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1. Introduction  

 

Our planet is known to continually move through the space. Within 24 h it performs 

a complete rotation on its axis, within 365,25 days it makes a circuit around the Sun, 

within about 225 - 250 million years together with the Sun revolves around the 

centre of our galaxy. Moreover, the Earth's only natural satellite, the Moon revolves 

around it within 29,54 days. All these processes cause periodical variations of the 

environmental conditions on Earth, such as light intensity and spectrum, temperature, 

air pressure, moisture and the magnetic field. During evolution most if not all 

organisms from bacteria to mammals adapted to these changes by developing 

biological rhythms. 

Biological rhythms are periodically repeating fluctuations of behavioural and 

physiological aspects in living organisms. They can significantly vary in their period 

and thus can be divided into different categories. Infradian rhythms have a period 

longer than 24 h. Among them, there are low-frequency ones, such as circannual 

(about a year) or seasonal rhythms (Kortner and Geister, 2000; Danks, 2005), which 

are related to the rotation of Earth around the Sun, or even longer 11 years rhythms 

(Chizhevsky, 1936), which are related to periodical changes of the Sun activity. 

Another group of rhythms pertained to infradian are lunar rhythms (Zimecki, 2006) 

caused by the Moon rotation around the Earth that have a period of about 29 days. 

Also, there are some recent evidences that other kinds of infradian rhythms with a 

period of 7, 5 and 3,5 days do exist in some biological systems (Freeman, 1994; 

Díaz-Sandoval, 2008). Ultradian rhythms have a period shorter than 24 h. When the 

period is about 1 h, the rhythms are called circahoralian (Brodsky, 2006). But the 

period can be also shorter than an hour, as for example the second long heart beat 

rhythm (Silbernagel and Despopoulus, 1991), or longer than 1 h, as a 3 - 5 h rhythm 

of growth hormon production (Wagner et al., 1998). 

The daily rotation of the Earth on its axis causes the appearance of 24 h long 

biological rhythms called diurnal. Some of them could simply occur in response to 

environmental factors, such as light or darkness. If the rhythm persists under constant 

conditions of light and temperature, it is called circadian. The term “circadian” taken 

from the Latin words circa "around" and dies "day", means "approximately a day". It 

was introduced first by Franz Halberg about 50 years ago (Halberg et al., 1959). The 

history of observations of such processes is much longer and started more then 250 
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years ago by the French astronomer Jean Jacques d’Ortous de Mairan, who noted 

that a heliotrope plant (probably Mimosa) sustained rhythms of leaf movement in 

continuous darkness (De Mairan, 1729). Unfortunately, de Mairan hesitated to 

conclude that heliotropes have internal clocks, because he could not rule out other 

possible factors, such as changes in temperature or magnetic forces. Nevertheless, de 

Mairan's experiment led further generations of researchers to perform circadian 

experiments with plants. In the next 150 years, Charles Darwin had been one of 

those, who pursued de Mairan's findings and reverted to the investigation of 

circadian clocks. Darwin designed an apparatus for measuring leaf movements, and 

quantified, graphed, and published his results in The Power of Movement in Plants 

(Darwin, 1880). Since that time scientists all over the world more and more often 

adverted to this topic until the Cold Spring Harbor Symposia on Qualitative Biology 

at 1960 that seems to define the moment when researchers from widely different 

fields discovered that they all were studying the same process. That meeting laid the 

groundwork for the field of chronobiology. In 1970s the Society for Research in 

Biological Rhythms was founded with C.S. Pittendrigh as leader. Members of this 

organizaion did basic research on all types of organisms, plants as well as animals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Circadian systems in the universal tree of life (reprinted from Dunlap, 1999) 

The diagram shows the range of organisms, in which circadian systems have been investigated. The 
circadian rhythms of the groups in blue have been studied at a physiological level. The groups in red 
represent those, in which the clock mechanism has been studied at a genetic and molecular level. 
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As shown in Figure 1 circadian rhythms are found in many organisms from 

cyanobacteria to mammals. They involve multiple behavioural, physiological and 

metabolic processes as, for example, nitrogen fixation in cyanobacteria (Chen et al., 

1998), bioluminescence of the marine dinoflagellate Lingulodinium polyedrum 

formerly called Gonyaulax polyedra (Hastings and Sweeney, 1957; Morse et al., 

1990), photosynthesis and respiration in higher plants (McClung, 2006), spore 

formation in the mould Neurospora crassa (Dunlap and Loros, 2006), locomotor 

activity of fruit fly Drosophila melanogaster (Saunders, 1997), blood pressure or 

body temperature in mammals (Ishida et al., 1999). 

 

1.1 Physiological properties of circadian rhythms 

In spite of the high variety, circadian rhythms have a number of common 

physiological features. The first is the already mentioned above property to persist 

under constant conditions of light and temperature, maintaining the period of about 

24 h that takes place due to an internal timekeeping mechanism called circadian 

clock. For example, mice synchronised by light/dark (LD) cycles continue to exhibit 

rhythmic locomotor activity in dark/dark (DD) conditions with a period close to 24 h 

for about 100 days (Pittendrigh and Daan, 1974). 

In order to remain synchronized with the environment, circadian clocks are 

able to reset by exposure to an external stimulus, a property called entrainment 

(Johnson et al., 2003). The consequences of entrainment are that the period of the 

biological rhythm becomes equal on average to that of the entraining stimuli and that 

a stable phase relationship is established between the entraining and entrained 

oscillations. An environmental stimulus that can act to entrain circadian clocks is 

called a Zeitgeber ("time giver"). The most important Zeitgeber is the light/dark 

cycle (Aschoff, 1999). For example, everyone who once flied from Europe to 

America or the other way around has experienced it in form of a jet lag. But beside 

light/dark cycles, there are other non-photic Zeitgebers. Among them, cycles in 

temperature are known to efficiently synchronize the clock (Rensing and Ruoff, 

2002). But also food availability or social cues can act as Zeitgebers (Roenneberg 

and Merrow, 1998; Harmer et al., 2001).  

Another key feature of circadian rhythms, phase response curve (PRC), 

illustrates how the magnitude of phase shifts induced by single stimuli depends on 

http://www.ncbi.nlm.nih.gov/pubmed/9783440?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
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the time at which the stimuli is given. This means that a pulse of an external "time-

giving" stimulus applied to an organism under free-running condition can shift the 

phase of the rhythm either delaying, advancing or having no effect on it. PRCs are 

specific for each particular organism (Hastings, 1960; Johnson,1999). 

A critical property of circadian rhythms is temperature compensation that is 

the stability of the clock period over a wide range of physiological temperatures. 

Biochemical reactions have a Q10 of ~ 2, meaning that the rate of reaction doubles 

with a temperature increasing by 10°C. The period of circadian clocks is much less 

sensitive to temperature, having a Q10 from 0,8 to 1,3 (Hastings and Sweeney, 1957; 

Pittendrigh and Caldarola, 1973), thus they can be even overcompensated. 

 

1.2 Principles of clock architecture 

The simplest model shows a circadian system as a linear progression consisting of 

three main components: an input pathway linking the clock to the outside world, an 

endogenous core oscillator keeping the clock going and an output pathway regulating 

periodic functions inside the cell (Figure 2A). The core oscillator is based on clock 

genes that establish rhythms even in absence of external stimuli by controlling the 

expression of themselves and each other via molecular feedback loops. 
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Figure 2. Schematic representation of circadian clock structures (reprinted from Gardner et al., 
2006) 

A. A model depicting division of the clock into an input pathway, a central oscillator and an output 
pathway. B. An elaborated description of the clock, consisting of multiple core oscillators, a gated 
input pathway and outputs, which feed back into the input and the central oscillator. 

  

However, this model is an oversimplification, because many components of the input 

pathway are themselves outputs of the clock (Devlin and Kay, 2001) and rhythmic 

outputs may feed back to affect the functioning of the oscillator (Harmer et al., 

2001). Moreover, in some organisms the main oscillator was shown to be composed 

of multiple interlocking loops (Figure 2B) (Paranjpe and Sharma, 2005; Gardner et 

al., 2006). 

Such a complexity of circadian clocks has been suggested to be necessary to 

impart flexibility to circadian oscillators and also to provide stability and protection 

against casual perturbations. 

 

1.3 The main components of the circadian clock in different 

organisms 

1.3.1 The central oscillator 

Within the last three decades, detailed studies of the circadian rhythms in different 

model organisms have shown that in spite of a wide variety of particular molecular 

components all so far known systems have similar regulatory mechanisms. As 

already mentioned before, an oscillator was found to be based on molecular feedback 

loops comprising of positive and negative regulatory elements. The positive elements 

such as the heterodimeric protein complex WHITE COLLAR-1/WHITE COLLAR-2 

(WCC) in N. crassa, CLOCK/CYCLE (CLK/CYC) in D. melanogaster or 

CLOCK/BMAL in mammals (Wijnen and Young, 2006) are transcriptional 

activators carrying basic Helix-Loop-Helix (bHLH) DNA-binding motives that are 

able to enhance the transcription of clock genes by binding to specific sequences 

(e.g. E-box) in their promoter.  

There are different types of genes that can be activated by positive elements. 

One group of them, so called clock-controlled genes (ccg) participate directly or 

indirectly in the output pathway. To another group belong genes, whose protein 

products play the role of negative elements in the feedback loops. These are proteins 
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such as KaiC in cyanobacteria (Williams, 2007), FREQUENCY (FRQ) in N. crassa 

(Brunner and Schafmeier, 2006), the PERIOD/TIMELESS (PER/TIM) protein 

complex in D. melanogaster (Hardin, 2005) or the PER1/2, CRYPTOCHROME 1 

and 2 (CRY1, CRY2) in mammals (Ko and Takahashi, 2006). For this purpose, they 

undergo some posttranslation modifications in the cytoplasm, as, for example, 

heterodimerisation and/or phosphorylation by specific kinases allowing them to enter 

the nucleus, where they interact with the positive elements of the feedback loops 

changing their conformation and thus making their binding to their own promoterand 

activation of their own genes impossible.  

As already mentioned before, the oscillator is often represented by several 

interconnecting molecular feedback loops. In some organisms like N. crassa, D. 

melanogaster or mouse positive elements from one loop can take part also in another 

one. For example, in the circadian system of D. melanogaster the heterodimeric 

complex CLK/CYC in addition to per and tim activates also genes of the basic-

leucine zipper transcriptional factor PAR DOMAIN PROTEIN 1ε (PDP1ε) and the 

basic-leucine zipper transcriptional repressor VRILLE (VRI) that both regulate clk 

transcription, thus locking the second interconnected feedback loop (Hardin, 2005). 

In case of N. crassa the central transcriptional activator complex WCC not only 

forms a second feedback loop regulating expression of own transcriptional repressor 

VIVID (VVD) (Heintzen et al., 2001), but also seems to play an important role in the 

light input pathway. 

The circadian system of A. thaliana was found to be slightly different. Its 

oscillator contains at least three interconnected feedback loops and each of them 

includes the MYB-like transcriptional factors LATE ELONGATED HYPOCOTYL 

(LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) acting as negative 

elements. The role of positive elements in these loops play TIME OF CAB 

EXPRESSION 1 (TOC1, also known as PSEUDO-RESPONSE REGULATOR 1), 

and the other PRRs, and the MYB transcription factor LUX ARRHYTHMO (LUX) 

(Hazen et al., 2005). Moreover, some other elements like GIGANTEA (GI) 

(Mizoguchi et al., 2005) or EARLY FLOWERING 4 (ELF4) (Kikis et al., 2005) 

were found to be parts of that feedback loops, but, so far the exact role of all these 

components in the clock still stays unclear. 

Kinases and phosphatases play a very important role in the functioning of 

circadian oscillators (Gallego and Virshup, 2007). Working as antagonists in all so 
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far known feedback loops, they regulate the phosphorylation level of some negative 

elements, thus controlling their stability and ability to establish protein-protein 

interactions. CASEIN KINASE 1 and 2 (CK1, CK2) as well as their antagonists 

PROTEIN PHOSPHATASE 1 and 2A (PP1, PP2A) that are highly conserved 

components of the circadian system were shown to play a role in A. thaliana, N. 

crassa, D. melanogaster and mammalian clocks. Thus, it was shown, for examle, 

that the balance between DOUBLETIME (DBT), the D. melanogaster homolog of 

CK1, and PP2A activities regulates the phosphorylation and stability of the central 

clock component CLK (Kim and Edery, 2006). Furthermore, some other kinases and 

phosphatases were found as, for example, the GLUCOSE SYNTHASE KINASE 3 

homolog SHAGGY (SGG) phosphorylating TIM in D. melanogaster (Martinek et 

al., 2001) or CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE 1 

(CAMK1) and PERIOD-4 (PRD-4) phosphorylating FRQ in N. crassa (Yang et al., 

2001; Pregueiro et al., 2006) as well as PROTEIN PHOSPHATASE 5 working in a 

complex with CRY and CK1 in mammals (Partch et al., 2006). 

 

1.3.2 The input pathway 

1.3.2.1 Temperature 

Temperature can affect circadian system by different means. From one side, 

temperature changes can probably activate some common signal transduction 

pathways. For example, they were shown to affect membrane properties (Yatvin and 

Cramp, 1993), ion (particularly calcium) levels, and second messenger 

concentrations (cAMP and cGMP) (Rensing and Ruoff, 2002). At the same time, 

temperature signals may have a direct influence on clock mechanism via acceleration 

or slowing of enzyme-regulated processes involved in transcription, processing of 

gene products (Diernfellner et al., 2005), translation as well as posttranslational 

modifications of proteins (e.g., phosphorylation/ dephosphorylation).  

In the past years, first molecular components were identified from some 

model organisms that are involved in the mechanism of temperature compensation 

and/or entrainment by temperature cycles. In N. crassa, it was shown that the 

expression of one of the key components of its circadian system, FRQ, is thermally 

regulated at the translational level and in addition involves thermosensitive splicing 

(Liu et al., 1997; Diernfellner et al., 2005; Dunlap, 2006). Further, the PAS/LOV 
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protein VVD controls temperature compensation of circadian clock phase (Hunt et 

al., 2007). In A. thaliana, quantitative trait loci (QTL) were mapped for period and 

amplitude of leaf movement. All of the period QTL are temperature specific, 

suggesting that they may be involved in temperature compensation. Already 

mentioned before GI, a protein involved in flowering, and the F-box protein 

ZEITLUPE were identified as strong candidates for two of the QTL (Edwards et al., 

2005). A later approach showed that several key clock components of A. thaliana are 

involved in temperature sensing including GI, TOC1, CCA1 and LHY (Gould et al., 

2006). In cyanobacteria, it was found that the central clock components KAI A, B 

and C are not only able to trigger circadian phosphorylation of KAI C in vitro in the 

presence of adenosine triphosphate, but that this rhythm is also temperature 

compensated (Nakajima et al., 2005). A model for this in vitro process has been 

developed recently (Mori et al., 2007).  

1.3.2.2 Light 

The mechanisms of the clock entrainment by light/dark cycle are investigated more 

profound at the molecular level. Thereby, photoreceptors play an important role. 

Some of them as CRYs in D. melanogaster (Ceriani et al., 1999) and Arabidopsis 

thaliana (Lin, 2002), WC-1 in N. crassa (Lee at al., 2003), PHOTOTROPINs in 

plants (Kasahara et al., 2002) or MELANOPSIN in mammals (Hanifin and Brainard, 

2007) are blue light photoreceptors, while PHYTOCHROMEs acting in plants are 

red/far-red reversible photoreceptors (Nagy and Schafer, 2002). The further way of 

the light signal transduction varies in different organisms. It can lead to 

transcriptional activation, like in case of N. crassa (Dunlap and Loros, 2004), or 

stimulate degradation of some central oscillator components, like in case of D. 

melanogaster (Ceriani et al., 1999). Moreover, even the presense of a photoreceptor 

is not obligatory. For example, up to now no "true" photoreceptor involved in the 

circadian system has been identified in cyanobacteria, where the clock is found to be 

sensitive to changes in cellular redox state caused by photosynthesis (Ivleva et al., 

2005).  

 

1.3.3. The output pathway 

Circadian output is often regulated at the transcriptional level involving so called 

clock-controlled genes (ccgs). It is known, for example, that clock-controlled genes 
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can represent from 1 - 5% like in D. melanogaster, but can comprise close to 100% 

of the genome like in the case of cyanobacteria (Allada et al., 2001).  

One example, where the regulation occurs at the transcriptional level in 

several so far studied plants, are proteins of the LIGHT-HARVESTING COMPLEX 

(lhc), also called cab (CHLOROPHYLL A/B BINDING protein; reviewed in 

Piechulla, 1999). A motif called evening element (EE) was identified in the promotor 

of the lhcb1 (light harvesting chlorophyll a/b binding protein 1) gene of A. thaliana 

that is recognized by the circadian transcription faktor CCA1 (Wang and Tobin, 

1998). The circadian controlled binding of CCA1 to the EE in the lhcb1 promotor is 

responsible for the rhythmical expression of this gene. Such EE motifs were 

identified in 31 genes of A. thaliana that are all known to be rhythmically expressed 

(Harmer et al., 2000). 

But regulation of circadian output can also occur at the translational level. For 

example, in D. melanogaster an RNA-binding protein LARK was identified that is 

shown to be associated with many different RNAs in the central nervous system and 

that has an important role in the circadian control of population eclosion (Huang et 

al., 2007). Two closely related clock-regulated RNA-binding proteins, 

AtGRP7/CCR2 and AtGRP8/CCR1, (A. thaliana GLYCINE-RICH RNA-BINDING 

PROTEIN/COLD AND CIRCADIAN REGULATED) were shown to mediate 

posttranscriptional control in the output A. thaliana clock (reviewed in Schöning and 

Staiger, 2005). Another RNA-binding protein CIRCADIAN CONTROLLED 

TRANSLATIONAL REGULATOR (CCTR) was found that is correlated with the 

rhythmical expression of LUCIFERIN-BINDING PROTEIN in the dinoflagellate 

Lingulodinium polyedrum (Mittag et al., 1994). 

 

1.4 The circadian system of Chlamydomonas reinhardtii 

1.4.1 C. reinhardtii, a eukaryotic model organism 

C. reinhardtii is a eukaryotic unicellular biflagellate green alga that lives commonly 

in fresh water and soil. It has a number of qualities that make it a very useful and 

popular model organism to study various aspects of cellular and molecular biology 

(Harris, 2001). C. reinhardtii can be quickly grown both in liquid and on solid 

medium. Being a photosynthetic organism it can live autotrophically, but at the same 

time it can live without light in heterotrophic conditions using acetate as carbon 
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source. Thus, mutants with serious damages of photosynthetic apparatus are viable, 

which gives big advantages for the research of the biogenesis and function of the 

chloroplast and of its photosynthetic machinery (Rochaix, 2004). The presence of the 

flagella and the basal body and the investigation of their protein composition and 

function with respect to their relevance for human diseases are also of high interest 

(Rosenbaum and Witman, 2002; Snell et al., 2004). Such an organelle as the eyespot 

allows using C. reinhardtii for the research of a primitive visiual system to study the 

mechanism(s) of the light signalling pathway (Kateriya et al., 2004).  

A number of valuable molecular tools have been developed for C. reinhardtii. 

Numerous mutants of this alga are available. C. reinhardtii was the first 

photosynthetic eukaryote, which allowed stable transformation of the nuclear 

(Debuchy et al. 1989; Kindle et al. 1989), chloroplast (Boynton et al. 1988), and 

mitochondrial (Randolph-Anderson et al. 1993) genomes. For efficient and stable 

nuclear transformation, a variety of techniques have emerged, including particle gun 

bombardment (Debuchy et al., 1989; Kindle et al., 1989), agitation with glass beads 

(Kindle, 1990), or electroporation (Shimogawara et al., 1998). Moreover, some other 

tools were developed including reporter genes with optimized codon usage such as c-

gfp (green fluorescent protein) (Fuhrmann et al., 1999) and c-rluc (Renilla luciferase) 

(Fuhrmann et al., 2004), dominant antibiotic selection markers of sulfometuron 

methyl, paromomycin and cycloheximide resistance (Kovar et al., 2002; Sizova et al. 

2001; Stevens et al. 1996), and strong promoter systems like the hsp70a/rbcS2 

tandem promoter (Schroda et al., 2000; Sizova et al, 2001) or the psaD promoter 

(Fischer and Rochaix, 2001). The application of RNAi (RNA interference) has been 

established as a method for controlled reduction of protein expression (Fuhrmann et 

al., 2001; Schroda, 2006).  

A big step forward for the use of C. reinhardtii as a model system was the 

sequencing of its entire nuclear (Merchant et al., 2007), chloroplast (Maul et al., 

2002) and mitochondrial (Gray and Boer, 1988) genomes and the generation of a 

comprehensive EST library that currently comprises more than 200,000 ESTs 

(Asamizu et al. 1999, 2000; Shrager et al., 2003). 

 

1.4.2 The circadian clock of C. reinhardtii 

C. reinhardtii exhibits a number of already well characterized circadian rhythms. The 

first one described more then 35 years ago by Victor Bruce (Bruce, 1970) is the 
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rhythm of phototaxis, which is the active movement of the alga towards a light 

source. The circadian rhythm of phototaxis in wild type reaches its maximum during 

subjective day and its minimum during subjective night. The phototactic rhythm can 

be automatically measured (Mergenhagen, 1984; Johnson et al., 1992). The 

persistence of the phototactic rhythm under constant conditions was even proven in 

outer space, where the rhythm continued for at least 6 days in conditions of 

microgravity (Mergenhagen and Mergenhagen, 1987). Several mutants of C. 

reinhardtii were isolated, which have either a shorter (Bruce, 1972) or a longer 

period (Bruce, 1974) of the phototactic rhythm. They have been named per, but, 

although they have the same nomenclature as the per mutants in Drosophila and 

mammals, it is rather unlikely that the same proteins are defect since there is no 

evidence for a PER homologue in C. reinhardtii (Mittag et al., 2005) 

Another circadian rhythm exhibited by C. reinhardtii is the rhythm of 

chemotaxis to nutrients that was studied by using the chemoattractant ammonium 

(Byrne et al., 1992). The cells were shown to have maximal activity of swimming 

towards the nitrogen source in the middle of the night phase.  

