VA be a verifier for A. Let M be the
nondeterministic Turing machine that, given an input x, in a first nondeterministic
phase guesses all possible potential solutions for x. Afterwards, M verifies for each
guessed potential solution y (by using a deterministic polynomial time algorithm
for VA) whether (x, y) is in VA or not. In case of (x, y) ∈ VA the corresponding path
of the computation of M(x) accepts and otherwise, it rejects. We assume that M is
standardized in a way, such that each computational path of a computation M(x)
rejects or accepts after exactly p(|x|) steps, where p is a polynomial. Furthermore,
in case of M(x) accepts, it finishes in a fixed accepting configuration.

Now, an input x for M is mapped to the triple (D, p(|x|), c) of a specially chosen
set of tile types D, the unary representation of p(|x|), and a specially chosen
coloring c. The main idea is, that each line of the grid square p(|x|) × p(|x|)
represents a configuration of the computation of M . The set of tile types D is
chosen in a way such that two consecutive lines fit together if and only if the
upper line represents a configuration that is a valid successor (according to the
program of M) of the configuration represented by the lower line. The coloring c
is chosen, such that the bottom line represents the starting configuration of the
computation of M(x) and that the top line represents the accepting configuration
of M . Then, it is not hard to see that each accepting path of the computation

34

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

M(x) leads to a valid D-tiling of the square p(|x|)× p(|x|) and vice versa. Since
each accepting path of the computation M(x) represents a solution for x we have
a one-to-one-correspondence between the solutions of x and the D-tilings of the
square p(|x|)× p(|x|), that is, a reduction (A, VA) ≤p

gp (Tiling, VTiling).

Theorem 4.2.5. Tiling is ∃r∀lgp-complete via VTiling.

4.2.4 Exact-3-Cover (X3C)

Our intention is to show ∃r∀lgp-completeness for the six basic NP-complete prob-
lems (see [GJ79]). To show ∃r∀lgp-completeness of the next candidate, 3Dimen-
sional Matching (3DM), we will first take a closer look at the strongly related
problem Exact-3-Cover (X3C).

Problem Description (Exact-3-Cover)

Given: A pair (V, C), where V is a set such that |V | is divisible by 3, and C is
a collection of 3-element subsets of V .

Question: Is there an exact-3-cover C′ of (V, C), i.e., a subcollection C′ ⊆ C such
that each element of V appears in exactly one member of C′ ?

Standard Verifier:

VX3C ={((V, C), C′) : |V | is devisible by 3, C is a collection of 3-element

subsets of V , and C′ ⊆ C is an exact-3-cover of (V, C)}.

Note that each X3C-instance (V, C) can be interpreted as a 3-hypergraph. A
hypergraph is a pair (V, E), where V is a finite set of vertices and E is a collection of
nonempty subsets of V , called hyperedges. A k-hypergraph is a hypergraph, where
each hyperedge consists of exactly k vertices. So it is not hard to see that each
proper X3C-instance (V, C) is also a 3-hypergraph. Following this interpretation,
we will call the elements of V vertices and the elements of C hyperedges. We will
often use edge as a shorthand for hyperedge. Analogous to standard graphs, we
will imagine an X3C-instance (V, C) as vertices and edges embedded in the plane.

Although ∃r∀lgp-completeness of X3C has implicitly been shown in [HMRS98]
by proving #P-completeness of X3C (the given parsimonious reduction from
3SAT can easily be extended to be generating parsimonious) we give an alter-
native proof for the ∃r∀lgp-completeness of X3C that will be more helpful in
showing the ∃r∀lgp-completeness of 3DM. Furthermore, we feel that this proof is
especially beautiful, since the used construction reflects the geometry of a tiling
very intuitively.

Theorem 4.2.6. X3C is ∃r∀lgp-complete via VX3C.

35

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Proof. It suffices to show that (Tiling, VTiling) ≤p
gp (X3C, VX3C) via functions f

and g (Lemma 4.1.10, Theorem 4.2.5).
Let (D, n, c) be an instance for Tiling. We denote the number of tile types

|D| by m and we denote the elements of D by d1, d2, . . . , dm. Note that deciding
containment of (D,n, c) in Tiling is trivial for |D| = 0 and |D| = 1. Hence,
such instances (D,n, c) can trivially be mapped to proper fixed X3C-instances.
Assume |D| ≥ 2 in the following.

Recall that (D,n, c) ∈ Tiling if and only if there exists a D-tiling of the square
(1, . . . , n) × (1, . . . , n) that extends the coloring c. The idea of our reduction is
to simulate D-tilings of the n× n-grid by creating an n× n-grid of X3C-gadgets
Ĝ (see Figure 4.4). For this gadget Ĝ, there will be exactly m different possible
exact-3-covers, each representing one tile-type from D. So an exact-3-cover of all
n2 gadgets will represent putting certain tile-types to all grid-positions.

Furthermore, the construction will achieve that the tile-types represented by
the exact-3-covers of gadgets in adjacent grid positions fit together and that the
tile-types associated to the exact-3-covers of gadgets at the upper and lower border
are colored in accordance to the given coloring c. Assembling all these parts, it
will not be hard to see that there is a bijection between the possible D-tilings
of the square (1, . . . , n) × (1, . . . , n) respecting c and the possible covers of the
constructed X3C-instance (V, C) (see also Figure 4.4).

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

Ĝ

colors specified by c

colors specified by c

Figure 4.4: A sketch of the X3C-instance we will construct, for n = 8.

The first step of explicitly explaining the reduction is defining the above men-

36

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

tioned X3C-gadget Ĝ. It consists of m copies G1, . . . , Gm of a smaller gadget G.
The copy Gi represents the tile type di, 1 ≤ i ≤ m. Each gadget Gi consists of
the vertices ni, ei, si, wi (for north, east, south, and west), of three internal aux-
iliary vertices xi, yi, and zi and of the edges {ni, xi, wi},{ei, si, yi}, and {xi, yi, zi}
(see Figure 4.5). Note that the two internal vertices xi and yi will not appear in
any other edge of the to be constructed X3C-instance. Hence, we can state the
following lemma.

n

e

s

w
x

yz

Figure 4.5: A depiction of the gadget G, whose copy Gi represents the tile type
di, 1 ≤ i ≤ m. Each filled dot represents an edge, namely the one that
includes the three connected vertices.

Lemma 4.2.7. Let the gadget G (see Figure 4.5) be included in an X3C-instance
(V, C) such that the vertices x and y do not appear in any other edge from C. Then
for each exact cover C′ for (V, C) either holds

• C′ ∩ {{x, y, z}, {n, x, w}, {e, s, y}} = {{x, y, z}} or

• C′ ∩ {{x, y, z}, {n, x, w}, {e, s, y}} = {{n, x, w}, {e, s, y}}.

Proof. The proof is a very simple distinction of cases and thus, omitted.

We will call an exact-3-cover C′ of (V, C) an 1-cover of G if and only if C′ includes
{x, y, z} and we will call it 0-cover if and only if C′ includes the edges {n, x, w}
and {e, s, y}. Note that in a 1-cover, the vertices n, e, s, and w are not covered
by one of edges of the gadget G and in the 0-cover the vertex z is not covered by
any edge of the gadget. These vertices must be covered by some alternative edges.
Following this, we will call a gadget-vertex covered internally if it is covered by
an edge belonging to the gadget and we will call it covered externally, otherwise.

Now, we return to the construction of the gadget Ĝ. As mentioned in the
beginning Ĝ consists of m copies G1, . . . , Gm of G. The construction shall make
sure that each exact-3-cover of Ĝ 1-covers exactly one of the copies, say Gi, and 0-
covers the remaining n−1 copies. Then we will say that this situation corresponds
to having the tile-type di in this grid position.

37

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

In order to achieve this, we introduce another type of gadget (named H) that
will ensure that exactly one copy Gi is 1-covered. This connection between the
gadgets G1, . . . , Gm will be realized using the auxiliary vertices zi.

The gadget H is defined as follows. It consists of the vertices z1, z2, . . . , zm,
h1, h2, . . . , hm−1, and h′1, h

′
2, . . . , h

′
m−1 and of the edges {zi, hi, h

′
i}, 1 ≤ i ≤ m− 1,

and {zi+1, hi, h
′
i}, 1 ≤ i ≤ m− 1 (see Figure 4.6).

Lemma 4.2.8. Let the gadget H (see Figure 4.6) be included in an X3C-instance
(V, C) such that the vertices hi, h

′
i, 1 ≤ i ≤ m− 1, do not appear in any other edge

from C. If C′ is an exact-3-cover for (V, C) then the auxiliary vertices hi, h
′
i, 1 ≤

i ≤ m−1, are covered according to one of m different possibilities. For each i, 1 ≤
i ≤ m, there is exactly one of these possibilities such that z1 . . . , zi−1, zi+1, . . . , zm

are covered internally and zi is covered by an external edge.

Proof. Let H be included in (V, C) in the described way and let C′ be an exact-3-
cover for (V, C). For each natural number i, 1 ≤ i ≤ m−1, the auxiliary vertices hi

and h′i from H are covered by one of the edges {zi, hi, h
′
i} and {zi+1, hi, h

′
i}. Obvi-

ously, {zi+1, hi, h
′
i} ∈ C′ implies {zi+2, hi+1, h

′
i+1} ∈ C′ and thus {zi+3, hi+2, h

′
i+2} ∈

C′ and so on. Analogously, {zi, hi, h
′
ji} ∈ C′ implies {zi−1, hi−1, h

′
i−1} ∈ C′ and thus

{zi−2, hi−2, h
′
i−2} ∈ C′ and so on. Hence, there exists a natural number k, 1 ≤ k ≤

m, such that {zi, hi, h
′
i} ∈ C′, 1 ≤ i ≤ k − 1 and {zj+1, hj, h

′
j} ∈ C′, k ≤ j ≤ n− 1,

that is, all H-vertices but zk are covered internally. Since there is exactly one such
covering for each k, 1 ≤ k ≤ m, the lemma is proven.

z1 z2 z3 z4 z5

h1 h′1 h2 h′2 h3 h′3 h4 h′4

Figure 4.6: The gadget H, for m = 5.

With the help of the gadget H we can now connect the gadgets G1, . . . , Gm

by identifying each zi from Gi with the vertex zi in H. That completes the
construction of Ĝ. Now, exactly one vertex zi ∈ H must be covered exter-
nally (Lemma 4.2.8). Hence, while covering G1, . . . , Gm, zi is covered internally
and z1, . . . , zi−1, zi+1, . . . , zm are covered externally. It follows that all gadgets
G1, . . . , Gi−1, Gi+1, . . . , Gm are 0-covered and Gi is 1-covered.

The internal vertices of all gadgets involved in Ĝ (xi and yi in the gadgets Gi

and all the vertices hi and h′i in H) will not appear in any of the edges of (V, C),
besides the ones belonging to the gadgets. Hence, we obtain the following Lemma.

Lemma 4.2.9. Let the structure Ĝ be included in an X3C-instance (V, C) such
that the internal vertices of all involved gadgets Gi, 1 ≤ i ≤ m and H (xi, yi, and
zi in the gadgets Gi, 1 ≤ i ≤ m, and all the vertices hj and h′j, 1 ≤ j ≤ m − 1,

38

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

in H) do not appear in any other edge from C. Then for each exact cover C′ for
(V, C) the following holds:

1. Exactly one of the gadgets G1, . . . , Gm is 1-covered, say Gj.

2. Almost all vertices of the gadget Ĝ are covered internally (by edges that
belong to one of the involved gadgets Gi or H). Only the four vertices nj,

ej, sj, and wj from the gadget Gj are covered by edges not belonging to Ĝ.

3. The internal covering is unique, that is, if C′ covers the vertices ni, ei, si,
and wi for some i, 1 ≤ i ≤ m, externally (Gi is 1-covered) then C′ covers the
rest of Ĝ in a predetermined way.

Proof. The Lemma follows from Lemma 4.2.7 and Lemma 4.2.8.

Now, we put a copy of the gadget Ĝ in each of the n2 grid positions and
name the copy in the xth line and yth column grid position GP(x,y). To avoid
complicated indices we do not include the grid position into the notation of the
gadgets G1, . . . , Gm, and H in Ĝ and their vertices. When talking about one of
those gadgets or vertices it will be clear from the context in which grid position
they are. We have seen that in each grid position all but four vertices (ni, ei, si, wi

for some i, 1 ≤ i ≤ m) can and must be covered internally. Thereby, covering all
vertices but ni, ei, si, wi internally stands for putting the tile type di at this grid
position. So what we still have to manage is the issue that adjacent tiles shall fit
together.

The basic idea is the same for each pair of adjacent grid positions, so we only
describe how we connect the gadgets GP(1,1) and GP(1,2) in the grid positions (1, 1)
and (1, 2). First, we place a new auxiliary vertex s on the common border of both
positions. Recall, that one of the vertices ei, 1 ≤ i ≤ m, in GP(1,1) and one of
the vertices wj, 1 ≤ j ≤ m, in GP(1,2) has to be covered externally, representing
having tile-type di in grid position (1, 1) and dj in (1, 2). In order to ensure that
the color of the eastern triangle of di equals the color of the western triangle of dj

we only add the edges {{ei, s, wj} : east(di) = west(dj), 1 ≤ i, j ≤ m} to C. Note
that this will be the only external edges that will include, and thus will be able
to cover, the vertices ei from GP(1,1) and wj from GP(1,2). Thus, we can state the
following lemma.

Lemma 4.2.10. Let the structures GP(1,1) and GP(1,2) be connected as mentioned
above in an X3C-instance (V, C) such that the internal vertices of all involved
gadgets Gi and H (xi and yi in the gadgets Gi, 1 ≤ i ≤ m, and all the vertices hj

and h′j, 1 ≤ j ≤ m− 1, in H) and the vertex s connecting GP(1,1) and GP(1,2) do
not appear in any other edge from C. Then for each exact-3-cover C′ for (V, C) the
tiles, associated to the covering of GP(1,1) and GP(1,2), fit together. Furthermore,
the internal cover of the structures GP(1,1) and GP(1,2) uniquely determines the
cover of the auxiliary vertex s (and hence the cover of the vertices ei in GP(1,1)

and wj in GP(1,2)).

39

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Proof. Let C′ be an exact cover for (V, C). Let di (dj) be the tile-type associated
to the cover of GP(1,1) (GP(1,2)). Hence, ei in GP(1,1) and wj in GP(1,2) are cov-
ered externally. The only external edge that might be able to cover these vertices
(and the auxiliary vertex s) is {ei, s,wj}. Hence, {ei, s,wj} is included in C, im-
plying that {ei, s,wj} ∈ {{ei, s, wj} : east(di) = west(dj), 1 ≤ i, j ≤ m}. Thus,
east(di) = west(dj), that is, the tiles di and dj fit together.

Analogously, we connect all other pairs of adjacent structures and thus, we have
an analogon to Lemma 4.2.10 for all pairs of adjacent grid positions.

The only issues we still have to take care of are the structures at the border of
the grid, for instance the structure GP(1,1). Recall that by Lemma 4.2.9 we have
that for each covering of GP(1,1) exactly one of the vertex sets {nj, ej, sj, wj}, 1 ≤
j ≤ m, must be covered externally. Note that the vertices ej and sj can (and
must) be covered by one of the edges connecting GP(1,1) with GP(1,2) and GP(1,1)

with GP(2,1), respectively. But so far, there is no possibility to cover the vertices
nj and wj.

First, we will consider the northern part of GP(1,1). Note that we must ensure
that the color of the northern triangle of the tile type in (1, 1) equals the color
cn(1,1) predetermined by the coloring c of the upper and lower border of the grid.
To do so, we add new vertices n′, n′′ and the edges {{n′, n′′, nk} : north(dk) =
cn(1,1) ∧ 1 ≤ k ≤ m}. Now, let C′ be an exact cover of (V, C) that represents
placing the tile dj in (1, 1), so nj in GP(1,1) is covered externally. Since the edges
{{n′, n′′, nk} : north(dk) = cn(1,1) and 1 ≤ k ≤ m} are the only possibilities to
cover nj, it follows that dj has a northern triangle with the color cn(1,1). Conversely,
it is easy to see that assuming the tile dj in (1, 1) has the correct northern color,
the vertex nj can be covered by exactly one of the added edges.

For the western part of GP(1,1) we apply almost the same construction. The
only difference is that we can omit the constraint on the color, since the color on
the left and right border is not predetermined by c. So we add auxiliary vertices
w′ and w′′ and the edges {w′, w′′, wk}, 1 ≤ k ≤ m. Obviously, no matter which
border vertex wj, 1 ≤ j ≤ m, has to be covered, it can be done by exactly one of
the added edges.

We transfer the first construction to each grid position on the upper and lower
border of the n×n square and the second construction to the grid positions on the
right and left border. Note that in doing so we always use new pairs of auxiliary
vertices n′, n′′ and w′, w′′, respectively2.

Let us take stock. Given a Tiling-instance (D,n, c), the constructed X3C-
instance (V, C) consists of an n × n grid of the structures GP(i,j), 1 ≤ i, j ≤ n.
Each pair of adjacent grid structures, for instance GP(1,1) and GP(1,2), is connected
as described before Lemma 4.2.10 by an auxiliary vertex and edges. And finally,
as just described, at each of the 4n border segments of the n × n grid, there

2One may wonder about the repeated names of these vertices, but recall that we abstain from
indexing these vertices with their grid positions. Formally, all vertices have such an index
indicating the grid position.

40

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

are two auxiliary vertices and some edges. We define the function f to map the
Tiling-instance (D,n, c) to the constructed X3C-instance (V, C). It is easy to
see that f is polynomial-time computable.

Since we want to give a gp-reduction we further need to specify a polynomial-
time computable bijection g between the solutions of (D, n, c) and the solutions
of f((D,n, c)). To see how to define g let t be a D-tiling for (D, n, c) respecting c.
We gain an exact cover C′t of (V, C) as follows. We cover each grid structure GP(i,j)

in the way that is associated with using the tile type dk, where k = t(i, j), in the
sense of Lemma 4.2.9. Since the tile types assigned to adjacent square positions
fit together, Lemma 4.2.10 provides a unique way to cover the auxiliary vertices
between adjacent grid positions. So we cover them this way. A closer look shows
that all but the 4n border vertices and the associated pairs of auxiliary vertices are
already covered. Since t is respecting the colors given by c on the border, we can
also cover all these vertices. So we have an exact cover C′t of (V, C) and we define
the generating function g by g((D, n, c), t) := C′t. Obviously, g is polynomial-time
computable and injective.

To show that g is surjective, and hence bijective, let C′ be an exact cover of
the X3C-instance f((D,n, c)) = (V, C). Lemma 4.2.9 ensures that each structure
GP(i,j), 1 ≤ i, j ≤ n, is covered according to one of m possibilities, each repre-
senting a certain tile type from D. Moreover, by Lemma 4.2.10 we have that the
tiles in adjacent grid positions fit together and that the auxiliary vertices between
adjacent grid positions are covered in a unique way. It is easy to see that the
cover of the border vertices is also uniquely defined by the tiles chosen in the
involved grid positions. Hence, the way the structures GP(i,j), 1 ≤ i, j ≤ n, are
covered, uniquely defines the remainder of the exact cover of (V, C). Furthermore
it holds that such a covering stands for a D-tiling tC′ and it is easy to see that
C′ = C′tC′

= g((D, n, c), tC′). Thus, C′ is part of the range of g and we have that g
is bijective.

Hence, we have a gp-reduction (X3C, VX3C) ≤p
gp (Tiling, VTiling) via f and g,

and thus ∃r∀lgp-completeness of X3C via VX3C.

4.2.5 3Dimensional Matching (3DM)

In this section we benefit from our efforts made in Section 4.2.4 by modifying the
proof of Theorem 4.2.6 to also work for 3Dimensional Matching.

3Dimensional Matching (3DM)

Problem Description (3Dimensional Matching)

Given: A 4-tuple (S, X, Y, Z), where X, Y , and Z are sets having the same
number q of elements and S is a subset of X × Y × Z.

Question: Is there a 3D-matching for S, i.e., is there a subset M ⊆ S such that
|M | = q and no two triples from M agree in any coordinate ?

41

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Standard Verifier:

V3DM ={((S, X, Y, Z),M) : X, Y and Z are sets having the same number q

of elements (q = |X| = |Y | = |Z|), S is a subset of X × Y × Z, and

M is a 3D-matching for S}.

The following lemma is the tool which will allow us to modify the proof of
Theorem 4.2.6 to also work for 3Dimensional Matching. To state the lemma
we need the notion of 3-colorings of X3C-instances: A mapping c : V → {1, 2, 3}
for a given X3C-instance (V, C) is called a 3-coloring for (V, C) if and only if each
edge {v1, v2, v3} from C is 3-colored, that is, {c(v1), c(v2), c(v3)} = {1, 2, 3}. Note
that we still interpret X3C-instances (V, C) as hypergraphs.

Lemma 4.2.11. Let (V, C) be an X3C-instance having a 3-coloring c. Further-
more, let

Xc :={v : v ∈ V ∧ c(v) = 1},
Yc :={v : v ∈ V ∧ c(v) = 2},
Zc :={v : v ∈ V ∧ c(v) = 3}, and

Sc :={(x, y, z) : {x, y, z} ∈ C ∧ c(x) = 1 ∧ c(y) = 2 ∧ c(z) = 3} ⊆ Xc × Yc × Zc.

Then (V, C) is in X3C if and only if (Sc, Xc, Yc, Zc) is in 3DM and there ex-
ists a (canonical) bijective mapping between the solution sets VX3C((X, C)) and
V3DM((Sc, Xc, Yc, Zc)).

Proof. Let (V, C) be an X3C-instance, let c be a 3-coloring of (V, C) and let
(Sc, Xc, Yc, Zc) be the 3DM-instance constructed from (V, C) and c as described
above.

Assume that C′ is an exact cover for (V, C). It follows that C′ = |V |/3 and
since each edge from C′ contains one element of each color, it also follows that
q := |Xc| = |Yc| = |Zc| = |V |/3. We convert the set C′ of 3-colored edges to a set
MC′ of triples such that the edge {v1, v2, v3} with c(vi) = i, 1 ≤ i ≤ 3, is converted
to the triple (v1, v2, v3). By the definition of Sc we have that MC′ is a subset of
Sc. Obviously, we have |MC′| = |C′| = q and since C′ exactly covers V , it follows
that no two triples from MC′ agree in any coordinate. Thus MC′ is a 3D-matching
of Sc, i.e., a solution for (Sc, Xc, Yc, Zc).

Conversely, assume that M is a solution of the constructed 3DM-instance
(Sc, Xc, Yc, Zc). Since |M | equals |Xc|, |Yc|, and |Zc| and no triples from M agree
in any coordinate, we have that each element from Xc appears in exactly one triple
from M at the first coordinate. Analogously, each element from Yc and Zc appears
in exactly one triple from M in the second and the third coordinate, respectively.
It is a simple implication that the set C′M of edges arising from M by converting
triples to edges, is an exact cover of V and a subset of C. Thus, C′M is a solution
for (V, C). Obviously, after converting C′ to MC′ and converting MC′ to C′MC′

, it
holds that C′MC′

= C′. Thus, the mapping C′ 7→ MC′ is a bijection between the
solution sets VX3C((V, C)) and V3DM((Sc, Xc, Yc, Zc)).

42

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Theorem 4.2.12. 3DM is ∃r∀lgp-complete via V3DM.

Proof. The idea of the proof is to modify the reduction (Tiling, VTiling) ≤p
gp

(X3C, VX3C) (via f and g) given in the proof of Theorem 4.2.6 to work for 3DM by
making clever use of Lemma 4.2.11. The mentioned gp-reduction maps an instance
(D, n, c′) for Tiling to an instance f((D,n, c′)) = (V, C) for X3C such that there
exists a bijection g between their solution sets. If we manage to give a 3-coloring
c for (V, C), by Lemma 4.2.11 we gain an instance (Sc, Xc, Yc, Zc) =: f ′((V, C))
for 3DM and a canonical bijection g′ between the solution sets VX3C((V, C))
and V3DM((Sc, Xc, Yc, Zc)). So, it is not hard to see that by combining the re-
duction functions f and g and the mappings f ′ and g′ we gain a gp-reduction
(Tiling, VTiling) ≤p

gp (3DM, V3DM) via f ◦ f ′ and g ◦ g′.
Hence, it is sufficient to show that all X3C-instances produced by the reduction

function f , formally defined in the proof of Theorem 4.2.6, are 3-colorable. To
do so, let (D,n, c′) be an instance for Tiling. Recall that D is the set of tile
types that shall be used to tile the n× n grid respecting the colors given by c′ on
the upper and lower border of the grid. Now, let f((D, n, c′)) = (V, C). We will
explicitly give a 3-coloring g of (V, C), that is, a mapping c : V → {1, 2, 3} such
that each edge from C contains vertices from all three colors.

First, we will have a look at the most simple gadget used in (V, C), which is the
gadget G. For each copy of the gadget G we use one of the two colorings given in
Figure 4.7.

3

1

2

1
2

31

3

2

1

2
1

32

Figure 4.7: Two possible colorings of the gadget G. For clarity of the figure we
replaced the labels of the vertices (see Figure 4.5) by the used color.

We color all |D| =: m versions G1, . . . , Gm of G in a position (i, j) in one of
the two ways depicted in Figure 4.7. The choice of the coloring depends on the
grid position - all grid positions in odd columns are covered as shown in the left
of Figure 4.7 and grid positions in even columns are colored as shown in the right.
For clarity, the respective choice of the coloring, depending on the grid position,
is illustrated in Figure 4.8 for a small example.

In each grid position depending on the above choice of the coloring, the gadget
H is colored in one of the two ways given in Figure 4.9 such that the color of the

43

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
1

2
1

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

Figure 4.8: Illustration of the coloring of the gadgets G1, . . . , Gm, depending on
their grid position. Disregarding the inner coloring we only give the
colors of the copies of the m tuples (ni, ei, si, wi), 1 ≤ i ≤ m. In each
square, the northern number represents the color of the ni, the eastern
number represents the color of ei and so on.

common vertices zi, 1 ≤ i ≤ m, is the same as in the chosen coloring of G1 . . . , Gm.
So if the versions of G are colored as shown in the left (right) part of Figure 4.7,
the corresponding gadget H is colored as in the upper (lower) image of Figure 4.9.

1 1 1 1 1

2 3 2 3 2 3 2 3

2 2 2 2 2

1 3 1 3 1 3 1 3

Figure 4.9: Two valid colorings of the gadgets H illustrated for m = 5. Again
we replaced the labelling of the vertices (see Figure 4.6) by the used
colors for clarity.

Thus, we have the choice between two valid colorings for the gadget Ĝ in each
grid position (i, j). Note that the only vertices of each GP(i,j) that are included
in edges outside of GP(i,j), are the vertices ni, ei, si, and wi in the m copies
G1 . . . , Gm of G. Disregarding the inner coloring of a GP(i,j) we have two possible
colorings, one assigns the colors (3, 1, 2, 1) to all tuples of vertices (ni, ei, si, wi)

3,

3Naturally, this notion stands for assigning 3 to all ni, 1 to all ei and so on.

