

Faculty of Computer Science and Automation
Integrated HW/SW Systems Group

Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel

Master Thesis

A Generic Debug Interface for
IP-Integrated Assertions

Christoph Kuznik

This master thesis was submitted in fulfillment
of the requirements for the degree

DIPLOMINGENIEUR
(Dipl.-Ing.)

Tutor Dr.-Ing. Volkan Esen
Professor in charge Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
University adviser Dr.-Ing. Dieter Wuttke

Submission Ilmenau, 9. December 2008
Inventory no. 2008-12-09/161/II03/2235

Integrated HW/SW Systems Group

Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel

Faculty of Computer Science and Automation

Ilmenau University of Technology

in Cooperation with

Infineon Technologies AG Munich

IFAG ETS DMI AFS SFV

Prof. Dr.-Ing. Wolfgang Ecker

Dr.-Ing. Volkan Esen

ii

Declarations

Herewith I declare, that I have made the presented master thesis myself and solely with
the aid of the means permitted by the examination regulations of the Ilmenau University
of Technology. The literature used is indicated in the bibliography. I have indicated
literally or correspondingly assumed contents as such.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, diese Diplomarbeit eigenhändig und selbständig
verfasst, keine als die angegebenen Hilfsmittel und Quellen verwendet und direkt oder
indirekt übernommene Gedanken als solche gekennzeichnet zu haben. Diese Arbeit wurde
bisher in dieser oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt noch
anderweitig veröffentlicht.

Ilmenau, 9. December 2008

Christoph Kuznik

Theses

1. Verification of complex heterogeneous electronic systems like System-on-Chip is the
bottleneck of every design flow. Due to the design-verification gap and in general a
methodology gap, it is unlikely that future designs can be verified to a large extend
pre-silicon while keeping track in the time to market.

2. Moreover, assertion-based verification methodology enables early error discovery and
information on where and when assertions fail. This information is an important
aid in the debugging process and the fundamental reasoning behind the ABV
methodology.

3. Therefore, in-system, at-speed silicon validation using assertion checkers will be the
next step for successful electronic systems design flows.

4. As electronic system design moves towards software engineering, there is emerging
interest for model based approaches to cope with the growing complexity. A
promising approach is the usage of meta modeling and the concept of domain-
specific code-generation, for example using templates.

5. Using template based code-generation an abstract modeled functionality can be
generated for a chosen architecture in an ideal way for every target language.

6. The model representation for a debuggable assertion interface makes usage of these
two approaches and generates an interface to access on-silicon assertion. This allows
the designer to optionally include silicon checkers within the design.

7. The capture of the debuggable assertion interface within a meta model allows
implementation independent specification. Besides, the assertion interface allows
the consistent modeling of assertion across multiple abstraction levels.

8. With help of the debuggable assertion interface correct module integration can
be verified. Moreover, the monitoring of IP-internal assertion checker significantly
improves the observability of internal signals, which may escaped previous pre-silicon
verification and simulation steps.

Ilmenau, 9. December 2008

Christoph Kuznik

iv

Acknowledgments

I am delighted to thank Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel from the Faculty
of Computer Science and Automation at the Ilmenau University of Technology for the
opportunity to write a diploma thesis at Infineon Technologies AG Munich and Dr.-Ing.
Heinz-Dietrich Wuttke from Ilmenau University of Technology for his kindly willingness
to supervise it.

Besides, I also sincerely thank Prof. Dr.-Ing. Wolfgang Ecker of Infineon Technologies
AG for giving me the possibility to process a research thesis topic within the System
Design Methodologies department at Infineon. Moreover, I would like to express my deep
gratitude to my tutor Dr.-Ing. Volkan Esen for his invaluable suggestions and support.
I also want to thank my Infineon colleagues Dipl.-Ing. Michael Velten and Dipl.-Ing.
Thomas Steininger for their help, support and encouragement.

Finally I thank the Infineon students of the department and my girlfriend Nicole for the
enjoyable time in Munich as well as my family which always supported me during my
studies.

v

Abstract

Nowadays electronic systems design requires fast time to market and solid verification
throughout the entire design flow. Many concepts have been researched to raise the level
of abstraction during the design entry phase, whereas model-based design is the most
promising one. Assertion-based verification enables the developer to specify properties
of the design and to get report if these are violated. Assertions are common during
development and simulation of electronic products but often are not included in the final
silicon. In this thesis an UML-based model defined at Infineon Technologies for capturing
design specification information and to generate code automatically using templates, will
be extended to allow the description of an abstract debuggable assertion interface for
silicon assertions. With help of the assertion interface it shall be possible to verify the
correct module integration and to monitor IP-internal assertion checker results. Besides,
the code-generation templates for the assertion interface model will be described. To
demonstrate the usability of the developed concepts an example system will be introduced
to validate the approach.

Kurzfassung

Der Entwurf von Hardware/Software Systemen ist auf eine solide Verifikationsmethodik
angewiesen, die den ganzen Design Flow durchzieht. Viele Konzepte haben eine Erhöhung
des Abstraktionsniveaus bei der Entwurfseingabe gemeinsam, wobei der modell-basierte
Hardware-Entwurf einen vielversprechenden und sich verbreitenenden Ansatz darstellt.
Assertion basierte Verifikation ermöglicht dem Entwickler die Spezifikation von Eigen-
schaften des Entwurfes und die Aufdeckung von Fällen, in denen diese verletzt werden.
Während Assertions in Entwurfs- und Simulationsstadien weit verbreitet sind, ist der
Ansatz, diese mit auf dem integrierten Schaltkreis (IC) zu fertigen, neuartig. In dieser
Diplomarbeit soll ein von Infineon Technologies entwickeltes, auf UML basierendes
Datenmodell, welches zur Erfassung von Entwurfsspezifikation und zur automatischen
Code-Generierung genutzt wird dahingehend erweitert werden, die Beschreibung für
im IC integrierte Assertions zu ermöglichen. Für diese Zwecke wird ein abstraktes
Datenmodell beschrieben werden. Das Assertion Interface soll die spezifikationsgetreue
Modellintegration gewährleisten, sowie IC interne Assertionresultate dem umgebenen
System über das Interface zugänglich machen und damit zum Debugging während der
Laufzeit ermöglichen. Ferner werden die Codegenerierungs Templates erläutert und ein
Beispielsystem eingeführt, um die beschriebenden Konzepte zu validieren.

vii

Nomenclature

ABV Assertion-based Verification

AHB Advanced High-performance Bus

AMBA Advanced Microprocessor Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

ECSI European Electronic Chips & Systems design Initiative

EDA Electronic Design Automation

FSM Finite State Machine

HTML Hypertext Markup Language

IC Integrated circuit

IP Intellectual Property, in this context hardware or software modules

IP-XACT The new name of the SPIRIT schema, which will be standardized as
IEEE 1685

ITRS International Technology Roadmap for Semiconductors

MARTE Modeling and Analysis of Real-Time Embedded Systems

MOF Meta-Object Facility

OMG Object Management Group

OVL Open Verification Library

PSL Property Specification Language

RTL Register Transfer Language

SIF Serial InterFace

SoC System-on-Chip

ix

SPRINT Open SoC Design Platform for Reuse and Integration of IPs

SVA SystemVerilog Assertions

TLM Transaction Level Modeling

UART Universal Asynchronous Receiver Transmitter

UML Unified Markup Language

VCD Value Change Dump

VHDL Very High Speed Integrated Circuit Hardware Description Language

W3C World Wide Web Consortium

WLF Wave Log Format

XMI XML Metadata Interchange

XML Extensible Markup Language

x

Contents

List of Figures . xiv
List of Tables . xv
List of Algorithms . xvi

1. Introduction 1

1.1. Motivation . 1
1.2. Chapter Overview . 2

2. Related Work 4

2.1. Assertion based Verification . 4
2.1.1. What is an Assertion . 4
2.1.2. Assertions in Silicon Debug . 6

2.2. Similar Approaches . 8

3. Infineon XChange Flow 10

3.1. Fundamentals . 11
3.1.1. Meta data and meta models . 12
3.1.2. SPIRIT . 13
3.1.3. SPRINT . 14
3.1.4. Unified Modeling Language . 15
3.1.5. Extensible Markup Language . 17
3.1.6. XML Metadata Interchange . 17
3.1.7. Python . 19
3.1.8. Templating with MAKO . 20
3.1.9. AMBA Overview . 23
3.1.10. AMBA APB . 24

3.2. The Essence Meta Model . 25
3.2.1. Component Data Model . 26
3.2.2. Interface Definition Data Model 26
3.2.3. XRef Data Model . 27
3.2.4. Bus Data Model . 28
3.2.5. System Data Model . 28
3.2.6. ModelConfig Data model . 28
3.2.7. Other Data Models . 29

xi

3.3. Toolchain . 30
3.3.1. Essimport . 30
3.3.2. Essemplate . 32

4. Infineon SPINNI Example System 33

4.1. Existing System . 33
4.1.1. Architecture . 33
4.1.2. Simple Bus Specification . 34

4.2. Extensions to the SPINNI System . 35
4.2.1. APB Bridge Architecture . 36
4.2.2. APB Bridge Behavior . 37
4.2.3. APB . 40
4.2.4. APB Peripheral . 40
4.2.5. APB Subsystem . 42
4.2.6. Interface Mapping . 43

5. Debuggable Assertion Interface 46

5.1. Requirement Analysis . 46
5.1.1. Hardware . 47
5.1.2. Architecture . 47
5.1.3. Bus Interfacing . 48
5.1.4. Multiple Assertion Interfaces per component 49

5.2. Assertion Interface Meta Model . 50
5.2.1. AssertionInterface . 51
5.2.2. Scope . 52
5.2.3. Assertion . 52
5.2.4. RefInterfaceAssertion . 53
5.2.5. RefSensitivityPort . 53

5.3. Target Code Architecture . 53
5.3.1. Assertion Register Constraints . 54

5.4. Requirement fulfillment . 55

6. Assertion Interface Generation 57

6.1. Challenges on Template development . 60
6.1.1. General Coding Style . 60
6.1.2. Wrapper Part . 62
6.1.3. AssertionInterface Part . 62

xii

6.1.4. Assertion Part . 64
6.2. Plugin and Template overview . 66

7. Simulation 68

7.1. Enhanced SPINNI System . 69
7.2. Mixed Language Simulation . 71
7.3. Assertion Interface . 72
7.4. Application Results . 73

8. Summary and Outlook 75

References 76

A. Appendix 84

A.1. Essence ModelConfiguration data model 84
A.2. AMBA APB Bridge Example . 86
A.3. AMBA APB Slave Example . 92
A.4. AssertionInterface XML Example . 94
A.5. Assertion Wrapper Example . 98
A.6. Assertion Interface Example . 105

xiii

List of Figures

1.1. Design-Verification Gap[14, P. 3] . 2
2.1. Usage scenarios for hardware assertion checkers[9] 7
3.1. Infineon XChange, based on a single-source XML-Methodology[30, P. 9] . 11
3.2. Example for the MOF architecture[49] . 13
3.3. Example UML diagram[39] . 16
3.4. A typical AMBA enabled system[38] . 24
3.5. APB Bus Transaction State diagram[38] 25
3.6. Relation of Essence model and ModelConfig model 29
3.7. Essimport Flow[31, P. 7] . 31
3.8. Essemplate Flow[31, P. 15] . 32
4.1. Infineon SPINNI System with intended enhancements 34
4.2. Interfaces of a SimpleBus slave[27] . 35
4.3. APB Bridge Overview . 37
4.4. SimpleBus to APB finite state machine for bridge 38
4.5. APB InterfaceDefinition XML snapshot 41
4.6. The AMBA subsystem in detail . 42
4.7. Constraint violation on Interface Mapping 45
5.1. Possible ways to access the Assertion Interface 48
5.2. Allowed accesses to the AssertionInterface 50
5.3. AssertionInterface data model . 51
5.4. The AssertionInterface architecture . 54
6.1. AssertionInterface generation flow . 59
6.2. Main and sub templates . 61
6.3. Temporary signal mapping on asserted out / inout signals 65
7.1. Simulation and Verification Flow . 68
7.2. Example input file for simulation . 70
A.1. Infineon Essence ModelConfiguration data model 85

xiv

List of Tables

3.1. Differences between meta model and model [21] 12
4.1. Essence Interface Parameters . 44
5.1. Fulfillment of the AssertionInterface requirements 56
6.1. Static Assertion VHDL ports . 66
6.2. Overview about developed plugins . 67
6.3. Overview about developed templates . 67

xv

List of Algorithms

3.1. Example for a well-formed XML . 17
3.2. XMI description of the address UML class (figure 3.3)[39] 18
3.3. Example for Python Code . 19
3.4. Simple Text substitution using MAKO template 21
3.5. Output of algorithm for x=10, y=5 . 21
3.6. MAKO Control structures . 22
3.7. MAKO def statement . 22
3.8. Example of an essimport plugin with set of an attribute(written in

Python)[31, P. 12] . 31
7.1. Example validation code for SPINNI system 71

xvi

1. Introduction

1. Introduction

1.1. Motivation

The famous Moore’s law describes a long-term trend in the history of computing hardware.
Since the invention of the Integrated Circuit (IC) in 1958, the number of transistors
that can be placed inexpensively on an integrated circuit has increased exponentially,
doubling approximately every two years. This trend has continued for almost half of
a century and is not expected to stop for another decade at least and perhaps much
longer.[59] Therefore, more and more heterogeneous parts of an electronic system can
be integrated on a single IC. This System-on-a-chip (SoC) may contain digital, analog,
mixed-signal or radio-frequency functions – all on one chip. Unfortunately, this situation
leads to more complex electronic systems design, as designers face a combination of
various disciplines, the coexistence of multiple design languages, and several abstraction
levels. For example, it is now common that software is an integral part of semiconductor
products. The customer expects to have a high-level access to the product. Otherwise
the necessary low level design of the system would take too much time. Examples are
protocol stacks for communication ICs or software APIs.[33] In this multi-disciplinary
context, several gaps in a joint unified software and hardware design flow can be identified.
For example, traditional HDL-based designs do no longer suffice to leverage the logical
resources on improved manufacturing within the shortening time-to-market windows.
Moreover, it is indeed also much more unlikely that such large designs can be verified
to a large extend while keeping track in the time to market. Therefore, nowadays
verification is the bottleneck and the most costly stage within the entire design flow.
Figure 1.1 illustrates this so called design-manufacturing gap. In fact, one can also
speak from a methodology gap. Therefore, new methodologies for development and
verification are necessary for example starting the implementation from higher level
modeling. As electronic system design moves towards software engineering, there is
emerging interest for model based approaches within the hardware community. For
example, different Unified Modeling Language (UML) diagrams and their variations found
their application in requirements specification, testbenches, architectural descriptions,
and behavioral modeling of electronic systems. Moreover, extensive IP Reuse and early
verification must be supported by emerging standards like SPIRIT IP-XACT.[52, 51] The
International Technology Roadmap for Semiconductor (ITRS) report from 2007[1] affirms
these requirements for future verification and design flows. Since perfect logic and timing
verification of a complex SoC is practically impossible pre-silicon, postsilicon validation

2008-12-09/161/II03/2235 1

1. Introduction

Figure 1.1: Design-Verification Gap[14, P. 3]

has become an essential step in the design implementation methodology. Therefore, in
this thesis a meta-model based approach to describe hardware and to generate code
automatically using templates, will be extended to allow the description of an abstract
assertion interface. This assertion interface will allow to specify properties of a digital
design and shall also be expressed via a data model. With help of the assertion interface
it shall be possible to verify the correct module integration and to monitor IP-internal
assertion checker results. To demonstrate the usability of the developed concepts a widely
used bus architecture was implemented in an existing Infineon example system. For the
RTL level code generation work VHDL has been chosen.

This thesis was the result of work in the IFAG ETS DMI AFS SFV department at
Infineon Technologies, headquartered in Munich. The department is dealing with System
Design Methodologies including System Verification, TLM Modeling and XML Single
Source Methodology.

1.2. Chapter Overview

Chapter 2 briefly describes related concepts and related work of this thesis topic. In
chapter 2.1 the aspects of assertion-based verification will be analyzed. Moreover, this
chapter will describe the concept and advantages of in-system validation and debug.
Apart from that, chapter 2.2 will refer to similar approaches of this thesis work.

In chapter 3 the underlying Infineon design flow for this thesis work will be explained. First

2008-12-09/161/II03/2235 2

1. Introduction

the related fundamentals will be briefly described. Apart from that, an overview about
the SPIRIT IP-XACT[51, 52] oriented Infineon Essence meta model, the fundamental
concept of the flow, will be illustrated in sub-chapters 3.2 and 3.3.

In chapter 4 the Infineon SPINNI example system for the proof-of-concept will be
described. Moreover, the system elements and architecture will be explained. Besides,
the additions and enhancements to the example system are introduced in chapter 4.2.

In chapter 5 a requirement analysis for the to be modeled assertion interface meta-model
will take place. After the requirement collection chapter 5.2 will present the proposed
data model solution. Thereafter, chapter 5.3 describes the target code architecture.
Besides, chapter 5.4 will validate the proposed solution against the requirements.

In chapter 6 the template generation will be introduced. Therefore, section 6.1 describes
challenges on template development. Moreover, the final templates architecture and the
resulting VHDL code will be explained. Besides, section 6.2 will summarize the created
plugins and templates during the thesis work.

In chapter 7 the simulation and verification flow for the assertion interface development
is introduced. Moreover, the general validation approach and application results of the
assertion interface generation are described.

Chapter 8 summarizes the thesis development and gives a short outlook for the possible
usage of this approach in the near future.

2008-12-09/161/II03/2235 3

2. Related Work

2. Related Work

This thesis work deals about the development of a hardware debug interface for silicon
assertions using a meta model approach. Moreover, in the implementation stage a proof-
of-concept example system will be generated. The various related concepts to this overall
approach will be briefly described in the following sections. Besides, an overview about
existing similar approaches and the differences to this thesis shall be given.

2.1. Assertion based Verification

Assertion based design and more specifically Assertion based Verification (ABV) is
gaining wide acceptance in the design community. It has been identified as a modern,
powerful verification paradigm that can assure enhanced productivity, higher design
quality and, ultimately, faster time to market and higher value to engineers and end-users
of electronics products.

2.1.1. What is an Assertion

In general, an assertion is an expression for an intended behavior, also called property
which can be understood as “descriptions of valid temporal state”.[54] This means that
assertions can verify combinatorial as well as temporal properties. The assertion statement
itself does not contribute any functionality to the element it is being used with. The
purpose of an assertion is to ensure the consistency between specification and what
is actually created.[20] Assertions are specified using a variety of Boolean expressions
as primitives, along with regular expressions and numerous temporal operators. This
concept has been used in software engineering for decades. But as the systems to be
designed became more and more complex there was the demand to cope with the growing
verification problem. So the concept of assertions also was introduced in the field of
hardware or hardware-software co-design. If a specified property is violated then the
assertion fires. In case, there is a scenario in which the design is not working correctly.
Information on where and when assertions fail is an important aid in the debugging
process, and is the fundamental reasoning behind the ABV methodology.