There are also other circadian rhythms in C. reinhardii that peak during the 

night phase. One of them is the rhythm of cell stickiness to glass (Straley and Bruce, 

1979) that reflects alteration to the cell surface. Another rhythm is the cell division 

cycle, which was studied first by Bruce (1970) and later by Goto and Johnson 

(1995). Recently, Nikaido and Johnson (2000) discovered an additional circadian 

rhythm in C. reinhardtii, the rhythm of its sensitivity to UV radiation. It was found 

that survival of cultures exposed to UV light reaches a minimum at the day-night 

switch. 

 

1.4.3 Molecular components of the circadian system of C. reinhardtii 

Although the molecular mechanisms underlying circadian clocks in various 

organisms are to a great extend conserved, those regulating the circadian clocks in C. 

reinhardtii seem to be different. Extensive search in the C. reinhardtii genome 

database (JGI) for potential homologues of genes that are known to encode 

components of the circadian clock in other organisms revealed that there are no 

obvious homologues, except for the kinases (CK1, CK2, SGG) and phosphatases 

(PP1, PP2A) (Mittag et al., 2005). At the same time, there were two CRY-like 

proteins found in C. reinhardtii (Mittag et al., 2005). One of them was shown to be 
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more closely related to the CRY of A. thaliana where it is known to act in the input 

pathway as a photoreceptor, while the other is more related to the mammalian kind of 

CRY, which acts as a component of the main oscillator. Therefore, it was 

hypothesized that C. reinhardtii may have an “amalgam” clock (Breton and Kay, 

2006). 

Very recently, an insertional mutagenesis approach highlighted several 

components of the plastid-driven circadian clock of C. reinhardtii (Matsuo et al., 

2008). 

 

1.4.4 The circadian RNA-binding protein CHLAMY1 of C. reinhardtii  

Several years ago, a heteromeric RNA-binding protein entitled CHLAMY1 was 

discovered in the green alga C. reinhardtii that seems to be involved in its circadian 

system. It was found as a functional homolog of the CIRCADIAN CONTROLLED 

TRANSLATIONAL REGULATOR (CCTR) from the marine dinoflagellate 

Lingulodinium polyedrum. The CCTR is known to recognize specifically and bind in 

a circadian manner to a 22-nt sequence carrying seven UG-repeats situated in the 3’-

untranslated region (3’-UTR) of luciferin binding protein mRNA (lbp) whose protein 

is a main component of the bioluminescence controlling part of the output pathway 

in circadian system of L. polyedrum. It was found that the level of LBP is circadian 

controlled being 10-fold higher during the night- comparing to the day-phase, but the 

level of lbp mRNA appeared to be constant over the circadian cycle. Therefore, it 

was suggested that the circadian expression of LBP is regulated at the translational 

level (Morse et al., 1989), which was the first example of such a type of regulation. 

Later it was also found that the oscillations of LBP are in opposite to the binding 

activity of the CCTR to lbp mRNA suggesting that the CCTR functions as a 

translational repressor (Mittag et al., 1994). 

In the C. reinhardtii circadian system, a CCTR homolog CHLAMY1 was 

found. It also recognizes specifically and binds in the circadian manner to a sequence 

of at least seven UG tandem repeats (Mittag, 1996). But unlike the CCTR, the 

maximal binding activity of CHLAMY1 occurs at the beginning of the night-phase. 

Several mRNAs have been identified bearing UG tandem repeats from 7 to 16 in 

their 3’-UTRs, to which CHLAMY1 can specifically bind (Waltenberger et al., 

2001). It was shown recently that the presence of such a UG-repeat in the 3'-UTR of 

an mRNA can not only mediate circadian rhythmicity of its translation, but it can 
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also determine its acrophase (Kiaulehn et al, 2007). Biochemical purification and 

characterization of CHLAMY1 revealed a novel type of RNA-binding protein that is 

composed of two different subunits (Zhao et al., 2004), whose interaction are 

necessary for the RNA binding (Figure 3). One of them named C1 (Figure 3A) has 

three lysine homology domains and a protein-protein interaction domain (WW). The 

other one called C3 (Figure 3B) belongs to the proteins of the CELF (CUG-BP-ETR-

3-like factors) family and bears three RNA recognition motif domains. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Domain architecture of the subunits of CHLAMY1 encoded by the c1 and c3 cDNA, 
respectively (reprinted from Zhao et al., 2004) 

Positions of the open reading frames (ORF), 5'- and 3'-untranslated regions (UTR) and the poly-A tail 
(A) are shown. A. cDNA encoding the C1 subunit: KH - lysin homology domain, PGG/YGG - region 
which is rich in glycine, proline, and tyrosine, WW - protein-protein interacting domain,. B. cDNA 
encoding the C3 subunit: RRM - RNA recognition motive, Met-rich - region, which is rich in 
methionine and glycine.  

 

The subunits C1 and C3 have theoretical molecular masses of 45 and 52 kDa, 

respectively, and are present in nearly equal amounts during the circadian cycle. It 

was shown that at the beginning of the subjective night both subunits can be found in 

protein complexes of 100 to 160 kDa (Zhao et al., 2004). However, during subjective 

day when binding activity of CHLAMY1 is low, the C1 subunit is in addition present 

in a high-molecular-mass protein complex of more than 680 kDa. These data indicate 

posttranslational control of the circadian binding activity of CHLAMY1.  
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1.5 Main aims of the PhD work 

One major goal of this thesis was to examine the function of the C1 subunit of 

CHLAMY1 in the circadian system of C. reinhardtii. For this purpose, it was 

planned to silence the expression of this subunit using an RNAi approach. Thereby, it 

was of interest to study if the silencing of the C1 subunit could have any effect on the 

phase, period or amplitude of a representative circadian rhythm in C. reinhardtii. As 

described before, CHLAMY1 is known to control some mRNAs like, for example, 

nii1 by binding to the (UG)≥7-repeats in its 3'-UTR. Thus, measurement of NII 

activity was planned in a silenced C1 strain to study the influence of C1 on its direct 

output target. At the same time, a suitable physiological rhythm that can be well 

analyzed is the already mentioned phototactic movement of C. reinhardtii that can be 

automatically measured over a period of seven days. Analysis of the effects on the 

NII activity and phototaxis rhythms in C1 silenced transgenic strains was expected to 

enhance the understanding of the role of CHLAMY1 in the circadian system of C. 

reinhardtii. 

In all so far studied model organisms the molecular components are involved 

in a complicate network of interconnected interactions and feedback loops that drive 

the clock oscillation. Very often changes in the expression of any clock component 

change the expression of other components, with regard to their phase or amplitude 

of expression (Lee et al., 2000). Therefore, it was also of interest to analyze if 

silencing of C1 could affect also the expression of the C3 subunit in parallel. 

Another major goal of my work was to investigate the mechanism of 

temperature integration, a prerequisite for entrainment by temperature cycles and 

temperature compensation, by analysing the potential involvement of the RNA-

binding protein complex CHLAMY1 in those processes. Therefore, it was planned to 

check the expression level of both C1 and C3 at different temperatures (18 - 28°C), 

which are within the physiological range for C. reinhardtii. If the expression of any 

of the two subunits would be temperature dependent, it was planned to characterize 

the underlying molecular mechanism(s). Moreover, a comparable approach in the 

long period clock mutant per1 was planned. 
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2. Materials and Methods 
 

2.1 Materials 
 

2.1.1 Devices 

Device description Producer 

Autoclave Varioklav®  H+P Labortechnik, Munich  

Thermostat/Incubator (KB-53) WTB binder, Tuttlingen  

Electroblot PerfectBlue™, Semi-Dry-
Electroblotter SEDEC M 

PEQLAB Biotechnologie GmbH, 
Erlangen  

Horizontal electrophoresis unit Hoefer HE 
33, Mini horizontal submarine unit 

Amersham Pharmacia Biotech., 
Freiburg  

Vertical electrophoresis unit 1:  
Maxi-Gel-System, 010- 400, 17x18 cm 

Biometra, Göttingen  

Vertical electrophoresis unit 2: 
Ettan Dalt Six 

GE Healthcare, Munich 

Isoelectric Focusing System, Ettan 
IPGphor 

GE Healthcare, Munich 

-86°C Ultra-Low Temperature Upright 
Freezer 

Thermo Forma, Marietta, OH USA 

Cooling centrifuge Hermle Z323K  Hermle, Wehingen  

Minishaker 1: Vortex Mixer VM-300  NeoLab, Heidelberg  

Minishaker 2: Vibrofix VF 1  Electronic Bachhofer, Reutlingen  

Minishaker 3: Vortex-Genie®2 Scintific Industries, New York, USA  

Rotation shaker Roto-Shake Genie™ Scientific Industries, Inc., USA  

Pocking platform shaker GFL 3015 Burgwedel 

PCR machine/ Thermocycler PTC-100™  MJ Research Inc./Biozym, Oldendorf  

Photometer Helios beta Thermo Elektron Corporation, San 
Jose, CA USA 

Table centrifuge: Eppendorf 5415D Eppendorf, Munich  

Ultracentrifuge Avanti ™ J-30 I  Beckmann Instruments Inc., Palo Alto, 
CA USA  

Vacuum concentrator Savant Speed vac® 
Plus SC 110 

Savant, Holbrook, NY  

Freezing container „Mr. Frosty-Box“ 
Cryo, 1C; Nalgene 

Nunc GmbH & Co. KG, Wiesbaden  
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2.1.2 Chemicals 

All used chemicals had p.A. quality and were purchased in the following companies: 

Roth (Karlsruhe), Sigma (Steinheim), Merck (Darmstadt) und AppliChem 

(Darmstadt). 

 

2.1.3 Enzymes 

The enzymes were used with specific buffer systems supplied by the corresponding 

companies. 

- Restriction enzymes were bought from New England Bioscience (Frankfurt), 

Roche (Mannheim) and Jena Bioscience (Jena).  

- Klenow (large) fragment of DNA Polymerase I (5 unit/μl, NEB, Frankfurt). 

- T4 Ligase (1 unit/μl and 5 units/μl; Roche, Mannheim). 

- RNase A (0,9 units/μl; Roth, Karlsruhe): 100 mg were dissolved in 10 ml 50 mM 

sodium acetate buffer (pH 4,8). For inactivation of DNAse activity the solution 

was cooked for 15 min in water bath and then immediately transferred on ice. 

- Protease Inhibitor (PIC) (Complete™ Protease Inhibitor Cocktail Tablets; 

Roche, Mannheim): A tablet was dissolved in 2 ml extraction buffer 1 or 2 for C. 

reinhardtii. This stock solution is 25x concentrated. 

- Phosphatase Inhibitor Cocktail 1 (PhIC 1) (DMSO solution) and Phosphatase 

Inhibitor Cocktail 2 (PhIC 2) (aqueous solution), (Sigma, Taufkirchen). 

- Lambda Protein Phosphatase (400 units/µl, NEB, Frankfurt).  

 

2.1.4 Kits and consumables 

Product Producer 

„GenElute™ Gel Extraction Kit“  Sigma (Taufkirchen)  

„QIAquick® PCR Purification Kit“  Qiagen (Hilden)  

"High Pure Plasmid Isolation System" Roche (Mannheim) 
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Glass beads for the transformation of       
C. reinhardtii (Ø 0,45–0,5mm)  

Braun (Melsungen)  

Glass beads for the protein crude extract 
preparation (Ø 0,25–0,3 mm)  

Sartorius AG (Göttingen)  

„PCR Cloning Kit (Blunt end)“  Roche (Mannheim)  

„GC-RICH PCR System“  Roche (Mannheim)  

4 x Roti-Load  Roth (Karlsruhe)  

Gel blotting paper (460 x 570 mm)  Roth (Karlsruhe)  

Cellulose-acetate filter Sartorius SM 11200 Sartorius (Göttingen) 

Bio-Rad Protein Assay  Bio-Rad (Munich)  

Protran® BA 85 Nitrocellulose  Schleicher & Schüll Bioscience 
GmbH (Dassel)  

Roti®-PVDF Transfermembranen  Roth (Karlsruhe)  

Fuji Medical X-Ray Film 100 NiF 13x18 
cm, Super RX  

Fujifilm, Fischer-Sehne Medica IMA 
(Nordhausen) 

Immobiline DryStrip pH 3-10, 18 cm GE Healthcare (Munich) 

MemCode™ Reversible Protein Stain Kit 
For Nitrocellulose Membrane  

Pierce (Rockford, USA) 

Okadaic acid Calbiochem (Darmstadt) 

CKI-7 (N-(2-Aminoethyl)-5-
chloroisoquinoline-8-sulfonamide) 

Toronto Research Chemicals Inc. 
(USA) 

Cycloheximide  Sigma-Aldrich (Taufkirchen) 

 

2.1.5 C. reinhardtii strains 

Strain Reference Genotype Cultivation 
medium 

SAG73.72  Collection of alga 
cultures at the  
University of Göttingen 

wt, mt+  TAP  

CLS31-8  Johnson und Suzuki  
(Nashville, USA),  
personal communications 

arg7-, mt- TAP+-Medium;  
50 mg/ml Arginin  

CLS31-10  Johnson und Suzuki  
(Nashville, USA),  
personal communications 

arg7-, mt+  TAP+-Medium;  
50 mg/ml Arginin  

C1117 Chlamydomonas center at 
Duke University, (Bruce 
et al., 1972) 

per-1, mt+ TAP 
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2.1.6 Escherichia coli strains 

Strain Reference Genotype Medium 

XL1-Blue  Bullock et al., 1987 recA1,endA1, gyrA96, thi-1, 
hsdR17, supE44, relA1, lac 
[F'proAB lacIqZ ΔM15 Tn10 
(Tet r)]  

LB-Medium  

 

2.1.7 Vectors 

Vector Reference 

pBluescript KS+  Stratagene (La Jolla, USA)  

pCAPS  Roche (Mannheim)  

 

2.1.8 Recombined plasmids 

In this work the following plasmids were used: 

pCS30  

The plasmid contains c1 cDNA from position 689 to 2734 (EST: AY505473; Zhao et 

al., 2004). 

 

 

 

 

 

 

 

 

 
Figure 4. Restriction map of pCS30 

c1 cDNA is depicted as the green arrow, the gene of ampicillin resistance (amp) as the cyan arrow. 
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pGG1 

The plasmid contains ck1 cDNA from position 698 to 1533 (EST: AV390567, 

AB091079; Gessner and Mittag, personal communication, Schmidt et al., 2006). 

 

 

 

 

 

 

 

 

 
Figure 5. Restriction map of pGG1 

ck1 cDNA is depicted as the green arrow, the gene of ampicillin resistance (amp) as the cyan arrow. 
 

pSI103 

The plasmid contains the paromomycin resistance gene aphVIII under control of the 

strong hsp70a/rbcs2 tandem promoter (Sizova et al., 2001). The tandem promoter 

consists of the hsp70a promoter and the rbcs2 promoter along with the first intron of 

the rbcs2 gene, containing an enhancer. Downstream of the aphVIII gene the rbcs2 3'-

UTR is situated. 

 

 

 

 

 

 

 

 

 
Figure 6. Restriction map of pSI103  

The aphVIII gene for paromomycin resistance is depicted as the blue box, the hsp70a promoter as the 
green box, the rbcs2 promoter with the first intron of the rbcs2 gene as the beige box. The rbcs2 3'-
UTR is shown as grey arrow. The gene of ampicillin resistance (amp) is presented as cyan arrow. 
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2.1.9 Oligonucleotides 

Name Sequence 

OMM232 5'-AGGTATGCGTGCACAAAGTC-3'  

OMM249 5'-ATGAGCACCGTCTTGAGACTG-3' 

OMM267 5'-TGTGAGTTGGTGCGAATGAG-3' 

OMM269 5'-AGCGGATGAGGTCCTCAATG-3' 

S1 5'-GCTATGACTCACCCGGACGG-3' 

S2 5'-CTTAAGAATTCGTCCCACGG-3' 

 

2.1.10 Molecular standards 

2.1.10.1 DNA standards 

Ladder 1: Lambda DNS/ BstEII-Digest, NEB (Frankfurt, Germany) 

Fragments: 8454 bp, 7242 bp, 6369 bp, 5686 bp, 4822 bp, 4324 bp, 3675 bp, 2323 

bp, 1929 bp, 1371 bp, 1264 bp, 702 bp, 224 bp, 117 bp. 

Ladder 2: 1 kb DNA Ladder, NEB (Frankfurt, Germany) 

Fragments: 10000 bp, 8000 bp, 6000 bp, 5000 bp, 4000 bp, 3000 bp, 2000 bp, 1500 

bp, 1000 bp, 500 bp. 

 

2.1.10.2 Protein standards 

SDS-PAGE Molecular Weight Standard, Broad Range (Bio-Rad, Munich) 

Proteins: Myosin (200 kDa), ß-Galactosidase (116,25 kDa), Phosphorylase B (97,4 

kDa), Serumalbumin (66,2 kDa), Ovalbumin (45 kDa), Carbonicanhydrase (31 kDa), 

Trypsininhibitor (21,5 kDa), Lysozyme (14,4kDa), Aprotinin (6,5 kDa). 

 

2.1.11 Antibodies 

2.1.11.1 Primary antibodies 

For this work the following antibodies were used:  

- antibodies directed against C1 and C3 subunits of CHLAMY1 (Zhao et al., 2004); 

- anti-CK1 peptide antibodies (Schmidt et al., 2006).  
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2.1.11.2 Secondary antibodies 

As a secondary antibody, monoclonal anti-rabbit immunoglobulin G clone RG-96 

peroxidase conjugate (Sigma-Aldrich, Taufkirchen) was used.  

 

2.1.12 Cultivation media 

All media were prepared from distilled water that has conductivity less than 0,05 

µS/cm. Media were sterilised by autoclaving for 40 min at 121°C and 1 bar, and 

stored at 4°C. 

 

2.1.12.1 E. coli cultivation media 

Medium Composition 

LB medium 25 g LB powder (Luria Bertani, ready to use product, 
Sigma); dissolved in 1 l ddH2O  

LB agar plates 1 l LB-Medium; 1,5% (w/v) Agar 

Selection medium 10 ml ampicillin (10 mg/ml; Roth, Karlsruhe) per 1 l LB-
Medium 

SOC medium 2% (w/v) Bactotrypton; 0,5% (w/v) Yeast extract; 8,6 
mM NaCl; 2,5 mM KCl; 10 mM MgCl2; after sterilisation 
add 20 mM sterile filtered glucose; store at -20°C  

 

2.1.12.2 C. reinhardtii cultivation media  

Medium Composition 

TAP medium (Harris, 1989) 2,42 g Tris ultra pure; 25 ml Filner’s 
Beijernicks Solution; 1 ml 1 M (K)(PO4)-buffer 
pH 7; 1 ml Trace Mineral Solution; bring 
volume to 1 l with ddH2O; adjust pH to 7,0 
with acetic acid  

TAP regeneration top agar TAP medium with 0,5% (w/v) agar  

TAP agar plates  TAP medium with 2% (w/v) agar  

TAP+ with NH4Cl buffer 2,42 g Tris ultra pure; 1 ml 1 M (K)(PO4)-
buffer pH 7,0; 1 ml Trace Mineral Solution; 1 
ml 1 M MgSO4 x 2 H2O solution; 25 ml salt 
Solution with NH4Cl; dissolve in 1 l ddH2O; 
adjust pH to 7,0 by acetic acid; add 50 mg 
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arginine  

1x TAP+ without NH4Cl buffer 2,42 g Tris ultra pure; 1 ml 1 M (K)(PO4)-
Puffer pH 7,0; 1 ml Trace Mineral Solution; 1 
ml 1 M MgSO4 x 2 H2O 

Full medium agar plates 50 ml phosphate buffer for full medium; 50 ml 
salt solution for full medium; 1 ml Trace 
Mineral Solution; 1 g yeast extract; 2 g 
potassium acetate; bring the volume to 1 l with 
ddH2O; 2% (w/v) agar  

Minimal medium 50 ml phosphate buffer for full medium; 50 ml 
salt solution for full medium; 1 ml Trace 
Mineral Solution; bring the volume to 1 l with 
ddH2O  

Selection medium 50 µg/ml paromomycin in a medium 

 

2.1.13 Buffers and solutions 

All buffers and solutions were prepared with ddH2O und when necessary sterilised 

by autoclaving for 30 min at 121°C and at 1 bar air pressure. 