44

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

1 ≤ i ≤ m, and another one that assigns (3, 2, 1, 2).
The only connection between adjacent grid positions are the auxiliary vertices

between them and the associated edges, whose purpose was to ensure that adjacent
tiles fit together. Figure 4.8 shows that for instance, all ei in GP(1,1) are colored
with 1 and all wi in GP(1,2) are colored with 2 and thus, we can assign 3 to the
auxiliary vertex between GP(1,1) and GP(1,2). Furthermore, it is not hard to see,
that this can also be done for all other pairs of adjacent grid positions.

The only remaining uncolored vertices are the auxiliary vertices on the edge
of the grid. Since the argumentation will obviously work the same for all pairs
of auxiliary vertices, it suffices to have a closer look at the two auxiliary vertices
n′, n′′, associated to the northern vertices ni in GP(1,1). Recall that the only edges
that include n′ and n′′ are of the type {n′, n′′, ni}, 1 ≤ i ≤ m . Since all vertices ni

in GP(1,1) are colored by 3 (see Figure 4.8), we gain a valid coloring by assigning
the remaining colors 1 to n′ and 2 to n′′.

Overall, we have managed to give a 3-coloring of the X3C-instance (V, C).
As we have seen in the beginning of the proof, we obtain a gp-reduction from
(Tiling, VTiling) to (3DM, V3DM) and thus the theorem.

4.2.6 Partition (Part)

When we dealt with Partition the first time in Section 3.3.3 we gave a not
so common problem definition using multisets. We did so in order to be able
to prove the NP-completeness of all n + Partition by giving a gp-reduction
1 + Partition ≤p

gp Partition, a so called auto-reduction (see Section 3.3.3
for further explanations). In this section we give an inter-reduction 3DM ≤p

gp

Partition, which implies the ∃r∀lgp-completeness of Partition. In doing so,
we can use the following more common problem definition.

Problem Description (Partition)

Given: A finite set A and a mapping s from A to N.

Question: Is there a partition of A, that is, a subset A′ ⊆ A such that

∑

a∈A′
s(a) =

∑

a6∈A′
s(a) ?

Standard Verifier:

VPart ={((A, s), A′) : A is a finite set, s is a mapping from A to N, and A′

is a subset of A such that
∑

a∈A′
s(a) =

∑

a 6∈A′
s(a)}.

The NP-completeness of Partition can be shown via a many-one reduction from
3DM (see [GJ79]). It is easy to see that this reduction is even parsimonious and

45

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

can easily be made generating parsimonious. Thus, we have (3DM, V3DM) ≤p
gp

(Partition, VPart). Since 3DM is ∃r∀lgp-complete (Theorem 4.2.12), the ∃r∀lgp-
completeness of Partition follows immediately.

Theorem 4.2.13. Partition is ∃r∀lgp-complete via VPart.

4.2.7 Vertex Cover (VC)

Problem Description (Vertex Cover)

Given: A graph G = (V,E) and a natural number k.

Question: Is there a vertex cover of size at most k for G, i.e., is there a vertex
set V ′ ⊆ V such that each edge from E is incident to a vertex from V ′ ?

Standard Verifier:

VVC ={((G, k), V ′) : G = (V,E) is a graph, k is a natural number, and V ′

is a vertex cover of size at most k for G}.

Theorem 4.2.14. VC is ∃r∀lgp-complete via VVC.

Proof. Since X3C is ∃r∀lgp-complete via VX3C, it suffices to give a gp-reduction
from (X3C, VX3C) to (VC, VVC) via functions f and g. Note that we do not
interpret X3C-instances as hypergraphs anymore. So let (X, C) be an instance
for X3C such that X = {x1, x2, . . . , xl} and C is a collection of three-element
subsets of X. If ` does not equal 3q for some natural number q, (X, C) has no
solutions and we define f((X, C)) to be a fixed VC-instance without solutions. So
from now on, assume that X = {x1, x2, . . . , x3q} for some q ∈ N. Furthermore,
it is obvious that (X, C) is not in X3C if X includes a variable that does not
appear in any of the three-element sets in C. In this case we also map (X, C)
to a VC-instance without solutions. So we also assume that each variable in X
appears in at least one three-element set of C.

The instance (X, C) will be mapped to an instance (G, k) for VC, which will be
described in the following. First, for each variable xi from X we count the number
of three-element sets in C that include xi and denote this number by #xi. Then,
we create a #xi-clique Cxi

for each variable xi from X, we furthermore add one
vertex for each three-element set in C, and call these vertices C-vertices. Finally,
we connect the C-vertex corresponding to the three-element set {xi, xj, xk} to one
vertex in Cxi

, to one vertex in Cxj
, and to one vertex in Cxk

, where we ensure that
no vertex in any clique Cxi

is connected to more than one C-vertex. Since the size
of the clique Cxi

equals the number of appearances of xi in three-element sets from
C each vertex from Cxi

is connected to exactly one C-vertex. This concludes the
construction of the graph G (see Figure 4.10 for a small example) and we define
the reduction function f as f((X, C)) = (G, 3|C| − 2q). The number 3|C| − 2q

46

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

derives from the idea that each vertex cover will include exactly #xi − 1 vertices
from Cxi

, for each 1 ≤ i ≤ 3q, and q C-vertices, which sums up to 3|C| − 2q.
Obviously, f is polynomial-time computable.

Cx1 Cx2 Cx3 Cx4 Cx5 Cx6

{x1, x2, x3} {x1, x3, x5} {x1, x4, x5} {x1, x4, x6} {x2, x4, x6}

Figure 4.10: The constructed graph for the X3C-instance ({x1, x2, x3, x4, x5, x6},
{{x1, x2, x3}, {x1, x3, x5}, {x1, x4, x5}, {x1, x4, x6}, {x2, x4, x6}}). The
filled vertices form a vertex cover of the constructed graph corre-
sponding to the X3C-solution {{x1, x3, x5}, {x2, x4, x6}}.

To complete the gp-reduction we further need to give a generating function, that
is, a polynomial-time computable bijection g between the solutions of (X, C) and
the solutions of f((X, C)). So let C′ be an exact-3-cover for (X, C). The generating
function g maps C′ to the set V ′ that includes all C-vertices that correspond to a
three-element set from C′ and that furthermore includes all vertices from all cliques
Cxi

that are not connected to one of the chosen C-vertices (see also Figure 4.10
for an example). Obviously, g is polynomial-time computable. Note that since C′

is an exact-3-cover of (X, C), the chosen C-vertices are connected to exactly one
vertex per clause Cxi

. So we have |V ′| = q+(#x1−1)+(#x2−1)+· · ·+(#x3q−1),
since there are q C-vertices in V ′ and all but one of the #xi vertices from each
clique Cxi

, 1 ≤ i ≤ n, are in V ′. It is easy to see that |V ′| = q+(#x1−1)+(#x2−
1) + · · ·+ (#x3q − 1) = #x1 + #x2 + · · ·+ #x3q − 2q = 3|C| − 2q, since the sum of
all appearances of variables in C is 3|C|. To see that V ′ is actually a vertex cover
of G let e be an edge of G. If e is an inner edge of some clique Cxi

, 1 ≤ i ≤ n,
then V ′ covers e because V ′ includes all but one of the vertices from Cxi

. If e is an
edge between one of the cliques and one of the C-vertices we have to discuss two
cases. If the incident C-vertex (say v) is a part of V ′, then V ′ obviously covers e.
If v is not in V ′, then by the construction of V ′ the incident clique-vertex is in V ′

and thus, V ′ covers e. So V ′ is a vertex cover of proper size for G. It is immediate
that different exact-3-covers of (X, C) are mapped to different vertex covers V ′,
that is, g is injective.

We still have to show that g is also surjective. So let V ′ be a vertex cover
of G of size at most 3|C| − 2q. Observe that V ′ must contain at least #xi − 1
vertices of each clique Cxi

, 1 ≤ i ≤ 3q, because there is an edge between each pair
of vertices in Cxi

that has to be covered. Since (#x1 − 1) + · · · + (#x3q − 1) =

47

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

#x1 + · · ·+#x3q−3q = 3|C|−3q, V ′ contains at most q C-vertices. For a proof by
contradiction assume that V ′ contains less than q C-vertices, say V ′ includes k < q
C-vertices. It follows that exactly 3k of the 3|C| edges between the cliques and the
C-vertices are covered by these k vertices. Each of the at most 3|C|−2q−k clique-
vertices covers exactly one edge between the cliques and the C-vertices. This sums
up to at most 3|C| − 2q− k + 3k = 3|C| − 2q + 2k < 3|C| covered edges. Since not
all of the 3|C| edges between the cliques and the C-vertices are covered, we have
a contradiction.

It follows that V ′ includes exactly 3|C| − 3q clique-vertices and q C-vertices.
Consequently, in each clique Cxi

, 1 ≤ i ≤ 3q, there is one vertex that is not
included in V ′. Hence, the 3q edges between these 3q vertices and the C-vertices
must be covered by the q C-vertices in V ′. We denote the set of q three-element
sets that correspond those q C-vertices by CV ′ .

Since each C-vertex represents a three-element set {xi, xj, xk} and is connected
to the three components Cxi

, Cxj
, and Cxk

, it follows that each variable xi is
included in exactly one of the three-element sets in CV ′ , that is, CV ′ is an exact-
3-cover of (X, C). Furthermore, it is not hard to see that g maps CV ′ to V ′, which
reveals that g is surjective.

So (X3C, VX3C) is gp-reducible to (VC, VVC) via f and g, and thus, VC is
∃r∀lgp-complete via VVC.

4.2.8 Clique

Recall the problem description of Clique.

Problem Description (Clique)

Given: A graph G = (V,E) and a natural number k.

Question: Is there a clique of size at least k in G, i.e., is there a set C of vertices
such that G[C] is isomorphic to the complete graph K|C| ?

Standard Verifier:

VClique ={((G, k), C) : G is a graph, k ∈ N, and C is a k-clique of G}.

Since the simple standard reduction from VC to Clique is also a gp-reduction,
we have the following theorem.

Theorem 4.2.15. Clique is ∃r∀lgp-complete via VClique.

48

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

4.3 A list of ∃r∀lgp-complete problems

In the last section we have shown ∃r∀lgp-completeness via the corresponding nat-
ural verifier for the six basic NP-complete problems from [GJ79] and for a few
more. Since all these typical representatives of NP-problems behave the same,
we have reason to conjecture that all NP-complete problems might be ∃r∀lgp-
complete. In this section we give more arguments for this conjecture, by showing
the ∃r∀lgp-completeness of some more NP-complete problems via their natural
verifiers. So, for each of the following problems we identify the “natural” verifier
as universal and we show that the associated alternative solution problem is NP-
complete. Again, to avoid unnecessary commentarial sentences, we only give the
problem definition and the used verifier without further explanations.

4.3.1 0/1-Integer Programming (0/1-IP)

Problem Description (0/1-Integer Programming)

Given: An integer matrix A ∈ Zm×n and an integer vector b ∈ Zn.

Question: Is there a Boolean vector x ∈ {0, 1}m such that Ax = b ?

Standard Verifier:

V0/1-IP = {((A, b), x) : A ∈ Zm×n, b ∈ Zn, x ∈ {0, 1}m, and Ax = b}.

The reduction SAT ≤p
m 0/1-Integer Programming, given in [Kar72] actu-

ally is a gp-reduction when we use the proper generating function g.

Theorem 4.3.1. 0/1-Integer Programming is ∃r∀lgp-complete via V0/1-IP.

4.3.2 Dominating Set (DS)

Problem Description (Dominating Set)

Given: A graph G = (V,E) and a natural number k.

Question: Does G have a dominating set of size at most k, i.e., is there a subset
S of V with |S| ≤ k such that each vertex from V \S is adjacent to a vertex
from S ?

Standard Verifier:

VDS ={((G, k), S) : G is a graph, k is a natural number, and S is a domi-

nating set for G of size k or less}.

Theorem 4.3.2. Dominating Set is ∃r∀lgp-complete via VDS.

49

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Proof. We will describe a gp-reduction (X3C, VX3C) ≤p
gp (DS, VDS). Then, by

the fact that X3C is ∃r∀lgp-complete via VX3C (Theorem 4.2.6), the assertion is
immediate.

The reduction will be a combination of the gp-reduction from (X3C, VX3C) to
(VC, VVC), given in the proof of Theorem 4.2.14 and a very simple reduction of
VC to DS. It is important to note, that the mentioned reduction (X3C, VX3C)
to (VC, VVC) generates VC-instances (G, k) that never have vertex covers of size
< k.

Let (G, k) with G = (V, E) be such an instance for VC generated by the above
reduction. It follows that G has no vertex cover of size < k. Now, we will describe
the reduction from VC to DS. For each edge e = {u, v} ∈ E, we add two new
vertices, say we,1 and we,2, and the edges {u,we,1},{we,1, v},{u,we,2}, and {we,2, v}
and call the resulting graph G′ = (V ′, E ′) (see Figure 4.11). We map the VC-
instance (G, k) to the instance (G′, k) for Dominating Set. It is easy to see that
each size k vertex cover V ′ of G is a size k dominating set of G′.

u v

w1

w2

Figure 4.11: A modified edge e = {u, v} with the additional vertices we,1 and we,2

and edges {u,we,1},{we,1, v},{u, we,2}, and {we,2, v}. For the illustra-
tion, we omit the lower index e from we,1 and we,2.

Conversely, let S be a size k dominating set of G′. First, assume that S includes
any of the added vertices, say w.l.o.g. we,1, for some edge e ∈ E. If S includes
any of the endpoints of e, S \ {we,1} is a smaller dominating set. Otherwise, S
must also contain we,2 and we get a smaller dominating set by deleting we,1 and
we,2 from S and adding one of the endpoints of e. In both cases we obtain a
dominating set S ′ of size < k without any of the vertices we,1 and we,2, e ∈ E.
It is not hard to see, that such a dominating set is also an vertex cover G of size
< k, which is impossible. Hence, S includes none of the added vertices we,1 and
we,2, e ∈ E and we analogously have that S is a size k vertex cover of G.

So the function f ′ : (G, k) 7→ (G′, k) maps the VC-instance generated by the
reduction (X3C, VX3C) ≤p

gp (VC, VVC) to instances for DS, such that g′ = id is a
bijection between their solution sets.

Hence, combining the gp-reduction (X3C, VX3C) ≤p
gp (VC, VVC) via f and g

with the mappings f ′ and g′, we gain a gp-reduction (X3C, VX3C) ≤p
gp (DS, VDS)

via f ◦ f ′ and g ◦ g′.

4.3.3 Independent Set (IS)

Problem Description (Independent Set)

50

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Given: A graph G = (V,E) and a natural number k.

Question: Is there an independent set of size at least k for G, i.e., is there a
vertex set V ′ ⊆ V such that |V ′| ≥ k and no edge from E is incident to a
vertex from V ′ ?

Standard Verifier:

VIS ={((G, k), I) : G = (V,E) is a graph, k is a natural number, and I is

an independent set of size at least k for G}.

The very simple standard reduction from VC to Independent Set is also a
gp-reduction using the standard verifiers. Thus we have the following theorem.

Theorem 4.3.3. IS is ∃r∀lgp-complete via VIS.

4.3.4 Kernel

See Section 3.2.1 for a problem description.

Theorem 4.3.4. Kernel is ∃r∀lgp-complete via VKernel.

Proof. The many-one reduction SAT ≤p
m Kernel given in [Chv73] is actually a

gp-reduction (SAT, VSAT) ≤p
gp (Kernel, VKernel). Since this paper seems to be

unavailable, we will give the idea of the reduction found on the authors website.
Then the theorem is immediate by Lemma 4.1.10 and the ∃r∀lgp-completeness of
SAT via VSAT (Theorem 4.1.11).

Let F be any Boolean formula with clauses C1, . . . , Cm and variables x1, . . . ,
xn. The reducing function f will map the formula F to the graph G = (V, A) that
will be defined in stages in the following. First, we put the vertices xi and ¬xi,
1 ≤ i ≤ n, into V and the arcs (xi,¬xi) and (¬xi, xi), 1 ≤ i ≤ n, into A. Then, for
each clause Ci we put three vertices ci

1, c
i
2, c

i
3 into V and the arcs (ci

1, c
i
2), (ci

2, c
i
3),

and (ci
3, c

i
1) into A. So we have a two-cycle xi → ¬xi → xi for each variable xi and

a three-cycle ci
1 → ci

2 → ci
3 → ci

1 for each clause Ci. To complete the construction
of G, we furthermore add the arcs (ci

1, u), (ci
2, u), and (ci

3, u) if u is a literal in the
clause Ci. This concludes the construction of G.

Let α be a satisfying assignment of F . It is not hard to see that the set Sα :=
{xi : 1 ≤ i ≤ n ∧ α(xi) = 1} ∪ {¬xi : 1 ≤ i ≤ n ∧ α(xi) = 0} is a kernel for
f(F) = G. So, when we define that the generating function g maps satisfying
assignments α of F to S(α), we have that g maps satisfying assignments of F to
kernels of f(F) = G. It is quite obvious that different assignments α and β are
mapped to different sets Sα and Sβ, that is, g is injective. All we furthermore
have to show is that g is also surjective.

Let S be a kernel of G = f(F). We must show that S is the set Sα for a
satisfying assignment α of F . First, observe that S must include exactly one of

51

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

the vertices xi and ¬xi for each i. So S induces an assignment αS of the variables
x1, . . . , xn via αS(xi) = 1 if xi ∈ S and αS(xi) = 0, otherwise.

Now, let Ci be a clause of F and consider the associated vertices ci
1, c

i
2, and ci

3.
For a proof of contradiction, assume that αS does not satisfy C i. Then, there are
no arcs from ci

1, c
i
2 or ci

3 to any of the vertices xi or ¬xi in S. Since ci
1, c

i
2, and ci

3

form a 3-cycle, the kernel S contains at most one of the three vertices. Otherwise,
there is an arc between two kernel vertices. It follows, that there is no arc outgoing
from at least one of the remaining non-kernel vertices, a contradiction. Hence, the
assumption that αS does not satisfy Ci is wrong. This argument holds for all
clauses and thus, αS satisfies all clauses from F .

So one of the literals of each clause C i is contained in S. Consequently, there
are arcs from ci

1, c
i
2, and ci

3 to this literal. It follows that ci
1, c

i
2, and ci

3 are not
contained in the kernel S. Now, it is easy to see that S = SαS

. Hence, g is also
surjective and thus, bijective.

Since f and g are polynomial-time computable, we have a gp-reduction from
(SAT, VSAT) to (Kernel, VKernel) via f and g.

4.3.5 Knapsack (KS)

Problem Description (Knapsack)

Given: A 5-tuple (U, s, a, B, K), where U is a finite set, s (size), and v (value)
are functions that assign positive natural numbers to the elements of U and
B, K are natural numbers.

Question: Is there a set U ′ ⊆ U such that
∑

u∈U ′
s(u) ≤ B and

∑
u∈U ′

v(u) ≥ U ?

Standard Verifier:

VKS ={((U, s, a, B, K), U ′) : U is a finite set, s, v are mappings from U to

N+, B,K ∈ N+, and U ′ ⊆ U with
∑

u∈U ′
s(u) ≤ B ∧

∑

u∈U ′
v(u) ≥ U}.

Theorem 4.3.5. Knapsack is ∃r∀lgp-complete via VKS.

Proof. The result follows from the fact that the ∃r∀lgp-complete problem Par-
tition (see Theorem 4.2.13) is a restriction of Knapsack. it is not hard to see
that mapping an instance (A, s) for Partition to the instance

(A, s, s,
1

2

∑
a∈A

s(a),
1

2

∑
a∈A

s(a)),

combined with the identity as generating function, realizes the gp-reduction from
(Partition, VPart) to (Knapsack, VKS).

52

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

4.3.6 Minimum Edge Cost Flow (MECF)

See Section 3.2.2 for a problem description.
The proof of the NP-completeness of Minimum Edge Cost Flow [EJ77] has

not been published. So we give our (possibly analogous) reduction, that is even a
≤p

gp-reduction and thus, implies ∃r∀lgp-completeness.

Theorem 4.3.6. MECF is ∃r∀lgp-complete via VMECF.

Proof. We give a gp-reduction from (X3C, VX3C) to (MECF, VMECF). So let (V, C)
be an instance for X3C with V = {v1, . . . , vn} and C = {C1, . . . , Cm}. We assume
that |V | is divisible by three, otherwise, we map (V, C) to a fixed non-member of
MECF. A correct instance is mapped to a MECF-instance (G, s, t, c, p, R, B) as
described in the following. The underlaying digraph is G = ({s, t}∪{C1, . . . , Cm}∪
{v1, . . . , vn}, {(s, Ci) : 1 ≤ i ≤ m}∪{(Ci, vj) : vj ∈ Ci}∪{(vj, t) : 1 ≤ j ≤ n}. The
capacity function c is 3 for the arcs (s, Ci), 1 ≤ i ≤ m, and one for the remaining
arcs. The price p for the arcs (s, Ci), 1 ≤ i ≤ m, is one and zero for all other
arcs4. The requirement R is n and the price bound B is n/3 (see Figure 4.12 for
an example).

s t

C1

C2

C3

C4

v1

v2

v3

v4

v5

v6

c = 3 & p = 1 c = 1 & p = 0 c = 1 & p = 0

Figure 4.12: The flow problem for the X3C-instance ({v1, . . . , v6}, {{v1, v2, v5},
{v1, v3, v6}, {v3, v4, v6}, {v1, v4, v5}}. The requirement R is 6 and the
price bound B is 2. The bold arcs represent a valid flow function,
when all marked arcs are uses with maximal capacity. The associated
X3C-solution is {{v1, v2, v5}, {v3, v4, v6}}.

It is easy to see that due to the requirement R = n all arcs (vj, t), 1 ≤ j ≤ n}
and exactly n of the arcs {(Ci, vj) : vj ∈ Ci} must be used with flow 1. Due to the
price bound at most n/3 of the n arcs {(s, Ci) : 1 ≤ i ≤ m} can be used. Since

4Note that formally the prize zero is forbidden. Since for each solution the overall number of
used network arcs is n/3 + n + n, we could add one to all prices and 7/3 · n to B to smooth
out this problem.

53

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

their capacity is three, exactly n/3 of them must be used and the flow along them
must be three. We denote the subcollection of C, induced by such n/3 chosen
arcs, by C′.

Following this, it is not hard to see that a valid flow function induces a sub-
collection C′, which is an exact 3-cover of V and an exact 3-cover also induces
a valid flow function. Since this relation is bijective, we have (X3C, VX3C) ≤p

gp

(MECF, VMECF).

4.3.7 Set Packing (SP)

Problem Description (Set Packing)

Given: A family S = {S1, . . . , Sm} of sets and a natural number `.

Question: Are there ` pairwise disjoint sets in S ?

Standard Verifier:

VSP ={((S, `), I) : S = {S1, . . . , Sm} is a family of sets, ` ∈ N, and I is a

set of ` indices i1, . . . , i` such that Sij ∩ Sik = ∅, 1 ≤ j 6= k ≤ `}.

Theorem 4.3.7. Set Packing is ∃r∀lgp-complete via VSP.

Proof. The proof is a simple reduction from X3C. It is easy to see that the map-
ping (V, C) 7→ (C, V/3) combined with the proper generating function realizes the
reduction (X3C, VX3C) ≤p

gp (SP, VSP).

4.3.8 Shortest Weight Constrained Path (SWCP)

Problem Description (Shortest Weight Constrained Path)

Given: A 7-tuple (G, s, t, `, w, L,W), where G = (V, E) is a graph, s (source)
and t (sink) are specified vertices, ` (length) and w (weight) are mappings
from the edge set E to positive integers.

Question: Is there a simple path from s to t with total weight W or less and
total length L or less ?

Standard Verifier:

VSWCP ={((G, s, t, `, w, L,W), P) : G = (V,E) is a graph, s, t ∈ V , ` and w

are functions from E to N+, L, W ∈ N+, and P is a simple path

from s to t with total weight W or less and total length L or less} .

54

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

To show the NP-completeness of Shortest Weight Constrained Path,
Wang and Crowcroft gave a many one-reduction from Partition [WC96]. Since
this reduction is also generating parsimonious, we have the following theorem by
the ∃r∀lgp-completes of Partition via VPart .

Theorem 4.3.8. Shortest Weight Constrained Path is ∃r∀lgp-complete
via VSWCP.

4.3.9 Steiner Tree (ST)

Problem Description (Steiner Tree)

Given: A graph G = (V, E), a set R ⊆ V of nodes, a weight function w : E → N,
and a bound B ∈ N.

Question: Is there a subtree T of G that includes all vertices from R such that
the edge-weight-sum of T is B or less ?

Standard Verifier:

VST ={((G,R, w, B), T) : G = (V, E) is a graph, R ⊆ V, w maps E to N,

B ∈ N, and T is a subtree with the above properties}.

In [Kar72] Steiner Tree is shown to be NP-complete by a reduction from
Exact Cover (see [GJ79] for a definition), which can easily be modified to also
be generating parsimonious. Since Exact Cover is a generalization of X3C, it
follows that X3C ≤p

gp Steiner Tree, which implies the following theorem.

Theorem 4.3.9. Steiner Tree is ∃r∀lgp-complete via VST.

Note that this result implies the NP-completeness of all alternative solution
problems of Steiner Tree, which negatively answers our introductory question
from Chapter 1. However, we also refer to Chapter 7, where we give a positive
result for Steiner Tree in terms of approximability.

4.3.10 Traveling Salesman Problem (TSP)

Problem Description (Traveling Salesman Problem)

Given: A graph G = (V,E), a weigh function w : E → N, and a bound B ∈ N.

Question: Is there a Hamiltonian cycle C in G such that
∑
e∈C

w(e) ≤ B ?

Standard Verifier:

VTSP ={((G,w, B), C) : G = (V,E) is a graph, , w maps E to N, B ∈ N,

and C is a Hamiltonian cycle of G such that
∑
e∈C

w(e) ≤ B}.

55

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Since the ∃r∀lgp-complete problem Hamiltonian Cycle is a restriction of
TSP, HC can easily be reduced to TSP.

Theorem 4.3.10. The Traveling Salesman Problem is ∃r∀lgp-complete via
VTSP.

Proof. It is easy to see that the functions f : G 7→ (G, one, |V |), where one(e) =
1, for all e ∈ E, and g = id realize the sufficient reduction (HC, VHC) ≤p

gp

(TSP, VTSP).

4.4 An extraordinary problem - Hamiltonian cycles
in cubic graphs

All NP-complete problems treated so far, behave the same concerning the com-
plexity of alternative solutions. For each treated problem A with its natural
verifier VA we managed to show that all problems of alternative solutions n + A
are NP-complete. Furthermore, we showed that the used natural verifiers are also
universal. The problem of finding a Hamiltonian cycle in a cubic graph (Cubic
Hamiltonian Cycle) seems to have an exceptional position, which will be ex-
plained and discussed in this section.

Problem Description (Cubic Hamiltonian Cycle)

Given: A cubic graph G = (V, E), i.e., a graph such that dG(v) = 3, for all
v ∈ V .

Question: Is there a Hamiltonian cycle in G ?

Standard Verifier:

VCHC = {(G,C) : G is a cubic graph and C is a Hamiltonian cycle of G.}.

It was shown that this restriction of Hamiltonian Cycle to cubic graphs is
also NP-complete [GJT76]. Note furthermore that the verifier VCHC is almost the
same as the natural and universal verifier VHC for Hamiltonian Cycle. The
only difference is the added requirement that the graph has to be cubic. Since the
verifier VCHC looks quite natural we would expect that CHC with VCHC behaves
like all the other examined NP-complete problems. But it does not. Tutte has
shown that CHC has an interesting property.

