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Motivation 

 

Pregnancy is known to be a tolerated semi-allogenic event and therefore considered an immunological 

paradoxon. It has been debated whether the maternal immune system is “tricked” to fail recognizing the 

“foreign” foetus by an immunological inert barrier. It is now well accepted that immune-competent cells of the 

mother at the foeto-maternal interface are required for successful pregnancy as a functional immune system 

will trigger signals allowing the foetus to grow and also to induce the essential tolerance [1-3]. 

The foetus anchors and nourishes itself by the placenta, which is an autonomous unit comprised of maternal 

and foetal cells. The foetal cells will invade the maternal tissue by means that resemble the invasive behaviour 

of tumour cells. Once foetal trophoblast cells are rendered into an invasive state, they infiltrate the maternal 

tissue and replace endothelial cells of the maternal spiral arteries, thereby contributing to placental 

remodelling. Unlike to cancer, invasion of trophoblast cells is under physiological control in terms of temporal 

and spatial limitations. Nevertheless, cancer attributes such as immune suppression, proliferation, migration 

and invasion account for a “pseudo-tumourigenesis” process as part of the pregnancy [4]. 

If the fine regulation of those mechanisms is disturbed, pregnancy pathologies such as pre-eclampsia, intra-

uterine growth retardation (IUGR), trophoblast moles, choriocarcinoma or even miscarriage can occur. Of 

special importance regarding adverse pregnancy outcome is trophoblast invasiveness as for instance pre-

eclampsia is characterized by shallow trophoblast invasion resulting in small placentae, whereas increased 

invasiveness might lead to the formation of trophoblast moles [5, 6].  

Therefore, it is of high scientific interest to aim for a better understanding of the regulation of the temporally 

and spatially restricted trophoblast invasion. So far, very little is known about the regulation of trophoblast 

invasion and the involved intracellular signalling events. 

In this study, the focus was set on functional aspects of trophoblast invasion by manipulating signalling 

pathways of a first-trimester trophoblast cell line model (HTR8/SVneo). Hereby, special interest was focussed 

on the regulation of and by the signalling molecule mTOR. It was already demonstrated that mTOR plays a role 

in murine trophoblast outgrowth in vitro and mTOR knockdown was shown to be post-implantational lethal in 

mice [7]. 

The presented work contributes just a small piece to the puzzle to unravel the regulative mechanisms which 

arise during the paradoxon pregnancy. 
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Chapter 1 | Introduction 

1 Introduction 

1.1 Pregnancy – Puzzle of fine regulation 

Several mechanisms at the foeto-maternal interface (decidua) contribute to the maintenance of pregnancy. 

The fine regulation of the communication between maternal and foetal cells is of great importance and 

dysregulation results in pregnancy-related diseases such as pre-eclampsia, intra-uterine growth retardation 

(IUGR) and choriocarcinoma or even in the loss of the foetus (miscarriage, recurrent spontaneous abortion; 

RSA). It is to note that detailed knowledge of implantation and trophoblast invasion in humans is elusive and 

therefore makes extrapolation from other mammals necessary. 

 

1.1.1 Immunological paradoxon between mother and foetus 

The semi-allogenic foetus bears half of the paternal antigens which are foreign to the maternal immune system 

and which is therefore a potential target of an immunological attack. Tolerance failure of the maternal immune 

system will consequently lead to the rejection of the foetus. 

The immune system is assessed with a distinct set of MHC receptors which will allow a determination of self 

and non-self antigens. Lack of self or non-self/foreign antigens will hence trigger an immune reaction, exerted 

by immune cells such as T-, B-, NK cells, macrophages, dendritic cells and many others.  

It was believed for a long time that the foeto-maternal interface is, similar to the eye or brain, an 

immunological inert site in order to evade any contact with the maternal immune system. It is now accepted 

that in fact the opposite is more likely. Recognition of the foetus by the mother’s immune system is required to 

achieve a successful pregnancy while also inducing immunological tolerance [1-3]. Without that recognition, 

early events of pregnancy, such as the implantation of the blastocyst might already be disturbed. 

During pregnancy the pre-dominant immune cells within the placenta are NK cells, which will largely increase 

until the end of the first trimester and then decline again towards term. NK cells make up to 70% of the 

decidual lymphocytes and exhibit the cytokine-secreting phenotype with less CD16 receptors on the cell 

surface which are important for NK cytotoxicity [8]. It has been proposed that the decidual NK cells play 

therefore a role not in immune defence but in the maintenance of pregnancy by chemokine and receptor 

expression supporting foetal growth and invasion of the foetal cells (trophoblasts) [9]. This idea is supported by 
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the fact that certain isoforms of NK receptors are markers for higher risk of pre-eclampsia, a severe pregnancy 

pathology which is manifested by small placentae and shallow trophoblast invasion [10]. 

In order to maintain pregnancy and avoid an immunological rejection, various further mechanisms account for 

the survival of the foetus. Of special importance are hereby the secretion of non-classical MHC class I molecules 

(HLA-E, G) which inhibit NK cytotoxicity, the secretion of indoleamine 2,3-dioxgenase (IDO) which depletes 

tryptophan and thereby inhibits T cell activity and the secretion of cyto-/chemokines favouring a non-

inflammatory environment (Th2 shift) [11-13] and the expression of Galectin-1 [14].  

 

1.1.2 Placenta – Platform for life  

 1.1.2.1 Aspects of placental development 

As soon as implantation of the blastocyst occurs (around day 6 post-conception), foetal cells start to infiltrate 

the maternal tissue. The start of this trophoblast invasion leads to the decidualization of the mother’s uterine 

epithelium, finally resulting in the development of the placenta, which will anchor the foetus and supply it with 

all demands for nutrients and oxygen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 1. Schematic presentation of an implanting blastocyst, highlighting invasion-regulating interactions between trophoblast and 
endometrial cells, including integrins, growth factors, cytokines, hormones and proteases (taken from Staun-Ram and Shalev 2005). 
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Around day 7 to 9 post-conception the first erosion of maternal tissues by invasive trophoblast takes place and 

uterine epithelium regrows over the conceptus until it is fully embedded. From gestational week 2 until term, 

trophoblasts invade into the connective tissue (day 14 to term) and into the walls of maternal spiral arteries 

(gestational week 3 to term) with its peak around gestational week 12. From this on, the flow of maternal 

plasma and blood into the intervillous space of the placenta can arise. During the course of placentation the 

villous surface expands to 12.5 m
2
 at the end of term [15]. 

Trophoblast cells develop in parallel to the embryo and are therefore a non-somatic cell population with a 

distinct protein expression. A schematic picture that summarizes the anatomy of the implantation site and 

localization of trophoblast subtypes can be seen in figure 1. The placenta represents an autonomous and self-

sufficient unit capable of modulating its own growth and function [4]. 

 

1.1.2.2 Placental signal transduction induced by growth factors and chemokines  

The regulation of the placental microenvironment evolves from cyto-/chemokines, growth factors, hormones, 

enzymes secreted by maternal and foetal cells which are required for tissue remodelling, trophoblast invasion, 

as well as for tolerance induction [16].  

Growth factors and cyto-/chemokines which are expressed within the placenta and which were shown to have 

a special role in trophoblast growth, differentiation, spreading and/or invasion are: leukaemia inhibitory factor 

(LIF) [11], hepatocyte growth factor (HGF) [17], insulin-growth factor-I (IGF-I) [18], IGF-II [19], epidermal growth 

factor (EGF) [20], transforming growth factor-α (TGF-α) [21] and placental growth factor (PlGF) [22] and various 

others. The source and effect on trophoblast cells by several factors can be seen in           table 1. 

 

 

          table 1. Some of the key factors regulating EVT cell function (taken from Lunhgi et al. 2007) 
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These factors trigger cascades of signals in trophoblasts. Those pathways include signal molecules such as G-

proteins, mitogen-activated proteinkinases (MAPKs), focal adhesion kinase (FAK), PI3K, Akt, mTOR, TGF-β-

dependent Smads, signal transducer and activator of transcription (Stat) and nuclear factor-kappa B (NFκB). A 

summary of several signalling molecules induced by the appropriate growth factors is schematically depicted in 

figure 2 [23]. 

A lack or aberrant expression of growth factors can cause pathologies or may be symptoms of pathologies such 

as pre-eclampsia which was correlated with a low level of HGF. A low level of HGF was also linked to placental 

defects with diminished trophoblast growth and embryonic lethality in mice [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3 Trophoblast “Pseudo-tumourigenesis” 

As mentioned before, trophoblasts resemble cancer cells in many aspects as they exhibit tumour-like attributes 

such as rapid proliferation, migration, invasion and immune suppression mechanisms. However, unlike cancer 

the invasion process of trophoblast cells is kept in check. Also, their differentiation is not a consequence of a 

multi-step progression of genetic alterations within tumour suppressor genes or proto-oncogenes as it happens 

in cancer, but manifested by physiological means. 

 

1.1.3.1 Trophoblast proliferation and differentiation 

Upon blastocyst implantation, trophoblast cells begin to differentiate in two different subtypes, 

cytotrophoblasts and syncytiotrophoblasts. The latter are formed by fusion of trophoblast cells which make 

contact with the uterine epithelium generating a syncytium. This multinucleated cell layer covers the placental 

EGF HGF 
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figure 2. Schematic presentation of signalling pathways stimulating 
trophoblast migration (modified from Pollheimer et al. 2004)  
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villi, possesses endocrine activity and is in direct contact with the maternal blood and is thus, capable for foeto-

maternal exchanges. It is fully differentiated and therefore lacks any generative activity. The cytotrophoblast 

cells are mononucleated and represent the proliferating pool of trophoblasts (also referred to as trophoblast 

stem cells). They divide rapidly and give rise to other subtypes and by subsequent differentiation through 

syncytial fusion expand and maintain the syncytium. A schematic presentation of the anatomy of the 

implantation site/foeto-maternal interface is given by figure 3. 

Around day 12 to 14 post-conception, cytotrophoblast start to penetrate the syncytium reaching the outer part 

and coming into contact with the maternal tissue. Here, they form cylinder-shaped cell accumulations called 

trophoblastic cell columns from which invading trophoblast termed extravillous trophoblast cells (EVTs) start to 

invade.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EVTs are a discrete set of trophoblast with difference in phenotype and function compared with the villous 

type. EVTs originate from trophoblast cells which are in proximity of the basement membrane of the villi. 

Daughter cells of this subtype exhibit no longer proliferative capacity but start to differentiate and migrate. This 

feature is a major difference to malignant tumour cells which still show proliferative activity during the invasive 

process. EVTs that migrate through the decidual stroma are referred to as interstitial EVTs and come in contact 

with maternal cells such as lymphocytes. The exact interplay between both populations is not well understood. 

For instance, it seems that certain NK cell receptors play a role in stimulating trophoblast growth.   

Myometrium 

Decidua 

Anchoring 
villous 

Villous cytotrophoblast 

Syncytiotrophoblast 

Cytotrophoblast cell column 

Interstitial EVT 

Endovascular EVT  

Maternal endothelial cells 

Macrophages 

NK cells 

Giant cells 

Maternal blood flow 

(spiral artery) 

figure 3. Placental implantation site (modified after Lunghi et al. 2007). 
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During their course of invasion, EVTs undergo phenotypical changes and switch their repertoire of integrins 

favouring the migration process. EVTs can also be subdivided structurally in three different subtypes; large 

polygonal EVTs, small spindle-shaped EVTs and multinucleated giant cells. 

Some EVTs take a side route in their way of invasion and reach the walls of maternal spiral arteries. They are 

referred to as endovascular EVTs. They are either located inside the media or lining their lumina. They replace 

the maternal endothelial cells leading to extravasation of the vessel.  Thereby, the arteries undergo a dilation 

which is several times of the original diameter. The transformation of the spiral arteries into dilated and large 

capacity vessels together with a reduced activity of the smooth muscles surrounding the arteries ensures an 

adequate utero-placental circulation, the prerequisite of a normal growth and development of the foetus. 

The differentiation of the trophoblast cells is controlled by various factors such as transcription factors, 

hormones growth factors, cytokines and oxygen level [15]. 

 

1.1.3.2 Molecular features of migration and invasion 

The key components along the invasive course of cells are the extra-cellular matrix (ECM) proteins (such as 

fibronectin, laminin, collagen, vitronectin), their receptors (integrins) and ECM-degrading enzymes (such as 

matrix-metalloproteinases; MMPs). In order to migrate and invade, cells have to overcome the basal lamina, 

digest the surrounding matrix leading to destruction or remodelling of the tissue and also to acquire 

independence of their anchorage-attachment.  

Trophoblasts modulate their integrin repertoire during invasion and differentiation. Integrins are heterodimeric 

membrane glycoproteins, composed of α- and β-subunits. Depending on the type of α/β combination, they are 

able to bind to various ECM components and cell adhesion molecules (CAM) and mediate cell-cell interaction. 

Upon binding they affect cell adhesion, spreading, migration, reorganisation of the cytoskeleton and cell 

signalling.  

Upon their integrin expression EVTs can be discriminated into invasive and non-invasive cells. Invading EVTs 

upregulate α5β1 (vibronectin receptor) and α1β1 (collagen receptor) integrins and vascular cell adhesion 

molecule (VCAM), whereas α6β4 (probably a laminin receptor) is downregulated. This progression of the 

phenotype is also designated as integrin switch. The integrin α1β1 and VCAM expressed by endovascular EVTs 

enables the cells to blend with the endothelial cells and penetrate the walls of the spiral arteries. The 

endothelial cell adhesion molecules ICAM (intercellular adhesion molecule), VCAM and PECAM (platelet 

endothelial cell adhesion molecule) are important in endothelial activation and were found to be elevated 

expressed by the maternal endothelium during pregnancy [25].   

When invading into the maternal tissue and penetrating the uterine wall of spiral arteries, trophoblast cells are 

confronted with ECM proteins. The composition of the ECM components affects cell adhesion, migration, 

differentiation and spreading and thereby influences trophoblast behaviour and function. Trophoblast cells 

secrete matrix-metalloproteinases (MMPs) which break down all components of ECM, both interstitial matrix 

and basement membrane. They also secrete the tissue inhibitors of matrix-metalloproteinases (TIMPs) [25]. 
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TIMPs are secreted by maternal endometrial cells as well as by trophoblast and restrain MMP activity thus 

contributing a mechanism to control trophoblast invasion [26]. 

So far, 22 human MMPs are known which are subdivided in five classes according to their structure and 

substrate specificity. MMPs regulate cell-matrix and cell-cell interactions, and also the release, activation or 

inactivation of signal molecules or receptors. They are themselves regulated at transcriptional level, by 

secretion, activation, inhibition and degradation. MMP expression is cell-, tissue- and MMP-specific and can be 

induced by cytokines and growth factors. They are secreted as pro-enzymes (zymogens) and activated by 

cleavage of the pro-peptide domain via other MMPs or several serine proteases including urokinase-type 

plasminogen activator (uPA).  

MMP9 and MMP2 are gelatinases, degrading collagen IV, and regarded as key molecules in embryo 

implantation, allowing trophoblast invasion through the decidua and into maternal vessels. MMP2 is already 

secreted by the embryo at the blastocyst stage. There is a differential expression of MMP2 and -9 throughout 

the first trimester, with MMP2 being pre-dominantly expressed in the early and MMP9 in the late first 

trimester. It could be shown that MMP9 is secreted in the inactive form by pre-eclamptic trophoblasts. 

Nevertheless, knock-out mice deficient in MMP2 or -9 are fertile and only mild effects have been reported [27].  

The uPA system represents a family of serine proteases that are involved in the degradation of the basement 

membrane and ECM components and also in fibrinolysis. Various enzymes are able to activate uPA such as 

plasmin, kallikrein, factor XIIa, and cathepsin B. Activated uPA converts plasminogen into plasmin, which, in 

turn, activates a variety of substrates, including matrix  metalloproteases (MMPs) and uPA itself [28]. UPA 

binds to its receptor uPAR which is a 50 to 65 kDa cell surface glycoprotein expressed by activated leukocytes, 

keratinocytes, monocytes/macrophages, endothelial cells, fibroblasts, trophoblasts, and many cancer cells [29-

31]. High endogenous levels of uPA and uPAR could be linked with tumourigenicity and metastatic capacity of 

tumour cells whereas reduced levels of uPA and increased concentrations of PAI-1 have been reported in pre-

eclampsia, characterized by impaired trophoblast invasion [32]. 

There are two subtypes of uPA inhibitors, called PAI-1 and PAI-2. The uPA system and its inhibitors are thought 

to play a role in trophoblast invasion through regulation of the proteolysis and the remodelling of maternal 

tissue. The localisation of the expression of its components could be demonstrated in human placenta [33]. 

Interestingly, PAI-1 appears not to solely inhibit cell invasion by inhibiting uPA activity but also to promote cell 

spreading by mediating cell detachment [34]. PAI-1 is mainly expressed by first-trimester trophoblast and was 

found concentrated where detachment from maternal tissue occurs [33] whereas interstitial and endovascular 

EVTs are PAI-1 negative [35]. A summary of the described mechanisms that are involved in trophoblast invasion 

is outlined in figure 1. 

 

1.1.3.3 Restriction of trophoblast invasion 

When invading trophoblast cells reach the upper luminal third of the myometrium, their invasiveness slows 

down and finally comes to a halt. The reason for this is unclear, but several hypotheses try to explain it either 
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by extrinsic or intrinsic factors. Extrinsic factors accounting for invasion stop could be a certain interaction with 

the surrounding cells in the myometrium, a gradient of a signal that is no longer available or in a too low 

concentration to trigger invasion not any more when too far from the source of the signal. Alternatively, 

trophoblast cells may be able to invade only for a certain period of time or for a certain distance which would 

follow an intrinsic program. Additionally, apoptosis induction, polyploidization leading to a non-invasive but 

matrix-secreting phenotype and syncytial fusion may also lead to the limitation of invasion [15].  

Another recently discussed hypothesis suggests that the oxygen level accounts for the restriction of 

trophoblast invasiveness. In early pregnancy, a low level of oxygen (hypoxia) is present. Later, the oxygen level 

rises with the establishment of the utero-placental circulation. Hypoxia leads to the expression of hypoxia-

inducible factor (HIF), which could be detected in EVTs, villous cytotrophoblast as well as in the 

syncytiotrophoblast. The expression of HIF declines with gestational age and thereby reflects the increase of 

the oxygen level [36].  

To what extent all of these hypotheses contribute to the transient nature of trophoblast invasiveness remains 

to be answered. Taken together, on the one hand placental cells possess the capacity of indefinite growth and 

extensive invasion, and are on the other also bestowed with mechanisms to regulate and restrict these 

tumour-like attributes. This unique feature implicates that trophoblast cells might be a useful model to study 

cell growth, differentiation as well as tumourigenesis [4]. 

 

1.1.4 Trophoblastic cell line models 

Isolation of primary trophoblast cells is a difficult cell stress-inducing procedure often yielding in low cell 

numbers and their culture is only possible for a short-time which might not be suitable for certain analysis. 

There are several cell lines utilized as model for human trophoblast cells. Some are derived from 

choriocarcinoma cells, such as JEG-3, JAR and BeWo cell lines. Other cell lines originate from a hybridization of 

a choriocarcinoma cell line with trophoblast cells, such as AC1M59 and ACH3P (both JEG-3 hybrids). In spite of 

their trophoblastic origin those cell lines may have distinct differences in morphogenic and functional 

phenotype as they are cancer cells as well. 

The cell line HTR8/SVneo is widely used as a model for first-trimester trophoblast cells. The cell line was 

generated in 1993 by Charles H. Graham and Peeyush K Lala in Canada [37]. The cell line originates from 

first-trimester trophoblast cells which were immortalized by introducing the gene encoding simian virus (SV) 40 

large T antigen. The selection could be performed through induction of neomycin resistance. The trophoblastic 

identity after transfection was confirmed by various morphological and functional markers such as 

cytokeratin-7. The cell line secretes MMP2 and human Gonadotropin (hCG), the pregnancy marker hormone, 

and is susceptible to TGF-β as shown for normal first-trimester trophoblast cells. As HTR8/SVneo cells share 

various similarities to trophoblast cells and are not of tumour origin, they seem to be a very good tool in order 

to analyze placental function and tumour progression. 
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1.2 Welcome to the TOR signalling network 

Target of Rapamycin (TOR) is a signalling molecule which is well conserved among species. It was first 

discovered as two polypeptides, named TOR 1 and TOR 2 in budding yeast Saccharomyces cerevisiae during a 

screen for resistance towards the drug Rapamycin. Later, it was also found in drosophila (dTOR) and 

mammalians (mTOR). In mammals, a single TOR protein is present which shows about 42% identity with the 

amino acid sequence to the yeast TOR homologues [38]. 

 

1.2.1 Structure and function of mTOR 

Mammalian target of Rapamycin (mTOR), also designated as FKBP12-Rapamycin associated protein (FRAP) and 

Rapamycin target (RAFT), belongs to the phosphoinositide kinase-related kinase (PIKK) family [39]. MTOR 

kinase is a high-molecular weight protein consisting of 2549 amino acids and containing several distinct and 

conserved domains. Schematic presentations of structural features of mTOR and its complex binding partners 

are depicted in figure 4.  

MTOR possesses a C-terminal serine/threonine protein kinase activity domain [40, 41], an FKBP12-Rapamycin 

binding domain (FRB), a toxic effector domain and an N-terminal region that features 20 tandem HEAT repeats 

which have been proposed to mediate protein-protein interactions [42]. 

Phosphorylation sites of mTOR are threonine at position 2446 (Thr
2446

) and serine at 2448 (Ser
2448

).  It was 

shown that intrinsic kinase activity leads to autophosphorylation. Whether this intrinsic activity is sufficient for 

full activity in vivo is not known. The significance of the phosphorylations themselves is unclear as well since it 

could be demonstrated that substitution of both phosphorylation sites with alanine did not affect mTOR 

activity [43]. 

MTOR can be found in two protein complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2), both 

different in binding partners and functions. In mTORC1, mTOR is associated with the regulatory-associated 

protein of mTOR (Raptor), proline-rich Akt substrate of 40kDa (PRAS40) and mLST8 (also known as G protein β-

subunit-like protein; GβL), whereas in mTORC2, it interacts with Rapamycin-insensitive companion of mTOR 

(Rictor; also named as mAVO3), mLST8 and recently found with Sin1 and PRRL5 [44]. The well characterized 

targets of mTORC1 are p70 S6 kinase (p70
S6K

) and 4E-binding protein 1 (4E-BP1) whereas mTORC2 possibly acts 

via Rho signalling pathway which is less understood [45]. Those downstream events are further described in 

1.2.3.  

In general, mTOR integrates nutritional and mitogenic signals as well as stress-induced signals to coordinate cell 

growth (accumulation of cell mass), protein synthesis, cell proliferation and survival. It is essential for the 

regulation of protein translation in response to the extracellular signals allowing the progression from the G1 to 

S phase within the cell cycle [46].  MTOR also controls protein degradation by macro-autophagy, which is a 

catabolic process degrading cytoplasmic contents upon starvation, by ubiquitination, internalization and 
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turnover of specific nutrient transporters [47]. It was also shown that mTORC1 regulates trafficking of nutrient 

transporters and thereby promoting nutrient uptake such as of glucose, amino acids, lipoprotein and iron [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2 Upstream effectors and regulation of mTOR 

1.2.2.1 Upstream signalling events 

MTOR controls cell proliferation, growth and survival by regulation of many aspects of the cellular metabolism 

[44]. Four major inputs have been associated with the regulation of mTOR signalling including growth factors, 

nutrients, energy and stress. A schematic summary of signalling events occurring in the mTOR pathway can be 

seen in figure 5. 

Growth factors such as insulin-like growth factor-I (IGF-I) and -II (IGF-II) trigger the mTOR pathway via the 

phosphatidylinositol 3-kinase (PI3K)/Akt axis. Upon binding to the according growth factor receptor the insulin 

figure 4. Schematic structure of mTOR complex components. (HEAT: protein-protein-interaction 

structure of two tandem anti-parallel α-helices found in huntingtin, elongation factor 3, PR65/A 
and TOR, FAT: domain structure shared by FRAP, ATM And TRRAP, FRB: FKBP12/Rapamycin 
binding domain, FATC: FAT C-terminus, RNC: Raptor N-terminal conserved domain, WD40: about 

40 amino acids with conserved W and D forming four anti-parallel β-strands, CRIM: conserved 
region in the middle, RBD: Ras binding domain) (taken from Yang et al. 2008) 
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receptor substrate (IRS) is recruited and phosphorylated which then leads to the recruitment of PI3K. The 

PI3K/IRS complex converses phosphatidylinositol-4,5-phosphate (PIP2) to phosphatidylinositol-3,4,5-phosphate 

(PIP3) which co-recruits 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt (also known as protein kinase 

B; PKB) to the membrane. PDK1 then activates Akt by phosphorylation [47]. The accumulation of PIP3 can be 

reversed by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) which is a known tumour 

suppressor.  