Assertions for hardware are typically written in a verification language such as PSL
(Property Specification Language, IEEE 1850 standard) or SVA (SystemVerilog Asser-
tions), but also HDL have assertion functions which are inner part of the language,
but with much less functionality. Another approach is the use of assertion libraries

2008-12-09/161/II03/2235 4

2. Related Work

that can be invoked with common languages like VHDL or Verilog and provide in-built
assertion functionality. An example is the Open Verification Library (OVL) maintained
by Accellera[3] which provides checkers whose functionality can be even modified by
adjusting checker parameters. The benefits of use of assertion can be summarized to:[20]

• error detection

Despite the output in case of a black box testing is correct, there are maybe
design flaws that affect internal signals in certain conditions. The black box testing
approach will not reveal these possible malfunctions. These internal violations can
only be discovered with help of assertions.

• Improving observability, error isolation

With help of assertions the source of the bug can be caught closer then before. Even
the basic assertion functionality of HDL supports the output of a text message
along with the information that the assertion failed. In an ABV enabled design
flow tools help to keep track of assertions results and the overall coverage. With
all these benefits proper or unexpected behavior of the design can be isolated and
fixed.

• error notification

If an assertion modeled property is violated, the assertion fires at once. If used
in simulation the simulation kernel will halt and give report to the designer. For
silicon-integrated assertion (see chapter 2.1.2) the automatic throws of IRQ are
imaginable. In a design flow without assertion it is more difficult to find out where
an error is originating from.

• correct usage checking of interfaces

More and more designs make use of third-party IP. With assertions the external
vendor of IP cores can take care of the correct usage of the interface to the IP. Using
assertions the interface protocols are monitored (mostly only during simulation)
and validated using modeled properties.

• reduced debug time

It is easy to see that with help of ABV the overall design productivity is enhanced.
Especially in case of errors and debug activities the needed amount of time decreases.

• faster time to market

Assertions are used at various stages of the design process. They are mostly used for
pre-silicon simulation and verification. In design-entry and simulation tools such as
Mentor Graphics Questa[41] the assertions are monitored by the simulation kernel when

2008-12-09/161/II03/2235 5

2. Related Work

a circuit is simulated. If designs are to be emulated in hardware, assertions can not be
directly mapped into the hardware because they are written in a higher-level language
that is not necessarily amenable to synthesis (see chapter 2.1.2).

Assertion-Based Design practices also advocate the use of assertions as part of the design
effort, when used as a formal specification (describing designer intent).[9] The difference
between assertions and formal verification is that an assertion models a property which
has to be tested with a lot of testbench input to gain acceptable coverage. If the assertion
never fails the assumption is that the design is stable and bug free. In formal verification
it is calculated if the modeled property will ever be false.

2.1.2. Assertions in Silicon Debug

In this thesis work the interface for (silicon debug) assertion shall be developed and
modeled via the Essence meta model. Therefore, the benefits of silicon-debug shall be
discussed first. For an in detail view about assertion checkers and checker generators
please refer to [8]. Detailed resources for in-system debug can be found in [9, 2].

Normally assertions are only used during simulation and pre-silicon verification of a
newly developed design. If an assertion fails then the designer knows that the property
which is modeled by the assertion is violated. If so, a scenario has been revealed in which
the design is not working correctly. So assertions help to discover potential problems
within the design. But complete system-level verification of a complex SoC is not feasible
pre-silicon, therefore in-system, at-speed silicon validation has become an essential step
in the design implementation methodology. This is why assertion checker are useful and
also necessary, because the common verification methods

• simulation

• emulation

• FPGA prototyping

• timing analysis

• and formal verification

will not reveal deepsubmicron problems that only occur in the actual device in the desired
technology. So special corner cases and analog influences in the real system maybe stay
undiscovered. Moreover, just a few minutes of real-time system operation generate more
stimuli for an assertion “then it would get in weeks of simulation or days of emulation,

2008-12-09/161/II03/2235 6

2. Related Work

thus extending the coverage and the usage of assertion for in-system validation.”[2] That is
because at-speed, in-system usage under stress conditions introduces many new functional
patterns and explores deep states and corner cases not previously encountered, thereby
exposing errors that escaped pre-silicon verification.[2]

But how can assertion statements be put on silicon? When the power of assertions is to
be used in hardware, a checker generator is used to automatically produce monitoring
circuits (also called assertion checkers), from the given assertion statements. The resulting
assertion checker is a circuit that captures the behavior of the source assertion. At the
moment there are only two established checker generators existing, MBAC[40] from the
McGill University Montreal and FoCs[24] from IBM.1 With help of a checker generator
assertions can be applied beyond design and verification. Therefore, the checker generator
produces permanent circuitry, e.g. HDL code that can be synthesized and incorporated
into the design. This allows the observability of internal signals without requiring new
pin and leads to enhanced debug functionality. For example a firing assertion could serve
as a trigger to stop the recording in a trace buffer. Using this concept the designer can
investigate the history of the input code.[2] These concepts of self-test, on-line silicon
monitoring and diagnosis assistance can be used during the complete lifespan of the IC.

Figure 2.1: Usage scenarios for hardware assertion checkers[9]

There are three scenarios for the usage of assertion checkers (figure 2.1):

• Verification
The checkers are used only in the verification stage when the design is to be
simulated, emulated in hardware (other technology) or executed on a simulation
accelerator. Therefore, it will not be included in the final silicon.

• Silicon Debug
The assertion checkers are used to perform post-fabrication in-circuit debugging

1As per November, 2008

2008-12-09/161/II03/2235 7

2. Related Work

for prototypes. The results of the checker can only be validated using external
debug hardware. The design is implemented in its intended technology, as opposed
to being implemented in reprogrammable logic during hardware emulation. This
allows at-speed debugging under expected operating conditions.

• Diagnosis and self test
The assertion checkers are incorporated in final silicon and can be queried from the
system. This allows the design to assess its operating conditions inline in real time.
Besides, this concept allows in-field in-chip diagnosis and self test of the design and
is from big interest for harsh environments where systems need to check themselves
and, in case of failure, make use of redundant parts or perform error correction.

As mentioned above incorporated checkers can test for functional faults and timing issues
which can not be fully tested pre-fabrication. By connecting the checker outputs to the
proper external equipment or on-board read-back circuits, the user can get immediate
feedback on assertion failures in order to start the debugging process.[9]

2.2. Similar Approaches

Within the electronic design community several approaches are existing to either support
in-silicon debug or code generation. A public available approach for model based design
and code generation is SPIRIT IP-XACT. The complete standard manual can be found
in [51, 52]. By now the model-based hardware flow is prototyped at various companies
[35] and is being researched within the european SPRINT project.[17, 16] The underlying
concept of the Infineon flow, the Essence data model, can be compared to IP-XACT.

An advanced verification approach can be found in [12]. The patented DAFCA ClearBlue
technology can be seen as comprehensive approach to in-system silicon validation and
debug. Using a software the user can insert reconfigurable instruments for validation.
This insertion is done at RTL and the instrumented SoC is processed by standard
synthesis-based design flows. The approach supports many validation paradigms such as
on-chip signal capture and logic analysis, assertions, stimulate-and-capture, performance
monitoring and fault and error injection. Moreover, in case of assertions they can be
used in conjunction with embedded logic analyzers to aid the debugging process. For
example, an assertion firing can be employed as a trigger to stop recording in the trace
buffer; the recorded signals provide a window into activity preceding the malfunction
detected by the assertion.[12] Despite this approach is really advanced, comprehensive
and powerful, the explanations concerning the underlying generation concept are vague.

2008-12-09/161/II03/2235 8

2. Related Work

Moreover, the DAFCA technology seems to be only target at RTL implementations,
whereas assertion can also be used in higher abstraction levels like TLM. Moreover, the
main focus is about the checker functionality not the description of a general underlying
interface. Two examples for the definition of transaction-level assertions are [22, 15].
But again the concepts are not combined with interface code generation. In general
it can be stated that various approaches like [34] introduce the silicon debug assertion
functionality, but do more focus on assertion checker generation. Therefore, synthesis of
assertion languages is the main objective, not the modeling of an universal interface to
them. In this thesis work the main focus is the template based interface generation and
the modeling of the interface in an abstract, implementation-independent manner.

2008-12-09/161/II03/2235 9

3. Infineon XChange Flow

The XML-Methodology project XChange aims to provide an Infineon-wide solution for a
single-source design of electronic systems. The most important goals are: [28, P. 12]

• Provision of single source design methodology for whole Infineon

• an unified and consistent data model for Infineon product design data

• Unification of Infineon code generation approaches

• I/O with the SPIRIT Consortium IP-XACT standard[52, 51] to ensure interoper-
ability with third party IP

The proposed approach by Infineon, called Essence, is based on a meta model which
can be compared to the public SPIRIT IP-XACT[6] standard. This new design flow
concept has several benefits. The single source for component design data, which is
reused at different design stages in different groups, allows better consistency of designs
and specifications and reduces the error rate of the design process. Moreover, automated
code generation reduces design effort and time as well as eases functional redesigns. The
design information within the XChange flow is expressed via the Essence meta data
model and represented via the use of XMI and XML. Figure 3.1 gives an overview about
the database architecture concept. The Essence and IP-XACT meta models are familiar
but differ in their main architecture concept. IP-XACT focus is to describe IP, however,
Essence has the concept to generate IP and documentation. Moreover, Essence supports
more features, but is proprietary and thus only used at Infineon Technologies. Within
the Essence meta model an information will not appear twice. The redundancy within
the meta model is to be minimized. This has a lot of advantages when it comes to
data model consistency and effectiveness. On the contrary, it is possible that within an
IP-XACT meta data description the same information appears several times. In both
meta models Intellectual Property (IP) is specified and documented using meta-data. In
the XChange Flow it is possible to import SPIRIT IP-XACT descriptions and convert
them to the Essence meta model. The Infineon Essence meta model consists of nine
UML diagrams2 whereas each of them models different aspects of the overall system. The
UML models provide the elements and rules to describe functionality and architecture in
a very abstract and object-oriented way. Specific systems whose models are built to the
Infineon meta model standard are represented via a XMI scheme inside a XML data file.

2As per November 2008

3. Infineon XChange Flow

Figure 3.1: Infineon XChange, based on a single-source XML-Methodology[30, P. 9]

It is important to understand the architecture and concept of the XChange flow because
requirements for the SPRINT project are proved and tested with help of Essence. If
the proof-of-concept is successfully the technical expertise then can be used to issue
suggestions for the further development of SPIRIT IP-XACT.

3.1. Fundamentals

In the following sub-chapters the fundamentals and underlying concepts of the XChange
and the Essence meta model flow will be discussed. The experienced reader may skip
this introductory sections and continues at chapter 3.2.

In chapter 3.1.1 the concept of meta data and meta modeling will be explained. Chapters
3.1.2 and 3.1.3 will provide additional information about the project. Chapter 3.1.4 will
give a briefly overview about the Unified Modeling Language (UML). Moreover, chapters
3.1.6 to 3.1.8 will give an overview about the tool flow and the underlying concepts
of Essence as well as the principle of code generation using templates. Because it was
decided to implement a public used bus standard chapter 3.1.9 will give an overview
about the AMBA bus protocol family. Moreover, chapter 3.1.10 will focus on the AMBA
APB standard which was chosen to be implemented in the example system.

2008-12-09/161/II03/2235 11

3. Infineon XChange Flow

3.1.1. Meta data and meta models

Meta data (metadata, or sometimes metainformation) is ”data about data”, of any sort
in any media. An item of meta data may describe an individual date, or content item, or
a collection of data including multiple content items and hierarchical levels, for example
a database schema. This hierarchy is used in XML files (see chapter 3.1.5). In data
processing, meta data is definitional data that provides (additional) information about or
documentation of other data managed within an application or environment.[58]

In general a meta model sets foundations on how to build a model. This includes the
definition of means of modeling as well as constraints and assertions to define the allowed
expression. This definition is the core functionality of the meta model and therefore also
the core part of tools. A concrete model itself is based on a meta model and build with
the allowed means for modeling. Classes get instantiated and attributes get filled with
real-world content. So the concrete model is the desired output of a meta model tool.
For a summary please refer to table 3.1.

Meta model model

foundation for a model based on meta model
model on how to build a model model to a concrete system
definition of the means for the

modeling
modeled with defined means

description of meta classes instantiation of classes
core of the tool results of the tools use

Table 3.1: Differences between meta model and model [21]

An easy example is a dictionary where the model of a language (with its defined semantic
and syntax rules) is explained with the means of the same model. The Object Management
Group (OMG) defines four layers of meta-modeling. Each level of modeling is validated
by the next layer. The Level M0 is the runtime level. It contains instances of objects, for
example a record. Level M1 defines the model and schema. Level M2 defines the meta
model, for example the Unified Modeling Language (UML). The most abstract level M3
defines the meta-metamodel, a model that defines a metamodel. More abstractions are
imaginable but do not lead to better strength of expression.

The Level M3 is used by the Meta-Object Facility (MOF), This concept is applied by
XMI (see chapter 3.1.6). MOF can be considered as a standard to write meta models, for
example in order to model the abstract syntax of Domain Specific Languages. For more
information about MOF please refer to [44, 47]. An example for the MOF hierarchy is

2008-12-09/161/II03/2235 12

3. Infineon XChange Flow

Figure 3.2: Example for the MOF architecture[49]

shown in figure 3.2.

So in the Essence flow, an UML tool is used to capture the meta model as a class diagram.
After this java code is generated out of the UML meta model as well as an API for filling
the model with information or respectively retrieving the information. The resulting java
classes build the foundations for the usage of the Essence meta model. The Java part of
Essence is bound with the later explained Python scripting programming language (see
chapter 3.1.7).

3.1.2. SPIRIT

The “Structure for Packaging, Integration and Reuse IP within Tool-Flows” (SPIRIT)
consortium consists of numerous semiconductor and EDA companies as well as fab-less
IP creators. The objective was to develop a standard for more efficient integration
of IP in System-on-Chip (SoC). To ensure consistency and efficiency on integration of
third-party IP there had to be a widely adopted standard existing. Therefore, the Spirit
Consortium is developing the meta model based IP-XACT specification within the IEEE
P1685 SPIRIT Standardization Working Group.[51] All components of an IP library are
incorporated and specified using human-legible text information in XML files which are
built in accordance to a specific XML schema. The Essence meta model schema differs
from IP-XACT but the general approach to group information into meta data is the

2008-12-09/161/II03/2235 13

3. Infineon XChange Flow

same. Meanwhile numerous companies do rely on IP-XACT, with positive results. In
the next versions of IP-XACT more advanced modeling shall be supported. Some of the
proposed improvements are currently prototyped in the european SPRINT project.[35]

3.1.3. SPRINT

The SPRINT project3 is funded by the European Commission’s 6th Framework Program
under the IST (Information Science Technology) priority which started at the 1st of
February 2006.[55] The consortium is supported by the major european semiconductor
companies Infineon Technologies and Philips Semiconductors (including research groups
at Philips Research) as well as ST Microelectronics. Moreover, several IP Vendors are
participating. Among them are ARM, Evatronix S.A. and Syosil. Also EDA vendors and
universities do engage in the development. Examples are research groups at Paderborn
University, TIMA[53] and the Royal Institute of Technology Sweden (KTH). The global
objective is to“enable Europe to be the leader in design productivity and quality in Systems-
on-Chip (SoC) design, by mastering the SoC design complexity with effective standards
and design technology for reuse and integration of IP”.[17] Recent global standards
such as SystemC/TLM and SPIRIT IP-XACT, which have been driven successfully by
SPRINT partners, will be taken as starting point.[18, P. 7] Building on this existing
infrastructures, the SPRINT Project will develop new methodologies and standards for
interoperability and integration of the high-level IP modules from which modern SoC
designs are assembled.[19]

Summarized the key SPRINT objectives are: [18]

• Techniques and standards for IP module modeling that allow the fast simulations
required for architecture exploration and early software development, as well as
provision of reference models in SystemC/TLM for hardware functional verification

• Definition of standard communication interfaces that simplify the integration of IP
modules while also resolving Quality-of-Service (QoS) issues

• Creation of an open SoC design platform that is based upon these standards

• Development of a SoC design methodology, with matching tools and IP modules to
automate SoC design, verification and debug

• To enable European companies to be the first in the world to demonstrate and
subsequently exploit the new standards-based SoC design environments in an

3SPRINT: Open SoC Design Platform for Reuse and Integration of IPs (IST-2004-027580)

2008-12-09/161/II03/2235 14

3. Infineon XChange Flow

interoperable way in order to improve on design productivity and the quality in
SoC design

More information can be found on the European Electronic Chips & Systems design
Initiative (ECSI) website.[16]

3.1.4. Unified Modeling Language

The Unified Modeling Language (UML) is a standardized language for modeling software
and other systems. It is being developed and standardized by the Object Management
Group (OMG). UML is a very expressive language and allows in detail modeling of
systems without setting constraints about a possible implementation. The information
about a system is expressed with the help of several diagram types. Using these UML
diagrams the relations and actions in a system can be modeled in an abstract way. To
compare it to electronics design, a design can be expressed in a very high level. The
different diagram types express different views on the same problem. So the complexity
of a given system is reduced.

UML is based on principles of the object technology. The object technology reflects
real world objects and offers elements, methods and functions to describe these objects
and systems as a bunch of cooperating elements and relations between them. The basic
principles of the object technology are

• classification vs. instantiation

• composition vs. decomposition

• generalization vs. specialization

• aggregation

• inheritance

The figure 3.3 shows an example diagram. It contains two classes with their corresponding
attributes. The class address stays in a “is part of” association with class person.

In general the use of UML is not restricted to modeling of software systems. Besides, all
kinds of relationships between objects can be modeled due to the generous approach of
UML. So for example UML can also be used to model biological, electronic (hardware) or
hydraulic systems. Since electronic systems design moved towards software engineering,
there is emerging interest to use UML for the hardware engineering. Different UML
diagrams and their variations found their application in requirements specification,

2008-12-09/161/II03/2235 15

3. Infineon XChange Flow

testbenches, architectural descriptions, and behavioral modeling.[42] These descriptions
are platform independent and therefore offer an ideal start for platform-specific code
generation.

Figure 3.3: Example UML diagram[39]

One of the of the key strengths of UML 2.0[48] is the flexible foundation for customization
and extensions of the modeling elements. In detail UML provides a meta model of the
modeling elements. So different application domains can be make accessible via so-called
UML profiles, which currently receives increasing tool support and give UML great
potential to complement current C++-oriented languages for ESL design. In this context

• SysML [45]

• UML for SoC extension [46]

• MARTE [43]

• UML 2.0 Profile for SystemC (ST Microelectronics)

are already available as OMG profiles for Systems Engineering and SoC application and
several proprietary profiles are under development.[7] Regarding model exchange between
tools, the UML-related XMI (XML Metadata Interchange) format and its relationship to
SPIRIT IP-XACT, the emerging IEEE standard, are of additional particular interest.
Partial overlaps can be identified and are currently under investigations by some projects,
like SPRINT.

