
 
 
 
 
 
 
 

What the hell do they mean by 
'locomotion'?  

Preprint No. M 09/01 

Steigenberger, Joachim 

Januar 2009 

Impressum: 
Hrsg.: Leiter des Instituts für Mathematik 

Weimarer Straße 25 
98693 Ilmenau 

Tel.: +49 3677 69 3621 
Fax: +49 3677 69 3270 
http://www.tu-ilmenau.de/ifm/ 

Technische Universität Ilmenau 
Institut für Mathematik 

ISSN xxxx-xxxx 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224759819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


What the hell do they mean by ’locomotion’?

Joachim Steigenberger

January 19, 2009

Abstract

In current mechanics literature one very frequently encounters the con-
cepts locomotion and locomotion system. Unfortunately, strong definitions
of these seemingly intuitively clear notions are generally missing. The fol-
lowing paper tries to fill this gap.
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MSC: 70-01, 70E55

1 Introduction

Throwing a glance over the current Applied Mechanics literature one recognizes
a frequent use of the concepts locomotion and locomotion system, see the Ref-
erences (by far not exhausting!). No standard definition of these notions is pre-
sented anywhere, explanations if given at all, are manifold, vague, and may pro-
voke criticisms, some examples are quoted below. Obviously, locomotion is han-
dled as being intuitively clear - ’Fortbewegung’ in its German equivalent. But is
it indeed? Just think of a moving planet, a running cat or sportsman, a falling
cat or a somersaulting athlete, is it locomotion what they are exercising? In
connection with current research done at the Department of Mechanics at Ilme-
nau University of Technology we had a sporadic series of discussions about these
items during the last years. Summing up, the results thereby obtained are not
fully convincing and the participants could not bear them all with the same ease.

The present paper is a try to give some definitions of basic notions which in
turn could bring some transparency to the domain of live and technical locomo-
tion systems. Some detailed representations may be felt as overdone, they are a
tribute to forthcoming tutorial work.
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2 Some excerpts from literature

The following is a loose collection of explanations concerning ’locomotion’ found
in literature. Quotations are given in italics, some critical remarks within braces.

(1) The term ”locomotion” refers to autonomous movement from place to place.
[19] {What is ’place’?}

(2) By locomotion it is understood that the forces causing the motion of the
object originate within the object itself. [23] {Motion=translation and ro-
tation?}

(3) Hyper-redundant robot locomotion is the process of generating net dis-
placements ... via internal mechanism deformations. [10] {What is ’net
displacement’?}

(4) Locomotion: Autonomous, internally driven change of location ... during
which base of support and centre of mass of the body are displaced. [7]
{Counterexample: Worm in plane could shift support and center while
keeping one further point fixed: locomotion? Both support and center to
be displaced?}

(5) Lokomotion im Zeitintervall T heißt die Bewegung des Körpers genau dann,

wenn die Verschiebung
−→
U (
−→
ξ ) aller Punkte des Körpers im Moment t = T

von Null verschieden ist ... [1] {Counterexample: Snake in plane, straight
configuration at t = 0 → elliptic configuration at t = T with each point
displaced but center of mass kept fixed: locomotion?}

(6) Als Lokomotion bezeichnet man die, durch eine stetige Veränderung der
Lage des Massenmittelpunktes gekennzeichnete Ortsveränderung eines na-
türlichen bzw. technischen Systems, einschließlich seiner Kontaktflächen
zum umgebenden Medium. [13] {see (4)}

(7) Locomotion is defined as the act of moving from one place to another. ...
fundamentally involve interaction with their environment: locomotion is
achieved by pushing or sliding or rolling or a combination of all of these.
[10], [17] {’Place’ in which space?}

(8) Undulatory locomotion is the process of generating net displacements of
a robotic mechanism via a coupling of internal deformations to an inter-
action between the robot and its environment. [19],[20] { What is ’net
displacement’?}