The tuberous sclerosis heterodimer complex which is comprised of TSC1 (Hamartin) and TSC2 (Tuberin) is a 

GTPase-activating protein (GAP). Mutations in TSC proteins cause the formation of benign tumours 

(hamartomas) in various tissues and organs known as tuberous sclerosis complex syndrome which is 

characterized by very large cells within the tumours [49]. TSC1 and TSC2 are therefore also known as tumour 

suppressors [50]. TSC2 is phosphorylated and thereby inactivated by Akt. The TSC heterodimer is a negative 

regulator of mTOR, inhibiting its kinase activity through Rheb inhibition which is a positive mTOR effector 

protein (described in more detail in section 1.2.2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was shown that the absence of amino acids, in particular leucine, leads to a rapid dephosphorylation of the 

mTORC1 substrates p70
S6K

 and 4E-BP1 which can be restored upon readdition of amino acids [51] or Rheb 

overexpression [52]. Several mechanisms by which the nutrient status communicates to mTOR have been 

proposed which function either by inhibition of the TSC1/2 complex [53] or stimulation of Rheb [52]. 

Stat3 

figure 5. TOR signalling network (modified after Martin and Hall 2005) 
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Alternatively and independently of both mechanisms, either via TSC or Rheb regulation, nutrient sensing might 

directly arise via mTORC1 through alteration of Raptor-mTOR binding [54]. 

The energy level of a cell is manifested by the AMP:ATP ratio which is sensed by the AMP-activated protein 

kinase (AMPK). High AMP:ATP activates AMPK which in turn activates TSC1/2 GAP activity resulting in an 

inhibition of mTOR signalling in response to a low cellular energy level [55]. 

Upon stress such as hypoxia or DNA damage the cell downregulates energy-demanding processes and arrests 

its growth [56]. It was demonstrated that mTOR plays also a role in such a stress-induced cell response [57]. 

 

1.2.2.2 Positive regulator of mTOR: Rheb GTPase 

Rheb (Ras homolog enriched in brain) is a small G-protein and an upstream regulator of mTOR. There are two 

Rheb molecules in human, Rheb1 and Rheb2. It is ubiquitously expressed and particular abundant in brain and 

muscle [58]. Rheb consists of 184 amino acids residues whereof the 169 N-terminal residues form the GTPase 

domain and the 15 C-terminal amino acids, which are hypervariable, comprise a conserved motif important in 

farnesylation and association with the membrane [59].  

 

 

 

 

 

 

 

 

 

 

Mutations in Rheb can lead to cell growth inhibition, whereas overexpression promotes an increase in cell size 

and also leads to an insensitivity of mTOR kinase activity when growth factors and amino acids are absent [52, 

60]. Rheb binds to mTOR complex 1 (mTORC1) and thereby affects mTOR kinase activity. Transient expression 

of Rheb leads to mTOR-mediated activation of p70
S6K

 and phosphorylation of 4E-BP1. Rheb is negatively 

regulated by the TSC1/2 heterodimer. Rheb functions as an important mediator between TSC and mTOR to 

stimulate cell growth [50]. Recently, the structural properties of Rheb, when bound to its nucleotides 

(GTP/GDP), have been described. It was suggested that Rheb forms a new group within the Ras/Rap subfamily 

and uses a novel GTP hydrolysis mechanism [61]. The result of the structural analysis can be seen in figure 6. 

 

figure 6. Overall structure of Rheb-GppNHp 
compex (taken from Yu et al. 2005) 
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1.2.3 Downstream targets 

Substrates of mTORC1 are p70 S6 kinase (p70
S6K

) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) 

[62], which are involved in the regulation of translation initiation [62]. Raptor has been proposed to be a 

scaffold protein for the mTOR substrates. The mTOR substrate binding to Raptor is mediated via the five amino 

acids TOR signalling (TOS) motif that is located in the N-terminus of both substrates [63].  

In recent studies, PRAS40 was shown to be a physiological target of mTORC1 [64] and to be required for 

downstream signalling [65]. PRAS40 also possesses a TOS motif and is predominantly bound to Raptor, in a 

competitive manner towards p70
S6K

 and 4E-BP1. Upon mTOR activation, PRAS40 is phosphorylated and 

dissociates from Raptor, thus relieving PRAS40-mediated substrate competition [66]. 

The p70
S6K

 phosphorylates the 40S ribosomal protein S6 which is involved in the initiation of the translation of 

5’-terminal oligopyrimidine (TOP) tract mRNAs which encode ribosomal proteins and components of the 

translation apparatus [67, 68]. The phosphorylation of 4E-BP1 leads to a release of eIF4E that binds the 5’cap 

structure of mRNA. Released eIF4E is a component of a functional translation initiation complex also comprised 

of eIF4G, eIF4A and eIF3 [69, 70].  

MTORC2 meanwhile is thought to play a role in the organization of the actin cytoskeleton [45]. TORC2 also 

plays a role in a regulatory feedback loop of TOR signalling by phosphorylation of Akt, which is upstream in the 

mTOR signal pathway [71]. Additionally, mTORC1 is conferred to as being Rapamycin-sensitive whereas 

mTORC2 is Rapamycin-insensitive although prolonged Rapamycin treatment will disturb mTORC2 assembly 

[72]. Mechanisms of signalling events downstream of mTORC2 to the actin cytoskeleton are largely unknown 

but might involve PKCα and the small GTPases Rho and Rac [73]. 

 

1.2.4 Feedback and cross-talk signalling 

A constitutive activation of the mTOR kinase activity induces a negative feedback loop to attenuate PI3K via 

inhibition of IRS1. Studies demonstrated that p70
S6K

 regulates IRS1 at transcriptional level and through direct 

phosphorylation thereby interfering with the adaptor function of IRS1 and the consequent PI3K signalling [74]. 

The existence of a positive feedback loop caused via mTORC2 activating Akt has already been mentioned above 

(see paragraph 1.1.3). It was shown that the Rictor-mTOR complex directly phosphorylates Akt at a serine 

residue at position 473 in vitro and facilitates the phosphorylation of threonine at position 308 by PDK1. Hence, 

mTORC2 was identified as the long-sought PDK2, phosphorylating Akt. 

Moreover, the phosphorylation of mTOR at Thr
2446

 and Ser
2448

 was shown to be PI3K-dependent and increased 

with constitutively activated Akt, but it could be shown that the responsible kinase is not Akt but the mTOR 

substrate p70
S6K

 [75, 76]. It is still unclear whether the phosphorylation of this feedback loop is positive, 

negative or inconsequential and whether it occurs in mTORC1 or mTORC2 or both.  

In addition, mTOR was shown to phosphorylate the signal transducer and activator of transcription (Stat) -3 at 

its serine residue 727 (Ser
727

) [77]. Janus kinase (Jak)/Stat signalling is a rapid transcription-activating pathway 

leading to a cell response upon cytokine stimulation. The phosphorylation of Stat3 at the tyrosine residue 705 
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(Tyr
705

) regulates the Stat dimerization which is an essential prerequisite for the establishment of a classical 

Jak/Stat signalling path. However, there is a second phosphorylation site at the serine residue within the C-

terminus and mutation of this residue alters transcriptional activity [78]. However, the role of the serine 

phosphorylation of Stat3 is still controversially discussed in the literature [79].  

 

1.2.5 Inhibitor of mTOR: Rapamycin 

Rapamycin (or Sirolismus), a microbial natural product with potent anti-proliferative activity and known to be 

used as an immunosuppressant applied to graft recipients after transplantation, is a specific potent mTOR 

inhibitor. Rapamycin was originally isolated from the bacterial strain Streptomyces hygroscopicus found in a soil 

sample from Easter Island (Rapa Nui in local language) [47]. Rapamycin is a macrocyclic lactone and binds with 

high affinity to FKBP12, which is a prolyl isomerase, to form an active drug-protein toxin [80, 81]. The chemical 

structure can be seen in figure 7. 

 

 

 

 

 

 

 

 

MTOR directly binds to the FKBP12-Rapamycin complex [38, 82]. It was shown that the FKBP12-Rapamycin 

complex inhibits the binding of the mTOR substrates p70
S6K

 and 4E-BP1 to Raptor, which results in the 

aforementioned sensitivity of mTORC1 to Rapamycin treatment. Thus, mTORC1 is disabled to phosphorylate 

and thereby activate its substrates which are important factors for protein synthesis. As follows, Rapamycin is 

an inhibitor of cell proliferation which promotes it as a candidate drug target for anti-cancer therapy and led to 

the development of Rapamycin analogues, explained further in the next section (see 1.2.6).  

MTORC2 is considered as Rapamycin-insensitive, but upon prolonged Rapamycin treatment a disassembly of 

the complex takes place. Newly synthesized mTOR proteins bind to FKBP1-Rapamycin preventing an assembly 

of mTORC2, whereas already-existing complexes break down, eventually leading to a Rapamycin-induced 

mTORC2 inhibition [72]. 

 

figure 7. Structure of Rapamycin. 
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1.2.6 mTOR and cancer 

In various human cancers, pathways that regulate mTOR are transformed [51]. Mutations in the tumour 

suppressor PTEN is one of the best described and frequently found genetic alteration that affects mTOR 

signalling in tumour cells. Loss-of-function PTEN is associated among various cancers such as in prostate, 

breast, lung, brain or bladder [83]. Furthermore, genes encoding the catalytic subunit of PI3K and Akt were 

found to be amplified in ovarian and breast cancer [84]. Mutations in the tumour suppressors TSC1 or TSC2 

lead to hamartomas as already mentioned. It was also observed that Rheb activity is elevated in many tumour 

cell lines [85]. 

It can be assumed that an activation of mTOR signalling contributes to tumourigenesis by providing cancerous 

cells with a growth advantage through promotion of protein synthesis and cell cycle progression. Therefore, 

mTOR is an attractive target for cancer therapy. At the moment three Rapamycin analogues, named CCI-779 

(Wyeth), RAD001 (Novartis) and AP23573 (Ariad Pharmaceuticals) are in clinical trials. Preliminary results 

showed that the Rapamycin derivates are particularly effective in tumours with PTEN inactivation [83]. But 

there is a need for biomarkers predicting tumour sensitivity to Rapamycin and its analogues. One study on 

breast cancer demonstrated that Akt phosphorylation and p70
S6K

 overexpression might be those markers 

rather than PTEN status or p70
S6K

 phosphorylation [86]. 

It is also noteworthy that long-term treatment of Rapamycin implicates induction of apoptosis possibly by 

impairing the positive feedback loop from mTORC2 to Akt. As said before, mTORC2 is Rapamycin-insensitive 

but its assembly is disrupted upon prolonged treatment. Tumours upregulating mTORC1 signalling thereby also 

activate the negative feedback loop to IRS1, which prevents full activation of Akt signalling. A diminished 

activation of Akt-dependent survival mechanism might render those cancer cells more susceptible to apoptosis. 

Hence, inhibitors against mTOR-Rictor (TORC2) might also be beneficial in cancer therapy [83]. Others studies 

demonstrated that the application of Rapamycin derivates showed improved effects on cancer when combined 

with other chemotherapeutical agents; cutting off intracellular pro-survival signals at diverse and distinctive 

sites [87]. 

 

1.2.7 mTOR and reproduction 

It was reported that children of transplant recipients who received Rapamycin-based immunosuppressiva 

during pregnancy showed no maltransformations although case number was very low (n=7) and three out of 

the seven pregnancies resulted in spontaneous abortion [88]. Otherwise, another study mentioned that 

Rapamycin treatment was avoided during pregnancy of women undergoing transplantation [89]. Otherwise 

Rapamycin is considered teratogenic since it was reported that treatment of early embryos in mice with 

Rapamycin led to a phenotype highly similar to mTOR mutant embryos [90]. 

In a mouse model, it could be demonstrated that disruption of the mTOR gene was implicated with a limited 

level of trophoblast outgrowth in vitro and post-implantational lethality of homozygotes [7]. Rapamycin 

treatment of mouse embryos also inhibited trophoblast outgrowth [7]. A deletion of six amino acids in the C-
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terminal part, essential for mTOR kinase activity, demonstrated reduced cell size and a proliferation arrest in 

early mouse embryos and embryonic stem cells [91]. 

Furthermore, mTOR has been described as a placental growth signalling sensor [92]. In the presence of 

extracellular amino acids, particularly leucine, mTOR gets activated in early mice blastocysts leading to 

trophoblast spreading [93]. Another study in mice showed that leucine uptake occurs by the amino acid 

transport system B
0,+

 which triggers mTOR signalling and development of trophoblast motility in vivo and in 

vitro [94]. A study on humans demonstrated, that mTOR regulates placental leucine transport and was found 

downregulated in intra-uterine growth restriction (IUGR) leading to the proposal that mTOR functions a 

nutrient sensor, matching fetal growth with maternal nutrient availability by regulation of the nutrient 

transport [95]. On the whole, very little is known of the role of mTOR in reproduction especially in human. 

 

1.3 Objectives 

The aim of the study is to further unravel the role of mTOR signalling in trophoblast invasion choosing the cell 

line HTR8/SVneo as model. Special question was raised concerning the contributions of both mTOR complexes 

to trophoblast response, especially when deprived of nutrients and growth factors, performed by serum-

starvation. Additionally, the influence of mTOR upstream effector proteins such as Rheb, Akt and PI3K was to 

elucidate as well as its cross-link to Stat3. In our laboratory it was already shown that Stat3 plays a role in 

trophoblast invasion, demonstrated in other cell lines than HTR8/SVneo [96]. 

 

Experimental approaches: 

(1) In order to investigate the role of single signal molecules within the mTOR pathway (Rheb, mTOR, 

Raptor, Rictor), their expression was knocked down (silenced) by RNA interference (RNAi) through 

transfection with small interfering (si) RNA. 

(2) Rapamycin, a specific inhibitor against mTOR, was used to allow comparison with knockdown effects. 

Thereby two time points of Rapamycin exposure were applied; acute (2 h) and prolonged (24 h). It was 

expected that acute Rapamycin treatment solely affects mTORC1 whereas that prolonged Rapamycin 

also impairs mTORC2. 

(3) Pharmacological inhibitors against mTOR upstream effector Akt and PI3K were utilized in order to 

further analyze possible feedback mechanisms which might impact the differential outcome induced 

by Rapamycin. 

(4) The withdrawal of serum was used as a tool to mimic absence of “energy” signals by growth factors 

and nutrients. 

(5) Assays were performed to determine proliferation rate and apoptosis induction upon treatment by 

RNAi or inhibitors. 
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(6) Invasion-related functional assays were used as read-outs for trophoblast invasiveness. Those assays 

included substrate zymography indicating the secretion of matrix-degrading enzymes, PAI-1 ELISA and 

immuncytochemistry and in vitro matrigel invasion assay. 

(7) The existence of mTOR expression within the decidua was confirmed by immunohistochemical 

staining of placental tissue. 

  

Supplementary data obtained during a scientific sojourn at the Massachusetts General Hospital in the 

laboratory of Joseph Avruch (MD PhD) are specially indicated. This work comprised the regulatory effects of 

Rheb mutants on mTOR activity and binding using a human embryonic kidney cell line (HEK293T). This project 

should be considered separately, but still demonstrates the regulation of mTOR activity which is part of the 

study. 
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Chapter 2 | Material and Methods 

2 Material and Methods 

2.1 Regulation of mTOR by Rheb in HEK293T 

Regulation of mTOR requires Rheb to be in its active GTP-bound form, which enables it to bind and/or induce 

mTOR kinase activity. It could be shown that two regions within the Rheb molecule, named switch 1 (residues 

33-41) and switch 2 (residues 63-79) are important for mTOR activation, highlighted in figure 8. The overall 

structure of Rheb when bound to GTP and GDP has recently been described [61].  When Rheb harbours GTP, 

structural changes are induced and critical amino acids will be exposed resulting in functional Rheb. In order to 

identify those critical amino acids, a set of Rheb mutants was created. The putative changes were selected by 

prediction of solvent-exposure at the threshold when all residues of both switches are fully accessible.  

 

 

 

 

 

 

 

 

 

The sequence of human Rheb1 wildtype can be seen in figure 8. The solvent accessibility of each residue was 

calculated by the DeepView program, available at the Swiss Protein Database. At a setting of 25% it could be 

ensured that all residues of switch 1 and switch 2 were exposed. At that setting, 58 amino acid residues of 

figure 8. Sequence of human Rheb1 (taken from Long et al. 2007). Colours indicate solvent accessibility in X-ray crystallographic 
structures of Rheb1 either to GTP or GDP, calculated by the DeepView program (gray: not solvent exposed, purple: exposed in both 
Rheb-GTP/GDP, black: exposed only in Rheb-GTP, green: exposed only in Rheb-GDP, red box: switch 1, green box: switch 2).  
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Rheb1 are solvent-exposed in the GTP-bound form. Those residues were substituted by alanine. Several (up to 

five) mutated residues were clustered leading to the generation of 20 mutants in total. The five residues that 

are only surface-exposed in the GDP-bound form were individually changed. All residues were also changed to 

alanine. The functional capacities of these mutants were monitored by their potential to restore substrate 

phosphorylation by mTOR upon amino acid withdrawal. Additionally, their binding properties to mTOR and its 

interaction partners were tested. 

 

2.1.1 Generation of Rheb mutants 

The desired mutations, selected as described above, were introduced in two vectors comprising the wildtype 

Rheb1 and an additional N-terminal tag; pCMV5-Flag and pEBG, consisting of a Flag- and gluthatione sepharose 

(GST)-tag, respectively. Both vectors also encode Ampicillin-resistance (vector map of pCMV5 can be seen in 

the appendix). In the table below (table 2) all designed mutant constructs are listed with the corresponding 

abbreviations. 

 

No. Mutation Abbreviation  No. Mutation Abbreviation 

1 G3/S4/S6 3-6  14 I76/D77 76, 77 

2 R15 15  15 I90/K91 90, 91 

3 S16 16  16 E94/K97 94, 97 

4 E28/Q30 28, 30  17 L104/D105/M106 104-06 

5 D33/S34/Y35/D36/P37 33-37  18 K109/V110/Q111 109-11 

6 I39/E40/N4/T42 39-42  19 H1247M125/E126/V128 124-28 

7 T44/L46 44, 46  20 Y131/E132/E133/K135 131-35 

8 T48/N50/G51 48-51  21 E139/S140/N142 138-142 

9 E53 53  22 K151/E152 151, 152 

10 H55/Q57 55, 57  23 Q154/D158/R161 154-61 

11 Y67/I69 67, 69  24 R161/R162/I163/I164 161-64 

12 Q72/Y74 72, 74  25 K169/M170/D171 169-71 

13 S75 75     

 
table 2. Set of Rheb1 mutants (Capital letters indicate changed residues at given position number: G glycine, S serine, R 

arginine, E glutamic acid, Q glutamine, D aspartatic acid, Y tyrosine, P proline, I isoleucine, N asparagine, T threonine, L 

leucine, H histidine, K lysine, M methionine, V valine). All residues were substituted with alanine (A). 

 

 

2.1.1.1 Primer design 

A set of 25 pairs of primers were designed according to the guidelines given by the manual of the QuikChange 

site-directed mutagenesis kit (Stratagene). The mutagenic primer pairs were designed in a way that both 
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primers, sense and anti-sense, contained the desired mutation and annealed to the same sequence on 

opposite strands of the plasmid. They were about 25 to 45 bases in length with a melting temperature (Tm) of 

slightly higher or equal to 78° C. With following formula was used to estimate Tm: 

  Tm= 81.5 + 0.41 (% GC) – 675 / N - % mismatch   

(N: primer length in bases, % GC: percentage of guanine G and cytosine C bases; values are whole numbers rounded down, % mismatch: 

percentage of bases creating mismatches /mutation number; values are whole numbers rounded up) 

 

The desired mutation was preferred to be in the middle of the primer . Ideally, the content of guanine (G) and 

cytosine (C) was 40% at minimum and primers terminated with one or more C or G bases. Primers encoded for 

several point mutations, adjacent or close-by of each other, leading to a switch of one or several amino acids to 

alanine. Primers with the mutagenic sequences were generated by the MGH DNA Core Facility and obtained as 

lyophilized powders. Primers (sense, anti-sense) were separately resuspended in deionized water to achieve 

125 µg/ml as final concentration. Primers were stored at -20° C. DNA manipulations were introduced in a single 

step using the generated pair of primers of each mutant in a polymerase chain reaction (PCR).  

 

2.1.1.2 PCR mutagenesis 

The QuikChange site-directed mutagenesis kit was used according to the instruction manual. Designed primer 

pairs were applied to introduce mutations within both vectors: pCMV5-Flag and pEBG, encoding wildtype Rheb 

protein fusioned with Flag- or GST-tag, respectively. 

Reactions were prepared as follows: 40 ng (1 µl) Template (pCMV plasmid [40 µg/ml]) 

            or 50 ng (1.25 µl) Template (pEBG plasmid [40 µg/ml]) 

     125 ng (1 µl) Sense primer 

     125 ng (1 µl) Anti-sense primer 

5 µl  10x reaction buffer 

     1 µl  dNTP mix 

     40 µl  ddH2O 

     1 µl  PfuTurbo DNA polymerase (2.5 U/µl) 

Sample reactions with different primer pairs were run simultaneously because of similar melting temperature, 

but only when the same template was used since plasmids either encoding Flag- or GST-tag have different 

sizes, 6 kilobases (kb) and 7 kb, respectively. Cycling was run with following parameters. 

PCR parameter setting: 1 cycle  95° C  30 s 

     95° C  30 s 

   16 cycles 55° C  1 min 

     68° C  2 min/kb (pCMV5-Flag: 12 min, pEBG: 14 min) 

   1 cycle  72° C  10 min 

     4° C  
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Upon PCR, amplification samples were incubated with 1 µl of Dpn I (10 U/µl) restriction enzyme for 1 h at 37° C. 

This enzyme targets methylated DNA and is thereby useful to digest original (non-mutated) strands. Sample 

reactions were stored at -20° C until further use for transformation into competent bacteria. 

  

2.1.1.3 Transformation 

Escherichia coli (E.coli) strain XL-1 Blue supercompetent cells (Stratagene, provided with QuikChange Site-

directed Mutagenesis PCR Kit) were thawed on ice and 50 µl were aliquoted into pre-chilled tubes for each 

transformation, taking 1 µl of sample reaction. Transformation samples were incubated on ice for 30 min and 

subsequently heat-pulsed for 45 sec at 45° C. Afterwards samples were put on ice again for 2 min. Pre-heated 

LB media (1% tryptone, 0.5% yeast extract, 1% NaCl) was added and the whole reaction sample was incubated 

for 1 h at 37° C. Ampicillin-containing (50 µg/ml) agar plates (1% tryptone, 0.5% yeast extract, 1% NaCl, 1.5% 

agar) were prepared by spreading 100 µl of 10 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) and 2% 5-

bromo-4-chloro-3-inodlyl-β-D-galactopyranoside (X-gal) about 30 min prior to spreading of 100 to 200 µl 

transformation reaction. Next day, colour screening was performed and white clones were selected and grown 

over night at 37° C in 3-5 ml LB media containing 75 µg/ml Ampicillin. Next day, bacteria cultures were used to 

isolate plasmids. In order to keep a glycerol stock of selected clones, 400 µl of media was taken of overnight 

culture and 150 µl of 70% glycerol was added and kept at -80° C. 

 

2.1.1.4 Plasmid preparation 

Purification of plasmids was performed by use of a mini-prep kit (Marligen) according to the manufacturer’s 

instructions. Briefly, 3 ml bacterial overnight cultures were taken and centrifuged (14.000 rpm for 1 min or 

4.000 rpm for 10 min), all media were removed and pellets were resuspended in an RNase A (20 mg/ml)-

containing buffer. Lysis buffer (200 mM NaOH, 1% SDS) was added, followed by an incubation of 5 min at room 

temperature. Afterwards neutralisation buffer was added and the mixtures were centrifuged at high speed 

(12.000 g) for 1 min. Supernatant were applied onto columns which were loaded on 2 ml tubes and again 

centrifuged at high speed for 1 min. The flow-through was discarded and the columns were washed with an 

ethanol-containing buffer and centrifuged as before. DNA was eluted from the columns by pre-warmed (about 

65-70° C), deionized water. DNA concentrations of purified plasmids were measured by Nanodrop 1000 

spectrophotometer (Thermo Scientific) and stored at -20° C.  