Within the Essence flow mainly UML class diagrams are used to define the meta model.
For an in detail view about all UML diagram types please refer to [37, 56]. For a
comprehensive overview about the usage of UML for electronic system design please refer
to [63].

2008-12-09/161/II03/2235 16

3. Infineon XChange Flow

3.1.5. Extensible Markup Language

The Extensible Markup Language (XML) is a human-legible specification for creation
of custom markup languages. A markup language is an artificial language using a set
of annotations to text that give instructions regarding the structure of text or how it is
to be displayed.[61] Thus, data is structured in a hierarchical way. XML was developed
by the World Wide Web Consortium (W3C) and allows the specification of custom
languages using XML-schemata. A XML-schema sets semantic constraints, like specifying
the hierarchical structure and the allowed content in fields. This benefited the existence
of many custom XML languages for information interchange based on meta-date, for
example HTML. With help of tools it is possible to check if a XML file complies to a
given schema.

Algorithm 3.1 Example for a well-formed XML

1 <?xml version=”1 .0 ” encoding=”ISO−8859−1” standalone=”yes ”?>
2 <t h e s i s>
3 < t i t l e>example the s i s</ t i t e l>
4 <content>
5 <f o cu s>
6 <name>Engineer ing</name>
7 <p i c t u r e>v e r i f i c a t i o n g a p</ p i c t u r e>
8 </ focus>
9 <f o cu s>

10 <name>Related work</name>
11 <p i c t u r e>IEEE</ p i c t u r e>
12 </ focus>
13 </ content>
14 </ t h e s i s>

A XML file is called well-formed if it fulfills all XML rules. The most important rules are

• one element, the root node, contains all other elements; there is only one root node

• all elements have a begin and end markup

• one element must not have several attributes with identical name

The example shown in algorithm 3.1 is well-formed.

3.1.6. XML Metadata Interchange

The XML Metadata Interchange (XMI) is an OMG standard for exchanging metadata
information via XML.[47, 62] It can be used for any metadata whose meta model can

2008-12-09/161/II03/2235 17

3. Infineon XChange Flow

be expressed in Meta-Object Facility (MOF). The most common use of XMI is as an
interchange format for UML models, although it can also be used for serialization of
models of other languages (metamodels).

XMI integrates four industry standards:

• XML - eXtensible Markup Language, a W3C standard.

• UML - Unified Modeling Language

• MOF - Meta Object Facility, an OMG language for specifying metamodels

• MOF Mapping to XMI

The integration of these four standards into XMI allows tool developers of distributed
systems to share object models and other metadata. The XMI source code in listing 3.2
corresponds to the class address of the example UML diagram in figure 3.3 on page 16.
It is easy to see the even a simple and small “piece of UML” results in many lines of XML
syntax with XMI.

Algorithm 3.2 XMI description of the address UML class (figure 3.3)[39]

1 <?xml version="1.0"?>

2 <XMI xmi.version="1.2" xmlns:UML="org.omg/UML /1.4">

3 <XMI.header >

4 <XMI.metamodel xmi.name="UML" xmi.version="1.4"/>

5 </XMI.header >

6 <XMI.content >

7 <UML:Model xmi.id="M.1" name="address" visibility="public"

8 isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false">

9 <UML:Namespace.ownedElement >

10 <UML:Class xmi.id="C.1" name="address" visibility="public"

11 isSpecification="false" namespace="M.1" isRoot="true" isLeaf="true"

12 isAbstract="false" isActive="false">

13 <UML:Classifier.feature >

14 <UML:Attribute xmi.id="A.1" name="name" visibility="private"

15 isSpecification="false" ownerScope="instance"/>

16 <UML:Attribute xmi.id="A.2" name="street" visibility="private"

17 isSpecification="false" ownerScope="instance"/>

18 <UML:Attribute xmi.id="A.3" name="zip" visibility="private"

19 isSpecification="false" ownerScope="instance"/>

20 <UML:Attribute xmi.id="A.4" name="region" visibility="private"

21 isSpecification="false" ownerScope="instance"/>

22 <UML:Attribute xmi.id="A.5" name="city" visibility="private"

23 isSpecification="false" ownerScope="instance"/>

24 <UML:Attribute xmi.id="A.6" name="country" visibility="private"

25 isSpecification="false" ownerScope="instance"/>

26 </UML:Classifier.feature >

27 </UML:Class >

28 </UML:Namespace.ownedElement >

29 </UML:Model >

30 </XMI.content >

31 </XMI>

2008-12-09/161/II03/2235 18

3. Infineon XChange Flow

3.1.7. Python

Python is a general-purpose, high-level programming language which was intended to
be highly readable. It aims toward an uncluttered visual layout for example its use
of whitespace as block delimiters is unusual among popular programming languages.
This design philosophy emphasizes programmer productivity and code readability.[60]
Python’s core syntax and semantics are minimalistic, while the standard library is large
and comprehensive. This large standard library, one of Python’s greatest strengths,
providing pre-written tools suited to many tasks. Python allows binding and can be
a powerful glue language between other programming languages and tools. Algorithm
example 3.3 shows the typical whitespace indentation, rather than curly braces or
keywords, to delimit statement blocks. An increase in indentation comes after certain
statements; a decrease in indentation signifies the end of the current block.

Algorithm 3.3 Example for Python Code

1 # Inc lud ing f unc t i on s o f l i b r a r y sys
2 import sys
3
4 # de f i n i t i o n o f a func t i on
5 def run code () :
6 print ”Example Code ”
7
8 # Example f o r Inden ta t i on
9 arg = len (sys . argv)

10 i f arg == 1 :
11 print sys . argv [0]
12 else :
13 for i in l en (sys . argv) :
14 print sys . argv [i −1]
15
16 i f sys . p lat form . lower () == ”win32 ” :
17 run code ()
18 else :
19 pass
20
21 sys . e x i t (0)

Python allows to split programs into modules that can be reused in other Python
programs. Furthermore, Python is an interpreted language, which can save considerable
amount of time during code development because no compilation and linking is necessary.
This allows the Python programs to be always read-able and platform independent. The
interpreter can be used interactively, which makes it easy to experiment with features
of the language, to write throw-away programs, or to test functions during bottom-up

2008-12-09/161/II03/2235 19

3. Infineon XChange Flow

program development.

Python has numerous advantages in comparison to other high-level languages like
C++.[36]

• clean syntax due to indentation concept, no variable or argument declarations are
necessary

• less coding necessary due to high level data types that allow to express complex
operations in a single statement

• object-oriented programming

• support for scientific computing (for example numeric)

• binding to other programming languages, C++, Java well supported

One of the most important modules to ease usage of Essence is GNOSIS.[13] It contains
several Python modules for XML processing, plus other generally useful tools. An
example is xml.objectify which turns arbitrary XML documents into Python objects.
So the objects of the Essence meta model that are expressed via a XML schema can be
handled the same way like objects from the Essence java class (through Java binding).
With help of these two concepts an universal flow of IP is possible. First IP can be
captured using the meta model and exported as XML file. Later on the same source can
be read in using templates which make use of the GNOSIS module.[31, P. 11]

3.1.8. Templating with MAKO

Mako is a template library written in Python which provides a familiar non-XML syntax.
For maximum performance MAKO compiles into Python modules. The syntax and API
borrows from the best ideas of many other template engines, including Django templates,
Cheetah, Myghty, and Genshi.[5]

In the concept of templating a template engine combines one ore more templates with
a data model. The template consists of placeholders where information from the data
model can be inserted. Moreover, its possible to have more advanced templates. For
example, the template can further contain Mako-specific directives which represent
variable and/or expression substitutions, control structures (i.e. conditionals and loops),
server-side comments, full blocks of Python code, as well as various tags that offer
additional functionality. All of these constructs compile into real Python code. This
means that you can leverage the full of power of Python in almost every aspect of a Mako

2008-12-09/161/II03/2235 20

3. Infineon XChange Flow

template. Therefore, the kind output (Text, HDL-Code, HTML, XML etc.) depends on
the template itself. The usage of a template engine has benefits:

• enhances productivity by reducing unnecessary reproduction of effort

• enhances teamwork by allowing separation of work (sub-templates)

Conceptually, MAKO is an embedded Python (i.e. Python Server Page) language. This
allows the developer to make use of a template engine and Python at the same time.

In the implementation stage of this thesis work the code-generation templates were all
written in MAKO. Therefore, its necessary to have fundamental knowledge about syntax
and semantics of the language. For a complete reference please refer to the MAKO
Documentation.[5]

Syntax

The simplest expression is just a variable substitution using the ${} construct. In order
to work, x has to be known before the substitution. For instance it can be derived from
the data model first. Within the substitution all of the functionality provided by Python
can be used. Algorithm 3.4 illustrates an easy example.

Algorithm 3.4 Simple Text substitution using MAKO template

1 ## t h i s i s a MAKO comment
2
3 the value o f x : ${x}
4 pythagorean theorem : ${pow(x , 2) + pow(y , 2)}

The python function pow(x,y) returns x to the power of y. The algorithm 3.5 shows the
generated “code” of the template in the case of x = 10 and y = 5.

Algorithm 3.5 Output of algorithm for x=10, y=5

1 the value o f x : 10
2 pythagorean theorem : 125

Furthermore, the MAKO template language allows the use of control structures and inline
python blocks. So the code-generation process can be done in a very flexible way and
with help of the comprehensive functions of Python. Algorithm 3.6 shows an example.
In contrast to Python where comments are indicated using a single # character, MAKO

2008-12-09/161/II03/2235 21

3. Infineon XChange Flow

comments are specified using two ## characters. Inline Python blocks start with the <%

and end with the %> marker. MAKO control structures are identified using the % marker.
A noticeable difference between the Python coding style and the MAKO coding style is
that indentation is only necessary for Python. In MAKO its not a must and sometimes
unrequested. The reason is that every space or tabulator inside the template will also
appear in the output, because all content of the input file that is not prefixed with
markers or is commented will just appear in the output file. This impedes the generation
of output code where positions of the output do matter. Moreover, it makes this kind
of MAKO templates harder to read, because there is no indentation used. Fortunately
recent design entry tools, in the easiest case text editors, support the developer with
hierarchy folding and therefore significant ease template development.

Algorithm 3.6 MAKO Control structures

1 ## the next l i n e w i l l appear as i t i s in the output
2 t h i s i s a template
3
4 <%
5 # This i s a Python b l o c k which c a l l s a somewhere
6 # e l s e de f ined func t i on t ha t r e turns a l i s t
7
8 x = g e t x l i s t f c t ()
9 %>

10
11 % i f l en (x) > 1 :
12 % for elem in x :
13 element : ${elem}
14 % endfor
15 % else :
16 only one element ${x}
17 % e n d i f

A template can be composed of sub-functions and sub-templates. Inside the template a
function is declared using the <%def> and </def%> markers. It exists within generated
Python as a callable function.

Algorithm 3.7 MAKO def statement

1 <%def name=”myfunc (x) ”>
2 t h i s i s myfunc , x i s ${x}
3 </%def>
4
5 ${myfunc (7)}

2008-12-09/161/II03/2235 22

3. Infineon XChange Flow

3.1.9. AMBA Overview

The Advanced Microprocessor Bus Architecture (AMBA) is a widely used open standard
for an on-chip bus system which is defined by ARM Limited. The AMBA standard was
introduced in 1996 and aims to ease the component design, by allowing the combination
of interchangeable components in the SoC design. It promotes the reuse of intellectual
property components and is the de-facto standard for 32-bit embedded processors because
it is well documented and can be used without royalties.[57, 23] Therefore, many third
party IP providers use an AMBA bus for interfacing to their IP. Within the SPINNI
System it shall be possible to include these IPs, assumed an Essence (or at least IP-XACT)
description is existent. The AMBA standard defines different groups of buses

• Advanced eXtensible Interface (AXI)
all from below plus more abstract, channels etc.

• Advanced High-performance Bus (AHB)
high performance, pipelined transfers, burst transfer, split transfers, multiple bus
master, bus arbiter

• Advanced System Bus (ASB)
multiple bus masters, high performance

• Advanced Peripheral Bus (APB)
one bus master, simple interface, limited functionality, designed for low power

which are typically used in a hierarchical fashion. The figure 3.4 shows an example. The
AXI standard is the most powerful bus with elaborated functions. The APB is the most
basic bus for peripheral components that do not require massive data throughput. The
AMBA specification is technology independent. So physical implementation details like
voltage levels are not dictated by the specifications. In fact, it gives an overview about
the architecture, the signal count, their names, transfer timing diagrams as well as basic
state machines.

For the proof-of-concept work both APB and AHB shall be bridged within the SPINNI
system. But the functionality of the AHB shall be reduced significantly. First of all some
concepts of the AHB, like pipelined transfers and multi-master, are not meaningful within
the SPINNI system because then the peripheral bus would be much more powerful than
the central system bus, called SimpleBus. The SPINNI Example system is described in
chapter 4. So as long as the SimpleBus is a “functionality bottleneck” inside the SPINNI
system the AHB bridge shall have the same functionality as the APB bridge. The AHB

2008-12-09/161/II03/2235 23

3. Infineon XChange Flow

Figure 3.4: A typical AMBA enabled system[38]

components are very similar to the APB ones, but differ in the used interface definition.
Therefore, the signal names will differ. For this reasons only the APB protocol will be
explained in detail.

3.1.10. AMBA APB

The APB is part of the AMBA 3 protocol family and is optimized for minimal power
consumption and reduced interface complexity. The APB has an unpipelined protocol
where every transfer takes at least two clock cycles. Furthermore, transfers can be
extended via low on the PREADY signal. All signal transitions are only related to the rising
edge of the clock to enable the integration of APB peripherals easily into any design
flow.[38]

The figure 3.5 shows the state diagram of the operating states of the AMBA APB protocol.
If no transfer is requested the FSM remains in the IDLE state. The bus slave select
signal PSELx stays low. Therefore, no slave is selected. The signal is named PSELx to
indicate that there are actually several select signals, one for every APB slave. If there is
a transfer requested the FSM changes the state from IDLE to SETUP. The select signal of
the desired APB slave will get HIGH. The AMBA APB specification gives no proposal
how this slave is determined. In the SPINNI Example System several bits of the address
signal are used for an address decoder.

In the second cycle the FSM will always move to the ACCESS state. The enable strobe
signal PENABLE will get HIGH. Moreover, the address, write, select and write data signals
must remain stable during the transition to the ACCESS state.

2008-12-09/161/II03/2235 24

3. Infineon XChange Flow

Figure 3.5: APB Bus Transaction State diagram[38]

Now the data to be written is read on the selected slave or in the other case, the to read
data is put on the bus by the selected slave. If the two cycle flow of the APB can be met,
the PREADY signal will be HIGH. If the data phase takes more than one cycle the PREADY

signal will stay LOW. When the transfer is completed the next action depends if there is
a new transfer request. If so, the FSM will go directly to the SETUP state and save one
cycle. If not it will go to the IDLE state again. In order to reduce power consumption the
address signal and the write signal will not change after a transfer until the next access
occurs.[38, P. 5-5]

More information about the APB protocol, for example timing diagrams for read or
write transfers, can be found in the AMBA APB specification.[38] In chapter 4.2 a
SimpleBus-to-APB bridge will be implemented for the SPINNI Example System.

3.2. The Essence Meta Model

In the following the Essence data models will be briefly described. Despite the additional
SPINNI system enhancements are expressed by means of the core Essence data models,
the additional ModelConfig data model (see figure A.1 on page 85) is the most important
one for this thesis work. Therefore, the explanations will not focus in the other data
model but will still try to give an overview about the architecture. The Essence data
model is intellectual property of Infineon Technologies. Therefore, the core data models
are not shown within the thesis or appendix.

2008-12-09/161/II03/2235 25

3. Infineon XChange Flow

The Essence Meta Model contains nine basic model types. All of these models make usage
of the principles of the object technology. So inheritance and composition are widely used.
If an object is inherited from an existing one, it inherits all attributes and methods from
the existing one. Apart from that, it can contain additional attributes and methods. This
concept is called specialism. In nearly every Essence model all objects inherit attributes
from the class SingleSourceNode. This class provides basic attributes like Identifier,
Name, Description. The ID is of particular interest, because each element within a single
Essence model XML file representation has an unique ID. These basic attributes will then
be inherited to derived classes. The composition is a part-whole relation. In a graphical
UML notation the rhomb points to the whole, the opposite side to the part. The existence
of the part objects depends on the existence of the whole objects. In Essence the method
of composition is used to declare which elements can contain one-to-many other elements.
For instance in the UML example in figure 3.3 on page 16 a person has exactly one
address. So the resulting XML structure of the datamodel is declared implicit. The meta
model itself was designed and modeled with help of Enterprise Architect[50], an UML tool
capable of generating Java source code. The documentation for the Essence meta model
is also generated automatically. It is derived directly from the Java source code with help
of javadoc. Javadoc is a documentation generator from Sun Microsystems for generating
API documentation in HTML format. The work of this thesis is especially related to the
ModelConfig data model because the functionality of the debuggable assertion interface
was incorporated into it.

3.2.1. Component Data Model

Components are the only design elements that can contain collections of registers or
memories. These internal structures can be modeled in a very detailed manner. Therefore,
Component Data Model XMLs are often very large. Moreover, Components can have
several Interfaces.[26] For each Interface the Role, i.e. Master or Slave, is specified. The
properties of the Interface are modeled in the Interface Definition data model. With help
of the Role information a code generator then can determine what ports to generate.

3.2.2. Interface Definition Data Model

The Interface Definition (IFD) data model defines the interface of a component/system.
So a component XML and the interface definition XML are in close relation to each
other. Using an IFD it is possible to declare interface protocols once, and reuse them

2008-12-09/161/II03/2235 26

3. Infineon XChange Flow

later in other components. This strategy speeds up design and makes coding less error-
prone. Moreover, the interface can be modeled as seen from different views/abstractions
called, InterfaceDefView. Examples are RTL and TLM level. In TLM the protocol
is described very abstract via function calls and not via physical signals. Within the
InterfaceDefView all signals of the interface. e.g. the protocol are specified. Each signal
has a Name, DataType and unique ID. Protocols often have Master and Slave Roles. This
information is specified in the InterfaceDefRole. For each Role, for example Master,
the used signals of the protocol, and their directions are specified. With all these model
elements it is possible to express very complex and different protocols within the Essence
meta model. The references to elements in the data model and the relation between
different data models are expressed via the XRef data model which will be declared next.

In the implementation stage of this thesis work the proof-of-concept system was modeled
in the RTL level, because VHDL code-generation was projected. The figure 4.5 on page 41
illustrates the architecture of a resulting example InterfaceDefinition XML file.

3.2.3. XRef Data Model

The XRef data model contains all references from one element to other ones. The target
identifier for a reference is always the ID. Note that the IDs are only unique per XML file.
For each XRef there is a corresponding ExtVLNV field in the superior hierarchy. Therefore,
a references needs a pair of ExtVLNV and XRef. An example can be seen within the
ModelConfig data model on figure A.1 on page 85 and in the developed assertion interface
model illustrated in figure 5.3 on page 51. So using the ExtVLNV the corresponding
XML file can be determined and opened. The next step would be to search for the
declared ID within that file. Fortunately, there are several convenience functions, like
getXRefTarget(), available withing the Essence API that ease the reference retrieval.
The data mode itself offers varies types of references. Examples are XRefSlaveInterface,
XRefInterfacePort or XRefSignal. VLNV has the meaning of Vendor, Library, Name,
Version and can be seen as the identifier of the XML file. An Essence XML file must be
named like the VLNV of the RootNode.