(9) This general method of locomotion (i.e., generating net motions by cycling
certain control variables) ... [15] {What are ’net motions’?}
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3 Bodies, configuration, motion, shape

Clearly, doing Applied Mechanics means to observe and describe macroscopic
bodies and their behavior in space-time. Mostly, atomic structure and sub-
structures and corresponding phenomena are outside the mainstream interests
of mechanical science. Disregarding gases, a body is commonly understood as a
compact collection of matter that can be observed in the euclidean point space
R3. What matter is, what its internal structure is, how its particles are arranged
in space - these are, as a rule, no questions in mechanics, there suffices the work-
ing hypothesis, that the particles somehow are spread over a finite space region
and that they can be observed (so that they are individuals, opposite to what is
fundamental in quantum theory!).

The space region filled up with that matter may - under influence of neigh-
bored matter - change, but it always remains a (3-dimensional) region: a cuboid
cannot be turned into a (2-dimensional) patch of a surface. Tearing a body to
pieces (i.e., transition of a region into several disjoint regions) as well as the oc-
currence of holes will not play any role in the present context. Penetration of
bodies is excluded anyway, since otherwise particles would coincide and thereby
lose their individuality.

In order to capture these facts through a suitable mathematical model we
adopt a definition from [18] in a slightly modified version.

Definition 3.1. A body is a set B of particles equipped with a set Φ of maps
ϕ | B → R3 and a positive measure µ | σ(B) → R+ which have the following
properties:
(i) every ϕ ∈ Φ is injective, so the inverse map ϕ−1 | ϕ(B) → B exists;
(ii) for every ϕ ∈ Φ the image ϕ(B) =: B ⊂ R3 is a compact set;
(iii) for each pair of maps ϕ, ψ ∈ Φ the composition

ψ ◦ ϕ−1 =: f | ϕ(B) → ψ(B)

is the restriction to ϕ(B) of a smooth map of R3 into itself;1

(iv) with any diffeomorphism H of R3 onto itself and ϕ ∈ Φ it holds

H ◦ ϕ =: ψ ∈ Φ.

(v) Every ϕ ∈ Φ is measurable with respect to the σ−algebra σ(B) on which µ
is defined and the σ−algebra β(B) of the Borel sets of B = ϕ(B); the induced
measure on B is mϕ = µ ◦ ϕ−1.

1(1.iii) implies that f−1 = ϕ ◦ ψ−1 exists and is smooth as well. So, disregarding what
happens on boundaries, f is in fact a diffeomorphism of some class Ck, k ≥ 1.
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Some comments on the foregoing definition are supported by Figure 1.

Figure 1: Set of particles, and configurations.

B is kept as an abstract set whose elements are called particles. Every map
ϕ ∈ Φ describes an embedding of the particles in R3: each particle is mapped onto
one and only one space point. These space points, then, are called material points.
Every material point is - on account of injectivity (i) - the image of only one par-
ticle, this implies the individual observability of the particles. In the present con-
text it is sufficient to imagine the compact set B as a finite union of regions, sur-
faces, arcs, and isolated points (a compound of 3−, 2−, 1−, and 0−dimensional
parts, connected or not). So in fact, Definition 3.1 covers the notion of a system
of bodies as well. All its ’lower-dimensional parts’ serve, adapted to concrete
problems, as useful approximations of bodies with some negligible dimensions.
The set B = ϕ(B) is called a configuration of the body. The diffeomorphic map
f := ψ ◦ ϕ−1 | B → B′ = ψ(B) describes a change of configuration which,
following (iv), could be the restriction of any diffeomorphism in R3.

The measure µ is the mass distribution of the body, the measure mϕ = µ◦ϕ−1

is the corresponding mass distribution in configuration B. µ(B) =: M is the total
mass of the body, it does not change with configuration: mϕ(B) = (µ◦ϕ−1)(B) =
µ(B) = M (conservation of mass) neither does the mass of any part of the body,
i.e., of any set b ∈ β(B).