Theorem 4.4.1 (Tutte’s Theorem [Tut46]). Each Hamiltonian cubic graph
contains at least three Hamiltonian cycles.

It follows that both problems, 1 + CHC and 2 + CHC are more or less trivial
because each cubic graph with one or two Hamiltonian cycles contains another
one. So 1 + CHC and 2 + CHC are in P and even in much smaller complexity

56

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

classes. So assuming that P 6= NP, which is widely believed, the problem CHC
contradicts the conjecture, that the natural verifiers of all NP-complete problems
are also universal verifiers and that the corresponding ASP’s are NP-complete.

In the remainder of this section we will discuss, if these alternative Hamiltonian
cycles can be computed relatively easy, e.g. by an FP-function. Furthermore, we
will see that VHC is not a universal verifier and we will try to find a universal
verifier.

4.4.1 Computing a second Hamiltonian cycle

The starting question of this thesis was, if a given solution of an NP-complete
problem helps to find alternative solutions of this problem.

It turned out that even the seemingly easier task, to decide if there exist alter-
native solutions, is NP-complete for many NP-complete problems. Now we found
a problem, for which this task is easy. Alternative solutions always exist for for
1 + CHC and 2 + CHC. So it makes sense to ask for a fast algorithm that, given
a cubic graph G and one (two) Hamiltonian cycle(s) of G, computes a second (a
third) Hamiltonian cycle of G.

The proof of Tutte’s Theorem is nonconstructive and provides no algorithm
that computes a second or third Hamiltonian cycle. Such an algorithm was given
by Thomason in 1978 [Tho78]. We will give the idea of this algorithm. Starting
point is the given Hamiltonian cycle C = (v1, v2, . . . , vn, v1) of a cubic graph G.
Since G is cubic, there exists an edge {vn, vi}, i 6= 1, i 6= n incident with vn that is
not contained in C (see Figure 4.13).

v1

v2

v3

vi−1

vi
vi+1

vn−1

vn

Figure 4.13: One step of Thomason’s Algorithm on a graph with n vertices: re-
move {vi, vi+1} and add {vi, vn} to obtain the new Hamiltonian path
(v1, v2, . . . , vi, vn, vn−1, . . . , vi+1) from (v1, . . . , vn).

Hence, G contains a Hamiltonian path H = (v1, v2, . . . , vi, vn, vn−1, . . . , vi+1).
Besides the edges {vi, vi+1} ∈ H and the edge {vi+1, vi+2} that was just deleted
from H there is a third edge {vi+1, vj} outgoing from vi+1 in G. If j = 1 we get a

57

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

second Hamiltonian cycle by adding the edge {vi, vi+1} to H. Otherwise, we get
another Hamiltonian path of G by adding the edge {vi+1, vj} to H and deleting
one of the edges adjacent to vj. In this manner, the algorithm steps from one
Hamiltonian path to another until a Hamiltonian cycle is found. We omit the
proof of the correctness of the algorithm.

Unfortunately, Thomason’s algorithm does not work in polynomial time. In
[Kra99] it was shown by giving a family of counterexamples that the algorithm
has an exponential worst-case runtime. Even though many researches have tried
to find a polynomial-time algorithm for this interesting problem, to date, there is
no such algorithm known and the question for the existence of an algorithm that
computes an alternative Hamiltonian cycle in a cubic graph, is still open.

4.4.2 Alternative verifiers for CHC

When considering CHC it seemed to be a natural choice to use the verifier VCHC

that arises from the natural (and universal) verifier for HC by restricting it to
cubic graphs. With respect to this verifier we observed the property that 1+CHC
and 2 + CHC are easy. Maybe this property is not typical for the problem CHC
but for the chosen verifier VCHC. To approach this issue we will have a look at a
restricted version r-SAT of SAT, which is similarly to CHC, a restriction of an
NP-complete problem. Equipped with a restricted version Vr-SAT of the universal
verifier VSAT for SAT, r-SAT also seems to behave like CHC. In case of r-SAT
we will show that Vr-SAT is not universal and we will give an alternative verifier
that is universal and that induces NP-complete ASP’s. Finding a universal verifier
for r-SAT will reveal that r-SAT also behaves like all other treated NP-complete
problems besides CHC. We will try to transfer the argumentation for r-SAT to
CHC, that is, we will check whether VCHC is universal for CHC or not and if not,
we will try to find a universal verifier for CHC.

A restricted version of SAT that almost behaves like CHC

The problem CHC is a restriction of the standard NP-complete problem Hamil-
tonian Cycle. In the following we try to understand the special properties
of CHC by discussing a restriction of another standard NP-complete problem,
namely SAT, that behaves similar.

The idea of the upcoming definition for restricted-SAT (r-SAT) is to make sure
that each satisfiable formula (of the restricted type) has at least two satisfying
assignments. We achieve this, by forcing each formula F to have a variable, called
y, whose assignment does not affect the truth-value of F . Recall that we describe
clauses of CNF-formulas as sets of literals.

Problem Description (r-SAT)

Given: A CNF-formula F of the form F = {C ∪ {y} : C ∈ C} ∪ {C ∪ {¬y} :

58

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

C ∈ C}, where C is a collection of clauses and y is a labelled variable5 that
appears in no clause of C.

Question: Is F satisfiable ?

Standard Verifier:

Vr-SAT = {(F, α) : F is a r-SAT-formula and α satisfies F}.

We call a formula of the above structure an r-SAT-formula.
The reason for demanding the variable y to be labelled is, that given such a

formula, an algorithm for Vrsat must be able to uniquely recognize which variable
plays the role of this variable y in order to check if the given formula is an r-SAT-
formula.

It is easy to see that r-SAT is NP-complete, which means that the restriction
does not simplify the problem.

Theorem 4.4.2. r-SAT is NP-complete.

Proof. We give a ≤p
m-reduction from SAT. Let F be a formula in CNF having

the clauses C. It is easy to see, that the formula f(F) consisting of the clauses
{C∪{y} : C ∈ C}∪{C∪{¬y} : C ∈ C}, where y is labelled, is an r-SAT-formula,
which is satisfiable if and only if F is satisfiable. Thus, SAT ≤p

m r-SAT via f .

Similarly to CHC, it is trivial to decide whether an r-SAT-formula with a given
satisfying assignment, has an alternative satisfying assignment.

Theorem 4.4.3. 1 + r-SAT (via Vr-SAT) is in P.

Proof. Let (F, α) be an instance for 1 + r-SAT with the labelled variable y. If F
is no r-SAT-formula or F (α) = false, (F, α) can be rejected. Otherwise, (F, α)
is accepted, since we gain an alternative solution from α by flipping the value of
y.

Note that, |Vr-SAT(F)| is always even. So, r-SAT also has easy ASP’s. We can
solve this contradiction to our conjecture of hard ASP’s by applying the notion of
universal verifiers. It turns out, that Vr-SAT is not universal.

Theorem 4.4.4. Vr-SAT is not universal for r-SAT.

Proof. Consider the following verifier V ′
r-SAT for r-SAT,

V ′
r-SAT ={(F, α) : F is a satisfying r-SAT-formula over the variable set X

and the special variable y and α is the restriction of a satisfying

assignment of F to X \ {y}}.
5For instance, the way of labelling the variable y could be that y is the variable that appears

first in the encoding of F .

59

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

It is easy to see that V ′
r-SAT actually is a verifier for r-SAT. Now, consider the

formula F = (x ∨ y) ∧ (x ∨ ¬y), where y is labelled. The r-SAT-formula F
has exactly two satisfying assignments, namely (x, y) 7→ (1, 0) and (x, y) 7→ (1, 1).
With respect to V ′

r-SAT the only solution for F is x 7→ 1. So, |V ′
r-SAT(F)| = 1. Since

|Vr-SAT(F ′)| is always even, there is no function that maps F to a formula F ′ with
|Vr-SAT(F ′)| = 1. Hence, (r-SAT, V ′

r-SAT) is not gp-reducible to (r-SAT, Vr-SAT)
and thus, Vr-SAT is not universal for r-SAT.

The above defined verifier V ′
r-SAT is a new candidate for being a universal verifier

for r-SAT. The next theorem shows that V ′
r-SAT, in fact, is universal.

Theorem 4.4.5. V ′
r-SAT is universal for r-SAT.

Proof. It suffices to show that (SAT, VSAT) is gp-reducible to (r-SAT, V ′
r-SAT).

Then, the claim follows from Theorem 4.1.11 and Lemma 4.1.9.
A closer look at the ≤p

m-reduction, given in the proof of Theorem 4.4.2 shows
that this reduction is actually a gp-reduction, if we use the identity as generating
function.

Now, by Corollary 4.1.13, we have the NP-completeness of n + r-SAT (defined
w.r.t. V ′

r-SAT), for all natural numbers n. So, the ASP’s defined with respect to
the universal verifier are NP-hard.

Corollary 4.4.6. For each natural number n, n + r-SAT (defined w.r.t. V ′
r-SAT)

is NP-complete.

Is there a universal verifier for CHC?

Now, we try to translate the argumentation for r-SAT to CHC. In a first step
we show that VCHC is not a universal verifier for CHC.

Theorem 4.4.7. The verifier VCHC is not a universal verifier for CHC.

Proof. Consider the verifier V ′
CHC for CHC which is defined as follows:

V ′
CHC ={(G,C) : G is a cubic graph and C = {C1, C2, C3} such that C1, C2,

and C3 are pairwise different Hamiltonian cycles of G}.
By Tutte’s Theorem 4.4.1 it follows that V ′

CHC is a verifier for CHC.
For a proof by contradiction assume that VCHC is a universal verifier for CHC.

Thus, (CHC, V ′
CHC) is gp-reducible to (CHC, VCHC) via functions f and g. Con-

sider the K4, the complete graph with four vertices which is obviously a cubic
graph. Note that the K4 has exactly three Hamiltonian cycles, say C1, C2, and C3.
It follows that V ′

CHC(K4) = {{C1, C2, C3}}, i.e., there is exactly one V ′
CHC-solution

for the K4. Since g is a bijective mapping between V ′
CHC(K4) and VCHC(f(K4)),

it follows that there exists a cubic graph f(K4) having exactly one Hamiltonian
cycle, a contradiction to Theorem 4.4.1. Thus the assumption is wrong and VCHC

is not universal.

60

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

The above proof provides a new candidate for a universal verifier for CHC,
namely V ′

CHC. In V ′
CHC three Hamiltonian cycles are merged to one solution,

which reflects that each Hamiltonian cubic graph has three Hamiltonian cycles.
However, a counting argument applied to a cubic graph with more than three
Hamiltonian cycles shows that V ′

CHC is not universal.

Theorem 4.4.8. The verifier V ′
CHC is not a universal verifier for CHC.

Proof. We show that (CHC, VCHC) is not ≤p
gp-reducible to (CHC, V ′

CHC). Ob-

serve that a cubic graph G with k ≥ 3 Hamiltonian cycles has exactly
(

k
3

)
V ′

CHC-
solutions, namely all three-element sets of Hamiltonian cycles of G. Hence, there
is no cubic graph with exactly six V ′

CHC-solutions, because
(

k
3

) 6= 6, for all k ∈ N.
Analogous to the proof of Theorem 4.4.7 it suffices to give a cubic graph G with
exactly six VCHC-solutions in order to prove that (CHC, VCHC) is not gp-reducible
to (CHC, V ′

CHC) because this graph can not be mapped to a graph having six
V ′

CHC-solutions. Consider the following graph, which is well-know as K3,3.

1 2

3

45

6

Figure 4.14: The K3,3 - a cubic graph G with exactly six Hamiltonian cycles.

It is a simple task to verify that the graph K3,3 (see Figure 4.14) is cubic and
has exactly six Hamiltonian cycles, namely

1. C1 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}},

2. C2 = {{1, 2}, {2, 3}, {3, 6}, {6, 5}, {5, 4}, {4, 1}},

3. C3 = {{1, 2}, {2, 5}, {5, 4}, {4, 3}, {3, 6}, {6, 1}},

4. C4 = {{1, 2}, {2, 5}, {5, 6}, {6, 3}, {3, 4}, {4, 1}},

5. C5 = {{1, 4}, {4, 3}, {3, 2}, {2, 5}, {5, 6}, {6, 1}}, and

6. C6 = {{1, 4}, {4, 5}, {5, 2}, {2, 3}, {3, 6}, {6, 1}}.

Thus, (CHC, VCHC) is not gp-reducible to (CHC, V ′
CHC).

61

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

So we have shown that neither VCHC nor V ′
CHC are universal verifiers for CHC.

Both proofs were established using the fact that for both verifiers exist natu-
ral numbers such that no instance has the respective number of solutions. It is
reasonable to assume that a potential universal verifier for CHC should not be
vulnerable to such counting arguments. So, a verifier that directly refers to the
notion of Hamiltonian cycles is probably not a good candidate.

To achieve an alternative characterization assume that a cubic graph G = (V, E)
has a Hamiltonian cycle C. Color all edges not in C with color 1 and alternatively
color the edges from C with 2 and 3. It is not hard to see, that this coloring is
a valid 3-coloring of the edges of G. Conversely, we call a valid 3-coloring c of G
Hamiltonian if one of the sets C1 ∪C2, C1 ∪C3, or C2 ∪C3 is a Hamiltonian cycle
of G, where Ci = {e ∈ E : c(e) = i}, i ∈ {1, 2, 3}. It is not hard to see, that the
verifier

V ′′
CHC ={G, {C1, C2, C3} : G is a cubic graph and {C1, C2, C3} describes a

Hamiltonian 3-coloring of G}

actually is a verifier for CHC. By the following Lemma we have that universality
of V ′′

CHC can not be ruled out using a simple counting argument.

Lemma 4.4.9. For each natural number n, there exists a cubic graph Gn such
that |V ′′

CHC(Gn)| = n.

Proof. It can easily be verified, that the graphs G0 and G1 from Figure 4.15 satisfy
|V ′′

CHC(Gn)| = n for n = 0 and n = 1.

Figure 4.15: The graphs Gn for n = 0 (left) and n = 1 (right).

Now, consider the family Hi, i ≥ 3, of graphs as depicted in Figure 4.16.

Figure 4.16: The family of graphs Hi, i ≥ 3, where i denotes the number of con-
catenated 4-cycles.

62

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

It is not hard to verify, that all graphs H2j, j ≥ 2 have exactly (2j + 1) Hamil-
tonian colorings, namely the ones induced by the Hamiltonian cycles depicted in
Figure 4.17.

Figure 4.17: Hamiltonian colorings of H2j. Analogous to the two rightmost cycles,
there are 2j − 2 more cycles.

Furthermore, it is not hard to see that H3 has exactly three Hamiltonian col-
orings. Thus, we have a graph with |V ′′

CHC(Gn)| = n, for n = 0 and each odd
natural number. We gain such a graph for all remaining even natural numbers,
by replacing one edge by the subgraph from Figure 4.18, that doubles the number
of Hamiltonian colorings.

Figure 4.18: A subgraph such that, if any edge is replaced by this subgraph, the
number of Hamiltonian colorings is doubled.

Thus, we have a graph Gn with |V ′′
CHC(Gn)| = n, for each natural number n.

So, V ′′
CHC is a very good candidate for being a universal verifier for CHC. Un-

fortunately, despite spending enormous efforts in trying to find a gp-reduction
(A, VA) ≤p

gp (CHC, V ′′
CHC) for a ∃r∀lgp-complete problem A with a universal

verifier VA, this problems remains open. Also a weaker result, like the NP-
completeness for n + CHC (defined via V ′′

CHC), for some natural number n > 0,
is an interesting open question. Nevertheless, we believe in the latter and in the
universality of V ′′

CHC.

4.5 Conclusions

In the above sections we have shown the ∃r∀lgp-completeness for a long list of
NP-complete problems via their natural verifiers. By Corollary 4.1.13 we have the
following corollary.

Corollary 4.5.1. The natural verifiers of the problems 0/1-Integer Program-
ming, 3Dimensional Matching, 3Satisfiability, Clique, Dominating
Set, Exact-3-Cover, Hamiltonian Cycle, Independent Set, Kernel,
Knapsack, Minimum Edge Cost Flow, Partition, SAT, Set Packing,

63

Chapter 4 Alternative Solutions in NP II - Universality and ∃r∀lgp-Reduction

Shortest Weight Constrained Path, Steiner Tree, Tiling, Traveling
Salesman Problem, and Vertex Cover are universal and the corresponding
alternative solution problems are NP-complete.

For all of these problems we exhaustively answered the question for the com-
plexity of alternative solutions. We have shown that all the natural verifiers are
also universal and that the associated ASP’s are NP-complete. Thus, we might
conjecture that this holds for all NP-complete problems. Since the natural verifier
is an informal and subjective notion we abstain from formulating this conjecture.
However, we state the following conjecture, that does not include the notion of
natural verifiers.

Conjecture 4.5.2. For each NP-complete problem A, there exists a universal
verifier VA such that A is ∃r∀lgp-complete via VA and thus, n + A (defined w.r.t.
VA) is NP-complete, for all natural numbers n.

Even though we believe in this conjecture, there is at least one problem that
resists to fit into this scheme, namely the problem of finding Hamiltonian cycles
in cubic graphs. Tutte proved in [Tut46] that each Hamiltonian cubic graph
has at least three Hamiltonian cycles. So, when treating Hamiltonian cycles as
solutions, 1 + CHC and 2 + CHC are obviously in P. However, the question for a
polynomial-time algorithm that finds those alternative Hamiltonian cycle is still
open.

Open Problem 1. Is there a polynomial-time algorithm computing alternative
Hamiltonian cycles for cubic graphs?

By counting arguments, we have seen that the natural verifier VCHC for CHC,
that treats Hamiltonian cycles as solutions, is not a universal verifier. However, we
gave a promising candidate V ′′

CHC for a universal verifier, by which Hamiltonian
3-colorings are solutions. We have shown that V ′′

CHC is not vulnerable to such
counting arguments but the questions if V ′′

CHC is universal and if all (or some) of
the problems n+CHC (defined via V ′′

CHC), n ∈ N, are NP-complete remain open.

Open Problem 2. Find out if or if not V ′′
CHC is universal for CHC! In case of

not, look for another candidate!

Maybe the answer to Open Problem 2 also answers the following one.

Open Problem 3. Verify or disprove Conjecture 4.5.2!

64

Chapter 5

Alternative Solutions in RE

The main part of this thesis deals with the question of alternative solutions of NP-
problems. It suggests itself to also ask this question for other complexity classes
than NP. The basic requirement to such a class is the existence of a notion of solu-
tions for its problems. In the case of NP this notion is provided by Theorem 3.1.1
and since we have a very similar theorem for RE (see Theorem 5.1.1 below), it is
reasonable to have a closer look at alternative solutions of RE-problems.

5.1 Preliminaries

In this section we slightly alter our definition of Turing machines. Here, all Turing
machines have exactly one halting state, namely an accepting one. We say that a
Turing machine M rejects an input x if and only if the computation M(x) never
halts.

When dealing with RE it is common to make use of a polynomial-time com-
putable and polynomial-time invertible bijection between Σ∗ and N for finite al-
phabets Σ. So in this section, we make no difference between natural numbers and
strings from Σ∗, as inputs for Turing machines. We also assume that the states of
Turing machines are denoted by natural numbers.

We start with the already mentioned characterization of RE, which provides a
notion of solutions for RE-problems.

Theorem 5.1.1 ([Rog67]). A problem A ⊆ Σ∗ is in RE if and only if there
exists a problem B ∈ REC such that, for all x ∈ Σ∗,

x ∈ A ↔ (∃ y ∈ Σ∗)[(x, y) ∈ B)].

Adopting the NP-concepts of verifiers and solutions, the REC-problem B plays
the role of a verifier and a word y ∈ Σ∗ with (x, y) ∈ B is a solution for x
with respect to B. Since the notions of verifiers, gp-reduction, ∃r∀lgp-reduction,
∃r∀lgp-completeness and universal verifier were very helpful in discussing alter-
native solutions for NP-problems, we would expect similar notions to be helpful
for RE-problems. In fact, these notions and the surrounding theory can easily be
transferred to RE. The starting point is the notion of a verifier for RE.

65

Chapter 5 Alternative Solutions in RE

Definition 5.1.2. 1. A relation V ⊆ Σ∗ × Σ∗ is called an RE-verifier if and
only if V ∈ REC.

2. Let V be an RE-verifier. We define the problem L(V) that is associated with
V , via

L(V) = {x ∈ Σ∗ : (∃ y ∈ Σ∗)[(x, y) ∈ V]}.
3. For an RE-verifier V and a word x ∈ Σ∗, V (x) denotes the set of solutions

for x with respect to V , that is,

V (x) = {y ∈ Σ∗ : (x, y) ∈ V }.
Note that by Theorem 5.1.1 it follows that each RE-problems has an RE-verifier.
After formalizing the notion of a solution for an RE-problem A (with respect

to an RE-verifier VA) we can state the problem of alternative solutions.

Definition 5.1.3. Let A be a problem in RE with an RE-verifier VA and let n be
a natural number. The alternative solution problem n + AVA

for A is defined as
follows:

n + AVA
={(x, y1, . . . , yn) : (∀ 1 ≤ i ≤ n)[VA(x, yi)], (∀ 1 ≤ i 6= j ≤ n)[yi 6= yj],

and (∃ yn+1)[(∀ 1 ≤ i ≤ n)[yi 6= yn+1] ∧ VA(x, yn+1)]}.
When it is clear which verifier VA is used for a problem A (which will normally

be the case), we write n+A instead of the more complicated notion n+AVA
. The

properties of “+”stated in Theorem 3.1.5, Theorem 3.1.6 and Corollary 3.1.7 can
easily be transferred from NP to RE. We abstain from repeating these assertions.

Analogous to the very useful concept of gp-reduction for NP-problems (see Def-
inition 3.3.1), we can define a notion of gp-reduction for RE-problems.

Definition 5.1.4. Let A and B be problems from RE with associated verifiers VA

and VB. We say that (A, VA) is generating parsimoniously reducible to (B, VB),
(A, VA) ≤gp (B, VB), if and only if there exists a pair (f, g) of recursive functions
f : Σ∗ → Σ∗ and g : Σ∗ × Σ∗ → Σ∗ such that:

1. x ∈ A ↔ f(x) ∈ B holds, for each x ∈ Σ∗, and

2. gx, defined via gx(y) = g(x, y), is a bijection between VA(x) and VB(f(x)),
for each x ∈ Σ∗.

Because of the strong analogy to the case of NP, it is easy to see that we gain
the same properties as in the case of NP.

Theorem 5.1.5. Let A be a problem in RE and let VA be a verifier for A. If A is
gp-reducible to 1 + A, then A is gp-reducible to n + A, for each natural number n.

Proof. The proof is basically the same as for Theorem 3.3.5.

66

Chapter 5 Alternative Solutions in RE

Theorem 5.1.6. Let A and B be problems in RE with associated RE-verifiers VA

and VB. If A ≤gp B, then n + A ≤gp n + B, for each natural number n.

Proof. The proof can easily be transferred from Theorem 3.3.9.

Note that n + A ≤gp n + B implies n + A ≤m n + B.
Similar to the case of NP, it is reasonable to ask which is the “right” choice

of an RE-verifier for an RE-problem. For NP, we gave a possible answer using
the concept of ∃r∀lgp-reduction, universal verifiers and ∃r∀lgp-completeness. We
just mention that these notions can also easily be transferred from NP to RE and
abstain from repeating their definitions.

5.2 Alternative solutions and universal verifiers in
RE

In NP we had the following situation. We managed to show that all problems
n + SAT, n ∈ N+, (defined with respect to some standard verifier VSAT) are NP-
complete. Furthermore, we proved ∃r∀lgp-completeness of SAT for NP. Thus,
proving that (SAT, VSAT) is gp-reducible to (A, VA) is sufficient to gain ∃r∀lgp-
completeness of the problem A via VA, the universality of VA for A and the NP-
completeness of all n + A, defined via the universal verifier VA. Since, all these
notions and corresponding properties carry over to RE, we are in the same com-
fortable situation, if we manage to find a starting point for RE like SAT in the
case of NP.

One of the most common RE-problems and a first candidate is the halting
problem K:

Problem Description (halting problem K)

Given: A pair (i, x) of natural numbers.

Question: Does the computation Mi(x), i.e., the computation of the machine
with the Gödel number i on the input x, ever halt ?

Standard Verifier:

VK ={((i, x), k) : the computation Mi(x) halts after k computational

steps}.

It is well-known that the halting problem K is RE-complete.
It turns out that the halting problem K does not behave very conveniently, so

we first consider the following problem K ′ instead, which is a (slightly) generalized
version of the halting problem K and we return to the standard halting problem
K later.

Problem Description (generalized halting problem K ′)

67

Chapter 5 Alternative Solutions in RE

Given: A 3-tuple (i, x, j) of natural numbers.

Question: Does the computation Mi(x) ever reach the state j ?

Standard Verifier:

VK′ ={((i, x, j), k) : after k computational steps the computation of Mi(x)

is in state j}.

If j denotes the accepting halting state of the machine Mi, then we have that
(i, x, j) ∈ K ′ if and only if Mi halts on the input x - the standard halting problem.
So, we have a many-one reduction K ≤m K ′, via f(i, x) := (i, x, j), where j
denotes the accepting halting state of Mi. Hence, it is immediate that K ′ is also
RE-complete (with respect to many-one reductions). It turns out, that K ′ is also
∃r∀lgp-complete for RE via VK′ .

Theorem 5.2.1. The generalized halting problem K ′ is ∃r∀lgp-complete via VK′

for RE.

Proof. It suffices to show that for each RE-problem A and each associated RE-
verifier VA the pair (A, VA) is gp-reducible to (K ′, VK′). So let A be in RE, let
VA be an RE-verifier for A and let M be a Turing-machine that accepts VA. We
define a new machine M ′ whose work on the input x is described in pseudo-code
as follows. The machine, that simulates the work of the machine M for VA, uses
a new special state h.

1. y := ε (ε is the empty word)
2. while 1 6= 2 do
3. begin
4. run M(x, y)
5. if M(x, y) accepts
6. go to state h
7. set y to the quasi-lexicographic successor of y
8. end

The state h is designed, such that the machine, when it steps to state h (which
only happens in line 6), immediately returns to the state that initializes the exe-
cution of line 7. So, if the simulation of the computation M(x, y) in line 4 shows
that M accepts (x, y), then M ′ switches to the state h for one computational step
(line 6) and immediately continues in line 7.

Now, let i be the number of that machine M ′, i.e., M ′ = Mi. We define
f(x) := (i, x, h), for all x ∈ Σ∗. To see that x ∈ A if and only if f(x) ∈ K ′,
assume that x ∈ A. Hence, there exists some y′ ∈ Σ∗ such that VA accepts (x, y′).
In this situation, it is not hard to see that the machine Mi reaches the state h,
when y is counted up to y′. It follows that (i, x, h) ∈ K ′. Furthermore, in case
of x 6∈ A it is not hard to see that Mi(x) never reaches h, that is (i, x, h) 6∈ K ′.

68

Chapter 5 Alternative Solutions in RE

Obviously, f is recursive. Hence, this reduction is a many-one reduction. We still
have to show that it is also generating parsimonious.