To verify correct sequence after mutagenesis PCR, 1 µg of the purified plasmid constructs was taken and 

supplemented with the according sequencing primer pair, either for pCMV5-Flag or pEBG, flanking the Rheb 

sequence within the plasmids and sent to the MGH DNA Sequencing Core Facility. DNA sequences were 

verified using the BLAST 2 Sequences program. 

Clones of mutant constructs with correct mutations were used for a maxi-preparation of plasmids in order to 

obtain high amounts of plasmid DNA for further experiments. Therefore, the appropriate glycerol stocks were 
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taken to inoculate 200-300 ml LB media. Bacterial cultures were grown over night and by use of a maxi-prep kit 

(Marligen), plasmids were purified by similar procedure as already described for mini-prep but on higher scale. 

In difference, columns required equilibration before use and after the elution from the columns, DNA was 

precipitated with isopropanol, centrifuged at 15.000 g for 30 min and the precipitates were then washed with 

70% ethanol and again centrifuged. Pellets were air-dried and then finally dissolved in deionized water. DNA 

concentrations were measured by Nanodrop and constructs were stored at -20° C until further use for cell 

transfection. 

  

2.1.1.5 Subcloning 

For constructs that failed to be generated by mutagenesis PCR or failed to be expressed in the following 

experiments, subcloning was used as another approach to generate desired mutagenic constructs. An insert 

from one construct was cloned into the other vector. Generally, pCMV5-Flag-Rheb vectors with correct 

mutations were taken to create the according pEBG construct.  

Therefore, about 2 µg of purified plasmids from selected clones were digested with the restriction enzymes 

Kpn I and BamH I with respective recommended buffer, simultaneously for 2 h at 37° C (see restriction sites of 

vector in the appendix). Afterwards the restriction reaction samples were loaded onto a 1.5% agarose gel 

(1.5% agarose, 0.008% ethidium bromide) to identify and separate the inserts by its size from undigested 

(circular) or partly digested (linear) plasmid. The gel was run approximately for 1 h at 90 V. At the according bp 

length (552 bp) in respect to 1 kb DNA ladder (Invitrogen), gel was cut out under UV light and the inserts were 

purified from the gel piece by use of a gel extraction kit (Marligen). Briefly, gel was solubilised by warming up 

with the according buffer and the resulting solution was then loaded onto a column which was centrifuged at 

13.000 rpm for 1 min, washed twice and DNA (mutagenic Rheb insert) was eluted with deionized water. To 

estimate concentrations of inserts, 2 µl were loaded onto 1.5% agarose gel and compared to the kb ladder with 

known concentration (1 µg/µl). 

Following digestion of vector to obtain inserts with correct mutation, the inserts were ligated into the other 

vector which was digested with the same restriction enzymes allowing recombination of “sticky” ends of vector 

and inserts. In addition to digestion of 1 to 2 µg vector, recirculation of vector was prevented by incubation 

with calf intestine alkaline phosphatase (CIAP) for 1 h at 37° C. Afterwards, vector was purified by use of gel 

purification kit. To estimate concentration of digested vector, 2 µl of mix was loaded onto a 1.5% agarose gel 

and compared to kb ladder. 

A ratio of 3:1 was used for vector-insert ligation also considering the bp ratio (pCMV5-Flag: 6 kb, pEBG: 7 kb, 

Rheb insert: 552 bp). Therefore, the following equation was used: 

 Vinsert = 3 * (cinsert * xinsert) / cvector  (V: volume, c: concentration, X: bp ratio) 

Ligation was performed using the Quick Ligation Kit (New England Biolabs) according to the manufacturer’s 

instruction. To verify if enzymes worked properly, a negative control reaction was prepared by adding only 
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vector and no insert to the ligase reaction. Religation of vector should be circumvented due to the 

dephosphorylation of the 3’ and 5’ end by CIAP. 

Ligase reaction was mixed as follows:  10 µl  Quick ligase buffer (2x) 

      1 µL  Vector 

      Vinsert  Insert 

      1 µl  Quick ligase 

      9 µl -Vinsert Deionized water 

Reactions were incubated for 5 min on ice and subsequently used for transformation into the Escherichia coli 

strain DH5α competent cells (Life Technologies). DH5α competent cells are suitable for subcloning procedures 

and capable of being transformed with large plasmids (Life Technology manual). Transformation was done as 

recommended by instruction manual; 1 to 5 µl of ligation product was added to a 50 µl aliquot of DH5α and 

incubated for 30 min on ice and afterwards, reactions were heat-pulsed for 20 sec at 37° C and then put on ice 

for 2 min. Upon addition of 1 ml pre-heated LB media, the mixtures were incubated for 1 h at 37° C while 

shaking. Then 300 to 500 µl of media was spread onto Ampicillin-containing agar plates and incubated over 

night at 37° C. Next day, clones were selected for mini-prep which was done as already explained. Obtained 

plasmids were subjected to control digestion. Therefore, 7.5 µl of plasmid solutions were incubated with 

restriction enzymes BamH I and Kpn I for 1 to 1.5 h at 37° C and applied onto a 1.5% agarose gel in the same 

manner as described before. If bands appeared at correct sizes compared to kb ladder, clones were sent for 

sequencing.  

 

2.1.2 Cell culture and transfection 

The Rheb mutants were transiently transfected into a human embryonic kidney cell line referred to as 

HEK293T.  HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% FBS, 100 U/ml penicillin and 0.1 mg/ml streptomycin at 37° C in 10% CO2. Cells were prepared for 

transfection experiments by seeding them into 30 mm dishes at a confluency of 30-50%.  

The transfection was performed by the lipofection method. With this method the administered cationic lipids 

are thought to facilitate the mediation of DNA into mammalian cells by forming DNA-lipid complexes which 

fuse with the cell membrane allowing DNA uptake by endocytosis. Lipofectamine (Invitrogen) was used as 

transfection agent and applied following the instruction manual.  

In order to verify if plasmids are expressed properly, several clones encoding correct mutation were chosen to 

transfect HEK293T. Prior to transfection, 200 ng of pCMV5-Flag-Rheb constructs or 300 ng of pEBG-Rheb 

constructs were diluted with 150 µl OPTI-MEM and a solution of 13 µl Lipofectamine and 137 µl OPTI-MEM was 

prepared and incubated for 30 min at room temperature. In the meantime, media of cells were removed and 

the cells were rinsed twice with OPTI-MEM. Then 1.5 ml OPTI-MEM was added and the 300 µl DNA-

Lipofectamine mix was added dropwise. Next day, media was changed to complete growth media. 
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Cells were harvested 48 h post-transfection, lysed and used for SDS-PAGE and Western blot as described 

below. The resulting membranes were incubated accordingly with anti-Flag or anti-GST specific antibodies to 

detect the overall expression of the Rheb mutants. The expression was compared to the expression of the 

recombinant wildtype Rheb expression. 

When constructs failed to express in HEK293T cells, subcloning an insert with correct mutation into a new lot of 

vector was also the method of choice to rule out possible mutations during PCR which could have occurred 

within the vector in other parts than the insert resulting in an adverse expression level. 

For functional analysis and for binding assay, 0.5 µg of constructs were used for transfection and amino acids 

were withdrawn as described in paragraphs below. 

 

2.1.3 Cell lysis and protein isolation 

Two days after transfection, cells were harvested by rinsing them twice in ice-cold PBS and while left on ice, 

cells were scraped off with 200- 400 µl lysis buffer (20 mM Tris-Base pH 7.9, 20 mM NaCl, 25 mM EGTA, 20 mM 

β-glycerol, 1 mM DTT, 1 mM PMSF, 1 protease inhibitor cocktail tablet/50 ml, 0.25% CHAPS, 0.025% calyculin, 

2 mM Na3VO4, 1 mM EDTA, 100 mM NaF) and kept cold. After a centrifugation of 10 min at 12.000 rpm, the 

supernatants were collected and protein concentrations were measured by Bradford assay. Lysates were 

prepared for gel electrophoresis by supplementing the same amount of protein (15-20 µg) of each sample with 

lysis buffer and gel loading buffer. Lysates were stored at -80° C. 

 

2.1.4 Gel electrophoresis and Western blot 

Protein lysates of transfected pCMV5-Flag-Rheb and pEBG-Rheb constructs were run on 11% and 13% sodium 

dodecyl sulphate-polyacrylamide gels (SDS-PAGE), respectively (11% or 13% acrylamid/bisacrylamid, 375 mM 

Tris-Base pH 8.8, 0.1% SDS, 0.1% APS, 0.004% TEMED). The electrophoresis separates proteins by molecular 

weight and the percentage of the gel depends on the size of the protein of interest. Gels were run in according 

running buffer (125 mM Tris-Base, 1 M glycine, 0.5% SDS) at 200 V until running front reached the end of the 

gel. Electrophoresis was followed by an immediate protein transfer onto a nitrocellulose membrane through 

vertical Western blotting. Therefore the stacking gel was cut off and discarded and the separation gel was 

applied onto the membrane which was equilibrated before in blotting buffer (20 mM Tris-HCl, 200 mM glycine, 

20% methanol). Air bubbles were removed and then gel and membrane were put within two wet filter papers 

and sponges. Subsequently, this sandwich was set up accordingly in the blotting chamber filled with cold 

blotting buffer and an iced tank was added to keep protein transfer process cold.  The blotting was run at 70 V 

for 90 min. Following protein transfer, membranes were blocked for 30 min in 5% milk-containing TBS-T buffer 

(250 mM Tris-Base, 27.1 mM KCl, 1.37 M NaCl pH 7.5). After blocking, membranes were washed three times 

with TBS-T for 5 min before incubation with primary antibody over night at 4° C. In a 1:1000 or 1:500 dilution of 

antibody in TBS-T, the primary antibodies specific for p70
S6K

, phosphorylated p70
S6K

, GST- and Flag-tag were 
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used. Next day, membranes were washed thrice again with TBS-T for 5 min. The secondary antibody specific for 

mouse (used for primary antibody specific for phosphorylated p70
S6K

 and Flag-tag) or rabbit (used for all other 

primary antibodies) which are linked to horse-radish peroxidise (HRP) were used in a 1:10.000 dilution with 

TBS-T and incubated for 1 h at room temperature. Thereafter, membranes were again washed as before and 

incubated with HRP substrate solution for 1 min before membranes were subjected to film detection in the 

dark room.  

 

2.1.5 Analysis of Rheb functions 

2.1.5.1 Functional assay: Amino acid withdrawal 

As it was shown previously, overexpression of wildtype and thus functional Rheb can rescue inactivation of 

mTOR kinase activity when deprived of amino acids [52]. Such mutants, which failed to show rescue ability, are 

hence of interest since the changed amino residues caused a disruption in function and must therefore be 

involved in mTOR regulation. As a functional read-out, the phosphorylation level of the mTOR substrate p70
S6K

 

was used, and therefore cells were co-transfected with a p70
S6K

 -encoding reporter. 

Clones of the Flag-tagged constructs with optimal expression were selected to transfect HEK293T for functional 

analysis. In order to screen the Rheb mutants for their functional ability, transfected cells were withdrawn of 

amino acids prior to harvesting of the cells.  

Following transfection of 0.5 µg of pCMV5-Flag-Rheb constructs, cells were allowed to express mutagenic and 

wildtype Rheb for 24 hours. Next day, cells were deprived of amino acids for 90 min by replacing complete 

culture media with Dulbecco’s PBS (D-PBS). Subsequently, cells were harvested and lysed as already described. 

Protein samples were prepared and subjected to gel electrophoresis with following Western blot, which was 

performed as explained before.  

Transfection with wildtype Rheb-encoding plasmid was used as control to show rescue ability of overexpressed 

Rheb on mTOR activity upon absence of amino acids. As additional control, cells were also transfected with the 

“empty” pCMV5-Flag vector encoding no Rheb protein. This control, which results in no Rheb overexpression 

which can rescue mTOR activity upon amino acid withdrawal, points out the loss of p70
S6K

 phosphorylation by 

inactive mTOR caused by the amino acid deprival. 

The primary antibody specific for phosphorylated p70
S6K

 at position threonine 389 (Thr
389

) was used and signals 

much lower than compared to control with transfected wildtype Rheb were considered as deficient in rescue 

ability.  

 

2.1.5.1 Binding assay: GST pull down 

The next question addressed whether the switched amino residues of Rheb mutants that lost capability of 

restoring mTOR activity, also cause a malfunctioning binding towards mTOR.  
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HEK293T cells were transfected with selected pEBG-Rheb constructs with best expression and additionally with 

a vector encoding for the catalytic domain of mTOR (Flag-tagged). Cells were again allowed to express the 

mutant proteins for 24 h and amino acid withdrawal was performed for 120 min prior to harvesting. Cell 

extraction and Bradford assay was performed as already been described above. An aliquot of the lysates was 

used to verify the expression of GST-tagged Rheb by gel electrophoresis, Western blot and subsequent 

immuno-detection. 

For the binding assay, the same amount of protein (100-200 µg) of the remaining lysates was incubated with 

GSH-sepharose beads (GE-Healthcare) at 4° C for 1 h, and adsorbed proteins were washed three times in lysis 

buffer and eluted with gluthatione elution buffer (10 mM glutathione, 50 mM Tris-base pH 8.0). The beads bind 

to the GST-Rheb fusion proteins and thereby “pull down” all proteins that bound to Rheb. The bound proteins 

in the eluate can be identified by Western blot.  

 

 

2.2 Role of mTOR in trophoblast invasion 

2.2.1 Cell line and cell culture 

The immortalized human first-trimester trophoblast cell line HTR8/SVneo was cultured in RPMI supplemented 

with 5% fetal bovine serum (FBS). The cell line was kindly provided by Charles H. Graham. Cells were splitted 

every two or three days according to confluency. For detaching of cells Trypsin/EDTA (BioWhittaker) was used 

after washing the cells with phosphate buffered saline (PBS). Cells were stored in freezing media (92% FBS, 8% 

DMSO) in liquid nitrogen. 

 

2.2.2 Manipulation of cells 

For further analysis HTR8/SVneo cells were treated accordingly: transfection with small interfering RNAs 

(siRNAs), addition of chemical inhibitors and supplementation with serum or in the absence of serum. A 

schematic presentation of the experimental design can be seen in figure 9. 

 

2.2.2.1 RNA interference 

RNA interference (RNAi) is a post-transcriptionally induced gene silencing mechanism induced by viral infection 

or artificially through introduction of double-stranded RNA leading to mRNA degradation. RNAi can be caused 

either by synthetically designed small interference RNA (siRNA) oligonucleotides or by viral vectors which 

possess a genetically encoded short hairpin RNA (shRNA) which will be further processed within the cell by an 

enzyme called Dicer to generate siRNA molecules with a 3’ overhang. Briefly, the siRNA duplexes bind to a 

multi-protein complex termed RNA-induced silencing complex (RISC) which firstly unwinds the siRNA double-
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strand by its helicase activity, and then leads the anti-sense strand to its homologous mRNA which will finally 

result in a cleavage within the target mRNA by the RISC nuclease activity. The cleaved mRNA will be further 

degraded by exonuclases and the siRNA-RISC complex can bind to another mRNA. The frequent destruction of 

the mRNA molecules causes the silencing of the expression of the respective gene also referred to as 

knockdown. 

 

 

 

 

 

 

 

  

 

 

 

 

 

SiRNAs consist of 21 to 23 base pairs (bp) and can be introduced in eukaryotic cells by lipophile agents such as 

Oligofectamine (Invitrogen) forming vesicles which will fuse with the cell membrane or by electroporation 

which causes short-time holes in the cells’ membrane.  

Cells were transfected by pipette-type electroporation using the MicroPorator (PeqLab). Therefore, one million 

cells per 100 µl resuspension buffer with no or 0.1 nmol siRNA (according to 1 µM siRNA in 100 µl) were 

electroporated with one pulse at 1700 V for 20 msec. Cells were counted and accordingly applied for 

subsequent assays as proliferation or invasion or cultured for protein isolation and media collection.  

The used siRNAs were purchased pre-designed from Ambion. SiRNAs were not validated, except for mTOR-

specific siRNA (a) which showed 7.3 and 8.45% remaining mRNA in HeLa and 16.13% in DU145 and for mTOR-

specific siRNA (b) which showed 18.56% remaining mRNA in HeLa (data taken from Ambion data sheets). SiRNA 

with a non-genomic sequence was used as control in order to verify possible unspecific effects due to the 

transfection procedure itself.  

 

 

HTR8/SVneo 

SiRNA transfection 

Inhibition 

Proliferation 
MTS proliferation assay 

Apoptosis 

Cleaved PARP by Western blot 
and flow cytometry 

Invasion 
In vitro Matrigel invasion assay 

Secretion of MMP2, -9 and uPA 
Substrate zymography 

Secretion and expression of PAI-1 

Elisa and Immuncytochemistry 

Confirmation of effect and 

phosphorylation status of 

p70
S6K

 and Stat3 

Western blot 

figure 9. Schematic presentation of experimental design. Applied methods are highlighted with italic letters. 
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The following sequences represent the anti-sense strand of siRNAs in 5’ to 3’ direction, the 3’ overhang is 

depicted by small letters:   

Rheb-specific siRNA sequence:   CCG AGC AUG AAG ACU UGC Ctt   

mTOR-specific siRNA sequence (a):  AGU  UCA UCA ACC CAU UUC Ctc 

mTOR-specific siRNA sequence (b):  AUA GAA GCG AGU AGA CUC Ctc 

Raptor-specific siRNA sequence:   GUU CAG AAA UAU UUG GUC Gtc 

Rictor-specific siRNA sequence:   AUA UAA UUU ACU GCU GGG Ctt 

Non-genomic (scrambled; Scr) siRNA:  GAA CGA AUU UAU AAG UGG Ctt 

 

SiRNAs were either already pre-annealed and ready to use (as for both mTOR siRNAs) or they were annealed by 

diluting the same amount of sense and anti-sense strand with 5x Annealing buffer and nuclease-free water to a 

final concentration of 10 µM. The mix was incubated for 1 min at 95° C and subsequently for 1 h at 37° C. 

Annealed oligonucleotides were aliquoted and stored at -20° C 

 

2.2.2.2 Chemical inhibitors 

Cells were incubated with inhibitors against mTOR (Rapamycin), Akt (Akt-I X) and PI3K (LY249002) the following 

day, after cells were seeded in 6-well plates or 24 h after siRNA transfection. Incubation of inhibitors lasted 

24 h until analysed for proliferation and zymolytic activity in the absence of serum. Additionally, Rapamycin 

treatment was also applied for invasion experiments with and without the presence of serum. 

Rapamycin was pre-dissolved in sterile-filtered methanol and further diluted (1:10) with serumfree RPMI media 

obtaining a 100 µM stock solution. It was used in a final concentration of 100 nM and cells were incubated for 

two time points, 2 h and 24 h. After 2 h incubation, media was changed to serum-containing or serumfree and 

further cultured for 24 h.  Media was also changed for untreated samples and 24 h incubation to ensure the 

same condition of media by the cells which secret molecules continuously.  Therefore, Rapamycin was added 

again to the according samples.  

Akt-I X is a cell-permeable and selective inhibitor of the Akt phosphorylation and the Akt in vitro kinase activity. 

It has minimal effect on PI3K and PDK1 and was shown to prevent activation of Akt downstream targets as 

mTOR and p70
S6K

 (Calbiochem manual). It was reconstituted in sterile deionized water as recommended, 

achieving a stock solution of 1 mg/ml which approximately corresponds to 2.5 mM. It was examined for its 

efficiency of inhibiting mTOR kinase activity (read-out: p70
S6K

 phosphorylation) and finally used with a final 

concentration of 5 µM. Akt-I X was added after 2 h treatment with Rapamycin and not removed upon the 

following overnight incubation. 

LY249002 is a highly selective inhibitor of PI3K in vitro and in vivo. It abolishes PI3K activity without affecting 

other lipid kinases such as PI4K, MAPK and C-Src. It was shown to block PI3K-dependent Akt phosphorylation 
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and activity (Cell Signaling Technology manual). LY249002 was pre-dissolved in DMSO as recommended and 

further diluted (1:5) with sterile distilled water to get a 10 mM stock solution. The final concentration used in 

cell culture was 10 µM after evaluation of the inhibiting effect on mTOR kinase activity (read-out: p70
S6K

 

phosphorylation). Like Akt-I X, LY249002 was added after 2 h Rapamycin treatment and not removed upon the 

following overnight incubation. A representation of the combination with the according incubation time is 

given in    table 3. 

 

  

- 

Control 

 2h 

 

24h 

 

- 

Akt-I X  

  2h 

 

24h 

 

- 

LY294002 

 2h 

 

24h 

Inc.- 

time 

100nM Rapamycin - x x - x x - x x 2h 

100nM Rapamycin - - x - - x - - x  

5µM Akt-I X - - - x x x - - -   24h 

10µM LY294002 - - - - - - x x x  

 

   table 3. Combination and incubation time of used inhibitors. 

 

 

The molecular formula of used inhibitors: 

Rapamycin: C31 H79 NO13 

Akt-I X:  C20 H25 CIN20 x HCl (10-(4’-(N-diethylamino)-butyl)-2-chlorophenoxazine, HCl) 

LY249002: C19 H17 NO3 

 

2.2.3 Cell lysis and protein isolation 

Prior to cell harvesting, media was taken off and centrifuged at 3.000 rpm for 10 min to remove dead, detached 

cells and cell debris. Collected media were aliquoted and stored at -20° C. Cells were washed once with cold 

PBS and then scraped off with 100 µl lysis buffer (Cell signalling technology: 20 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton-X, 2.5 mM sodium pyrophosphate, 1 mM β-glycero-phosphate, 

1 mM Na3VO4, 1 µg/ml Leupeptin) diluted 1:10 with PBS and supplemented with 0.1% protease inhibitor 

cocktail (Sigma) on ice. Samples were further lysed by repeating freeze and thaw cycles using liquid nitrogen 

and finally cell debris were spun down at 13.000 rpm for 20 min at 4° C. Cell lysates were stored at -20° C. 

Protein concentrations were determined by Bradford. Briefly, 5 µl of lysates or standards of known 

concentrations of bovine serum albumin (BSA) were mixed with 995 µl Bradford assay solution and incubated 

in the dark for about 10 min at room temperature and subsequently measured photospectrometrically at 

595 nm using the Cary WinUV Simple Reads software program for monitoring. The creating of a standard curve 

by BSA sampled allows the calculation of the protein concentration of the cell lysate samples. 
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2.2.4 Gel electrophoresis and Western blot 

Sample preparation involved denaturation of 10-20 µg of whole cell extract or media (amount was 

extrapolated from the according cell extracts, allowed detection of secreted PAI-1) with 5x Laemmli gel loading 

buffer (312.5 mM Tris-HCl, 2% SDS, 13.5% glycerol, 1% bromphenol blue, 5% β-Mercaptoethanol) and 

subsequent incubation at 95° C for 10 min. Samples were loaded onto an SDS-polyacrylamide gel which 

consisted of a stacking gel (4% acrylamid/bisacrylamid, 125 mM Tris-HCl, 0.1% SDS, 0.07% APS, 0.18% TEMED) 

and a 7.5% separating gel (7.5% acrylamid/bisacrylamid, 375 mM Tris-Base pH 8.8, 0.1% SDS, 20% glycerol,  

0.08% APS, 0.12% TEMED). In case of detecting Rheb expression, a 12% separating gel 

(12% acrylamid/bisacrylamid, 375 mM Tris-Base pH 8.8, 0.1% SDS, 20% glycerol,  0.08% APS, 0.12% TEMED) 

was cast due to the low molecular weight of Rheb (21 kDa). Samples and a molecular weight marker were run 

with according electrophoresis buffer (24 mM Tris-Base, 19 mM glycine, 0.01% SDS pH 8.5) at 125 V or 

25 mA/gel, depending on the used electrophoresis apparatus (Life Technologies: Blot-Module Mini-V8x10 or 

PeqLab Model Twin S), until the running front reached the end of the gel. 

Immediately following the gel electrophoresis, proteins were transferred onto a nitrocellulose membrane, a 

process termed Western blot. The gel, filter papers and membrane were equilibrated in blotting buffer (12 mM 

Tris-Base, 96 mM glycine, 20% methanol) and then placed in layers according to the instructions. The transfer 

was performed at 200-250 mA (5 mA/cm
2
 membrane) for 12 (for Rheb detection) or 25 min according to the 

molecular weight of the desired protein. After blotting, the membrane was stained with Ponceau S (0.1% 

Ponceau S, 5% acetic acid) to prove whether the protein transfer was successful. Ponceau S staining could be 

removed with 0.2 M NaOH. 