 

2.1.13.1 Solutions for C. reinhardtii cultivation media  

Solution Composition 

Phosphate buffer  14,34 g K2HPO4; 7,26 g KH2PO4; dissolve in 1 
l ddH2O  

Filner’s Beijernicks Solution for 
TAP medium 

3,2 g NH4Cl; 0,4 g CaCl2 x 2 H2O; 0,2 g 
MgSO4 x 7 H2O; dissolve in 200 ml ddH2O  

Salt solution for TAP+ without 
NH4Cl  

0,4 g MgCl2 x 7 H2O (or 0,37 g MgCl2 x 6 
H2O); 0,26 g CaCl2 x 2 H2O; dissolve in 100 
ml ddH2O  

Salt solution for full- and 
minimal media  

8 g NH4Cl; 1 g CaCl2 x 2 H2O; 2 g MgSO4 x 7 
H2O; dissolve in 1 l ddH2O  

1 M (K)(PO4) buffer for TAP 
medium  

57,06 g K2HPO4 x 3 H2O; 34,02 g KH2PO4; 
dissolve each in 250 ml ddH2O; to 250 ml 
K2HPO4 add KH2PO4 (ca. 150 – 170 ml) until 
pH 7,0 will be achieved 

Salt solution for TAP+ with 
NH4Cl 

1,6 g NH4Cl; 0,4 g MgCl2 x 7 H2O; 0,26 g 
CaCl2 x 2 H2O; dissolve in 100 ml ddH2O 

Trace Mineral Solution (Hutner 
et al., 1950) 

2,2 g ZnSO4 x 7 H2O; 1,14 g H3BO3; 0,506 g 
MnCl2 x 4 H2O (or 0,414 g MnCl2 x 2 H2O); 
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0,499 g FeSO4 x 7 H2O; 0,161 g CoCl2 x 6 
H2O; 0,157 g CuSO4 x 5 H2O; 0,110 g 
(NH4)Mo7O24 x 2 H2O; dissolve one by one in 
ddH2O; then add 5 g Na-EDTA and hit to 
100°C, cool down, adjust pH to 6,5-6,8 by 10% 
KOH, fill up to 100 ml with ddH2O, sterilise 
by filtration. The colour of the solution should 
be clear green and change in some days to 
violet 

 

2.1.13.2 Solutions for gel electrophoresis and standard molecular biological 

methods 

Solution Composition 

40x TA  48,4 g Tris ultra pure; 11,4 ml concentrated 
acetic acid; 0,18 g Na-EDTA (or 40 ml 0,5 
M EDTA solution, pH 8); dissolve in 250 ml 
ddH2O; adjust pH to 8,1 by acetic acid 

10/1 TE buffer  10 mM Tris pH 8,0; 1 mM EDTA 

50/10 TE buffer 50 mM Tris pH 8,0; 10 mM EDTA 

Lysis buffer 1                                 
for the isolation of a plasmid DNA  

1 N NaOH; 20% (w/v) SDS  

Potassium acetate buffer  3 M potassium acetate, pH 4,8  

Lysis buffer 2                               
for the isolation of a genomic DNA 

2% (w/v) CETAP; 100 mM Tris-HCl pH 
8,0; 1,4 M NaCl; 20 mM EDTA 

 

2.1.13.3 Buffers and solutions for protein biochemical experiments 

Buffer Composition 

Extraction buffer 1 10 mM Tris pH 7,5; 80 mM NaCl; 1 mM EDTA; 
1% glycerol 

Extraction buffer 1 with PIC 
and DTT  

10 mM Tris pH 7,5; 80 mM NaCl; 1 mM EDTA; 
1% glycerol; 0,2 mM DTT; 2% (v/v) PIC  

10 mM phosphate buffer, pH 7 50 ml 20 mM Na2HPO4 adjust pH to 7 with 20 
mM NaH2PO4, bring volume to 100 ml with 
ddH2O 

Extraction buffer 2 (for 2-DE) 10 mM phosphate buffer, pH 7; 14 mM DTT 

Extraction buffer 3 (for NII 
activity test) 

50mM Tris pH 8; 5mM EDTA; 14mM 
dithiothreitol 
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Neuhoff stain solution 0,5% (w/v) amidoblack 10 B extra; 90% 
methanol; 10% acetate acid 

Neuhoff destain solution 90% methanol; 10% acetate acid 

TCA solution 10% (w/v) TCA; 0,1% (w/v) DTT; in acetone 

Washing solution 0,1% (w/v) DTT; in acetone 

Rehydration buffer  8 M urea; 0,5% (w/v) CHAPS; 20 mM DTT; 
0,2% IPG-buffer; 10% glycerol; bromphenol 
blue  

Equilibration buffer 1 50 mM Tris-HCl pH 8,8; 6 M urea; 30 % 
glycerol; 2% SDS; 1% DTT  

Equilibration buffer 2 50 mM Tris-HCl pH 8,8; 6 M urea; 30 % 
glycerol; 2% SDS; 4% iodacetamide; 0,05% 
bromphenol blue 

2,5x resolving gel buffer, pH 
8,9 

1,875 M Tris-HCl, pH 8,9; 0,25% (w/v) SDS  

Resolving gel (9%)  7,5 ml 30% (w/v) acrylamid/0,8% (w/v) bis-
acrylamid; 6,25 ml 2,5x resolving gel buffer; 
11,25 ml ddH2O; 20 μl TEMED; 312 μl 10% 
(w/v) APS 

Resolving gel (10%) for 2-DE 375 mM Tris-HCl, pH8,8; 10% (w/v) 
acrylamid/0,3% (w/v) bis-acrylamid; 0,02% Na-
thiosulfate; 0,0004% (v/v) TEMED; 0,005% 
(v/v) 10% (w/v) APS 

Resolving gel (12%)  10 ml 30% (w/v) acrylamid/0,8% (w/v) bis-
acrylamid; 6,25 ml 2,5x resolving gel buffer; 
8,75 ml ddH2O; 20 μl TEMED; 312 μl 10% 
(w/v) APS  

5x stacking gel buffer, pH 6,7  0,3 M Tris-phosphate buffer, pH 6,7; 0,5% (w/v) 
SDS  

Stacking gel (5%)  1,65 ml 30% (w/v) acrylamid/0,8% (w/v) bis-
acrylamid; 2 ml 5x stacking gel buffer; 6,15 ml 
ddH2O; 10 μl TEMED; 156 μl 10% (w/v) APS  

5x electrophoresis buffer 1  0,5 M Tris; 1,92 M glycerol; 0,5% (w/v) SDS  

10x electrophoresis buffer 2 0,25 M Tris; 1,92 M glycerol; 1% (w/v) SDS 

Coomassie methanol free 
solution 

0,2% (w/v) Coomassie Brillant Blue R250; 45% 
(v/v) 96% ethanol; 10% (v/v) acetic acid  

Distaining solution 20% (v/v) 96% ethanol; 10% (v/v) acetic acid 

 

2.1.13.4 Buffers for immunochemical experiments 

Buffer Composition 
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Semi-dry transfer buffer  25 mM Tris; 192 mM glycine; 20% Methanol 
(v/v); pH 8,3  

Ponceau solution  0,2% (w/v) Ponceau-S; 3% (v/v) trichloracetate 

Blocking buffer  1x TBS-Tween 20, pH 7,5; 1% (w/v) Slim-
Fast® Milchshake-Powder, type chocolate 
(Slim-Fast, Messel)  

10x TBS  200 mM Tris, pH 7,5; 1,5 M NaCl  

1x TBS-Tween  10% 10x TBS; 0,05% (v/v) Tween 20  

Luminol solution 1  100 mM Tris, pH 8,5; 1% (v/v) Luminol stock 
solution (0,44 g in 10 ml DMSO, protect from 
light); 2,2% (v/v) p-cumarin acid 

Luminol solution 2:  100 mM Tris, pH 8,5; 0,02% H2O2  

 

2.2 Methods 

Most of the methods were done according to Sambrook et al. (1989) with slight 

changes.  

 

2.2.1 Methods for a vector construction in E. coli 

2.2.1.1 DNA amplification 

2.2.1.1.1 Design of oligonucleotides („primers“) 

For the primer design the computer program „Genrunner“ (Hastings Software, USA) 

was used.  

 

2.2.1.1.2 Polymerase chain reaction (PCR) 

The PCRs were done using the „GC-RICH PCR System“ (Roche, Mannheim) (s. 

2.1.4). According to the supplied protocol two master mixes were prepared. The 

master mix 1 contained desoxynucleotides dATP, dCTP, dGTP, TTP (final 

concentration is 200 μM each), a sense primer und an anti-sense primer (final 

concentration is 200 nM each), genomic DNA (final concentration is from 10 ng to 

500 ng), „GC-RICH" resolution solution (final concentration 0,5 M) and ddH2O. The 

master mix 2 contained the „GC-RICH“ PCR reaction buffer with DMSO, „GC-
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RICH“ PCR enzyme mix and ddH2O. Both master mixes were pipetted together in a 

thin-walled PCR tube. The reaction was performed in following conditions: 1x 3 min 

at 95°C, 10x (30 s at 95°C, 30 s at 57°C, 1 min at 72°C), 25x (30 s at 95°C, 30 s at 

57°C, 1 min and an additional cycle elongation of 5 s for each cycle at 72°C), 1x 7 

min at 72°C. 

 

2.2.1.1.3 Purification of a DNA product of the PCR  

The purification of PCR products was done by two different methods. In one case, it 

was done using an agarose gel, in another, using „QIAquick® PCR Purification Kit“ 

(Qiagen, Hilden) (s. 2.1.4). 

 

2.2.1.1.3.1 Purification of DNA fragments using the „QIAquick® PCR 

Purification Kit“ (Qiagen, Hilden) 

According to the supplied protocol, one volume of PCR reaction mix was added to 

five volumes of supplied PB buffer, mixed well by shaking and transferred to the 

purification column. After centrifugation of the column for 1 min at 16000 g the 

supernatant was discarded and the column was washed with PE buffer. After 

centrifugation of the column for 1 min at 16000 g the DNA was eluted with 30 µl EB 

buffer. The concentration of the isolated DNA was detected by "dot"-test (s. 

2.2.1.2.2).  

 

2.2.1.1.3.2 Separation of DNA fragments in agarose gel 

The separation of DNA fragments was performed in a horizontal gel electrophoresis 

chamber (s. 2.1.1). The agarose concentration depended on the size of the analyzed 

fragment and varied from 0,7% to 1,3% (w/v). TA buffer (s. 2.1.13.2) was used. The 

agarose was resuspended in the buffer, warmed up to 100°C till complete melting. 

When the melted agarose was cooled down to appr. 50°C, ethidium bromide was 

added to it (to final concentration 0,1 μg/ml), then agarose was transferred to the gel 

holder with a slots comb and left for polymerisation for minimum 1 h. Polymerised 

agarose gel was transferred to the gel electrophoresis chamber filled with TA buffer, 

the comb was removed and DNA probes were loaded to slots. To detect the size of 

separated fragments, the DNA standard was always loaded in one of the slots. DNA 

fragments were separated for ca. 1h at 100 V. After electrophoresis, the gel was 
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analysed in UV transilluminator under UV light with the wavelength 256 nm, and the 

image was documented. 

 

2.2.1.1.3.3 Elution of DNA fragments from agarose gel 

After observation under UV light, gel blocks containing DNA fragments of correct 

size were excised from agarose gels and the DNA fragments were eluted from the gel 

by „GenElute™ Agarose Spin Columns (Sigma, Taufkirchen) (s. 2.1.4). According 

to the supplied protocol, a gel block was transferred to a column pre-washed with 

100µl 10 mM Tris-HCl buffer, pH 8. The column was then placed into a collection 

tube and centrifuged 10 min at 16000 g at RT. The concentration of eluted DNA 

fragment in the supernatant was detected by a "dot-test" (s. 2.2.1.2.2). If necessary, 

DNA was concentrated by ethanol precipitation (s. 2.2.1.5.5). 

 

2.2.1.2 Determination of DNA concentration  

2.2.1.2.1 Photometric analysis 

For the determination of DNA concentration in high concentrated solutions (DNA 

concentration between 5 and 50 µg/µl) a photometric analysis was used. For this 

method of quantification, 1 μl of DNA solution was diluted in 499 µl of ddH2O, and 

the optical density of the resulted solution was measured with a spectrophotometer 

(s. 2.1.1) in 1 cm quartz cuvettes in the UV light with two different wavelength: 

λ=260 nm und λ=280 nm against ddH2O. The relation OD260nm/OD280nm should be 

between 1,7 and 2,0, otherwise it means that the DNA solution is contaminated by 

proteins. A solution with 50 μg/ml DNA has OD260nm=1.  

 

2.2.1.2.2 "Dot"-test 

For the detection of DNA concentration in low concentrated solutions (DNA 

concentration between 10 and 100 ng/µl) the "dot"-test was used. For this purpose, 

1µl DNA sample was diluted in 8 µl of ddH2O and mixed with 1 µl ethidium 

bromide solution (5µg/µl). The fluorescence intensity of the solution was analysed 

under UV light and compared with those of standard solutions (0 ng/μl, 10 ng/μl, 25 

ng/μl, 50 ng/μl und 100 ng/μl). 

2.2.1.3 Transformation of E. coli by heat shock method 
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An aliquot of plasmid DNA (1 - 10 µl) was added to 100 µl competent cells and 

incubated on ice for 45 min. After the incubation, the cells were transferred in to a 

water bath at 42°C for exactly 90 s and then immediately cooled on ice for 2 min. 

After the heat shock 500 µl SOC medium (s. 2.1.12.1) were added to cells and they 

were left for 1 h at 37°C. After recovering cells were transferred on selective LB agar 

plates (s. 2.1.12.1) and incubated from 14 to 16 h at 37°C. 

 

2.2.1.4 Preparation of competent E. coli cells  

For preculture, E. coli strain XL-blue (s. 2.1.6) was inoculated in 2,5 ml of LB 

medium (2.1.12.1) and incubated 14 - 16 h at 37°C under permanent shaking. 500µl 

of preculture were transferred to 100 ml of LB medium and grown at 37°C until an 

OD600 of 0,4 - 0,6 was reached. The following procedures were carried out on ice. 

E.coli cells were harvested by centrifugation in 50 ml centrifuge tubes at 9000 g and 

4°C. The pellet was carefully resuspended in 10 ml of prechilled 0,1 M CaCl2 and 

incubated on ice for 30 min. Then the cell suspension was centrifuged again 5 min at 

9000 g at 4°C and the supernatant was removed. The pellet was resuspended in 2 ml 

of 0,1 M CaCl2/10% glycerol, pippeted to 100 µl aliquots in 1,5 ml plastic tubes and 

immediately frozen in liquid nitrogen. The competent cells were stored at -80°C 

before they were used for a transformation. To determine the titer of competent cells 

they were transformed with 1 µl of control plasmid (pBluescript KS+ (s. 2.1.7) (0,1 

μg/ml)). The amount of colonies that appeared on selection plates in 14 h after 

transformation was counted and the titer was calculated as number of colonies per 1 

µg of plasmid DNA. 

 

2.2.1.5 Methods of DNA isolation 

2.2.1.5.1 Isolation of plasmid DNA from E. coli in small scale 

Single colonies of E. coli from the selective plates after transformation were re-

inoculated in 2,5 ml LB (s. 2.1.12.1) with 50 µg/ml ampicillin and grown 14 - 16 h at 

37°C with permanent shaking. 1,5 ml of the obtained cultures were harvested by 

centrifugation for 1 min at 9000 g at 4°C. The supernatant was discarded and the 

pellet was resuspended in 100 µl of 10/1 TE buffer (s. 2.1.13.2), containing 15 µl of 

RNAse A (s. 2.1.3) solution. The cells were destroyed by addition of 150 µl of lysis 

buffer (s. 3.1.13.2), and thereafter the rests of cell walls, cell proteins and connected 
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to them genomic DNA were precipitated by addition of 200 µl of potassium acetate 

buffer (s. 2.1.13.2). After the centrifugation of the suspension for 30 min at 16000 g 

at 4°C the plasmid DNA containing supernatant was transferred to fresh 1,5 ml 

plastic tubes and the DNA was precipitated by incubation with equal volume of 

100% isopropanol for 1 h at -20°C. DNA was collected by centrifugation for 30 min 

at 16000 g at 4°C. The pellet was washed once with 70% ethanol, dried in vacuum 

concentrator for 10 min and dissolved in 30 µl of 10 mM Tris-HCl buffer pH 8. 

 

2.2.1.5.2 High pure plasmid isolation  

High pure plasmid isolation was done using High Pure Plasmid Isolation System 

(Roche, Mannheim) (s. 2.1.4) according to the protocol supplied by the company. 4 

ml of E. coli culture were centrifuged 30 s at 9000 g at RT. The supernatant was 

discarded and the pellet was resuspended in 250 µl Suspension Buffer including 

RNase and mixed well. 250 µl of Lysis Buffer were added, mixed gently by inverting 

the tube six times and incubated 5 min at RT. 350 µl of chilled Binding Buffer were 

added, mixed gently by inverting the tube 6 times and incubated 5 min on ice. The 

suspension was centrifuged for 10 min at 16000 g. The entire supernatant was 

transferred to the upper reservoir of the filter tube, centrifuged 30-60 sec at 16000 g. 

The filter was transferred to a new collection tube, washed once with 700 µl Wash 

Buffer II. The filter was then inserted to a new 1,5 ml microcentrifuge tube, 100 µl 

Elution Buffer were added and centrifuged 30 sec at 16000 g. The eluted purified 

plasmid DNA was used for DNA sequencing, performed by Eurofins Medigenomix 

GmbH (Martinsried bei München). 

 

2.2.1.5.3 Large scale isolation of plasmid DNA from E. coli 

Single colonies of transformed E. coli were inoculated in 100 ml LB (s. 2.1.12.1) 

with 50 µg/ml ampicillin and grown 14 - 16 h at 37°C with permanent shaking. The 

cells were harvested by centrifugation in 50 ml centrifuge tubes for 5 min at 9000 g 

at 4°C. The supernatant was discarded and the pellet was resuspended in 5 ml of 

50/10 TE buffer (s.2.1.13.2). The cells were destroyed by addition of 10 ml of lysis 

buffer (s. 2.1.13.2), and thereafter the rests of cell walls, cell proteins and connected 

to them genomic DNA were precipitated by addition of 10 ml of potassium acetate 

buffer (s. 2.1.13.2). After the centrifugation of the suspension for 30 min at 32000 g 

at 4°C the plasmid DNA containing supernatant was transferred to fresh 50 ml 
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centrifuge tubes and the DNA was precipitated by incubation with equal volume of 

100% isopropanol for 1 h at -20°C. DNA was collected by centrifugation for 30 min 

at 32000 g at 4°C. The pellet was dried in vacuum concentrator (s. 2.1.1) for 10 min 

and dissolved in 1 ml of 50/10 TE buffer (s. 2.1.13.2). The coprecipitated RNA was 

removed by incubation with 15 µl of RNAse A (s. 2.1.3) for 1 h at 37°C. 

DNA was extracted by phenol-chloroform extraction (s. 2.2.1.5.4) and precipitated 

by ethanol (s. 2.2.1.5.5). The pellet was dissolved in 100 µl 10 mM Tris-HCl pH 8. 

 

2.2.1.5.4 Phenol-chloroform extraction 

Purification of the isolated DNA from coprecipitated proteins was done by phenol-

chloroform extraction. One volume of phenol/chloroform/isoamylalcohol (in the 

ratio 25:24:1) was added to the DNA solution, intensively shaken for 1 min and 

centrifuged 5 min at 16000 g at RT. The upper phase was transferred to a new plastic 

tube, and the extraction step was repeated a second time. After that, the upper phase 

was mixed with chloroform/isoamylalcohol (in the ratio 24:1), shaken for 1 min and 

centrifuged for 5 min at 16000 g at RT. The plasmid DNA was precipitated from the 

upper fraction by ethanol precipitation (s. 2.2.1.5.5). 

 

2.2.1.5.5 Ethanol DNA precipitation 

1/10 volume of 3 M sodium acetate, pH 4,8, and 2,5 volumes of absolute ethanol 

were added to one volume of a DNA solution, mixed and incubated for 2 h at -20°C. 

After incubation, the solution was centrifuged 30 min at 16000 g at 4°C, the DNA 

pellet was washed with 70% ethanol, dried in vacuum concentrator for 10 min and 

resuspended in 10 mM Tris-HCl buffer, pH 8. 

 

2.2.1.5.6 Isolation of genomic DNA from C. reinhardtii 

C. reinhardtii WT strain SAG73.72 was inoculated in 100 ml TAP medium. At a cell 

density of 3 · 106 cells per ml, cells were harvested by centrifugation in 50 ml 

centrifuge tubes for 5 min at 4°C and 3950 g. The cell pellet was washed in 1 ml 

TAP (s. 2.1.12.2) and frozen in liquid nitrogen. Then, it was carefully homogenised 

in a mortar with a pistil within 2-3 min. 1 ml of lysis buffer 2 (s. 2.1.13.2) was added 

to cells and mortared again for 2-3 min. The suspension was distributed to 4 

mikrocentrifuge tubes (250 µl per tube) and 750 µl of preheated to 65°C lysis buffer 
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2 (s. 2.1.13.2) were added to each aliquot. After an incubation for 60 min at 65°C to 

each tube 700 µl of phenol/chloroform/isoamylalcohol (25:24:1) were added and 

carefully inverted for 10 min. Then the suspension was centrifuged for 10 min at 4°C 

and 9300 g and the upper phase, containing DNA, was transferred to new 

mikrocentrifuge tubes. One volume of isopropanol was added to it and incubated for 

15 min on ice. Precipitated DNA was collected by centrifugation for 15 min at 4°C 

and 15000 g, washed once with 1 ml 70% ethanol and dried at RT in vacuum 

concentrator for 10 min and resuspended in 300 µl 1/10 TE buffer (s. 2.1.13.2). RNA 

was removed by incubation of the solution with 15 µl of RNAse A (s. 2.1.3) for 30 

min at 37°C. The isolation procedure was followed by a phenol-chloroform 

extraction and finally genomic DNA was precipitated by ethanol. The pellet was 

dissolved in 100 µl 10/1 TE buffer (s. 2.1.13.2) for 16 h at 4°C. The DNA 

concentration was detected spectrophotometrically. The quality was checked by gel 

electrophoresis of 5 µg isolated genomic DNA on a 0,6% agarose gel (s. 2.2.1.1.3.2). 