For example, the XRef data model is used for assigning signals to an interface definition.
Moreover, it is also of use within an abstract assertion interface data model to associate
signals to an assertion.

2008-12-09/161/II03/2235 27

3. Infineon XChange Flow

3.2.4. Bus Data Model

The bus data model only consists of a SingleSourceNode and ModelRoot pair as well
as the object Bus. Using attributes of the object Bus the minimum and maximum
participants of the to be designed bus can be specified. With use of the ExtVLNV field
this model points to an external Interface Definition that declares all types of signals and
ports of that bus.

Within a system, such a bus component can be instantiated and other elements can be
connected to it.

3.2.5. System Data Model

The system data model is properly the most complex essence data model. It is the only
model that allows instances of other data models to be instantiated and connected.[26]
Consequently within the system, there can be instances of components, buses and sub-
systems whose interfaces are might connected. So an Essence system data model can be
compared to a VHDL top level entity, in which VHDL entities get instantiated and wired.
Furthermore, the system can have Interfaces too. Using the LocalInterfaceMap the
System’s interfaces can be mapped to internal instances of objects using the Connection.
A connection is a 1-to-1 mapping relation. For example the clk port of a system interface
can be mapped to a component instances interface that is instantiated within the system.

3.2.6. ModelConfig Data model

The Essence data model holds on implementation independent information. However, it
is also necessary to provide implementation and flow data as meta data as well. Therefore,
the XChange Flow has an additional data model called ModelConfiguration. The
figure A.1 on page 85 shows the data model architecture. Its purpose is to store all
language dependent and flow specific information. For example special tool flows (the
generator environment) and batch command flows that are necessary for a generation can
be put into that model. Other examples are language dependent port types like std_logic
and bit_vector for VHDL respectively. Despite not being language dependent the
AssertionInterface model shall also be included in the ModelConfiguration data
model because at the moment it is the only allowed place to add extensions to the
Essence data model.4 The ModelConfiguration model is not mandatory for an Essence

4As per November 2008

2008-12-09/161/II03/2235 28

3. Infineon XChange Flow

design. But it is possible for a design to have one corresponding ModelConfiguration

data model. Using a naming convention rule it is possible to check for the presence of a
ModelConfiguration data model file for a given Essence model. Within the ModelConfig
XML the link to its corresponding Essence Object is done via the VLNV and the RefXMLType
field. The figure 3.6 depicts this relation.

Figure 3.6: Relation of Essence model and ModelConfig model

So the generator template can check for an optional ModelConfig XML of the current
Essence object and consider its information during the code-generation process. Because
the assertion interface will be placed inside the ModelConfig data model, this concept
allows the optional generation of the assertion interface.

3.2.7. Other Data Models

Apart from the already mentioned data models there exist some models which declare
the elements used by the other data models:

• DataType Data model
defines the data type definitions

• Variables Data model
constants, parameters, generics

• Miscellaneous Data Model
enumeration types

• Connectivity Data Model
all elements for interconnection between objects

It is not necessary to introduce these models in detail for purposes of this thesis work.
For a detailed description please refer to the Essence documentation [26] or the Essence
class diagrams themselves.

2008-12-09/161/II03/2235 29

3. Infineon XChange Flow

3.3. Toolchain

To build the enhancements for the example system and to model the generic assertion
interface data model the Infineon Essence tool flow had to be used. Using the toolchain
it is possible to build up new Essence data models or perform code-generation with help
of templates. Therefore, all written templates and python code are used along with this
toolchain. Consequently it is meaningful to give an overview about the tools and their
underlying concepts.

The Infineon Essence flow is based upon several independent tools and sub-flows. The
main end user tools to create and work with Essence XML files are essimport and
essemplate. In general the aim is to “ease the consistent generation of TLM and RTL
register interfaces and HW/SW interfaces using Essence XML descriptions as a single
source.”[31, P. 1] Both tools are written in the Python programming language. This has
several benefits. First of all python is platform independent and offers good binding
functionality. Moreover, its an object-oriented approach. The initial idea behind this
approach was to find a flexible template engine which supports binding to C++ and Java.
This template engine should be the template language/engine for Infineon. The binding
to Java was necessary to interact with the compiled Essence Meta Model.[32, P. 4]

In a nutshell the functionality of the tools can be described as the follows

essimport enables the Python based creation of Essence XML files, the conversion of
XML files from one Essence version to another, and an import of an arbitrary XML
format into an Essence XML description

essemplate generates arbitrary target code from an Essence XML file with help of
templates (generators)

Sections 3.3.1 and 3.3.2 will give a detailed view about the architecture and principles of
both tools.

3.3.1. Essimport

Figure 3.7 shows the two possible ways how to build an Essence-conform XML. The tool
essimport is used to create a XML file which complies to the Essence Metadata model,
in most cases with the help of a plugin. The plugin itself is written in Python and makes
extensive use of the Essence API.

The Essence API provides convenience functions to create and instantiate the elements
for the desired data model, for example a component datamodel. Furthermore, these

2008-12-09/161/II03/2235 30

3. Infineon XChange Flow

newly created objects can then be filled or set to valid content. The output file of this
flow is an Essence XML file. In this case, there is no other input XML file needed. The
desired content for the output Essence XML is specified within the plugin. This file
can later be used for code generation with help of essemplate. The essimport API is
accessible through the api constructor argument of the plugin.

Figure 3.7: Essimport Flow[31, P. 7]

It is also possible to convert between different Essence XML data model versions. A
Python conversion plug-in and an optional arbitrary XML file are the input and the
Essence XML is the output. Within the tool the XML input is objectified using the
Python Gnosis library. The obtained object structure is iterated with the conversion
plug-in. [31, P. 7]

Algorithm 3.8 shows a simple example for the usage of essimport. The plugin file
simple_component.py includes a class with two functions. The __init__ function is a
python statement and is automatically called when the simple_component.py is loaded.
With the help of the Essence API a component is created. Within the executePlugin()

function the Name attribute of the newly created component is set. If this plugin is used
along with essimport the output will be a Essence Component XML file.

Algorithm 3.8 Example of an essimport plugin with set of an attribute(written in
Python)[31, P. 12]

1 class simple component :
2 def i n i t (s e l f , ap i)
3 s e l f . ap i = api
4 s e l f . Component = api . Essence . createComponent ()
5 s e l f . executePlug in ()
6

7 def executePlug in (s e l f) :
8 s e l f . Component . setName (s imple component)

2008-12-09/161/II03/2235 31

3. Infineon XChange Flow

3.3.2. Essemplate

With the essemplate tool it is possible to generate arbitrary target code from an Essence
XML file using templates. This provides the possibility of easy code generation for different
target applications (e.g., the register interface of RTL or TLM models or firmware header
files). Therefore, the Essence meta model API is linked with a template engine to allow
the access to the XML data directly from within the template. The principle of using
templates allows the separation of model and view. In this case the data provided by the
Essence XML equals the model and is separated from the the target code to be generated,
which equals the view.[29, P. 16]

Figure 3.8: Essemplate Flow[31, P. 15]

As template language the Infineon developers have chosen MAKO. The MAKO template
engine supports the complete Python scripting functionality. So inside the template
blocks of arbitrary python code can be placed. The template itself can be composed of
hierarchical templates. Hence, it is possible to make reuse of sub-templates where ever
possible. Figure 3.8 shows the basic flow for the essemplate tool. The output file type
depends on the template. So a template could generate VHDL, SystemC or just outputs
text after applying tests to the Essence XML. Moreover, on each essemplate run only a
single output file can be generated.5 If it is intended to generate multiple files out of the
same source multiple tool calls are necessary.

5As per November 2008

2008-12-09/161/II03/2235 32

4. Infineon SPINNI Example System

For the validation and testing of the Essence meta model approach an Infineon example
system called SPINNI System was existing. In order to demonstrate the usability of the
assertion interface concept it was decided to implement a widely used bus architecture
within the system. Using an advanced bus the functionality of the assertion interface could
be exhausted to a greater extend. Therefore, the AMBA protocol family, especially APB
and AHB6, were chosen to be represented within the Essence meta model. However, such
a subsystem was not available and thus it was developed within this thesis as well. For this
approach several preparations where necessary. First the protocols had to be expressed
with means of Essence, in particular the Component, Bus and InterfaceDefinition

data model. After this an extended Essence System had to be created. Moreover, code-
generation out of the data model should be performed along with the development. As
target RTL language VHDL was chosen.

The chapter 4.1 explains the existing SPINNI example systems architecture and compo-
nents. In the following chapter 4.2 the improvements and additionally modeled elements
will be discussed.

4.1. Existing System

4.1.1. Architecture

The Infineon SPINNI system is an example system for proof-of-concept of the XChange
flow as well as the prototyped work from the SPRINT project. The figure 4.1 gives an
overview about the architecture. The whole system is using the single-source XML-based
flow and is getting generated out of the Essence data model using templates. The
main system consists of the open source MLITE CPU and a very basic system bus
called SimpleBus. The RAM is the only directly connected component on the SimpleBus.
Besides, several bus bridges translate the SimpleBus to other bus standards. The External
Bus (XBUS) and Peripheral Bus (PBUS) are “down-sized” versions of the SimpleBus,
and therefore very similar to it. This is because the address line is scaled down due to
the address decoder within the simple bus. Typical peripheral components on the PBUS
are the UART and GPIO. For the test of these components Testbench Elements (TBE)
are used which model the exterior interaction with the peripheral components.

6in fact only a subset of AHB

4. Infineon SPINNI Example System

Figure 4.1: Infineon SPINNI System with intended enhancements

The implementation of the AssertionInterface shall be done within an AMBA sub-
system. To interface the subsystem with the existing SPINNI system it was necessary
to develop a SimpleBus to AMBA Bridge and the corresponding Essence XML files.
Therefore, chapter 4.1.2 will summarize the concept and signals of the SimpleBus.

4.1.2. Simple Bus Specification

The SimpleBus is the central system bus of the SPINNI example system. It connects
the CPU, the RAM, and several bus bridges within the SPINNI system. The naming
convention for the SimpleBus signals is

S_<signal_name><width>_<direction>.[27]

If a signal is not a vector the width is skipped. The data and control signals from the
CPU are switched to the SimpleBus slaves. On the other hand, data from the RAM
and the bus bridges is OR-ed and transferred to the CPU. Slave selection is done via an
address decoder. The figure 4.2 shows the interface specification of a general SimpleBus
slave.

The slave selection is indicated via logical one on signal S_AccEn_i. The SimpleBus

is an one-phase protocol. Therefore, once a slave is selected all other signals also hold
their intended values. The signal S_Wr_i indicates read or write access. The datain and
dataout signals are named S_Data32_i and S_Data32_o respectively. The two bit signal

2008-12-09/161/II03/2235 34

4. Infineon SPINNI Example System

Figure 4.2: Interfaces of a SimpleBus slave[27]

S_DataSize2_i indicates byte, half-word or word access. The address signal has only
24-bits of former 32-bits on the CPU side left due to the previous address decoder in
the bus itself. Furthermore, the bus wait signal S_Wait_o allows to extend a SimpleBus
transaction. If the transfer cannot be to accomplished within one cycle, S_Wait_o goes to
one. Then the CPU is waiting for the bus transaction to end before issuing new requests
on the SimpleBus.

4.2. Extensions to the SPINNI System

In the following sub-chapters the developed extensions for the SPINNI System are
explained. Within the data model all new components were implemented in a way
that allows RTL level code-generation, because the usage of VHDL was projected. The
overall work was developed in a divide-and-conquer approach. First the development
concentrated on the single elements of the AMBA Subsystem (see figure 4.1) and then
the sub-system itself. After this the assertion functionality was prototyped on the system.
In the last stage an integration test along with real HDL Code simulation was performed.
During the thesis work APB and AHB components and systems were developed. Because
the AHB components only differ in the signal names and do not offer more functionality
then the APB, the following sub-chapters will focus on the APB components only.

2008-12-09/161/II03/2235 35

4. Infineon SPINNI Example System

4.2.1. APB Bridge Architecture

For the development of the SimpleBus to APB bridge it is advisable to know about
the signaling of both SimpleBus and AMBA APB. Chapter 4.1.2 on page 34 gives an
overview about the SimpleBus, chapter 3.1.9 on page 23 about APB. The bridge itself is
slave on the SimpleBus. The AMBA specification gives an example of an APB Bridge,
because the APB is often used with AHB altogether (see figure 3.4 on page 24). The
bridge has to fulfill the following requirements:

• protocol translation and synchronization of SimpleBus and APB

cycle-accurate signaling in accordance to the respective bus protocol

• propagation of wait signals in case of read or extended write transfers

• support for consecutive APB transfers, word/half-word/byte read and write decod-
ing

In figure 3.5 on page 25 the 2-phase APB protocol is illustrated using a FSM. Usually
a n-state state machine is implemented using parallel VHDL processes. Each process
is clock independent but shifts its output to the next process on clock. This is called
phase-oriented design approach. It is very common for large pipeline designs, like the
n-stage pipelining inside processor cores. The APB consists of only two phases, the setup
and data phase. This results in a quite easy FSM. Therefore, the VHDL implementation
is realized in style of the AMBA APB state machine from figure 3.5. This eases the
understanding of the VHDL code and is not too ineffective due to the low phase count.

The general interface of the SimpleBus-to-APB bridge is shown in figure 4.3. To speak
in the Essence philosophy, the APB bridge has a SimpleBus interface of role Slave and
an APB interface with role Master. Within the bridge byte, half-word or word access
to the data signal is decoded via 2-bits of the SimpleBus address signal. Apart from
this the bridge implements the APB FSM which will be discussed in detail in chapter
4.2.2. The APB slave selection has been put into the APB according to the Essence
philosophy to divide component and bus functionality. Moreover, demuxing the different
APB slaves output signals is done in the APB too. The APB address signal PADDR width
has been chosen to 32-bit in spite of only 20-bits have meaningful values because of
previous address decoders. The APB protocol does not specify the data signal width,
but to use common numbers 32-bits were chosen.

2008-12-09/161/II03/2235 36

4. Infineon SPINNI Example System

Figure 4.3: APB Bridge Overview

4.2.2. APB Bridge Behavior

Within the SimpleBus to APB bridge a FSM is translating requests from the SimpleBus

side to peripherals on the APB. The state machine consists of three states. Inside the
target-code language VHDL they are labeled S_<state> to ease the readability of the
text. The figure 4.4 illustrates the FSM states and their transitions. In the following
each state shall be discussed in detail.

An example code-generation of the APB bridge can be found in the appendix A.2. It is
quite helpful to comprehend the following explanations.

2008-12-09/161/II03/2235 37

4. Infineon SPINNI Example System

Figure 4.4: SimpleBus to APB finite state machine for bridge

IDLE State

If the S_AccEn_i signal goes to HIGH the bridge is selected on the SimpleBus. The
SimpleBus other signals indicate what action is requested on the Slave. To be on the
safe side the bridge samples these signals first using several VHDL variables all prefixed
with sample_<signal_name>. The signal sample_S_Wr_i is now used to determine the
requested transfer type.

On HIGH a write transfer shall be performed. Therefore, the sample_S_DATASIZE2_i

signal is used to determine what part of the sample_S_DATA32_i shall be put on the
APB. Options are the whole word, half-word or a byte. This function has been swapped
out into a VHDL package. The SimpleBus protocol specifies a mapping table using two
bits of the address signal sample_S_ADDR24_i. Because the outer system does not need
to wait for the bridge to continue it is not necessary to set S_Wait_o to HIGH.

On LOW a read transfer is requested. This operation takes at least 2 cycles. Therefore,
the SimpleBus wait signal S_Wait_o has to be set HIGH.

In case of a transfer request the next state will always be S_SETUP, else the FSM remains
in S_IDLE. To stick to the Infineon Essence philosophy and data model style, the slave
selection will be performed within the APB.

SETUP State

First the following FSM state is assigned, which is always S_ACCESS. Inside the APB the
selected slaves APB PSEL signal is set to HIGH. The slave is selected using an address
decoder. In the S_SETUP state the APB signals PENABLE and PWRITE get assigned with
the pre-sampled sample_S_Wr_i. If the current transfer is a read request the S_Wait_o

2008-12-09/161/II03/2235 38

4. Infineon SPINNI Example System

signal is held LOW. It is tried to assign every output signal in each state to avoid synthesis
problems.

If the current transfer is a WRITE transfer the S_IDLE state has not put the S_Wait_o

signal to HIGH. Therefore, it could be that the system queries another transfer in the
S_SETUP state. If so, the transfer is sampled in a second set of VHDL variables prefixed
with pipe_sample_<signal_name>. It must be stated that APB is not a pipelined
protocol. The bridge implementation allows right-after-another transfer on the APB bus
only.

ACCESS State

The S_ACCESS state contains the most VHDL code because the transfer-after-transfer
cases needs to be implemented here. Moreover, it is allowed to extend an APB transfer
in AMBA protocol version 3. For example a read request on peripheral components can
take longer then one cycle of the system clock. So at first it is checked if PREADY equals
HIGH, which means the APB slave is ready.

If so the PENABLE signal is set to LOW again. The other APB signals stay as they are to
save energy. If the ongoing action is a read transfer then the bridge decodes the APB data
in signal PRDATA. This is done the same way like the write decoding, using an outsourced
mapping function which returns word, half-word or a byte. The SimpleBus wait signal
S_Wait_o is set to LOW again so that in the next state S_IDLE an eventually new transfer
can be requested from the outside. It must be noted that a pipelined read transfer is not
possible due to the specific way of the SimpleBus wait generation. This action would
result in an infinity process activation loop. This issue will might get revised in the next
SimpleBus version.7

If the ongoing action is a write transfer, then all related signals are held during the
S_ACCESS state. Only in the write transfer case it is checked for an already sampled
subsequent transfer, or a new transfer request in the S_ACCESS state. If there is a saved
transfer request from the S_SETUP state the pipe_sample<> signals are assigned to the
sample_<> signals and the same actions are taken as in the S_IDLE state. Moreover, the
next state will be the S_SETUP state because the actions from the S_IDLE state were
already taken. This saves one cycle and allows consecutive transfers.

If PREADY is not HIGH then the next state will always be S_ACCESS until it is. Moreover,
it is checked if another transfer request is issued to the APB bridge. If so, it is sampled

7As per November 2008

2008-12-09/161/II03/2235 39

4. Infineon SPINNI Example System

and can be processed once the previous transfer has completed and PREADY changes to
HIGH.

4.2.3. APB

In order to create an Essence representation for the AMBA APB it was first necessary to
create an APB InterfaceDefinition. Therefore, a python plugin was written. With
help of essimport a corresponding Essence InterfaceDefinition XML was created.
All signals of the APB were declared. The datawidth of the datain / dataout signals
was chosen to 32-bit. Because the essimport plugin and the resulting XML are very
bulky they are not illustrated here. Instead, the figure 4.5 gives a brief overview about
the resulting XML file.