It is easy to see that for each solution y′ for x (w.r.t. VA) the computation of
Mi(x) reaches h exactly once, i.e., there is exactly one solution k for f(x) = (i, x, h)
w.r.t. VK′ , a one-one correspondence between VA(x) and VK′((i, x, h)). So, we
define that the generating function g maps such a solution y′ for x to the number
k of the computational step, where the state h is reached after successfully testing
M(x, y′). This number can be computed by simulating the work of the machine
Mi and counting the computational steps until M(x, y′) is simulated and h is
reached afterwards. Thus, g is recursive and we have (A, VA) ≤gp (K ′, VK′) via f
and g.

By the definitions of ∃r∀lgp-completeness and universal RE-verifiers, it imme-
diately follows that VK′ is universal for K ′.

Corollary 5.2.2. The RE-verifier VK′ is universal for K ′.

The following theorem furthermore provides the RE-completeness for all prob-
lems of alternative solutions for K ′, which is needed to show hardness of all ASPs
for some RE-problem via one gp-reduction from (K ′, VK′).

Theorem 5.2.3. For all n ∈ N+, n + K ′ is RE-complete.

Proof. The fact that n + K ′ ∈ RE, for all n ∈ N, is trivial. In order to show the
RE-hardness, we will give many-one reductions K ′ ≤m n + K ′, for all n ∈ N+.
So, let n be some natural number and let (i, x, j) be an arbitrary instance of K ′.
Starting with the machine Mi we design a machine M , as follows. The working
alphabet of M includes the alphabet of Mi and the additional symbols # and $.
Using n new states, any computation of M starts with writing #n$ to the left of
the input x, producing the string #n$x. Afterwards the machine M switches to
the state j. When the machine reads a # in state j, it deletes it and moves right
afterwards. If M reads a $ while being in state j, it deletes it, moves right, and
switches to the starting state of the original machine Mi. The work of the machine
in state j on all symbols of the original alphabet of Mi is unchanged. So it is not
hard to see that each computation starts with producing n #s and deletes them
in n consecutive state-j steps. Let ` denote the number of the first state-j step.
Thus, the n consecutive state-j steps have the numbers `, ` + 1, . . . , ` + n− 1.

After this preprocessing, M works on x as Mi does. Let i′ be the number of this
machine, which is effectively computable. Hence, (i′, x, j) has n trivial solutions
`, ` + 1, . . . , ` + (n − 1) in the sense of K ′ and (i′, x, j) has a further solution if
and only if (i, x, j) ∈ K ′. So f((i, x, j)) := ((i′, x, j), `, . . . , `+(n− 1)) realizes the
reduction K ′ ≤p

m n + K ′.

So, K ′ can play the role of the mentioned starting point for RE to prove ∃r∀lgp-
completeness, universality and the hardness of the problems of alternative solu-
tions.

69

Chapter 5 Alternative Solutions in RE

Theorem 5.2.4. Let (B, VB) be gp-reducible to (A, VA) for a ∃r∀lgp-complete
problem B with an associated universal verifier VB (e.g. K ′ with VK′). Then A
is also ∃r∀lgp-complete, VA is universal for A and n + A (defined with respect to
VA) is RE-complete, for all n ∈ N+.

Proof. The proof can by copied from Lemma 4.1.10.

So, the situation seems to be the same as for NP. When we gp-reduce (K ′, VK′)
to (A, VA) for an RE-problem A with an associated verifier VA we answer the
most important questions all at once. We show the ∃r∀lgp-completeness of A
via VA, which implies that VA is a universal verifier for A and we prove the RE-
completeness of all alternative solution problems n + A, n ∈ N (Theorem 5.2.4).
So we will try to gp-reduce (K ′, VK′) to some RE-problems.

As a first candidate consider the halting problem K, which consists of all pairs
(i, x) ∈ N×Σ∗ such that the machine Mi halts on the input x. Recall the natural
RE-verifier VK for K,

VK = {((i, x), k) : Mi(x) halts after exactly k computational steps}.
Obviously, there is at most one solution k for each machine Mi w.r.t. VK . Since
there are instances for K ′ with more than one solution with respect to VK′ ,
(K ′, VK′) can not be gp-reducible to (K,VK).

Another possible (and still quite natural) RE-verifier for K would be

V ′
K = {((i, x), k) : Mi(x) halts after at most k computational steps}.

Now, V ′
K(i, x) = ∅ if (i, x) 6∈ K and V ′

K(i, x) = {k : k ≥ k′} if Mi(x) halts after
exactly k′ computational steps. So each instance has no solutions or an infinite
number of solutions w.r.t. V ′

K . Since there are instances for K ′ with a finite and
positive number of solutions with respect to VK′ , (K ′, VK′) is not gp-reducible to
(K, VK).

However, the following theorem states that there exists a universal verifier V ′′
K

for K.

Theorem 5.2.5. There exists a verifier V ′′
K for K such that the pair (K ′, VK′) is

gp-reducible to (K, V ′′
K).

Proof. For the proof we depart from the standard scheme of giving a verifier V ′′
K

and then proving that (K ′, VK′) ≤gp (K, V ′′
K) afterwards. We rather develop this

verifier, while designing the gp-reduction (K ′, VK′) ≤gp (K, V ′′
K).

So let (i, x, j) be an instance for K ′. Recall that a solution for (i, x, j) (w.r.t.
VK′) is a number k such that the computation Mi(x) is in state j after k compu-
tational steps. Our task is to map (i, x, j) to an instance (i′, x′) for the standard
halting problem K. If j is the halting state of Mi, (i, x, j) is mapped to (i, x).
Obviously, Mi(x) reaches the state j if and only if Mi(x) halts.

Let j be a state of Mi different from the halting state. In a first step, we modify
the machine Mi to a machine M ′

i such that

70

Chapter 5 Alternative Solutions in RE

• the state j is the new halting state of M ′
i , i.e., Mi′ halts when Mi would

reach the state j the first time and

• the old halting state of Mi is changed such that Mi′ runs into an endless
loop, when it reaches this state.

It is easy to see, that Mi(x) reaches the state j if and only if Mi′(x) halts. The
problem is that in case the computation of Mi(x) reaches the state j several times,
which means that (i, x, j) has several solutions w.r.t. VK′ , the machine Mi′(x)
halts only once, suggesting only one solution. So we have to adjust the notion
of solutions (the verifier V ′′

K) for K such that the constructed instance (i′, x) can
have several solutions that correspond to the solutions of (i, x, j) w.r.t. VK′ .

The idea of this verifier V ′′
K is to restart the machine M ′

i after it has halted,
simulating the actual behavior of the original machine Mi, that would not have
halted. Such a restart must reflect, that a halting of the machine M ′

i means that
the machine Mi would have been in state j. To be able to do this restart properly,
the program of the machine Mi′ must contain the information about how the
machine Mi proceeds in state j. Since this information is lost by making j a
halting state, we need some further adjustments of M ′

i . We do so by adding a
copy j′ of the state j to M ′

i . In case of Mi has states, different from the starting
state, that do not appear on a right site of a transition rule of M ′

i , these states
are needless and deleted in M ′

i . Thus, this new state j′ is the only one that does
not appear on a right site of a transition rule of M ′

i and the verifier V ′′
K can easily

identify this state j′. Thus, V ′′
K can do the restart properly using this state j′. In

case of j is the halting state of the original machine Mi, this information is also
copied to j′ and the verifier V ′′

K does no restart.
Whenever the program of the verifier V ′′

K notices that M ′
i halts, that situation

represents that Mi would have been in state j and the corresponding computa-
tional step is noticed as an solution of (i′, x) w.r.t. to this just described verifier
V ′′

K . Note that formally, given an input ((i, x), k), the algorithm for V ′′
K starts the

above simulating and restart process and counts its computational steps. It ac-
cepts when k is detected as solution as described above and rejects if the counter
exceeds k. In the case that j is the halting state of Mi, the computation also
rejects, if it stops before the counter reaches k.

So (i, x, j) is mapped to the pair (i′, x) and the verifier V ′′
K detects, for each

solutions of (i, x, j) w.r.t. VK′ , a solution for (i′, x). Hence, we have a ≤gp-
reduction (K ′, VK′) ≤gp (K,V ′′

K).
It is very important to note that V ′′

K actually is a verifier for K, since the whole
restart process makes no sense for machines that are not designed by the above
construction. However, V ′′

K is indeed a verifier for K since it, for each input (i, x),
detects a (first) solution if and only if Mi(x) halts.

By Theorem 5.2.5, it follows that the given verifier V ′′
K is universal for K. But

V ′′
K is anything but naturally defined. We also do not expect that another more

natural universal verifier for K exists. So, there are quite natural verifiers VK

71

Chapter 5 Alternative Solutions in RE

and V ′
K for K that are not universal and the universal verifier V ′′

K for K is very
unnatural. So the notion of universal verifiers and the intuition of natural verifiers
diverge in the case of the halting problem K.

The following theorem implicitly states that the notions of natural and universal
verifiers also differ for any other RE-problem.

Theorem 5.2.6. Let A be a problem from RE. There exists an RE-verifier V ′
A

for A such that |V ′
A(x)| ≤ 1, for all x ∈ Σ∗.

Proof. Let VA be any RE-verifier for A. We define V ′
A as follows,

V ′
A = {(x, y) : (x, y) ∈ VA and y is the lexicographic smallest solution for x}.

It is not hard to see that V ′
A = ∅ if x 6∈ A and |V ′

A| = 1 if x ∈ A. Moreover, the
following algorithm decides if (x, y) ∈ V ′

A, using an algorithm for VA:

1. if (x, y) 6∈ VA, stop and reject the input (x, y)
2. y′ := ε (ε is the empty word)
3. while y′ <lex y do
4. begin
5. if (x, y′) ∈ VA, stop and reject the input (x, y)
6. set y′ to the lexicographic successor of y′

7. end
8. accept the input (x, y)

So, V ′
A is actually an RE-verifier for A such that |V ′

A(x)| ≤ 1, for all x ∈ Σ∗.

Assume that VA is a natural verifier for an RE-problem A. Then, the above
construction leads to another verifier V ′

A for A that also deserves to be called
natural. Note that V ′

A can not be universal for A. Hence, each RE-problem with
some natural verifier VA also has a natural verifier that can not be universal,
namely V ′

A.
Even though we could easily transfer the notions of alternative solutions prob-

lems, gp-reduction, ∃r∀lgp-reduction, ∃r∀lgp-completeness and universal verifiers
from NP to RE there is a structural difference between NP and RE concerning
their notions of solutions. This difference is stated in the above theorem, which is
highly unlikely to also hold for NP. First, note that the construction of V ′

A from
VA does not lead to an NP-verifier V ′

A for all NP-verifier VA. The problem is that
testing all lexicographic predecessors (steps 2 to 7 of the above algorithm) can not
be done in polynomial time. So the above proof can not be converted to NP. The
second and the stronger argument is the following theorem that (almost) rules out
an assertion like Theorem 5.2.6 for NP.

Theorem 5.2.7. There exists a verifier VA with (∀x ∈ Σ∗)[|V ′
A(x)| ≤ 1], for each

NP-problem A, if and only if UP = NP.

Proof. The theorem is immediate by the definition of UP.

72

Chapter 5 Alternative Solutions in RE

Hence, the existence of an NP-equivalent of Theorem 5.2.6 would imply UP =
NP, which is widely believed to be wrong.

5.3 Conclusions

Even though RE seemed to be a very suitable class for applying our NP-theory,
it turned out that it is not. We introduced the notions of verifiers, alternative
solution problem, gp-reduction, universal verifiers and ∃r∀lgp-reduction for RE.
Analogous to the NP-case we showed that the alternative solution problems of a
certain version of the halting problem are RE-complete and that the associated
natural verifier is universal. However, the natural verifier of the standard halting
problem turned out to be not universal and another, universal verifier for the
standard halting problem is very unnatural. So in contrast to NP, the notion of
natural verifiers and universal verifiers seem to diverge in RE. The reason for that
behavior is the property stated in Theorem 5.2.6 that provides the existence of
a quite natural verifier for each RE-problem such that all instances have at most
one solution with respect to this verifier. Obviously, such natural verifiers can not
be universal and discussing alternative solutions for such verifiers makes no sense
at all.

Even though the investigation of alternative solutions for RE-problems did not
result in a happy end, we feel that it was not useless. The used theory that
works great for NP did not accord with RE. This exposed that there must be a
structural difference between these classes concerning their solutions, which was
finally identified.

73

Chapter 6

Alternative Solutions in the
Polynomial-Time Hierarchy

As already mentioned in Chapter 5 the existence of a plausible notion of solutions
is the precondition for discussing alternative solutions. Fortunately, there exists a
characterization for the problems from the classes Σp

i , i ≥ 1, that provides a notion
of solutions and thus invites us to study the complexity of alternative solutions for
these classes. Since the very similar characterization of the classes Πp

i , i ≥ 1, does
not lead to such an intuitive concept of solutions and moreover such a notion is
also not in sight for the classes ∆p

i , i ≥ 1, we have to restrict ourselves to studying
the classes Σp

i , i ≥ 1.

6.1 Preliminaries

The polynomial-time hierarchy was introduced in [Sto76].

Definition 6.1.1 ([Sto76]). The classes Σp
i , Πp

i , and ∆p
i , i ≥ 1, are recursively

defined as follows:

1. Σp
0 = Πp

0 = ∆p
0 = P.

2. a) Σp
i+1 = NPΣp

i .

b) Πp
i+1 = coΣp

i+1.

c) ∆p
i+1 = PΣp

i .

As announced, there is a characterization for the classes Σp
i i ≥ 1, that provides

a notion of solution. It is stated in the following theorem, which furthermore gives
a characterization for the classes Πp

i , i ≥ 1.

Theorem 6.1.2. [SM73] Let L be a language and let i ∈ N.

1. L ∈ Σp
i if and only if there exists a language B from Πp

i−1 and a polynomial
p such that for all x ∈ Σ∗,

x ∈ A ↔ (∃y) [|y| ≤ p(|x|) ∧ (x, y) ∈ B].

74

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

2. L ∈ Πp
i if and only if there exists a language B from Σp

i−1 and a polynomial
p such that for all x ∈ Σ∗,

x ∈ A ↔ (∀y) [|y| ≤ p(|x|) → (x, y) ∈ B].

Note that since Σp
1 = NP and Πp

0 = P this theorem is a generalization of
Theorem 3.1.1. Let A be a language from Σp

i and let B and p be an associated
language from Πp

i−1 and a polynomial in the sense of the above Theorem 6.1.2.
Then, analogous to the situation for NP, we can say that a string y with |y| ≤
p(|x|) is a solution for the instance x if and only if (x, y) ∈ B. Unfortunately, the
universal quantifier in the characterization of the classes Πp

i does not support such
a plausible notion of solutions for Πp

i .
The mentioned idea of solutions for Σp

i -languages leads to the following concepts
of Σp

i -verifiers and solutions.

Definition 6.1.3. Let i ≥ 0 be a natural number.

1. A Σp
i -verifier V is a language from Πp

i−1 such that there exists a polynomial
p satisfying (∀x, y ∈ Σ∗)[(x, y) ∈ V → |y| ≤ p(|x|)].

2. The language L(V) accepted by a Σp
i -verifier V is defined as L(V) = {x ∈

Σ∗ : (∃y ∈ Σ∗)[(x, y) ∈ V)]}.
3. For a Σp

i -verifier V and a string x ∈ Σ∗, V (x) denotes the set of solutions
for x, that is V (x) = {y ∈ Σ∗ : (x, y) ∈ V }.

Note that for i = 1 (Σp
1 = NP) this definition coincides with Definition 3.1.2 for

the polynomial-time verifier for NP given in Chapter 2.
Because of the strong analogy to NP, we can easily transfer the notions of

gp-reduction, ∃r∀lgp-reduction, ∃r∀lgp-completeness, universal verifiers and the
associated results from NP to Σp

i , i ≥ 1. We forbear from repeating these defini-
tions and assertions.

6.2 Σp
i -SAT and Πp

i -SAT

In this section we deal with the problems Σp
i -SAT and Πp

i -SAT which are prob-
ably the best-known problems of the polynomial-time hierarchy. We show that
the problems of alternative solutions for Σp

i -SAT,i ≥ 1, are as hard as Σp
i -SAT

(Σp
i -complete), where Πp

i -SAT is the basis for the verifier VΣp
i+1-SAT for Σp

i+1-SAT.

Moreover, we show that Σp
i -SAT is ∃r∀lgp-complete for Σp

i via the universal veri-
fier VΣp

i+1-SAT, i ≥ 1, providing that Σp
i -SAT is able to be a starting point for Σp

i ,
as SAT was for NP.

For each natural number i, the instances of Σp
i -SAT and Πp

i -SAT are Boolean
formulas F over a variable set X with a fixed partition X = X1∪X2∪· · ·∪Xi into

75

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

pairwise disjoint sets X1, . . . , Xi. In the following βk will denote an assignment
for Xk, 1 ≤ k ≤ i, and by writing F (β1, β2, . . . , βi) we mean the truth value of
F (β), where β(x) = βk(x), for all x ∈ Xk, 1 ≤ k ≤ i.

Such a formula F is a member of Σp
i -SAT if and only if

(∃β1)(∀β2)(∃β3) . . . (Qβi) [F (β1, β2, . . . , βi) = 1],

where the quantifier Q is ∃(∀) if i is odd (even). The formula F is in Πp
i -SAT if

and only if

(∀β1)(∃β2)(∀β3) . . . (Qβi) [F (β1, β2, . . . , βi) = 1],

where the quantifier Q is ∀(∃) if i is odd (even).

It is a well known fact that Σp
i -SAT is complete in Σp

i and Πp
i -SAT is Πp

i -
complete.

Theorem 6.2.1 ([Wra76]). For all i ∈ N+, Σp
i -SAT is Σp

i -complete and Πp
i -SAT

is Πp
i -complete.

To discuss (alternative) solutions of Σp
i -SAT, we need a Σp

i -verifier for Σp
i -SAT.

The following verifier VΣp
i -SAT seems to be a natural choice. We will later see that

VΣp
i -SAT is a universal verifier for Σp

i -SAT.

Lemma 6.2.2. The language VΣp
i -SAT as defined by

VΣp
i -SAT = {(F, β1) : F (β1) ∈ Πp

i−1-SAT}

is a Σp
i -verifier for Σp

i -SAT, where F (β1) arises from F by substituting each vari-
able x from X1 by β1(x).

Proof. Given F and β1, F (β1) can easily be computed. Since Πp
i−1-SAT is in Πp

i−1,
we have VΣp

i -SAT ∈ Πp
i−1. Furthermore it holds that

F ∈ Σp
i -SAT ↔ (∃β1)[(∀β2)(∃β3) . . . (Qβi) [F (β1, β2, . . . , βi) = 1]]

↔ (∃β1)[F (β1) ∈ Πp
i−1-SAT]

↔ (∃β1)[(F, β1) ∈ VΣp
i -SAT],

where Q is ∃ (∀) if i is odd (even). Hence VΣp
i -SAT is a Σp

i -verifier for Σp
i -SAT.

Note that for i = 1 (Σp
1-SAT = SAT) β1 is an assignment for the entire variable

set X = X1 of F . Hence, F (β1) ∈ {0, 1} and thus, (F, β1) ∈ VΣp
1-SAT if and only if

β1 satisfies F . So, VΣp
1-SAT = VSAT.

Theorem 6.2.3. For all n ∈ N+, n + Σp
i -SAT (defined with respect to VΣp

i -SAT)
is Σp

i -complete.

76

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

Proof. It suffices to give a reduction Σp
i -SAT ≤p

gp 1 + Σp
i -SAT. Let F be an

instance for Σp
i -SAT, that is, a Boolean formula over a fixed partitioned variable

set X = X1 ∪ X2 ∪ · · · ∪ Xi with say X1 = {x1, x2, . . . , xn}. We define F ′ to
be the formula F ′ := (F ∧ xn+1) ∨ (x1 ∧ x2 ∧ · · · ∧ xn ∧ xn+1) over the variable
set X ′ = X ′

1 ∪ X2 ∪ · · · ∪ Xi, where X ′
1 = X1 ∪ {xn+1}. Since F ′ is already

satisfied if all xk, 1 ≤ k ≤ n + 1, are set to 1, it is easy to see that the assignment
α1 : X ′

1 7→ {0, 1} that maps all variables to 1 is a solution for F ′ in the sense of
Σp

i -SAT. Furthermore, it is obvious that each alternative solution must assign 0
to xn+1. It follows that all alternative solutions for F ′ are also solutions for the
original formula F , if the assignment of the variable xn+1 is discarded. Conversely,
it is not hard to see that each solution β1 of F becomes a solution β′1 of F ′, by
additionally assigning 0 to xn+1.

Hence, by defining f(F) := (F ′, α1), we have a bijection g between the solutions
of F and the solutions of F ′ different from α1, via g(β1) := β′1, where β′1 equals
β on x1, x2, . . . , xn and β′1(xn+1) = 0. Obviously, f and g are polynomial-time
computable and thus we have Σp

i -SAT ≤p
gp 1 + Σp

i -SAT via f and g.

Having a closer look at the proof for the Σp
i -completeness of Σp

i -SAT [Wra76],
we can extract the following stronger result.

Theorem 6.2.4. For each natural number i, Σp
i -SAT is ∃r∀lgp-complete for Σp

i

via VΣp
i -SAT.

Proof. Basically, the proof follows the idea from [Wra76] but some adjustments
are necessary.

Since we know that Σp
1-SAT = SAT is ∃r∀lgp-complete for Σp

1 = NP via
VSAT = VΣp

1-SAT (Theorem 3.3.10), we can assume i ≥ 2 in the following.
We have to show that each problem from Σp

i with any associated verifier is gp-
reducible to (Σp

i -SAT, VΣp
i -SAT). So, let A ∈ Σp

i with some Σp
i -verifier VA for A.

Let p1 be a polynomial such that (∀x, y ∈ Σ∗)[(x, y) ∈ VA → |y| ≤ p1(|x|)]. We

design a new verifier Ṽ i−1
A ∈ Πp

i−1 for A which is based on VA using a new symbol
as follows,

Ṽ i−1
A = {(x, y#k) : (x, y) ∈ VA ∧ k + |y| = p1(|x|)}.

Hence, |y| = p1(|x|) for all x, y with (x, y) ∈ Ṽ i−1
A and there exists a canonical

bijection between solutions w.r.t VA and solutions w.r.t. Ṽ i−1
A .

Now we can state

x ∈ A ↔ (∃y1 with |y1| = p1(|x|)) [(x, y1) ∈ Ṽ i−1
A].

According to Theorem 6.1.2 we can express Ṽ i−1
A ∈ Πp

i−1 with a language V i−2
A

from Σp
i−2 and a polynomial p2 as follows,

(x, y1) ∈ Ṽ i−1
A ↔ (∀y2 with |y2| ≤ p2(|x|)) [(x, y1, y2) ∈ V i−2

A].

77

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

Even though a language from Σp
i , i ∈ N, are no verifiers, for simplification, we

will call such a languages VA, e.g. V i−2
A , a verifier and a string y with (x, y) ∈ VA

a solution for x.
Analogously to Ṽ i−1

A we design a verifier Ṽ i−2
A from V i−2

A with solutions of uni-
form length.

Below, we will only handle verifiers with uniform lengthes and thus, for the
lengths of the variables yk, 1 ≤ k ≤ i, it will always hold |yk| = pk(|x|). We will
use the quantifiers (∀yk), (∃yk) to abbreviate the terms (∀yk with |yk| = pk(|x|))
and (∃yk with |yk| = pk(|x|)), respectively. Using this abbreviations, we obtain

x ∈ A ↔ (∃y1)(∀y2)[(x, y1, y2) ∈ Ṽ i−2
A],

where |yk| = pk(|x|) for k ∈ {1, 2}. By iteratively using Theorem 6.1.2 and

designing verifiers Ṽ i−3
A , . . . , Ṽ 1

A with solutions of uniform lengths p3, . . . , pi−1 re-
spectively, we gain the expression

x ∈ A ↔ (∃y1)(∀y2) . . . (Qyi−1)[(x, y1, y2, . . . , yi−1) ∈ Ṽ 1
A],

where Q is ∀ (∃) and Ṽ 1
A is from Σp

1 = NP (Πp
1 = coNP) when i is odd (even).

Now we apply the idea of Cook [Coo71], who proved the NP-completeness of
SAT by translating the work of a nondeterministic Turing machine on a given
input into a Boolean formula.

First, let i be odd. Let M be a Turing machine for Ṽ 1
A ∈ NP that exactly

works in time q(|z|), for all inputs z, where q is a polynomial. Note that the
length of the input z = (x, y1, y2, . . . , yi−1) only depends on x since |yk| = pk(|x|),
1 ≤ k ≤ i. Let r denote the polynomial such that |z| = r(|x|). The construction
of Cook applied to M and an input z = (x, y1, y2, . . . , yi−1) provides a function f
that maps such instances z to a formula F such that F is satisfiable if and only if
(x, y1, y2, . . . , yi−1) ∈ Ṽ 1

A . We just give the idea of this formula.
For each computational step s, 1 ≤ s ≤ q(r(|x|)), for each cell c of the tape of M ,

and for each symbol a of the alphabet of M there is a variable αs,c,a that expresses
if the symbol a is in the cell c in step s. Furthermore, for each computational
step s and state u of the machine, there is a variable αs,u that expresses if the
machine is in state u in step s. So, for each computational step of M , there
is a set of variables that completely describes the current configuration. Thus,
an assignment β of F describes the configuration in each computational step of
M . In F , the variables for the starting configuration are fixed to values that
represent the input (x, y1, y2, . . . , yi−1) on the input tape and the fact that the
machine is in its starting state. Furthermore, the formula F makes sure that for
all k, 1 ≤ k < q(r(|x|)), the configuration in step k + 1 is a valid successor of the
configuration in step k according to the rules of M . Finally, the construction of
F also ensures that in the last computational step s = q(r(|x|)) the machine is
in an accepting state. Putting all parts together, it is not hard to see that F is
satisfiable if and only if the machine M accepts the input (x, y1, y2, . . . , yi−1), that

is, (x, y1, y2, . . . , yi−1) ∈ Ṽ 1
A .

78

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

Note that the input (x, y1, . . . , yi−1) only effects the description of the initial
configuration x#y1#y2# . . . #yi−1 of M and the number of computational steps
q(r(|x|)). In Cook’s construction the variables according to the initial configura-
tion are fixed to values that represent the given input x#y1#y2# . . . #yi−1 on the
tape of M .

We slightly modify the construction such that the variables that describe the
words y1, y2, . . . , yi−1 in the initial configuration are not fixed. Hence, the modified
formula only depends on x. We call this formula Fx.

For a fixed x, the string yk, 1 ≤ k ≤ i − 1, has the length pk(|x|). Hence, we
exactly know which cells of the input tape, contain the string yk, 1 ≤ k ≤ i − 1.
Thus, we also know which variables describe these cells in Cook’s formula Fx. Let
Xk denote the set of variables that describes yk, for 1 ≤ k ≤ i − 1. Then, the
words y1, y2, . . . , yi−1 are represented by assignments β1, . . . , βi−1 for X1, . . . , Xi−1.