Membranes were further washed with NET-G buffer (150 mM NaCl, 5 mM EDTA, 50 mM Tris-Base pH 7.5, 

0.05% Triton-X, 0.02% gelatine) which also has mild blocking effects and subsequently incubated with the 

according primary antibody over night at 4° C. Used primary antibodies were specific for detection of Rheb, 

mTOR, Raptor, Rictor, cleaved PARP, PAI-1, Stat3 and p70
S6K

 expression as well as for detection of serine 

(Ser
727

) or tyrosine (Tyr
705

) Stat3 and threonine (Thr
378

) p70
S6K

 phosphorylation. Antibodies were diluted 1:1.000 

with NET-G buffer. 

Next day, membranes were washed thrice with NET-G buffer for 5 min and subsequently incubated with horse-

radish peroxide (HRP)-conjugated secondary antibody for 1 h at room temperature. The used secondary 

antibodies were either specific for mouse IgG (used for p70
S6K

 and cleaved PARP-specific antibodies) or rabbit 

IgG (all other used antibodies) and diluted with NET-G 1:5.000 or 1:10.000, respectively. Afterwards, 

membranes were washed again as before. 

Membranes were then incubated with a substrate solution for HRP for one minute. The resulting 

chemiluminescent signal was detected by exposure to a hypersensitive film in the dark. Film was developed 

manually by dipping it into developer solution followed by a fixation solution, then washed and dried. 

In order to re-use a Western blot membrane, all antibodies were removed by incubation with the stripping 

buffer (0.7% β-mercaptoethanol, 2% SDS, 0.6% Tris-HCl pH 6.7) and heated at 50° C for 30 min. After that, 
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membranes were washed with NET-G and incubated with the next primary antibody following the same 

procedure as described above.  

 

2.2.5 MTS proliferation assay 

In order to monitor effects on the proliferation rate due to cell manipulations by inhibitor treatment or upon 

siRNA transfection, the cell numbers were determined by use of MTS tetrazolium compound (also called 

Owen’s reagent). MTS is reduced by metabolically active cells into a coloured formazan product which can be 

measured photometrically at 490 nm. 

Therefore 10.000 cells per well were seeded in a 96-well plate.  The seeding of cells was performed either with 

freshly trypsinized cells from cell culture or subsequently after siRNA transfection. For each sample, triplicates 

were prepared. Cells were left over night under normal growth conditions and next day media was changed to 

fresh culture media with serum or serumfree media and treated with inhibitors and incubated another 24 h. 

Next day, the MTS solution (Promega; CellTiter 96 Aqueous One Solution) was added and as soon as the colour 

changed from yellow to orange/red the absorbance was measured. 

 

2.2.6 Apoptosis assay: Cleaved PARP 

Apoptosis was measured in two ways through the cleavage of poly-ADP-ribose polymerase (PARP) which is a 

DNA-repairing enzyme, important for cells to maintain their viability. Upon triggering the caspase cascade 

which results in apoptosis, caspase 3 cleaves PARP, which separates its DNA-binding domain from its catalytic 

domain. With the use of a fluorescein-conjugated antibody specific for the large cleaved PARP product, 

specifically the C-terminal catalytic domain, the rate of apoptosis could be measured flow cytometrically with a 

modified protocol from the Cell Signaling Technology manual.  

Therefore, 200.000 cells were seeded in a 6-well plate and treated accordingly with 100 nM Rapamycin for 2 h 

and 24 h with or without serum. Additionally, a sample for negative and positive control was prepared. For 

positive control, cells were incubated with 60 U DNase I over night and for negative control, cells were left 

untreated. Next day, cells were scraped off with a rubber spatula and washed with PBS. Centrifugation steps 

were carried out at 1.500 rpm for 5 min. Cells were fixed by resuspension in 4% paraformaldehyde for 10 min 

at room temperature. Cells were then washed with TBS (50 mM Tris-HCl, 150 mM NaCl). Then cells were 

permeabilized with a 0.2% Triton-X solution for 5 min at room temperature with a following TBS washing step. 

In order to incubate the cells with the antibody over night at 4°C, they were resuspended in 50µl TBS. Cells of 

negative control were incubated with 1.5 µl triple negative antibody (Dako) instead of Fluorescein-conjugated 

cleaved PARP-specific antibody (Cell signalling technology) which was added to the samples. The following day 

cells were resuspended with FACS flow buffer (BD Biosciences) and flow cytometry parameters were set up 

with negative and positive control, measuring the signal in fluorescence channel 1. Then the samples were 

analyzed by counting 100.000 events. Apoptosis rate could be calculated by subtraction of negative signal 
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which gives rise to unspecific binding. Obtained values were set to relation of basic apoptosis which is given by 

the untreated sample. 

Detection of cleaved PARP could also be achieved by Western blot using an unconjugated PARP-specific 

antibody (Cell Signaling Technology). 

 

2.2.7 Invasion-related analysis 

2.2.7.1 Substrate zymography 

Cells were harvested and media was taken off as described in 3.2.3. Protein concentrations of cell extracts were 

determined by Bradford and extrapolated for cell culture media. 2x non-denaturing buffer (0.5 M Tris-HCl, 20% 

glycerol, 4% SDS, 0.05% bromphenol blue) was added to media samples corresponding to 10-20 µg which were 

applied on a 7.5% SDS-polyacrylamide gel containing 2 mg/ml (0.02%) casein plus 0.025 U/ml plasminogen for 

examining uPA acitivity, or 2 mg/ml (0.02%) gelatine for MMP2 and MMP9 activity. The gel was run at 125 V or 

25 mA/gel according to used electrophoresis system until running front reached end of the gel. Gels were taken 

and subsequently washed twice for 15 min in 2.5% Triton-X to allow renaturation of proteins and then left over 

night in incubation buffer (50 mM Tris-HCl, 5 mM CaCl2) at 37° C. The next day, gels were stained with 

Coomassie solution (0.25% Coomassie, 30% methanol, 10% acetic acid) and destained (30% methanol, 10% 

acetic acid) until lysed bands were obvious. Gels could be preserved by a 1 h incubation in a glycerol-containing 

solution (10% acetic acid, 10% glycerol). Gels were dried by vacuum gel dryer system. 

 

2.2.7.2 Immunocytochemistry of PAI-1 

To obtain additional data concerning the effect of Rapamycin on PAI-1, the expression of PAI-1 was monitored 

by immuncytochemical staining. 

Slides were coated with poly-L-lysine and cells were left over night at 37° C to adhere. The following day, media 

were changed and cells were treated with or without Rapamycin for 2 h or 24 h.  Next day, cells were fixed with 

4% paraformaldehyde for 1 h at 4° C, washed with 0.1 M PBS, unspecific antigens were blocked with 5% normal 

goat serum diluted with PBS/Tween20 (0.3%) solution for 1 h at room temperature and Cas-Block solution 

(Zymed) for 10 min. Primary antibody mouse anti-human PAI-1 (American Diagnostica Inc.) was diluted 1:20 

with the PBS/Tween20 solution and incubated over night at 4° C. Slides were washed again and incubated with 

RPE-conjugated anti-mouse antibody (Dako), which was diluted 1:400 in 0.1 M PBS, for 1 h at 4° C. Eventually, 

mounting media that contains 4,6-Diamidin-2-phenyl-indol (DAPI) (Vector) was applied which will stain DNA 

and thereby visualize cell nuclei. The slides were sealed and stored at 4° C until analyzed with fluorescence 

microscope Axioplan 2 (Zeiss) and the according software Axiovision. 

 



 | Material and Methods 
 

 
34 

2.2.7.3 PAI-1 ELISA 

Obtained media as described in 3.2.3 was also used for enzyme-linked immunosorbent assay (ELISA) to detect 

levels of secreted PAI-1. ELISA is a common antigen-binding test allowing quantitative conclusions about the 

detected molecule. The AssayMax human PAI-1 ELISA kit (AssayPro) was used according to the manufactures’ 

instructions. Briefly, 50 µl of media and standards of known PAI-1 concentrations were applied on 96-well 

strips for 2 h at room temperature. Wells were washed five times in between all following steps of incubation 

with; biotinylated detection antibody for 1 h, streptavidin-peroxidase-conjugate for 30 min, and chromogene 

substrate for 10 min until optimal blue colour developed which was stopped by a stop solution causing a colour 

change from blue to yellow which was measured immediately at a wavelength of 450 nm. The used ELISA was 

shown to have a sensitivity of detecting a minimal dose of less than 50 pg/ml and its intra-assay and inter-assay 

coefficients of variation were about 5% and 8%, respectively (AssayPro manual). 

Cell culture media containing serum was diluted 1:50 upon first trial whereas serumfree media and later 

samples were applied undiluted. Value of blank was subtracted from measured standard and sample values. 

The standard curve was performed in duplicates and analyzed by linear regression for calculating 

concentrations of media samples. 

 

2.2.7.4 In vitro Matrigel invasion assay 

In order to assess the ability of cells to digest and invade through extracellular matrix (ECM), Matrigel-coated 

well inserts were applied. Matrigel is a solubilized basement membrane preparation extracted from 

Engelbreth-Holm-Swarm (EHS) mouse sarcoma which is a tumour rich in extracellular matrix proteins 

(specification sheet of BD Biosciences) and hence can be used to mimic ECM.  

Aliquoted growth factor-reduced Matrigel (BD Biosciences) was diluted 1:10 with serumfree RPMI media and 

100 µl were added to the 8 µm 24-well plate inserts (Millipore) and left to dry at room temperature for 4 h. 

Residual Matrigel was taken off and 50.000 cells, taken upon trypsinization or siRNA transfection, were applied 

into the inserts. Exposure of Rapamycin for 2 h was performed prior to adding the cells into the inserts whereas 

24 h treatment was continued throughout the assay until insert membrane preparation next day. Transfected 

cells were applied with or without serum for 48 h. For each sample, triplicates were set up. After incubation 

time, inserts were washed in PBS and Matrigel was removed by using a wet cotton swab. Cells were fixed with 

methanol: acetic acid (3:1) solution for 10 min, washed three times and stained with 1% crystal violet for 

10 min and washed again. The membrane of the inserts was cut out with a scalpel and put onto a slide adding 

mounting media (Microscopy Aquatex, Merck) and a cover slip. Amount of invaded cells which are stained in 

blue/violet was monitored by a bioimaging system (DNR MF-ChemiBIS 3.2) and evaluated by the Totallab TL100 

software. 

 



 | Material and Methods 
 

 
35 

2.2.8 Immunohistochemistry of placental tissue 

The performance and establishment of placental staining for mTOR detection was done by Prof. Sebastian San 

Martin and Maja Weber (diploma student). 

Collected tissue was taken from decidual side from placentas which were obtained directly after Ceasarian 

section or from selective abortion. Thus, gestational age of placentas varied from 11
th

 to 41
st

 week. Tissue was 

washed with PBS and fixed with 4% paraformaldehyde in 0.1 M PBS for 48 h at 4° C. Afterwards, tissue was 

washed with 0.1 M glycine in PBS of 30 min or over night at 4° C. An ethanol-based hydration followed with an 

incubation of 30 min with each ethanol concentration starting with 50% to 70%, 95% and finally to absolute 

ethanol at room temperature. The last two concentrations were carried out three times. Then tissue was 

cleared of ethanol by Xylol incubation three times for 15 min. Thereafter, the tissue was infiltrated with 

paraffin (Histosec) by incubation for 30 min at 56-60° C for three times. The final embedding was achieved with 

the fourth paraffin incubation. The embedded tissue was then cut with a microtome gaining 5 µm thick slices 

which were placed on a slide and kept at 4° C until further immuno-staining. 

Cut tissue slices needed to get deparaffinized and rehydrated which was performed by two Xylol incubations 

for 30 min and ethanol solutions, starting from absolute ethanol two times for 30 min, to 95% once for 30 min, 

to 70% once for 30 min and finally to distilled water for 15 min. Antigenic retrieval was achieved in 10 mM 

citrate sodium buffer (pH 6.0) at 95° C for 10 min and cooling down in the same buffer for 30 min. Slides were 

then washed with distilled water three times for 5 min and with 0.1 M PBS twice for 15 min. Unspecific binding 

was blocked with 5% normal goat serum diluted in 0.3% Tween20 in PBS for 1 h at room temperature in a 

humid chamber with subsequent blocking by Cas-Block (Zymed) for 10 min. Upon blocking, the incubation with 

the primary antibody could be performed over night at 4° C in the humid chamber. The mTOR specific antibody 

(Cell signaling technology) was diluted 1:50 in 0.3% Tween20 in PBS. Next day, slides were washed with 0.1 M 

PBS three times for 5 min. Subsequently, tissue samples were incubated for 1 h at room temperature in a 

humid chamber in the dark with the secondary antibody, a Cy3-conjugated goat anti-rabbit IgG (Dianova) 

antibody, which was diluted 1:400 in 0.1 M PBS. Slides were washed with 0.1 M PBS and mounted with DAPI-

containing mounting media (Vector). A cover slip was added on top of the slide and sealed with nail enamel. 

Slides were stored at 4° C until analysis with fluorescence microscope. 

For hematoxylin-eosin staining, cut slices were dried for 1 h at 56-60° C in incubator and subsequently 

deparaffinized by a graded xylol/ethanol series, rehydrated, stained and dehydrated by the following 

procedure (at room temperature): twice xylol for 2 min, absolute ethanol for 2 min, 95% ethanol for 2 min, 70% 

ethanol for 2 min, 50% ethanol for 2 min, distilled water for 2 min, Mayer’s hemalaun solution for about 1 min, 

washing with distilled water for 5 to 10 min, again washed with distilled water for 2 min, 0.5% Eosin G solution 

for 1 min, washing with 70% ethanol, twice with 95% ethanol, twice with absolute ethanol, ethanol/xylol mix 

and finally twice with xylol for 5 min. HE-stained slices were mounted with Histofluid (Marienfeld) on a slide 

and a coverslip was added on top. Slides were stored at 4° C until analysis with fluorescence microscope 

Axioplan 2 (Zeiss) and the software Axiovision. 
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2.3 Data presentation and statistics 

Results were evaluated and are graphically presented by Microsoft Excel software. Given error bars indicate 

standard deviation (S.D.) and significance was determined through Student’s t-Test. 

 

2.3.1 Standard deviation 

In order to consider the range of error factors, standard deviations were calculated by the following equations 

(done by Excel). 

  

S.D. = 

 

M = 

 

 

2.3.2 Student t-Test 

The Student t-Test demonstrates the probability (p) that two sets of data are not significantly different from 

each other. If p value is below 5% (p<0.05), the difference is significant. Data were highly significantly different 

when p<0.005. 

The two-tailed Student t-Test for paired samples was applied since in all cases data were related accordingly. 

Student t-Test for paired samples is calculated as follows (performed by Microsoft Excel).  

 

Σ dz ²  =    Σ z ² -   

 

σd 
2
 = 

 

σn =  

 

t =  

 

p (T≤t) 

 

In case of enzyme activity analysis, by three data points minimum, the arithmetic median was depicted which is 

less susceptible to outliers. 

(S.D.: standard deviation, s: data series, i: data point within data 

series s, m: number of data series of point y in diagram, n: number of 

points per data series, yis: value of data series s and of point i, ny: 

total number of values of all data series, M: arithmetic median)  

 m    n    

 Σ    Σ yis / ny) 
s=1   i=1       j    

 

n    m 

Σ dz² / n-1 

((Σ z) ² / n) 

z /σn 

(z: difference between control  from corresponding treatment value, n: number 

of pairs, d: difference, σd 
2: difference of variance, t: calculated t-value) 
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Chapter 3 | Results 

 3 Results  

3.1 Regulation of mTOR by Rheb in HEK293T 

3.1.1 Expression level of created Rheb mutants 

A set of Rheb1 mutant plasmids could be generated by PCR mutagenesis, which was then cloned in E.coli in 

order to amplify and isolate the DNA-plasmids. The desired mutagenic sequences were verified by DNA 

sequencing. Whereas some mutants were easily obtained by mutagenesis PCR and subsequent cloning, for 

others more obstacles were to overcome. Interestingly, fusion proteins with GST-tag were in general harder to 

create and therefore, subcloning from an already-made Flag-construct with the appropriate mutation was 

undertaken, by cutting out the mutant Rheb insert with restriction enzymes and ligation in another vector.  

For one Rheb mutant, two or more clones were selected and transfected in HEK293T cells. The expression level 

of the selected mutants was tested by Western blot (data not shown). Some Rheb mutants showed low 

expression levels, making a screening of more clones necessary. Generally, one clone with optimal expression 

was chosen for functional analysis. 

Expression levels were again verified when Rheb function was tested by amino acid withdrawal by use of anti-

Flag antibody (figure 10, abbreviation of clones is explained in the material and methods part). As seen in figure 

10 there is still a low expression for six clones observed, which are (48-51), both (94, 97) clones, (131-135) and 

both (139-142) clones.  Also shifts and double bands of Rheb-Flag expression could be observed for clones (33-

37), (48-51) and (161-164), respectively. The shift possibly indicates an effect on running during gel 

electrophoresis caused by a change of the protein net charge of mutagenic Rheb molecules. Some mutants 

replaced a charged amino residue (tyrosine and aspartate in mutant 33-37, asparagine in mutant 48-51, 

arginine in mutant 161-164) by an uncharged one (alanine) which might induce the change of the net charge of 

the whole protein. The double bands of the p70
S6K

 detection might account for the S6K isomer p85
S6K

, whereas 

the higher band is p85
S6K

 and the lower the mTOR substrate p70
S6K

. 

The functional analysis was performed twice and the results are summarized in table 4. However, some 

mutants indicated also ambiguous expression levels between the two functional analysis experiments, 

requiring further analysis either by testing more clones or setting up another stock of cell extract by maxi-prep 

to achieve equal expression which is required for a reproducible functional outcome. Clones of GST-tagged 

Rheb mutants, which could already be created, were also tested for expression level. 
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3.1.2 Mutagenic Rheb function upon amino acid withdrawal 

After verification of the expression levels of the Flag-tagged Rheb mutants, two experiments with the selected 

clones of all mutants have been carried out to test their ability of rescuing mTOR kinase activity after deprival 

of amino acids. Therefore, plasmids of selected clones were co-transfected with p70
S6K

-encoding vectors and 

48 h after transfection culture media was replaced by PBS for 90 min. The results of the first experiment are 

demonstrated in figure 10 which shows Rheb expression levels (by anti-Flag antibody) and p70
S6K

 expression 

and phosphorylation. 
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figure 10. Western Blot of functional analysis (first experiment as an example) of Flag-tagged Rheb mutants in HEK293T. (AA: 
amino acid presence; + yes/ - no, ctl: control with “empty” pCMV5 vector, wt: wildtype Rheb, numbers according to Rheb 
mutation sites; explained more in detail see table 2 in material and methods part, a-P(Thr389)-p70S6K: antibody specific against 
phosphorylated p70S6K at threonine residue 389, a-Flag: antibody specific against Flag-tag which indicates here total Rheb 
expression) 
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As controls an “empty” vector encoding no Rheb protein and a vector encoding wildtype Rheb were 

transfected. The “empty” vector results in a diminished p70
S6K

 phosphorylation upon amino acid withdrawal 

whereas the vector with the wildtype Rheb leads to the rescue of mTOR kinase activity and therefore to no 

decrease in p70
S6K

 phosphorylation upon amino acid withdrawal due to the overexpression of functional Rheb. 

This allowed a comparison of functionality of wildtype Rheb with the mutagenic Rheb molecules. Loss-of- 

function was stated when Rheb mutants were not capable of restoring p70
S6K

 phosphorylation more than 50% 

compared to wildtype. 

 

 
 
 
 
 

 
 
 
 

table 4. Summary of results from two functional analysis experiments of Rheb mutant expression and their mTOR 
kinase rescue ability. 2. Functional analysis was repetition of selected clones from 1. Functional analysis.  Highlighted 
in the red box is switch 1 (residues 33-41) and green box switch 2 (residues 63-79). (+: expression/rescue as wildtype, 
%: percentage of expression/rescue property compared to wildtype Rheb,?: rescue ability uncertain due to lower 
expression) 

 

 

In figure 10 can be seen that for the nine mutants (28, 30), (33-37), (48-51), (67, 69), (72, 74), (76, 77), (94, 97), 

(131-135), (139-142) p70
S6K

 is less phosphorylated after amino acid deprivation than with transfected wildtype 

  1. Functional analysis  2. Functional analysis 

       

MUTATION FUNCTION RESCUE EXPRESSION  RESCUE EXPRESSION 

       

3-6 + + +  + + 

15 + + +  + + 

16 + + +  50% 70% 

28, 30 Loss 20-30% 80%  0% 80% 

33-37 Loss 40%  + (shift)  0% 70% (shift) 

39-42 + + +  + + 

44, 46 Ambiguous + +  0% + 

48-51 ? 50% 50% (shift)  10%   10% 

53 + + +  + + 

55, 57 Ambiguous + +  0% 70% 

67, 69 Loss 10% +  0% + 

72, 74 Loss 50% +  0% + 

75 + + +  + + 

76, 77 Loss 20% +  10% + 

90, 91 + + +  + + 

94, 97 ? 10% <10%  0% <10% 

104-06 Ambiguous + +  0% 70% 

109-11 Ambiguous + +  0% + 

124-28 + + +  80% 80% 

131-35 ? 30% 50%  0% <10% 

138-142 ? 40% 50%  10% 10% 

151, 152 + + +  + 80% 

154-61 + + +  + + 

161-64 + +  + (2 bands)  80%  + (2 bands) 

169-71 + + +  + + 
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Rheb. For the four clones (48-51), (94, 97), (131-135), (139-142), this outcome might be due to the low Rheb 

expression.  

In order to achieve a comparison in function between poorly expressed mutant Rheb and wildtype, a dose-

response experiment was carried out (data not shown). Thereby wildtype Rheb plasmid was transfected in 

several concentrations, ranging from 0.031 to 1 µg per 2 ml cell culture media. Mutant Rheb vectors were also 

applied with two different amounts (0.5 and 1 µg) to increase chance of comparable expression levels. As 

result, for all tested mutants the expression was still lower than the lowest applied amount of wildtype Rheb 

plasmid. The rescue of this low mutagenic Rheb expression turned out to lead to very faint bands, making it 

difficult to verify functional activity and showing the limit of the assay as it is not reasonable to go even lower 

in vector concentration to transfect. A summary with the estimated expression or phosphorylation level can be 

seen in table 4 of two independent experiments. Second functional analysis was a repetition with the same 

clones of first functional analysis.  When comparing the outcome of both experiments, it is obvious that for 

some mutants either the expression level or the rescue ability or both were ambiguous. 

The putative loss-of-function mutants as well as unknown or ambiguous results are outlined in table 4.2. The 

mutants that are located within the two Rheb switch regions are highlighted (red: switch1, green: switch2). 

Clearly, all loss-of-function mutants harbor mutation sites adjacent or within those regions.  

 

3.1.3 Binding properties of Rheb mutants 

In order to test whether defect phosphorylation rescue was due to an impaired interaction between mTORC1 

and mutant Rheb, a binding assay was performed. Therefore, GST-tagged Rheb proteins with their according 

binding partners were “pulled down” by use of GSH sepahrose which binds to GST. Prior to “pull-down” 

constructs of selected clones encoding mutagenic Rheb were co-transfected with one of the mTORC1 

components; either the catalytic domain of the mTOR polypeptide, LST8 or Raptor, which were all Flag-tagged. 

Eluates of “pull-down” as well as cell extracts were examined by Western blot.  

As a negative control, an “empty” pEBG vector encoding no Rheb protein was transfected, which will lead to no 

GST-tagged fusion protein. This should ensure no “pull-down” of any protein with GSH-Sepharose. Strikingly, 

with the GSH eluate there was a band observed comparable to the “pulled down” Flag-tagged mTOR of the 

transfected wildtype Rheb indicating a high background. A representative Western blot seen in figure 4.3 

shows expression level of mTOR polypeptide (cell extract) and binding to GST-tagged mutagenic Rheb proteins 

in the GSH eluate in presence and absence of amino acids. Also the high background of “empty” pEBG vector is 

obvious. Interestingly, when comparing band intensities of “pulled down” mTOR (eluate) there seems to be a 

higher binding to Rheb mutants than Rheb wildtype except for clone (28, 30). The high background was seen in 

several experiments and in addition with the unequal Rheb expression, seen by Coomassie stain of membranes 

(data not shown) made it difficult to evaluate the data. 
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Nevertheless, preliminary results indicated that binding to mTOR might be independent from the functional 

outcome since some loss-of-function Rheb mutants showed mTOR binding despite low expression or loss of 

function. As can be seen for the loss-of-function mutant (33-37) (seen in figure 4.1), the GST-tagged Rheb 

mutant shows higher binding to mTOR catalytic domain obvious by a stronger band in the GSH eluate 

compared to wildtype (figure 11).  