4.2.4. APB Peripheral

To test and develop the APB as well as the SimpleBus-to-APB bridge a simple APB
slave was written. This slave is a simple Essence component with an interface of role
slave of the APB interface definition. The slave component contains a number of registers.
Their amount is specified via a parameter within the XML file. The template is using
this information to generate an array of integer within the VHDL file. An example code
generation of the APB Slave can be found in the appendix A.3. The register read or write
functionality can be implemented without a state machine. Using an asynchronous reset
process it is checked if PSEL equals HIGH. In case, some bits of the address line are used
for the register selection. Depending on the PWRITE signal the datain signal is assigned
to that register or the dataout signal is assigned with the registers content. PREADY and
PSLVERR were not used in this first simple slave. Therefore, they are bound to 1 or 0
respectively. So the transfer will be finished after one cycle, and PSEL will become low.
When this happens the dataout signal will go to x”0000 0000” again to allow simple
OR-decoding within the bus.

In addition to this first easy implementation another component was written that could
be instantiated within the simple slave. This additional component also contained an
interface to the superior components registers. So in the target language VHDL, if
data was written to the APB slave, the incorporated component could access it. This
additional component contained a simple Serial Interface (SIF) functionality, realised
using a FSM. A SIF shifts out parallel data in a serial way. The register’s information
was again used to specify various test options, like

2008-12-09/161/II03/2235 40

4. Infineon SPINNI Example System

• back/forward shift

• invert bits

• start/end pattern.

Moreover, using the SIF the byte, half-word and word access as well as the wait generation
and propagation over the bridge could be verified. Besides, this functionality made the
overall sub system more complex and therefore more realistic to make use of the assertion
interface later on.

Figure 4.5: APB InterfaceDefinition XML snapshot

2008-12-09/161/II03/2235 41

4. Infineon SPINNI Example System

4.2.5. APB Subsystem

After the individual components had been implemented and tested, the entire sub-system
was set up. Therefore, it was first necessary to write an essimport plugin to generate the
Essence system data model XML. Within the plugin references the used Essence objects
Component and Bus where specified. During the development more and more components
were instantiated and connected. As a reminder, the optional assertion interface was
implemented for the AMBA Bridge and subsystem. The final subsystem is depicted in
figure 4.6.

Figure 4.6: The AMBA subsystem in detail

So in the end the overall SPINNI example system contained several components, the
SimpleBus and the AMBA subsystem. Despite not related to the assertion topic, it

2008-12-09/161/II03/2235 42

4. Infineon SPINNI Example System

was tried to connect IP-XACT components in the test system within the final stages.
During this process several problems occurred because the used InterfaceDefinition

for the AHB protocol in the SPINNI system were not the same as in the imported
components. The background is that the SPINNI system only contains a downgraded
version of the AHB, for example without multi-master capabilities, therefore, some signals
were not necessary at all. To solve this problem an InterfaceDefinition bridge was
implemented. This bridge is a simple component with all roles from the to be bridged
interfaces. Not used interfaces remain unconnected.

For the superior system please refer to figure 4.1 on page 34.

4.2.6. Interface Mapping

The assertion interface data model shall model assertions and involved signals. Moreover,
it shall provide the access to the assertion registers. But in general the interface of the
component and the interface of the registers may differ. In an abstract view the interface
and the core logic of a component can be seen separated. So within the Essence flow
a component can be generated using another referenced InterfaceDefinition. This
results in different ports names, width and count. So in general there has to be a mapping
of the interface side of a component and the internal registers interface (if present).
Moreover, the Essence component model allows very detailed descriptions of internal
registers, for example their length and bitfields. Each of these capillary register elements
can have individual read or write enables, depending what actions are allowed for the
specific register area. This allows a lot of possible options. For example, the component
interface could only offer a 8-bit datain signal. On the contrary the register itself could
be 32-bit wide. In this case there are several options on how the datain data can be
put into the register. Within the Essence example system there was no general mapping
mechanism existing yet.8 Therefore, it was necessary to develop a mapping template first.
Within the Essence data model interfaces are specified using three parameters. Table 4.1
gives a briefly overview.

8As per November 2008

2008-12-09/161/II03/2235 43

4. Infineon SPINNI Example System

Parameter Component Interface Register Interface

Data Width

(DW)

width of signal number of bits in a register

Address Unit

(AU)

an address increments by 1 shifts, the
access point increments by AU-bits

an address increment by 1 shifts the
access point within the register by

AU-bits, therefore allows to address
every AU-bits of the DataUnit

separately
Data Unit (DU) smallest payload width smallest unit in bits with independent

access enable

Table 4.1: Essence Interface Parameters

If we consider only the values 32-bit, 16-bit and 8-bit for the three parameters of each
interface this results in many possible options. Three parameters for both interfaces
result in 36 = 729 cases. To ease the research if a generous approach is feasible a Python
script was written that performs the following options:

1. Build up a table of all 36cases

2. Apply Filters #1
only integer multiplies of parameters are allowed, for example

DataWidthInterface = n ·DataWidthRegister

whereas n is integer. This condition must be fulfilled for the other parameters as
well.

3. Apply Filters #2
Because there were many options left, it was tried to focus on simple and common
cases first. Therefore, with help of example cases some additional constraints where
defined that would allow a moderate mapping effort. For example, the condition

DataWidthInterface ≤ DataWidthRegister

must be fulfilled. Otherwise the write case to the register would cause trouble.
Moreover, the condition

AddressUnitInterface ≥ AddressUnitRegister

was defined, else it would not be possible to access every actually individual
addressable part of the register.

2008-12-09/161/II03/2235 44

4. Infineon SPINNI Example System

Apart from that, several other constraints where defined. These additional constraints
will not be discussed in detail at this point, because the main thesis focus is about the
assertion interface generation and not on the interface mapping. The remaining simple
subset of mapping cases was implemented within a mapping template. The performed
actions within the template can be summarized to

• duplication of the read or write enable signal depending on relation of the DataUnit
of both interfaces

• sliced DataWidth mapping of the register content with the equal or smaller interface
content, the remaining bits within the register get set to zero

• simple address translation, calculates the access point depending on AddressUnit

of both interfaces

Figure 4.7 shows an example where the address translation constraint is violated. The
interface DataUnit is 32-bit, the AddressUnit is 8-bit. This allows to“address”every 8-bit
of the 32-bit independently. In contrast the register has DataUnit 32-bit and AddressUnit

16-bit. Therefore, within the register every 16-bit can be accessed independently. These
addressable parts result in offset addresses (purple numbers). In this example, the address
translation can not be performed for all offsets.

Figure 4.7: Constraint violation on Interface Mapping

2008-12-09/161/II03/2235 45

5. Debuggable Assertion Interface

This chapter introduces the key concepts of the debuggable assertion interface which was
developed within this thesis work. The interface exposes IP-internal assertions to the bus,
such that it is possible to retrieve assertion information and results, as well as controlling
assertions, i.e., enabling and disabling. This interface supports also interaction with
on-chip debug components which are utilized by hardware debuggers.

The overall approach consists of collecting requirements for the assertion interface, defining
the structure of this interface, and to capture it within a the Essence meta-model, in order
to utilize code-generators. As a reminder the model will not contain the real synthesized
assertion functionality itself, but will provide a generative interface to allow access to
the results and config registers of every assertion. Moreover, the model shall be as
abstract as possible and shall not imply a certain target-code or target-architecture. The
AssertionInterface data model will model the concept and the assertions interfaces in
a high-level and language-independent, tool-independent way. Moreover, it was decided
that the Essence component and System data models should be supported. Therefore,
for these two models it shall be possible to optionally define an assertion interface model.

First the requirements for the future AssertionInterface data model will be gathered
in chapter 5.1. Moreover, an architecture decision, benefits and tradeoffs will be discussed.
Chapter 5.2 will introduce the developed data model. In chapter 5.3 the target code
architecture will be described. Chapter 5.4 summarizes how the previous collected
requirements are fulfilled by the proposed solution.

5.1. Requirement Analysis

For the development of a general model representation for a debuggable assertion interface
a lot of consideration has to be done. These requirements shall be axiomatic and
independent from implementation. But during the research activities one has to keep in
mind that the proof-of-concept code-generation in the implementation stage will be based
on VHDL. Therefore, the axiomatic requirements have to be checked against the needs
of RTL-level code generation, in specific VHDL. This is because if we have a well-formed
data model but it is not possible to allow code-generation for register-transfer level HDL,
the model is of no use. Therefore, the research process can be seen as a meet-in-the-middle
approach. Besides a paper research about assertions and their functionality has been done
(see [9, 2]). In the following sub-chapters the summarized requirements are presented.

5. Debuggable Assertion Interface

5.1.1. Hardware

The assertion data model has to be consistent through multiple abstraction levels. So the
models information must be of use for electronic system level (ESL) design approaches
like TLM but on the other hand it must be also possible to generate register-transfer level
HDL code. Furthermore, the assertion interface shall be independent of the property
implementation. Therefore, the model shall have no impact on design criteria and
independent from implementation. Above this, it shall be possible to include an assertion
interface optionally. This means in one case it must be supported to generate a system
out of the model which has just the core logic, in the other case also the in-built assertion
interface has to be included. Besides the assertion interface shall support on-chip debug
support (OCDS). This means that the result of assertions can be read from within the
system. For example, a firing assertions could write an error code to a register or cause a
hardware interrupt. Then the surrounding system can query the assertions status via the
assertion interface and react on the property violation. These hardware requirements for
the assertion interface can be summarized to:

Req.1 no impact on design criteria, independent from implementation

Req.2 consistent through model abstraction (TLM, RTL)

Req.3 not necessarily included in final silicon

Req.4 Option to interrupt on assertion failures, OCDS

5.1.2. Architecture

There are numerous architecture requirements for the assertion interface. The architecture
defines how the assertion interface is build, how the flow of information is organized.
These requirements do not define the later code-architecture in detail, but also give an
idea what has to be supported by the target-code. For example, it must be possible to
access every single assertion within the interface, in the easiest case to enable or disable
it. Moreover, it shall be also possible to group similar assertions, or families of assertions,
into scopes. Besides, it shall be possible to perform a broadcast to all assertions within
all scopes. So all assertions could be configured simultaneously. Furthermore, advanced
debug operations shall be supported. An example is the reset of the assertion in its initial
stage. A system could also perform polling upon the assertion and access coverage data
in real-time. An enhanced option would be to make use of a hardware interrupt.

These architecture requirements can be summarized to:

2008-12-09/161/II03/2235 47

5. Debuggable Assertion Interface

Req.5 Enabling / Disabling of every IP Assertions

Req.6 Reset Assertion, Reset results or failures

Req.7 Grouping the Assertions to scopes

Req.8 Broadcast to all assertions

5.1.3. Bus Interfacing

In difference to the architecture requirements which specify how the assertion is built,
the interface consideration is about how the assertion can be accessed. As mentioned
in chapter 5 the assertion interface shall be used for Essence component and system
data models. If we think of such a data model, e.g. a component, how shall the
assertion functionality be accessed from the outside? There are three different possible
implementations. The figure 5.1 shows the available options.

Figure 5.1: Possible ways to access the Assertion Interface

1. The optional assertion interface results in additional ports on the component. If
we think in VHDL, then additional ports need to be generated for the entity part.
Moreover, the system generator then needs to connect these new ports to something.
If the component is a bus slave, then the assertion could act as another slave of the
same bus. This is not trivial for complex bus systems. Another possibility is to
connect the assertion interface directly to another components assertion-specific
interface. This connection has to be specified within the system data model XML
file - therefore its not influencing the assertion data model.

2. The optional assertion interface of the component is not visible to the outside.
Instead of providing additional ports, interfaces are muxed within the component.

2008-12-09/161/II03/2235 48

5. Debuggable Assertion Interface

Using one bit of the component’s address line the muxer can differentiate if the
core logic shall be accessed or the assertion interface. But if the assertion interface
shall provide support for interrupt propagation throughout the system, then at
least one additional port has to be routed to an interrupt controller. Therefore - in
case of interrupt - an additional port has to be generated too.

3. The most complex solution would be to provide both options simultaneously. This
also would result in two rival slave interfaces for the same assertion interface.

Proposal one would require a lot of changes in the system interconnect generator, which
is not part of this thesis and actually was being developed at the same time. Consequently
solution three is also not feasible. Therefore, concerning a future implementation the
option two was preferred and can be defined as additional requirement:

Req.9 Access to the Assertion Interface on a components / systems slave interface

Moreover this approach is independent from other parts of the Essence flow - hence a
good starting point for the assertion interface generation.

5.1.4. Multiple Assertion Interfaces per component

If we think of a single assertion checker one can state that the assertion itself is monitoring
a set of signals. Taking VHDL as example these signals could then appear in the
SensitivityList of a VHDL process. If the process is activated due to a signal change
the checker functionality evaluates if the property is violated or not. So an assertion
is working on one or several signals. In an Essence object each signal belongs to an
Interface.

So the data model must capture this possible case and shall allow the definition of as many
assertion interfaces as slave interfaces of the Essence object. If an Essence object has
several slave interfaces it must be specified which interface is used to access the assertions.
Figure 5.2 shows the possible options. The green and blue colors indicate allowed accesses.
So it is allowed that an Essence object has more then one assertion interface. But all
assertion interfaces must be located on different slave interfaces, otherwise this leads
to collision during code generation. Moreover, it shall be permitted that an assertion
interface is configured via one slave interface but read using another one. This case seems
very unlikely and would result in difficult dependencies during code generation. Moreover
the actually independent assertion interfaces would need to exchange data. Therefore,
this case is forbidden. The collected additional requirements can be summarized to:

2008-12-09/161/II03/2235 49

5. Debuggable Assertion Interface

Figure 5.2: Allowed accesses to the AssertionInterface

Req.10 support for as many assertion interface as slave interface on an Essence
component / system

Req.11 support for monitoring of several interfaces per assertion

5.2. Assertion Interface Meta Model

After the requirements had been identified the implementation of the data model was
done. The AssertionInterface meta model was build as an extension to the Mod-

elConfiguration meta model. As design entry tool Enterprise Architect from Sparx
Enterprises[50] was used. It is fully integrated within the Infineon Essence flow and
allows Java code generation. Therefore, new models will be compiled and integrated
into the Essence data model. The figure 5.3 shows the final implementation. During the
modeling it was tried to use existing Essence elements wherever possible but build new
elements where necessary. The following sections shall give a detailed description of the
data model elements.

The AssertionInterface is the only data model with nested ExtVLNV - XRef pairs
within Essence. Therefore, a “missing feature” of Essence was discovered during the
development of the model which resulted in wrong return objects on the usage of the
API convenience functions. The required tree traversal of the ExtVLNV - XRef pair will
be added in future versions.9

An example ModelConfiguration XML with an incorporated assertion interface is shown
in the appendix A.4.

9As per November 2008

2008-12-09/161/II03/2235 50

5. Debuggable Assertion Interface

Figure 5.3: AssertionInterface data model

5.2.1. AssertionInterface

AssertionInterface is the root object for the assertion part of the ModelConfigura-

tion data model, which can be found in the appendix A.1. One ModelConfiguration

data model can have zero to infinity AssertionInterfaces. Each AssertionInterface

has an attribute called XRefSlaveInterface. This attribute is a XRef (reference) to an
interface of the component or system using the ModelConfiguration attribute ExtVLNV.
This attribute type is defined within the Essence XRef data model. With help of it

2008-12-09/161/II03/2235 51

5. Debuggable Assertion Interface

each AssertionInterface, which may work on multiple signals from different interfaces,
has one certain slave interface. The AssertionInterface can only be accessed via that
interface. If there is more than one AssertionInterface in a single ModelConfiguration
data model, then all AssertionInterface must have different XRefSlaveInterface,
else there is a collision during code generation. It is important to distinguish the XRef-

SlaveInterface from the assertions XRefInterface. One single AssertionInterface

can only be read and configured from one XRefSlaveInterface. An assertion can work
on many different slave and also master interfaces of a component. But the assertion
is only monitoring. The Assertion Interface is receiving and submitting data via its
XRefSlaveInterface.

5.2.2. Scope

Each AssertionInterface can have one to infinity Scope. The sense of scopes is to group
similar assertions. So for example there could be a number of assertion which monitor the
system role signals, and another group which monitors the bus transactions. The Scope

inherits the attributes from the SingleSourceNode of the ModelConfiguration data
model. So for example each Scope is further defined by Name, ID and ShortDescription.

5.2.3. Assertion

Each of the Scope can have zero to infinity Assertion. If a Scope has no Assertion

specified, it is a temporary placeholder and will not get generated.

Each Assertion has several attributes:

Property specifies the actual assertion, this field has been included for future work
packages which may include assertion checker synthesis

Language specifies the used assertion language; this value is an enumeration type;
predefined values are for example SVA, OVL and PSL

ExtVLNV this field is necessary for Ref2Interface, it specifies the VLNV of the Essence
object where the referenced interface is specified

Moreover, Assertion also inherits the attributes from the SingleSourceNode of the
ModelConfiguration data model.

2008-12-09/161/II03/2235 52

5. Debuggable Assertion Interface

5.2.4. RefInterfaceAssertion

Each Assertion is working on one to infinity Interfaces. Because a RTL code assertion
is working on certain ports, the interfaces of these ports must be identified here. Using
the Essence XRef model the selected Interface of the Essence object are referenced.
This is done via the ID of the to be referenced interface. For details please refer to
the chapter 3.2.3 on page 27. It is mandatory that each assertion contains at least one
reference to a system role interface. This is because in general an assertion statement
shall be related to the rising edge of the clock.

5.2.5. RefSensitivityPort

From each Interface the assertion is working on, only some ports are really monitored.
In a generated VHDL file those ports would appear in the sensitivity list of a process
statement. Inside the data model they are referenced via RefSensitivityPort. Again
the XRef model is used to point to the selected port.

5.3. Target Code Architecture

The figure 5.4 shows the proposed AssertionInterface architecture for any target code
implementation. So within the real system the AssertionInterface shall consists of four
bus-accessible registers. The AddressRegister is used to select the scope and assertion.
The width of the register shall be 32-bit whereas four bits are used for scope definition. If
one scope encoding is used to define the broadcast case, this allows 24 − 1 = 15 possible
scopes. Moreover, this allows the definition of 228 unique assertion addresses. It is
unlikely that this amount will ever by used at all.

Depending on the AddressRegister the assertions internal registers are mapped to the
global ones, which are visible on the bus interface. So using the AddressRegister a
mapping to the virtual registers ConfigReg and StatusReg is done. Using the registers
an interface to advanced debugging features can be provided. If the ConfigReg is one-hot
encoded this results in 31 possible options that can be enabled or disabled simultaneously.
So the assertion could be configured to count the number of failures in an internal register.
Another configuration might puts this value into the StatusReg where it can be read
back from the surrounding system. Furthermore, the interface provides the propagation
of a property violation signal. The assertion-failed signals from all assertions are OR-ed.
The result will appear in the bus-accessible FailureReg.