 

2.2.1.6 DNA restriction 

Restriction enzymes (s. 2.1.3) were used for two cases: a) characterisation of isolated 

plasmid DNAs and b) preparation of DNA fragments for further cloning steps. In 

both cases, the plasmid DNA was mixed with a restriction enzyme (in ratio 1 unit of 

the enzyme per 1 µg DNA), with a reaction buffer corresponding to the enzyme and, 

if necessary, with BSA and the reaction was carried out for at least 2 h at the 

appropriate temperature. The resulted DNA fragments were analysed by gel 

electrophoresis (s. 2.2.1.1.3.2) and, when necessary, eluted from the gel (s. 

2.2.1.1.3.3). 

 

2.2.1.7 Polishing of sticky ends using Klenow enzyme 

Sticky ends of DNA fragments with recessed 3' termini were, if necessary, filled by 

the polymerase activity of the Klenow fragment of DNA polymerase I (s. 2.1.3). In 

case of recessed 5' termini, sticky ends were removed by its exonuclease activity. 

The reactions were carried out according to the supplied protocol. 

 

2.2.1.8 Ligation 
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The ligation mix contained the ligation buffer (Roche, Mannheim), T4 DNA ligase 

and DNA (s. 2.1.3). The DNA fragment and the vector were added to the ligation 

mix in molar ratio 3:1 for sticky end ligations and 5:1 for blunt end ligations. The 

reaction proceeded for 4 h at 17°C in the case of sticky end ligation and for 14 h at 

4°C in the case of blunt end ligation. 

After the incubation time was over, the ligation mix was directly used for the 

transformation of E. coli (s. 2.2.1.3). 

 

2.2.2 Work with C. reinhardtii cultures 

2.2.2.1 Cultivation of C. reinhardtii 

C. reinhardtii cells were grown in TAP medium (Harris, 1989) (s. 2.1.12.2) under a 

12h light–12h dark cycle (LD 12:12) with a light intensity of 71 μE m-2 sec-1 (1 E = 1 

mol of photons) at 18, 23 or 28°C, as indicated for each experiment. Cells were 

grown under a LD cycle unless otherwise indicated. The beginning of the light 

period is defined as time zero (LD0) and the beginning of the dark period is LD12. In 

some cases, cells were released after LD into constant dim light (LL: 20 μE m-2 sec-1) 

and temperature (23°).  

 

2.2.2.2 Harvest of C. reinhardtii cells 

C. reinhardtii liquid cultures were harvested by centrifugation for 5 min in 50 ml 

plastic centrifuge tubes at 4°C and 6000 g. 1 ml of the supernatant was used to 

resuspend the cell pellet, which was then transferred to 2 ml plastic mikrocentrifuge 

tubes and centrifuged for 2 min at 4°C and 16000 g. The cell pellet was frozen in 

liquid nitrogen and stored at -80°C. 

 

2.2.2.3 Cell concentration determination 

The concentration of C. reinhardtii cells in liquid cultures was detected by counting 

the cell number in a Thoma cell chamber (height: 0,1 mm; 4x4 small squares with 

the side length 0,05 mm and the area 0,0025mm²).  

 

2.2.2.4 Autolysin preparation 
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All procedures were done in sterile laminar box. Two arginine deficient strains of C. 

reinhardtii CLS 31-8 (-) und CLS 31-10 (+) (s. 2.1.5) were grown in 100 ml TAP+ 

with NH4Cl buffer (s. 2.1.12.2) each, until a cell density of 4 x 106 to 5 x 106 cells 

per ml was reached. The cultures were centrifuged in 50 ml centrifuge tubes for 5 

min at 4°C and 6000 g. The pellets were resuspended each in 80 ml TAP+ without 

NH4Cl buffer (s. 2.1.12.2) and cultivated for 19 h under constant light for gametes 

production. The ability for mating was checked after 16 - 19 h by mixing 10 µl of the 

both strains together and analysing their behaviour under the microscope. If the 

mating behaviour was observed, the cell concentration of the both cultures was 

determined. Then, the cultures were centrifuged 5 min at 4°C and 6000 g and 

resuspended in TAP+ without NH4Cl buffer (s. 2.1.12.2) to a final concentration of 1 

x 108 cells per ml. For mating, 10 ml of both cultures were mixed together and 

incubated under constant light for 2 h. Each 15 min a 10 µl aliquot was taken and 

mixed with 10µl of 1% Triton X 100. If complete cell lysis was observed in 5 min, 

the cell suspension was centrifuged for 10 min at 4°C and 16000 g. The autolysin 

containing supernatant could be directly used for the transformation of C. reinhardtii 

or stored at -20°C.  

 

2.2.2.5 C. reinhardtii transformation 

Cells of C. reinhardtii were grown in 100 ml TAP medium (s. 2.1.12.2) until a cell 

concentration of 1 - 5 x 106 cells/ml was reached. Cells were harvested by 

centrifugation for 4 min at 4°C and 5000 g. The pellet was dissolved in 10 ml 

autolysin solution (s. 2.2.2.4) and transferred to a sterile conical flask and incubated 

under constant light conditions for 1 - 4 h depending on the autolysin activity. Every 

15 min, the efficiency of lysis was checked by addition of 10 µl 1% triton to 10 µl of 

cell suspension. Cells that were ready to be transformed showed about 70 - 80% 

lysis. After treatment with autolyin, cells were collected by centrifugation in 50 ml 

tubes for 5 min at 5000 g and 10°C. The pellet was carefully resuspended in 1,8 ml 

of fresh TAP medium (s. 2.1.12.2). For the transformation, 300 µl of cell suspension 

were mixed with 20 µg of linearised vector DNA and applied over 0,3 g sterile glass 

beads in a 0,5 ml microcentrifuge tube. The tube was shaken for 15 sec with a 

minishaker Vortex-Genie®2 (s. 2.1.1) and cells were immediately transferred to 50 

ml plastic tubes, containing 10 ml of fresh TAP medium (s. 2.1.12.2). Cells were 

incubated for 18 h at constant dim light with a light intensity of 42 μE m-2 sec-1. 
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After incubation cells were harvested by centrifugation for 5 min at 5000 g and 4°C 

and the pellet was dissolved in 1 ml TAP medium (s. 2.1.12.2). Cell suspension was 

mixed with 3,5 ml melted regeneration cover agar that had been cooled down to 

40°C 0,5% (w/v) and applied on TAP agar plates with paromomycin (s. 2.1.12.2). 

Colonies of successfully transformed C. reinhardtii cells appeared in about 10 days 

after transformation. 

 

2.2.2.6 Preparation of glass beads for the transformation of C. reinhardtii 

Glass beads (s. 2.1.4) with a diameter from 0,45 to 0,5 mm were washed with 

concentrated H2SO4. After the discard of the acid the glass beads were rinsed with 

ddH2O as long as the pH reached neutral value. Finally, the beads were autoclaved 

and left to dry for several days. For the transformation, 0,3 g of the glass beads were 

placed in a 1 ml microcentrifuge plastic tube, once again autoclaved and dried. 

 

2.2.2.7 Storage of C. reinhardtii cell cultures in liquid nitrogen 

C. reinhardtii culture was grown in TAP medium (s. 2.1.12.2) until the cell 

concentration reached 1 x 106 cells/ml. 25 ml of the culture was harvested by 

centrifugation for 5 min at RT and 3950 g. The pellet was resuspended in 2,5 ml 

TAP medium (s. 2.1.12.2). The suspensium was aliquated in CryoTubes (250 µl per 

tube) and to each 250 μl TAP medium with 6% (v/v) methanol was added. The 

cryotubes were transferred to freezing container (s. 2.1.1) and incubated for ca. 70 

min at -80°C. Frozen aliquots were stored in liquid nitrogen storage. For 

reanimation, the frozen cells in the cryotubes were placed into a water bath for 2 min 

at 35°C. Cells were resuspended in 10 ml TAP medium (s. 2.1.12.2) and incubated 

inverting for 16 h under constant light. After the incubation cells were harvested by 

centrifugation for 5 min at 5000 g und 4°C. The pellet was resuspended in 0,5 ml 

fresh TAP medium and inoculated on selective TAP agar plates (s. 2.1.12.2). 

 

2.2.3 Methods for the characterization of wild-type or transgenic strains of C. 

reinhardtii 

2.2.3.1 Crude extracts preparation for standard SDS-PAGE 
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150 μl of precooled extraction buffer 1 (s. 2.1.13.3) with PIC and DTT was added to 

a frozen C. reinhardtii cell pellet and left on ice until it melted completely (about 30 

min) by stirring it with a sterile tooth pick. In the mean time, glass beads for protein 

crude extract preparation (Ø 0,25–0,3 mm) (s. 2.1.4) were transferred into 1,5 ml 

plastic centrifuge tubes (2/3 of the tube volume) and washed twice with the cold 

extraction buffer to remove completely air bubbles. The suspension of cells in 

extraction buffer was applied over prewashed glass beads and intensively shaken 

three times for 1 min using a Vortex minishaker (s. 2.1.1). In between these steps, the 

tube was incubated for 2 min on ice each time. Then, the cell suspension was 

carefully transferred in to a new 1,5 ml plastic centrifuge tube and centrifuged for 15 

min at 4°C and 16000 g. The protein containing supernatant was transferred to a new 

tube and used for further experiments. 

 

2.2.3.2 Crude extracts preparation for 2-DE SDS-PAGE 

300 μl of precooled extraction buffer 2 (s. 2.1.13.3) with PIC, DTT, PhIC 1 (1%) and 

PhIC 2 (1%) (s. 2.1.3) were added to a frozen C. reinhardtii cell pellet and left on ice 

until melted completely (about 30 min) under stirring by a sterile tooth pick. In the 

mean time glass beads for protein crude extract preparation (Ø 0,25–0,3 mm) (s. 

2.1.4) were transferred in to 1,5 ml plastic centrifuge tubes (2/3 of the tube volume) 

and washed twice with the cold extraction buffer 2 to remove completely air bubbles. 

The suspension of cells in extraction buffer 2 was applied over prewashed glass 

beads and intensively shaken five times for 1 min using a Vortex minishaker (s. 

2.1.1). In between of these steps each time the tube was incubated for 2 min on ice. 

Then the cell suspension was carefully transferred in to a new 1,5 ml plastic 

centrifuge tube and centrifuged for 30 min at 4°C and 16000 g. The protein 

containing supernatant was transferred to a new 2 ml plastic centrifuge tube. A 5 µl 

aliquot was taken for the protein concentration determination, the rest was mixed 

with 4x volume of cool TCA solution (s. 2.1.13.3) and left for a minimum of 16 h at 

-20°C for precipitation. After the incubation the solution was centrifuged for 30 min 

at 4°C and 16000 g. The pellet was washed for 1 h with the washing solution (s. 

2.1.13.3) at -20°C and afterwards centrifuged for 30 min at 4°C and 16000 g. The 

protein pellet was dried for 10 min at RT and solubilized for 1 h at RT in the 

rehydration buffer (s. 2.1.13.3) to a final concentration of 2 µg/µl. The resuspended 
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sample was then centrifuged for 5 min at 16000 g. The crude extract was used for 

further experiments. 

 

2.2.3.3 Protein concentration determination 

For the protein concentration determination, either „Bio-Rad Protein Assay“ (s. 

2.1.4) or the Neuhoff method was used. 

 

2.2.3.3.1 "Bio-rad protein assay" 

The determination of the protein concentration determination was done with the 

„Bio-Rad Protein Assay“ (Bio-Rad, München) (s. 2.1.4) according to the protocol 

supplied by the company. A protein crude extract (s. 2.2.3.1 or s. 2.2.3.2) was diluted 

20 times with ddH2O and 10 µl of it were mixed with 5 ml 1:5 diluted "Bio-Rad" 

solution. The reaction was incubated at RT for 5 min and the optical density was 

detected at λ 595 nm by a spectrophotometer (s. 2.1.1). The protein concentration in 

the probe was determined using a calibration curve created by measuring of standard 

BSA solutions (5 - 80 µg). 

 

2.2.3.3.2 Neuhoff method 

Protein concentration determination with the Neuhoff method was done as described 

in Neuhoff et al., 1979. 2 µl aliquots of protein crude extracts (s. 2.2.3.1 or s. 2.2.3.2) 

were applied on 0,5 x 0,5 cm piece of the cellulose-acetate filter (s. 2.1.4) and 

incubated in the Neuhoff stain solution (s. 2.1.13.3) for 2 min. After the incubation, 

the filters were washed 3 times in the Neuhoff destain solution (s. 2.1.13.3) until 

non-covered parts of filters become white. The filters were dried and desolved in 1 

ml of water free DMSO. The optical density was detected at λ 630 nm by 

spectrophotometer (s. 2.1.1). The protein concentration in the probe was determined 

using calibration curve created by measuring of standard (1 - 20 µg) BSA solutions. 

 

2.2.3.4 One dimensional protein separation by SDS-PAGE  

In this method, proteins were separated by denaturing SDS gel electrophoresis 

according to their molecular weight (Laemmli, 1970). For the preparation of the gel, 

a gel chamber was constructed from two glasses and 3/4 of it was filled up with the 

resolving gel (s. 2.1.13.3). After polymerisation of the resolving gel, the rest of the 
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chamber was filled up with the stacking gel (s. 2.1.13.3). Before loading of the gel, 

protein probes were mixed with "4x Roti-Load" (s. 2.1.4), denatured in a boiling 

water bath for 5 min and centrifuged for 30 sec at 4°C and 16000 g. Electrophoresis 

buffer 1 (s. 2.1.13.3) was used in this experiment. Electrophoresis was carried out a 

in water cooling electrophoresis chamber (s. 2.1.1) at 150 V for the first one hour, 

before the proteins entered the resolving gel, and than at 250 V for about 2 h. When 

the electrophoresis was finished, the r stacking gel was removed and the resolving 

gel was used for the further experiments.  

 

2.2.3.5 Coomassie staining 

SDS-PAGE gels (s. 2.2.3.4) were incubated in a Coomassie methanol free solution 

(s. 2.1.13.3) for ca. 12 h at RT. To remove the background coloration, the gels were 

incubated 3 times for ca. 1 h in distaining solution (s. 2.1.13.3).  

 

2.2.3.6 Immunoblotting (Western blot transfer) 

After SDS-PAGE (s. 2.2.3.4 or 2.2.3.10), the resolving gel was transferred to the 

semi-dry transfer buffer (s. 2.1.13.4) and incubated for 10 min on a rocking platform 

shaker (s. 2.1.1). In parallel the nitrocellulose membrane (s. 2.1.4) was incubated for 

5 min in semi-dry transfer buffer (s. 2.1.13.4). The gel and the membrane were 

transferred in to the blotting chamber (s. 2.1.1) in following order starting from the 

cathode: 3 sheets of the moistened gel blotting paper (s. 2.1.4), the nitrocellulose 

membrane, the gel and again 3 sheets of moistened gel blotting paper. The transfer 

was carried out for 1,5 h with the electrical current power calculated as 1,5 mA per 

one cm2 of the transferring gel.  

 

2.2.3.7 Ponceau S membrane stain  

The quality of the Western blot transfer was checked by Ponceau staining. The 

membrane was incubated in Ponceau solution (s. 2.1.13.4) for 5 min at RT and 

washed 3 times with ddH2O. The standard and the electrophoresis front line were 

marked on the membrane.  

 

2.2.3.8 MemCode™ Reversible Protein Stain Kit 
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In the case of the 2-DE procedure MemCode Reversible Protein Stain Kit (Pierce) (s. 

2.1.4) was used instead of Ponceau staining (s. 2.2.3.7). The membrane staining was 

done according to the protocol, supplied by the company. The membrane was 

incubated for 30 sec in the MemCode™ Stain, rinsed 3 times with MemCode™ 

Destain solution, incubated with MemCode™ Destain solution for 5 min and washed 

several times with ddH2O. 

 

2.2.3.9 Immunodetection of proteins 

After Western blot transfer (s. 2.2.3.6) the nitrocellulose membrane was used for the 

protein immunodetection. First, for prevention of unspecific binding of antibodies, 

the membrane was incubated for 2 h at RT in the blocking buffer (s. 2.1.13.4) on a 

rotation shaker (s. 2.1.1). The blocked membrane was then incubated with primary 

antibodies (s. 2.1.11.1) dissolved in the blocking buffer for 16 h at 4°C on the 

rotation shaker. After the incubation the membrane was washed 3 times for 10 min 

with TBS-tween buffer (s. 2.1.13.4) and incubated for 1 h at RT with secondary 

antibodies (s. 2.1.11.2) dissolved in the blocking buffer. Then the membrane was 

washed again 3 times for 15 min with TBS-tween buffer and once with TBS buffer 

for 10 min. The secondary antibodies were horse-radish peroxidase conjugated. A 

chemiluminescent reaction was used for the detection of the antibody binding. The 

following chemiluminescent reaction was carried out in darkness. The nitrocellulose 

membrane was incubated for 5 min in the reaction solution containing luminol 

solution 1 and 2 (s. 2.1.13.4), mixed in a 1:1 ratio. After the incubation, the 

membrane was packed into a plastic foil and exposed to photofilms (s. 2.1.4). The 

time of exposure varied from 5 sec to 1 h. 

 

2.2.3.10 Standardized 2-Dimensional Electrophoresis (2-DE)  

2-DE was basically done according to Wagner et al. (2004) with some modifications. 

150 µl of the protein crude extract for 2-DE (s. 2.2.3.2) were mixed with 300 µl of 

the rehydration buffer (s. 2.1.13.3) and applied into the strip holder. After the IPG 

strip (s. 2.1.4) had been placed in the strip holder over the solution and covered with 

paraffin, rehydration was carried out for 12 h. Then, isoelectric focusing in 

Isoelectric Focusing System (IPGphor) (s. 2.1.1) was started with the following 

program: 200 V (1 h), 500 V (1 h), 1000 V (1 h), linear gradient from 1000 to 8000 

V (1 h) and 8000 V (6 h). Thereby, current was limited to 0.05 mA per IPG strip. 
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After the end of this program, the strip was removed from the strip holder and 

equilibrated for 15 min in the equilibration solution 1 and 15 min in the equilibration 

solution 2. Each strip was placed on the top of the polyacrylamide resolving gel for 

2-DE. Strips were fixed on the gels with 0.5% agarose in electrophoresis buffer 2 (s. 

2.1.13.3), and the electrophoresis was performed at 4°C and 2.5 Watt per gel over 

night (~12 h) using an Ettan Dalt 6 electrophoresis unit (Amersham Biosciences) (s. 

2.1.1).  

After electrophoresis, immunoblotting (s. 2.2.3.6) was done along with anti-

C1 antibodies. Directly after the Western blot, the membrane was stained with 

MemCode™ Reversible Protein Stain Kit (Pierce, Rockford, USA) (s. 2.1.4) and 

biggest spots were marked and used as position markers for the comparison of 

different samples. Then, membranes were further used for antibody incubation. 

 

2.2.3.11 Nitrite reductase (NII) activity test 

For the NII assay, harvested cells were washed with 50 mM Tris/5 mM EDTA, pH 8, 

two times before their storage at -80°C. For extracts, cells were resuspended in the 

extraction buffer 3 for NII test (s. 2.1.13.3), and lysed by intensive shaking 5 x 1 min 

with glass beads (Ø 0.25–0.30 mm) (s. 2.1.4) using a Vortex minishaker (s. 2.1.1) at 

highest speed, incubating for 2 min on ice in between. Cell debris was removed as 

described in Zhao et al. (2004) and the resulting crude extract was immediately used 

further. NII activity was determined by a dithionite assay as described by Vega et al. 

(1980) along with 15 mg of total protein from the crude extract. The reaction was 

carried out for 20 min at 40°C. The assay involved sodium dithionite as reductant 

and methyl viologen as electron carrier. Enzymatic activity was followed by 

measuring colorimetrically (540 nm) (s. 2.1.1) the rate of disappearance of nitrite. 

One unit of activity was defined as the amount of enzyme that catalyzed the 

reduction of 1 mmol of nitrite per minute. 

 

2.2.3.12 Densitometry Analysis 

Quantifications of the volumes of bands/spots obtained on photofilms after 

immunodetection of proteins (s. 2.2.3.9) were done with the Image MasterTM 2D 

Elite (vs 4.01) software from Amersham Pharmacia Biotech. For characterization of 

the silencing level of protein of interest, calibration curves were created that correlate 

band volumes of the protein of interest from different concentrations of wild-type 
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protein crude extract. They were used for comparison of the protein expression level 

in the examined strains. For 2-DE immunoblots of C1, the volume of all spots was 

set to 100% and compared to the volume of a phosphorylated spot. 

 

2.2.3.13 Phototaxis test 

 The measurement was done with a self-made phototaxis machine, developed by 

Mergenhagen (1984). Preparation of cell culture for the assay, phototaxis 

measurement and data evaluation were done as previously described (Schmidt et al., 

2006; Iliev et al., 2006). The measurements were done by M. Fiedler. 

 

 



3. Results 50

3. Results 
 

3.1 The role of the C1 subunit of CHLAMY1 in the circadian system 

of C. reinhardtii 

3.1.1 Silencing of the C1 subunit of CHLAMY1 

The first part of my work was aimed at investigating the role of the C1 subunit of 

CHLAMY1 in the circadian system of C. reinhardtii by silencing its gene and 

analyzing the circadian rhythms of phototaxis and nitrite reductase (NII) activity in 

the modified strains. For this purpose, a RNAi (RNA interference) strategy was 

applied that is based on the method developed by Fuhrmann et al., 2001. The native 

c1 promoter was used in the construct. Thus, the potential promoter regions of the c1 

together with the first three exons and two introns were fused to an inverted 

corresponding c1 cDNA part so that a double-stranded RNA will be formed in the 

cell that triggers silencing. 