We denote the remaining variables of Fx with Xi and obtain a partition of the
variable set of Fx into X1, . . . , Xi. Let βk denote an assignment of the variables
from Xk. Now, we can state

x ∈ A ↔ (∃β1)(∀β2) . . . (∀βi−1) [(∃βi) [Fx(β1, β2, . . . , βi−1, βi) = 1]].

Since the right hand side of the formula is equivalent to Fx ∈ Σp
i -SAT, we have

x ∈ A ↔ Fx ∈ Σp
i -SAT.

In case of i is even, the situation is quite similar. We start with the expression

x ∈ A ↔ (∃y1)(∀y2) . . . (∃yi−1) [(x, y1, y2, . . . , yi−1) ∈ Ṽ 1
A],

where |yk| = pk(|x|), for 1 ≤ k ≤ i − 1, and Ṽ 1
A is from Πp

1 = coNP. It holds

that Ṽ 1
A ∈ NP. So, let M be a nondeterministic Turing machine that accepts Ṽ 1

A .
Analogous to the case of an odd i, the machine M with an input (x, y1, y2, . . . , yi−1)
can be converted to a formula F ′

x (which is independent from y1, y2, . . . , yi−1) with
certain variable sets X1, . . . , Xi−1 that correspond to y1, y2, . . . , yi−1. Let Xi denote
the rest of the variables of F ′

x. Now, we can state

x ∈ A ↔ (∃y1)(∀y2) . . . (∃yi−1) [(x, y1, y2, . . . , yi−1) ∈ Ṽ 1
A]

↔ (∃y1)(∀y2) . . . (∃yi−1) [(x, y1, y2, . . . , yi−1) 6∈ Ṽ 1
A]

↔ (∃β1)(∀β2) . . . (∃βi−1) [(∀βi) [F ′
x(β1, β2, . . . , βi−1, βi) = 0]]

↔ (∃β1)(∀β2) . . . (∃βi−1)(∀βi) [F ′
x(β1, β2, . . . , βi−1, βi) = 1]

↔ F ′
x ∈ Σp

i -SAT.

By defining Fx := F ′
x, for even i, we have x ∈ A ↔ Fx ∈ Σp

i -SAT, for all i ≥ 2.
So, we have A ≤p

m Σp
i -SAT via the mapping x 7→ Fx, for all i ≥ 2. Furthermore,

a solution y′1 of x w.r.t. VA canonically corresponds to the solution y1 = y′1#
i

79

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

for x w.r.t. Ṽ i−1
A . It is also not hard to see that a solution y1 for x corresponds

to a solution β1 of Fx w.r.t. Σp
i -SAT and vice versa, since β1 is the assignment

of the variables that encodes y1. So with g(y′i) := β1, we have a gp-reduction
(A, VA) ≤p

gp (Σp
i -SAT, Πp

i−1-SAT) via f and g.

Note that the formula F from the proof of Cook’s Theorem is actually a 3CNF-
formula. Hence, the above proof also works for the following stronger theorem.

Theorem 6.2.5. Let Σp
i -3CNFSAT (Σp

i -3DNFSAT) denote the restriction of
Σp

i -SAT to Boolean formulas in 3CNF (3DNF). Let furthermore VΣp
i -3CNFSAT and

VΣp
i -3DNFSAT denote the restrictions of VΣp

i -SAT to 3CNF- and 3DNF-formulas, re-
spectively. It holds that

1. Σp
i -3CNFSAT is ∃r∀lgp-complete for Σp

i via VΣp
i -3CNFSAT for all odd i and

2. Σp
i -3DNFSAT is ∃r∀lgp-complete for Σp

i via VΣp
i -3DNFSAT for all even i.

6.3 Some ∃r∀lgp-Complete Problems in Σp
2

Analogous to SAT in the case of NP we have a starting point for showing the
∃r∀lgp-completeness of Σp

i -problems, namely Σp
i -SAT. In this section we focus on

Σp
2, since for the classes Σp

i , i ≥ 3, only very few natural complete problems are
known. We gather some natural Σp

2-complete problems that turn out to also be
∃r∀lgp-complete. Thus, for these problems, we have the universality of the used
verifiers and the Σp

2-hardness of all associated ASP’s.

6.3.1 Generalized Subset Sum (GSS)

Problem Description (Generalized Subset Sum)

Given: Two vectors u and v of integers and an integer t.

Question: Does (∃x)(∀y)[ux + vy 6= t] hold, where x and y are binary vectors
having the same length as u and v, respectively ?

Standard Verifier:

VGSS ={((u, v, t), x) : u ∈ Nn and v ∈ Nm for integers n and m, t ∈ N, and

x ∈ {0, 1}n such that ux + vy 6= t, for all y ∈ {0, 1}m}.

In [BKL+02] the authors give a function that converts a 3CNF-formula over n
variables to a triple (u, v, t) of vectors u and v of length n and m, respectively,
and an integer t such that for all x ∈ {0, 1}n,

F (x) = 1 ↔ (∃y ∈ {0, 1}m)[ux + vy = t].

80

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

Furthermore, it is shown that by using this function and exploiting the coNP-
completeness of 3SAT, each Σp

2-problem can be reduced to Generalized Sub-
set Sum. It is also not hard to see that these reductions are gp-reductions, which
implies the ∃r∀lgp-completeness of GSS (via VGSS) for Σp

2.

Theorem 6.3.1. GSS is ∃r∀lgp-complete for Σp
2 via VGSS.

6.3.2 MinDNF

Problem Description (MinDNF)

Given: A DNF-formula F and an integer k.

Question: Is there a DNF-formula G of size ≤ k1, which is equivalent to F ?

Standard Verifier:

VMinDNF ={((F, k), G) : F is a DNF-formula, k ∈ N, G is a formula in

DNF of size at most k and F and G are equivalent}.

The Σp
2-completeness of MinDNF was shown in [Uma01]. There, the problem

Σp
2-3DNFSAT is reduced to the problem Strongest Implicant Core (see

also Section 6.3.4), which is strongly related to MinDNF. Afterwards a reduction
SIC ≤p

m MinDNF is given.
The first reduction Σp

2-3DNFSAT ≤p
m SIC also works as a reduction to the

restricted version SIC= of SIC, which is defined as follows.

Problem Description (SIC=)

Given: A DNF-formula F = t1 ∨ t2 ∨ · · · ∨ tn, where ti are the monomials of F
and an integer k.

Question: Is there an implicant C ⊆ tn of F of size exactly k ?

Standard Verifier:

VSIC= ={((F, k), C) : F = t1 ∨ t2 ∨ · · · ∨ tn is a DNF-formula, k ∈ N, and

C ⊆ tn is an implicant of F of size exactly k}.

It turns out that this reduction Σp
2-3DNFSAT ≤p

m SIC= is also a gp-reduction
(Σp

2-3DNFSAT, VΣp
2-3DNFSAT) ≤p

gp (SIC=, VSIC=). Furthermore, the given many-
one reduction SIC ≤p

m MinDNF is a gp-reduction when restricted to SIC=. It fol-
lows that we have a gp-reduction (Σp

2-3DNFSAT, VΣp
2-3DNFSAT) ≤p

gp (SIC=, VSIC=)
and a gp-reduction from (SIC=, VSIC=) to (MinDNF, VMinDNF), which implies the
∃r∀lgp-completeness of MinDNF.

Theorem 6.3.2. MinDNF is ∃r∀lgp-complete for Σp
2 via VMinDNF.

1Here, the size of a formula is the number of occurrences of literals in the formula.

81

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

6.3.3 Monotone Minimum Weight Word (MMWW)

For the description of the problem Monotone Minimum Weight Word we
introduce the notions of Π1-nondeterministic circuits and monotone sets. A Π1-
nondeterministic circuit is an ordinary Boolean circuit, whose input is partitioned
into two bitstrings x and y. A Π1-nondeterministic circuit C accepts an input x
if and only if (∀y) [C(x, y) = 1]. The number of ones in a bitstring x is denoted
with ones(x).

A monotone set is a subset S ⊆ {0, 1}|x| for which x ∈ S implies x′ ∈ S, for all
x′ º x, where º is the bitwise partial order on bitstrings.

Problem Description (Monotone Minimum Weight Word)

Given: A Π1-nondeterministic circuit C accepting a monotone set and an integer
k.

Question: Does C accept an input x with ones(x) ≤ k ?

Standard Verifier:

VMMWW ={((C, k), x) : C is a Π1 nondeterministic circuit accepting a

monotone set, ones(x) ≤ k, and C accepts x}.

The Σp
2-completeness of Monotone Minimum Weight Word was shown in

[Uma99] by a reduction from Σp
2-SAT. Having a closer look at this reduction, it

turns out that it is even generating parsimonious and thus, we have the following
theorem.

Theorem 6.3.3. MMWW is ∃r∀lgp-complete for Σp
2 via VMMWW.

6.3.4 Strongest Implicant Core (SIC)

The problem Strongest Implicant Core deals with implicants of Boolean
formulas. An implicant of F is a conjunction C of literals for which C → F . Recall
that monomials of DNF-formulas and clauses of CNF-formulas are represented as
sets of literals. We also represent implicants or conjunctions as sets of literals.

Problem Description (Strongest Implicant Core)

Given: A DNF-formula F = t1 ∨ t2 ∨ · · · ∨ tn, where ti are the monomials of F
and an integer k.

Question: Is there an implicant C ⊆ tn of F of size at most k ?

Standard Verifier:

VSIC ={((F, k), C) : F = t1 ∨ t2 ∨ · · · ∨ tn is a DNF-formula, k ∈ N, and

C ⊆ tn is an implicant of F of size at most k}.

82

Chapter 6 Alternative Solutions in the Polynomial-Time Hierarchy

As already mentioned in Section 6.3.2, in [Uma01], the author establishes a ≤p
m-

reduction Σp
2-3DNFSAT ≤p

m SIC, which can also be interpreted as gp-reduction
(via the associated verifiers). Hence, we have the following theorem.

Theorem 6.3.4. SIC is ∃r∀lgp-complete for Σp
2 via VSIC.

6.4 Conclusions

The situation in the polynomial-time hierarchy is very similar to the case of NP,
where we conjectured that all many-one-hard problems are also ∃r∀lgp-complete.
Analogous to SAT ∈ NP, we managed to show the ∃r∀lgp-completeness of Σp

i -SAT
for Σp

i and that the associated alternative solution problems are hard. In case of Σp
2

we have shown the ∃r∀lgp-completeness of several Σp
2-complete problems, which

implies the following assertion.

Corollary 6.4.1. The natural verifiers of the Σp
2-problems Generalized Sub-

set Sum, Strongest Implicant Core, MinDNF, Monotone Minimum
Weight Word, and Σp

2-SAT are universal and the associated alternative solu-
tion problems are Σp

2-complete.

Because of this and the structural similarity of NP and Σp
2, we conjecture that

all Σp
2-complete problems are also ∃r∀lgp-complete for Σp

2.

Conjecture 6.4.2. All Σp
2-complete problems are ∃r∀lgp-complete via some uni-

versal verifier.

Note that we did not manage to show ∃r∀lgp-completeness for all of the consid-
ered Σp

2-complete problems. In particular the ∃r∀lgp-completeness of General-
ized 3CNF Consistency and Circuit Restriction remains open. However,
we do believe that these ∃r∀lgp-completeness results can be shown using some
clever ideas we failed to have.

Open Problem 4. Give ∃r∀lgp-completeness proofs for Generalized 3CNF
Consistency and Circuit Restriction!

Because of the small number of natural problems, known to be complete in the
classes Σp

i , i ≥ 3, we did not explicitly study these classes. However, we have at
least two ∃r∀lgp-complete problems in each, namely Σp

i -SAT and Σp
i -3CNFSAT

if i is odd, and Σp
i -3DNFSAT if i is even. Hence, it is reasonable to also believe

in the analogous conjecture, for i ≥ 3.

Open Problem 5. Give arguments for or against a version of Conjecture 6.4.2
for Σp

i , i ≥ 3!

83

Chapter 7

Approximation of Alternative
Solutions

All previous chapters dealt with the alternative solution problems for problems
from NP, Σp

i , i ≥ 1, or RE as decision problems. Except in case of RE, where the
alternative solution problems turned out to be more or less senseless, we found
out that in most of all cases the alternative solution problem of a problem A is as
hard as A itself. Thus, an effective algorithm for computing alternative solutions
of many NP-complete or Σp

i -complete problems can not exist, unless P = NP or
the polynomial hierarchy collapses.

In this section we, instead of exactly computing an alternative solution, focus on
approximating an alternative, or more precisely, a second best solution using the
known optimal solution. By discussing several NP-optimization problems we will
see that, compared to the decision problems, the situation is not so homogenous.
For some problems there exists an approximation algorithm for the second best
solution, way better than the approximability of the basis problem, e.g., MaxCut,
MaxSat, and Minimum Steiner Tree. On the other hand, there are also
problems where approximating a second best solution is as hard as approximating
a first solution, e.g., MinTSP and MinIndDomSet.

7.1 Preliminaries

7.1.1 A short introduction to approximation algorithms

Here we give an introduction to approximation algorithms. The main source of
this section is the compendium of NP-optimization problems from Viggo Kann
[CK97]. If not otherwise mentioned, all given definitions and assertions can be
found there.

Approximation algorithms are defined for optimization problems. Since the
class of our main interest is NP, we focus on NP-optimization problems.

Definition 7.1.1. An NP-optimization problem A is a 4-tuple (I, sol, cost, goal)
such that the following holds.

84

Chapter 7 Approximation of Alternative Solutions

1. I ∈ P is the set of instances.

2. for an instance x ∈ I, sol(x) denotes the feasible solutions of x. There
exists a polynomial pA such that (∀y ∈ sol(x))[|y| ≤ pA(|x|)]. Moreover, for
any x, y such that |y| ≤ pA(|x|), it is decidable in polynomial time, whether
y ∈ sol(x).

3. For an instance x with a feasible solution y, cost(x, y) ∈ N denotes the costs
of y. The function cost is in FP and is also called the objective function.

4. goal ∈ {min, max}.
The class NPO is the class of all NP-optimization problems.

The goal of an NPO-problem is to find an optimum solution for a given instance
x, that is, a feasible solution y such that

cost(x, y) = goal{cost(x, y′) : y′ ∈ sol(x)}.

In the following, opt will denote the function mapping an instance x to the cost
of an optimum solution.

It is easy to see that if an NPO-problem can be solved in polynomial time,
then its corresponding decision problem is also in P. As a consequence, if P 6=
NP, any NPO-problem with an associated NP-complete decision problem is not
solvable in polynomial time. Hence, for those problems, it is reasonable to look
for approximate solutions computable in polynomial time.

Definition 7.1.2. Let A be an NPO-problem. Given an instance x and a feasible
solution y of x, we define the approximation ratio of y with respect to x as

RA(x, y) = max

{
cost(x, y)

opt(x)
,

opt(x)

cost(x, y)

}
.

Hence, the approximation ratio is always a number greater than or equal to 1
and the smaller approximation ratio, the better the solution.

Definition 7.1.3. An NPO-problem A belongs to the class APX if and only if
there exists some constant c > 1 and an algorithm T that for each input x ∈ IA

returns a feasible solution T (x) such that

RA(x, T (x)) ≤ c.

In this situation we call T a c-approximation for A.

From a practical point of view, it is usually sufficient to have c-approximation
problem with a conveniently small c > 1. Some problems allow for even better
algorithms, so called approximation schemes.

85

Chapter 7 Approximation of Alternative Solutions

Definition 7.1.4. Let A be an NPO-problem. An algorithm T is said to be an
approximation scheme for A if and only if, for any instance x of A and for any
rational ε > 1, T (x, ε) returns a feasible solution of x whose approximation ratio
is at most ε.

Optimization problems with approximation schemes are classified with respect
to the running time of the approximation scheme.

Definition 7.1.5. An NPO-problem A belongs to the class PTAS if and only if it
admits a polynomial-time approximation scheme (ptas), that is, an approximation
scheme whose running time is bounded by a polynomial qε(|x|), for each ε > 0.

Observe that the time complexity of an approximation scheme in the above
definition may be of the type 21/(ε−1)p(|x|) or |x|1/(ε−1), where p is a polynomial.
Thus, computations with ε values very close to 1 may be practically unfeasible.
This leads us to the following definition.

Definition 7.1.6. An NPO-problem A belongs to the class FPTAS if and only
if it admits a fully polynomial-time approximation scheme (fptas), that is, an
approximation scheme whose time complexity is bounded by q(|x|, (ε−1)−1), where
q is a polynomial.

Clearly, the following inclusions hold:

FPTAS ⊆ PTAS ⊆ APX ⊆ NPO.

These inclusions are strict under the assumption that P 6= NP.

In order to introduce a notion of completeness in NPO and APX, we give the
following notion of an approximation preserving reduction.

Definition 7.1.7. Let A and B be two NPO-problems. A is said to be ptas-
reducible to B, in symbols A ≤ptas B, if three functions f , g, and c exist such
that:

1. For any x ∈ IA and for any rational ε > 1, f(x, ε) ∈ IB is computable in
time polynomial with respect to |x|.

2. For any x ∈ IA, for any y ∈ solB(f(x, ε)), and for any rational ε > 1,
g(x, y, ε) ∈ solA(x) is computable in time polynomial with respect to both |x|
and |y|.

3. c : {q ∈ Q : q > 1} → {q ∈ Q : q > 1} is computable and invertible.

4. For any x ∈ IA, for any y ∈ solB(f(x, ε)), and for any rational ε > 1,

RB(f(x, ε), y) ≤ c(ε) implies RA(x, g(x, y, ε)) ≤ ε.

86

Chapter 7 Approximation of Alternative Solutions

The following theorem is a corollary of Definition 7.1.7.

Theorem 7.1.8. If A ≤ptas B and B ∈ APX (respectively, B ∈ PTAS), then
A ∈ APX (respectively, A ∈ PTAS).

Definition 7.1.9. An NPO-problem A is called NPO-complete if and only if, for
each B ∈ NPO, B ≤ptas A.

Definition 7.1.10. An NPO-problem A is called APX-hard if and only if, for
each B ∈ APX, B ≤ptas A. An APX-hard problem is APX-complete if it belongs
to APX.

By Theorem 7.1.8, it is immediate that if an NPO-problem A is NPO-complete
(APX-hard) then A 6∈ APX (A 6∈ PTAS).

We will also make use of the following new type of a fptas-preserving reduction.
In particular, we will use this notion of reduction to show that the problem of
approximating the second best Steiner tree admits no fptas.

Definition 7.1.11. Let A and B be two NPO-problems. A is said to be ≤fptas-
reducible to B if three functions f , g, and c exist such that:

1. For any x ∈ IA, f(x) ∈ IB is computable in time polynomial with respect to
|x|.

2. For any x ∈ IA, for any y ∈ solB(f(x)), g(x, y) ∈ solA(x) is computable in
time polynomial with respect to both |x| and |y|.

3. c : Σ∗×{q ∈ Q : q > 1} → {c ∈ Q : q > 1} is computable in polynomial-time
and 1

|x|,p((ε−1)−1)
≤ c(x, ε) − 1, for some polynomial p, for all ε ∈ {q ∈ Q :

q > 1}, x ∈ IA.

4. For any x ∈ IA, for any y ∈ solB(f(x), and for any rational ε > 1,

RB(f(x), y) ≤ c(x, ε) implies RA(x, g(x, y)) ≤ ε.

This type of reduction preserves fptas’ in the following way.

Theorem 7.1.12. If A ≤fptas B and B ∈ FPTAS, then A ∈ FPTAS.

Proof. We will give an fptas for A based on the≤fptas-reduction, given by functions
f, g, c, and the fptas for B. Let x ∈ IA and ε ∈ {q ∈ Q : q > 1}. First we
compute f(x). Then, we apply the ptas for A to the instance (f(x), c(x, ε)). Its
running-time is polynomial in 1/(c(x, ε)−1) ≤ p(|x|, 1/(ε−1)) and f(x) and thus,
polynomial in 1/(ε− 1) and |x|. So we obtain a c(ε, x)-approximation y for f(x)
and use g to compute the ε-approximation g(x, y) for x. Since the running-time
of the whole process is polynomial in 1/(ε − 1) and |x|, the described algorithm
is an fptas for A.

87

Chapter 7 Approximation of Alternative Solutions

7.1.2 The approximation problem for alternative solutions

Here, we formalize the problem, given an instance with an optimal solution, to
approximate an alternative solution or the second best solution for NPO-problems.

Definition 7.1.13. Let A = (I, sol, cost, goal) be an NPO-problem. The problem
of approximating the second best solution for A is

Problem Description (SB-A)

Instance: A pair (x, yopt), where x ∈ I and yopt ∈ sol(x) with cost(yopt) =
opt(x).

Feasible Solution: A string y from sol(x) \ {yopt}.

Costs: cost(y).

Goal: goal.

We call this problem SB-A.

Note that SB-A is not always an NPO-problem, because for an instance (x, y)
deciding whether y is an optimal solution yopt for x can usually not be done in
polynomial-time. However, we imagine that an algorithm for SB-A is applied
after a costly computation of yopt and thus, assume that all inputs have the form
(x, yopt). Hence, we will treat SB-A as an NPO-problem.

7.2 Approximability Results

In this section we gather approximability results for SB-A for some NPO-problems
A. Observe, that for NPO-problems like, e.g., Minimum Vertex Cover, Maxi-
mum Independent Set, Maximum Clique, Minimum Set Cover, Minimum
Dominating Set, and many more, the optimal solution can be trivially mod-
ified to an alternative solution of cost opt + 1 or opt − 1. For instance, adding
one arbitrary vertex to a given minimal vertex cover of a graph results in a vertex
cover of size opt + 1. So, SB-A is not very interesting for such problems A.

Conversely, there are a number of problems A, for which showing that SB-A
is as hard as A is almost trivial. For instance, consider the problem Longest
Cycle. It is easy to see that finding (or approximating) the longest cycle in a
graph G with n-vertices is the same as finding the second longest cycle in G∪Cn+1

knowing the optimal solution Cn+1. Analogously, some more auto-reductions from
Chapter 3 can be transferred to the approximation versions, e.g. for, Minimum
Edge Cost Flow, and Maximum Knapsack.

So, a lot of NPO-problems have rather uninteresting second best version. How-
ever, there are some interesting problems and we discuss some of them in the
following sections. The following table gives a summary of our results for several

88

Chapter 7 Approximation of Alternative Solutions

SB-problems1. Note that we assume that P 6= NP and thus, FPTAS $ PTAS $
APX $ NPO, in this chapter.

NPO-Problem A Approximability Approximability for SB-A
Cubic Longest Cycle 6∈ APX ∈ PTAS [BST99]
MaxCut APX-complete ∈ PTAS
MaxSat APX-complete ∈ PTAS
MinMaxMatching APX-complete abs error ≤ 1
Minimum Steiner Tree APX-complete ∈ PTAS, 6∈ FPTAS
Min-∆-TSP APX-complete ∈ PTAS
MinIndDomSet NPO PB-complete NPO PB-complete
MinTSP NPO-complete NPO-complete

Above, abs error ≤ k means that there exists a polynomial-time algorithm
providing a feasible solution y with |costs(yopt)−costs(y)| ≤ k, where yopt denotes
the optimal solution.

The horizontal line separates the problems with easier SB-versions from the
problems for which the optimal solution is useless for approximating the second
best solution.

7.2.1 Maximum Cut

Problem Description (MaxCut)

Instance: A graph G = (V, E).

Feasible Solution: A partition of V into disjoint sets V1 and V2.

Costs: The cardinality of the cut, i.e., the number of edges with one end point
in V1 and one endpoint in V2.

Goal: max.

For MaxCut, there exists an excellent constant approximation algorithm with
an approximation ratio of 1.14 [GW95]. Since MaxCut is APX-complete [PY91],
MaxCut admits no ptas. In contrast, there exists a ptas for SB-MaxCut.

Theorem 7.2.1. SB-MaxCut is in PTAS.

Proof. Let G = (V,E) be a graph with a maximum cut V1, V2 with cardinality
opt(G).

The algorithm for SB-MaxCut either moves one vertex from V1 to V2 or one
vertex from V2 to V1 and selects this vertex such that the new cut is as large as
possible. This can easily by done, by testing the size of the modified cuts for all
possible choices to put a vertex v ∈ V from V1 to V2 or from V2 to V1.

1The result for SB-Cubic Longest Cycle is from [BST99]

89

Chapter 7 Approximation of Alternative Solutions

For the analysis, let kv be the number of edges between V1 and V2 including
v, for all vertices v ∈ V . Furthermore, for v ∈ Vi, i ∈ {1, 2}, let `v denote the
number of edges from v to some vertex in Vi. It is not hard to see that moving a
vertex v from V1 to V2 or from V2 to V1 results in a cut of size opt(G)− (kv − `v).

Furthermore, it holds that

∑
v∈V

kv = 2 · opt(G)

and thus, min{kv : v ∈ V } ≤ 2 · opt(G)/|V |. It follows that min{(kv − `v) :
v ∈ V } ≤ 2 · opt(G)/|V | and hence, the above algorithm provides a solution of
size at least (1 − 2/|V |) · opt(G), a (1 + 2/(|V | − 2))-approximation. This is a
(1 + ε)-approximation for |V | ≥ 2/ε + 2. Thus, the algorithm is a ptas.

We obtain the same result for Maximum Directed Cut which is also APX-
complete [PY91], by applying the same idea.

7.2.2 Maximum Satisfiability

Problem Description (MaxSat)

Instance: A CNF-formula F over the variable set X.

Feasible Solution: An assignment for X.

Costs: The number of clauses satisfied by the truth assignment.

Goal: max.

In [PY91] it is shown that MaxSat is APX-complete. Thus, there is no ptas
for MaxSat. But, we find a ptas for approximating the second best solution for
MaxSat.

Theorem 7.2.2. SB-MaxSat is in PTAS.

Proof. Let F be a given CNF-formula over X = {x1, . . . , xn} with an optimal
assignment α (cost(F, α) = opt(F)). Let ε > 1. We discuss two cases. If n ≤
log(|F |), we check all 2n assignments for X and thus, we find the exact second
best solution in polynomial-time.

For the second case let n > log(|F |). Let αi denote the assignment that emerges
from α by flipping the value for xi. For each i, 1 ≤ i ≤ n, let di := opt(F) −
cost(F, αi) denote the net loss of satisfied clauses by flipping the value of xi. We
output α′ := αk, where dk = min{dj : 1 ≤ j ≤ n}, as an approximation for the
second best solution.

For the analysis, note that for each i, di = l`i−wi, where `i denotes the number
of clauses C lost by flipping the value of xi, i.e., α(C) = 1 and αi(C) = 0, and
wi denotes the number of clauses C ′ won by flipping value of xi, i.e., α(C ′) = 0

90

Chapter 7 Approximation of Alternative Solutions

and αi(C
′) = 1. Observe that while changing the value of xi to obtain αi from

α, 1 ≤ i ≤ n, each of the opt(F) clauses, satisfied by α, is lost at most once such
that

`1 + · · ·+ `n ≤ opt(F).

Hence, min{`j : 1 ≤ j ≤ n} ≤ 1
n
· opt(F). By di ≤ `i, 1 ≤ i ≤ n, we have that

min{dj : 1 ≤ j ≤ n} ≤ min{`j : 1 ≤ j ≤ n} ≤ 1

n
· opt(F),

that is, the net loss by flipping xk is bounded by 1
n
·opt(F). Since, 1

1− 1
n

= 1+ 1
n−1

, α′

is a (1+ 1
n−1

)-approximation for opt(F) and thus also for the second best solution
of F . Since n > log(|F |), α′ is an ε-approximation for sufficiently large |F |. It
follows that the described algorithm is a ptas for SB-MaxSat.