2008-12-09/161/II03/2235 53

5. Debuggable Assertion Interface

Figure 5.4: The AssertionInterface architecture

The register information encoding has not been put into the data model. First of all
if we think of the variant to have multiple options enabled at the same time, only an
one-hot encoding can fulfill this requirement anyway. Moreover, the intended informa-
tion representation of register content may varies from case to case, so it tends to be
implementation specific. The assertion interface is the outer shell to the real assertion
checker functionality. So if the checker part has to be implemented by the developer, it
is a meaningful approach to leave a greater variability on how the information of the
interface is used to him too.

5.3.1. Assertion Register Constraints

For safety issues the real assertion registers shall have certain constraints. The Essence
Component data model offers different concepts to separate the allowed access to registers.
So for example a register can be marked read-only or write-only for a certain access type.
Using it one can distinguish between the access to the register from within the component
and from the component’s interface. A re-implementation of a the AccessType and
Bitfield concept inside the AssertionInterface data model does not seem reasonable.

2008-12-09/161/II03/2235 54

5. Debuggable Assertion Interface

First of all it violates the general Essence approach - no redundancy within the design.
Moreover, the assertion interface architecture will be the same for every generation process.
So in every generation for any kind of supported Essence components the amount, size
and architecture of the registers will be the same. Therefore, it is not necessary for the
registers to be configurable at the moment. This status might be revised in the future
development of Essence.10

These additional requirements to the registers can be summarized to:

Req.12 The ConfigRegister shall only be writeable from the bus side, the assertion
part can only read it

Req.13 The StatusRegister shall only be readable from the bus side, the assertion
part can write to it

Req.14 The ResultRegister shall not be writeable from the bus side, the output
of all ResultRegister is OR-ed and put into the global FailureReg register.

5.4. Requirement fulfillment

Some of the previously collected requirements were fulfilled within the assertion interface
data model, for others it was advantageous to implement them using the code-generation
template. It must be kept in mind that it is advisable not to put any implementation
detail into a data model itself. This means in case of this thesis, that the data model
shall only contain the information about the assertion, the related signals, but will not
give a fixed definition on how to implement the data model in a certain target code. For
example, the grouping of assertion should be accomplished within the data model. The in
detail architecture, for example the register implementation and how the multiplexing is
done is implemented using the template. This has the benefit that the assertion interface
can be generated in an optimal way for different target-code languages.

The proposed solution fulfills all previous collected requirements. The table 5.1 comments
why a certain requirement is fulfilled. Requirement 1 and 2 are already fulfilled using
the meta model approach. With help of it, the assertion interface is expressed in a
very abstract and implementation-independent way. The target code will be generated
later on using implementation-specific templates. Therefore, this template can generate
TLM or RTL code. Requirement 3 is fulfilled using the ModelConfiguration data
model of Essence. A template can decide to make use of the optional modeled assertion

10As per November 2008

2008-12-09/161/II03/2235 55

5. Debuggable Assertion Interface

Solution Implemented

Req.1 fulfilled by usage of the meta model approach itself meta model
Req.2 fulfilled by usage of the meta model approach itself meta model
Req.3 fulfilled by usage of the ModelConfiguration data model +

templating
data model

Req.4 fulfilled by the assertion interface architecture template
(FailureRegister)

template

Req.5 fulfilled by the assertion interface architecture template
(ConfigRegister)

template

Req.6 fulfilled by the assertion interface architecture template
(ConfigRegister)

template

Req.7 fulfilled by the assertion interface data model data model
Req.8 fulfilled by the assertion interface architecture template template
Req.9 fulfilled by the data models XRefSlaveInterface reference,

component wrapper + multiplexer which depends on one address bit
various

Req.10 fulfilled by the assertion interface data model data model
Req.11 fulfilled by the assertion interface data model data model
Req.12 fulfilled by the assertion interface architecture template template
Req.13 fulfilled by the assertion interface architecture template template
Req.14 fulfilled by the assertion interface architecture template template

Table 5.1: Fulfillment of the AssertionInterface requirements

interface or not. Requirement 4, 5 and 6 are fulfilled due to the various registers in
the assertion interface architecture that provide the possibility to define options for
every assertion. Requirement 7 is fulfilled by the means of the assertion interface
data model. Using the Scope element, assertions can be grouped. The requirement
8 is fulfilled using the code-generation within the template and the assumption that
the Scope address x”0” will broadcast to all assertions in all scopes. The access to
the assertion interface from the outside, requirement 9, is achieved using a wrapper
around the desired component as well a multiplexer structure that distinguishes between
the assertion interface and the core IP. This solution is independent from other parts
of the Essence flow. Requirement 10 and 11 are both fulfilled within the assertion
interface data model. Using the XRefSlaveInterface attribute in the highest hierarchy
of the data model, the slave interface for bus access is specified. Moreover, using the
RefInterfaceAssertion attribute multiple interfaces and their signals, can be referenced
per assertion. Requirements 12, 13 and 14 are fulfilled using the the code-generation
template. The generated assertion interface architecture considers the allowed options
during write and read access to the registers.

2008-12-09/161/II03/2235 56

6. Assertion Interface Generation

For the code generation of the optional assertion interface several MAKO templates had
to be written. Moreover, it had to be decided what VHDL code architecture should
be generated. For the efficient development a generation flow was developed. The
figure 6.1 on page 59 illustrates the generation steps. Within the implementation the flow
is represented via several shell scripts (.csh files) which perform the necessary actions
and invoke essemplate with code-generation templates. The design flow is organized as
follows:

1. Before a template can perform any code generation, the XML files need to get
generated first using essimport and corresponding plugins. The result is the
ModelConfiguration XML which also defines one or several AssertionInterface.
During the essimport generation simple checks are performed within the plugin.
For example, if the developer wants to add an Assertion to a Scope he has to specify
all its attributes. Some of them have to be unique. Before the creation the API
checks if the new objects have unique identifiers where it is necessary. These checks
are useful for every-day usage and cannot be performed within a semantic rule
check of the XML against the schema. The schema only defines the structure and
data types of attributes but sets no further constraints.

2. In step two the ModelConfiguration is first validated against the schema for the
data model. This allows easy discovery of flawed or outdated data models. After
this a semantic check using a dummy template is performed. This means that the
template will not generate any output but uses the python functionality of MAKO.
Therefore, a basic semantic checker was written to check for the correctness of the
ModelConfiguration XML and allows advanced verification in contrast to simple
schema validation. First it is checked if an AssertionInterface is present at all.
Moreover, the existence of the RefSlaveInterface is examined. After this another
function iterates over all Scope and checks for unique addresses. Thereafter, the
same check is performed on the assertions. At last all references are looked up to
their sources.

3. Once the verification steps are finished the actual generation is performed. First
the VHDL wrapper is build for the Essence Component or Essence System. It
instantiates the real component/system and includes the demuxer to access either
the IP core or the assertion interface. Moreover, all necessary signals, variables and
VHDL type definitions are generated for the given amount of assertion interfaces.

6. Assertion Interface Generation

4. In the next step a .csh script is generated which performs all commands to generate
an assertion. This approach was necessary because essemplate can only generate
one file per session. Therefore, it is not possible to generate the numerous assertions
.vhd files in a single run. Using an essemplate tool option a directive can be passed
into the runtime environment which then can be evaluated within the template.
The script generator template makes usage of this concept and builds as many
essemplate tool calls as assertion. For the directive option the unique assertion
ID is used.

5. In the last step this just generated script is executed. Now a single .vhd file is
generated for every specified assertion within the data model. The VHDL files
names follow the naming convention:

<Essence_ObjectType> <Name> AIF ID<Value> ScopeAdr<Value> AssAdr<Value>.vhd

Using this approach the actual wrapper and assertion interface are separated from the
assertions themselves. This eases file handling and also reduces the assertions designs file
size. The real assertion checker part can be added within the assertions .vhd files. After
this generation process the output files can be used as starting point for the simulation
flow (see figure 7.1 on page 68).

2008-12-09/161/II03/2235 58

6. Assertion Interface Generation

Figure 6.1: AssertionInterface generation flow

2008-12-09/161/II03/2235 59

6. Assertion Interface Generation

6.1. Challenges on Template development

During the template development some work-a-arounds and challenges had to be solved.
In the following sub-chapters the requirements and resulting architecture of the chosen
target implementation language VHDL are presented. During the code generation it
was tried to use the highest level of available abstractions of VHDL to reduce the need
for generation and keep the .vhd files generic. The recently published VHDL-2008
enhancements[4] were omitted due to the lack of tool support, especially in the open-
source field. Apart from that all efforts have been taken to reduce the need for generation
with the help of VHDL features while keeping the code synthesizable. For example,
attributes like <signal>’lenght and <signal>’range are used to prevent unnecessary
code generation. The remaining non-static information will get generated out of the
data model. Moreover, it is tried to reduce the amount of repetitive structures using
VHDL for loop constructs. Where not avoidable the information will also get generated
out of the data model. The source [11] gives an overview about available constructs of
the VHDL language. For a detailed description please refer to the IEEE 1076 language
reference manual [25].

6.1.1. General Coding Style

Inputs for the assertion interface generation flow are Essence component and system
data models. Therefore, it was tried to make the templates as universal as possible
and allow code generation of different source models within a single template. When
essemplate is invoked with an Essence object the Python context command is used to
determine the model type of the object. Within the Python code a variable is assigned
with the actual model type. In the left over source code only this variable is used.
Depending on the input Essence object the templates perform different actions. If the
input is a ModelConfiguration data model then the corresponding Essence object is
searched via the ModelConfiguration root node attributes ExtVLNV and RefXMLType.
If the input is another Essence data model it is checked if a ModelConfiguration XML
is existing via the naming convention rule. In case, it is furthermore checked if the
ModelConfiguration points the the same data model that was passed as argument
to essemplate. This approach allows very variable template invoking. Moreover, the
Python Logger object is used to provide debug information and to display internal
templates decision or assumptions. So if referenced files are missing or entries seem to be
flawed an error message appears in the terminal and gets recorded in the log file. In case

2008-12-09/161/II03/2235 60

6. Assertion Interface Generation

of errors this eases the template debugging for the developer. Moreover, if certain corner
cases are not supported, for example within the mapping template (see chapter 4.2.6),
the template will stop and report via the Logger object which constraint is violated.
Furthermore, it was tried to harden the templates so that they will not crash in case
of errors. Apart from that the template hierarchy outsources often used functions in
sub-templates. The relation of the main assertion interface templates and the defined
sub-templates is shown in figure 6.2.

Figure 6.2: Main and sub templates

Another important task was to take care of the data structure handling within Python.
The mostly used Python programming language elements are dictionary, tuple and
list, whereas n-tuple are a special case of list. Despite these constructs are all used to
simple save data in a structured way, they have an important difference concerning code
generation. Within a list each element has a fixed position, on every run of the template.
The list is build up by adding elements to the list or purging them. A dictionary is a
key-to-item relation. Therefore, there is no fixed position of data within the dictionary.11

In a code generation iterator loop it is important to consider if the generated code has
to be in a certain order or not. If it does not matter the use of dictionary causes no
problems. In the other case the generation order might be mutated from run to run.
This may result in flawed code. Even if the code is mutated but still is correct this can
cause problems. Within a verification flow it is common to check the actual build against
a golden reference. So it might happen that both files contain the same information,
but differ in their internal composition. In case, the verification might states a failure
where actually none is present. In this thesis work it was tried to avoid these problems.
Moreover, the verification flow (see figure 7.1 on page 68) is based upon the comparison
of simulation waveforms. These simulation results will be the same even if the internal
file constructs are mutated.

11In fact, there are several options how to iterate over a dictionary, some of them do not result in mutated
code.

2008-12-09/161/II03/2235 61

6. Assertion Interface Generation

The generated port names get extracted from the data model. In detail the port name
retrieval is outsourced into gen_common_fct.mako. So the structure, a python dictionary
where the port names are stored, stays the same for every bus protocol. Moreover,
the keys for clock, reset, datain, dataout and address signal are identical for every
dictionary. This allows the template to be mostly generic concerning the dictionary
indexing. Every additional bus specific port then has an unique key.

6.1.2. Wrapper Part

The pure wrapping part is realized within gen_flow_3__wrapper.mako and is quite
manageable. An example code generation can be found in the appendix A.5. Moreover,
this example also contains the assertion interface part. As naming convention the wrapper
VHDL entity will have the identifier WRAPPER_<original_name>. The port names can
have the same identifiers like on the real IP because this leads to no conflict during mapping.
Within the architecture part which is also prefixed with WRAPPER_<architecture> the
real VHDL object is declared using a component declaration. Within the body region
of the VHDL architecture an instance of the declared component is instantiated and
mapped to the wrapper entity ports. These generation steps can be summarized to:

• declare the real component

• instantiate and port map the real component

• propagates generic parameters

It should be noted that not every signal is just mapped to the entity’s one. Under certain
conditions of the assertion they have to be assigned to a temporary signal first. The next
sub-chapter will explain this in detail.

6.1.3. AssertionInterface Part

An Essence component or system with several slave interfaces can also have several
assertion interfaces. Therefore, the code generation needs to provide an unique repre-
sentation for every assertion interface. This is achieved using the unique attribute ID

of the assertion interface XRefSlaveInterface TargetID because there can be only one
AssertionInterface on a slave interface. The target code is oriented on the general
architecture proposal depicted in 5.4 on page 54. An example code generation can be
found in the appendix A.5. The resulting VHDL code for every AssertionInterface

consists of two processes. The main process functionality is separated into three parts:

2008-12-09/161/II03/2235 62

6. Assertion Interface Generation

1. Interface decoder part
This part determines if the assertion interface is selected or not. Therefore, a single
bit position of the address line is used. This bit is specified using a ParameterDecl

within the ModelConfiguration data model. Moreover, it demuxes the dataout
signal using the same information. If the assertion interface is selected the data out
signal of the wrapper is assigned to the assertion interface. Now status information
about the assertion could be read back. In the other case the wrapper dataout
signal is just assigned with real IP ones.

2. Register write part
If the assertion interface is selected this part determines the desired action using
a VHDL case statement. The architecture of the assertion interface consists of
four bus accessible register (see figure 5.4 on page 54). Hence, two bits need to be
used to distinguish the action to be performed. Within the VHDL code the two
leftmost bits of the address line are used. These positions can be specified within
the XML using a ParameterDecl. Within each when branch of the case statement
it is checked if a read or write action to the register shall be performed. In case
of read the register data is put into a temporary signal which gets assigned to the
dataout signal within the interface decoder part. In case of write the datain signal
is assigned to the register. Moreover, the constraints of the registers are considered.
Therefore, writing is not allowed for only bus-readable register and vice versa.

3. Virtual assertion register mapping part
This process selects the desired assertion based upon the address register. The value
x”0” leads to a broadcast to all assertions. In case the VHDL for loop construct
is used, which is synthesizable, else the selection is implemented via a nested case

statement. The physical address is build up of the scope address and the assertion
address. If a certain assertion is selected its config register is assigned with the
global config register. So using this process a certain assertion’s config register gets
actually written. In the broadcast case all assertions can be written at once. This
allows the initial “arming” of the assertions in a system. Moreover, this part is
independent from an actually assertion interface selection. If a specific assertion is
addressed the global status register will always be updated with the assertion’s one.
If the status register is read it will always show the most recent value.

2008-12-09/161/II03/2235 63

6. Assertion Interface Generation

The second process just contains one functionality:

1. Assertion result demultiplexer
Using a simple VHDL for loop construct all single bit result fields of the assertions
are OR-ed. The result is written to the global result register. Using a polling
mechanism the surrounding system can react on the failure. It would not have been
advantageous to specify an information which assertion failed inside the failure
register. If we assume 1-bit for the result information, there would be 31-bits left
to display an assertion failure, or multiple assertion fails. In the second case, one
bit would correspond to one assertion (one-hot encoding). Therefore, this modeling
would limit the assertion count inside the AssertionInterface to 30, despite the
assertion address register would allow 232−Scopes Bits = 228 assertions. Another
reason why the one-hot coding would not be expedient is that this register encoding
would result in hardware depending software. The register content only states
assertion number x and y failed. But what is the assertions address? Moreover,
if the position gets generated out of the data model it might happen that the
generation sequence is interchanged. This is related to the handling of python data
types. For all this reasons this feature was not implemented.

The dataout signal of the core entity is the best example for the problems that occur
on the generation of assertions that operate on output signals. Actually an assertion is
only monitoring a group of signals. If we think of a VHDL interface those signals could
have the direction in, out, or inout. The propagation of signals with direction in causes
no problems. The signal from the wrapper is assigned to the assertion and the real IP
at the same time. If an out or inout signal is within the assertion’s signal list the real
components output signals must be assigned to an temporary signal first. After that,
the signal can be used within the VHDL assertion process sensitivity list and also can
be assigned to the wrapper output port. This case had to be taken care of within the
template. Moreover, the special corner case of the dataout signal in the sensitivtiy list of
an assertion had to be considered to avoid double signal declaration.

6.1.4. Assertion Part

The template for the assertion part generates a VHDL entity with just one process inside
the architecture body. As a reminder, the assertion template generates an universal
interface and provides basic command aliases. This means the template generates an
“outer shell” for every assertion. The real assertion itself, the assertion checker part,
has to be entered manually or could get generated with help of the checker generators

2008-12-09/161/II03/2235 64

6. Assertion Interface Generation

Figure 6.3: Temporary signal mapping on asserted out / inout signals

presented in chapter 2.1.2. Each assertion entity has three static ports whereas each
is connected to the assertion interface. An example code generation can be found in
the appendix A.6. The CFG_Reg port is used for the virtual port-map of the config
register in case of a write request to it. The Status_Reg is the 32-bit output port of the
assertion. For example the assertion could be configured to report the failure count or
the coverage count. The corresponding value would be put into the Status_Reg. Using
the demultiplexing within the assertion interface this value can be read back using the
bus interface of the component. The Res_Reg is a single bit output port that propagates
the assertion results to the assertion interface.

The assertion process contains all referenced ports from data model part of the specific
assertion. Note that the VHDL implementation only allows assertions with at least
one interface with role system. With help of it a clocked process with asynchronous
reset is generated. Moreover, within the process static alias identifier are used to index
certain bit positions of the CFG_Reg. This concept was implemented in a first stage of

2008-12-09/161/II03/2235 65

6. Assertion Interface Generation

Static Ports Direction Port type Length

CFG REG in bit vector (31 downto 0)
STAT REG out bit vector (31 downto 0)
RES REG out bit

Table 6.1: Static Assertion VHDL ports

the assertion interface generator. In that past stage the wrapper, the assertion interface,
and all assertions, were located within the same VHDL file. Therefore, the CFG_Reg had
to be unique and contained several IDs to distinguish them for every assertion. During
the later development this concept was taken over as it eases the checker development
because the register alias to be queried are the same for every assertion. Moreover, if the
bit positions of the config register may be put in the data model in a later revision too,
the manual code does not need to be updated. It would be sufficient to generate only the
alias definition where these certain bits positions are specified.