 

3.1.1.1 Construction of the c1 silencing vector with the native promoter 

A genomic DNA fragment of 2607 bp containing the potential promoter region of c1 

(1238 bp in front of the AUG including the predicted 122 bp 5’-UTR) and the first 

three exons and two introns of c1 (gene model estExt_fgenesh2_kg.C_30171, vs3 of 

the genome) were PCR-amplified (s. 2.2.1.1.2) using the GC-RICH PCR System kit 

from Roche (s. 2.1.4) according to the instructions of the kit along with genomic 

DNA from C. reinhardtii (s. 2.2.1.5.6) and the primers (s. 2.1.9) OMM267 (as a 

sense PCR primer) and OMM269 (as an antisense PCR primer) (Figure 7).  
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Figure 7. Detection of the c1 PCR amplified genomic DNA fragment by agarose gel 
electrophoresis 

The PCR reaction was carried out using GC-RICH PCR System from Roche (2.1.4) with OMM267 
and OMM269 primers (s. 2.1.9) along with genomic DNA. The product was separated for 1 h at 100 
V on a 1% agarose gel (s.2.2.1.1.3.2) and visualized by ethidium bromide staining. a) Ladder: Lambda 
DNA-BstEII digest (s. 2.1.10.1). b) PCR product, containing the fragment of c1 genomic DNA 
together with its potential promoter region. 
 

 

The amplified genomic DNA was then cloned into the MluNI of the pCAPS vector (s. 

2.1.7) using a PCR Cloning Kit (Roche) (s. 2.1.4) and following the instructions of 

the manual. The resulting plasmid was named pOV4 (Figure 8).  

 

 

  

 

 

 

 

 

 

 

 

 
Figure 8. Construction of pOV4 

A. Restriction map of pOV4. The c1 genomic DNA fragment introduced to pCAPs vector (s. 2.1.7) 
consists of the potential c1 promoter region and 5'-UTR (yellow boxes), its first 3 exons (dark orange 
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boxes) and 2 introns (light orange boxes). The cyan arrow depicts the ampicillin resistance gene of 
pCAPs. B. Restriction analysis of pOV4. The plasmid was digested (s. 2.2.1.6) with the below 
mentioned restriction enzymes and fragments were separated on a 1% agarose gel (s.2.2.1.1.3.2) for 1 
h at 100 V: a) 1 kb DNA Ladder (NEB) (s. 2.1.10.1); b) pOV4 digested with BamHI; c) pOV4 
digested with XhoI. 
 

 

pOV4 was characterized by restriction analysis with the restriction enzymes BamHI 

and XhoI. After separation of the DNA fragments on an agarose gel, the expected 

bands of 2868 and 2867 bp in the case of the BamHI digest and of 5735 bp in the 

case of the XhoI digest were detected (Figure 8). The absence of point mutations was 

proven by sequencing of the PCR containing fragment in pOV4 with the primers S1 

and S2 (s. 2.1.9).  

Thereafter, pOV4 was cut (s. 2.2.1.6) with BstEII and NotI. A 957 bp long c1 

cDNA fragment of pCS30 (s. 2.1.8; Zhao et al., 2004) that was digested with the 

same enzymes was cloned into it, resulting in an insertion of the cDNA in opposite 

direction to the genomic DNA fragment. The resulting plasmid was named pOV5 

(Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Construction of pOV5 

A. Restriction map of pOV5. The c1 cDNA fragment corresponding to the first 3 exons of c1 gene 
(green box) was introduced in reversed orientation directly after the c1 genomic DNA fragment 
consisting of the potential c1 promoter region, its 5'-UTR (yellow boxes), its first 3 exons (dark 
orange boxes) and 2 introns (light orange boxes). The cyan arrow depicts the ampicillin resistance 
gene of pCAPs (s. 2.1.7). B. Restriction analysis of pOV5. The plasmid was digested (s. 2.2.1.6) with 
the below mentioned restriction enzymes and fragments were separated on a 1% agarose gel (s. 
2.2.1.1.3.2) for 1 h at 100 V: a) 1 kb DNA Ladder (NEB) (s. 2.1.10.1); b) pOV5 digested with EcoRI; 
c) pOV5 digested with EcoRV. 
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The characterization of pOV5 was done by restriction analysis with the restriction 

enzymes EcoRI and EcoRV. After separation of the DNA fragments on an agarose 

gel, the expected bands of 3505 and 3031 bp in the case of the EcoRI digest and of 

6536 bp in the case of the EcoRV digest were detected (Figure 9).  

Further, pOV5 was digested (s. 2.2.1.6) with ScaI and SpeI in order to 

introduce a 3864 bp DNA fragment from pSI103 (s. 2.1.8) cut with the same 

enzymes that contains the paromomycin resistance gene aphVIII (Sizova et al., 

2001). The resulting plasmid was named pOV6 (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Construction of pOV6 

A. Restriction map of pOV6. The paromomycin resistance gene aphVIII from pSI103 (blue arrow) 
was introduced to the plasmid containing the c1 RNAi construct formed by a c1 cDNA fragment 
corresponding to the first 3 exons of the c1 gene (green box) cloned in reversed orientation directly 
after the c1 genomic DNA fragment consisting of the potential c1 promoter region and its 5'-UTR 
(yellow boxes), the first 3 exons (dark orange boxes) and 2 introns (light orange boxes). The cyan 
arrow depicts the ampicillin resistance gene of pCAPs (s. 2.1.7). B. Restriction analysis of pOV6. The 
plasmid was digested (s. 2.2.1.6) with the mentioned below restriction enzymes and fragments were 
separated on a 1% agarose gel (s. 2.2.1.1.3.2) for 1 h at 100 V: a) 1 kb DNA Ladder (NEB) (s. 
2.1.10.1); b) pOV6 digested with XbaI; c) pOV6 digested with BamHI. 
 

 

pOV6 was characterized by restriction analysis with the restriction enzymes XbaI 

and BamHI. After separation of the DNA fragments on an agarose gel the expected 

bands of 4498 and 3787 bp in the case of the XbaI digest and of 3251, 3172, 1847 

and 12 bp in the case of the BamHI digest were detected (Figure 10) with the 

exeption of the 12 bp fragment. 
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3.1.1.2 Selection of C1 silenced strains of C. reinhardtii transformed with pOV6 

C. reinhardtii cells were transformed with pOV6 (s. 2.2.2.5). Transformed strains 

(C1-sil) grown under selection of paromomycin were used for further analysis. Cells 

were grown to a cell density of about 1 - 5 x 106 cells/mL and protein crude extracts 

were prepared (s. 2.2.3.1). For comparison, a crude extract from non-transformed 

wild-type cells was used. Different amounts of proteins from wild-type (100, 50 and 

25 µg per lane) were separated on SDS-PAGE (s. 2.2.3.4) and quantitatively 

compared to proteins from transformed strains (100 µg per lane) after 

immunoblotting (s. 2.2.3.6) with the anti-C1 antibody. Equal loading was checked by 

Ponceau staining (s. 2.2.3.7). In total, ca. 150 strains were checked. Silencing down 

to a level of about 25-30% was observed in some transgenic strains (e.g., C1-sil35), 

but some strains also showed only silencing down to 40-80% (e.g., C1-sil72; Figure 

11, Table 1). The strains depicted in Figure 11 were used for further characterization 

(s. 3.1.2.2 and 3.1.2.3). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Analysis of C1-sil strains by immunoblotting with anti-C1 antibodies  

Different amounts of proteins from a crude extract (s. 2.2.3.1) (100, 50 and 25 µg per lanes) of wild-
type (WT) cells were separated on a 9% SDS-PAGE (s. 2.2.3.4) and used for immunoblotting with the 
anti-C1 antibodies (s. 2.2.3.6) along with protein crude extracts (100 µg per lane) from different C1-
silenced strains (C1-sil32, C1-sil35, C1-sil53, C1-sil72 and C1-sil81). The position of C1 is indicated by 
an arrow. 
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Table 1. Quantification of the C1 expression level in the C1-sil strains  

 

Strain Level of silencing 

C1-sil32 26 
C1-sil35 30 
C1-sil53 41 
C1-sil72 74 
C1-sil81 53 

 
Densitometry quantifications (s. 2.2.3.12) were done. "Level of silencing" indicates the level of C1 
expression (%) in different transformed strains determined by a calibration curve, correlating different 
amounts of C1 from crude extracts of wild-type with those of the silenced strains.  
 

 

It should be mentioned that the analysis of the strains with a high level of C1 

silencing (e. g., C1-sil35) was particularly complicated since the level of C1 reverted 

within a few weeks back to wild-type level. After transformation and selection on 

paromomycin plates, colonies were always grown up and checked by Western 

analysis for their degree of silencing. If silencing of C1 was occurring, the same 

colony was grown up and checked again by Western analysis to verify the result. In 

most, but not all cases, silencing was still maintained within this time range. But in 

case of a further repeat one or two weeks later, reversion back to wild-type level was 

already completed in most analyzed strains. 

 

3.1.2 Characterization of C1-sil strains 

3.1.2.1 Determination of the C3 level in the strains with decreased level of C1 

expression 

In all studied model organisms the oscillatory system is driven by positive and 

negative feedback loops. Thereby, variations in protein level of any clock component 

can affect the “normal” expression of other components. For example, in N. crassa a 

knock-out of FRQ leads to decreased levels of WC-1 (White Collar-1; Lee et al., 

2000). Also, co-regulation was found in some multiprotein complexes of C. 

reinhardtii, such as components of the photosystems (Wostrikoff et al., 2004; Göhre 

et al., 2006). Therefore, it was of interest to understand if down-regulation of one 
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subunit of CHLAMY1 could cause an effect on the “normal” expression of the other 

subunit. It was examined in the C1-sil strains if the level of C3 was changed in 

parallel. In strains where C1 was silenced down to 25-30%, a strong co-regulation of 

the C3 level was observed (e.g., C1-sil32 and C1-sil35; Figure 12, Table 2), whereby 

C3 was even more silenced than C1 (below 25%). In contrast, a less pronounced or 

no co-regulation of the C3 subunit was found in the transgenic strains that had shown 

a smaller degree of C1 silencing (e.g., C1-sil72; Figure 12, Table 2). These data 

indicate that strong co-regulation of C3 in case of C1 silencing depends on a critical 

low level of C1 that has to be reached in the cell. 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Silencing of C1 below a critical level causes strong co-regulation of C3 

A. Different amounts of proteins from a crude extract (s. 2.2.3.1) (100, 50 and 25 µg per lanes) of 
wild-type (WT) cells and of crude extracts (100 µg per lane) from different C1-silenced strains (C1-
sil32, C1-sil35 and C1-sil72) were separated on a 9% SDS-PAGE (s. 2.2.3.4) and used for 
immunoblotting with the anti-C1 antibodies (s. 2.2.3.6). The position of C1 is indicated by an arrow. 
B. The same procedure as described before (see A) was carried out, but immunoblotting (s. 2.2.3.6) 
was done with anti-C3 antibodies. The position of C3 is indicated by an arrow.  
 
 
Table 2. Quantification of the C3 expression level in the C1-sil strains  

 

Strain Level of C1 expression Level of C3 expression 

C1-sil32 26 12 
C1-sil35 30 15 
C1-sil72 74 83 

 
Densitometry quantifications (s. 2.2.3.12) were done. "Level of C1 expression" (%) was determined in 
different transformed strains by a calibration curve, correlating different amounts of C1 in crude 
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extracts from wild-type with those from the silenced strains. The same procedure was done to 
determine the "level of C3 expression". 
 

 

3.1.2.2 Measurement of the circadian rhythm of NII activity in strains where the 

C1 level is reduced  

In order to obtain functional information about the role of the C1 subunit in the 

circadian system of C. reinhardtii, it was important to find out if there is a difference 

in circadian rhythms between wild-type and C1sil strains. Therefore, the rhythm of 

NII activity was manually measured (s. 2.2.3.11) in a strain where the C1 level was 

reduced in comparison to wild-type. NII represents one of the key enzymes of 

nitrogen metabolism. Its activity was shown before to be diurnally regulated with a 

maximum during the middle of the light period (Pajuelo et al., 1995). Nii mRNA 

bears an UG-repeat in its 3’-UTR that is recognized by CHLAMY1 (Waltenberger et 

al., 2001). Thus, the influence in the expression level of CHLAMY1 on its direct 

output targets can be studied. For this purpose, cells that were entrained under a LD 

cycle were released to constant dim light (LL) and NII activity (s. 2.2.3.11) was 

measured starting from the second day during subjective night (LL38) till the end of 

the next subjective day (LL 58) in a four hours interval. In wild-type cells, NII 

showed a circadian rhythm in its activity, however with rather modest amplitude of 

about 2. Maximal activity occurred during early day-phase (Figure 13A).  
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Figure 13. A decrease of the C1 level abolishes the circadian rhythmicity of NII activity in C. 
reinhardtii  

Cells were grown under a LD (12:12) cycle and then transferred to constant conditions of dim light 
(LL 0). After 38 h, cells were harvested every 4 h at the indicated times. Crude extracts were prepared 
and enzyme activities were determined (s. 2.2.3.11). Error bars represent SEM of 3 independent 
measurements. Subjective night - gray background; subjective day - white background. A. Wild-type 
cells SAG 73.72. These measurements were done by E.-M. Schmidt. B. Strain C1-sil81.  
 

 

For analyzing NII activity in a C1 silenced strain, a most recent characterized strain 

was chosen, which is not very strongly silenced to avoid potential reversion during 

the experiments, as mentioned above. In C1-sil81 (Figure 11, Table 1), the C1 level 

was reduced to about 53%. Immediately after the Western analysis, the strain was 

used for the measurements of NII activity and it was verified after the experiment 

that the C1 level was still reduced. In this case, arrhythmicity of NII activity was 

observed (Figure 13B). These data show that C1 is an essential component of the 

circadian system in C. reinhardtii. 

 

3.1.2.3 Measurement of the circadian rhythm of phototaxis in C1-sil strains  

To postulate the role of C1 in circadian system, it was also important to find out if 

another circadian output rhythm was disturbed in the same way.  

First, automatic phototaxis measurements (s. 2.2.3.13) with several C1-sil 

strains, where C1 was silenced below 40% and C3 was strongly co-silenced, were 

done directly after the verification of C1 silencing and in all cases they showed wild-
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type like behavior of phototaxis. As example, phototaxis of C1-sil35 is shown (Figure 

14B). However, the wild-type like behavior could be due to the fact that the C1 level 

had already been reverted to wild-type since every analysis of the silencing level of 

C1 after the phototaxis assay revealed complete reversion of the C1 level back to 

wild-type in these strains (Figure 14E, Table 3). 
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Figure 14. Silencing of C1 can cause arrhythmic behavior  

Phototaxis rhythms of wild-type (A) and C1-sil strains (C1-sil35 (B), C1-sil53 (C) and C1-sil72(D)) 
were measured (s. 2.2.3.13) using the automated phototaxis-measuring unit developed by 
Mergenhagen (1984). “E” represents the extinction in mV. Time (days) indicates how long cells were 
exposed to constant darkness. A. Phototaxis of wild-type cells under free running conditions. The free 
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running period of 24,7 h is indicated. B. Phototaxis of C1-sil35 under free running conditions. The free 
running period of 24,7 h is indicated. It should be noted that the C1 as well as the C3 levels were fully 
reverted back to wild-type level when C1-sil35 cells were checked after the phototaxis experiment. C. 
Phototaxis of C1-sil53 under free running conditions. The free running period of 24,3 h is indicated. In 
the case of C1-sil53, silencing (~84% of the WT level) was still observed after the phototaxis 
experiment. D. Phototaxis of C1-sil72 under constant conditions showing complete arrhythmicity. In 
this case, silencing (~70% of the WT level) was still observed after the phototaxis experiment. E. 
Analysis of the C1 expression level by immunoblotting in C1-sil strains after phototaxis experiment. 
Different amounts of proteins from a crude extract (s. 2.2.3.1) (100, 50 and 25 µg per lanes) of wild-
type (WT) cells were separated on a 9% SDS-PAGE (s. 2.2.3.4) and used for immunoblotting with the 
anti-C1 antibodies (s. 2.2.3.6) along with protein crude extracts (100 µg per lane) from different C1-
silenced strains (C1-sil35, C1-sil53 and C1-sil72). The position of C1 is indicated by an arrow. 

 
 
Table 3. Quantification of the C1 expression level in the C1-sil strains before and after the 
phototaxis test 
 

Strain Before After 

C1-sil35 30 107 
C1-sil53 41 84 
C1-sil72 74 70 

 
Densitometry quantifications (s. 2.2.3.12) were done. The level of C1 expression (%) "before" 
(according to Table 1) and "after" the phototaxis test was determined in different transformed strains 
by a calibration curve, correlating different amounts of C1 in crude extracts from wild-type with those 
from the silenced strains.  
 

 

Only in the case of strains where silencing was not as pronounced, reduced levels of 

C1 could still be found by Western analysis (s. 2.2.3.6) after the phototaxis assay 

(Figure 14E, Table 3) showing that the cells were still silenced in C1 during the 

assay. Notably, these transgenic lines showed arrhythmic behavior from the very 

beginning under constant darkness (C1-sil72, Figure 14D) or after three days under 

constant conditions (C1-sil53, Figure 14C). Thus, reduced level of C1 causes the 

same effect (arrhythmicity) on the phototaxis rhythm as on the rhythm of NII activity 

(s. 3.1.2.2). These data suggest that C1 is an essential component of the circadian 

clock in C. reinhardtii. 

 

 

3.2 Investigation of the role of the C1 and C3 subunits of 

CHLAMY1 in temperature integration 

In the first part (s. 3.1) of my thesis it was shown that changes in the C1 expression 

level can cause arrhythmicity of the phototaxis (s. 3.1.2.3) and NII activity rhythms 
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(s. 3.1.2.2) demonstrating that this protein is an important component of the 

oscillatory machinery in C. reinhardtii. From the other side, changes in the C3 

expression level were shown to lead to a shift in acrophase (Iliev et al., 2006). Thus, 

it was interesting to analyze if the duo of the C1/C3 subunits of the RNA-binding 

protein CHLAMY1 could also be involved in temperature integration, a prerequisite 

for entrainment by temperature cycles and temperature compensation.  

 

3.2.1 Detection of the expression level of the C1 and C3 subunits at different 

temperatures  

To study a possible role of C1/C3 in temperature integration, it was important to 

check first if their expression is itself temperature sensitive. Therefore, C. reinhardtii 

wild-type cells were grown at different temperatures and C1/C3 expression levels 

were analyzed. Beside the usual cultivation temperature of 23ºC, a lower (18ºC) as 

well as a higher temperature (28ºC) were selected that are still in the physiological 

range of C. reinhardtii (Harris, 1989), but differ in total of 10ºC. Cells were 

harvested during early day (LD2) when the binding activity of CHLAMY1 is low, 

and at early night (LD14) when it is high (Mittag, 1996). Protein crude extracts were 

prepared (s. 2.2.3.1) and equal amounts of protein per lane were separated on SDS-

PAGE (s. 2.2.3.4) and immunoblotted with anti-C1 antibodies (s. 2.2.3.6) (Figure 

15). For comparative immunoblots, equal amounts of proteins per lane were visually 

checked by Ponceau staining (s. 2.2.3.7) of the membrane. In addition, a duplicate 

gel was stained with Coomassie (s. 2.2.3.5) to corroborate that similar amounts of 

proteins were loaded (Figure 15C). 
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Figure 15. The C1 expression level does not change significantly in wild-type cells grown at 
different temperatures 

A. Cells were grown at 18, 23 and 28ºC and harvested during early day (LD2) and early night (LD14). 
Crude extracts (s. 2.2.3.1) were prepared and proteins (100 µg per lane) were separated on a 9% SDS-
PAGE (s. 2.2.3.4) along with a molecular mass standard and immunoblotted with anti-C1 antibodies 
(s. 2.2.3.6). * indicates a possible modified form of C1. B. Densitometry quantifications (s. 2.2.3.12) 
were done with three independent experiments. Thereby, the amount of C1 detected in cells grown at 
23ºC and harvested at LD2 was set to 100% and used as reference. C. A random nonspecific 
Coomassie blue-stained band from a duplicate gel shows that similar amounts of proteins were loaded.  
 

At both time-points, there was no significant change in the level of C1 at the 

different temperatures visible (Figure 15). However, at a closer look it seemed that 

there might be a change in a posttranslational modification at the lower temperature, 

which was analyzed further (see below).  

 

 

 

 

 

 

 

 

 

 
Figure 16. The C3 expression level increases at low temperature in wild-type cells of C. 
reinhardtii 

The same procedure as described in Figure 15 was carried out, but immunoblotting (s. 2.2.3.6) was 
done with anti-C3 antibodies. The loading control is shown in Figure 15C. 
 

 

In contrast to C1, the level of C3 was significantly changed at the different 

temperatures as could be seen in immunoblots with anti-C3 antibodies (s. 2.2.3.6) 

where the same protein crude extracts were used as for the C1 detection (Figure 16). 

The highest amount of C3 was present at the low temperature and its lowest amount 

appeared at the high temperature. This was visible at both selected time points. The 

change in amplitude was ca. three-fold. As was already described before, the equal 

amount of proteins loaded was visually checked by Ponceau staining (s. 2.2.3.7) of 

the membrane and, in addition, by Coomassie staining of a duplicate gel (s. 2.2.3.5) 

(Figure 15C). 
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3.2.2 Investigation of the possible posttranslational modification of the C1 

subunit at different temperatures  

To check if C1 might be indeed present in different posttranslational modified forms, 

proteins from protein crude extract (s. 2.2.3.2) were separated by a standardized 2-

DE procedure (s. 2.2.3.10) and immunoblotted with anti-C1 antibodies (s. 2.2.3.6).  