Because of the mentioned difficulties, experiments for binding properties of Rheb to several interaction 

partners were carried out in vitro. Those and additional experiments indicating GTP binding and in vitro mTOR 

kinase activity were performed later on and were published in the Journal of Biological Chemistry 2007 [97] (for 

more information see paragraph 5.1.2 in the discussion part). 

 

 

 

 

 

 

 

 

 

 

 

3.2 Role of mTOR in trophoblast invasion 

3.2.1 Transfection with siRNA 

The transfection with siRNA in HTR8/SVneo had to be established. Results with use of lipophile transfection 

agents were poorly successful (data not shown). With electroporation, for all used siRNAs (Rheb, mTOR (a) and 

(b), Raptor and Rictor) a good knockdown effect was observed after 48 h by Western blot. The figures of 

densitometric analysis can be seen in the appendix chapter. 

The transfection rate for Rheb knockdown was about 80% which was a significant reduction of Rheb expression 

(figure 13 and densitometric figure 49 in the appendix). For both mTOR sequences a knockdown effect of 

approximately 80% was received (figure 14 and densitometric figure 50 in the appendix), but was only 

significant for sequence (a) due to a higher variability of mTOR expression level when transfected with mTOR 

siRNA sequence (b). Also the phosphorylation level of the mTOR substrate p70
S6K

 was more decreased with the 

use of mTOR siRNA (a). Transfection with mTOR siRNA (b) led to a phosphorylation level of p70
S6K

 similar to 

figure 11. Western blot of binding assay (exemplary). Co-transfection of GST-Rheb and Flag-mTOR  
polypeptide (catalytic domain). (AA: amino acid presence; + yes/ - no, ctl: control with “empty” pEBG 
vector, wt: wildtype Rheb, numbers according to Rheb mutation sites; explained more in detail see table 
2.x in material and methods part) 

Cell extract: a-Flag (mTOR cat) 
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figure 13. Western blot detecting level of Rheb 48h after 
transfection. (Control: no siRNA, Scr: “scrambled” non
control siRNA) 
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effect was better with siRNA sequence mTOR (a) regarding both, mTOR 

expression and substrate phosphorylation level, this siRNA was preferentially used for further analysis. 

ange of cells could be observed whereas no such change was seen 

). Transfected cells with mTOR (a) showed less pronounced development of 

 

Actin 

siRNA applied 

Raptor 

of Raptor and Rictor 48h after transfection cultured with or 



 

The transfection with Raptor siRNA led to a decrease of about 

to a decrease of about 60% lower expression (

52 in the appendix). Both transfection rates were highly significant. 

No difference of transfection rate of used siRNAs was seen between serum

culture. Interestingly, it could be observed that Rictor expression was increased when no serum was available 

(figure 12). Raptor expression was unaffected by serum availability.

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Phosphorylation of p70
S6K

 to monitor 

In order to verify the effect of Rapamycin, Akt

siRNA transfection on mTOR kinase activity, the phosphorylation of mTOR substrate p70

out.  

 

 

 

 

 

 

 

- 100nM Rapamycin: 

Control 

mTOR (a) mTOR (b)

figure 15. Light microscopy showing cell phenotype 48h after transfection of 0.1nmol siRNA (cultured with serum). mTOR (a) 
and mTOR (b) are mTOR-specific siRNAs with different sequence
siRNA) 

figure 16. Western blot detecting p70
with or in the absence of serum.

The transfection with Raptor siRNA led to a decrease of about 80% of Raptor expression and with Rictor siRNA 

to a decrease of about 60% lower expression (figure 12 and densitometric analysis seen in 

). Both transfection rates were highly significant.  

No difference of transfection rate of used siRNAs was seen between serum-supplemented and serumfree cell 

culture. Interestingly, it could be observed that Rictor expression was increased when no serum was available 

Raptor expression was unaffected by serum availability. 

to monitor mTOR kinase activity 

In order to verify the effect of Rapamycin, Akt-I X and LY294002 inhibitors as well as of 

transfection on mTOR kinase activity, the phosphorylation of mTOR substrate p70

     2h         24h            -            2h          24h          

+ FBS -FBS 

a-Phospho (Thr

a-p70
S6K

 

Scr Rheb 

mTOR (b) Raptor Rictor

Light microscopy showing cell phenotype 48h after transfection of 0.1nmol siRNA (cultured with serum). mTOR (a) 
specific siRNAs with different sequences. (Control: no siRNA, Scr: “scrambled” non

Western blot detecting p70S6K and its phosphorylation status upon Rapamycin treatment when cultured 
with or in the absence of serum. 
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0% of Raptor expression and with Rictor siRNA 

and densitometric analysis seen in figure 51 and figure 

supplemented and serumfree cell 

culture. Interestingly, it could be observed that Rictor expression was increased when no serum was available 

I X and LY294002 inhibitors as well as of silenced proteins by 

transfection on mTOR kinase activity, the phosphorylation of mTOR substrate p70
S6K

 was used as read-

Phospho (Thr
389

)-p70
S6K

 

 

Rictor 

Light microscopy showing cell phenotype 48h after transfection of 0.1nmol siRNA (cultured with serum). mTOR (a) 
(Control: no siRNA, Scr: “scrambled” non-genomic control 

and its phosphorylation status upon Rapamycin treatment when cultured 



 

In the absence of serum, there is a 

of the phosphorylation level seen in the presence of serum (see densitometrical analysis 

appendix). Hence, the lack of serum within the cell culture media influences mTOR kinase activity which was 

already mentioned to be a nutrient sensor. Also there is tendentiously but not significant increase of total 

p70
S6K

 expression when serum was absent. 

As seen in figure 16, Rapamycin very efficiently abolishes p70

to the same extent (about 80% less)

but was only significant for the latter (see densitometric 

 

 

 

 

 

 

 

 

 

As for transfection, only mTOR knock

phosphorylation (figure 17) when serum was available. Under serumfree condition, als

knockdown showed a slightly diminished phosphorylation of p70

in the appendix). Transfection with Rheb siRNA and control with non

phosphorylation level of p70
S6K

. Expression of total

analysis see figure 65 in appendix). 
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figure 17. Western blot detecting p70
cultured with or in the absence of serum.

figure 18. Western blot specific for mTOR kinase substrate p70
mTOR (Rapamycin), Akt (Akt-I X) and PI3K (LY294002) when cultured in the absence of serum.
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). Hence, the lack of serum within the cell culture media influences mTOR kinase activity which was 

already mentioned to be a nutrient sensor. Also there is tendentiously but not significant increase of total 

expression when serum was absent.  
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 phosphorylation after 2
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but was only significant for the latter (see densitometric figure 58 in the appendix). 
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phosphorylation which is about 40% 

of the phosphorylation level seen in the presence of serum (see densitometrical analysis figure 53 in the 

). Hence, the lack of serum within the cell culture media influences mTOR kinase activity which was 

already mentioned to be a nutrient sensor. Also there is tendentiously but not significant increase of total 

phosphorylation after 2 h and 24 h treatment 

for both, with and without serum in the media, 
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For the use of specific inhibitors of Akt (Akt

inhibiting effect on mTOR activity was determined 

clearly in figure 18, the PI3K inhibitor LY294002

whereas the Akt inhibitor Akt-I X did not decrease but rather increase basal p70

was also seen when determining optimal concentration of inhibitor in the absence but not in the presence of 

serum. 
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In figure 19, the phosphorylation status of Stat3 is seen when cells were exposed to Rapamycin. 

phosphorylation, there seems to be a slight 

treated for 24 h with Rapamycin in the presence of serum whereas under serumfree conditions there is a 

decrease in the phosphorylation level with

phosphorylation seems to be unaffected by Rapamycin (also densitometry in 

contrast, densitometric analysis whic

experiments revealed that only acute 

phosphorylation (see figure 55 in the appendix). 
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figure 19. Western blot detecting Stat3 and its phosphorylation status upon Rapamycin treatment when cultured with 
or in the absence of serum.  
  

For the use of specific inhibitors of Akt (Akt-I X) and PI3K (LY294002), first the optimal concentration for 
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Stat3 and also basal phosphorylation level on either site (see densitometric analysis figure 

Generally, it is to note that a high variability for both phosphorylation levels was observed, especially for 

Rapamycin treatment. Therefore, the represented pictures have to be considered with caution.
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not significant decrease for mTOR, Raptor and Rictor obvious in the densitometric analysis, presented in 
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3.2.4 Proliferationrate 

The MTS proliferation assay was used to verify effects on cell number upon inhibitor treatment or siRNA 

transfection. Whether observed results are indeed due to changes in cell proliferation or maybe a 

consequential effect by apoptosis cannot be elucidated with this assay.
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The MTS proliferation assay was used to verify effects on cell number upon inhibitor treatment or siRNA 
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Rapamycin was applied with or without the presence of serum in the cell culture media for 2 h with subsequent 

incubation for 24/48 h or it was incubated throughout the assay. Because of the absorbance divergence 

between serum-containing and serumfree media, values were related to according control which was set as 

100% in both cases. 

As seen in figure 21, all samples treated with Rapamycin were significantly different from controls. In the 

presence of serum cell number was reduced about 15-20% after 24 h and 35-40% after 48 h of incubation for 

acute and prolonged Rapamycin exposure. There was no difference seen between acute and prolonged 

treatment with Rapamycin unlike when serum was absent which showed significantly different cell numbers 

between both exposure time-points. When no serum was available in the cell culture media, cell number was 

less decreased when Rapamycin exposure was prolonged. For both time points it was about a 20% reduction. 

After 24 h, acute Rapamycin treatment diminished cell number about 30% and after 48 h, it was about 40%. 

Calculated standard deviations were small for all samples probably due to seeding from one cell batch which is 

less prone to errors in cell numbers between each sample. 

 

       

figure 21. Relative cell number upon Rapamycin treatment when supplemented with or without serum. MTS 
measurement was performed 24 h and 48 h after inhibition (acute Rapamycin treatment was 2 h with subsequent 
Rapamycin-free culture for 24 h or 48 h accordingly, prolonged Rapamycin treatment was accordingly 24 h or 48 h). 
Error bars indicate standard deviation of three independent experiments with triplicates. Controls were set 
independently as 100%.  (Student t-Test: * p<0.02 [versus control], # p<0.01 [2h versus 24h]) 

 

Subsequently to transfection of cells with siRNA, cells were seeded for proliferation assay, changing media next 

day and measuring another 24 h later. In figure 22, the relative proliferation rate or cell number is depicted. 

There was no significant change when Rictor was knocked down whereas Raptor knockdown showed high 

significant decrease in cell number of about 10% and 20% with and without presence of serum, respectively. 
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Rheb knockdown only showed high significance with no serum in media of which relative cell number declined 

down to 75%.  

 

      

figure 22. Relative cell number upon 0.1nmol siRNA transfection when supplemented with or without serum. Error bars 
indicate standard deviation of at least three independent experiments (except for mTOR (b) -FBS, n=2) with triplicates. mTOR 
(a) and mTOR (b) are mTOR-specific siRNAs with different sequences. (Control: no siRNA, Scr: “scrambled” non-genomic 
control siRNA, Student t-Test: * p<0.05 [versus control], # p<0.005 [versus control]) 

 

With the use of mTOR siRNA sequence (a), a highly significant reduction down to the half of control was seen 

for both cultures, with and without serum. The other sequence (b) showed a less pronounced effect of a 30% 

reduction when serum was present. Under serumfree condition the reduction of about 50% compared to 

control by mTOR (b) was not significant due to low experiment number (two independent experiments). 

Standard deviation values were higher compared to Rapamycin treatment probably due to inhomogenous 

seeding of cells which may result from counting errors; all cells have to be counted separately after transfection 

whereas the batch of cells seeded for inhibitor treatment is for all samples the same. 

In order identify a mechanism which can reverse the observed differential effect of acute and prolonged 

treatment in absence of serum, Rapamycin treatment was also performed when cells were transfected to 

knock down molecules within the mTOR pathway. 

In figure 23 can be seen that for both controls, untransfected and transfected with non-genomic siRNA (Scr), a 

significant decrease in relative cell number upon acute Rapamycin treatment was observed as before. 

Strikingly, this effect is minor (about 10% reduction) in respect to previous experiments (20-30% reduction). 

Also there is no significance between acute and prolonged Rapamycin treatment anymore. Tendentiously, cell 

numbers are reduced when treated with Rapamycin for all transfected cells. Significance of reduction of 

knockdowns in respect to untransfected cells is according to results shown before. Only for Raptor knockdown 

a significant change by acute Rapamycin exposure to its untreated knockdown was apparent. Also just 

tendentiously, it was observed that there is a reversion of differential cell number reduction by 2 h or 24 h 

treatment seen for Rheb and Raptor knockdown. 
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In another approach to identify a mechanism which potentially can reverse the observed effect by Rapamycin, 

the mTOR upstream molecules Akt and PI3K were inhibited. Akt is already known as target for positive 

feedback loop via the mTOR-Rictor (TORC2) complex. 

 

       

figure 23. Relative cell number upon 0.1nmol siRNA transfection and Rapamycin treatment in the absence of serum. 
Error bars indicate standard deviation of at least three independent experiments with triplicates. (Control: no siRNA, Scr: 
“scrambled” non-genomic control siRNA, Student t-Test: * p<0.04 [untreated versus 2h Rapamycin treatment]) 

 

 

      

figure 24. Relative cell number upon inhibition of mTOR (Rapamycin), Akt (Akt-I X) or PI3K (LY294002) under serumfree 
condition. Error bars indicate standard deviation of three independent experiments with triplicates. (Student t-Test: * 
p<0.02 [untreated versus 2 h Rapamycin treatment], # p=0.02 [versus untreated control], no significances 2 h versus 
24 h Rapamycin treatment) 
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Incubation of the cells with Akt-I X and LY294002 led to a decreased cell number to 90% compared to untreated 

cells, but which was only significant 

treated cells through acute Rapamacin exposure was only significant for control and PI3K

again for control cells, only a tendentious 

exposure. This tendentious effect was also seen when cultured with Akt

observation hints that PI3K but strikingly not Akt is involved in Rapamycin

proliferation. 

 

3.2.5 Level of apoptosis induction 

In order to find out whether effects seen with MTS proliferation assay are not due to cell death, an assay was 

performed using an apoptosis marker; the big cleavage product of PARP.  This cleaved PARP prod

sign of early apoptosis, was detected by Western blot and additionally by flow cytometry. 
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figure 25. Western blot detecting cleaved PARP upon Rapamycin treatment when cultured with or in the 
absence of serum. Pictures represent two independent experiments. 
 

figure 26. Western blot detecting cleaved PARP upon siRNA transfection when 
Pictures represent three independent experiments.
 

I X and LY294002 led to a decreased cell number to 90% compared to untreated 

cells, but which was only significant for the Akt inhibitor. Decrease of cell number in respect to non

treated cells through acute Rapamacin exposure was only significant for control and PI3K

only a tendentious a difference could be seen from acute to prolonged 

effect was also seen when cultured with Akt, but not with PI3K inhibitor

observation hints that PI3K but strikingly not Akt is involved in Rapamycin-induced differential outcome on cell 

In order to find out whether effects seen with MTS proliferation assay are not due to cell death, an assay was 

performed using an apoptosis marker; the big cleavage product of PARP.  This cleaved PARP prod

sign of early apoptosis, was detected by Western blot and additionally by flow cytometry. 
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I X and LY294002 led to a decreased cell number to 90% compared to untreated 

for the Akt inhibitor. Decrease of cell number in respect to non-Rapamycin 

treated cells through acute Rapamacin exposure was only significant for control and PI3K-inhibited cells. Yet 

from acute to prolonged Rapamycin 

but not with PI3K inhibitor. This 

induced differential outcome on cell 

In order to find out whether effects seen with MTS proliferation assay are not due to cell death, an assay was 

performed using an apoptosis marker; the big cleavage product of PARP.  This cleaved PARP product, which is a 

sign of early apoptosis, was detected by Western blot and additionally by flow cytometry.  
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Western blot showed no influence of serum on the level of cleaved PARP products (densitometric analysis in 

figure 53 in the appendix). Regarding Rapamycin-treated cells, no major difference in cleaved PARP level was 

seen with or without the presence of serum by Western blot (figure 25) (differences seen in figure upon 

Rapamycin treatment might be due to different protein load as obvious when considering β-Actin bands). 

Densitometric analysis revealed a slight, but not significant increase of cleaved PARP upon Rapamycin-

treatment (figure 54 in appendix). 

Western blot detecting cleaved PARP after siRNA transfection showed repeatedly a double band which was not 

observed for untransfected cells. According to the data sheet of the cleaved PARP antibody, the antibody does 

not detect full-lenght PARP (116 kDa), hence both bands must be related to cleaved PARP indicating apoptosis 

induction. Possibly, the electroporation procedure might have had an effect. There were no major changes in 

levels of cleaved PARP except for mTOR knockdown (figure 26) since the upper band of the double band was 

not detectable for both serum conditions.  

Flow cytometry revealed a basal apoptotic rate of about 20% which seems to be decreased upon Rapamycin 

(see figure 27). But results varied strongly so that no significance could be affirmed and which also led to high 

standard deviations and is therefore depicted only in upwards direction. Interestingly, upon the absence of 

serum, the apoptotic rate was decreased about one quarter.  

 

                              

figure 27. Apoptosis rate measured by flow cytometric analysis of fluorescein-conjugated cleaved 
PARP upon Rapamycin treatment when cultured with or in the absence of serum. Error bars indicate 
standard deviation of two independent experiments.  

 

 

The same basic apoptotic rate of around 20% was seen with transfected cells (figure 28). Strikingly, the 

withdrawal of serum increased apoptosis around one third, possibly due to a higher sensitivity of cells after 

electroporation procedure for transfection. Here, it is obivious that with transfection of mTOR siRNA sequence 

(a) the apoptosis rate was increased with and without serum by the double and two-thirds, respectively. Also 
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there is a decrease down to the half for Raptor knockdown but only when cultured with serum. Otherwise 

there are only slight changes seen with transfected cells compared to control. 

Since Western blot monitors apoptosis rate without any quantitative statement about apoptotic cell numbers, 

flow cytometric analysis was chosen to allow a quantification of cell numbers which are positive for cleaved 

PARP and hence apoptosis induction. However, a high variability was observed with both methods. 

 

                       

figure 28. Apoptosis rate measured by flow cytometric analysis of fluorescein-conjugated cleaved 
PARP upon 0.1nmol siRNA transfection when cultured with or in the absence of serum from one 
experiment.  

 

 

3.2.6 Invasion-related assays 

3.2.6.1 Zymolytic activity 

Using zymographic analysis the activity of gelatinases (MMP9, MMP2) and the plasminogen-converting enzyme 

uPA can be monitored by addition of the appropriate substrate to the electrophoresis gels. Here, the activity of 

secreted enzymes indicating the matrix-degrading potential was examined by taking conditioned cell culture 

media for analysis. 

As for untreated cells, it could be observed that there was a lower zymolytic activity of the gelatinases MMP2 

and MMP9 when there was no serum available in the medium whereas uPA activity seemed to be unaffected 

although there was a high variability among different experiments (densitometric analysis seen in figure 29). 

The values of zymolytic activity of serum-containing media were set to 100%. The down to one-fifth reduced 

activity of both, MMP9 and MMP2, in the absence of serum was highly significant. Also a predominance of 

MMP2 towards MMP9 gelatinase activity was seen (densitometric analysis seen in figure 30). The gelatinase 

activity of MMP2 was set as 100% independently for each serum condition. Under both conditions, with or 

without serum addition, the MMP9 activity was about 25% of the MMP2 activity. This effect was also highly 

significant. 
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figure 29. Comparison of zymolytic activity of MMP9, MMP2 and uPA when supplemented with or without 
serum. Diagram represents densitometric analysis of zymographies. Bars indicate median value of seven 
(MMP9,2) and six (uPA) independent experiments, depicted as spades (Student t-Test: * p<<0.001 [versus 
+FBS]). Samples with serum set independently as 100%. 

 

 

                                  

 

 

figure 30. Zymolytic gelatinase activity of MMP9 and MMP2 when supplemented 
with or without serum. Diagram represents densitometric analysis of 
zymographies. Bars indicate median value of nine independent experiments, 
depicted as spades (Student t-Test: * p<<0.001 [versus MMP2]). MMP2 levels set 
independently as 100%. 

 

 

In figure 31 the outcome upon Rapamycin treatment on zymolytic activity is demonstrated. There is a 

decreased activity for all detectable enzymes in the media from cells treated acutely with Rapamycin but only 

in the absence of serum. The detected changes are not significant as the extent of decreased zymolytic activity 

varied greatly among experiments (see also densitometric figure 67 to figure 69 in the appendix). Otherwise 

there were no changes of zymolytic activity perceived. 
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Media of transfected cells exhibited 

and Raptor knockdown (figure 32). 

significantly decreased MMP9 activity in the a

in the appendix). The slight decrease in MMP2 activity in serumfree cell

with mTOR (a), Raptor and Rictor siRNA is not siginifi

figure 73 in the appendix). The significant 

is independent from serum availability 
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figure 32. Zymography of cell
without serum. Picture represents at least three independent experime
siRNA, Scr: “scrambled” non
band MMP2 [64kDa], uPA activity given by lysed bands of casein/plasminogen
 

Media of transfected cells exhibited mainly changes in uPA activity in absence and presence of serum for mTOR 

). Interestingly, densitometriy analysis revealed that 

MMP9 activity in the absence of serum about 40% (densitometric analysis see 

). The slight decrease in MMP2 activity in serumfree cell-conditioned media upon transfection 

with mTOR (a), Raptor and Rictor siRNA is not siginificant due to high variability (densitometric analysis seen in 

). The significant about the half lower uPA activity by mTOR (a) and Raptor knockdown

pendent from serum availability (densitometric figure 74 and figure 75 in the appendix
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knockdown there was a slight, but statistically not significant

serum conditions. 

In summary, effects upon Rapamycin treatment and siRNA transfection on MMP9

although for the latter one the results are rather variable. For uPA activity, significant changes could be 

detected upon cell manipulation through siRNA targeting mTOR and Raptor which both diminished the activity 

of plasminogen-converting enzyme in cell

by acute Rapamycin treatment in the absence of serum

degree of reduction. Rheb knockdown tendentiously increa

 

3.2.6.2 Expression and secretion of PAI
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figure 33. Western blot detection of human PAI
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In summary, effects upon Rapamycin treatment and siRNA transfection on MMP9 and MMP2 are minor, 

although for the latter one the results are rather variable. For uPA activity, significant changes could be 

detected upon cell manipulation through siRNA targeting mTOR and Raptor which both diminished the activity 

rting enzyme in cell-conditioned media. A decreasing effect on uPA

by acute Rapamycin treatment in the absence of serum which was not significant due to high variability in the 

Rheb knockdown tendentiously increased uPA activity. 

Expression and secretion of PAI-1  

The observation of the influence of Rapamycin and siRNA transfection on uPA secretion raised the question 

whether the major physiological inhibitor of uPA, which is PAI-1, is affected as well. With several approaches 

-1 was addressed. 

When detecting the expression of PAI-1 by Western blot, there were detectable amounts of PAI

figure 33). It is about half as much as the level of samples which were treated 

with serum. Interestingly, unlike for serum-conditioned samples, expression of PAI-1 decreased with acute 

ycin treatment whereas prolonged exposure had no effect. When serum was present, cells expressed 

1 upon Rapamycin.  