Remark 3.2. In [18] µ is supposed to be continuous with respect to the Lebesgue
measure on R3. Consequently, every Lebesgue null set of B gets zero mass. In
the present setting, however, any lower dimensional part of B is to represent a
plate, a wire, or a masspoint, and thus it should carry a positive mass. That is
why this continuity has been dropped.

As a rule, it is useful to choose one particular map ϕ0 ∈ Φ and to define
a reference configuration by B0 := ϕ0(B). In a particular mechanical problem,
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it is not necessary (but often taken for granted) that the body actually appears
in this configuration B0, but it may be comfortable to describe any (actual)
configuration relative to the reference configuration B0. A spatial reference frame
can be introduced by gluing a 3-frame (e1, e2, e3) at a point O ∈ B0 (or at least O
fixed to B0). Preferably, (e1, e2, e3) is chosen as an orthonormal triplet of vectors,
then {O, (e1, e2, e3)} is in fact a cartesian coordinate system fixed in R3 (inertial
reference frame). If the respective cartesian coordinates in space are denoted by
ξi, i = 1, 2, 3, then to each particle p ∈ B the map ϕ0 uniquely assigns a triplet
of numbers ξ = (ξ1, ξ2, ξ3)T ∈ B0. They become body-fixed coordinates by being
used as ’names’ of the particles, i.e., once and for all marking the material points
of the body in any configuration.

Also every map ϕ ∈ Φ causes an assignment p 7→ x = (x1, x2, x3)T ∈ B =
ϕ(B) (space coordinates of the material point p in configuration B of the body).
Then, the description of configuration B relative to the reference configuration
B0: ξ 7→ p = ϕ−1

0 (ξ) 7→ x = ϕ(p) is given by

h := ϕ ◦ ϕ−1
0 : ξ 7→ x = h(ξ).

In view of (1.iii) in Definition 3.1, h is diffeomorphic and it describes a coordinate
transformation (body-fixed to actual coordinates).

A family of maps of Φ, whose members depend on a real parameter t=’time’,
where t is from an interval (t0, t1), is called a motion, i.e., a temporal sequence
of configurations (t running from t0 to t1) of the body, B0 → Bt =: ht(B0), if
the family is denoted by {ϕt | t ∈ (t0, t1)} and ht := ϕt ◦ ϕ−1

0 . Using the more
familiar notation ht(ξ) =: h(ξ, t), then, as noted above, at any fixed time h(·, t) is
the restriction of a diffeomorphism, so its inverse, h−1(·, t) exists and is smooth,
too. The time-dependent coordinate transformation

ξ → x = h(ξ, t), for short ξ → x(ξ, t)

describes the positions in space at time t of the material points ξ, this is known
as the Lagrangean representation of a motion. As to the dependence on t, a
piecewise smoothness h(ξ, ·) ∈ D2([t0, t1],R3) is required in most cases.

Until now, the diffeomorphisms h which describe changes of configurations
may be largely arbitrary: two configurations B and B′ = h(B) of a body may
visually be quite different: being very distant from each other, or either exhibiting
external and internal deformations with respect to the other. It is important to
clarify this issue despite its seeming evidence.

Definition 3.3. Let B and B′ = h(B) be two configurations of a body. If there
exists a direct congruent transformation c of R3 such that c(B) = B′, then the
body is said to have the same shape in either configuration.

In a nutshell: The configuration B can be made coincide with B′ by suitable
translation and rotation in R3 iff B and B′ have the same shape. Or: Shape

5



means configuration up to arbitrary direct congruent transformation; let C, S, and
SE(R3) be the set of configurations, the set of shapes, and the special euclidean
group, respectively, then S is the quotient set S = C/ SE(R3).

To complete the picture a word on bodies in mutual contact seems reasonable.
Let {B1, B2} be a system of two separate bodies in some configuration. In view
of Definition 1 this should be a two-component closed set (individual material
points!). In view to systems of bodies, where separate bodies may roll upon each
other or are connected by joints, we relax the individuality for boundary points.