 

 

 

 

 

 

 
Figure 17. C1 is modified at the low temperature.  

C1 immunodetection from proteins of crude extracts (s. 2.2.3.2) separated by 2-DE. Cells were grown 
at 18, 23 and 28ºC and harvested during early day (LD2). Crude extracts were prepared and proteins 
(300 µg per assay) were separated on standardized 2-DEs (s. 2.2.3.10). For the first dimension, an IPG 
strip of pH 3 to 10 was taken, in the second dimension, a 10% SDS-PAGE was used along with a 
molecular mass standard. The proteins were then immunoblotted with anti-C1 antibodies (s. 2.2.3.6). 
The positions of pH 5.1 and 5.2 that are close to the theoretical pI of C1 (5.17) are indicated.  
 

At 28ºC, C1 appeared mostly as a single spot on 2-DE at a pH of about 5.2 (Figure 

17). That is in accordance with its theoretical isoelectrical point (pI: 5.17). A minor 

additional spot was present towards the lower pH, indicating that a small part of C1 

is present in a posttranslational modified form. At 23ºC and especially at 18ºC, this 

modified state of C1 was significantly increased. Thus, C1 gets posttranslational 

modified especially at low temperature.  

Since the modified forms of C1 did not show a significant change in 

molecular mass, but a change towards the acidic pH, it was postulated that 

phosphorylation could represent the modification. To check for this, the cells were 

grown again at the low temperature (18ºC) when the state of the posttranslational 

modification is highest, and the protein crude extract (s. 2.2.3.2) (300 µg) was treated 

either without (control) or with 1 µl (400 units) lambda protein phosphatase (s. 2.1.3) 

for 30 min at 30°C. This procedure is known to remove phosphate groups from 

proteins.  
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Figure 18. C1 is hyper-phosphorylated at the low temperature.  

The same procedure as described before (Figure 17) was undertaken with cells grown at 18ºC (- 
PPase). In one case (+ PPasea), the extract was treated for 30 min with Lambda PPase (NEB, 
Frankfurt) (s. 2.1.3) at 30ºC according to the protocol of the supplier. In another case (+ PPaseb), the 
used amount of PPase was increased five times. 
 

Separation of the proteins by 2-DE (s. 2.2.3.10) and immunoblotting (s. 2.2.3.6) with 

the anti-C1 antibodies showed that the modified forms of C1 were significantly 

reduced in the phosphatase treated cells (Figure 18; + PPasea). These data suggest 

that C1 is hyper-phosphorylated at the low temperature. However, there was still a 

small amount of a modified C1 present even when the amount of lambda protein 

phosphatase was five times increased for the incubation (Figure 18; + PPaseb). This 

could mean that C1 has an additional posttranslational modification. But it is also 

possible that phosphorylated C1 that is present in the C1-C3 and in addition in the 

≥680 kDa complex during day-phase cannot be fully accessed by the PPase.  

Densitometry analysis (s. 2.2.3.12) showed that the phosphorylated degree of 

C1 increased from ca. 28% at 28ºC to ca. 51% at 18ºC (Table 4).  

 

 
Table 4. The temperature dependent phosphorylation degree of C1 in wild-type 

 

Strain Temperature Percentage SEM 

WT 18°C 50.7* 1.2 
WT 23°C 36.5 2.9 
WT 28°C 27.8* 2.9 

 
Densitometry quantifications (s. 2.2.3.12) were done with two (or three indicated by *) independent 
experiments. Percentage indicates the amount (%) of the phosphorylated degree of C1. Thereby, as 
100% was taken the volume of all spots. 
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3.2.3 Investigation of the regulation level of the temperature dependent c3 

expression  

To find out if the differential regulation of c3 occurs at the transcriptional or 

translational level, an inhibitor protocol was developed (Figure 19).  
 

 

 

 

 

 

 

 

 

 

 
Figure 19. Scheme of the experimental procedure with and without cycloheximide (CHX, s. 
2.1.4) treatment 

Wild-type cells were grown at 28ºC under a LD cycle and transferred at LD4 to 18ºC by centrifuging 
them and dissolving them in 18ºC pre-cooled TAP medium (s. 2.1.12.2). In one case, CHX (s. 2.1.4) 
was added. After 3 h at 18ºC, the two different cell cultures were centrifuged again, washed with TAP 
medium and then dissolved in 28ºC pre-warmed TAP medium (s. 2.1.12.2) without the inhibitor. Cells 
were grown for additional 4 h at 28ºC. In the presence of CHX at 18ºC, no translation of c3 mRNA 
can occur, but c3 mRNA may accumulate if the up-regulation of c3 at 18ºC occurs at the 
transcriptional level, and thus an increase of C3 protein after removal of CHX can be expected.  
 

For the inhibitor experiment (Figure 19), the cells were grown first at the high 

temperature where the level of C3 is low. After that, cycloheximide (s. 2.1.4), an 

inhibitor of translation, was added for a 3 h period and at the time of addition the 

cells were transferred to 18ºC. In parallel, a control culture without cycloheximide 

was put to the low temperature. If c3 up-regulation would be controlled at the 

transcriptional level, the cells should induce (with or without cycloheximide) and 

accumulate (in the presence of cycloheximide) c3 mRNA during this time. In 

absence of the inhibitor, the produced mRNA should be immediately translated and 

an increase of C3 protein should occur. This was found after 3h at 18ºC with the 

control (Figure 20AC).  
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Figure 20. Up-regulation of c3 occurs at the transcriptional level 

A. Immunodetection of C3 levels. Cells from the control and cycloheximide (s. 2.1.4) treated cells 
were harvested before, in the middle and after the treatment as described before (Figure 19) at the 
indicated time-points and protein crude extracts were prepared (s. 2.2.3.1). Proteins (50 µg per lane) 
were separated on a 9% SDS-PAGE (s. 2.2.3.4) along with a molecular mass standard and 
immunoblotted with anti-C3 antibodies (s. 2.2.3.6). B. A random nonspecific Coomassie blue-stained 
(s. 2.2.3.5) band from duplicate gels shows that similar amounts of proteins were loaded. C. 
Densitometry quantifications (s. 2.2.3.12) were done with tree independent experiments. The relative 
abundances of C3 protein in the control (circles, dash-line) and cycloheximide treated cells (triangles, 
continuous line) are presented. Thereby, the amount of C3 at time-point 0 (28°C) was set to 100% and 
used as reference.  
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In the presence of cycloheximide, this increase was not visible, as expected. After the 

3h at 18°C, the inhibitor was removed by washing the cells in TAP medium (s. 

2.1.12.2), and the cells were transferred back to 28ºC where the induction of c3 

expression should be significantly reduced and were kept there for additional 4h. In 

the control, the level of C3 stayed similar after the switch to the high temperature. In 

case of the culture that had been treated with cycloheximide an increase in the level 

of protein was visible within the first hour after the switch to the higher temperature 

(Figure 20AC). Equal amounts of proteins per lane were checked in two duplicate 

gels that were stained with Coomassie (s. 2.2.3.5) (Figure 20B). 

It was concluded that c3 mRNA was accumulated during the cycloheximide 

treatment, but could not be translated due to the inhibitor. Once the stimulating low 

temperature conditions were switched back to 28ºC and the inhibitor was removed 

from the cells, accumulated c3 mRNA was translated and caused the increase in C3. 

This would not occur if c3 would be regulated at the translational level, because 

during the inhibitor treatment at the low temperature no c3 mRNA would be induced 

and could thus accumulate. Therefore, the up-regulation of c3 at the low temperature 

occurs at the transcriptional level. 

 

 

3.2.4 Detection of potential components playing a role in temperature dependent 

changes of the C1 and C3 subunits  

3.2.4.1 Screening for kinases that are able to phosphorylate C1  

It was also interesting to find out which kinase(s) might be responsible for the hyper-

phosphorylation of C1 at the low temperature and if the phosphorylation level of C1 

could influence C3 expression. Theoretical predictions of phosphorylation sites of C1 

were done using internet server (NetPhosK 1.0 server under 

www.cbs.dtu.dk/services/NetPhosK/; Blom et al., 2004) that highlighted several 

protein kinases that are able to phosphorylate C1 (Figure 21).  
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Figure 21. Theoretical predictions of phosphorylation sites of C1  

The amino acid sequence of C1 was uploaded to the site www.cbs.dtu.dk/services/NetPhosK/ and 
analysed for potential phosphorylation sites that can be recognized by the listed below kinases. 
Potential phosphorylation sites are marked over the sequence with followind letters: green K - CKII 
(CASEIN KINASE II), red C - PKC (PROTEIN KINASE C), blue I - INSR (INSULIN RECEPTOR 
KINASE), pink E - EGFR (EPIDERMAL GROWTH FAKTOR RECEPTOR PROTEIN KINASE), 
green S - SRC (SARCOME PROTEIN TYROSINE KINASE), red A - PKA (PROTEIN KINASE A), 
blue X - DNAPK (DNA DEPENDENT PROTEIN KINASE), grey X - GSK (GLYCOGEN 
SYNTASE KINASE), black K -CK1 (PROTEIN KINASE 1), cyan A - ATM (ATAKIA-
TELANGIECTASIA MUTATED KINASE). 
 

 

Among several depicted kinases, CK1 was present that was an object of a parallel 

research carried out in our lab. In that study, it was shown that the CK1 silencing 

causes period shortening of the circadian clock in C. reinhardtii (Schmidt et al., 

2006). For the CK1 silencing an RNAi strategy was used.  

 

 

3.2.4.2 Investigation of the CK1 influence on temperature dependent changes of 

C1 and C3 subunits  

3.2.4.2.1 Construction of the CK1 silencing vector  

The genomic DNA 1576 bp fragment containing the potential promoter region of ck1 

(908 bp in front of the AUG including the predicted 258 bp 5’-UTR) and the first 

four exons and three introns of ck1 (gene model estExt_gwp_1W.C_200087, vs3 of 

the genome) was PCR-amplified (s. 2.2.1.1.2) using the GC-RICH PCR System kit 

from Roche (s. 2.1.4) according to the instructions of the kit along with genomic 

DNA from C. reinhardtii and the primers (s. 2.1.9): OMM232 (as a sense PCR 

primer) and OMM249 (as an antisense PCR primer) (Figure 22).  
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Figure 22. Detection of the ck1 containing PCR product by agarose gel electrophoresis 

PCR reaction was carried out using GC-RICH PCR System from Roche (s. 2.1.4) with OMM232 and 
OMM249 primers (s. 2.1.9). The product was separated (s. 2.2.1.1.3.2) on a 1% agarose gel for 2 h at 
100 V and visualized by ethidium bromide staining. a) Ladder: Lambda DNA-BstEII digest (2.1.10.1). 
b) PCR product, containing fragment of ck1 genomic DNA together with its potential promoter 
region. 
 

 

The genomic DNA was cloned into the MluNI of the pCAPS vector (s. 2.1.7) from 

the PCR Cloning Kit (Roche) (s. 2.1.4) following the instructions of the manual and 

the resulting plasmid was named pOV1 (Figure 23). 
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Figure 23. Construction of pOV1 

A. Restriction map of pOV1. The DNA fragment, introduced to pCAPs vector (s. 2.1.7), consists of 
the potential ck1 promoter region and its 5'-UTR (yellow boxes), its first 4 exons (dark orange boxes) 
and 3 introns (light orange boxes). The cyan arrow depicts the ampicillin resistance gene of pCAPs. B. 
Restriction analysis of pOV1. The plasmid was digested (s. 2.2.1.6) with the below mentioned 
restriction enzymes and fragments were separated on a 1% agarose gel (s. 2.2.1.1.3.2) for 1 h at 100 
V: a) Ladder: 1 kb DNA Ladder (NEB) (s. 2.1.10.1); b) pOV1 digested with BglI; c) pOV1 digested 
with EcoRV. 
 

 

pOV1 was characterized by restriction analysis with the restriction enzymes BglI and 

EcoRV. After separation of the DNA fragments on an agarose gel, the expected 

bands of 2009, 1766 and 929 bp (weakly visible) in the case of the BglI digest, and of 

4137 and 567 bp (weakly visible) in the case of the EcoRV digest were detected 

(Figure 23). The absence of point mutations was proved by sequencing of the PCR 

containing fragment of pOV1 with S1 and S2 primers (s. 2.1.9). Thereafter, pOV1 

was cut (s. 2.2.1.6) with ClaI and BamHI and a 258 bp long ck1 cDNA fragment of 

pGG1 (s. 2.1.8) that was digested with the same enzymes was cloned into it resulting 

in an insertion of the cDNA in opposite direction to the genomic DNA fragment. The 

resulting plasmid was named pOV2 (Figure 24). 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 24. Construction of pOV2 

A. Restriction map of pOV2. The ck1 cDNA fragment corresponding to the first 4 exons of ck1 gene 
(green box) was introduced in reversed orientation directly after the ck1 genomic DNA fragment, 
which consisted of the potential ck1 promoter region and ck1 5'-UTR (yellow boxes), its first 4 exons 
(dark orange boxes) and 3 introns (light orange boxes). The cyan arrow depicts the ampicillin 
resistance gene. B. Restriction analysis of pOV2. The plasmid was digested (s. 2.2.1.6) with 
mentioned restriction enzymes and fragments were separated on a 1% agarose gel (s. 2.2.1.1.3.2) for 1 
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h at 100 V: a) Ladder: 1 kb DNA Ladder (NEB) (s. 2.1.10.1); b) pOV2 digested with NcoI; c) pOV2 
digested with BglI. 
 

 

The characterization of pOV2 was done by restriction analysis with the restriction 

enzymes NcoI and BglI. After separation of the DNA fragments on agarose gel, the 

expected bands of 3549 and 844 bp (weakly visible) in the case of the NcoI digest 

and of 1766, 1698 and 929 bp (weakly visible) in the case of the BglI digest were 

detected (Figure 24). 

pOV2 was digested (s. 2.2.1.6) with ScaI and BamHI in order to introduce a 

3858 bp DNA fragment from pSI103 (s. 2.1.8) partially digested with the same 

enzymes that contains the paromomycin resistance aphVIII gene (Sizova et al., 

2001). The resulting plasmid was named pOV3 (Figure 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25. Construction of pOV3 

A. Restriction map of pOV3. The paromomycin resistance gene aphVIII from pSI103 (blue arrow) 
was introduced to the plasmid containing the ck1 RNAi construct formed by the ck1 cDNA fragment 
corresponding to the first 4 exons of ck1 gene (green box) cloned in reversed orientation directly after 
the ck1 genomic DNA fragment consisted of potential ck1 promoter region and ck1 5'-UTR (yellow 
boxes), first 4 exons (dark orange boxes) and 3 introns (light orange boxes) of ck1 gene. The cyan 
arrow depicts the ampicillin resistance gene. B. Restriction analysis of pOV3. The plasmid was 
digested (s. 2.2.1.6) with mentioned restriction enzymes and fragments were separated on a 1% 
agarose gel (s. 2.2.1.1.3.2) for 1 h at 100 V: a) Ladder: 1 kb DNA Ladder (NEB) (s. 2.1.10.1); b) 
pOV3 digested with BamHI; c) pOV3 digested with NcoI.  

 

pOV3 was characterized by restriction analysis with the restriction enzymes BamHI 

and NcoI. After separation of the DNA fragments on agarose gel the expected bands 
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of 4698 and 1627 bp in the case of the BamHI digest and of 3636, 1845 and 844 bp 

in the case of the NcoI digest were detected (Figure 25). 

Transformation of pOV3 into C. reinhardtii cells and characterization of 

transformed strains was done by G. Gessner. 

  

3.2.4.2.2 Study of the effect of the CK1 silencing or inhibition on temperature 

dependent changes of C1 and C3 subunits 

To check a hypothesis that CK1 could play a role in temperature dependent changes 

of CHLAMY1 components, it was analyzed if silencing or inhibition of CK1 could 

affect the phosphorylation of C1 and the expression of c3. For this purpose, the 

specific CK1 inhibitor CKI-7 (s. 2.1.4) was used. In some cases, experiments were 

complemented with the CK1 silenced strain (CK1-sil2) where CK1 expression level 

was decreased to ca. 40% in comparison to wild-type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26. The expression level of C1 does not significantly change in cells where CK1 was 
inhibited   

A. Wild-type cells grown in the absence (WT) or presence of CKI-7 (s. 2.1.4) (WT + CKI-7) were 
grown at 18, 23 and 28ºC and harvested during early day (LD2). Crude extracts were prepared (s. 
2.2.3.1) and proteins (50 µg per lane) were loaded on a 9% SDS-PAGE (s. 2.2.3.4) along with a 
molecular mass standard and immunoblotted with anti-C1 antibodies (s. 2.2.3.6). B. Densitometry 
quantifications (s. 2.2.3.12) were done with three independent experiments. Thereby, the amount of 
C1 detected in WT cells grown at 23ºC without the inhibitor was set to 100%. C. A random 
nonspecific Coomassie blue-stained band from a duplicate gel shows that similar amounts of proteins 
were loaded. 
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The expression level of C1 was rather similar at the different temperatures when 

CK1 was inhibited by treatment with the CK1 inhibitor, CKI-7 (s. 2.1.4; Preuss et al., 

2004) (Figure 26).  

It was also analyzed, if the phosphorylation level of C1 was changed in those 

cells where CK1 was either inhibited or silenced by an RNAi approach (Figure 27).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 27. The phosphorylation degree of C1 depends on CK1   

WT cells alone (WT) or with the inhibitor CKI-7 as well as the CK1 silenced strain (CK1-sil2) were 
grown at either 18 or 28ºC and harvested during early day (LD2). Crude extracts were prepared (s. 
2.2.3.2) and proteins (300 µg per assay) were separated on standardized 2-DEs (s. 2.2.3.10). For the 
first dimension, an IPG strip of pH 3-10 was taken, in the second dimension, a 10% SDS-PAGE was 
used along with a molecular mass standard. The proteins were then immunoblotted with anti-C1 
antibodies (s. 2.2.3.6). The positions of pH 5.1 and 5.2 that are close to the theoretical pI of C1 (5.17) 
are indicated.  
 

 
Table 5. The temperature dependent phosphorylation degree of C1 in wild-type (WT) and cells 
where CK1 was either inhibited or silenced 
 

Strain/Inhibitor Temperature Percentage SEM 

WT 18°C 50.7* 1.2 
WT 28°C 27.8* 2.9 
WT/CKI-7 18°C 15.8 8.7 
WT/CKI-7 28°C 40.7 1.4 
CK1-sil2 18°C 28.6 0.2 
CK1-sil2 28°C 44.9 2.2 

 
Densitometry quantifications (s. 2.2.3.12) were done with two (or three indicated by *) independent 
experiments. Percentage indicates the amount (%) of the phosphorylated degree of C1. Thereby, the 
volume of all spots was taken as 100%. CKI-7 - specific inhibitor of CK1. CK1-sil2 - CK1 silenced 
strain (CK1 expression ca. 40% in comparison to WT; Schmidt et al., 2006). 
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At the low temperature, it was reduced in both cases in comparison to wild-type as 

analyzed by standardized 2-DE (s. 2.2.3.10) and immunoblotting (s. 2.2.3.6) with 

anti-C1 antibodies (Figure 27). At the high temperature (Figure 27, Table 5), the 

phosphorylation level of C1 increased in comparison to wild-type in case of CK1 

inhibition with CKI-7, but did not change in case of CK1-sil2. These data suggest 

that CK1 is involved in C1 phosphorylation at the low temperature. It may directly 

phosphorylate C1 or activate another kinase that in turn phosphorylates C1. It was 

surprising that C1 was now 13% more phosphorylated at the high temperature upon 

full inhibition by CKI-7 (Table 3) in comparison to wild-type. To explain these data, 

one can assume that CK1 is a member of a temperature dependent signal cascade 

involving other kinases as will be discussed later. 

It was also analysed if the C3 level was changed in CK1 inhibited cells. The 

up-regulation of c3 at the low temperature was not as pronounced in the CK1 

inhibited cells as in wild-type (Figure 28). Also, it is important to mention that the 

expression level of c3 was lower at 18 and 23°C in CK1 inhibited cells compared to 

wild-type. Therefore, CK1 seems to contribute to the activation of c3 at the low 

temperature.  

 

 

 

 

 

 

 

 

 

 
Figure 28. Immunodetection of C3 in WT cells grown in the presence of CKI-7 and in the CK1 
silenced strain 

The same procedure as described before (Figure 26) was carried out, but immunoblotting (s. 2.2.3.6) 
was done with anti-C3 antibodies. The loading control is shown in Figure 26C. 

 

3.2.4.2.3 Detection of the expression level of CK1 at different temperatures and 

its dependency on the activity of Ser-/Thr-phosphatases  
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It was also interesting to see if CK1 expression might be itself temperature 

dependent. Therefore, the level of CK1 was analyzed in cells that were grown at the 

different temperatures. Surprisingly, CK1 was up-regulated at the high temperature 

(Figure 29). It should be mentioned that in mammalian cells CK1 was shown to auto-

phosphorylate itself that results in an inactivation and following degradation of the 

enzyme (Rivers et al., 1998). For activation of CK1, Ser-/Thr-PPs have to remove the 

phosphate groups from the enzyme. This was proven by addition of okadaic acid (s. 

2.1.4), an inhibitor of Ser-/Thr-PPs that is known to inhibit specifically PP2A, PP4, 

PP5 and to some part PP1 at low concentrations. In contrast, PP2B is only inhibited 

at higher concentrations (10 µM) and PP2C and PP7 not at all (Janssens and Goris, 

2001). PP1 and PP2A are known to be present in C. reinhardtii (Mittag et al., 2005). 