6.2. Plugin and Template overview

During the data model development and implementation phases various plugins and
templates had to be written. As reminder, plugins build up the Essence XMLs and
templates generate target-code out of the Essence XMLs. The table 6.2 summarizes
all developed plugins. All plugins prefixed with spinni_ generate the XML files for
the example system. The remaining gen_ass_4_bridge.py and gen_ass_4_system.py

define example assertion interfaces within the ModelConfiguration data model.

An example output of a the gen_ass_4_bridge.py is shown in the appendix A.4. It
illustrates a ModelConfiguration XML with only one AssertionInterface specified.
Because the Essence meta model system, which is intellectual property of Infineon,
is necessary to execute all plugins and templates, not all developed files are listed in
appendix.

The table 6.3 summarizes all developed templates.

2008-12-09/161/II03/2235 66

6. Assertion Interface Generation

Name Description Essence Type

spinni apb bus.py APB Bus, refers to IFD Bus
spinni apb bus ifd.py APB Protocol definition, signals and directions InterfaceDefinition
spinni apb bridge.py defines component with SimpleBus slave, and APB

master interface plus system interface
Component

spinni sub system.py defines system with APB/AHB components System
spinni ahb bus.py AHB Bus, refers to IFD Bus
spinni ahb bus ifd.py defines the AHB signals, actually only a subset is

defined
InterfaceDefinition

spinni ahb bridge.py AHB Master interface Component
gen ass 4 bridge.py defines example assertion for the APB/AHB bridge ModelConfig
gen ass 4 system.py defines example assertion for the APB/AHB system ModelConfig
if-calc.py calculates possible mapping cases, no Essence object

creation
-

Table 6.2: Overview about developed plugins

No. Name Generates

1 gen apb bridge.mako APB Bridge

2 gen apb bus entity.mako APB Bus (multiplexing, demultiplexing), Slave assignment, address decoder

3 gen apb slave.mako APB Test Slave, incorporates simple registers to test bus transactions

4 gen apb sif.mako Simple SIF FSM to test the wait generation with the APB Test Slave

5 gen common fct.mako universal library module

6 gen testbench.mako generates testbench

7 gen ahb bridge.mako AHB Bridge, very similar to #1

8 gen ahb bus entity.mako AHB Bus Entity, uses AHB port dict, nearly identical to #2

9 gen ahb slave.mako same as #3 for AHB

10 gen ahb sif.mako same as #4 for AHB

11 gen constraints.mako nothing - checks for slave amount and muxer bits relation

12 gen flow 3 wrapper.mako Assertion Wrapper

13 gen flow 4 script.mako .csh file for Assertion generation

14 gen flow 5 assvhd.mako Assertion

15 gen ass entity.mako outsourced functions for assertion interface entity

16 gen ass logic.mako outsourced functions for assertion interface architecture

17 gen ass semantic.mako nothing - performs semantic check on the data model

18 t1 mapping.mako interface - register parameter mapping

Table 6.3: Overview about developed templates

2008-12-09/161/II03/2235 67

7. Simulation

During the development and implementation stage enduring testing was performed to
validate the assertion interface concept. First the validation focused on the extended
SPINNI system components, like the SimpleBus-to-APB bridge and the APB generation
itself. Thereafter, the assertion interface was generated for the example system. Within
the first stages of the development the verification was still performed manually till a
prototype of the system was working as intended. This first “golden reference” was not
meant for a future usage. For example the used VHDL constructs in the code were not
optimized yet and some of them even not amenable to synthesis. This status of the
project, including the used Essence build, was frozen and used as the golden reference for
the current build of the thesis work. Based upon this golden reference a design flow was
build to enable early error discovery. The figure 7.1 depicts the used approach. Starting

Figure 7.1: Simulation and Verification Flow

point is the RTL VHDL source code from the generation flow. The difference between the
build and golden reference generation is, that the plugins, xml files and all necessary tools
are frozen in the reference. After this RTL Code simulation was performed using Mentor

7. Simulation

Graphics Questa AFV[41]. The used tools allow the specification of the commands in
script files. So a script file was created to load interesting signals of the design and
to run the simulation for a certain time. Moreover, the waveforms were saved in the
proprietary WLF file format. In the next step the simulation result was converted into
the Value Change Dump (VCD) file format which is defined within the IEEE Verilog
Standard (IEEE 1364-2001). With help of a VCD Tools package from Infineon the build
and reference VCD files can be compared.

On Essence data model updates, which sometimes lead to plugin and template code
revision, the reference model was unaffected. Therefore, it was easy to track down errors
that originated from the update. At certain steps of the development, for example when
the build version introduced a new “feature” that could not be tested with the existing
reference, the present build version was used as the future golden reference. In general,
extensive usage of the UNIX file concepts was made (for example symbolic links) to
reduce redundancy and ensure that both parts of the flow work on the same file where
intended.

The following sub-chapters will explain the general validation approach and the obtained
simulation results of the assertion interface enabled SPINNI System in-detail.

7.1. Enhanced SPINNI System

To verify the developed APB/AHB bridge a testbench and an APB/AHB slave component
were written. Because both systems are very similar only the APB system will be explained
in detail. The testbench uses the VHDL textio package and reads an input text file.
The text file contains vectors of binary or hexadecimal values which are separated by tab.
Moreover, the character # has been defined as comment symbol within the testbench.
This allows the documentation of the input vectors and eases understanding of the test
files. The vector information is read and the individual parts are assigned to the system
signals. Figure 7.2 shows an example input file.

The input file contains SimpleBus input data, like it would arrive from the CPU on the
bridge. These predefined SimpleBus queries are put on the SimpleBus Interface of the
bridge. The APB slave component has several registers inside. The testbench input data
was designed to write and read to this registers and moreover make use of all possible
state transitions in the FSM.

The basic testbench just reads the vector information and assigns it to the system.
During development an advanced testbench was introduced which really behaved like

2008-12-09/161/II03/2235 69

7. Simulation

Figure 7.2: Example input file for simulation

the SimpleBus. So the input file does not to contain S_AccEn_i signals, because the
testbench hold these signals in accordance to the SimpleBus S_Wait_o signal. The
bridge functionality was tested with both approaches, but in general the old testbench
concept was preferred because the bridge and bus components could be hardened against
imaginable wrong SimpleBus signal transitions. These transitions, for example hazards,
could might occur within a real silicon implementation of the system.

Apart from this, the templates were modified to generated VHDL assert blocks that
print out status messages during the simulation, for example from a state transition of
the S_ACCESS to the S_SETUP state. To ensure an error free design the input data was
chosen to give a good code coverage on all branches of the FSM. The gained coverage was
evaluated with help of Mentor Questa AFV[41]. Moreover, to be precisely all simulation
and verification tasks have been performed using the latter. In doing so, the tool evaluates
if all possible transitions and signal changes, for example 1 to 0, occurred during the
simulation. So the input testbench code could be optimized to test all transitions of the
finite state machines.

2008-12-09/161/II03/2235 70

7. Simulation

7.2. Mixed Language Simulation

After the individual components where validated using the testbench approach it was
decided to furthermore validate the system integration. For the SPINNI system all .vhd
sources were present. Moreover, with help of a SystemC/TLM based MIPS CPU emulator
it would be possible to execute real C-Code within the simulation. For this approach a
mixed language simulation of SystemC and the generated VHDL sources was projected.
This simulation should consists of a SystemC top which instantiates the surrounding
system. Therefore, the system module was replaced by the corresponding VHDL module
using the SystemC foreign construct.[10, P.68] After this a simple C-Code with

• Write a value to a SimpleBus address

• Read a value from a SimpleBus address

commands was written. In both cases this address is actually bridged to the APB.
Algorithm 7.1 shows an easy example. The simulation revealed that this approach would
not allow to test all transitions of the APB Bridge. The reason is, that the MIPS
CPU needed intermediate clock cycles between the transfers. An assumption is that
this behavior is related to the used compiler, which may generated inefficient MIPS
commands. Another reason could be the internal architecture of the MIPS CPU. This
issue was not further investigated because the interfacing validation was successful.

Algorithm 7.1 Example validation code for SPINNI system

1 #define MemRead(A) (∗ (volat i le unsigned int ∗) (A))
2 #define MemWrite(A,V) ∗(volat i le unsigned int ∗) (A)=(V)
3
4 int main ()
5 {
6 unsigned temp ;
7 MemWrite(0 x02000004 , 0xAAAAAAAA) ;
8 MemWrite(0 x02400004 , 0xBBBBBBBB) ;
9 MemWrite(0 x02400008 , 0xCCCCCCCC) ;

10 MemWrite(0 x0240000C , 0xDDDDDDDD) ;
11
12 temp = MemRead (0 x0240000C) ;
13 MemWrite(0 x02000004 , temp) ;
14 temp = MemRead (0 x02400008) ;
15 MemWrite(0 x02400004 , temp) ;
16
17 return 0 ;
18 }

2008-12-09/161/II03/2235 71

7. Simulation

The mixed language approach was not applied for the assertion interface validation but
with the utmost probability there will be no problems. This can be expected because in
the generated code the assertion interface is a wrapper around the actual component,
which is slave on the APB bus. Therefore, the validation of the interfacing of the CPU
with the SimpleBus-to-APB bus is sufficient.

7.3. Assertion Interface

In order to test the assertion interface the testbench input file was modified. In addition
to the SimpleBus commands for the bridge validation, additional bus transactions were
added. First the individual assertion interfaces where addressed, indicated via a certain
bit of the address line to be HIGH. As reminder, this information was stored using a
ParamterDecl within the XML files. The various code parts of the assertion interface
contain VHDL report commands. Therefore, it is easy to follow the requests on the
assertion interface during simulation. The input code performs the following actions:

• access every single assertion

• try to access a non valid assertion, scope

• write data to assertion register, perform broadcast

• read data back from assertion

• mix these actions with commands for the real IP functionality, for example SIF

• config assertion, select to be read information

• read back status register

Using this general testing approach several design flaws could be identified within the
first generation stages. For validating the interface itself this testing was adequate. In
order to have a more realistic validation of the concept, it was decided to implement a
basic checker functionality. This implementation could consist of a false-positive checker,
therefore a property that is violated if the signals behave the way it is actually intended.
In the example, a special value on datain was checked. Moreover, two custom variables
were added to the main assertion process. The first variable var_coverage counted the
successful validation of the property. Because the process will only be activated if one
of the signal gets an assignment, the coverage counter also will only increment on each
actual necessary property validation. In the same way a property violation variable
var_failures was defined. With help of the testbench input file this false-positive

2008-12-09/161/II03/2235 72

7. Simulation

property assertion was armed within the first cycles. After this normal SimpleBus

transactions were perform that were targeted at the APB Slave’s real functionality.
In some cases, the datain signal contained the violation pattern. So both variables
increased. Thereafter, the assertion was configured to either put the coverage or failure
value into the status register. So the assertion status could be read back from assertion
interface, over the bridge component, into the main SPINNI system. At the end, several
similar assertion checkers were implemented in different .vhd files (different assertion,
that monitor different signals). With this approach it should be tested that all actions
are working as intended in a concurrently operating system.

7.4. Application Results

During the development of this thesis work greater experience with the Essence meta
modeling concept was gained. Therefore, the necessary effort to build an assertion
interface model shall be assessed within this chapter. Assuming an existing system that
is expressed in Essence, the time to add an assertion interface model of course varies
if the developer is experienced with the underlying concepts or not. Apart from that,
the plugin development to build an assertion interface within a ModelConfiguration

can be considered as the most error prone task. Within the plugin all assertions, their
monitored interfaces and the actually monitored signals on these interfaces are specified.
When writing the template it is necessary to open all the related XML file using python
code or convenience functions. Therefore, the retrieval of an object that shall be added
takes much more lines of code than the main functionality itself. This coding style of a
plugin is an error prone task. Despite checks within the “add to data model” functions of
the assertion interface model were implemented, this task could be significantly improved
if a more graphical environment would be available. With help of a graphical tool that
can “browse” through an Essence design, the related signals could be collected in a more
efficient way. In fact, this would mean that the generation of the plugin is template
based itself - from a graphical source. So the generation of an assertion interface can be
considered as moderated in the first stages, but eases significantly if only revisions are
necessary.

After code-generation the usage of the assertion interface is quite easy. All interface related
parts will get generated. It is only necessary to know about the address decoding flow
within the target system. In the used testbench approach the corresponding SimpleBus

commands where entered manually within the input file. A more efficient way would
be to also generate the testbench data for a certain system. This approach was not

2008-12-09/161/II03/2235 73

7. Simulation

tackled within this thesis work. The addition of the actual assertion checker part (.vhd)
has to be done manually. The attributes Property and AssertionLanguage have been
implemented in the assertion data model anyway. In future revisions, a checker generation
could be invoked within the template to generate target code. Once an assertion checker
is implemented it’s result can be read back over the interface. For example, during the
development a simple design flaw could be identified with help of the assertions which
were configured to simply fire on access. In that case, the assertion selection was not
working correctly. Therefore, the debuggable assertion interface approach has great
benefits during the systems design.

2008-12-09/161/II03/2235 74

8. Summary and Outlook

In the described thesis work a data model for the representation of a debuggable assertion
interface was created. Based on the Infineon Essence flow an example system was extended
to validate the overall approach in more realistic scenario. The introduced data model
allows the abstract definition of assertions and their related signals in a flexible, efficient
and compact way. The described code generation templates allow the rapid creation of
VHDL target code. Moreover, the described design flow incorporates a lot of mechanism
to perform error checking in early generation stages. Examples are the inbuilt API
checks during the AssertionInterface XML generation, the semantic checker which
validates if all referenced signals are existing and valid and the waveform based simulation
flow. Future extensions of the concept are imaginable. For example, the generation
process could be extended to support the generation of an API or firmware header files
to allow software the access to the assertion functionality. Moreover, additional code-
generation templates could be written. Another test system using the mixed language
simulation approach could be set up, to make use of the interface in a real-world product.
Consequently, real silicon validation could be tried, first starting with programmable
logic devices. The effort to convert the VHDL templates to other RTL level languages
like Verilog can be seen as little. Another interesting approach could be to write ESL
languages templates. The developed functionality provides the access to IP-internal
register and can be used to implement in-system silicon checkers. Therefore, the described
concept can be of great advantage within the Infineon Essence model based design flow.
Beginning from the first target-code generations these checkers can be included to aid
the debugging and validation of the system. Assertion enabled components, and more
general Assertion-based Verification, then can lead to faster and less error prone designs.
Moreover, within the overall design flow the (assertion based) verification can start
beginning from the first code-generation. Consequently, the introduced approach is a
step in the right direction to cope with the verification and methodology gap.

References

[1] The International Technology Roadmap for semiconductors - Design. http://www.
itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf. Version: 2007 1

[2] Abramovici, Miron: In-System Silicon Validation and Debug. Los Alamitos, CA,
USA : IEEE Computer Society Press, 2008. – ISSN 0740–7475, S. 216–223 6, 7, 46

[3] Accellera Organization: Open Verification Library (OVL). http://www.

accellera.org/activities/ovl/ 5

[4] Ashenden, Peter J. ; Lewis, Jim: VHDL-2008: Just the New Stuff. Morgan
Kaufmann, 2008 http://www.ashenden.com.au/new-stuff/ 60

[5] Bayer, Michael: Mako Documentation. http://www.makotemplates.org/docs/

documentation.html. Version: September 2008. – Version 0.2.2 20, 21

[6] Berman, Victor: Standards: The P1685 IP-XACT IP Metadata Standard. In:
IEEE Design and Test of Computers 23 (2006), Nr. 4, S. 316–317. – ISSN 0740–7475
10

[7] Bjerge, Kim: System and Architecture Modeling for Real-time
systems UML. Briefing: Modeling of Digital Designs now and
in the future. http://www.teknologisk.dk/_root/media/30358_

SystemandArchitectureModelingforReal-timesystemsUMLpart1.pdf.
Version: May 2008. – Powerpoint Presentation, [Online; accessed 9-November-2008]
16

[8] Boule, M. ; Zilic, Z.: Generating Hardware Assertion Checkers for Hardwar
Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring. ISBN:
978-1-4020-8585-7. Springer, 2008. – 280 S. 6

[9] Boule, Marc ; Chenard, Jean-Samuel ; Zilic, Zeljko: Assertion Checkers in
Verification, Silicon Debug and In-Field Diagnosis. In: ISQED ’07: Proceedings of
the 8th International Symposium on Quality Electronic Design. Washington, DC,
USA : IEEE Computer Society, 2007. – ISBN 0–7695–2795–7, S. 613–620 xiv, 6, 7,
8, 46

[10] Chinnusamy, Mahendran: Analysis of Crossing Language Boundaries Using Differ-
ent Commercial Simulators, Darmstadt University of Applied Sciences, Diplomarbeit,
2007 71

[11] College of New Jersey, Orlando H.: VHDL Quick Reference Card. http:

//www.tcnj.edu/~hernande/r/VHDL_QRC__01.pdf. Version: 2004 60

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf
http://www.accellera.org/activities/ovl/
http://www.accellera.org/activities/ovl/
http://www.ashenden.com.au/new-stuff/
http://www.makotemplates.org/docs/documentation.html
http://www.makotemplates.org/docs/documentation.html
http://www.teknologisk.dk/_root/media/30358_System and Architecture Modeling for Real-time systems UML part 1.pdf
http://www.teknologisk.dk/_root/media/30358_System and Architecture Modeling for Real-time systems UML part 1.pdf
http://www.tcnj.edu/~hernande/r/VHDL_QRC__01.pdf
http://www.tcnj.edu/~hernande/r/VHDL_QRC__01.pdf

References

[12] DAFCA, Inc.: Miron Abramovici, Paul B.: A New Approach to In-System
Silicon Validation and Debug. Whitepaper. http://www.dafca.com/downloads/

DAFCA_WhitePaper6.pdf. Version: May 2007 8

[13] David Mertz, Frank M.: Gnosis Utils. public domain. http://freshmeat.net/
projects/gnosisxml/. Version: August 2007 20

[14] Densmore, Douglas: A Design Flow for the Development, Characterization,
and Refinement of System Level Architectural Services, University of Califor-
nia, Diss., 2007. http://ddensmore.net/dza/wp-content/uploads/2007/06/

densmore_phd_thesis.pdf xiv, 2

[15] Ecker, Wolfgang ; Esen, Volkan ; Steininger, Thomas ; Velten, Michael:
Requirements and Concepts for Transaction Level Assertion Refinement. In: IESS,
2007, S. 1–14 9

[16] ECSI Association: European Electronic Chips & Systems design Initiative. http:
//www.ecsi-association.org 8, 15

[17] ECSI Association: SPRINT: Open SoC Design Platform for Reuse and Integration
of IPs. http://www.sprint-project.net/. – [Online; accessed 8-November-2008]
8, 14

[18] ECSI Association: Open SoC Design Platform for Reuse and Integration of IPs.
October 2005. – Annex 1 - Description of Work, version 3.1 14

[19] ECSI Association: SPRINT Press Release. http://www.ecsi-association.

org/ecsi/PR/SPRINT_Press_Release_Aug4-2006.pdf. Version: August 2006 14

[20] Foster, Harry ; Lacey, David ; Krolnik, Adam: Assertion-Based Design. Norwell,
MA, USA : Kluwer Academic Publishers, 2003. – ISBN 1402074980 4, 5