To further evaluate the expression of PAI-1 and confirm higher expression upon Rapamycin, immunocyto

chemical staining of cells was performed. Due to methodical issues, only serum-conditioned cells were 

ch properly to slides). By indirect labelling PAI-1 was monitored through an 

linked antibody by red fluorescence and DNA was obvious as blue fluorescence colour through DAPI 

). Panel with control cells, shows the nuclei with DNA (blue) and 

cytoplasm. Upon treatment with Rapamycin, there is still a red signal within the cytoplasm but also a 

lour seen which results from the merger of blue (DAPI) and red (RPE) colour indicating either a co
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Western blot detection of human PAI-1 expression (cell lysates) upon Rapamycin treatment 
supplemented with or without serum. Picture represents two independent experiments. 
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increase in uPA activity observed under both 

and MMP2 are minor, 

although for the latter one the results are rather variable. For uPA activity, significant changes could be 

detected upon cell manipulation through siRNA targeting mTOR and Raptor which both diminished the activity 

on uPA activity was also seen 

which was not significant due to high variability in the 

The observation of the influence of Rapamycin and siRNA transfection on uPA secretion raised the question 

With several approaches 

1 by Western blot, there were detectable amounts of PAI-1 when cells 

. It is about half as much as the level of samples which were treated 

1 decreased with acute 

ycin treatment whereas prolonged exposure had no effect. When serum was present, cells expressed 

1 and confirm higher expression upon Rapamycin, immunocyto-

conditioned cells were 

1 was monitored through an 

linked antibody by red fluorescence and DNA was obvious as blue fluorescence colour through DAPI 

). Panel with control cells, shows the nuclei with DNA (blue) and a red signal within the 

within the cytoplasm but also a 

lour seen which results from the merger of blue (DAPI) and red (RPE) colour indicating either a co-
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upon Rapamycin treatment 
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localization or overlapping of signals. An overlap of signals is probably allowed by “thickness” of samples since 

it not a cut slice from tissue but a layer of whole cells. It is likely, that there is an induction of a higher PAI-1 

expression taking place in the cytoplasm which rather leads to an overlap of signals. However, this method 

gives no clues about secretion of PAI-1. 

Preliminary results of PAI-1 secretion were obtained with Western blot analysis using cell-conditioned media. 

An increase of PAI-1 level about two-fold upon acute and prolonged Rapamycin treatment in respect to 

untreated cells when cultured with serum was observed (figure 35). This finding is consistent with the higher 

PAI-1 expression upon Rapamycin treamtent seen in Western blot and by immunocytochemistry. Strikingly, 

PAI-1 was not detectable within serumfree media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For quantification of secreted PAI-1 levels upon Rapamycin treatment and siRNA transfection, an ELISA 

detecting human PAI-1 to a minimum level of 50 pg/ml was carried out. To be able to calculate concentrations 

in the cell-conditioned media, a standard curve of known PAI-1 concentrations was set by duplicates for each 

experiment (presented in figure 66 in the appendix). For low concentrations a linear regression gave the best 

results with a high coefficient of determination (R
2
). Diagrams are given with relative values, since 

concentrations of secreted PAI-1 are cell number-dependent. The approximate detected PAI-1 concentrations 

lie between 0.5 and 1.5 ng/ml (absolute values are given in figure 40 since it represents one single experiment). 

Merge: 
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         -         2h            24h               -            2h            24h          
100nM Rapamycin: 

+ FBS -FBS 

anti-PAI-1 

figure 34. Fluorescence-immunocytochemical staining of human PAI-1 upon Rapamycin treatment 
when supplemented with serum. Pictures represent two independent experiments. (red. PAI-1, blue: 
DAPI, pink: merge of both signals) 
 

figure 35. Western blot detection of human PAI-1 upon Rapamycin treatment in cell-conditioned media 
supplemented with or without serum. Picture represents two independent experiments. 
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Otherwise, value of untreated control cells was set to 100% for either condition of serum availability within the 

culture media.  

Considering untreated samples, it could be observed that the withdrawal of serum led to a highly significant 

lower secretion of PAI-1 down to the half which confirms Western blot results of media and cell lysates (figure 

36). Here, values of serum-containing media were set as 100%.  

 

                                                            

figure 36. Relative level of secreted human PAI-1 in presence 
and absence of serum measured by ELISA. Bars indicate 
median value of seven independent experiments, depicted as 
spades (Student t-Test: * p=0.0001). 

 

 

                     

 

 

 

figure 37. Relative level of secreted human PAI-1 upon Rapamycin treatment supplemented with or without 
serum measured by ELISA. Bars indicate median value of three independent experiments, depicted as spades 
(Student t-Test: * p=0.001 [versus control], # p<0.02 [2h versus 24h]). Controls are set independently as 100%. 

 

 

When cells were treated with acute Rapamycin, there is a decrease about the half in PAI-1 secretion, which is 

significant under serumfree condition whereas prolonged treatment had no detectable effect (figure 37). The 

difference in PAI-1 secretion between acute and prolonged exposure of Rapamycin was significant for both 

conditions. 
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Transfection of non-genomic siRNA (Scr) showed no effect in PAI-1 secretion with or without supplementation 

of serum excluding unspecific effects through transfection procedure (figure 38 and figure 39). Significant 

effects were perceived with mTOR siRNA sequence (a) on PAI-1 secretion, which was reduced about the half 

with and without presence of serum. There is a slight increase of PAI-1 concentration seen when cells were 

knocked down for Rheb expression, also under both conditions. Raptor knockdown seems to result 

tendentiously in a decrease of PAI-1 secretion. Rictor siRNA transfection also led to a decrease of PAI-1 

concentration but which was only significant in the case of serum-starved cells. 

             

                    

 

 

figure 38. Secretion of human PAI-1 upon siRNA transfection supplemented with serum. Bars indicate median value of 
at least three independent experiments, depicted as spades (Student t-Test: * p=0.003). 

 

 

                    

 

 

figure 39. Secretion of human PAI-1 upon siRNA transfection in the absence of serum. Bars indicate median value of at 
least three independent experiments, depicted as spades (Student t-Test: * p<0.03). 
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Due to too few samples of ELISA kit, samples from treatment with Akt (Akt-I X) and PI3K (LY294002) inhibitors 

were taken from only a single experiment. The results are demonstrated in figure 40. There seems to be a 

decrease in PAI-1 secretion when treated with the inhibitors with highest reduction when co-incubated with 

LY294002 and Rapamycin.  

 

           

 

 

 

figure 40. Secretion of human PAI-1 upon inhibition of mTOR (Rapamycin), Akt (Akt-I X) or PI3K (LY294002) in 
the absence of serum. Spades indicate absolute concentration of one experiment. 

 

 

3.2.6.3 Cell invasiveness 

With the use of Matrigel-coated well inserts, the potency of cells to invade through extra-cellular matrix can be 

measured. In general, the in vitro Matrigel invasion assay showed very high variability and therefore high 

standard deviations were obtained which were depicted in the following figures only in upwards direction. 

In figure 41 the influence of serum availability is demonstrated. Invasion rate of cells supplemented with serum 

was set as 100%. In the absence of serum the rate of invasion drops significantly down to 60%. In the figures 

showing invasion upon Rapamycin treatment and siRNA transfection, invasion rate of control cells were set to 

100% for each serum condition. 

Upon exposure of Rapamycin, number of invaded cells decreased about 20% with use of serum-containing 

media and about 60% when cells were serum-deprived (figure 42). Under serumfree condition the decrease of 

invasion was highly significant. There was no difference seen between acute and prolonged Rapamycin 
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knockdown seemed to have no effect (figure 43). Tendentiously, there might be an increase when transfected 

with Raptor siRNA and no serum added. The non-genomic control (Scr) left cell invasiveness unaffected. 

 

                                         

figure 41. Comparison of relative invasion rate when cultured with or in 
the absence of serum obtained with in vitro Matrigel invasion assay. 
Error bars indicate standard deviation of five independent experiments 
with triplicates (Student t-Test: * p=0.007) 

   

 

       

 
figure 42. Invasion rate upon Rapamycin treatment when cultured with or in the absence of serum. Error bars indicate 
standard deviation of three independent experiments with triplicates (Student t-Test: * p<0.004). 
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figure 43. Invasion rate upon 0.1nmol siRNA transfection when cultured with or in the absence of serum. Error bars indicate 
standard deviation of three independent experiments with triplicates. mTOR (a) and mTOR (b) are mTOR-specific siRNAs 
with different sequence. 

 

 

 

3.2.9 Immunhistochemistry of placental tissue 

The immunohistochemical staining of tissue from first-trimester (gestational week 11) and term (gestational 

week 41) placenta revealed the localization of mTOR at the feto-maternal interface. Thereby villous (figure 44) 

and extra-villous trophoblast (figure 45) were examined. To identify trophoblast cells, the trophobast marker 

cytokeratin 7 was applied, which was linked with FITC (green colour).  

The hematoxylin-eosin (HE) -staining depicting trophoblast villi, monitored fetal blood vessel containing 

erythrocytes (red cells), syncytiotrophoblast cells as the outer layer of the villi and cytotrophoblast as well as 

extra-villous trophoblast cells with surrounding extra-cellular matrix (figure 44 and figure 45). The syncytium 

showed very high amounts of cytokeratin 7 whereas within the villi, this trophoblast marker was detected with 

a lower signal. mTOR could be detected by indirect labelling with RPE-conjugated antibody giving a red 

fluorescent signal. There was a strong signal in the outer layer of the villi implicating a higher expression of 

mTOR in the syncytial trophoblast than in the cytotrophoblast cells. The signal was localized in the cytoplasm; 

the nucleus is spared obvious by a dark spot. The mTOR signal might be a bit stronger in the first-trimester 

placental tissue than in the term placenta. Extra-villous trophoblasts were also positive for cytokeratin 7 and 

also showed mTOR localized within the cytoplasm. Again the signal for mTOR seemed stronger in the first-

trimester placenta. 
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figure 44. Immunohistochemical staining of villous trophoblast cells in placental tissue (decidual side) from gestational week 
11 and 41. (FBV: fetal blood vessel, S: syncytiotrophoblast cells, C
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Immunohistochemical staining of villous trophoblast cells in placental tissue (decidual side) from gestational week 

M: extracellular matrix) 
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figure 45. . Immunohistochemical staining of extravillous trophoblast cells in placental tissue (decidual side) from gestational 
week 11 and 41. (EVT: extravillous cytotrophoblast cells, ECM: extracellular matrix)
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Immunohistochemical staining of extravillous trophoblast cells in placental tissue (decidual side) from gestational 
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Chapter 4 | Discussion 

4 Discussion 

4.1 Regulation of mTOR by Rheb in HEK293T 

With the obtained constructs, functional and binding assays were carried out, to test the mutants’ ability of 

restoring p70
S6K

 phosphorylation upon amino acid withdrawal and their binding to mTOR and its associates, 

respectively. Results of the functional properties of Rheb mutants will be discussed in the next paragraph (see 

4.1.1). However, the analysis of Rheb mutant binding by the chosen experimental design failed. Difficulties 

were encountered in achieving uniform expression of the GST-tagged constructs within the assay. Therefore, a 

modified in vitro binding assay was performed later on which will be discussed among other approaches in 

paragraph 4.1.2. 

 

4.1.1 Severe loss-of-function for Rheb switch 1 and 2 mutants 

It was found that there are five Rheb mutants, with comparable expression levels, which were unable to rescue 

p70
S6K

 phosphorylation when deprived from amino acids and thus, deficient in function. Interestingly, these 

mutants contain the mutations close to the switch regions which is not unexpected since the importance of 

these regions is already known. Switch 1 contains the activation loop and undergoes conformational changes 

during the GTP/GDP cycle. Switch 2 is the nucleotide binding domain and unlike in other GTPases switch 2 

maintains a rather stable conformation [61]. 

The mutation sites or mutated residues of two of the loss-of-function mutations are located adjacent or within 

the switch 1 region, whereas the other three mutation sites of loss-of-function mutants are part of the switch 2 

region. The mutants (67, 69) and (76, 77) are flanking the short helix (residues 72-74) in switch 2. The mutant 

(72, 74) was created due to a mistake during primer design, changing amino residue 74 instead of 73. Amino 

residue 74 is actually predicted to be solvent-inaccessible. Strikingly, unlike the “correct” (72, 73) Rheb mutant 

the (72, 74) mutant is unable to restore mTOR activity as published by Long et al. 2007 [97]. 

Also some mutants showed ambiguity concerning their ability to rescue p70
S6K

 phosphorylation among two 

independently performed experiments. A verification of conditions is therefore necessary to ensure 

reproducibility. It is also noteworthy, as it was seen by double bands for the assays of functional analysis, that 

both S6K isomers were affected by amino acid withdrawal-induced dephosphorylation. This suggests that in 

vitro mTOR kinase activity also comprises phosphorylation of the PI3K subunit p85
S6K

. 
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4.1.2 The Rheb switch 2 segment is critical for mTORC1  

In reference to the published paper of Long et al. 2007 [97], it follows a discussion of additional results ensuing the scientific residence since 

results presented in this work are part of the article and the further published data are supplementing and supportive for conclusions and 

discussion of this  study. 

Long et al. 2007 showed that by creating a set of Rheb mutants (based on the presented work) and with some 

additional mutants, Rheb mutants with mutations within the switch region 2 are more severe in the loss of 

function than those with mutations within the switch 1 region. 

Because of the complications arising from the in vivo binding assay, the binding properties of the Rheb mutants 

were analysed by an in vitro approach. They could show that Rheb mutants with retained signal activity in vivo 

displayed no diminished ability to bind to mTOR or Raptor. Indeed, switch 2 mutants exhibit 2-fold greater 

binding than wildtype Rheb. In conclusion, Rheb loss-of-function is not attributable to a deficient mTORC1 

binding. Furthermore, wildtype and switch 2 mutants were used to recover mTOR from cells and test its kinase 

activity in vitro. MTOR polypeptides which were retrieved by both switch 2 mutants exhibited nearly equal 

activity as mTOR retrieved with wildtype Rheb. Hence, Rheb loss-of-function can also not be explained by a 

deficit in enabling mTOR to acquire kinase activity. All mutants were also tested for their GTP-binding 

properties by purifying them and binding to radio-labelled GTP in vitro. None of the constructs showed 

moderately decreased binding compared to wildtype Rheb. Both switch 2 mutants were also analysed for their 

GTP charging during transient expression, and displayed an intact GTP binding. Thus, Rheb loss-of-function is 

also not a consequence of impaired GTP charging. 

In summary, the paper emphasizes a dominant importance of Rheb switch 2 region to signal to mTORC1, which 

is surprising since it could already been shown that switch 1 Rheb mutants disrupt the ability of mTOR kinase 

rescue after amino acid deprivation [52]. Despite of the severe loss-of-function by the switch 2 mutants, it 

could be shown that these mutants are still able to bind GTP in vitro and even enhanced in vivo. The binding to 

mTOR was also undisturbed in vitro and in vivo and the retrieval of bound mTOR polypeptides to the switch 2 

mutants still showed intact kinase activity in vitro. Hence, the hypothesis that overexpression of Rheb to 

overcome amino acid depletion is due to an ability of excessive GTP-charging to Rheb and thereby restoring 

Rheb-mTORC1 interaction by this approach could not be supported, nor was it proven to be false. It was 

suggested that there is a further requirement for Rheb signalling to mTORC1 in vivo. The putative element 

might operate in close proximity of mTORC1 or further upstream. The identification of this novel Rheb partner 

is ongoing. 

When comparing the results of the discussed paper with the work presented here, it can be noted that there 

was an improvement of achieving reproducible and equal expression levels. Only one Rheb mutant showed 

very low expression explainable by protein misfolding or an unknown toxic effect. Regarding the loss-of-

function mutants, there were more severe effects by the Rheb switch 1 mutants presented here. This 

discrepancy might be explained by the sensitivity of the used functional assay, which is only semi-quantitative. 

Long et al. 2007 also found another loss-of-function mutant (162-165); residues 162 (arginine) and 165 

(leucine) substituted with alanine (created afterwards), which is outside of both switch regions close to the C-
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terminal part of Rheb. There is no further evaluation of this mutant, but it might imply an important role of the 

C-terminus for Rheb function. Interestingly, unlike for the other loss-of-function Rheb mutation sites which 

were solvent-accessible mainly in the GTP-bound Rheb or at least in both forms, both changed amino residues 

of the (162-165) mutant are only solvent-exposed in Rheb-GDP. That could suggest that the cycling itself from 

GDP- to GTP-bound form or vice versa plays a role in an intact Rheb signalling. This is supported by the fact that 

strong GTP binding per se does not necessarily result in functional Rheb signalling [98]. 

 

4.2 Role of mTOR in trophoblast invasion 

4.2.1 Establishment of siRNA transfection in HTR8/SVneo 

With the use of various transfection agents such as Oligofectamin (Invitrogen), HiPerfect (Qiagen) and Fugene 

(Roche)  HTR8/SVneo cells were tried to be transfected with siRNA in order to silence the expression of Rheb, 

mTOR, Raptor and Rictor. Obtained transfection rates were poor (data not shown). By electroporation with the 

Microporator (PeqLab), transfection could be successfully performed. The parameters of the electroporation 

process were optimized in order to yield the highest transfection rate. Also the time point of optimal 

knockdown was verified, which depends on the half-time of target proteins and the cell type. For all targeted 

proteins, the best silencing effect was observed 48 h after siRNA transfection. Transfection rate upon 

electroporation was around 80% for all used siRNAs except for Rictor-specific siRNA which showed only a 60% 

reduction of expression.  

Previous studies already presented siRNA-induced protein silencing in HTR8/SVneo cells but with the use of 

lipophile transfection agents (e.g. DHARMAfect 1 by Meade et al. 2007 [36]). To the best knowledge, there is 

no work showing siRNA transfection in this cell line by electroporation. The existence of unspecific side-effects 

upon siRNA transfection is well known but its mechanism is poorly understood. Sequence-dependent, 

unspecific effects of single siRNAs have been reported [99, 100]. A study from Pauls et al. 2006 showed that 

transfection with siRNA stimulates the innate cytokine response, leading to a secretion of IL-1 and IL-8 [101]. 

Thus, certain cellular functions might be affected and observed effects have to be taken with caution. Meade et 

al. 2007 observed raised levels of PAI-1 with a non-genomic control siRNA and suggested that this siRNA 

triggered a cytokine response as reported by Pauls and colleagues [36]. PAI-1 secretion can be modulated by IL-

1, IL-6 and TNF-α and therefore, the observed effect can be attributed to an unspecific cytokine response. Both 

groups utilized transfection agents (DHARMAfect 1, Lipofectamin). The question arises whether those effects 

are solely due to siRNA or also caused by the chosen transfection method. Electroporation is recommended as 

a good alternative to the commonly used transfection agents and stated to transfect so-called “hard-to-

transfect” or primary cells with high cell survival rate. Only little is known about side-effects upon 

electroporation of eukaryotic cells and it remains to be careful when interpreting data of knockdown 

experiments. 
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4.2.2 Rapamycin inhibits proliferation and apoptosis whereas mTOR knockdown promotes apoptosis  

In this work a major impact on proliferative activity on HTR8/SVneo without inducing apoptosis upon 

Rapamycin treatment was observed. Rapamycin as a specific mTOR inhibitor has already been known to 

decrease cell proliferation. This effect makes it besides its immune-suppressive potential also an interesting 

target for anti-cancer therapy. Treating patients after transplantation with inhibitors of mTOR showed a lower 

risk of the development of malignancies than those receiving a calcineurin inhibitor-based immunosuppressant 

[102]. Here, we observed also that the proliferation rate was different upon Rapamycin in the absence of 

serum whereas the apoptotic rate was similar between acute and prolonged Rapamycin treatment and also 

showed no impact of serum availability. Prolonged treatment with Rapamycin increased proliferation in respect 

to acute exposure. It seems possible that longer Rapamycin-exposure changed the equilibrium of both mTOR 

complexes towards mTORC2 which in turn led to the negative feedback loop via Akt [71]. Activation of Akt will 

trigger survival signals independently from the mTOR pathway through inactivation of pro-apoptotic factors 

such as forkhead transcription factor FOXO and apoptosis regulator BAD [103]. Even though mTORC2 is 

generally considered to be Rapamycin-insensitive, Sarbassov et al. 2006 showed that prolonged treatment 

disturbs the assembly of the complex with newly expressed proteins [72]. Hence, the negative feedback loop 

should be abolished upon longer Rapamycin treatment, but it is also likely that the chosen exposure of 

Rapamycin for 24 h was not long enough in the chosen experimental design to completely rule out this 

pathway.  

Nevertheless, the results hint that inhibition of PI3K rather than of Akt overcomes this feedback since the 

discrepancy in proliferation rate between acute and prolonged Rapamycin treatment seemed to be abolished. 

Either used inhibitors are not exclusively specific to their intended targets or the feedback is indeed 

transmitted via PI3K. It was reported by Vanhaesebroeck et al. 1999 that the PI3K inhibitor LY294002 also 

inhibits mTOR [104]. Thus, it is also possible that LY294002 might just balance out the equilibrium of both 

mTOR complexes, which is favourable towards mTORC2 upon Rapamycin.  

Results of transfected cells undergoing Rapamycin treatment are hard to interpret in regard to overcome the 

divergence in proliferative activity by acute and prolonged Rapamycin exposure. It seems that knockdown of 

Rheb, mTOR, Raptor and Rictor could slightly reverse the effect. It also seems plausible that not a single 

molecule alone within the mTOR pathway determines the direction towards pro-survival or pro-apoptotic 

signals. The complex interplay of the signal cascades may have led to the observed effects for all performed 

knockdowns. 

It has been reported that mTOR inhibition by Rapamycin induces or facilitates apoptosis in several cell lines [87, 

105, 106]. Strikingly, here we observed that Rapamycin could even slightly decrease the apoptotic rate 

regardless of the exposure time. Yet another study showed by knockdown experiments that the mTORC1-

component PRAS40 and mTORC2-component PRR5L regulate apoptosis, and interestingly they also failed to 

observe Rapamycin-induced apoptosis [107]. PRAS40 is a substrate and inhibitor of mTORC1 and binds to 

mTOR via Raptor through its TOS motif [108] and upon Rapamycin treatment, PRAS40 dissociates from mTOR 
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and Raptor [107]. Thedieck et al. 2007 suggested that PRAS40 exerts its pro-apoptotic function by binding 

through another Rapamycin-insensitive molecule [107]. Meanwhile, PRR5L is proposed to promote apoptosis 

when mTOR is hyperactive which is in contrast to a study from Edinger et al. 2004 who observed that 

constitutively active mTOR reduces apoptosis [48].  

Results of this work revealed a high impact on apoptosis when mTOR expression was knocked down whereas 

silencing of Rheb, Raptor and Rictor expression showed only little effects. SiRNA-induced inhibition of mTOR 

expression led to a high apoptosis rate which was reflected also in the lower proliferation rate. Proliferation 

rate was slightly reduced upon Rheb, Raptor and Rictor knockdown, but upon withdrawal of serum 

proliferation was decreased to a higher extent. Apoptosis rate also increased dramatically in transfected cells 

when serum was not accessible probably due the transfection procedure itself which may render the cells more 

susceptible to apoptosis induction. However, these results suggest a higher sensitivity to nutrient availability in 

terms of proliferative capacity as well as apoptosis induction when the mTOR pathway is disturbed at distinct 

points. It also supports the idea that both mTOR complexes contribute to the regulation of apoptosis [107] 

since there could be no difference seen in knockdown of components of either complex. It is also noteworthy 

to mention that Raptor knockdown tendentiously inhibited apoptosis induction in the presence of serum. 

Thedieck et al. 2007 showed that knockdown of Raptor resulted in a decreased association of PRAS40 with 

mTOR [107]. Thus, one could speculate that PRAS40 promotes apoptosis dependently on mTOR association. 

This association may be enhanced again by lack of nutrients since upon serum starvation Raptor knockdown 

showed no more any protective effect on apoptosis induction. As it was mentioned before, upon Rapamycin 

treatment PRAS40 dissociates from Raptor and mTOR and was shown to have anti-apoptotic potential, 

supporting the hypothesis, that PRAS40-mediated apoptosis is mTOR-dependent. 

Also it is speculative whether the observed phenotypical changes upon mTOR knockdown are due to the higher 

apopotosis rate or if they indeed derive from structural alterations. It could be assumed that the disruption of 

mTORC2 by the mTOR knockdown is the cause for the loss of filopodia development since it was described to 

act on the organization of the cytoskeleton [45].  