Blasting (performed by S. Seitz) of the PP4 and PP5 proteins from mouse against the 

translated C. reinhardtii models (genome, version 3) showed in case of PP4 no 

protein that has any significant hit in C. reinhardtii and in case of PP5 two models 

encoding PP5 like proteins (IDs 31082 and 195748).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29. Protein abundance of CK1 is temperature controlled and influenced by PPs  

A. Immunodetection of CK1 in WT cells grown in the absence or presence of 1.5 µM Ser-/Thr-PP 
inhibitor okadaic acid (s. 2.1.4) (WT + OA). Cells were grown at 18, 23 and 28ºC and harvested 
during early day (LD2). Crude extracts were prepared (s. 2.2.3.1) and proteins (100 µg per lane) were 
separated on a 9% SDS-PAGE (s. 2.2.3.4) along with a molecular mass standard and immunoblotted 
(s. 2.2.3.6) with anti-CK1 peptide antibodies (Schmidt et al., 2006). B. Densitometry analysis (s. 
2.2.3.12). For quantifications, the amount of CK1 detected in WT cells grown at 23ºC without the 
inhibitor was set to 100%. C. A random nonspecific Coomassie blue-stained band from a duplicate gel 
shows that similar amounts of proteins were loaded. 
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It was checked if addition of okadaic acid at low concentrations (1.5 µM) to the cells 

would influence the temperature dependent expression of CK1. This was indeed the 

case (Figure 29). In the presence of okadaic acid, the expression level of CK1 stayed 

at a similar low level at all observed temperatures. This suggestes that CK1 and at 

least one of the mentioned above Ser-/Thr-PPs (PP2A, PP1, PP5) act in C. 

reinhardtii in an interconnected way.  

 

3.2.4.3 Investigation of a role of Ser-/Thr-PPs within the circadian system of C. 

reinhardtii and their influence on temperature dependent changes of C1 

and C3  

3.2.4.3.1 Measurement of the circadian phototaxis rhythm in C. reinhardtii 

culture after addition of okadaic acid 

Since inhibition of Ser-/Thr-PPs by okadaic acid influenced temperature dependent 

CK1 expression (s. 3.5.2.2.2), the treatment with okadaic acid was also used to see if 

it would influence the temperature dependence of C1 and C3. At first, the addition of 

okadaic acid to the cell culture was checked to see if it has an influence on phase 

and/or period of circadian rhythms in C. reinhardtii. For this purpose, the circadian 

rhythm of phototaxis was used as clock output process, since it can be automatically 

measured over several days (s. 2.2.3.13) (Mergenhagen, 1984). Addition of okadaic 

acid to an end concentration of 1.5 μM (performed by M. Fiedler) caused a change in 

period within the first two to three days and then always resulted in arrhythmicity 

(Figure 30). 
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Figure 30. Changes in the phototaxis rhythm of wild-type cells after okadaic acid (OA) 
treatment 

To measure the circadian rhythm of phototaxis, an automated measuring unit was used (s. 2.2.3.13). E 
represents the extinction in mV. Time (days) indicates how long cells were exposed to constant 
darkness. The wild-type had a circadian rhythm of phototaxis with an average period of 24.6 h (n = 
10; SEM: 0.1). If 1.5 µM OA (s. 2.1.4) was added to the culture medium at the day 0 a period 
shortened down to 16.5 h [average period: 19.9 h (n = 9; SEM: 0.8)] was observed for first two days 
and finally arrhythmicity. It should be noted that the cells were motile till day four, but lost motility 
starting from day five (Wagner et al., 2006).  
 

In several independent experiments with 1.5 μM okadaic acid, the period was in 

most cases significantly shortened within the first two to three days under constant 

conditions from 24.6 h (average period wild-type without okadaic acid) down to 16.5 

h (average period: 19.9). In one case, the period was increased (up to 42h) during the 

first two to three days before arrhythmicity occurred. If this is taken into account an 

average period of 22.3 (n = 10; SEM: 2.6) is given. Such a period lengthening (38h) 

was also found in one experiment, where a slightly higher amount of okadaic acid (2 

µM) was used. The arrhythmic behavior can only be evaluated as clock related till 

day four as will be discussed later.  

 

3.2.4.3.2 Investigation of PPs involvement into temperature dependent changes 

of C1 and C3 

In the next step, the levels of C1 and C3 as well as C1 phosphorylation were 

analyzed in okadaic acid treated cells. C1 was rather constantly expressed at the 

different temperatures in the presence of the PPs inhibitor (Figure 31).  

 

 

 

 

 

 

 

 

 

 
Figure 31. Inhibition of PPs does not significantly affect the expression of C1  
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A. Cells were grown at 18, 23 and 28ºC in absence (WT) or presence of 1.5 µM okadaic acid (OA; s. 
2.1.4) (WT + OA) and harvested during early day (LD2). Crude extracts were prepared (s. 2.2.3.1) 
and proteins (50 µg per lane) were separated on a 9% SDS-PAGE (s. 2.2.3.4) along with a molecular 
mass standard and immunoblotted (s. 2.2.3.6) with anti-C1 antibodies. B. Densitometry 
quantifications (s. 2.2.3.12) were done with three independent experiments. Thereby, the amount of 
C1 detected in WT cells grown at 23ºC without the inhibitor was set to 100%. Loading control is 
shown in Figure 29C. 

 

However, the phosphorylation state of C1 changed at the different temperatures in a 

similar way as seen before with the CK1 inhibition (Figure 32, Table 6). C1 that is 

only little phosphorylated in wild-type cells at the high temperature appeared to be 

more phosphorylated in cells grown in the presence of okadaic acid, while at the low 

temperature its phosphorylation level was reduced. 

 

 

 

 

 

 

 

 

 

 
Figure 32. Okadaic acid (OA) changes the phosphorylation pattern of C1 at different 
temperatures 

Wild-type (WT) cells were grown at either 18 or 28ºC in absence or presence of OA (s. 2.1.4) (WT + 
OA) and harvested during early day (LD2). Crude extracts were prepared (s. 2.2.3.2) and proteins 
(300 µg per assay) were separated on standardized 2-DEs (s. 2.2.3.10). For the first dimension, an IPG 
strip of pH 3 to 10 was taken, in the second dimension, a 10% SDS-PAGE was used along with a 
molecular mass standard. The proteins were then immunoblotted (s. 2.2.3.6) with anti-C1 antibodies. 
The positions of pH 5.1 and 5.2 that are close to the theoretical pI of C1 (5.17) are indicated.  

 

 
Table 6. The temperature dependent phosphorylation degree of C1 in wild-type cells and cells 
treated with okadaic acid (OA) 
 

Strain/Inhibitor Temperature Percentage SEM 

WT 18°C 50.7* 1.2 
WT 28°C 27.8* 2.9 
WT/OA 18°C 28.6 0.2 
WT/OA 28°C 44.9 2.2 
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Densitometry quantifications (s. 2.2.3.12) were done with two (or three indicated by *) independent 
experiments. Percentage indicates the amount (%) of the phosphorylated degree of C1. Thereby, the 
volume of all spots was taken as 100%. 
 

 
Further, the expression level of C3 was different in comparison to wild-type, 

as judged by immunoblots (Figure 33), where it was significantly increased at 23 and 

28°C. These data suggest that at least one of the above mentioned Ser-/Thr-PPs is not 

only interconnected with CK1, but also with C1 and C3. 

 

 

 

 

 

 

 

 

 

 
Figure 33. Presence of okadaic acid influences the expression of C3 at different temperatures  

The same procedure as described before (Figure 31) was carried out, but immunoblotting (s. 2.2.3.6) 
was done with anti-C3 antibodies. The loading control is shown in Figure 29C. 

 

3.2.4.4 Studies on temperature integration of C1 and C3 in the per1 mutant 

 The per1 mutant of C. reinhardtii has a lengthened period of the circadian 

phototaxis rhythm (Bruce, 1972). Albeit it has the same name as the per mutant from 

D. melanogaster, the protein of C. reinhardtii might not be related to PER of D. 

melanogaster. So far, there are no indications which gene/protein is defect in the 

per1 mutant. It was of interest to check if the functional temperature related network 

of C1 and C3 along with Ser-/Thr-PPs and CK1 is maintained or changed in the per1 

mutant.  

 

3.2.4.4.1 Detection of the expression level of C1 and C3 and of the 

phosphorylation pattern of C1 at different temperatures in the per1 

mutant 

WT   

18°C 23°C 28°C 18°C 23°C 28°C

WT + OA       

R
el

at
iv

e 
ab

un
da

nc
e 

(%
) 

0

50

100

150

200

  C3 

B 

A 



3. Results 82

In the per1 mutant, the level of C1 stayed rather constant at the different 

temperatures (Figure 34), which is similar to wild-type. 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 34. The C1 expression level at different temperatures is not affected in per1 mutant in 
comparison to WT 

A. Cells of the wild-type (WT) and the per1 mutant were grown at 18, 23 and 28ºC and harvested 
during early day (LD2). Crude extracts were prepared (s. 2.2.3.1) and proteins (50 µg per lane) were 
separated on a 9% SDS-PAGE (s. 2.2.3.4) along with a molecular mass standard and immunoblotted 
(s. 2.2.3.6) with anti-C1 antibodies. B. Densitometry quantifications (s. 2.2.3.12) were done with three 
independent experiments. Thereby, the amount of C1 detected in WT cells grown at 23ºC was set to 
100%. C. A random nonspecific Coomassie blue-stained band from a duplicate gel shows that similar 
amounts of proteins were loaded. 
 

However, the phosphorylation status of C1 in per1 changed in comparison to wild-

type. C1 was relatively little phosphorylated at both, low and high temperature 

(Figure 35, Table 7).  

It was also of interest to see if the C3 level is changed in the per1 mutant. 

Notably, it was significantly increased in the per1 mutant compared to wild-type, 

especially at the high temperature as judged by immunoblots (Figure 36).  

 

 

 

 

 

 

 

WT 

    18°C                               28°C          

          5.1 5.2                           5.1 5.2               

C1 

  C1 

WT   

18°C 23°C 28°C 18°C 23°C 28°C

per1        

R
el

at
iv

e 
ab

un
da

nc
e 

(%
) 

0

50

100

150

200

A

B

C

 18°C       23°C       28°C       18°C       23°C      28°C 

WT      per1        



3. Results 83

 

 

 

 

 
Figure 35. The level of C1 phosphorylation is decreased at all temperatures in per1 cells 
comparing to wild-type 

Cells of wild-type (WT) and the per1 mutant were grown at either 18 or 28ºC and harvested during 
early day (LD2). Crude extracts were prepared (s. 2.2.3.2) and proteins (300 µg per assay) were 
separated on standardized 2-DEs (s. 2.2.3.10). For the first dimension, an IPG strip of pH 3 to 10 was 
taken, in the second dimension, a 10% SDS-PAGE was used along with a molecular mass standard. 
The proteins were then immunoblotted (s. 2.2.3.6) with anti-C1 anti-bodies. The positions of pH 5.1 
and 5.2 that are close to the theoretical pI of C1 (5.17) are indicated.  
 

 
Table 7. The temperature dependent phosphorylation degree of C1 in wild-type (WT) and the 
long period mutant per1  
 

Strain/Inhibitor Temperature Percentage SEM 

WT 18°C 50.7* 1.2 
WT 28°C 27.8* 2.9 
Per1 18°C 25.3 3.3 
Per1 28°C 24.0 1.1 

 
Densitometry quantifications (s. 2.2.3.12) were done with two (or three indicated by *) independent 
experiments. Percentage indicates the amount (%) of the phosphorylated degree of C1. Thereby, the 
volume of all spots was taken as 100%. 
 

 

 

 

 

 

 

 

 

 

 
Figure 36. The C3 expression level is increased in the per1 mutant at different temperatures  

The same procedure as described before (Figure 34) was carried out, but immunoblotting (s. 2.2.3.6) 
was done with anti-C3 antibodies. The loading control is shown in Figure 34C. 
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Thus, it can be concluded that a) both temperature dependent processes like 

phosphorylation of C1 and expression of c3 are altered in the per1 mutant, and b) the 

mutant protein in per1 belongs to a clock related functional network including C1 

and C3. 

 

3.2.4.4.2 Investigation of the possible interconnection between PER1 and CK1 

It was also analyzed if the temperature dependent regulation of CK1 was changed in 

the per1 mutant, but this was not the case (Figure 37). ck1 expression is still up-

regulated at high temperature in per1.  

 

 

 

 

 

 

 

 

 

 
 

Figure 37. The temperature dependent expression of CK1 is not affected in the per1 mutant.  

A. Cells of the wild-type (WT) and per1 mutant were grown at 18, 23 and 28ºC and harvested during 
early day (LD2). Proteins from crude extracts (s. 2.2.3.1) (100 µg per lane) were separated on a 9% 
SDS-PAGE (s. 2.2.3.4) along with a molecular mass standard and immunoblotted with anti-CK1 
peptide antibodies (s. 2.2.3.6). B. Densitometry quantifications (s. 2.2.3.12) were done with three 
independent experiments. Thereby, the amount of CK1 detected in WT cells grown at 23ºC was set to 
100%. The loading control is shown in Figure 34C. 
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4. Discussion 
 

4.1 The use of RNAi for silencing of C1 and CK1  

In the first part of the present study the function of the C1 subunit of the heteromeric 

RNA-binding protein CHLAMY1 within the circadian system of C. reinhardtii was 

analyzed by silencing of its expression via RNA interference approach. The same 

approach was used also in the second part of the work to silence CK1.  

RNAi, also termed posttranscriptional gene silencing (PTGS) in plants or 

RNA quelling in fungi, has been used first in the nematode Caenorhabditis elegans 

to manipulate gene expression (Fire et al., 1998). It involves double-stranded RNA 

(dsRNA) intermediates that may specifically affect gene expression at the 

transcriptional and/or posttranscriptional levels. Knock-down approaches that trigger 

RNA silencing via constructs that express antisense or inverted repeat-containing 

RNAs have been successfully introduced to C. reinhardtii (Schroda et al., 1999) and 

have been continuously improved since then.  

The method that was used in current work has been developed by Fuhrmann 

et al. (2001) and involves usage of the endogenous promoter. Thus, the potential 

promoter regions of the c1 or ck1 genes together with the first exons and introns were 

fused to an inverted cDNA parts so that a double-stranded RNA will be formed in the 

cell that triggers silencing. Such an approach had been also successfully applied in 

our lab for silencing of C3 subunit of CHLAMY1 (Iliev et al., 2006). Maximal 

silencing down to about 25% (with C1) or even lower (with CK1 and C3) of wild-

type level was observed, which is in the range of other RNAi silencing approaches 

conducted in C. reinhardtii (reviewed in Schroda, 2006). While silencing of CK1 and 

C3 was relatively stable for many months, when the cells were kept on paromomycin 

plates, and only little reversion was observed during this time frame, strong silencing 

of C1 was not stable over time and could only be maintained for a few weeks. 

Reversion of RNAi strains back to wild-type level over a few months had been 

observed already before with RNAi and antisense constructs of C. reinhardtii 

(Schroda, 2006). However, the relatively quick reversion of C1 seems to be a 

particular case of C1, especially when it is silenced below a critical level of about 

40% and may be triggered by a specific mechanism within the cell. It can be 

hypothesized that the presence of a minimal amount of C1 in the cell might be 

indispensable to the life of C. reinhardtii, which would explain the fact that no 
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strains were found with C1 expression level lower then 25%, even this was indeed 

the case with other silencing constructs (CK1 or C3) as mentioned before. 

 

4.2 C1, a subunit of CHLAMY1 is essential for an intact circadian 

clock of C. reinhardtii 

To examine the influence of the down-regulated C1 subunit, circadian activity of NII 

as well as phototaxis were measured.  

NII was chosen as a direct output target of CHLAMY1, since it is known that 

Nii mRNA bears an UG-repeat in its 3’-UTR (Waltenberger et al., 2001) that is a 

specific recognition motif of CHLAMY1. NII activity was determined in the C1-sil81 

strain, where the C1 level was reduced to about 53%, which could be still reproduced 

after the NII assay. Arrhythmicity was observed in this case, confirming the 

important role of C1 in the circadian output system of C. reinhardtii.  

The rhythm of phototaxis was checked as a second circadian output process. 

In this case, arrhythmic behavior could be found in strains where C1 was only 

slightly silenced. While C1-sil53 still showed circadian behavior for the first three 

days under constant conditions before it became arrhythmic, C1-sil72 had 

disturbances in its circadian phototaxis rhythm from the very beginning. In these 

strains, silencing of C1 was still observed after the phototaxis assay had been 

finished when analyzed by immunoblotting. This is especially impressive when one 

considers that the level of C1 in these strains was altered very little (70% of the wild-

type level in case of C1-sil72 and 85% in case of C1-sil53).  

As was already mentioned, C1 strains that had a more pronounced silencing 

below 40% (e.g., C1-sil35) were not stable over time. Reversion of C1 to its wild-type 

level occurred within a relatively short period of time and in each case examined, the 

reversion was already completed when cells were analyzed after the phototaxis 

experiment. Thus, the wild-type like circadian rhythm of C1-sil35, for example, 

cannot be interpreted in an unambiguous way. It can be assumed that the cells were 

already reverted before the phototaxis measurement and thus, a wild-type like 

behavior occurred. It would be rather surprising if slight (down to 70%) silencing of 

C1 can cause arrhythmicity while stronger silencing of C1 would not. However, this 

possibility cannot be excluded for sure. 
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Altogether, these data demonstrate that changes in the C1 level can cause 

arrhythmicity with regard to both analyzed output rhythms and corroborate its 

important role as a component that is not only a part of the circadian output pathway, 

but seems to be at the same time also a part of the central oscillator of the circadian 

system in C. reinhardtii. Such a pleotropic function was already demonstrated before 

for some central clock components in different organisms. For example, one of the 

core components in the A. thaliana clock, the MYB-related transcriptional factor 

CCA1 was shown to be also essential for correct output regulation and at the same 

time represents an important component of the oscillatory system (Ding et al., 2007). 

Very recently, Matsuo et al. (2008) reported about the identification of 

several genes that are essential for normal circadian rhythmicity of a chloroplast 

bioluminescent reporter. Several putative transcription factor genes encoding MYB 

(roc15, roc40, roc59 and roc75, roc = rhythm of chloroplast), zinc-finger (roc56 and 

roc66), and basic leucine zipper (roc76) DNA-binding domain protein genes were 

included. These data appear to be of special interest also with regard to this work, 

because one of the detected MYB-containing transcription factor genes, roc40, was 

shown to contain a (UG)≥7 repeat element in its 3'-UTR. Thus, CHLAMY1 may 

participate in the circadian clockwork via the UG repeat of roc40. 

 

4.3 Co-regulation of the C1 and C3 subunits 

It was shown before that the interaction of the C1 and C3 subunits of the CHLAMY1 

RNA-binding protein complex is necessary for the binding of CHLAMY1 to its 

RNA targets (Zhao et al., 2004). It is interesting that the two subunits appeared to be 

interconnected also in their expression level. A decrease in C1 below a critical level 

(e.g., in C1-sil32 and C1-sil35) resulted in strong down-regulation of C3. In these 

cases, the C3 expression was altered with even higher amplitude (15 - 20% 

comparing to wild-type) than C1 (25-30% of wild-type level). At the same time, the 

less silenced C1 strains (e.g., Cl-sil72 expressing ca. 70% of wild-type level) showed 

only weak co-regulation of C3 (ca. 80-90%).  

In parallel investigations carried out in our institute, it was shown that such a 

co-regulation also takes place when C1 was overexpressed (Iliev et al., 2006). In 

contrast, changes in the C3 level had little (C3 overexpression) or no significant (C3 
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silencing) effect on C1 expression (Iliev et al., 2006). Therefore, C1 seems to be the 

core unit in the CHLAMY1 complex.  

Currently, it is not known by which mechanism this co-regulation occurs, but 

this subject will be of a great interest in future studies. In the case of the assembly-

governed regulation of the complex biogenesis of subunits of PSI and II, it was found 

that translation is involved in this process and that the 5'-UTRs communicate this 

regulation (Wostrikoff et al., 2004; Minai et al., 2006). If a comparable mechanism 

occurs with C1 and C3, there exists the possibility that C1 as an RNA-binding 

protein might regulate the translation of C3, for example. However, C1 might also 

activate some yet unknown factor(s) that influence(s) the expression of C3. At the 

same time, some preliminary experiments carried out in our institute indicate that this 

co-regulation occurs at the transcriptional level (Seitz and Mittag, unpublished data). 

  

4.4 Temperature changes in the physiological range alter C3 and 

CK1 protein abundance and the phosphorylation degree of C1 

Biochemical reactions typically have temperature coefficients of 2 or more, i.e. their 

reaction rates double with every 10°C rise in temperature (Snyder, 1908). In contrast, 

the period length of circadian rhythms is temperature compensated (Q10 close to1; 

Pittendrigh, 1954; Hastings and Sweeney, 1957). Already in 1956, Colin Pittendrigh 

and Victor Bruce proposed that temperature compensation of the clock’s period 

should be based on the mutual coupling of two temperature-dependent oscillators 

with complementary temperature coefficients (Pittendrigh, 1993). Further, 

temperature cycles beside light cycles are one of the main environmental cues that 

can synchronize circadian clocks (Rensing and Ruoff, 2002). For control of both 

processes (temperature compensation and temperature entrainment), certain 

components of the circadian clock should be able to "sense" or integrate temperature. 