7.2.3 Minimum Independent Dominating Set

Problem Description (MinIndDomSet)

Instance: A graph G = (V, E).

Feasible Solution: An independent dominating set (IDS) for G, i.e., a subset
V ′ ⊆ V such that for all u ∈ V \V ′ there exists a v ∈ V ′ for which {u, v} ∈ E,
and such that no two vertices in V ′ are joined by an edge from E.

Costs: The cardinality of the IDS, i.e., |V ′|.
Goal: min.

The problem MinIndDomSet is not approximable within |V |1−ε for any ε > 0
[Hal93]. Furthermore, in [Kan94] MinIndDomSet was shown to be NPO PB-
complete via so called linear reductions. The class NPO PB includes all NPO-
problems whose objective function is polynomial bounded in the input size and
a linear reduction is a ≤ptas-reduction (f, g, c) with c(ε) = 1 + c′(ε − 1) for some
constant c′. It turns out that SB-MinIndDomSet is also not approximable within
|V |1−ε and NPO PB-complete.

Theorem 7.2.3. SB-MinIndDomSet is not approximable within |V |1−ε.

Proof. Assume to the contrary that A is a |V |1−ε-approximation algorithm for
SB-MinIndDomSet for some ε > 0. Using this assumption we will give a |V |1−ε-
approximation algorithm for MinIndDomSet.

So let G = (V, E) be an instance for MinIndDomSet. We add a new vertex
w to V and the edges {{w, v} : v ∈ V } to E. Thus, {w} is a minimal IDS of the
resulting graph G′. It is not hard to see, that w is no member of any alternative
independent dominating set. Furthermore, each IDS of G is also an IDS of G′ and
conversely, each IDS V ′ 6= {w} of G′ is also an IDS of G. Now, we apply algorithm

91

Chapter 7 Approximation of Alternative Solutions

A to (G′, {w}), which produces a |V |1−ε-approximation V ′ for the second smallest
IDS of G′. As seen above, this is also a |V |1−ε-approximation for the minimal IDS
of G, a contradiction.

Hence, the assumption is wrong which implies the theorem.

Note that the above idea represents a linear reduction from MinIndDomSet
to SB-MinIndDomSet. Thus, SB-MinIndDomSet is also NPO PB-complete.

7.2.4 Minimum Maximal Matching

Problem Description (MinMaxMatching)

Instance: A graph G = (V, E).

Feasible Solution: A maximal matching E ′, that is, a subset E ′ ⊆ E such that
no two edges in E ′ share a common endpoint and every edge in E \E ′ shares
a common endpoint with some edge in E ′.

Costs: The cardinality of the matching E ′.

Goal: min.

It was shown in [YG80] that MinMaxMatching is APX-complete. For the
alternative solution problem we can give an algorithm computing a solution with
a guarantied absolute error of at most 1.

Theorem 7.2.4. There exists an algorithm for SB-MinMaxMatching providing
a feasible solution with an absolute error less or equal than 1 in polynomial-time.

Proof. Let G = (V,E) be a graph with a minimum maximal matching M . In the
following we describe an approximation algorithm for SB-MinMaxMatching.

First, compute the set V1 of vertices incident to some edge of M and the set
V2 := V \ V1. Since M is maximal, there are no edges joining vertices from V2.

Now, assume that there exists an edge {v1, v2} between v1 ∈ V1 and v2 ∈ V2.
Note that M includes an edge {v1, w} ∈ M for some w ∈ V1. Remove that edge
from M and add {v1, v2}. If E includes an edge {w, v′2} for some v′2 from V2, also
add this edge. Then, we have a maximal matching M ′ of size |M | or |M |+ 1.

For the second case assume that there is no edge between V1 and V2. Thus all
vertices from V2 are isolated vertices and thus, irrelevant for matchings. From
now on, we ignore these vertices and consider the graph G′ = (V1, E). Note that
M is a perfect matching for G′. Since M is a minimum maximal matching, all
maximal matchings of G′ are perfect.

If E = M , M is the only perfect matching for G′ and thus, there is no feasible
solution besides M . In this case, the algorithm outputs, that there is no feasible
solution.

Alternatively, assume that there is an edge {v1, w1} in E\M . We add {v1, w1}to
M and remove the two edges {v1, v2} and {w1, w2}, incident to v1 and w1, from

92

Chapter 7 Approximation of Alternative Solutions

M . Since this new matching can not be maximal, it follows that {x2, y2} ∈ E. By
adding {x2, y2} we obtain a second minimum maximal matching being an exact
alternative solution.

In each case we have found a maximal matching of size at most opt(G) + 1 or
the insight that no alternative maximal matching exists.

7.2.5 Minimum Steiner Tree

Problem Description (MinST)

Instance: A complete graph G = (V, E), edge weights s : E → N, and a subset
S ⊆ V of required vertices.

Feasible Solution: A Steiner tree T , i.e., a subtree of G that includes all the
vertices in S.

Costs: The sum of the weights of the edges in the subtree T , i.e., cost(T) =∑
e∈T

s(e).

Goal: min.

To the best of our knowledge the current best approximation algorithm for
MinST is a 1.55-approximation [RZ00]. Furthermore, in [BP89] it was shown
that MinST is APX-complete, even when restricted to edge weights from {1, 2}.
Thus, there is no ptas for MinST. In case of SB-MinST we manage to prove the
existence of a ptas.

Theorem 7.2.5. SB-MinST is in PTAS.

Proof. We give a ptas for SB-MinST. Let ε > 1 be a rational number. We give
an ε-approximation algorithm with runtime pε for some polynomial pε. So let
((G, s, S), Topt) be an instance for SB-MinST, where G = (V, E), |V | = n, and
Topt is an optimal Steiner tree for the MinST-instance (G, s, S). Let E(T) denote
the edges of a graph T , e.g., E(Topt) are the edges of Topt. We assume that the
triangle inequality holds for s, since we can replace s({v1, v3}) by s({v1, v2}) +
s({v2, v3}) if s({v1, v3}) > s({v1, v2}) + s({v2, v3}). In this case using the edge
{v1, v3} represents using {v1, v2} and {v2, v3}. Furthermore, we can assume that
there are no weightless edges in G since otherwise, the respective vertices can be
united to a new vertex.

Let Tsecbest denote an (unknown) second best Steiner tree of (G, s, S), i.e., an
optimal solution for ((G, s, S), Topt) as SB-MinST-instance. Let E∗

Tsecbest
denote

the edges from Tsecbest \ Topt, that share a vertex with an edge from Topt, that is,

E∗
Tsecbest

= {e ∈ E(Tsecbest) \ E(Topt) : (∃e′ ∈ E(Topt))[|e ∩ e′| = 1]}.

93

Chapter 7 Approximation of Alternative Solutions

Our algorithm consists of two different procedures called algorithm A and algo-
rithm B. Depending on the number of edges in E∗

Tsecbest
, algorithm A or algorithm

B outputs a sufficiently good approximation of Tsecbest. Since E∗
Tsecbest

is unknown,
both algorithms are applied consecutively, both results are compared, and the
better Steiner tree is output.

First, assume that |E∗
Tsecbest

| ≥ k := d1/(ε− 1)e. In this case the following easy
algorithm A provides a sufficiently good approximation. Algorithm A adds the
edge, that realizes the minimum min{s(e) : e ∈ E \E(Topt) ∧ (∃e′ ∈ E(Topt))[|e ∩
e′| = 1]}. In other words, A adds the smallest possible edge e, such that the
resulting graph Topt+e is still connected. If adding e leads to a cycle, A removes the
cycle edge with the biggest weight (of course, e is not removed). Note that all edges
from E∗

Tsecbest
have weight greater or equal the weight of e. Thus, cost(Tsecbest) ≥

ks(e) and it holds

cost(Topt + e) = cost(Topt) + s(e)

≤ cost(Tsecbest) +
1

k
cost(Tsecbest)

≤ εcost(Tsecbest).

Thus, algorithm A is an ε-approximation if |E∗
Tsecbest

| ≥ k. Obviously, algorithm
A has a polynomial-runtime pA.

If |E∗
Tsecbest

| < k, algorithm A must not be good enough. In this case algorithm
B exactly computes Tsecbest or another second best solution of (G, s, S), which is
obviously an ε-approximation. If (G, s, S) has several second best Steiner trees we
use the notion Tsecbest very flexibly, that is, Tsecbest always denotes a second best
Steiner tree that still fulfils all assumptions made w.l.o.g.

Algorithm B performs a smart exhaustive search over all Steiner trees T with
|E∗

T | < k. In a first step B guesses a candidate E∗ for E∗
Tsecbest

(see also Figure 7.1).
Since, |E| ≤ n2, there are at most n2` possibilities for |E∗| = `. Since

k−1∑

`=1

(n2)` =
(n2)k − 1

n2 − 1
≤ n2k,

n2k is an upper bound for the number of possibilities in this step. Note that
guessing means here, that all possibilities are consecutively generated and handed
over to the next step of the algorithm.

Assume in the following that E∗
Tsecbest

is guessed in the first step. The sought-
after Steiner tree Tsecbest decomposes into Tsecbest ∩ Topt and Tsecbest \ Topt. In the
second step, we guess all possibilities for Tsecbest \ Topt using the fact that E∗

Tsecbest

is the set of edges, where Tsecbest “leaves” Topt. We know that (a) Tsecbest \ Topt is
a forest, where (b) the endpoints of the edges E∗

Tsecbest
that are in Topt are exactly

the leaves of this forest, since (a) Tsecbest is a tree and (b) if there were further
leaves in Tsecbest \ Topt, these leaves could be cut from Tsecbest to gain a better

94

Chapter 7 Approximation of Alternative Solutions

2 1
1

3 3

5

2 3 3

2 1
1

3 3

5

2 3 3

2

3

2 3

2

2 1
1

3 3

5

2 3 3

2

3

2 3

2
1

2 2

Figure 7.1: An illustration of the first and second step of algorithm B. (left) The
optimal tree Topt, (middle) the optimal tree Topt plus the edges E∗

Tsecbest

guessed in the first step, (right) the optimal tree Topt plus the forest
Tsecbest \ Topt computed in the third step.

Steiner tree2. Furthermore, since the triangle inequality holds for s and since
Tsecbest \ Topt is an optimal forest (edge disjoint with Topt) having these leaves,
we can assume that this forest contains no vertices of degree 2. Because of that
and since |E∗

Tsecbest
| ≤ k − 1, this forest contains at most k − 2 further vertices.

After guessing a set of at most k− 2 vertices (≤ nk−2 possibilities) the number of
possibilities to form a forest from the given leaves and inner vertices is a number
only depending on k, say g(k). So for this step we have ≤ g(k)nk−2 possibilities
(see also Figure 7.1).

2 1
1

3

3

2

3

2 3

2
1

2 2

2 1
1

3
2

3

2 3

2
1

2 2

Figure 7.2: An illustration of the third step of algorithm B. (left) Topt plus Tsecbest\
Topt after subroutine C destroyed all cycles, (right) The second best
solution Tsecbest obtained after deleting the useless edge.

Assume that Tsecbest\Topt was guessed in the second step and add it to Topt. The
resulting graph has several cycles. The number of cycles is bounded by (k − 1)2,

2Note that this is wrong in case of Tsecbest is Topt plus an edge of small weight. However, in
this situation algorithm A outputs Tsecbest.

95

Chapter 7 Approximation of Alternative Solutions

since Topt and Tsecbest \ Topt contain no cycles and there is at most one new cycle
per path from a leave of Tsecbest \ Topt to another. The number of such pathes is
bounded by (k − 1)2. Now, the algorithm B has to find out, which is the best
possible way to remove edges from Topt such that the resulting graph is a tree
and thus, Tsecbest. This is done by a simple recursive subroutine C as follows.
The routine C picks one cycle and consecutively works through all possibilities to
delete one edge from the cycle and restarts C on the respective modified graph (see
also Figure 7.2). After destroying all cycles algorithm B checks whether further
edges (and possibly vertices) can be deleted without isolating a vertex from S.
If this is possible, it is done as often as possible (see also Figure 7.2). During
this process, the algorithm stores the recent best solution and finally deletes the
according edges (and possibly vertices) from Tsecbest∪Topt, resulting in Tsecbest. An
upper bound on the number of tested possibilities in this third step is nk2

since, n
is an upper bound for the number of edges in each cycle. Note that this subroutine
C is not very clever and the estimate of the number of possibilities very rough.
Both can surely be improved.

Let us take stock. Assume that |E∗
Tsecbest

| < k. Algorithm B guesses all ≤ n2k

possibilities for E∗ with |E∗| < k and thus also guesses E∗
Tsecbest

in the first step.
In the second step all possible forests connecting the chosen edges E∗ are guessed.
Here, for the correctly guessed E∗

Tsecbest
, we among others obtain Tsecbest \ Topt. In

the second step there are ≤ g(k)nk−2 possibilities for some function g. The third
step deals with finding the best possibility to remove Topt-edges from Tsecbest ∪
Topt such that the resulting graph is a tree. Starting with the correctly guessed
Tsecbest∪Topt this third step outputs Tsecbest after at most n2(k−1) tested possibilities.
So, algorithm B tests overall n2k · g(k)nk−2 · nk2 ≤ g(k)n3k+k2

possibilities which
needs ≤ g(k)n3k+k2 · p(n) time for some polynomial p independent from k, since
all but the guessing steps can be managed in polynomial time in n. In case of
|E∗

Tsecbest
| < k, algorithm B finds and outputs Tsecbest. Observe, that the running-

time of algorithm B is a polynomial in n depending only from k, that is, from
ε.

So executing algorithm A and algorithm B can be done in time pε for some
polynomial pε and the better result is always an ε-approximation for Tsecbest.

Furthermore, we can show, that a ptas is the best possible approximation algo-
rithm for SB-MinST, i.e., there is no fptas for SB-MinST.

Theorem 7.2.6. There is no fptas for SB-MinST.

Proof. We give a ≤fptas-reduction from MinST to SB-MinST. Then, the theorem
is immediate by Theorem 7.1.12. Let (G, s, S) be an instance for MinST, i.e.,
G = (V,E) is a complete graph, s : E → N is a weight function, and S is a subset
of V . In a first step, we check if G has a Steiner tree of size zero and output
this optimal Steiner tree if there exists one. This can be done in polynomial time
by checking if the set of weight zero edges connects all vertices from S. So from
now on, we assume that G′ has no solution of weight zero. Let Topt denote the

96

Chapter 7 Approximation of Alternative Solutions

(unknown) optimal solution of the given instance (G, s, S). For this proof we use
w (weight) as abbreviation for cost.

Let S = {s1, . . . , sm}. The instance (G, s, S) is mapped to an instance (G′, s′, S ′)
for SB-MinST as described in the following. First, we define a graph Ĝ, that will
be the basis of G′. The graph Ĝ consists of the vertices V , {s′1, s′′1, . . . , s′m, s′′m},
{t1, . . . , tm}, and a vertex d. The edge set Ê of Ĝ consists of E, {{si, s

′
i} : 1 ≤

i ≤ m}, {{si, s
′′
i } : 1 ≤ i ≤ m}, {{s′′i , ti} : 1 ≤ i ≤ m}, {{s′i, ti−1} : 2 ≤ i ≤

m} ∪ {s′1, tm}, and {{ti, d} : 1 ≤ i ≤ m} (see also Figure 7.3).

G ds1

s2

s3

s4

s5

s′1

s′2
s′3

s′4

s′5

s′′1

s′′2

s′′3

s′′4
s′′5

t1

t2

t3

t4

t5

Figure 7.3: A depiction of the graph Ĝ based on G for S = {s1, . . . , s5}. For
simplicity, the graph G is only adumbrated by a cycle and only the
beginnings of the edges {t2, d}, {t3, d}, and {t4, d} are drawn.

The graph G′ is the complete graph over the vertex set of Ĝ. The new weight
function s′ for G′ is defined on the basis of Ĝ. For the definition of the edge
weights s′, we furthermore need an approximation of the best Steiner tree of G.
We compute such an approximation T0 with weight w(T0) using the algorithm
from [RZ00]. Note, that w(T0) ≤ 1.55w(Topt).

Now, the new weight function s′ is defined as follows

s′(e) =





s(e), if e ∈ E

w(T0) + 1, if e ∈ Ê includes si or s′i, 1 ≤ i ≤ m

0, if e ∈ Ê includes d

(2m + 1)(w(T0) + 1), if e 6∈ Ê.

The set of required vertices is S ′ = {s′1, s′′1, . . . , s′m, s′′m}. Obviously, each Steiner
tree of the new instance must include one edge outgoing from each required vertex.
Since each such edge has weight at least w(T0) + 1, 2m · (w(T0) + 1) is a lower
bound for the weight of the best Steiner tree. Thus, the tree using exactly the edges
{{s′′i , ti} : 1 ≤ i ≤ m}, {{s′i, ti−1} : 2 ≤ i ≤ m}∪{s′1, tm}, and {{ti, d} : 1 ≤ i ≤ m}

97

Chapter 7 Approximation of Alternative Solutions

having weight 2m · (w(T0)+1) is optimal. We call this Steiner tree T ′
opt. Note that

we use primed letters to denote Steiner trees of G′ and letters without primes for
trees of G.

The idea of this construction is to ensure, that we have a known optimal solution
T ′

opt and that the second best solution corresponds to an optimal Steiner tree of the
original instance. The following simple lemma helps to see, that this is actually
the case.

Lemma 7.2.7. Each Steiner tree of size < (2m + 1)(w(T0) + 1) includes either
all the edges {{s′′i , ti} : 1 ≤ i ≤ m}, {{s′i, ti−1} : 2 ≤ i ≤ m} ∪ {s′1, tm}, or all the
edges {{si, s

′
i} : 1 ≤ i ≤ m} and {{si, s

′′
i } : 1 ≤ i ≤ m}.

Proof. Obviously, a Steiner tree T ′ of size < (2m + 1)(w(T0) + 1) includes at
most 2m edges of weight w(T0) + 1 and no edges that are not included in Ĝ. As
seen above each Steiner tree must include one edge per required vertex. Thus, T ′

includes for each required vertex exactly one incident edge of weight w(T0) + 1.
Now, it is not very hard to see that T ′ includes all edges of the first type or all
edges of the second type, because, otherwise, T ′ is not connected and thus, no
(Steiner) tree.

As a first consequence, observe that T ′
opt is the only Steiner tree of weight

< (2m + 1)(w(T0) + 1) using the edges {{s′′i , ti} : 1 ≤ i ≤ m}, {{s′i, ti−1} :
2 ≤ i ≤ m} ∪ {s′1, tm}. Now, let T ′ 6= T ′

opt be a Steiner tree of (G′, s′, S ′) with
c(T ′) < (2m+1)(w(T0)+1). Hence, T ′ includes all the edges {{si, s

′
i} : 1 ≤ i ≤ m}

and {{si, s
′′
i } : 1 ≤ i ≤ m} and it is not hard to see that the remaining edges span a

Steiner tree TT ′ of the original instance (G, s, S) of weight w(T ′)−2m(w(T0)+1) <
w(T0) + 1. Conversely, each Steiner tree T of G with w(T) < w(T0) + 1 induces a
Steiner tree T ′

T of G′ with w(T ′
T) = 2m(w(T0) + 1) +w(T) < (2m+ 1)(w(T0)+ 1).

By the initial computing of T0, we have the existence of a Steiner tree of G of
size < w(T0) + 1. Thus, it is not hard to see, that the second best Steiner tree
T ′

secbest of G′ induces the optimal Steiner tree of G, i.e., TT ′secbest
= Topt.

We claim that the functions

• f((G, s, S)) = (G′, s′, S ′),

• g(G′, T ′) = TT ′ , if w(T ′) < (2m + 1)(w(T0) + 1), and
g(G′, T ′) = T0, otherwise, and

• c((G, s, S), ε) = min
{

1 + 1
2m(w(T0)+1)+1.1w(T0)

, 1 + ε−1
2.55·2m+1

}

realize the required ≤fptas-reduction from MinST to SB-MinST. All we still have
to show is that w(T ′) ≤ c((G, s, S), ε)w(T ′

secbest) implies w(g(G′, T ′, ε)) ≤ εw(Topt).
First, we show that

w(T ′) ≤
(

1 +
1

2m(w(T0) + 1) + 1.1w(T0)

)
w(T ′

secbest)

98

Chapter 7 Approximation of Alternative Solutions

implies that w(T ′) < (2m+1)(w(T0)+ 1) and thus, that T ′ induces a Steiner tree
TT ′ of the original instance (G, s, S) as described above. In order to do so, assume

that w(T ′) ≤
(
1 + 1

2m(w(T0)+1)+1.1w(T0)

)
w(T ′

secbest). It follows

w(T ′) ≤
(

1 +
1

2m(w(T0) + 1) + 1.1w(T0)

)
(2m(w(T0) + 1) + w(Topt))

≤ 2m(w(T0) + 1) + w(Topt) +
2m(w(T0) + 1) + w(Topt)

2m(w(T0) + 1) + 1.1w(T0)
,

< 2m(w(T0) + 1) + w(Topt) + 1

≤ (2m + 1)(w(T0) + 1).

Now, let w(T ′) ≤ c((G, s, S), ε)w(T ′
secbest). Thus,

w(T ′) ≤
(

1 +
1

2m(w(T0) + 1) + 1.1w(T0)

)
w(T ′

secbest)

which, as just seen, implies g(G′, T ′) = TT ′ . Note that we also have that

w(T ′) ≤
(

1 +
ε− 1

2.55 · 2m + 1

)
w(T ′

secbest).

By w(T ′) = 2m(w(T0) + 1) + w(TT ′), it follows,

2m(w(T0) + 1) + w(TT ′) ≤
(

1 +
ε− 1

2.55 · 2m + 1

)
(2m(w(T0) + 1) + w(Topt)).

Hence,

w(TT ′) ≤ w(Topt) +
ε− 1

2.55 · 2m + 1
(2m(w(T0) + 1) + w(Topt))

≤ w(Topt) +
ε− 1

2.55 · 2m + 1
(2m(1.55w(Topt) + w(Topt)) + w(Topt))

≤ w(Topt) +
ε− 1

2.55 · 2m + 1
(2m · 2.55 + 1)w(Topt)

≤ εw(Topt).

Thus, the given functions f, g, c realize the required reduction.

7.2.6 Minimum Traveling Salesperson Problem

Problem Description (MinTSP)

Instance: A set C of n cities and a symmetric distance function d : C×C → N.

Feasible Solution: A tour of C, i.e., a permutation π : {1..n} → {1..n}.

99

Chapter 7 Approximation of Alternative Solutions

Costs: The length of the tour.

Goal: min.

Note, that Traveling Salesman Problem-problems can also be defined as a
graph problems, where the input is a complete graph with weighted edges. Then, a
feasible solution is a Hamiltonian cycle. In this section we will use this equivalent
characterization.

It is known that MinTSP is NPO-complete [OM90]. For SB-MinTSP, it turns
out that a given optimal solution does not help in finding the second best solution,
that is, SB-MinTSP is also NPO-complete.

Theorem 7.2.8. SB-MinTSP is NPO-complete.

Proof. For the proof we combine the argumentation for the NPO-completeness of
MinTSP from [OM90], where Hamiltonian cycles play an important role, with
an idea to generate an additional Hamiltonian cycle in a graph [PS76].

First, we give a sketch of the proof of the NPO-completeness of MinTSP from
[OM90], that is, we give an idea of the ≤ptas-reduction from the NPO-complete
problem Weighted 3Satisfiability (see also [OM90]) to MinTSP.

Problem Description (Weighted 3Satisfiability)

Instance: A Boolean formula F in 3CNF over a variable set X and a weight
function w : X → N.

Feasible Solution: All satisfying assignments α. The assignment α′ : x 7→ true,
x ∈ X, is always a feasible solution even if F (α′) = false.

Costs: The sum of the weights of the variables set to true, i.e., cost(α) =∑
α(x)=1

w(x), for all satisfying assignments α, and cost(α′) = 1 +
∑

x∈X

w(x), if

F (α′) = 0.

Goal: min.

This reduction is based on a well-known ≤p
m-reduction from 3SAT to Hamil-

tonian Cycle from [PS82]. In this construction, a Boolean formula F over X is
mapped to a graph GF such that F is satisfiable if and only if GF is Hamiltonian.
Moreover, for each variable from x ∈ X, GF includes an edge ex, such that each
Hamiltonian cycle C of GF canonically corresponds to the satisfying assignment
αC , defined via αC(x) = 1 if ex ∈ C and αC(x) = 0, otherwise. Conversely, for
each satisfying assignment α of F , GF has a Hamiltonian cycle Cα with αCα = α.

Based on this construction, the reduction Weighted 3Satisfiability ≤ptas

MinTSP can be described as follows. Let (F, w) be an instance of Weighted
3Satisfiability, and let GF = (V, E) be the above graph. Let G′

F = (V, E ′)

100

Chapter 7 Approximation of Alternative Solutions

be the complete graph over V . The distance function d : E ′ → N is defined as
follows,

d(e) =





1 +
∑

x∈X

w(x), if e ∈ E ′ \ E

w(x), if e = ex, for some x ∈ X

0, otherwise.

So, all edges not in GF have a very large penalty weight 1 +
∑

x∈X w(x) and a
Hamiltonian cycle Cα corresponding to a satisfying assignment α of F has weight∑

α(x)=1 w(x) = cost(α), which is smaller than the penalty weight. Thus, it is not
hard to see, that the functions f , g, and c defined via

• f(((F,w), ε)) = (G′
F , d),

• g((((G′
F , d), C, ε))) = αC if cost((G′

F , d), C) ≤ ∑
x∈X

w(x), and

g(((x,C, ε))) = α′, otherwise, and

• c(ε) = ε

actually realize the reduction Weighted 3Satisfiability ≤ptas MinTSP.
We modify this reduction as follows. We make use of a construction given in

[PS76], where, a graph G is mapped to a graph Ĝ with an additional Hamiltonian
cycle C. In particular, Ĝ always has the Hamiltonian cycle C and it has an
alternative Hamiltonian cycle for each Hamiltonian cycle of G. We apply this
construction to the above graph GF and call the resulting graph ĜF = (V̂F , ÊF).
Let C denote the additional cycle in V̂F .

Recall that Hamiltonian cycles of GF correspond to satisfying assignments of
F , and note that this correspondence is preserved by the construction of ĜF . In
particular, there are still edges ex, x ∈ X, in ĜF such that each Hamiltonian cycle
C ′, different from C, corresponds to a satisfying assignment αC′ of F as follows,
αC′(x) = 1 if and only if ex ∈ C ′. It is important to note, that the cycle C contains
none of the edges ex, x ∈ X.

Now we can define the modified≤ptas-reduction. Let Ĝ′
F = (V̂F , Ê ′

F) be the com-

plete graph over V̂F . Analogous to the case of Weighted 3Satisfiability ≤ptas

MinTSP, the distance function d̂ : Ê ′
F → N is defined as follows,

d̂(e) =





1 +
∑

x∈X

w(x), if e ∈ Ê ′
F \ ÊF

w(x), if e = ex, for some x ∈ X

0, otherwise.