Definition 3.4. Two separate bodies B1 and B2 are said to be in contact iff
subsets of their boundaries mutually coincide, i.e., B1 ∩B2 ⊂ ∂B1 ∩ ∂B2 6= ∅.

Note that a system of n > 1 bodies may change its shape also in case of non-
deforming (rigid) bodies. To describe a configuration of a system of bodies two
ingredients are required: (i) to describe the shape of the system, and (ii) to tell
how the bodies are placed in space (both in relation to the reference configuration,
say). Symbolically:

configuration = (position in space, shape).

This is seemingly a lucid scheme but in fact it is by no means self-evident how to
give it a strong and handy analytical form. Difficulties arise in particular in the
context of motion where shape and position depend on time t and may undergo
certain kinematic and dynamic coupling.

One way out of this dilemma opens by taking the system’s mass distribution
into consideration. Choose any ξ0 ∈ B0, and determine {e0

1, e
0
2, e

0
3} as spanning

the principal axes of inertia of B0 at ξ0 (eigenvectors of the inertia tensor at ξ0).
Then, in configuration B = h(B0), the material point ξ0 is at x0 = h(ξ0), and now
choose the orthonormal vector triplet {E0

1,E
0
2,E

0
3} as to span the principal axes

of inertia of B at x0 (apart from configurations with some symmetry both triplets
are unique). Finally, {ξ0; e

0
1, e

0
2, e

0
3} → {x0;E

0
1,E

0
2,E

0
3} defines a congruent trans-

formation that is uniquely determined by h and can be seen as the change of the
system’s position in space.

A slight modification is as follows. In the reference configuration B0 with mass
distribution m0 := µ◦ϕ−1

0 determine ξ∗ := 1
M

∫
B0

ξdm0(ξ), the center of mass, and
the principal axes of inertia of B0 at ξ∗, spanned by {e∗1, e∗2, e∗3}. Note that the
frame F∗

0 = {ξ∗; e∗1, e∗2, e∗3} represents a cartesian coordinate system. The same
construction in configuration B = h(B0) with mass distribution m := µ ◦ ϕ−1 =
µ◦(ϕ−1

0 ◦ϕ0◦ϕ−1) = m0◦h−1, center of mass at x∗ := 1
M

∫
B0

h(ξ)dm(ξ) (note that
in general x∗ 6= h(ξ∗)!) generates a frame F∗ = {x∗;E∗

1,E
∗
2,E

∗
3}. Both frames

are (apart from cases of symmetry) uniquely attached to B0 and B, respectively,
though ξ∗ /∈ B0 or x∗ /∈ B might happen (for instance if a configuration is like
a donut with constant mass density). For short, every F∗ is called the principal
frame of the respective configuration.
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Again, F∗
0 → F∗ defines a congruent transformation (a direct one simply by

suitable enumeration of the vectors) that now can be seen as the change of the
system’s position in space.

The foregoing considerations point out the fact that there are several options
in choosing a reasonable frame which indicates the position in space. In view
of one single configuration this choice is without any restriction. In view of a
moving system of bodies there must be a unique rule how to adjoin the frame
to each configuration, h(B0, t) =: Bt 7→ Ft. This is guaranteed in either of the
examples given above. In any case, shape at time t then means configuration
with respect to this frame Ft. As any two frames (at vertices ξ0 or ξ∗, say) are
connected by a congruent transformation, the shape at time t is by definition
independent of the frame used.

In practice, the effective choice of an adjoined frame is strongly determined by
both the kind of system under consideration and by the aim of observations and
investigations to be done. Two examples are sketched in the following Figure: (a)
Snake in R3: ξ0 at head, {x0;E

0
1,E

0
2,E

0
3} actual Frenet frame of backbone curve

at head (so this has nothing to do with principal axes of inertia); (b) Athlete,
somersaulting: actual frame F∗ = {x∗;E∗

1,E
∗
2,E

∗
3}.

Figure 2: Frames used for position in space. (a) Snake, (b) athlete.