In the green alga C. reinhardtii, several components were so far shown to be 

involved in the circadian oscillatory machinery. Reduction of the level of the Ser-

/Thr-kinase CK1 results in period shortening and finally arrhythmicity (Schmidt et 

al., 2006). Mutation of the still unknown PER1 leads to period lengthening (Bruce, 

1972). As it was discussed before, the C1 subunit of the RNA-binding protein 

CHLAMY1 causes arrhythmicity when its expression level is altered. At the same 
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time, silencing or overexpression of another CHLAMY1 subunit C3 was found to 

cause shifts in the acrophase of circadian rhythms (Iliev et al., 2006). Very recently, 

further important components of the C. reinhardtii circadian clock represented 

mainly by transcriptional factors were found, as already mentioned (Matsuo et al., 

2008). 

In the next part of the current study, temperature changes of 10°C ranging 

from 18 up to 28°C were shown to alter in different way these clock-relevant 

components. It should be mentioned that these temperatures are still in the 

physiological range of C. reinhardtii (Harris, 1989) and thus, these clock 

components can integrate temperature. For true stress related responses, e.g. heat 

stress, a significantly higher temperature (40°C) should be applied (Schulz-Raffelt et 

al., 2007).  

The temperature dependent regulation of the above mentioned proteins occurs 

at different levels. In case of C3 and CK1, temperature dependent changes in their 

abundance occurred at the different temperatures. For C3, it was found that its level 

increased at low and decreased at high temperature. For CK1, the opposite case was 

observed: its abundance increased with temperature. In case of C1, the protein 

amount stayed constant, but posttranslational modifications were altered at the 

different temperatures.  

In further investigations using treatment with lambda PPase, the observed C1 

modifications were shown to be phosphorylation. This is of a great interest since 

phosphorylation is known to play a central role in all so far studied circadian 

systems. At the same time it should be mentioned that even after treatment with five 

times higher amount of PPase the modified form of C1 did not disappear completely. 

This could mean that there is another type of posttranslational modification of C1 

occurring at the same time. Another reason could be the 3D conformation of C1 

within the CHLAMY1 complex or in the large ≥680 kDa complex that occurs during 

day time (Zhao et al., 2004) where some phosphorylated sites of C1 may be not fully 

accessible for the lambda PPase. 

It was proposed that the changes of C3 protein level at the different 

temperatures could be a consequence of its altered expression occuring either at the 

transcriptional or translational level. A cycloheximide experiment revealed that low 

temperature treatment resulted in transcriptional activation of C3 expression. An on-

line computer analysis of the c3 promoter (http://alggen. lsi.upc.es/cgi-
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bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) predicted a presence of several 

possible cis-acting elements (Figure 38).  

 

 

 

 

 

 

 

 
Figure 38. Presence of several possible cis-acting elements was predicted in c3 promoter 

A schematic representation of the potential c3 promoter region including its 5’-UTR is shown from 
position -1086 to +142. * defines the first nucleotide of the c3 EST clone (AV641734) and should be 
close to the +1 of the c3 mRNA. Bars indicate cis-acting elements including an E- as well as three 
DREB1A-boxes.  

 

 

First, three DREB1A-boxes were found to be situated in c3 promoter and 5'-UTR at 

the positions -356, -138 and +72. These sequences are known to be recognized by 

DREB (DEHYDRATION RESPONSIVE ELEMENT BINDING) proteins that are 

important transcription factors in plant abiotic stress response and signal transduction 

(Agarwal et al., 2006). It should be noted that DREB1A, B and C are also known as 

CBF3, 1 and 2, respectively (C-REPEAT BINDING FACTOR). They are involved 

in two separate signal transduction pathways with regard to low temperature or 

dehydration stress. They belong to the ERF (ETHYLENE RESPONSIVE 

ELEMENT BINDING FACTORS) family of transcription factors. ERF proteins are 

a sub-family of the APETLA2 (AP2)/ethylene responsive element binding protein 

transcription factors that is distinctive to plants. Recently, it was shown that a DREB 

factor (named PpDBF1) occurs also in the moss Physcomitrella patens and is also 

involved in salt, drought and cold stresses there (Liu et al., 2007). Further members 

of the cold signaling pathway in higher plants that are in a functional network with 

the DREB factors include for example ICE1 (INDUCER OF CBF/DREB 

EXPRESSION1) and its SIZ1- (for SAP and MIZ) mediated SUMOylation (Miura et 

al., 2007). Interestingly, it has been shown in A. thaliana that low temperature 

induction of CBF1, 2 and 3 is gated by the circadian clock (Fowler et al., 2005). In 

C. reinhardtii, several gene models (genome, version 3) were found that encode 
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proteins with ERF/AP2-like domains. The two with highest homology to the A. 

thaliana DREB1A and 2A factors have protein IDs 167010 and 205920. However, 

the reported temperature shift activating DREB1 in higher plants is usually a switch 

from room temperature (about 22°C) to 4°C or even below. So far, there are no data 

available if 18°C can already act as stimulating low temperature.  

Another cis-acting element that could be relevant for the differential 

expression rate of c3 is an E-box, which is situated only two nucleotides away from 

one of the DREB1A-boxes. E-boxes are known relevant cis-acting elements for 

circadian regulation. For example, in D. melanogaster, they are situated in the 

promoter regions of per and timeless (tim). Transcriptional activation of both genes 

occurs via the CLK-CYC heterodimer and is blocked when the PER/TIM complex 

interacts with CLK-CYC (Yu et al., 2006). But potential homologues to the 

heterodimer CLK-CYC that recognize the E-box have not been found in C. 

reinhardtii (Mittag et al., 2005). Positive transcriptional regulation by an E-box was 

also reported in other cases such as with the polyserase gene, where the E-box is 

situated in the 5’-UTR and is required for maximal promoter activity (Hayama et al., 

2007).  

Current investigations in our lab showed that replacement of the DREB1A-

boxes at positions -130 and +72 or deletion of the one at the position -356 reduced 

the amplitude of cold-induced c3 up-regulation, suggesting that these boxes 

contribute to some extent to the up-regulation (Voytsekh, Seitz et al., under revision). 

At the same time, replacement of the other cis-acting element, the E-box at -138, 

abolished completely up-regulation of c3 at low temperature (18°C) showing that it 

represents the key element for temperature integration of c3. 

Based on the current data, it seems possible that the different phosphorylation 

status of C1 at low and high temperature might be involved in the regulation of c3 at 

the different temperatures in a direct or indirect way. C1 bears three KH domains that 

are known as RNA binding domains and binds in combination with C3 to UG-repeat 

RNAs (Zhao et al., 2004). There are reports that KH-domain-containing proteins can 

recognize RNA and DNA sequences, as it was shown for example with polyC-

binding proteins (Du et al., 2007). Moreover, DNA-binding protein complexes such 

as NF-kappaB that mediate selective gene regulation can contain KH domain 

subunits. In case of the NF-kappaB complex, the KH domain ribosomal protein S3 is 

a subunit of this complex (Wan et al., 2007). These findings open the opportunity 
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that C1 could be theoretically directly involved in up-regulating of c3, for example as 

part of a DNA-binding protein complex. The finding that c3 expression is co-

regulated depending on the level of C1 discussed before, would be in concert with 

such a postulation, which has to be carefully analyzed in future. 

 

4.5 CK1 is involved in the temperature dependent phosphorylation 

changes of C1 and influences the expression level of C3  

The hyper-phosphorylation of C1 at low temperature should involve the action of a 

kinase. Among several predicted kinases, CK1 was present. Since it was already 

known that silencing of CK1 has an effect on the circadian clock of C. reinhardtii 

(Schmidt et al., 2006), it was of interest to check if silencing or inhibition of CK1 can 

have an effect on either C1 phosphorylation or c3 expression. This was indeed the 

case. CK1 inhibition was shown to affect c3 temperature dependent expression. It 

still resulted in the up-regulation of c3 expression at the low temperature, however 

with a lower amplitude as compared to wild-type. At the same time, C1 hyper-

phosphorylation at 18°C disappeared in cells where CK1 was inhibited by CKI-7 as 

well as in the CK1sil2 strain where CK1 is silenced by RNAi (Schmidt et al., 2006). 

But one must be careful concluding that CK1 directly phosphorylates C1. The 

present data do not exclude the possibility that CK1 may activate another kinase that 

phosphorylates C1 and that could be additionally present in the complex with C1. 

Notably, at 28°C, C1 became higher phosphorylated in CK1-inhibited cells 

compared to wild-type. One possibility to explain these data is that another kinase is 

activated at high temperature by the inhibition of CK1. It is known that kinases can 

be activated or inactivated upon their phosphorylation (Krupa et al., 2004). If this is 

indeed the case, a temperature controlled signaling network of clock relevant kinases 

may exist. 

 

4.6 Ser-/Thr-PPs play an essential role within the circadian system 

of C. reinhardtii and influence temperature integration of C1 and 

C3 
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The action of Ser-/Thr-kinases like CK1 is often counter-balanced by Ser-/Thr-PPs 

such as PP5, PP2A and PP1 (Rivers et al., 1998; Partch et al., 2006; Wijnen and 

Young, 2006). PP1 and PP2A have been shown to be essential for the clock 

machinery in N. crassa and D. melanogaster (Yang et al., 2004; Sathyanarayanan et 

al., 2004; Fang et al., 2007), and PP5 for the mammalian clock (Partch et al., 2006). 

Mammalian CK1 is known to auto-phosphorylate itself resulting in its inactivation. 

The action of a Ser-/Thr-PP is necessary to activate CK1 (Rivers et al., 1998). This 

PP was recently shown to be PP5 (Partch et al., 2006).  

 An effect on the phosphorylation pattern of C1 at low and high temperature, 

similar to one caused by CKI-7, could be seen in cells treated with okadaic acid that 

is able to affect PP2A, PP4, PP5 and PP1 at the used concentration of 1.5 µM 

(Janssens and Goris, 2001). This suggests that CK1 and one of the just mentioned 

PPs are also interconnected in C. reinhardtii. Both may influence the activity of a 

“yet unknown kinase”. 

It was also shown that addition of okadaic acid to the C. reinhardtii cell 

culture disturbs circadian phototaxis rhythms resulting in complete arrhythmicity on 

the third day after addition. In the used concentration, okadaic acid was shown before 

to cause immobility of the cells starting from day five (Wagner et al., 2006). In these 

experiments, the mobility of the cells was examined under the microscope with three 

samples taken at day two, four and five after incubation with okadaic acid. On the 

second and fourth day, nearly all cells were fully motile. On day five, only 10 to 15% 

of the cells were still motile and about 10% appeared dead. 75 to 80% of the cells 

had flagella that were still beating, but the cells were not able to move forward. Thus, 

PP2A and/or PP1 and/or PP5 are essential components of the circadian clock, but are 

also relevant for flagella movement of C. reinhardtii.  

Ser-/Thr-PP inhibition by okadaic acid had also effects on the C3 expression, 

however, in opposite way to those caused by inhibition of CK1. As mentioned 

before, alterations of the level of C1 (in- or decrease) cause parallel changes in the 

level of C3 (Iliev et al., 2006). Thus, C1 can directly or indirectly influence C3 

expression. It was first hypothesized that this co-regulation may be also present at the 

different temperatures and may depend on the different phosphorylation levels of C1. 

The results of CK1 and PP inhibition that convert the phosphorylation level of C1 at 

low and high temperature in a similar way, but have opposite effects on C3 

expression, render this hypothesis unlikely. It seems to be more feasible that CK1 
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and the PP act on a transcription factor that activates c3 at low temperature in 

addition to their influence on C1. It was shown recently that DREB from Pennisetum 

glaucum is a phosphoprotein and that its phosphorylation regulates its DNA-binding 

activity (Agarwal et al., 2007). There, the phosphorylated PgDREB2A cannot bind to 

the DREB-box.  

As it was already mentioned before, inhibition of CK1 resulted in a decrease 

of c3 up-regulation amplitude comparing to wild-type. Inhibition of Ser-/Thr-PPs by 

okadaic acid had an even profounder effect. The c3 expression level was now up-

regulated, especially at the high temperature. Thus, one can hypothesize that the 

transcription factor activating c3 may be in a non-phosphorylated form in wild-type 

at high temperature through the action of a Ser-/Thr-PP. If this PP is inhibited it may 

exist in the phosphorylated form and thus may be able to activate c3. However, such 

a postulation has to be carefully examined in future. 

The data that have been obtained so far on the temperature dependent 

regulation of C1 and C3 show that both are part of a complex network involving 

CK1, at least one of the above mentioned Ser-/Thr-PPs and (a) yet unknown 

transcription factor(s). Thereby, CK1 and the Ser-/Thr-PPs are interconnected in a 

temperature dependent way. While CK1 is up-regulated at high temperature in wild-

type, this up-regulation is absent in cells treated with okadaic acid where the level of 

CK1 is always low. Thus, it is challenging to make final conclusions, for example, 

on the thermally relevant function of the involved kinases or Ser-/Thr-PPs, since 

their inhibition leads to multiple effects that are hard to dissect in detail. A systems 

biology approach including modeling may be useful in future to unravel this 

temperature related signaling network. Also, it will be interesting to find out if such a 

network exists in other organisms. CK1, for example, was shown to be involved in 

phosphorylation of components of the oscillatory machinery in different model 

organisms including N. crassa, D. melanogaster and mammals (Wjinen and Young, 

2006). In humans, a missense mutation (T44A) in the CKIdelta gene even results in 

familial advanced sleep phase syndrome (FASPS) that is in correlation with 

decreased activity of CK1 (Xu et al., 2005). It can be relatively easy checked if the 

thermal regulation of CK1 also occurs in these organisms. 
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4.7 PER1 is part of a functional network including C1 and C3 as 

well as PP2A and/or PP5 

As mentioned earlier, Victor Bruce had isolated per mutants that show a significantly 

lengthened period already in 1972. One of them, per1, was included in the present 

studies to see if there could be a connection between PER1 and the temperature 

sensing of C1 and C3. In the per1 mutant, temperature dependent hyper-

phosphorylation of C1 as well as c3 expression are altered, suggesting that PER1 is 

indeed part of the network regulating temperature sensing of C1 and C3. In case of 

C1, it was observed to be only little phosphorylated in the per1 mutant at both 18 and 

28°C. This could be due to a missing kinase or increased PP activity. Notably, c3 

expression was significantly increased in the per1 mutant, both at low and high 

temperature. But, the up-regulation of CK1 at high temperature was not influenced in 

the per1 mutant.  

It can be hypothesized that a transcription factor that increases c3 expression 

might be activated both at 18 and 28°C in per1. This could be achieved, for example, 

by changing the phosphorylation status of such a transcription factor. The 

involvement of a PP or a kinase that is altered in the per1 mutant could also explain 

the changes in the phosphorylation level of C1 in per1. Another possibility is that 

there is some positive acting mutation in the c3 promoter that causes the increased c3 

expression. To check for this, the promoter region of the c3 gene (positions -874 to 

+274) was sequenced in the per1 mutant (performed by D. Iliev). However, there 

was no difference in comparison to the wild-type sequence depicted from JGI 

excluding this possibility.  

Albeit the nature of PER1 is still unknown, it becomes evident that it is also 

part of the functional temperature depending network involving C1, C3 as well as 

PP2A and/or PP5. Future studies will show if the idea of Pittendrigh and Bruce about 

the mutual coupling of two temperature dependent oscillators might possibly involve 

CHLAMY1 and PER1 in C. reinhardtii. 
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5. Summary 
 

The research of my thesis focused on the circadian RNA-binding protein CHLAMY1 

from the green alga Chlamydomonas reinhardtii that consists of two subunits named 

C1 and C3. CHLAMY1 binds specifically to (UG)≥7-repeat sequences situated in the 

3'-untranslated regions of several mRNAs such as nitrite reductase 1 (nii1).  

The role of the C1 subunit within the circadian system was characterized by 

silencing its gene using an RNAi approach. The expression level of C1 was silenced 

down to 25 - 85% depending on the transgenic line. As a first indicator of the 

influence of CHLAMY1 on the circadian output, measurement of NII activity was 

carried out with a transgenic strain under circadian conditions. In wild-type, NII 

activity peaks around the beginning of subjective day. In a transgenic strain, where 

C1 was silenced to ca. 50%, arrhythmicity was observed. Circadian phototaxis, 

which can be measured automatically, was chosen as a second output rhythm. Also 

in this case, arrhythmicity was observed immediately (70% silencing) or after the 

first three days (84% silencing) under constant conditions in transgenic lines. These 

data indicate a central role of the C1 subunit in the circadian system of C. reinhardtii. 

In addition to these results, a co-regulation between C1 and C3 subunits was found. 

Thus, silencing of C1 lower than 40% in comparison to wild-type caused strong 

down-regulation of the C3 subunit in parallel, suggesting a role for C1 as a core 

subunit within the CHLAMY1 complex. 

It was also analyzed if the two subunits play a role in temperature integration, 

the basis for other key properties of circadian clocks including entrainment by 

temperature cycles and temperature compensation. It was shown that C1 is hyper-

phosphorylated at low (18°C) and hypo-phosphorylated at high temperature (28°C). 

These temperatures are in the physiological range of C. reinhardtii. In case of C3, its 

expression level was found to be up-regulated at low temperature. An inhibitor 

experiment with cycloheximide showed that this regulation occurs at the 

transcriptional level.  

Moreover, it was shown that the clock-relevant CASEIN KINASE1 (CK1) 

and Ser-/Thr-PROTEIN PHOSPHATASEs (PPs) mediate the temperature dependent 

regulation of C1 and C3. Notably, the expression of CK1 was itself temperature 

controlled and increased at 28°C. Data obtained from the investigations with the long 

period clock mutant per1 showed that temperature integration of both C1 and C3 is 
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altered there. A low phosphorylation level of C1 as well as a high expression level of 

C3 was observed at different temperatures in per1. Altogether, the obtained data 

suggest that a temperature controlled functional network of clock-relevant proteins 

exists in C. reinhardtii including C1, C3, CK1, PPs and PER1. 
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Zusammenfassung 
 

Im Rahmen meiner Arbeit wurde das circadiane RNS-Bindeprotein CHLAMY1 der 

Grünalge Chlamydomonas reinhardtii untersucht, das aus den beiden Untereinheiten 

C1 und C3 besteht. CHLAMY1 bindet spezifisch an UG≥7 -Wiederholungen, welche 

in den 3’-nicht translatierten Regionen von mehreren mRNSs, wie z. B. der 

Nitritreduktase1 (nii1) mRNS vorkommen. 

Zunächst wurde die Funktion der C1 Untereinheit im circadianen System 

durch einen RNSi-Ansatz überprüft. Das Expressionsniveau von C1 konnte hierbei 

auf 25 – 85% reduziert werden, abhängig von der transgenen Linie. Um den Einfluss 

von CHLAMY1 auf den circadianen Ausgang zu bestimmen, wurde als erster 

Indikator der NII-Aktivitätsrhythmus gemessen. Im Wildtyp erreichte die NII-

Aktivität ein Maximum zu Beginn des subjektiven Tages. In einem transgenen 

Stamm, in dem C1 ca. 50% weniger exprimiert wurde, wurde Arrhytmizität 

festgestellt. Der Rhythmus der circadianen Phototaxis, den man automatisiert über 

sieben Tage messen kann, diente als zweiter Indikator. Auch in diesem Fall wurde 

Arrhythmizität beobachtet, entweder ab dem ersten Tag unter konstanten 

Bedingungen (transgener Stamm mit 70% C1-Reduktion) oder nach drei Tagen 

(transgener Stamm mit 84% C1-Reduktion). Diese Daten weisen darauf hin, dass C1 

eine zentrale Rolle im circadianen System von Chlamydomonas reinhardtii spielt. 

Weiterhin wurde eine Koregulation der C1- und C3-Untereinheit gefunden. 

So zeigten transgene Stämme, in denen C1 <40% reduziert worden war, eine 

signifikante Reduktion der C3-Untereinheit. Dies weist darauf hin, dass die C1 

Untereinheit eine zentrale Einheit im CHLAMY1-Komplex darstellt. 

Im Rahmen dieser Arbeit wurde auch untersucht, ob die Expression der 

beiden Untereinheiten C1 und C3 auf Temperaturunterschiede im physiologischen 

Rahmen reagiert. Es wurde gefunden, dass sich die Expression von C1 bei niedriger 

(18°C) und hoher (28°C) Temperatur nicht ändert. Jedoch liegt C1 bei der niedrigen 

Temperatur hyperphosphoryliert vor, wohingegen es bei 28°C hypophosphoryliert 

ist. Im Falle von C3 konnte ermittelt werden, dass es bei niedriger Temperatur erhöht 

exprimiert wurde. Ein Inhibitorexperiment mit Cycloheximid zeigte, dass diese 

Regulation auf transkriptioneller Ebene erfolgt.  

Außerdem wurde gezeigt, dass die Uhren-relevante Caseinkinase 1 (CK1) 

und Ser-/Thr-Protein Phosphatasen (PPs) die temperaturabhängige Regulation von 
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C1 und C3 vermitteln. CK1 wird sogar selbst temperaturabhängig exprimiert. 

Untersuchungen mit der Langperioden-Mutante per1 weisen signifikante 

temperaturabhängige Unterschiede der C1-Modulierung bzw. der C3-Expression im 

Vergleich zum Wildtyp auf. So lag eine Hypophosphorylierung von C1 bei beiden 

Temperaturen (18 und 28°C) vor, während C3 bei beiden Temperaturen vermehrt 

exprimiert wurde. 

Die Ergebnisse dieser Arbeit lassen auf ein temperaturabhängiges Netzwerk 

von Uhren-relevanten Proteinen schließen, an dem C1, C3, CK1, Ser-/Thr-PPs sowie 

PER1 beteiligt sind. 
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