Again, edges not in ĜF have large penalty weight. Since, C is a Hamiltonian
cycle of ĜF that uses non of the edges ex, x ∈ X, it is the optimal solution and
has weight zero. For each satisfying assignment α of F , Ĝ′

F has an alternative
Hamiltonian cycle C ′

α, having weight
∑

α(x)=1 w(x) = cost(α), which is again

smaller than the penalty weight. Hence, the functions f̂ , ĝ, and ĉ defined via

101

Chapter 7 Approximation of Alternative Solutions

• f̂(((F,w), ε)) = ((Ĝ′
F , d), C),

• ĝ(((Ĝ′
F , d), C), C ′, ε) = α′C if cost(((Ĝ′

F , d), C), C ′) ≤ ∑
x∈X

w(x), and

ĝ(((Ĝ′
F , d), C), C ′, ε) = α′, otherwise, and

• ĉ(ε) = ε

realize the reduction Weighted 3Satisfiability ≤ptas SB−MinTSP.

Note that using a very similar construction from [Krü05], where n additional
Hamiltonian cycles are constructed, leads to the same result for approximating
the nth best tour, given the best n− 1 tours.

7.2.7 Minimum Metric Traveling Salesperson Problem

Problem Description (Min-∆-TSP)

Instance: A set C of n cities and a symmetric distance function d : C ×C → N
satisfying the triangle inequality.

Feasible Solution: A tour of C, i.e., a permutation π : {1..n} → {1..n}.

Costs: The length of the tour.

Goal: min.

The best known approximation algorithm for Min-∆-TSP is the algorithm
of Christofides [Chr76] having an approximation ratio of 1.5. Furthermore it is
known, that there exists no ptas for Min-∆-TSP, because Min-∆-TSP is APX-
complete [PY93]. For the problem of finding an alternative tour we have a better
algorithm, namely a ptas.

Theorem 7.2.9. SB-Min-∆-TSP is in PTAS.

Proof. Let C be a set of cities with a symmetric distance function d, that satisfies
the triangle inequality, and let π denote a given minimal tour. The algorithm for
SB-Min-∆-TSP works as follows.

It scans π for the pair of consecutive cities c1 and c2 with minimal distance
d(c1, c2). Let c0 denote the predecessor of c1 in π and let c3 denote the successor of
c2. The algorithm designs the new tour π′ by replacing the part c0 → c1 → c2 → c3

by c0 → c2 → c1 → c3.

The costs of the modified tour π′ are

cost(π′) = cost(π)− d(c0, c1)− d(c2, c3) + d(c0, c2) + d(c1, c3).

102

Chapter 7 Approximation of Alternative Solutions

By the triangle inequality, we have

cost(π′) ≤ cost(π)− d(c0, c1)− d(c2, c3) + d(c0, c1) + d(c1, c2)

+ d(c1, c2) + d(c2, c3)

≤ cost(π) + 2d(c1, c2).

Since d(c1, c2) is the smallest distance between two consecutive cities in the tour π,
it is easy to see that d(c1, c2) ≤ cost(π)/n. Hence, π′ is a (1+2/n)-approximation
for the optimal solution and thus, also for the second best solution. For sufficiently
large C, it holds 2/n ≤ ε. Thus, the algorithm provides a ptas for SB-Min-∆-
TSP.

7.2.8 Cubic Longest Cycle

The problem CHC plays an important role in this thesis, since it is the only
treated problem, for which we, despite strong efforts, still do not know a universal
verifier (see Section 4.4). The optimization version Cubic Longest Cycle of
CHC is defined as follows.

Problem Description (Cubic Longest Cycle)

Instance: A cubic graph G.

Feasible Solution: A simple cycle C in G.

Costs: The length of the cycle.

Goal: max.

Probably because of the interesting properties of CHC concerning alternative
solutions, there already are results for the approximability of Cubic Longest
Cycle and in particular for SB-Cubic Longest Cycle. In [BST99] it was
shown that Cubic Longest Cycle is not constant approximable. They also
managed to show that there is a ptas for SB-Cubic Longest Cycle if the
input graph is Hamiltonian. As seen above, the fact that SB-Cubic Longest
Cycle is better approximable than Cubic Longest Cycle is in general not
exceptional for NP-optimization problems and must not be linked to the seemingly
extraordinary properties of CHC. However, we give a vague interpretation of the
above results in the next section, again leading to the fact that CHC, respectively,
Cubic Longest Cycle might be something special.

7.3 Conclusions

While discussing alternative solutions in terms of approximation, in contrast to the
decision versions, it turns out that sometimes a given optimal solution is helpful
in approximating alternative solutions and sometimes it is not. In particular we

103

Chapter 7 Approximation of Alternative Solutions

have seen that the SB-Versions of the APX-complete (or even harder) optimiza-
tion problems Cubic Hamiltonian Cycle, MaxCut, MaxSat, Minimum
Steiner Tree, and Min-∆-TSP admit a ptas. In case of MinMaxMatching
the error bound of the best approximation algorithm drops from 2 to 1, when
approximating the second best solution. On the other hand, the SB-versions of
Minimum Independent Dominating Set and MinTSP are as hard as their
basic versions. Naturally it would be interesting to analyze some more non-trivial
alternative solution versions of NP-optimization problems.

Open Problem 6. Study more NP-optimization problems!

Even though we only considered a fistful of interesting problems, we want to
give an interpretation of the results. Observe, that the APX-problems MaxCut,
MaxSat, MinMaxMatching, Minimum Steiner Tree, and Min-∆-TSP
have easier SB-versions. In contrast, approximating the second best solution re-
mains hard for the hard problems MinIndDomSet (NPO PB-complete) and
MinTSP (NPO-complete). A possible justification is the following. If a prob-
lem is NPO- or NPO PB-hard, the properties of all NPO- or NPO PB-problems,
respectively, can be encoded into instances of this problem, that is, a hard prob-
lem is very “flexible”. We feel that, thus, it is more likely that a given instance
of such a hard problem can be modified to have an additional optimal solution
and to, nevertheless, represent the given instance and its solutions. Note that
this is exactly what we did to show the hardness of SB-MinIndDomSet and
SB-MinTSP.

Applying this “hard standard problem → hard SB-version”-rule to the problem
Cubic Longest Cycle, one should rather expect that SB-Cubic Longest
Cycle is hard, because Cubic Longest Cycle is not in APX. From this point
of view, the fact that SB-Cubic Longest Cycle admits a ptas for Hamiltonian
input graphs can be interpreted as an exception, once again motivating that CHC
or Cubic Longest Cycle, respectively, actually has an exceptional position.

In contrast to the negative results for decision problems in the Chapters 3, 4,
5, and 6, we obtained some positive results for the approximability of alternative
solutions, for instance for Minimum Steiner Tree and MaxSat. Thus, these
results could be of practical relevance. However, from the practical point of view
these positive results might have a drawback, since they only provide alternative
solutions with small differences to the optimal solutions. In practice it is often
necessary to have alternative solutions that substantially differ from the given
optimal solutions. Thus, it would be an interesting task for future work, to find
algorithms that provide alternative solutions with a large distance from the opti-
mal solution, where the distance is formally expressed using some proper distance
dimension.

Open Problem 7. Study the approximability of second best solutions with a large
distance from the given optimal solution!

104

Chapter 8

Inverse-3DM is coNP-Complete

This chapter deals with inverse problems. The inverse problem Inverse-A, defined
with respect to a verifier VA for A is, given a set of solutions, to decide if there exists
an instance having exactly those solutions [KS99, Che03]. The study of inverse
problems does not directly contribute to the examination of alternative solutions
even though an inverse problem with a candidate function can be formulated as
an alternative solution problem. However, since solutions of NP-problems play a
central role in inverse problems, we furthermore gain a better understanding of
the solution structure of NP-problems. Note that inverse problems for the classes
Σp

i , i ∈ N, and RE have been studied in [Ber05].

The inverse problems of 3SAT, Clique, Hamiltonian Cycle, Partition,
and Vertex Cover, defined with respect to their natural (and universal) veri-
fiers, have been shown to be coNP-complete in [KS99, Che03, KH06]. Eying the
list of the six basic NP-complete problems of Garey and Johnson [GJ79], the ques-
tion of the inverse complexity of the last problem, 3Dimensional Matching,
gains a special importance. In this chapter we close this gap, by also proving
coNP-completeness for Inverse-3DM. This result has been published in [KH06].

Furthermore, we discuss the behavior of different universal verifiers for one and
the same problem with respect to the associated inverse problems. In particular,
we give strong arguments, that different universal verifier may induce inverse
problems of different computational complexity.

8.1 Preliminaries

In this section we give the basic notions, needed to formulate our result, the coNP-
completeness of Inverse-3DM. We give a short overview of the concept of inverse
problems and introduce the involved problems Inverse-3DM and Inverse-3SAT
and some helpful properties.

105

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

8.1.1 Inverse problems

As mentioned above, inverse problems deal with solutions of NP-problems and
thus verifiers. We define the problem Inverse-(A, VA).

Definition 8.1.1 ([Che03]). The inverse problem Inverse-(A, VA) for an NP-
language A with a verifier VA is the following problem.

Given: A set Π of potential solutions for A.

Question: Is there an instance x for A such that VA(x) = Π ?

The inverse problem of a language A ∈ NP can clearly only be defined relative
to a verifier accepting A. For the treated problems 3SAT and 3DM we will
use the natural verifiers V3SAT and V3DM, that have shown to be universal in
Chapter 4. Note that the completeness results for the inverse problems of VC,
Clique, Partition, and HC in [KS99, Che03, Krü05] have also been obtained
using the corresponding natural (and universal, see Chapter 4) verifiers.

If it is clear, which verifier VA is used for a given problem A, we denote the
associated inverse problem with Inverse-A. Note that, when dealing with inverse
problems it is more common to use the term proofs instead of solutions. So we
will use this notion in the following.

A naive approach to solving the inverse problem Inverse-A (via VA) would be,
given a set of proofs Π, evaluate the proofs to compute a candidate string x and
then check, if x satisfies VA(x) = Π. For many natural verifiers for NP-complete
problems such a candidate is relatively easy to compute.

Definition 8.1.2 ([Che03]). Let VA be a verifier for an NP-problem A. A
polynomial-time computable mapping c : P(Σ∗) → Σ∗ is called a candidate func-
tion for (A, VA) if and only if for all Π ⊆ Σ∗ the following holds: if there exists a
z ∈ Σ∗ such that V (z) = Π then V (c(Π)) = Π.

It is not clear if all NP-problems with associated verifiers do have candidate
functions. However, many natural verifiers for NP-complete languages, such as
3SAT or VC, have candidate functions. Note that if a problem A with VA has
a candidate function c then we have an obvious coNP upper bound for the com-
plexity of Inverse-A, namely given Π, compute c(Π), and then check if for all π
such that |π| ≤ p(|c(Π)|) (where p is the polynomial that bounds the length of
proofs with respect to the verifier VA) we have π ∈ Π ↔ V (c(Π), π) = 1.

Observation 8.1.3. Let A ∈ NP with a verifier VA. If there is a candidate
function for A, then Inverse-(A, VA) is in coNP.

Let A ∈ NP with a verifier VA and let cA be a candidate function for A. Hence,
Π ∈ Inverse-A if and only if VA(cA(Π)) = Π. Since Π ⊆ VA(cA(Π)) can be tested
in polynomial time, the question if Π ∈ Inverse-A reduces to the problem if cA(Π)
has alternative solutions different from the ones in Π. Thus, for problems with a
candidate function, the inverse problem is strongly related to the above alternative
solution problem for candidates.

106

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

8.1.2 3Dimensional Matching

See Section 4.2.5 for a problem description.
In the following, we will use the shorthand Inverse-3DM for the language

Inverse-(3DM, V3DM).
Now, we want to gather some properties of 3DM and Inverse-3DM, that will

finally lead to a candidate function c3DM for 3DM. First, assume that (S,X, Y, Z)
is in 3DM. It is not hard to see, that thus, X = X(S) := {x : (∃y)(∃z)[(x, y, z) ∈
S]}, Y = Y (S) := {y : (∃x)(∃z)[(x, y, z) ∈ S]}, and Z = Z(S) := {z :
(∃x)(∃y)[(x, y, z) ∈ S]}. Moreover, for each 3D-matching M of (S, X, Y, Z) also
holds X = X(M), Y = Y (M), and Z = Z(M).

Second, let Π3DM = {M1,M2, . . . , Mk} be a set of (potential) proofs of V3DM. If
Π3DM ∈ Inverse-3DM then Π3DM = V3DM((S, X, Y, Z)) for a 4-tuple (S, X, Y, Z) ∈
3DM. Thus, we have X = X(S), Y = Y (S), Z = Z(S), |X(S)| = |Y (S)| =
|Z(S)| = q. For the matchings M1,M2, . . . , Mk furthermore holds, that |Mi| =
q, 1 ≤ i ≤ k, and X(Mi) = X, Y (Mi) = Y , and Z(Mi) = Y , 1 ≤ i ≤ k. Thus, a
set of (potential) proofs Π = {M1,M2, . . . , Mk} can not be contained in Inverse-
3DM if |Mi| 6= |Mj|, X(Mi) 6= X(Mj), Y (Mi) 6= Y (Mj), or Z(Mi) 6= Z(Mj), for
some 1 ≤ i < j ≤ k. Following a more general concept from [Che03] we will hence
call a set of (potential) proofs Π = {M1,M2, . . . , Mk} well-formed if and only if
M1,M2, . . . , Mk include the same number q of triples and they all cover the same
sets X, Y , and Z. Obviously, testing if a collection of sets is well-formed can be
done in polynomial-time.

So a potential algorithm for Inverse-3DM might start with the test if the given
set Π of proofs is well-formed. Afterwards, it is plausible to ask for a candidate
in terms of the Definition 8.1.2 of candidate functions. Actually, such a candidate
can be provided by the following candidate function.

Theorem 8.1.4. The function c3DM, defined via

c3DM(Π) := (
k⋃

i=1

Mi, X(M1), Y (M1), Z(M1)),

is a candidate function for (3DM, V3DM).

Proof. Let Π = {M1,M2, . . . , Mk} be a given well-formed set of proofs (match-
ings). As seen above, for a candidate (S, X, Y, Z) for Π, it must hold that
X = X(M1), Y = Y (M1), and Z = Z(M1) and thus X(S) = X, Y (S) = Y ,
and Z(S) = Z. Moreover, it is obvious, that S must contain all triples from
all matchings M1,M2, . . . , Mk. Now, it is not very hard to see, that the min-
imal instance with these properties is a candidate for Π, namely the instance
(
⋃k

i=1 Mi, X(M1), Y (M1), Z(M1)) = c3DM(Π).

Thus, by Observation 8.1.3 it follows that Inverse-3DM ∈ coNP.

Corollary 8.1.5. The problem Inverse-3DM is in coNP.

107

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

8.1.3 3Satisfiability

One of the standard NP-complete problems is 3Satisfiability (3SAT, see Sec-
tion 4.2.1 for a problem description). It plays a very important role in this chapter,
since we will prove our main result, the coNP-completeness of Inverse-3DM by
giving a many-one reduction from the inverse problem of 3SAT, which was shown
to be coNP-complete in [KS99].

The inverse problem Inverse-(3SAT, V3SAT) also has been denoted by Inverse-
3SAT or 3SAT−1 [Che03, KS99]. Throughout this chapter we will use Inverse-
3SAT to denote Inverse-(3SAT, V3SAT).

As it has been the case for 3DM there are easy to check properties that any proof
set for 3SAT must have in order to be in Inverse-3SAT. Since any assignment for
an n-variable Boolean formula is represented by a string from {0, 1}n, the notion
of well-formed proof sets Π with respect to V3SAT only requires that all strings
from Π have the same length.

The following lemma from [Che03, KS99] provides a candidate function for
V3SAT.

Lemma 8.1.6 ([Che03, KS99]). Let Π be a well-formed set of proofs for V3SAT

and let n be the length of the strings in Π. Let the formula FΠ be the conjunction
of all clauses C of exactly three literals over the variable set {x1, . . . , xn} such that
C is satisfied by all assignments in Π.

The mapping c3SAT that maps any well-formed proof set Π to the formula FΠ is
a candidate function for V3SAT.

It follows that Inverse-3DM ∈ coNP. The coNP-hardness of Inverse-3SAT,
which is important for the proof of our main result, was shown by Kavvadias and
Sideri in [KS99].

Theorem 8.1.7 ([KS99]). Inverse-3SAT is coNP-complete.

Another concept that will be essential for our purposes was defined in [KS99],
as well.

Definition 8.1.8 ([KS99]). Let Π be a set of Boolean assignments for x1, . . . , xn.

1. An assignment α for x1, . . . , xn is said to be {xi, xj, xk}-compatible with Π,
1 ≤ i < j < k ≤ n, if and only if there exists an assignment β ∈ Π such
that α and β assign the same truth values to xi, xj, and xk.

2. An assignment α for x1, . . . , xn is called 3-compatible with Π if and only if
it is {xi, xj, xk}-compatible with Π for each triplet {xi, xj, xk} of variables,
1 ≤ i < j < k ≤ n.

Note that any assignment from Π is trivially 3-compatible with Π.
The following theorem gives a characterization of Inverse-3SAT that is based

on the notion of 3-compatibility. It will play an important role in the proof of the
upcoming main result.

108

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

Theorem 8.1.9 ([KS99]). A well-formed set of proofs Π for V3SAT is in Inverse-
3SAT if and only if it is closed under 3-compatibility, i.e., if and only if for each
assignment α that is 3-compatible with Π holds α ∈ Π.

8.2 Inverse-3DM is coNP-complete

In this section we show the coNP-completeness of Inverse-3DM. The main idea is
similar to the proof of the coNP-completeness of Inverse-HC in [KH06], i.e., we
give a many-one reduction from Inverse-3SAT.

Theorem 8.2.1. Inverse-3DM is coNP-complete.

Proof. The fact that Inverse-3DM ∈ coNP is stated in Corollary 8.1.5. We will
prove coNP-hardness of Inverse-3DM by giving a ≤p

m-reduction from Inverse-
3SAT that was shown to be coNP-complete in [KS99] (see Theorem 8.1.7). This
reduction will be done by the function f that will be defined during the proof. Let
Π3SAT be a set of proofs for V3SAT. If Π3SAT is not well-formed we define f(Π3SAT)
to be a fixed non-member of Inverse-3DM.

So let Π3SAT be a well-formed set of proofs. Hence, there exist natural numbers
n and m such that Π3SAT = {α1, α2, . . . , αm} with αi = a1

i a
2
i . . . an

i ∈ {0, 1}n,
1 ≤ i ≤ m. We think of the assignments from Π3SAT as if mapping a variable set
{x1, x2, . . . , xn} to {0, 1}.

The basis of the definition of f(Π3SAT) for well-formed sets Π3SAT will be the
set SΠ3SAT

of triples that will be defined step by step during the proof.
First, we put the following 2n sets S ′i and S ′′i , 1 ≤ i ≤ n, into SΠ3SAT

. Let
r =

(
n−1

2

)
.

S ′i = {(sj
i , x

j
i , t

j+1
i), 1 ≤ j ≤ r − 1} ∪ {(sr

i , x
r
i , t

1
i)}

S ′′i = {(sj
i ,¬xj

i , t
j
i), 1 ≤ j ≤ r}.

Since there will be no further triples in SΠ3SAT
that contain any of the variables

sj
i and tji we can establish the following claim.

Lemma 8.2.2. Let M be a 3D-matching for SΠ3SAT
. Then for each i, 1 ≤ i ≤ n,

M either completely contains S ′i or completely contains S ′′i . If M contains S ′i (S ′′i)
then M ∩ S ′′i = ∅ (M ∩ S ′i = ∅), i.e., there are no triples from S ′′i (S ′i) in M .

Proof. Let M be a matching for SΠ3SAT
and let i be an arbitrary natural number

such that 1 ≤ i ≤ n. Since s1
i has to be covered, one of the triples (s1

i , x
1
i , t

2
i) and

(s1
i ,¬x1

i , t
1
i) is an element of M .

Let (s1
i , x

1
i , t

2
i) ∈ M . So t2i is already covered and it follows that s2

i can only be
covered by (s2

i , x
2
i , t

3
i). Iteratively, it follows that the triples (s3

i , x
3
i , t

4
i), (s4

i , x
4
i , t

5
i),

. . . , (sr
i , x

r
i , t

1
i) are members of M and hence S ′i ⊆ M and S ′′i ∩M = ∅.

If we suppose that (s1
i ,¬x1

i , t
1
i) ∈ M it follows that S ′′i ⊆ M and S ′i ∩M = ∅ in

an analogous manner.

109

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

For the reduction, we need a correspondence between Boolean assignments and
matchings of SΠ3SAT

. Lemma 8.2.2 provides the basis for this correspondence. We
associate a matching M of S and the assignment αM such that αM(xi) = 1 if
S ′′i ⊆ M and αM(xi) = 1 if S ′′i ⊆ M , 1 ≤ i ≤ n. This way of correspondence
seems to be non-canonical (S ′′i covers ¬xj

i , 1 ≤ j ≤ r). But, in case of S ′′i ⊆ M
the positive elements xj

i , 1 ≤ j ≤ r, still have to be covered, so the defined
correspondence will be more canonical in the steps to come. Note that if S ′′i ⊆ M
(S ′i ⊆ M), there are r =

(
n−1

2

)
versions of the variable xi (¬xi), 1 ≤ i ≤ n, that

still must be covered.
Our intention is to define the set SΠ3SAT

such that SΠ3SAT
has exactly one 3D-

matching for each assignment that is 3-compatible with Π3SAT. Then we will map
Π3SAT to the set Π3DM of associated 3D-matchings of SΠ3SAT

and finally, we will see
that Π3SAT ∈ Inverse-3SAT if and only if Π3DM ∈ Inverse-3DM, a ≤p

m-reduction.
We just defined a correspondence between matchings and assignments. So, the

remaining part of the construction will deal with the issue to “check” whether
the assignment defined by a matching’s usage of the sets S ′i respectively S ′′i , 1 ≤
i ≤ n, is 3-compatible with Π3SAT. Since 3-compatibility means {xak

, xbk
, xck

}-
compatibility for all possible triplets {xak

, xbk
, xck

}, 1 ≤ k ≤ (
n
3

)
, 1 ≤ ak <

bk < ck ≤ n, we can (and will) check 3-compatibility by checking {xak
, xbk

, xck
}-

compatibility, for all k, 1 ≤ k ≤ (
n
3

)
. We will do so by inserting a couple of

sets with upper index k, for each k, 1 ≤ k ≤ (
n
3

)
, that will realize the test of

{xak
, xbk

, xck
}-compatibility.

Recall that Π3SAT = {α1, α2, . . . , αm} with αi = a1
i a

2
i . . . an

i ∈ {0, 1}n, 1 ≤ i ≤
m. Now, for each k, 1 ≤ k ≤ (

n
3

)
, we define the auxiliary set

Πk
3SAT = {b1b2b3 ∈ {0, 1}3 : (∃i ∈ {1, . . . , m})[b1 = aak

i ∧ b2 = abk
i ∧ b3 = ack

i]}

of partial assignments from Π3SAT (restricted to {xak
, xbk

, xck
}). Let `k = |Πk

3SAT|
be the number of partial assignments in Πk

3SAT (note that `k ≤ 8) and Πk
3SAT =

{βk
1 , βk

2 , . . . , βk
`k}. For each element βk

i = b1,k
i b2,k

i b3,k
i , 1 ≤ i ≤ `k, of Πk

3SAT we add
the following set Sk

i of three triples to SΠ3SAT
:

Sk
i = {(uk

1, ∗k
1xak

, vi,k
1), (uk

2, ∗k
2xbk

, vi,k
2), (uk

3, ∗k
3xck

, vi,k
3)},

where

∗k
i′xj =

{
xj, if bi′,k

i = 1

¬xj, if bi′,k
i = 0

for 1 ≤ i′ ≤ 3, j ∈ {ak, bk, ck}. Note that we did not specify the version (the upper
index) of the participating literals xak

,¬xak
, xbk

,¬xbk
, xck

, and ¬xck
so far. We

want to use different versions of a literal for different (upper) indices k, hence we
have to count up the version of a literal for each triplet {xak

, xbk
, xck

}, the variable
is contained in. So each appearance of a variable xj in the sets Sk

i , 1 ≤ i ≤ `k gets
the upper index ` if ` − 1 = |{{xas , xbs , xcs} : xj ∈ {xas , xbs , xcs} ∧ 1 ≤ s < k}|.
A negated variable gets the same upper index as the positive one. The fact that

110

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

each variable appears in
(

n−1
2

)
of the

(
n
3

)
triplets belatedly explains why we created

exactly
(

n−1
2

)
versions of each variable.

To illustrate the rather simple idea behind the complicated definition of the sets
Sk

i , we give a small example.

Example 8.2.3. Let Π3SAT = {(11001), (11010), (10111), (01110)}. If we consider
the first three variables x1, x2, x3 (the triple with the upper index k = 1), we
obtain the set Π1

3SAT = {(110), (101), (011)} (with `1 = 3) of partial assignments,
restricted to x1, x2, x3. Hence, the sets

S1
1 = {{(u1

1, x1, v
1,1
1), (u1

2, x2, v
1,1
2), (u1

3,¬x3, v
1,1
3)} (due to (110))

S1
2 = {{(u1

1, x1, v
2,1
1), (u1

2,¬x2, v
2,1
2), (u1

3, x3, v
2,1
3)} (due to (101))

S1
3 = {{(u1

1,¬x1, v
3,1
1), (u1

2, x2, v
3,1
2), (u1

3, x3, v
3,1
3)} (due to (011))

are put into SΠ3SAT
. Recall Lemma 8.2.2 and the defined correspondence between

assignments and matchings. Thus, for instance S1
1 ⊆ M implies that the assign-

ment α that is associated to M equals (110) when restricted to x1, x2 and x3.
Since, forthcoming steps will make sure that exactly one of the sets S1

1 , S1
2 , and

S1
3 is included in each 3D-matching M of SΠ3SAT

, we will have that the associated
assignments α is {x1, x2, x3}-compatible with Π3SAT.

The following lemma is the generalization of this idea.

Lemma 8.2.4. Let M be a 3D-matching for SΠ3SAT
that includes the set Sk

i , for
some 1 ≤ k ≤ (

n
3

)
, and some 1 ≤ i ≤ `k, and let αM be the assignment associated

with M . Then, αM is {xak
, xbk

, xck
}-compatible with Π3SAT.

Proof. Recall that all versions of xi (¬xi) are already covered by S ′i (S ′′i) if the
assignment αM associated with M assigns 0 (1) to xi. Hence by the construction of
Sk

i , we have that Sk
i ⊆ M implies that β′ki , which is the restriction of an assignment

from Π3SAT to {xak
, xbk

, xck
}, agrees with αM on xak

, xbk
, and xck

. Thus αM is
{xak

, xbk
, xck

}-compatible with Π3SAT.