Now t 7→ Ft describes the journey of the body (system of bodies) through
space, accompanied by a temporal change of shape. Example (b) above most im-
pressively demonstrates how different this journey appears to an observer sitting
on B0, when using one frame or another: here t 7→ x∗(t) is simply the parabola
of free fall under gravitation whereas, if using ξ0 at a foot, say, then t 7→ x0(t)
describes a complicated curve in 3−space. It is the business of the investigator
to decide for the preference of either description or for yet another one.

Let us close this Section by a short remark on rigid bodies.

Definition 3.5. A rigid body is a body as described above but undergoing the
restriction that for any pair of maps ϕ, ψ ∈ Φ the change of configurations h =
ψ ◦ ϕ−1 be a direct congruent transformation.

The definition claims more than just the preservation of the ’outer form’: each
part of the body keeps its shape. Of course, a system of rigid bodies may change
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its shape if any two components of the system are allowed to change their relative
position to each other.

4 Autonomous motion systems, locomotion

By definition a rigid body has a fixed shape, a rigid-body configuration is basically
nothing else but position in 3−space, and this can be described by means of
any body-fixed frame (cf. examples above). Six parameters are needed to fix a
3−frame: the free rigid body has degree-of-freedom (DOF) equal to 6.

Arguing in a Newton-Euler setting, a rigid body needs external forces (in-
fluences of bodies in its environment such as gravity, push or pull, friction) for
acceleration, i.e., to start or to change motion. This is the basic outcome of
of the principles of linear and angular momentum: a single rigid body cannot
propel itself, it cannot perform an autonomous motion (neither translation nor
rotation).

For a system composed of several rigid bodies this feature totally changes!
Each pair of bodies belonging to the system may interact through forces (which
are classified as internal forces of the system if they are exclusively due to inter-
nal causes). In technical systems these forces frequently result from devices like
rotatory joints, linear or rotatory motors, piezo-elements, springs or dampers, in
live systems these forces are primarily caused by muscles or hydraulic elements.
Such devices are often modeled massless (”ghost”-components of the system).
Now, following Newton’s third law of action-reaction, these internal forces pair-
wise cancel, thus they cannot cause the center of mass, x∗, to accelerate but they
can well influence the rotation of a frame at x∗!

Striking example: Spacecraft in orbit. Taking care while entering the orbit,
the principal frame undergoes pure translation along the orbit (vectors of frame
F∗ remains fixed in space). Seen from this frame the system ’spacecraft’ is free
of external forces (gravity and centrifugal force compensate). Driving certain
rotors (by internal forces) - and thereby changing shape! - the principal frame, on
account of conservation of angular momentum, gets a rotation (goal: to approach
a desired orientation in space).2 Thus, the system has driven itself (without any
support by external forces): a change of shape has caused a change of position
in space.

Every such change of shape - angular or linear displacement - or the cor-
responding internal forces can be understood as the output of an appropriate
actuator that is part of the system. An actuator output of this kind is called an
internal drive.

2This is due to the Principle of angular momentum: time-rate of angular momentum equals
resultant moment of external forces. Then, in absence of external forces, conservation of the
system’s angular momentum follows. See [11], [12], [21].
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On the other hand it is clear by the principle of linear momentum that an
external driving force (i.e., an accelerating action of the system’s environment) is
necessary to cause a motion of x∗. If emphasis is on purely autonomous motion
of the system then every external force under whose sole action the system could
start a motion from rest has to be excluded from consideration. What remains as
feasible kinds of external force are impressed forces (’eingepraegte Kraefte’ after
Hamel) which arise from non-zero relative velocities (such as friction and Lorentz
forces) and workless constraint forces (reactions to scleronomic constraints): non-
driving external forces.

Striking example: Walking man. Vertical gravity is of no interest for horizon-
tal motion. Drive is achieved by changing certain joint angles - change of shape!
- via internal muscular forces. The external force necessary for forward motion
is the workless reaction to the constraint ’no sliding of feet’.