Overall, there seems to be a delicate balance of mTOR-mediated and -dependent signals which predispose the 

cells towards apoptosis induction [107]. Additionally, there is a discrepancy of obtained results between 

inhibition of the mTOR signalling either by use of Rapamycin and inhibition by silencing of crucial signal 

molecules within the mTOR pathway. Hence, chemical inhibitors of signal molecules seem to provoke a 

different outcome than siRNA-induced silencing of these molecules. Consequently, the intended comparison of 

acute Rapamycin treatment with Raptor knockdown and of prolonged Rapamycin treatment with Rictor 

knockdown was not feasible since the physiological context is naturally more complex. 
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4.2.3 Role of mTOR signalling in trophoblast invasion through uPA and PAI-1 secretion 

Several studies could link p70
S6K

 phosphorylation with cell motility [109, 110]. It was demonstrated that upon 

stimulation with IGF-II, arginine and serum stimulates migration of intestinal cells and that the consequently 

phosphorylated p70
S6K

 distributes to the cell periphery [111]. Berven et al. 2000 showed a co-localization of 

p70
S6K

 with actin [112]. This suggests a role of p70
S6K

 in cell migration on a structural level. It was reported by 

Liu et al. 2006 that knockdown of Raptor as well as Rictor reduced motility [110]. Rictor is part of the mTOR 

complex 2 which is generally known to be involved in reorganization of the actin cytoskeleton [45]. Hence, both 

complexes regulate the migrative potential of the cell. 

There are only a few reports that address mTOR signalling in respect to cell invasion. Martin et al. 2003 

proposed that the triggering of mTOR by exogenous amino acids which is crucial for trophoblast outgrowth is 

only critical in the implantation window and later on has no or minor effects on trophoblast invasion in mice 

[93]. Nevertheless, the work by Zhou et al. 2006 showed that there is a link between mTOR signalling and cell 

invasiveness, although it was observed in human ovarian cancer cells [113]. They report that upon HGF 

stimulation, MMP9 secretion and invasion was mediated through p70
S6K

 phosphorylation.  

Here, we could show that Rapamycin reduced the invasiveness of HTR8/SVneo, which was even more 

pronounced when serum was not present. For mTOR siRNA-transfected cells, also a dramatic decrease was 

observed in the in vitro invasion although this effect might be attributed to the observed lower proliferation 

rate due to enhancement of apoptosis. Strikingly, with knockdown of Raptor and Rictor, a slight increase and 

no effect, respectively, on invasiveness were detected even though proliferation rate was mildly reduced for 

both. This would imply that mTOR-mediated cell invasion is independent of Raptor and Rictor. So far, there 

have been no reports which revealed mTOR function unrelated to its two described complexes. Another 

explanation for the little effects on invasiveness upon Raptor and Rictor knockdown might be that there is a 

complementary mechanism between both molecules. It should also be considered that transfection efficiency 

and rate may have not been sufficient to induce or monitor effects of Raptor and Rictor knockdown. Silencing 

of mTOR expression might have had a greater impact, since both complexes are disrupted. The idea that only 

disruption of both complexes interferes with cell invasiveness is supported by the observation that 

simultaneous silencing of Raptor and Rictor decreased in vitro invasion about 30% to 40% (data not shown). 

Inhibition of invasion was not further enhanced by prolonged Rapamycin exposure. Thus, one could argue that 

trophoblast invasion is predominantly regulated via mTORC1 which is acutely Rapamycin-sensitive. This idea is 

supported by the fact that Raptor knockdown also resulted in a diminished level of secreted uPA but strikingly 

did not result in lower invasiveness. In contrast to mTOR knockdown, Rheb knockdown displayed higher uPA 

and PAI-1 level. There might be another interaction partner downstream of Rheb and upstream of mTOR which 

acts as an inhibitor which would explain the reverse outcome on uPA and PAI-1 secretion. It remains to be 

determined if this putative molecule is PRAS40. 

The invasion of cells is mainly characterized by the secretion of enzymes that degrade the extra-cellular matrix 

(ECM). Those enzymes comprise matrix-metalloproteases (MMPs) and the urokinase-like plasminogen activator 
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(uPA) system. The regulation of trophoblast implantation and vascular remodelling was reported to be 

dependent on the plasminogen activators and their inhibitors [114, 115] and uPA to be a key molecule in the 

cell-associated degradation of extracellular matrix during invasive growth of trophoblast cells [116]. MMP2 and 

MMP9 are known to be key regulators of trophoblast invasion and shown to be differentially expressed during 

pregnancy: MMP2 activity is predominant in gestational week 6 to 8, whereas MMP9 is preferentially secreted 

in gestational week 9 to 12 [27]. We could observe that the HTR8/SVneo cell line predominantly exhibited 

MMP2 activity. It was not further specified by Graham et al. 1993 from which exact time point in the first 

trimester of pregnancy the trophoblast cells were isolated to be immortalized and established as a cell line 

[37]. But it seems likely by the predominant MMP2 secretion that trophoblast originated from early rather than 

late first-trimester trophoblasts. 

It was observed that MMP9 and MMP2 activity was remarkably, and also to the same extent, reduced upon 

lack of serum. The secretion of uPA was not affected by serum availability, although there was a great 

variability observed. Rapamycin could strongly reduce uPA, MMP9 and MMP2 activity but only when exposed 

short-time and in the absence of serum. Hence, additional effects that influence invasive behaviour must 

account for the decreased invasiveness when cells were treated with Rapamycin for a longer period of time. 

Knockdown of mTOR or Raptor greatly reduced uPA activity in the presence or absence of serum and showed 

in tendency to also reduce MMP9 and MMP2. Rheb knockdown showed interestingly an increase in uPA 

secretion but only when serum was available. Whether the observed decrease of MMP2, MMP9 and uPA 

secretion accounts for the reduction of invasion when mTOR is knocked down is speculative. Raptor 

knockdown which also showed impaired secretion of the matrix-degrading enzymes did not exhibit lower 

invasiveness, suggesting a minor role of these enzymes towards invasion or underlining the before-mentioned 

effect of apoptosis on the outcome of observed invasion. The used Matrigel mainly contains laminin, collagen 

IV, heparan sulphate proteoglycans, entactin and nidogen (datasheet of BD Biosciences). Collagen IV is a 

classical substrate for MMP2 and -9. UPA converts plasminogen in plasmin which, next to its function in 

fibrinolysis, was shown to be able to degrade laminin 322 [117] and activate MMP2 and -9 [28]. It is likely that 

other enzymes may also contribute to the invasiveness of the HTR8/SVneo. 

Liu et al. 2003 showed that uPA stimulates trophoblast migration by using phospholipase C, PI3K and mitogen-

activated protein kinase (MAPK) [118]. This study however did not subject an inhibitor of mTOR to the survey 

but since PI3K is upstream of mTOR it is supportive to the findings presented here. Interestingly, there are 

recent reports that link the uPA-system to cell proliferation and apoptosis through activation and release of 

certain growth factor and the dynamic control of cell-matrix interactions [119].  

The detected effect on uPA secretion raised the question whether its major inhibitor PAI-1 is also affected by 

inhibition of mTOR. PAI-1 is the major inhibitor of the plasminogen activator system and prevents excessive 

matrix destruction by inhibiting the catalytic activity of uPA and thus plasminogen activation [120]. In previous 

studies, it was already demonstrated that invasiveness of HTR8/SVneo is impaired through reduced uPA and 

increased PAI-1 secretion which was induced by co-culture with macrophages or incubation with TNF-α [121, 

122]. Hu et al. 1999 demonstrated in human placenta that PAI-1 is mainly detected in extra-villous and invasive 
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trophoblasts whereas PAI-2 was found in the syncytiotrophoblasts [33]. HTR8/SVneo cell line is derived from 

extra-villous trophoblast cells, thus the discovery that HTR8/SVneo cells secrete PAI-1 is not unexpected. 

PAI-1 expression as well as its secretion was examined. Preliminary results on PAI-1 secretion revealed an 

increase of PAI-1 level in response to Rapamycin by Western blot (on conditioned media) whereas the ELISA 

showed a decrease of PAI-1 level (on conditioned media). This discrepancy can be explained by the reduction of 

the proliferation rate by Rapamycin which is not taken into account by the ELISA measurement whereas for the 

Western blot with cell-conditioned media, the protein-concentration was accordingly adjusted. However, we 

looked at the PAI-1 expression by immunocytochemistry and Western blot (on cell lysates). Western blot with 

cell-conditioned media without the presence of serum showed no secretion of PAI-1 whatsoever. The used 

antibody was not favourable for detecting PAI-1 by Western blot, nonetheless it could be seen that there is 

PAI-1 expression but at a lower level when serum was absent than with presence of serum. Western blot also 

revealed a slight increase in PAI-1 expression upon Rapamycin treatment when serum was present. The 

immunocytochemical staining of intracellular PAI-1 also supported the idea that Rapamycin increases PAI-1 

levels, at least for the condition under serum accessibility. This finding is in contrast to the work of Pontrelli et 

al. 2008 who observed that Rapamycin reduced PAI-1 expression in proximal tubular epithelial cells [123]. 

PAI-1 levels in supernatants detected by ELISA of transfected cells showed that there was a strong decrease in 

secreted PAI-1 level for mTOR knockdown and a minor increase for Rheb knockdown. The decrease in PAI-1 

level for mTOR as well as the slight decrease for Raptor and Rictor knockdown correlated with the proliferation 

rate. It is unclear whether and how PAI-1 accumulates in the media which is determined by its degradation 

time course. Nevertheless, for Rheb knockdown proliferation rate is not reflected in PAI-1 level since even 

though there is a decreased proliferation, the level of secreted PAI-1 was raised. Interestingly, the increase of 

PAI-1 upon Rheb knockdown is associated with an increase also of secreted uPA level. It is also to note that 

serum availability affects PAI-1 level whereas it has no major effect on the uPA level. This suggests that the 

regulation of the secretion of PAI-1 and uPA is not necessarily connected with each other but may engage 

distinct mechanisms; a nutrient-sensitive and a nutrient-insensitive one, respectively. This does not rule out, 

that those mechanisms interact at some point. 

A high level of PAI-1 is known to be a bad prognosis marker in breast cancer [124, 125]. This aspect is a 

consequence of the dual role of PAI-1. Independently from its characteristic to inhibit uPA activity and thereby 

invasion through degradation of plasmin and ECM, it also is involved in the detachment of cells from the ECM 

[126]. This feature is controversial by promoting cell migration and invasion. Planus et al. 1997 demonstrated 

that PAI-1 mediates cell adhesion and spreading and thereby suggesting a mechanism of the dual role of PAI-1 

[34]. Increasing levels of PAI-1 after Rapamycin exposure with parallel decrease of invasiveness were found 

which suggests that, at least in terms of mTOR-mediated signalling, PAI-1 exerts anti-invasive potential in the 

HTR8/SVneo cells. This finding does not exclude that PAI-1 which is mainly expressed by the invasive type of 

trophoblasts is required for progression of the invasion process of trophoblast cells in vivo.  
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4.2.4 Cross-talk between mTOR and Stat3 signalling in trophoblast cells 

Stat3 is known to be an important signal molecule in order to activate transcription of target genes in a rapid 

and transient manner upon the according activation. Stat3-induced cell responses include the regulation of 

survival, proliferation, angiogenesis, invasion and immunosuppression. Constitutively activated Stat3 could be 

linked with tumourigenesis [127].  

Stat3 has two phosphorylation sites, Tyr
705

 and Ser
727

. Whereas the role of the tyrosine phosphorylation is well 

established, it is still somewhat controversial whether the serine phosphorylation has a positive or negative 

role in the transcriptional activation. The majority of data suggests that the serine phosphorylation leads to a 

maximal activation of transcription presumably by enhanced recruitment of necessary transcriptional cofactors 

[79]. Stat3 is also crucial in embryogenesis since it was shown that ablation of Stat3 resulted in early embryonic 

lethality in mice [128].  

To the best knowledge, for the first time the presence of a cross-talk between mTOR and Stat3 in human 

trophoblast cells is presented with this work. As shown before in a neuroblastoma [77] and hepatocyte 

carcinoma cell line [129] upon IL-6 stimulation, mTOR phosphorylates Stat3 at the serine residue position 727 

(Ser
727

). This finding gave rise to the proposal that mTOR-mediated serine phosphorylation leads together with 

the Tyr
705

 phosphorylation to a maximal transcriptional active Stat3.  

Silencing mTOR protein expression by siRNA abolished Stat3 serine phosphorylation in HTR8/SVneo cells 

whereas tyrosine phosphorylation was only slightly affected by all used siRNAs. The withdrawal of serum had 

no effect on serine phosphorylation suggesting a basal mTOR kinase activity towards Stat3 regardless of 

nutrient availability. The knockdown of Raptor and Rictor gave no clue about whether serine phosphorylation is 

mTORC1 or mTORC2-mediated. Surprisingly, Rapamycin treatment affected serine phosphorylation only upon 

acute exposure indicating a negative feedback induction by prolonged Rapamycin incubation. This was already 

considered for the differential outcome on proliferation rate and enzyme secretion. It is tempting to speculate 

that this cross-talk toward Stat3 may be responsible for the distinct effects upon Rapamycin but it might be 

rather an effect than the cause. 

The benefit of this cross-talk in trophoblast cells is elusive but it could be speculated as a back-up or 

counterbalance signalling. Interestingly, similar to mTOR, it was hypothesized that Stat3 is involved in the 

nutritional process supporting the implanting blastocyst [130]. Furthermore, it was shown that target genes of 

Stat3 are MMP2 [131] and MMP9 [132]. Although, in our laboratory the analysis of the choriocarcinoma cell 

line JEG-3 whose tyrosine phosphorylation and DNA-binding capacity as well as invasiveness was strongly 

increased upon leukaemia inhibitory factor (LIF) showed no induction of MMP2 and -9 expression but increased 

expression of TIMP1 and caspase 4 [96]. In addition, LIF, which was shown to be an important cytokine during 

pregnancy by regulating proteinase activity in early embryos [133], belongs to the IL-6 family and therefore 

employs the same receptors as IL-6 which was already mentioned to induce mTOR-mediated Stat3 serine 

phosphorylation. Little is known whether LIF stimulates mTOR activity but it was already shown that LIF 

activates PI3K which is upstream of mTOR [134]. 
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4.2.5 No differential expression of mTOR in human first-trimester and term placenta 

 A recent study by Roos et al. 2007 revealed for the first time that mTOR is localized in the transporting 

epithelium of term placenta [95]. They could also correlate a reduced level of phosphorylated p70
S6K

 with intra-

uterine growth restriction and therefore proposed mTOR as a placental nutrient sensor. Earlier reports 

demonstrated already in mice an essential role of mTOR in embryogenesis and trophoblast outgrowth [7, 91]. It 

was also shown that mTOR is crucial in the implantation window for the transport of exogenous amino acids, 

particularly leucine and arginine [93, 94]. 

In this work, we could show localization of mTOR in term as well as in first-trimester placenta (obtained from 

selective abortion). At both time points, mTOR is expressed in extra-villous trophoblast (EVTs) cells and in the 

syncytiotrophoblast layer. EVTs display an invasive phenotype and infiltrate and remodel the maternal tissue 

whereas syncytiotrophoblast cells are non-invasive and are in direct contact with the maternal blood. Both 

trophoblast types lack any proliferative capacity and are derived from cytotrophoblast cells, which showed low 

mTOR expression. Hence, along with trophoblast cell differentiation mTOR expression might be enhanced to 

acquire motility and invasive potential as for EVTs or in the case of the syncytial trophoblasts to gain the 

capability of endocrine and metabolic exchanges between the mother and the foetus. The latter feature might 

be achieved through the regulation of amino acid transport systems as demonstrated to be under control of 

mTOR during implantation in mice [93, 94] and in humans [95]. Since both trophoblast types are terminal 

differentiated and thus non-proliferative, mTOR is unlikely to play a role in cell cycle progression. 

Interestingly, in our laboratory it was found that elevated serine phosphorylation of Stat3 is also localized in the 

extra-villous and syncytial trophoblast cell of first-trimester and term placenta whereas the tyrosine 

phosphorylation is not (unpublished observation). This finding underlines the importance of the serine 

phosphorylation and supports the idea of mTOR regulating Stat3. 

 

4.3 Model: Role of mTOR regulation in human reproduction 

Findings of this study confirm that mTOR plays a role in human pregnancy. We further propose that mTOR acts 

not solely as a nutrient sensor but also regulates trophoblast invasion as it was already reported for the murine 

model. The current knowledge and conclusions drawn from the presented work are portrayed in a simplified 

schematic presentation of the implanting blastocyst and the foeto-maternal interface in figure 46. 

As already mentioned, in mice it was demonstrated that mTOR is critical for implantation as it regulates 

transporters for the required exogenous amino acids [94] and is also important for trophoblast outgrowth [7, 

94]. So far, in the human placenta it has been described that mTOR is a nutrient sensor but its role in the 

invasion process is largely unknown. It can be proposed that mTOR is also involved in the invasiveness of extra-

villous trophoblast cells by regulating the secretion of uPA and PAI-1. MTOR enhances the secretion of uPA and 

diminishes the secretion of its major physiological inhibitor PAI-1 which promotes cell invasion. 
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The distinct functions of mTOR may be regulated by various extra- as well as intracellular signals. A difference 

in cell responses depending on the availability of serum (such as the decrease in uPA activity upon acute 

Rapamycin treatment) was observed. Fetal bovine serum (FBS) is the most widely used growth supplement for 

cell culture media. FBS is rich in embryonic growth-promoting factors including growth factors, hormones, 

attachment and spreading factors, binding proteins, lipids and minerals. It is a complex mixture of many 

defined and undefined components with different, physiologically balanced growth-promoting and growth-

inhibiting activities (Sigma product information). Therefore it is not possible to further characterize the 

component which is responsible for the observed effects. Since mTOR is well-known to be a nutrient sensor, 

one could speculate that nutrients account for the reported effects upon mTOR inhibition. One could further 

hypothesize that the availability of certain factors determines whether mTOR signals aim towards a metabolic 

response such as the activation of nutrient transporters or towards the induction of invasiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 47 the hypothesis of how mTOR regulates different cell responses in a nutrient-dependent manner is 

schematically depicted. It is tempting to speculate that successful blastocyst implantation is a consequential 

outcome when the essential nutrients and amino acids are available. Once the embryo is implanted, there 

might be a lack of nutrients or amino acids in the surrounding tissue and cells start to become invasive.  

figure 46. Schematic presentation of the role of mTOR during pregnancy in the reproductive tract. Left panel depicts current knowledge 
of mTOR regulation in murine blastocyst implantation (according literature is indicated (gray)). Right panel shows proposed 
involvement of mTOR in syncytial and extra-villous trophoblast cells. Bold black circled cells represent cells with elevated mTOR level 
according to the result of immunohistochemical analysis and according knowledge of mTOR as nutrient sensor (according literature is 
indicated (gray)). (EVT: extra-villous trophoblasts (red), cytotrophoblasts (pink), syncytium (brown)) 
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The lack of nutrients interferes with Rheb activation [52] and may also lead to a change of the balance of both 

mTOR complexes. The involvement of other signalling molecules, such as PRAS40, Akt and PI3K, on Rheb or 

mTOR function itself remains yet elusive. It is likely that there is a complex interplay between the signal 

molecules of the mTOR pathway possibly by negative and positive feedback loops and which is finely regulated 

by nutrient and amino acid availability and the intracellular energy status. 

To further unravel the regulation of signalling events during pregnancy will allow us to get a deeper 

comprehension of the progression of pathologies such as pre-eclampsia, intra-uterine growth retardation or 

the development of trophoblastic moles and also of foetal abortion on a molecular basis. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Perspective 

Future directions should address the role of PRAS40 in mTOR-mediated cell response. PRAS40 was initially 

identified as a substrate of Akt with unknown function [135]. It was then reported that it is phosphorylated by 

mTORC1 and is an inhibitor of mTORC1 activity [108, 136]. Oshiro et al. 2007 observed that amino acid 

withdrawal inhibited PRAS40 phosphorylation which was reversed by Rheb overexpression [64]. A putative 

element that binds to Rheb and is involved in regulation of mTOR activity was proposed by Long et al. 2007 [97] 

and so far it is mere speculation if this sought-for molecule is PRAS40. The question whether Rheb binds to 

PRAS40 and hence affects PRAS40-mediated mTOR inhibition remains to be studied.  

It was also mentioned that PRAS40 might display pro-apoptotic function through binding of another 

Rapamycin-insensitive molecule [107]. If there is indeed an existence of Rheb-PRAS40 binding and Rheb is 

upstream of mTOR and not affected by Rapamycin, it seems likely that this could also be responsible in the 

figure 47. Sketch of proposed regulation of mTOR during pregnancy by nutrient availability.  
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regulation of apoptosis through mTOR. In addition, in the presented work there was an unsuspected 

differential outcome on uPA and PAI-1 secretion observed for Rheb and mTOR knockdown which suggested a 

further interaction partner of Rheb which is upstream of mTOR and presumably acts as an inhibitor to mTOR. A 

candidate for this proposed molecule could also be PRAS40. Altogether, further analysis of PRAS40 should aim 

on its ability to bind to Rheb and to affect the regulation of apoptosis and secretion of uPA and PAI-1. 

Cytotrophoblast cells as well as in vitro propagated EVT cells exhibited an expression of high-affinity uPA 

receptor (uPAR) [137] and in histochemical and ultrastructural studies demonstrated in situ that uPAR is highly 

expressed at the migration front of EVT cells [138] suggesting a role of the uPA:uPAR interaction in trophoblast 

migration and invasion [118]. Clinical data revealed that sera from patients with recurrent spontaneous 

abortions including pre-eclampsia contained antibodies which were reactive to a 62 kDa trophoblast cell 

surface protein that may be uPAR since these antibodies interfered with uPA:uPAR binding [139]. Therefore, a 

detailed knowledge of the role and the regulation of the uPA system should be relevant for understanding 

pregnancy-related pathologies and future studies should address whether mTOR also regulates uPAR 

expression. 

Surprisingly, the absence of serum enhanced the expression of Rictor. It might be of interest to identify 

molecules which account for the inhibition of Rictor expression. It is unclear whether the nutrient-sensitive 

pathway via mTORC1 or some other pathway could be involved in the regulation of Rictor expression. There 

are speculations of how both mTOR complexes regulate each other. It was shown that mTORC1 phosphorylates 

Rictor and that this phosphorylation was Rapamycin-sensitive and could also be abolished upon knockdown of 

mTOR [140]. 