Fix any k, 1 ≤ k ≤ (
n
3

)
, for the moment. To benefit from Lemma 8.2.4, we

want to make sure that each 3D-matching M completely includes one of the sets
Sk

i , 1 ≤ i ≤ `k. In order to achieve that, we put the following auxiliary sets T k
i

and T ′k
i into SΠ3SAT

, for each partial assignment β′ki , 1 ≤ i ≤ `k, of Πk
3SAT:

T k
i = {(yi,k

1 , yi,k
2 , vi,k

1), (yi,k
2 , yi,k

3 , vi,k
2), (yi,k

3 , yi,k
1 , vi,k

3)} and

T ′k
i = {(yi,k

1 , yi,k
1 , zk

1), (yi,k
2 , yi,k

2 , zk
2), (yi,k

3 , yi,k
3 , zk

3)}.

We do so, for each k, 1 ≤ k ≤ (
n
3

)
. Since there will be no more triples added to

SΠ3SAT
that contain uk

1, u
k
2, u

k
3, z

k
1 , z

k
2 , z

k
3 or any of the variables yi,k

1 , yi,k
2 , yi,k

3 , vi,k
1 , vi,k

2 ,
and vi,k

3 , 1 ≤ k ≤ (
n
3

)
, 1 ≤ i ≤ `k, we can establish the following Lemma.

111

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

Lemma 8.2.5. Let M be a 3D-matching for SΠ3SAT
. Then for each k, 1 ≤ k ≤(

n
3

)
, M includes the set Sk

i for some i ∈ {1, . . . , `k} and M ∩ Sk
j = ∅ for all

j, 1 ≤ j ≤ `k, j 6= i. Furthermore if Sk
i is contained in M , it follows that T ′k

i ⊆ M
and T k

j ⊆ M , for all j 6= i, 1 ≤ j ≤ `k.

Proof. Note that uk
1 can only be covered by one of the triples (uk

1, ∗k
1xak

, vi,k
1),

1 ≤ i ≤ `k. Let uk
1 be covered by (uk

1, ∗k
1xak

, vi,k
1) ∈ Sk

i , for some 1 ≤ i ≤ `k. Hence,
yi,k

1 must be covered by (yi,k
1 , yi,k

1 , zk
1). Analogous to the proof of Lemma 8.2.2, it

follows that (yi,k
3 , yi,k

3 , zk
3) ∈ M and (yi,k

2 , yi,k
2 , zk

2) ∈ M , thus T ′k
i ⊆ M . So the

elements vi,k
2 and vi,k

3 can only be covered by (uk
2, ∗k

2xbk
, vi,k

2) and (uk
3, ∗k

3xck
, vi,k

2).
It follows that Sk

i ⊆ M . Since Sk
i covers uk

1, u
k
2 and uk

3, it follows that no triples
from Sk

j , j 6= i are in M . To cover the elements vj,k
1 , vj,k

2 , and vj,k
3 , j 6= i, 1 ≤ j ≤ `k,

M must contain the sets T k
j , j 6= i, 1 ≤ j ≤ `k.

This concludes the construction of the set SΠ3SAT
and we define XSΠ3SAT

:=
X(SΠ3SAT

), YSΠ3SAT
:= Y (SΠ3SAT

), and ZSΠ3SAT
:= Z(SΠ3SAT

).

Lemma 8.2.6. Let Π3SAT be a well-formed set of proofs for V3SAT and let SΠ3SAT

be the above constructed set. There exists a one-to-one correspondence between the
3D-matchings for SΠ3SAT

and the assignments that are 3-compatible with Π3SAT,
namely the one, that maps a matching M to the assignment αM associated with
M .

Proof. Let Π3SAT be a well-formed set of proofs for V3SAT and let SΠ3SAT
be the set

constructed from Π3SAT as described above. First, we will show that if M is a 3D-
matching for SΠ3SAT

then the assignment αM associated with M is 3-compatible
with Π3SAT.

So let M be a 3D-matching of SΠ3SAT
and let αM be the assignment associated

with M . Let k ∈ N such that 1 ≤ k ≤ (
n
3

)
. Lemma 8.2.5 ensures that M

includes Sk
i for an i, 1 ≤ i ≤ `k, and hence by Lemma 8.2.4 it follows that αM

is {xak
, xbk

, xck
}-compatible with Π3SAT. So αM is {xak

, xbk
, xck

}-compatible with
Π3SAT for all k, 1 ≤ k ≤ (

n
3

)
, that is, αM is 3-compatible with Π3SAT.

Now, it is sufficient to show that for each 3-compatible assignment α, there
exists exactly one matching Mα for SΠ3SAT

that corresponds to α. So let α be 3-
compatible with Π3SAT. For each i, 1 ≤ i ≤ n, the Boolean value that α assigns to
xi uniquely determines whether S ′i or S ′′i is included in a matching Mα, associated
with α. So we start building up Mα by inserting the proper set S ′i respectively S ′′i
for each i, 1 ≤ i ≤ n. This step is obviously unique.

Note that if α(xi) = 1 (α(xi) = 0), for a number i, 1 ≤ i ≤ n, then S ′′i ⊆ Mα

(S ′i ⊆ Mα) covers all versions ¬xj
i (xj

i), 1 ≤ j ≤ (
n−1

2

)
, of ¬xi (xi) and all versions

xj
i (¬xj

i), 1 ≤ j ≤ (
n−1

2

)
, of xi (¬xi) still have to be covered.

We pick one number k, 1 ≤ k ≤ (
n
3

)
, and hence one triplet {xak

, xbk
, xck

}.
By Lemma 8.2.5, it follows that each matching for SΠ3SAT

includes one of the sets
Sk

i , 1 ≤ i ≤ `k. By the construction of the sets Sk
i , 1 ≤ i ≤ `k, we have that exactly

the set Sk
j′ must be put into Mα, that corresponds to the assignment βk

j′ ∈ Πk
3SAT

112

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

that assigns the same values to xak
, xbk

, and xck
as α does. Since α is 3-compatible

and thus {xak
, xbk

, xck
}-compatible with Π3SAT such an assignment βk

j′ actually

exists. So we have to put Sk
j′ into Mα for this unique index j′. Lemma 8.2.5

provides furthermore that T ′k
j′ and T k

j , j 6= j′, 1 ≤ j ≤ `k, have to be put into

Mα. If we do so for all k, 1 ≤ k ≤ (
n
3

)
, a closer look shows that all elements

from XΠ3SAT
, YΠ3SAT

, and ZΠ3SAT
are covered exactly once and hence Mα is a 3D-

matching for SΠ3SAT
. Note that in each step, the triples put into Mα were uniquely

determined. Thus, Mα is the only matching of SΠ3SAT
that corresponds to α.

Now, we can define f(Π3SAT) to be the set Π3DM = {Mα : α ∈ Π3SAT}, where Mα

is the matching constructed in the proof of Lemma 8.2.6. To conclude the proof
of the theorem, we have to show that the obviously polynomial-time-computable
function f realizes the needed reduction.

First, assume that Π3SAT ∈ Inverse-3SAT. Hence, Π3SAT is well-formed and
closed under 3-compatibility. By Lemma 8.2.6, it follows that SΠ3SAT

exactly has
the proofs f(Π3SAT) = {Mα : α ∈ Π3SAT}. Hence, f(Π3SAT) ∈ Inverse-3DM.

Conversely, let Π3SAT 6∈ Inverse-3SAT. It follows that Π3SAT is not well-formed
or Π3SAT is not closed under 3-compatibility. As defined in the beginning of the
proof, if Π3SAT is not well-formed, f maps it to a fixed non-member of Inverse-
3DM. So let Π3SAT be well-formed but not closed under 3-compatibility. Hence,
there exists an assignment β 6∈ Π3SAT that is 3-compatible with Π3SAT and by
Lemma 8.2.6, it follows that Mβ is a 3D-matching for SΠ3SAT

. The fact that Mβ is
not in f(Π3SAT) is obvious. So for the proof that f(Π3SAT) = {Mα : α ∈ Π3SAT}
is not in Inverse-3DM it suffices to show that Mβ is a matching for the candidate
c3DM(f(Π3SAT)) of the constructed proof set f(Π3SAT).

Recall that the candidate c3DM(Π3DM) for a well-formed set Π3DM = {M1,M2,
. . . ,Mr} is (

⋃r
i=1 Mi, XM1 , YM1 , ZM1). Since each Mα ∈ f(Π3SAT) covers exactly

XSΠ3SAT
, YSΠ3SAT

, and ZSΠ3SAT
, it follows c3DM(f(Π3SAT)) = (

⋃
α∈Π3SAT

Mα, XSΠ3SAT
,

YSΠ3SAT
, ZSΠ3SAT

). If Mβ is completely included in
⋃

α∈Π3SAT
Mα, it is easy to see

that Mβ is a 3D-matching for c3DM(f(Π3SAT)), which would imply the desired fact
that f(Π3SAT) is not Inverse-3DM.

In order to show that Mβ is included in
⋃

α∈Π3SAT
Mα, let (a, b, c) be an arbitrary

triple from Mβ. Hence, (a, b, c) is included in one of the sets S ′i, S
′′
i , 1 ≤ i ≤ (

n−1
2

)
,

or in one of the sets Sk
i , T k

i , T ′k
i , 1 ≤ k ≤ (

n
3

)
and 1 ≤ i ≤ `k.

First, let (a, b, c) ∈ S ′i (S ′′i), for some i, 1 ≤ i ≤ (
n−1

2

)
. By Lemma 8.2.2, it

follows that S ′i (S ′′i) ⊆ Mβ and thus β(xi) = 0 (1). Since β is 3-compatible with
Π3SAT there exists an assignment αj ∈ Π3SAT such that αj(xi) = 0(1). It follows
that S ′i (S ′′i) ⊆ Mαj

and hence (a, b, c) ∈ ⋃
α∈Π3SAT

Mα.

Second, assume that (a, b, c) is in Sk
i , T k

i or T ′k
i , 1 ≤ k ≤ (

n
3

)
and 1 ≤ i ≤ `k.

Since β is 3-compatible and in particular {xak
, xbk

, xck
}-compatible with Π3SAT,

there exists an assignment αj ∈ Π3SAT such that β and αj assign the same truth-
values to the variables from {xak

, xbk
, xck

}. By the construction of Mβ from β it
follows that Mβ includes the same sets Sk

i , 1 ≤ i ≤ `k, T k
i , 1 ≤ i ≤ `k, and T ′k

i , 1 ≤

113

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

i ≤ `k as Mαj
. Hence, (a, b, c) ∈ Mαj

⊆ ⋃
α∈Π3SAT

Mα. So we have that Mβ ⊆⋃
α∈Π3SAT

Mα. It follows that Mβ 6∈ f(Π3SAT) is a matching for c3DM(f(Π3SAT))
and thus f(Π3SAT) 6∈ Inverse-3DM.

Combining the above theorem with the results from [KS99, Che03, Krü05], we
have the coNP-completeness of the inverse problems of all six basic NP-complete
problems [GJ79].

Theorem 8.2.7 ([KS99, Che03, Krü05]). The inverse problems Inverse-3SAT,
Inverse-3DM, Inverse-VC, Inverse-Clique, Inverse-HC, and Inverse-Partition
are coNP-complete.

8.3 Inverse problems and universal verifiers

When dealing with the complexity of alternative solutions, different universal ver-
ifiers for one and the same problem can be treated as equivalent, because the
corresponding alternative solution problems have the same computational com-
plexity. It is rather natural to also discuss the complexity of inverse problems,
defined with respect to different universal verifiers for one and the same NP-
problem. One might conjecture that these inverse problems also have the same
complexity. Although we can not disprove this conjecture, we give an example
which strongly motivates the opposite conjecture.

8.3.1 Preliminaries

For the following section we will need the notion of one-way functions. So we give
a very short introduction. For a more detailed introduction to one-way functions
see, e.g., [Pap94].

There are different definitions for one-way functions. We will use the following
one that can be found in e.g. [Pap94].

Definition 8.3.1. A function f : Σ∗ → Σ∗ is called a one-way function if and
only if the following conditions hold.

1. f is one-to-one, and for all x ∈ Σ∗, |x|(1/k) ≤ |f(x)| ≤ |x|k, for some k > 0.
That is, f(x) is at most polynomial longer or shorter than x.

2. f is computable in polynomial time, f ∈ FP .

3. f−1 6∈ FP. That is, there is no polynomial-time algorithm, which, given y,
either computes x such that f(x) = y, or returns “no”, if no such x exists.

Even under the assumption that P 6= NP, there is no guarantee that such
functions exists. However, the stronger precondition that P 6= UP leads to the
existence of one-way functions.

114

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

Theorem 8.3.2 ([Pap94]). P 6= UP if and only if one-way functions exist.

Since, it is widely believed that P 6= UP, we also believe in the existence of
one-way functions. Some suspects for one-way functions are a one-to-one version
of integer multiplication, exponentiation modulo a prime or discrete logarithms.

8.3.2 A plausible conjecture

Here, we give the argumentation for the conjecture that different universal veri-
fiers for the same problem can induce inverse problem of different computational
complexity.

We consider the problem SAT of satisfiable Boolean formulas in CNF. In Chap-
ter 4 we have seen that

VSAT = {(F, α) : F is in CNF and F (α) = 1}

is a universal verifier for SAT. Since for each set of assignments over a given
variable set X there is a CNF-formula having exactly these satisfying assignments,
it follows that each syntactically correct set of assignments is contained in Inverse-
(SAT, VSAT). So Inverse-(SAT, VSAT) can be decided in polynomial-time.

Theorem 8.3.3. Inverse-(SAT, VSAT) is in P.

Now, also consider the verifier

V ′
SAT = {(F, (f(F), α)) : F is in 3CNF and F (α) = 1}

for SAT, where f is a one-way function. Note that verifying if (F, (c, α)) ∈ VSAT

can be done in polynomial time because f(F) can be computed and thus, c = f(F)
can be tested. So, V ′

SAT is actually a verifier for SAT.
It is easy to see that V ′

SAT is also universal for SAT.

Theorem 8.3.4. The set V ′
SAT is a universal verifier for SAT.

Proof. Since VSAT is universal it suffices to give a gp-reduction (SAT, VSAT) ≤p
gp

(SAT, V ′
SAT). It can easily be verified that the functions f = id and g : (F, α) 7→

(f(F), α) are polynomial-time computable and realize the reduction.

So, assuming that different universal verifiers induce inverse problems of the
same complexity, Inverse-(SAT, V ′

SAT) should also be in P. Below, we will give
strong arguments that this is not the case.

Let Π = {(c1, α1), . . . , (ck, αk)} be a set of proofs for V ′
SAT with ci = cj, for

1 ≤ i, j ≤ k. It is easy to see that Π ∈ Inverse-(SAT, V ′
SAT), if and only if

c1 = c2 = · · · = ck = f(F) for some CNF-formula F and F (α) = 1 ↔ α ∈ Π.
Note, that depending on Π′ = {α1, . . . , αk}, there can be a huge amount of CNF-
formulas Fl satisfying the latter. It not hard to see, that this amount can even be
exponential in the size of Π.

115

Chapter 8 Inverse-3Dimensional Matching is coNP-Complete

Thus, a potential algorithm for Inverse-(SAT, V ′
SAT) has to evaluate, if for one of

these formulas holds f(Fl) = c1. Assuming that no polynomial-time algorithm can
extract properties of F from c1 = f(F), this can only be done by computing f(Fl)
for all these candidates Fl and checking if f(Fl) = c1, which costs exponential
time.

So, we do not expect that a polynomial-time algorithm for Inverse-(SAT, V ′
SAT)

exists, which leads to the opposite conjecture that the inverse problems of dif-
ferent universal verifiers for the same problem can have substantially different
computational complexities. Obviously, the above argumentation depends on the
existence of a one-way function f and the assumption that no polynomial-time
algorithm can extract properties of x from f(x). However, under these reasonable
assumptions holds the following conjecture.

Conjecture 8.3.5. The inverse problems defined with respect to two different
universal verifiers for one and the same NP-problem may have a very different
computational complexity.

8.4 Conclusions

Similar to our proof of the coNP-completeness of Inverse-HC [KH06] we have
shown the coNP-completeness of Inverse-3DM, that is, we have used the notion
of 3-compatibility to reduce Inverse-3SAT to Inverse-3DM. This result completes
the analysis of the inverse problem of the six basic NP-complete problems [GJ79].
They are all coNP-complete. However, there still are a lot of NP-problems to
discuss. Probably one can also use the idea of 3-compatibility to reduce Inverse-
3SAT to some more inverse problems.

Open Problem 8. Study some more inverse problems!

In the second part, we examined the notion of universal verifiers in the context of
inverse problems. It turned out that two different universal verifiers for the same
NP-problem highly likely may induce inverse problems of different complexity
(Conjecture 8.3.5).

Open Problem 9. Verify or disprove Conjecture 8.3.5!

116

Bibliography

[AB92] M. Agrawal and S. Biswas. Universal relations. In Proceedings
of the Seventh Annual Structure in Complexity Theory Confer-
ence (Boston, MA, 1992), pages 207–220, Los Alamitos, CA, 1992.
IEEE Comput. Soc. Press.

[AH98] A. M. Abdelbar and S. M. Hedetniemi. Approximating MAPs for
belief networks is NP-hard and other theorems. Artificial Intelli-
gence, 102(1):21–38, 1998.

[BDG88] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural complexity. I,
volume 11 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, 1988.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural complexity.
II, volume 22 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1990.

[Ber66] R. Berger. The undecidability of the domino problem. Memoirs
American Mathemathical Society, 66:1–72, 1966.

[Ber05] T. Berg. Komplexität inverser Probleme (german). Master’s the-
sis, Friedrich-Schiller-University Jena, April 2005.

[BKL+02] P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and
W. Rytter. On the complexity of pattern matching for highly com-
pressed two-dimensional texts. J. Comput. System Sci., 65(2):332–
350, 2002.

[BP89] M. Bern and P. Plassmann. The Steiner problem with edge lengths
1 and 2. Inform. Process. Lett., 32(4):171–176, 1989.

[BST99] C. Bazgan, M. Santha, and Z. Tuza. On the approximation of
finding a(nother) Hamiltonian cycle in cubic Hamiltonian graphs.
Journal of Algorithms, 31(1):249–268, 1999.

[Che03] H. Chen. Inverse NP problems. In Mathematical foundations of
computer science 2003, volume 2747 of Lecture Notes in Computer
Science, pages 338–347. Springer, Berlin, 2003.

117

Bibliography

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the trav-
elling salesman problem. Technical Report 388, Graduate School
of Industrial Administration, Carnegie-Mellon University, Pitts-
burgh, 1976.

[Chv73] V. Chvátal. On the computational complexity of finding a kernel.
Technical report, Université de Montréal, 1973. Report No. CRM-
300, Centre de Recherches Mathématiques.

[CK97] P. Crescenzi and V. Kann. Approximation on the web: a com-
pendium of NP optimization problems. In Randomization and
approximation techniques in computer science (Bologna, 1997),
volume 1269 of Lecture Notes in Comput. Sci., pages 111–118.
Springer, Berlin, 1997.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of ACM STOC’71, pages 151–158, 1971.

[dB04] M. de Bondt. On the ASP-completeness of cryptarisms. Technical
Report 0419, Department of Mathematics, Radboud University of
Nijmegen, 2004.

[EJ77] S. Even and D. S. Johnson. mentioned in [GJ79] as unpublished
results, 1977.

[FHT97] S. Fischer, L. Hemaspaandra, and L. Torenvliet. Witness-
isomorphic reductions and local search. In Complexity, logic, and
recursion theory, volume 187 of Lecture Notes in Pure and Appl.
Math., pages 207–223. Dekker, New York, 1997.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. W.H.Freeman Company,
1979.

[GJP77] M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. mentioned
in [GJ79] as unpublished results, 1977.

[GJT76] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamil-
tonian circuit problem is NP-complete. SIAM Journal on Com-
puting, 5(4), 1976.

[GW95] M. X. Goemans and D. P. Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115–
1145, 1995.

[Hal93] M. M. Halldórsson. Approximating the minimum maximal inde-
pendence number. Inform. Process. Lett., 46(4):169–172, 1993.

118

Bibliography

[HMRS98] H. B. Hunt, III, M. V. Marathe, V. Radhakrishnan, and R. E.
Stearns. The complexity of planar counting problems. SIAM J.
Comput., 27(4):1142–1167 (electronic), 1998.

[HQ85] H. W. Hamacher and M. Queyranne. K best solutions to combi-
natorial optimization problems. Ann. Oper. Res., 4(1-4):123–143,
1985.

[Kan94] V. Kann. Polynomially bounded minimization problems that are
hard to approximate. Nordic J. Comput., 1(3):317–331, 1994. Se-
lected papers of the 20th International Colloquium on Automata,
Languages and Programming (ICALP 93) (Lund, 1993).

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations (Proc. Sympos., IBM Thomas J.
Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–
103. Plenum, New York, 1972.

[KH06] M. Krüger and H. Hempel. Inverse Hamiltonian Cycle and in-
verse 3Dimensional Matching are coNP-complete. In ISAAC,
pages 243–252, 2006.

[KL95] Ker-I Ko and Chih-Long Lin. On the complexity of min-max
optimization problems and their approximation. In Minimax and
applications, volume 4 of Nonconvex Optim. Appl., pages 219–239.
Kluwer Acad. Publ., Dordrecht, 1995.

[Kra99] A. Krawczyk. The complexity of finding a second Hamiltonian
cycle in cubic graphs. J. Comput. System Sci., 58(3):641–647,
1999.

[Krü05] M. Krüger. Weitere Hamiltonkreise in Graphen und inverse Hamil-
tonkreisprobleme (german). Master’s thesis, Friedrich-Schiller-
University Jena, July 2005.

[KS99] D. Kavvadias and M. Sideri. The inverse satisfiability problem.
SIAM J. Comput., 28(1):152–163 (electronic), 1999.

[LL78] N. Lynch and R. Lipton. On structure preserving reductions.
SIAM J. Comput., 7(2):119–126, 1978.

[McP03] B. P. McPhail. The complexity of puzzles: NP-completeness re-
sults for nurikabe and minesweeper. bachelor thesis, The Division
of Mathematics and Natural Sciences, Reed College, Portland,
2003.

[OM90] P. Orponen and H. Manila. On approximation preserving reduc-
tions: Complete problems and robust measures, 1990.

119

Bibliography

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[PS76] C. H. Papadimitriou and K. Steiglitz. Some complexity results for
the traveling salesman problem. In Eighth Annual ACM Sympo-
sium on Theory of Computing (Hershey, Pa., 1976), pages 1–9.
Assoc. Comput. Mach., New York, 1976.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial
optimization: algorithms and complexity. Prentice-Hall Inc., En-
glewood Cliffs, N.J., 1982.

[PY91] C. H. Papadimitriou and M. Yannakakis. Optimization, ap-
proximation, and complexity classes. J. Comput. System Sci.,
43(3):425–440, 1991.

[PY93] C. H. Papadimitriou and M. Yannakakis. The traveling salesman
problem with distances one and two. Math. Oper. Res., 18(1):1–11,
1993.

[Rog67] H. Rogers. Theory of recursive functions and effective computabil-
ity. McGraw-Hill Book Co., New York, 1967.

[RZ00] G. Robins and A. Zelikovsky. Improved Steiner tree approximation
in graphs. In Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, CA, 2000),
pages 770–779, New York, 2000. ACM.

[Set02] T. Seta. The complexity of puzzles, cross sum and their another
solution problems (ASP). Senior Thesis, Department of Infoma-
tion Science, the Faculty of Science, the University of Tokyo, 2002.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring ex-
ponential time: preliminary report. In Fifth Annual ACM Sym-
posium on Theory of Computing (Austin, Tex., 1973), pages 1–9.
Assoc. Comput. Mach., New York, 1973.

[SM93] Y. Saruwatari and T. Matsui. A note on K-best solutions to the
Chinese postman problem. SIAM J. Optim., 3(4):726–733, 1993.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoret. Com-
put. Sci., 3(1):1–22 (1977), 1976.

[Tho78] A. G. Thomason. Hamiltonian cycles and uniquely edge colourable
graphs. Ann. Discrete Math., 3:259–268, 1978. Advances in graph
theory (Cambridge Combinatorial Conf., Trinity College, Cam-
bridge, 1977).

120

[Tut46] W. T. Tutte. On Hamiltonian circuits. J. London Math. Soc.,
21:98–101, 1946.

[Uma99] C. Umans. Hardness of approximating Σp
2 minimization prob-

lems. In 40th Annual Symposium on Foundations of Computer
Science (New York, 1999), pages 465–474. IEEE Computer Soc.,
Los Alamitos, CA, 1999.

[Uma01] C. Umans. The minimum equivalent DNF problem and shortest
implicants. J. Comput. System Sci., 63(4):597–611, 2001. Special
issue on FOCS 98 (Palo Alto, CA).

[UN96] N. Ueda and T. Nagao. NP-completeness results for nonogram
via parsimonious reductions. Technical report, Tokyo Institute of
Technology, 1996.

[vdPLSvdV99] E. S. van der Poort, M. Libura, G. Sierksma, and J. A. A. van der
Veen. Solving the k-best traveling salesman problem. Comput.
Oper. Res., 26(4):409–425, 1999. The traveling salesman problem.

[vEB97] P. van Emde Boas. The convenience of tilings. In Complexity,
logic, and recursion theory, volume 187 of Lecture Notes in Pure
and Appl. Math., pages 331–363. Dekker, New York, 1997.

[WC96] Zheng Wang and J. Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. IEEE Journal of Selected Areas
in Communications, 14(7):1228–1234, 1996.

[Wes96] D. B. West. Introduction to graph theory. Prentice Hall Inc., Upper
Saddle River, NJ, 1996.

[Wra76] C. Wrathall. Complete sets and the polynomial-time hierarchy.
Theor. Comput. Sci., 3(1):23–33, 1976.

[WW86] K. Wagner and G. Wechsung. Computational complexity, vol-
ume 21 of Mathematics and its Applications (East European Se-
ries). D. Reidel Publishing Co., Dordrecht, 1986.

[YG80] M. Yannakakis and F. Gavril. Edge dominating sets in graphs.
SIAM J. Appl. Math., 38(3):364–372, 1980.

[YS02] T. Yato and T. Seta. Complexity and completeness of finding
another solution and its application to puzzles. In In Proceedings
of the National Meeting of the Information Processing Society of
Japan (IPSJ), 2002.

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• daß ich die vorliegende Arbeit selbstständig und nur unter Verwendung der
angegebenen Quellen und Hilfsmittel angefertigt habe

• daß ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen
habe und daß Dritte weder unmittelbar noch mittelbar geldwerte Leistungen
von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt
der vorgelegten Dissertation stehen

• daß ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche
oder andere Wissenschaftliche Prüfung eingereicht habe.

Jena, den 21.01.2008

Michael Krüger

Lebenslauf

Persönliche Daten

Name Michael Krüger

Geburt 09. 01. 1980 in Jena

Schulausbildung

1986–1990 Polytechnische Oberschule, Jena

1990–1994 Albert Schweitzer Gymnasium, Jena

1994–1998 Carl Zeiss Gymnasium mit naturwissenschaftlichen Spezialklassen,
Jena

06/1998 Abitur

Studium

10/1999–07/2005 Studium der Mathematik an der Friedrich-Schiller-Universität
(FSU) Jena

07/2005 Abschluss des Studiums mit dem Grad Diplom-Mathematiker
Thema der Diplomarbeit: Weitere Hamiltonkreise in Graphen und
inverse Hamiltonkreisprobleme

Akademische Laufbahn

seit 10/2005 Doktorant am Institut für Informatik der FSU
gefördert durch ein Graduiertenstipendium des Landes Thüringen