Mutatis mutandis, the same considerations can be applied to systems con-
taining one or more deformable bodies.

Based on the foregoing considerations a definition can be attempted.

Definition 4.1. Consider a mechanical system that exhibits the following fea-
tures.
(i) The system may or may not have contact to a (material) environment;
(ii) there are internal drives;
(iii) there exists at least one particular internal drive such that, in presence of
only non-driving external forces, and starting from rest, the principal frame F∗

t

does not remain fixed in space.
Then the system is called an autonomous motion system.

Examples: Spacecraft on orbit (see above); multiple pendulum with active
rotatory joints (i.e., equipped with motors) and fixed pivot; locomotive on rail;
falling cat.

Counterexample: Flying projectile, sailplane.

Remark 4.2. Note the different meanings of ’autonomous’ in the theories of dif-
ferential equations and motion systems: an autonomous differential equation is
one whose right-hand-side does not explicitly depend on time t whereas in general
an autonomous motion system is governed by a heteronomic differential equation
whose t−dependence is caused by the outputs of the internal actuators. Further-
more, there is some contrast to the very meaning of physical autonomy, since
by Definition 4.1 autonomous motion is independent of whether the actuators’
control signals and power supply come from inside or outside the system.

Definition 4.3. An autonomous motion system is called a locomotion system
if there exist a particular internal drive and a time interval (t0, t0 +T ), such that
in presence of only non-driving external forces

x∗(t0 + T ) 6= x∗(t0) ∧ x(ξ, t0 + T ) 6= x(ξ, t0) for every ξ ∈ B0,
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i.e., neither the center of mass nor any material point remain fixed or run a cycle
in space on that time interval.
Every motion of this kind is called locomotion.

Examples: Locomotive on rail; two rigid bodies 1, 2, coupled by an actua-
tor with output t 7→ dist1,2(t), both bodies contacting their environment with
anisotropic friction; automobile on ground; snake on plane ground.

Counterexamples: Any autonomous motion system with no contact to a ma-
terial environment; the above mentioned pendulum; continuum analogues: ele-
phant trunk considered separate is rather for manipulation; snake in plane with
head kept fixed.

By definition there is no frame describing motion in space of the locomotion
system which performs pure rotation under that particular drive. In other words:
a locomotion system can perform (if suitably driven) a kind of motion that is also
intuitively classified as loco-motion. But the system is by no means restricted
to this kind of motion: the above mentioned snake in plane could pass from a
straight-line configuration to an elliptic one while keeping x∗(t) or even F∗

t fixed!
An earthworm, certainly a locomotion system, does not achieve locomotion during
free fall. The heart of locomotion is the conversion of internal drive into motion
by interaction with the environment through non-driving external forces.

Position in space described by F∗, say, can be seen as partitioned

F∗ = {x∗;E∗
1,E

∗
2,E

∗
3} =: (location; orientation).

So, following Definition 4.3, locomotion relies basically on temporal change of
location whereas a change of orientation is of minor interest. Of course, there
might be situations with primary or additional need for observation of how orien-
tation behaves in time (adjustment of an antenna or of some tool in surgery, e.g.).
To this end the concept locomotion system could be appropriately augmented.

It is indeed obvious that the overwhelming majority of both live and technical
systems is characterized by the fact that those particular internal drives which
make them locomotion systems are periodic (or at least reciprocating) in time.
Examples: knee-joint torque or angle of a running man; wing-stroke of a bird;
alternating contraction-expansion of a creeping worm; relative motion piston-
cylinder of a steam-roller.

The following definition is adapted from [19] and [20].

Definition 4.4. Every locomotion that is based on a periodic internal drive is
called an undulatory locomotion.