Elevated PAI-1 levels could be associated with pre-eclampsia [141, 142] and the lack of PAI-1 was found 

together with excessive decidual necrosis and fibrinoid deposition found in complete molar pregnancies, which 

are manifested by an uncontrolled placental invasion [35]. It is therefore of high interest to unravel the 

mechanisms involved in the regulation of PAI-1 expression and secretion during pregnancy. Here we used a 

trophoblast cell line model and even though trophoblasts are the source of secreted PAI-1, it might be 

beneficial to investigate primary material, particularly from pre-eclamptic patients. But it is to note, that it is 

hard to isolate and cultivate trophoblast cells. It is also an issue that the first-trimester trophoblasts are of 

higher importance since placentation is primarily sensitive in the beginning of pregnancy but pre-eclampsia 

develops later on from 20 weeks of gestation. Pre-eclampsia is a pregnancy-related disorder which is unique to 

humans [143] and the establishment of a suitable animal model is required and ongoing [144-146]. A mouse 

model with transferred activated Th1-like cells led to pre-eclampsia symptoms exclusively in pregnant mice in 

terms of clinical conditions such as hypertension, proteinuria and kidney pathology [144]. The use of this model 

in the context of altered protease activity has to be elucidated. Mouse models which mimic pre-eclampsia in 

conjuction with elevated PAI-1 levels might be a useful tool in order to further examine effects of inhibition of 

mTOR on placentation through regulation of the uPA system.   
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In general, the question of the worth of cell line models can be raised. Cell lines are immortalized cells derived 

from primary material and thus cell-specific features might be adverse. Here, it was observed that with the 

used cell line which is derived from first-trimester EVTs, that there is a major effect on proliferation upon mTOR 

inhibition although in vivo EVTs are terminal determined and possess no proliferative potential. Nevertheless, 

studying cellular and molecular mechanisms in human reproduction raises ethical issues and makes in vivo 

studies impossible and therefore the in vitro studies an indispensible necessity. Extrapolation from in vitro to in 

vivo situation or from animal models to human is consequently the major challenge.  
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Chapter 5 | Appendix 

5 Appendix 

5.1 Material list 

 

Special technical equipment: 

Bio-imaging system:   DNR MF-ChemiBIS 3.2  

Blotting apparatus:  Whatman/Biometra Fastblot 

Electrophoresis systems:   Blot-Module Mini-V8x10 (Life Technologies) 

     PerfectBlue Vertical Electrophoresis System Model Twin S (PeqLab) 

     MiniProtean 3 (Bio-Rad) 

Electroporation device:  MicroPorator MP-100 (Digital Bio) 

Flow cytometer:   FACS Calibur (Becton Dickenson Coulter) 

Microplate reader:   MPR A4 

Microscope:    Axiovert 25 (Zeiss)  

Axioplan 2 (Zeiss) with camera: Axiocam HRc (Zeiss) and 

fluorescence lamp: HBO 100W 

PCR machine:   Mastercycler 384 (Eppendorf) 

Spectrophotometer:   Cary 50 (Bio Varian) 

 

 

 

Cell lines and bacteria strains: 

HEK293T:  ATCC# CRL-11268 

HTR8/SVneo:  Kind gift of Charles H. Graham (Queens University, Kingston, Canada) 

(explained in detail see paragraph 1.2.4 in the introduction chapter) 

Escherichia coli:   DH5α compentent cells (Life technologies)   (used for subcloning) 

    XL1-Blue supercompetent cells (Stratagene)  (provided with PCR kit) 
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Special reagents, chemicals and other supplies: 

AssayMax Human PAI-1 ELISA Kit  AssayPro 

Cell Lysis Buffer (10x)   Cell Signaling Technology 

Chemilumiscent detection reagent  ECL (Amersham Pharmacia Biotech) 

Enzymes:  T4 DNA Ligase  Quick Ligation Kit (New England BioLabs) 

   Kpn I   Promega 

   BamH I   Promega 

   CIAP   Promega 

Fetal Bovine Serum (FBS)   BioWhittaker/Cambrex  

Film      Hyperfilm 18x24cm (Amersham Pharmacia Biotech) 

Gel extraction kit    Marligen 

Lipofectamine 2000   Invitrogen 

GSH-Sepharose    GE-Healthcare 

Maxiprep Kit High Purity Plasmid Purification Maxiprep System 

(Marligen) 

Miniprep Kit High Purity Plasmid Purification Miniprep System 

(Marligen) 

Molecular weight marker    PrecisionPlus Protein Standard Dual Color (Bio-Rad) 

MTS proliferation assay   CellTiter 96 Aqueous One Solution (Promega) 

PCR Kit QuikChange Site-directed Mutagenesis PCR Kit 

(Stratagene) 

Protease inhibitor cocktail tablet  Roche 

Proteinase inhibitor cocktail  Sigma-Aldrich  

Protein Assay    BioRad 

PVDF Membrane    Hybond-ECL 30cmx3m (Amersham Pharmacia Biotech) 

RPMI 1640    with L-glutamine and phenol-red (PAA)  

 Sepharose Beads    Sigma-Aldrich 

 

Vectors:  pCMV5-Flag (Flag-tag) 

pEBG (GST-tag) 
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Antibodies: 

Rabbit anti-human Stat3    Cell Signaling Technology 

Rabbit anti-human Phospho-(Ser
727

)-Stat3  Cell Signaling Technology 

Rabbit anti-human Phospho-(Tyr
705

)-Stat3  Cell Signaling Technology 

Rabbit anti-human mTOR    Cell Signaling Technology 

Rabbit anti-human Raptor    Cell Signaling Technology 

Rabbit anti-human Rictor     Cell Signaling Technology 

Rabbit anti-human Rheb    Cell Signaling Technology 

Rabbit anti-human β-Actin   Cell Signaling Technology 

Mouse anti-human Phospho-(Thr
389

)-p70
S6K 

 Cell Signaling Technology 

Mouse anti-human cleaved PARP   Cell Signaling Technology 

Mouse anti-Flag M2    Sigma-Aldrich 

Rabbit anti-GST     Santa Cruz Biotechnology 

Goat-anti-rabbit IgG, HRP-conjugated  Cell Signaling Technology 

Goat-anti-mouse IgG, HRP-conjugated  Cell Signaling Technology 

Mouse anti-human PAI-1    American Diagnostics Inc. 

Mouse anti-human cleaved PARP,  

Fluorescein-conjugated     Cell Signaling Technology 
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Vector map: 

 

figure 48. Vector map of pCMV5-Flag (modified from Addgene). Restriction sites for insertion of Rheb wildtype or mutants are 
highlighted in the red rectangle. (hGH poly A: human growth hormone poly A-tail, SV40: simian virus 40, lacZ encodes b-galactosidase, 
f1 is a bacteriophage) 

 

 

Restriction sites:  5’ gca GGA / TCC cgG GT / A CCt cta 3’ 

 

 

Flag-Rheb junction:  5’ acc ATG GAC TAC AAG GAC GAC GAT GAC AAG aat tct gca GGA TCC ATG CCG … 3’ 

 

 

(ATG: start codon for methionine, A: adenosine, T: thymidine, G. guanosine, C: cytosine, D: aspartatic acid, Y: tyrosine, K: lysine) 

BamH I Kpn I 

BamH I Rheb1 Flag-tag (DYKDDDDK) 

pCMV5 

4657 bp 

Ampicillin 

Resistance 

f1 origin 

pBR322 origin 

lacZ 

CMV promotor 

hGH poly A 

SV40 origin 

Multiple cloning site (MCS) 
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5.2 Supplementary densitometric analysis 

Western blots:  

       

figure 49. Relative expression of Rheb, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h, representing two independent 
experiments (Student t-Test: * p=0.02). 
 

 

       

figure 50. Relative expression of mTOR, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of two independent experiments (Student t-Test: * p=0.04).  

 

 

       

figure 51. Relative expression of Raptor, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of four independent experiments (Student t-Test: * p=0.0005). 
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figure 52. Relative expression of Rictor, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of two independent experiments (Student t-Test: * p=0.002). 
 

 

            

figure 53. Relative detection of cleaved PARP, phosphorylated Stat3 and p70S6K and total Stat3 and p70S6K expression in the presence and 
absence of serum. Error Bars indicate standard deviation of at least two experiments (Student t-Test: * p=0.02). Samples with serum 
supplementation were set independently as 100%. 

 

        

figure 54. Relative level of cleaved PARP, normalized to β-Actin, upon treatment with Rapamycin. Error bars indicate standard deviation of 
at least three experiments. Controls are set independently as 100%. 

0,0

20,0

40,0

60,0

80,0

100,0

120,0

C SCR Rictor

N
o

rm
a

li
ze

d
  

R
ic

to
r 

e
x

p
re

ss
io

n

0,0

50,0

100,0

150,0

200,0

cleaved 

PARP

Phospho 

(Ser727) 
Stat3

Phospho 

(Tyr705) 
Stat3

Stat3 Phospho 

(Thr389) 
p70S6K

p70S6K

N
o

rm
a

li
ze

d
 d

e
te

ct
io

n

+FBS

-FBS

0,0
20,0
40,0
60,0
80,0

100,0
120,0
140,0
160,0

C 2h 24h

100nM Rapamycin

N
o

rm
a

li
ze

d
 c

le
a

v
e

d
 P

A
R

P
 

le
v

e
l

+FBS

-FBS

* 

* 



|Appendix 
 

 
84 

 

 

       

figure 55. Relative phosphorylation of Stat3 at Ser727, normalized to total Stat3 expression, upon treatment with Rapamycin. Error bars 
indicate standard deviation of at least four experiments (Student T-test: * p=0.04, n=4). Controls are set independently as 100%. 

 

       

figure 56. Relative phosphorylation of Stat3 at Tyr705, normalized to total Stat3 expression, upon treatment with Rapamycin. Error bars 
indicate standard deviation of two independent experiments. Controls are set independently as 100%. 

 

 

            

figure 57. Relative expression of Stat3, normalized to β-Actin, upon treatment with Rapamycin. Error bars indicate standard deviation of at 
least two experiments. Controls are set independently as 100%. 
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figure 58. Relative phosphorylation of p70S6K, normalized to total p70S6K expression, upon treatment with Rapamycin. Error bars indicate 
standard deviation of at least two experiments (Student T-test: * p<0.04). Controls are set independently as 100%. 

 

       

figure 59. Relative expression of p70S6K, normalized to β-Actin, upon treatment with Rapamycin. Error bars indicate standard deviation of at 
least two experiments. 

 

 

       

figure 60. Relative level of cleaved PARP, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of at least four independent experiments. Controls set independently as 100%. 
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figure 61. Relative phosphorylation of Stat3 at Ser727, normalized to total Stat3 expression, upon 0.1nmol siRNA transfection. Error bars 
indicate standard deviation of at least two independent experiments (Student t-Test: * p<0.05). Controls set independently as 100%. 

 

 

       

figure 62. Relative phosphorylation of Stat3 at Tyr705, normalized to total Stat3 expression, upon 0.1nmol siRNA transfection. Error bars 
indicate standard deviation of two independent experiments. Controls set independently as 100%. 

 

            

figure 63. Relative expression of Stat3, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of at least two independent experiments. Controls set independently as 100%. 
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figure 64. Relative phosphorylation of p70S6K at position Thr389, normalized to total p70S6K, upon 0.1nmol siRNA transfection after 48h. Error 
bars indicate standard deviation of two independent experiments. Controls set independently as 100%. 

        

 

            

figure 65. Relative expression of p70S6K, normalized to β-Actin, upon 0.1nmol siRNA transfection after 48h. Error bars indicate standard 
deviation of two independent experiments. Controls set independently as 100%. 
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PAI-1 ELISA standard curve: 

                 

figure 66. Standard curve of known concentrations of human PAI-1 measured by ELISA. Error bars indicate standard deviation of duplicates. 
Equation of linear regression and coefficient of determination (R2) is shown in the diagram. 
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Zymography: 

                     

 

 

 

 
figure 67. Zymolytic activity of MMP9 when supplemented with or without serum. Bars indicate median value of three  independent 
experiments, depicted as spades. Controls set independently as 100%. 
 

 

 

                     

 

 

 

 
figure 68. Zymolytic activity of MMP2 when supplemented with or without serum. Bars indicate median value of three independent 
experiments, depicted as spades. Controls set independently as 100%. 
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figure 69. Zymolytic activity of uPA when supplemented with or without serum. Bars indicate median value of three  independent 
experiments, depicted as spades. Controls set independently as 100%. 
 

 

 

                     

 

 

figure 70. Zymolytic activity of MMP9 when supplemented with serum. Bars indicate median value of at least four independent experiments, 
depicted as spades. 
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figure 71. Zymolytic activity of MMP9 when supplemented without serum. Bars indicate median value of at least four independent 
experiments, depicted as spades (Student t-test: * p<0.05). 
 

 

 

                     

 

 

figure 72. Zymolytic activity of MMP2 when supplemented with serum. Bars indicate median value of at least four independent experiments, 
depicted as spades. 
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figure 73. Zymolytic activity of MMP2 when supplemented without serum. Bars indicate median value of at least four independent 
experiments, depicted as spades. 
 

 

 

                     

 

 

figure 74. Zymolytic activity of uPA when supplemented with serum. Bars indicate median value of at least four independent experiments, 
depicted as spades (Student t-Test: * p<0.02). 
 

 

 

 

 

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

0,0

50,0

100,0

150,0

200,0

250,0

     Control            Scr             Rheb        mTOR (a)        Raptor         Rictor 

0.1nmol siRNA 

R
e

la
ti

v
e

 z
y

m
o

ly
ti

c 
 a

ct
iv

it
y

 o
f 

M
M

P
2

 
R

e
la

ti
v

e
 z

y
m

o
ly

ti
c 

 a
ct

iv
it

y
 o

f 
u

P
A

 

     Control              Scr Rheb    mTOR (a)      Raptor          Rictor 

0.1nmol siRNA 

* * 

+FBS 

-FBS 



|Appendix 
 

 
93 

 

 

                     

 

 

figure 75. Zymolytic activity of uPA when supplemented without serum. Bars indicate median value of at least four independent 
experiments, depicted as spades (Student t-Test: * p<0.03). 
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5.3 Summary 

In this study the regulation of the signal molecule mTOR by the GTPase Rheb and the role of this signaling 

pathway in respect to the invasive behaviour of human trophoblast cells, which is a critical feature in 

pregnancy, was examined. 

Trophoblast cells are cells from foetal origin and upon implantation of the blasotcyst, they infiltrate the 

maternal tissue and blood vessels and remodel it.  In concert with maternal cells such as stromal and immune 

cells, they form the placenta. The placenta is a self-sufficient unit, which anchors the foetus and garantuees the 

required supply of nutrients and oxygen. At the foeto-maternal interface, the maternal immune system comes 

into contact with the semi-allogenic “foreign” trophoblasts. A variety of immune-suppresive mechanisms 

prevents a rejection of the foetus. The progression of the differentiation and invasion of the trophoblast cells 

even require a cellular and molecular contact between both individuals. 

The secretion of extra-cellular matrix degrading enzymes enables cells to invade. The activity of those enzymes 

is controlled by secretion of inhibitors. Key enzymes for degrading the extra-cellular matrix during pregnancy 

are the matrix-metalloproteases (MMP) -2 and -9. Another enzyme which essentially influences invasiveness is 

the urokinase-like plasminogen activator (uPA) which major inhibitor is PAI-1. Trophoblast invasion is in many 

aspects similar to that of tumor cells but is physiologically restricted in terms of temporal and spatial 

limitations. The exact mechanism by which trophoblast invasion is regulated is largely unknown. 

Several signalling pathways were linked to the invasive behaviour of cells. In mice models, the mammalian 

target of Rapamycin was discovered as an important molecule within embryogenesis and trophoblast 

outgrowth and migration. MTOR is a serine/threonine kinase and involved in the initiation of protein 

translation and thereby also in cell proliferation. MTOR is downstream in the PI3K/Akt pathway and is present 

in two complexes. Its binding partners are distinct in both complexes and determine Rapamacin-sensitivity and 

substrate specifity and thereby the functional outcome. In mTOR complex 1 (mTORC1), one component is 

Raptor and in complex 2 (mTORC2) is Rictor. The latter complex seems to be involved in the regulation of the 

cytoskeleton organization. The microbial product Rapamycin inhibits the kinase activity of mTORC1 and only 

upon prolonged exposure it inhibits the assembly of newly synthesized mTORC2 components. The kinase 

activity of mTOR is stimulated by various growth factors, extracellular amino acids and the intracellular energy 

level. In general, mTOR is described as sensor of the energy status. An overexpression of Rheb overcomes the 

sensitivity of mTOR kinase activity towards nutrient availability. 

In order to unravel the exact mechanism how Rheb activates mTOR kinase activity, a set of 25 Rheb mutants 

was generated. Thereby, distinct, solvent-exposed amino acid residues of Rheb were substituted to the small, 

apolar amino acid alanine. Five loss-of-function mutants could be identified. An overexpression of those 

mutants in vitro could not overcome mTOR sensitivity upon amino acid withdrawal anymore. The mutation 

sites of these mutants were positioned within or adjacent to two functional important structures of Rheb, 
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named switch 1 and switch 2. The loss of function was not associated with an impaired binding property 

towards mTOR. 

As model for trophoblasts, the cell line HTR8/SVneo, which originates from extra-villous first-trimester 

trophoblast cells, were chosen. It was focussed on functional analysis relevant to invasiveness such as the 

secretion of matrix-degrading enzymes (MMP2, -9, uPA) and one of its inhibitor (PAI-1) as well as the in vitro 

invasion behaviour upon manipulation of the cells. Those investigations were performed by substrate 

zymography, ELISA, immuncytochemistry and Matrigel invasion assays. Additionally, the effects on proliferation 

and apoptosis were checked. The expression of certain molecules within the mTOR signal cascade (Rheb, 

mTOR, Raptor, Rictor) was silenced by siRNA-induced RNA interfernce which is a post-transcriptional mRNA-

degrading process. Also the mTOR kinase activity was inhibited by Rapamycin and serum-starvation. 

As conclusion, it was seen that mTOR mainly influences proliferation and apoptosis. Nevertheless, there is a 

hint that there is a minor impact on invasiveness through regulation of uPA and PAI-1 secretion. The question 

whether the observed effects are mediated by mTORC1 or mTORC2 could not be fully resolved. Results 

implicate a pre-dominant role of mTORC1. In addition, a signal cross-talk between mTOR and Stat3 in human 

trophoblast cells could be demonstrated. The expression of mTOR in human term as well as first-trimester 

placenta could be confirmed by immunohistochemical staining and revealed elevated mTOR level in extra-

villous and syncytial trophoblast cells. 

Further studies should aim on the impact of recently identified mTOR complex 1 component and mTOR kinase 

inhibitor PRAS40. The unexpected outcome of loss-of-function Rheb binding to mTOR and also the opposing 

effects of Rheb and mTOR “knock-down” might be explained with this new discovered mTOR interaction 

partner. A further analysis of the role and regulation of uPA, its receptor of uPA (uPAR) and its major inhibitor 

PAI-1 on trophoblast invasiveness might be valuable in order to elucidate the clinical link of the uPA system to 

pregnancy-related disorders such as pre-eclampsia which is due hypoinvasiveness. 
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Zusammenfassung 

 

In der vorliegenden Arbeit wurde die Regulation des Signalmoleküls mTOR durch die GTPase Rheb und die Rolle 

dieses Signalweges in Bezug auf das Invasionsverhalten von humanen Trophoblasten, welches ein kritisches 

Merkmal in der Schwangerschaft darstellt, näher untersucht. 

Trophoblasten sind fetale Zellen, die nach Implantation der Blastocyste in das mütterliche Gewebe einwachsen. 

Sie infiltrieren und remodellieren das umliegende Gewebe und Blutgefäße und zusammen mit mütterlichen 

Zellen (Stroma-, Immunzellen) bilden sie die Plazenta. Die Plazenta ist ein eigenständiges Organ, welche den 

Fetus verankert und die Versorgung mit lebenswichtigen Elementen wie Nährstoffe und Sauerstoff 

gewährleistet. An der fetal-maternalen Grenzfläche kommt es zum Kontakt zwischen mütterlichen 

Immunzellen und den semi-allogenen, „fremden“ Trophoblast-Zellen. Eine Vielzahl an immunsuppressiven 

Mechanismen verhindert eine Abstoßungsreaktion. Weiterhin wird dieser Kontakt benötigt, um die 

Differenzierung und die Invasion der Trophoblasten voranzutreiben.  

Die Sekretion von Enzymen, die die extrazelluläre Matrix abbauen, befähigt die Trophoblasten zur Invasion. Die 

Aktivität dieser Enzyme wird durch Sekretion von Inhibitoren kontrolliert. Als Schlüsselenzyme für die 

Degradation der extrazellulären Matrix wurden die Matrixmetalloproteasen (MMP)-2 und -9 in der Plazenta 

entdeckt. Ein weiteres Enzym, das Zellinvasion wesentlich beeinflusst, ist urokinase-ähnliche 

Plasminogenaktivator (uPA). Die Trophoblast-Invasion ähnelt in vielen Merkmalen denen von Tumorzellen, mit 

dem Unterschied, dass die Invasivität von Trophoblasten zeitlich und räumlich begrenzt ist. Die genauen 

physiologischen Mechanismen, die die Trophoblasten-Invasion regulieren und einschränken, sind 

weitestgehend unbekannt.  

Verschiedene Signalwege wurden mit Invasivität von Zellen in Verbindung gebracht. In Mausmodellen konnte 

mammalian target of Rapamycin (mTOR) als essentielles Molekül in Embryogenese und Trophoblasten-

Auswuchs und -Migration aufgedeckt werden. MTOR ist eine Serin/Threonin-Kinase und wesentlich an der 

Initiation der Proteintranslation und damit der Zellproliferation und des Zellwachstums beteiligt. MTOR 

befindet sich downstream im PI3K/Akt Signalweg und kommt in zwei Komplexen vor. Die Bindungspartner von 

mTOR unterscheiden sich in beiden Komplexen und bestimmen die Substratspezifität als auch die Sensitivität 

zu Rapamycin. Im mTOR Komplex 1 (mTORC1) ist mTOR im Verbund mit Raptor und im Komplex 2 (mTORC2) 

mit Rictor. Das mikrobielle Produkt Rapamycin hemmt die Kinaseaktivität von mTORC1 und verhindert erst 

nach längerer Gabe die Neuformation von mTORC2. Die Kinaseaktivität wird über verschiedene 

Wachstumsfaktoren, extrazelluläre Aminosäuren und dem intrazellulären Energiestatus reguliert. MTOR wird 

als Sensor des Energielevels im Allgemeinen beschrieben. Eine Überexpression des mTOR Regulators Rheb kann 

diese Empfindlichkeit gegenüber dem verfügbaren Energielevel aufheben.  

Um den genauen Mechanismus der Regulation von Rheb in der Aktivierung der mTOR-Kinaseaktivität zu klären, 

wurden 25 Rheb-Mutanten generiert. Dabei wurden verschiedene, exponierte Aminosäurereste von Rheb mit 

der unpolaren, einfachen Aminosäure Alanin substituiert. Es wurden fünf Mutanten mit Funktionsverlust 
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identifiziert. Eine Überexpression dieser Mutanten in vitro konnte die Sensitivität von mTOR nach Entzug 

extrazellulärer Aminosäuren nicht aufheben. Die Mutationen dieser Mutanten lag innerhalb oder benachbart 

der zwei funktionellen Strukturen von Rheb, die als Switch 1 und Switch 2 bezeichnet werden. Der 

Funktionsverlust ging unerwarteterweise nicht mit einer verminderten Bindung zu mTOR einher. 

Als Modell für Trophoblasten diente die Zelllinie HTR8/SVneo, die aus extravillösen Ersttrimester-

Trophoblasten erhalten und immortalisiert wurde. Im Fokus standen funktionelle Analysen, die relevant für die 

Zellinvasion sind. Darunter zählten Untersuchungen in vitro, die die Sekretion von Enzymen, die die 

extrazelluläre Matrix verdauen können (MMP2, MMP9, uPA), und des Inhibitors eines solchen Enzyms (PAI-1), 

als auch die Invasivität einschlossen. Methodisch wurde dies ermöglicht durch Substrat-Zymographie, ELISA, 

Immunzytochemie und Matrigel Invasionsassay-Experimente. Weiterhin wurde auch das Proliferation- und 

Apoptoseverhalten geprüft. Um die Einflüsse einzelner Moleküle des mTOR Signalweges (Rheb, mTOR, Raptor, 

Rictor) auf die genannten Eigenschaften zu untersuchen, wurde deren Expression mit Hilfe durch siRNA-

induzierter RNA-Interferenz post-transkriptional gehemmt. Zusätzlich wurde durch Inkubation mit Rapamycin 

und durch Serumentzug die Kinaseaktivität von mTOR inhibiert. Es wurde festgestellt, dass mTOR hauptsächlich 

in Proliferation und Apoptose der gewählten Zelllinie involviert ist. Gemessene Unterschiede im Invasions- und 

Sekretionsverhalten konnten auf diese Effekte zurückgeführt werden. Dennoch gibt es einen Einfluss auf die 

Invasivität vermutlich über die Regulation der Sekretion von uPA und dessen Inhibitor PAI-1.  Zusätzlich konnte 

nachgewiesen werden, dass Rapamycin und mTOR Silencing die Serin-Phosphorylierung von Stat3 negative 

beeinflussen. 

Generell konnte gezeigt werden, dass mTOR hauptsächlich die Proliferation- und Apoptoserate in der 

gewählten Trophoblastzelllinie beeinflusst. Es konnte auch nachgewiesen werden, dass mTOR die 

Trophoblastinvasion durch Regulation der Sekretion von uPA and PAI-1 beeinflußt. Die Frage, ob diese 

Regulation über mTORC1 oder mTORC2 vermittelt wird, konnte nicht vollständig geklärt werden. Die 

Ergebnisse deuten auf eine größere Rolle für mTORC1. Zusätzlich konnte ein Cross-talk zwischen mTOR und 

Stat3 in humanen Trophoblasten bestätigt werden. Die Expression von mTOR konnte in humanen Plazenten 

aus dem ersten und dritten Trimester nachgewiesen werden. Immunhistochemische Analysen zeigten eine 

erhöhte mTOR Expression in extravillösen und synzytialen Trophoblasten für beide Zeitpunkte. 

Zukünftige Studien sollten den Einfluss von PRAS40 auf mTOR-vermittelte Signale klären. PRAS40 ist kürzlich als 

integraler Bestandteil mTORC1, der die Kinaseaktivität von mTOR inhibiert, entdeckt worden. Mithilfe dieses 

Proteins könnte die unerwartete Bindung von funktionsverlustigen Rheb-Mutanten an mTOR als auch die 

gegenteilige Effekte von Rheb und mTOR knockdown erklärt werden. Weiterhin sollte die Bedeutung des uPA-

Systems in Hinsicht auf die Regulation der Trophoblasteninvasion entschlüsselt werden, um klinische Ansätze 

zu Schwangerschafts-assoziierten Pathologien wie Prä-Eklampsie zu finden. 
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