In practice, both analytical description and computational handling of con-
figurations (F∗

t , shape) require the introduction of coordinates. In 3−space these
are 6 coordinates to capture F∗

t (3 - possibly cartesian - coordinates for x∗, and
3 - possibly angles - α, β, γ for the frame vectors), and some further coordinates
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(finitely many for a system of rigid bodies, more if there are deformable bodies)
for shape. Abbreviating these coordinates by X and q, respectively, then there
is, at least locally, a one-to-one correspondence

configuration ←→ (X, q) =: (position variables, shape variables).

Now in considering (undulatory) locomotion in the sense of Definitions 4.3
and 4.4 one focuses on the motion t 7→ x∗(t) while a rotation of F∗

t enjoys minor
interest. In short, during a particular undulatory locomotion a periodic function
t 7→ q(t) generates a, say, monotonic function t 7→ X(t) through assistance of the
external body ’environment’.

Any locomotion t 7→ (X(t), q(t)) can be seen as a curve l in configuration
space. Kelly and Murray described undulatory locomotion by means of fiber
bundle concepts [14] taking the shape space as basis and position space as fiber.
Simplifying, this description can be nicely visualized by depicting the configura-
tion (X, q)−space as a 3−space with horizontal q−plane and a vertical X−axis.
A T−periodic function t 7→ q(t) appears as a cycle c in the q−plane. To each
q(t) a position X(t) is uniquely attached (via influence of environment). Now
starting at t = t0 from configuration (X0, q0) then at time t1 = t0 + T the curve
l has been run through to configuration (X1, q1) where q1 = q(t0 + T ) = q0 (one
cycle run) whereas in case of locomotion X1 = X(t0 + T ) 6= X0. So the curve l is
like a helix having c as its projection into the q−plane, see following Figure. Note
that the ’helix’ is determined by the kind of interaction system-environment.

0
x

1
x

0
q

x configuration

shape cycle

Figure 3: Undulatory locomotion visualized (one period).

It is important to realize the evident fact that, given a locomotion system,
the environmental correspondence periodic q(·) → monotonic X(·) cannot be
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described in the form X = f(q) where f is some function. If this was the true
interdependence of position and shape then this would mean that the environ-
ment gave rise to a holonomic (geometric) constraint. Rather the fundamental
locomotive coupling q → X could originate
(i) in the system’s kinematics: from nonholonomic constraints (as in case of a mo-
torcar with its steered and rolling wheels) or from structural switches (a climber
with alternating feet and hands fixed - similar to an inch-worm; or a walking man
with alternating left and right foot fixed) or
(ii) in the system’s dynamics: from peculiarities of the differential equations of
motion (e.g., generated by anisotropic, i.e., orientation dependent, friction forces).

Investigations of locomotion in case (i) can often be accomplished within
kinematics. This kinematical theory may then be supplemented by dynamical
considerations. It can also serve as a basis for treating case (ii) which anyway
requires the use of dynamics from the very beginning.

Conclusion
In the foregoing Sections we have suggested a definition for the concept lo-

comotion which is more stringent than what is usually presented in literature.
Emphasis is, first, on change of position in 3-space, thereby covering the intu-
itive picture of locomotion in common mind, but a slightly enlarged definition
would admit to take also orientation into account thus aiming at ’change of place
in SE(R3)’. Second, the definition restricts locomotion to autonomous systems.
So the classification now appears as being clarified: an earthworm and an au-
tonomously moving endoscope are locomotion systems, my TV receiver, thrown
through the window and falling down is not. Nevertheless, some things still re-
main uncertain: consider, e.g., a rocket in free space. Indeed one would like to
see it as a locomotion system, for it has certain (thermal, chemical, or nuclear)
actuators on board which are to start and change the rocket motion. But their
outputs can be classified as internal drives only for the system ’rocket trunk plus
ejected gas’ whereas, considering the isolated rocket trunk as the proper motion
system the thrust appears as an external driving force. Which (fictitious) mate-
rial environment does this force result from? So what is the dilemma? Items for
further discussion! Why not?

The author thanks Ela Jarzebowska and Peter Maisser for discussions, Carsten
Behn and Helga Sachse for their invaluable assistance in preparing the layout of
the paper.
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