[21] Geburzi, Alexander: Projectgroup RECLIPSE - Tutorial on the UML
meta model. http://wwwcs.uni-paderborn.de/cs/ag-schaefer/PG/Reclipse/

seminare/Metamodelle.pdf. Version: November 2004 xv, 12

[22] Gharehbaghi, M. Hessabi S. A.M. Babagoli B. A.M. Babagoli: Assertion-based
debug infrastructure for SoC designs. In: Microelectronics, 2007. ICM 2007. Inter-
natonal Conference on, IEEE, 2007. – ISBN 1–59593–381–6, S. 137–140 9

[23] Gunar Schirner, Rainer D.: System Level Modeling of an AMBA Bus / Center
for Embedded Computer Systems University of California, Irvine. Version: April
2005. http://www.cecs.uci.edu/. 2005 (CECS-05-03). – Technical Report 23

2008-12-09/161/II03/2235 77

http://www.dafca.com/downloads/DAFCA_WhitePaper6.pdf
http://www.dafca.com/downloads/DAFCA_WhitePaper6.pdf
http://freshmeat.net/projects/gnosisxml/
http://freshmeat.net/projects/gnosisxml/
http://ddensmore.net/dza/wp-content/uploads/2007/06/densmore_phd_thesis.pdf
http://ddensmore.net/dza/wp-content/uploads/2007/06/densmore_phd_thesis.pdf
http://www.ecsi-association.org
http://www.ecsi-association.org
http://www.sprint-project.net/
http://www.ecsi-association.org/ecsi/PR/SPRINT_Press_Release_Aug4-2006.pdf
http://www.ecsi-association.org/ecsi/PR/SPRINT_Press_Release_Aug4-2006.pdf
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/PG/Reclipse/seminare/Metamodelle.pdf
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/PG/Reclipse/seminare/Metamodelle.pdf
http://www.cecs.uci.edu/

References

[24] IBM Haifa Research lab: FoCs. http://www.haifa.ibm.com/projects/

verification/focs/index.html. – [Online; accessed 15-November-2008] 7

[25] IEEE: VHDL Language Reference Manual. Institute of Electrical and Electronics
Engineers, Inc., 2002. http://ieeexplore.ieee.org/servlet/opac?punumber=

7863 60

[26] Infineon Technologies AG: Essence Datamodel Documentation. 2008 26, 28, 29

[27] Infineon Technologies AG: SPINNI System - Simple Bus Specification. 2008
xiv, 34, 35

[28] Infineon Technologies AG - Bauer, Matthias: Department: System Design
Methodology - Overview. Powerpoint Presentation, April 2008 10

[29] Infineon Technologies AG - Ecker, Wolfgang ; Esen, Volkan ;

Nageldinger, Ulrich ; Steininger, Thomas ; Velten, Michael: UML
based Code Generation for the HW/SW Interface. In: 5th International UML-SoC
Workshop, Anaheim, June 8, 2008 32

[30] Infineon Technologies AG - Nageldinger, Ulrich ; Steininger, Thomas:
Overview: XML Methodology - Xchange. Powerpoint Presentation, January 2008
xiv, 11

[31] Infineon Technologies AG - Nageldinger, Ulrich ; Steininger, Thomas ;

Velten, Michael: ESSEMPLATE User Manual. v2.1.1. August 2008 xiv, xvi, 20,
30, 31, 32

[32] Infineon Technologies AG - Velten, Michael: ESSEMPLATE v2.1.0 Pow-
erpoint Presentation. August 2008 30

[33] J.A. Carballo, A.B. Kahng H. Kashiwagi S. Rawat W. Rosenstiel G. S. T. Hi-
watashi H. T. Hiwatashi: Presentations from the 2008 ITRS Conference on 16
July 2008 - System Design. http://www.itrs.net/Links/2008Summer/PublicPDF.
– [Online; accessed 16-November-2008] 1

[34] Kakoee, Mohammad R. ; Riazati, Mohammad ; Mohammadi, Siamak: Enhancing
the Testability of RTL Designs Using Efficiently Synthesized Assertions. Los Alamitos,
CA, USA : IEEE Computer Society, 2008, S. 230–235 9

[35] Kruijtzer, Wido ; Wolf, Pieter van d. ; Kock, Erwin de ; Stuyt, Jan ; Ecker,
Wolfgang ; Mayer, Albrecht ; Hustin, Serge ; Amerijckx, Christophe ; Paoli,
Serge de ; Vaumorin, Emmanuel: Industrial IP integration flows based on IP-
XACTTMstandards. In: DATE ’08: Proceedings of the conference on Design,

2008-12-09/161/II03/2235 78

http://www.haifa.ibm.com/projects/verification/focs/index.html
http://www.haifa.ibm.com/projects/verification/focs/index.html
http://ieeexplore.ieee.org/servlet/opac?punumber=7863
http://ieeexplore.ieee.org/servlet/opac?punumber=7863
http://www.itrs.net/Links/2008Summer/PublicPDF

References

automation and test in Europe. New York, NY, USA : ACM, 2008. – ISBN
978–3–9810801–3–1, S. 32–37 8, 14

[36] Langtangen, Hans P.: Python Scripting for Computational Science (Texts in
Computational Science and Engineering). 3rd ed. Springer, 2008. – ISBN 3540739157
20

[37] Lano, Kevin: Advanced Systems Design with Java, UML and MDA. Newton, MA,
USA : Butterworth-Heinemann, 2005. – ISBN 0750664967 16

[38] Limited, ARM: AMBA Specification. http://www.arm.com/products/solutions/
axi_spec.html. Version: May 1999. – Revision 2.0 xiv, 24, 25

[39] Marchal, Benoit: UML, XMI, and code generation, Part 1-4. http://www.ibm.
com/developerworks/xml/library/x-wxxm23/. Version: March 2004 xiv, xvi, 16,
18

[40] McGill University, Integrated Microsystems L.: MBAC. http://www.

techtransfer.mcgill.ca/technologies/assertion.php 7

[41] Mentor Graphics Corp.: Questa Advanced Functional Verification. http:

//www.mentor.com/products/fv/abv/questa_afv/ 5, 69, 70

[42] Mueller, Wolfgang ; Vanderperren, Yves: UML and model-driven development
for SoC design. In: CODES+ISSS ’06: Proceedings of the 4th international conference
on Hardware/software codesign and system synthesis. New York, NY, USA : ACM,
2006. – ISBN 1–59593–370–0, S. 1–1 16

[43] Object Management Group: MARTE - Modeling and Analysis of Real-time and
Embedded systems. http://www.omgmarte.org/. – [Online; accessed 8-November-
2008] 16

[44] Object Management Group: Meta-Object Facility. http://www.omg.org/mof/.
– [Online; accessed 8-November-2008] 12

[45] Object Management Group: Systems Modeling Language (SysML). http:

//www.sysml.org/. – [Online; accessed 7-November-2008] 16

[46] Object Management Group: UML Profile for System on a Chip (SoC). http://
www.omg.org/docs/formal/06-08-01.pdf. Version: August 2006. – v1.0.1, [Online;
accessed 13-November-2008] 16

[47] Object Management Group: MOF 2.0 / XMI Mapping Specifica-
tion, v2.1.1. http://www.omg.org/technology/documents/formal/xmi.htm.
Version: December 2007. – [Online; accessed 7-November-2008] 12, 17

2008-12-09/161/II03/2235 79

http://www.arm.com/products/solutions/axi_spec.html
http://www.arm.com/products/solutions/axi_spec.html
http://www.ibm.com/developerworks/xml/library/x-wxxm23/
http://www.ibm.com/developerworks/xml/library/x-wxxm23/
http://www.techtransfer.mcgill.ca/technologies/assertion.php
http://www.techtransfer.mcgill.ca/technologies/assertion.php
http://www.mentor.com/products/fv/abv/questa_afv/
http://www.mentor.com/products/fv/abv/questa_afv/
http://www.omgmarte.org/
http://www.omg.org/mof/
http://www.sysml.org/
http://www.sysml.org/
http://www.omg.org/docs/formal/06-08-01.pdf
http://www.omg.org/docs/formal/06-08-01.pdf
http://www.omg.org/technology/documents/formal/xmi.htm

References

[48] Object Management Group: Unified Modeling Language (OMG
UML), Infrastructure, V2.1.2. http://www.omg.org/docs/formal/07-11-04.pdf.
Version: December 2007. – [Online; accessed 7-November-2008] 16

[49] Sinderen, M. van ; Pires, L. F.: Model-Driven Architecture: making metamodels
- Part II. SIKS basic course on Systems modelling, Vught, 31 May 2006. https:

//doc.telin.nl/dsweb/Get/File-64485. Version: May 2006. – [Online; accessed
9-November-2008] xiv, 13

[50] SparxSystems Software GmbH: Enterprise Architect v7.1. http://www.

sparxsystems.de/. Version: 2008 26, 50

[51] SPIRIT Consortium: IEEE P1685 SPIRIT Standardization Working Group. http:
//www.spiritconsortium.org/tech/p1685/. – [Online; accessed 12-November-
2008] 1, 3, 8, 10, 13

[52] SPIRIT Consortium: IP-XACT v1.4 specification. http://www.

spiritconsortium.org/tech/docs. – [Online; accessed 12-November-2008] 1,
3, 8, 10

[53] TIMA Laboratory Grenoble: Website. http://tima.imag.fr/. – [Online;
accessed 7-November-2008] 14

[54] Turumella, Babu ; Sharma, Mukesh: Assertion-based verification of a 32 thread
SPARCTMCMT microprocessor. In: DAC ’08: Proceedings of the 45th annual
conference on Design automation. New York, NY, USA : ACM, 2008. – ISBN
978–1–60558–115–6, S. 256–261 4

[55] Vaumorin, Emmanuel ; Stuyt, Jan ; Kilic, Fatih: SPIRIT IP-XACT Extensions
and Exploitation for Verification Software Methodology / Magillem Design Services,
NXP. 2008. – Forschungsbericht 14

[56] Weilkiens, Tim: Systems Engineering with SysML/UML: Modeling, Analysis,
Design. Morgan Kaufmann, 2008 http://www.system-modeling.com/ 16

[57] Wikipedia: AMBA specification — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=AMBA_specification&oldid=250908286.
Version: 2008. – [Online; accessed 19-November-2008] 23

[58] Wikipedia: Metadata — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Metadata&oldid=250231077. Version: 2008. – [Online;
accessed 7-November-2008] 12

2008-12-09/161/II03/2235 80

http://www.omg.org/docs/formal/07-11-04.pdf
https://doc.telin.nl/dsweb/Get/File-64485
https://doc.telin.nl/dsweb/Get/File-64485
http://www.sparxsystems.de/
http://www.sparxsystems.de/
http://www.spiritconsortium.org/tech/p1685/
http://www.spiritconsortium.org/tech/p1685/
http://www.spiritconsortium.org/tech/docs
http://www.spiritconsortium.org/tech/docs
http://tima.imag.fr/
http://www.system-modeling.com/
http://en.wikipedia.org/w/index.php?title=AMBA_specification&oldid=250908286
http://en.wikipedia.org/w/index.php?title=AMBA_specification&oldid=250908286
http://en.wikipedia.org/w/index.php?title=Metadata&oldid=250231077
http://en.wikipedia.org/w/index.php?title=Metadata&oldid=250231077

References

[59] Wikipedia: Moore’s law — Wikipedia, The Free Encyclopedia. http://en.

wikipedia.org/w/index.php?title=Moore. Version: 2008. – [Online; accessed
2-December-2008] 1

[60] Wikipedia: Python (programming language) — Wikipedia, The Free Encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Python_(programming_

language)&oldid=250222348. Version: 2008. – [Online; accessed 9-November-2008]
19

[61] Wikipedia: XML — Wikipedia, The Free Encyclopedia. http://en.wikipedia.

org/w/index.php?title=XML&oldid=250206050, 2008. – [Online; accessed 7-
November-2008] 17

[62] Wikipedia: XML Metadata Interchange — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=XML_Metadata_

Interchange&oldid=231448414. Version: 2008. – [Online; accessed 7-November-
2008] 17

[63] Yves Vanderperren, Wim D. Wolfgang Mueller M. Wolfgang Mueller: UML for
Electronic Systems Design: A Comprehensive Overview. http://jerry.c-lab.de/

~wolfgang/sjes08.pdf. – [Online; accessed 17-November-2008] 16

2008-12-09/161/II03/2235 81

http://en.wikipedia.org/w/index.php?title=Moore
http://en.wikipedia.org/w/index.php?title=Moore
http://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=250222348
http://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=250222348
http://en.wikipedia.org/w/index.php?title=XML&oldid=250206050
http://en.wikipedia.org/w/index.php?title=XML&oldid=250206050
http://en.wikipedia.org/w/index.php?title=XML_Metadata_Interchange&oldid=231448414
http://en.wikipedia.org/w/index.php?title=XML_Metadata_Interchange&oldid=231448414
http://jerry.c-lab.de/~wolfgang/sjes08.pdf
http://jerry.c-lab.de/~wolfgang/sjes08.pdf

Index

AMBA, 22
AMBA APB, 24
AMBA APB Bridge, 36, 37
AMBA APB Peripheral, 40
AMBA APB System, 42
Application Results, 73
Assertion, 4
Assertion, 52
assertion checker, 6
Assertion Interface, 46
Assertion Interface Architecture, 53
Assertion Interface Bus Interfacing, 48
Assertion Interface Generation, 57
Assertion Interface Meta model, 50
Assertion Interface Register, 54
Assertion Interface Requirements, 46, 55
Assertion Interface Slave Interfaces, 49
Assertion Interface Validation, 72
Assertion template, 64
AssertionInterface, 51
AssertionInterface template, 62

Checker generator, 7
Code-Generation, 20

Design gap, 1

Essemplate, 31
Essence, 10
Essence Bus data model, 27
Essence Component data model, 26
Essence data models, 25
Essence Fundamentals, 11
Essence Interface Definition data model,

26

Essence ModelConfig data model, 28
Essence System data model, 28
Essence Toolchain, 29
Essence XRef Data model, 27
Essimport, 30
Extensible Markup Language, 17

GNOSIS Library, 20

Infineon XChange, 10
Interface mapping, 43
IP-XACT, 13

Mako, 20
Meta data, 12
Meta model, 12
Meta-Object Facility, 12
ModelConfiguration, 28
Moore’s Law, 1

Object Management Group, 12

Plugin, 31, 66
Python programming language, 19

RefInterfaceAssertion, 53
RefSensitivityPort, 53

Scope, 52
Silicon Debug, 6
Simulation, 68
SPINNI Simple Bus, 34
SPINNI System, 33
SPIRIT Consortium, 13
SPRINT Project, 14
System on Chip, 1

2008-12-09/161/II03/2235 82

Index

Template, 20, 66
Template development, 60
Testbench, 69

Unified Modeling Language, 15

Wrapper template, 62

XML Metadata Interchange, 17

2008-12-09/161/II03/2235 83

A. Appendix

A. Appendix

A.1. Essence ModelConfiguration data model

2008-12-09/161/II03/2235 84

A. Appendix

Figure A.1: Infineon Essence ModelConfiguration data model

2008-12-09/161/II03/2235 85

A. Appendix

A.2. AMBA APB Bridge Example

2008-12-09/161/II03/2235 86

v_apb_bridge.vhd

1
2 library ieee;
3 use work.my_func.all; -- WRITE DECODE, READ DECODE
4
5 entity apb_bridge is
6
7 port(
8 -- the ports here are from interface APB_BRIDGE_MASTER_PORT
9 APB_BRIDGE_MASTER_PORT_PWRITE: out bit;

10 APB_BRIDGE_MASTER_PORT_PENABLE: out bit;
11 APB_BRIDGE_MASTER_PORT_PADDR: out bit_vector(23 downto 0);
12 APB_BRIDGE_MASTER_PORT_PWDATA: out bit_vector(31 downto 0);
13 APB_BRIDGE_MASTER_PORT_PRDATA: in bit_vector(31 downto 0);
14 APB_BRIDGE_MASTER_PORT_PREADY: in bit;
15 APB_BRIDGE_MASTER_PORT_PSLVERR: in bit;
16 -- the ports here are from interface APB_BRIDGE_SLAVE_PORT
17 APB_BRIDGE_SLAVE_PORT_S_DataSize2_i: in bit_vector(1 downto 0);
18 APB_BRIDGE_SLAVE_PORT_S_Wr_i: in bit;
19 APB_BRIDGE_SLAVE_PORT_S_AccEn_i: in bit;
20 APB_BRIDGE_SLAVE_PORT_S_Addr24_i: in bit_vector(23 downto 0);
21 APB_BRIDGE_SLAVE_PORT_S_Data32_i: in bit_vector(31 downto 0);
22 APB_BRIDGE_SLAVE_PORT_S_Data32_o: out bit_vector(31 downto 0);
23 APB_BRIDGE_SLAVE_PORT_S_Wait_o: out bit;
24 -- the ports here are from interface APB_BRIDGE_SYSTEM_PORT
25 APB_BRIDGE_SYSTEM_PORT_Clk: in bit;
26 APB_BRIDGE_SYSTEM_PORT_Rst: in bit);
27
28 end apb_bridge;
29
30 architecture Arch_apb_bridge of apb_bridge is
31
32 type STATES is (S_IDLE, S_SETUP, S_ACCESS);
33 signal STATE : STATES := S_IDLE;
34 signal ASYNC_WAIT : bit := '0';
35 signal PERI_WAIT : bit := '0';
36
37 begin
38
39 ASYNC_WAIT <= '0';
40 APB_BRIDGE_SLAVE_PORT_S_Wait_o <= ASYNC_WAIT or peri_wait;
41
42
43 P_STATES: process (APB_BRIDGE_SYSTEM_PORT_Clk, APB_BRIDGE_SYSTEM_PORT_Rst)
44
45 variable sample_S_DATA32_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_Data32_i'range);
46 variable sample_S_ADDR24_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_Addr24_i'range);
47 variable sample_S_DATASIZE2_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_DataSize2_i'range);
48 variable sample_S_WR_i : bit;
49 variable sample_PRDATA : bit_vector(APB_BRIDGE_MASTER_PORT_PRDATA'range);
50 variable tmp_S_DATA32_o : bit_vector(APB_BRIDGE_SLAVE_PORT_S_Data32_o'range) := (others => '0');
51
52 variable pipe_sample_S_DATA32_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_Data32_i'range);
53 variable pipe_sample_S_ADDR24_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_Addr24_i'range);
54 variable pipe_sample_S_DATASIZE2_i : bit_vector(APB_BRIDGE_SLAVE_PORT_S_DataSize2_i'range);
55 variable pipe_sample_S_WR_i : bit;
56
57 -- indicates that an pipelined transfer request occured
58 variable pipe_request : boolean := false;
59 variable second_run : boolean := false;
60 variable second_run_finished : boolean := false;
61
62
63 begin
64
65 if APB_BRIDGE_SYSTEM_PORT_Rst = '0' then -- asynchronous reset
66
67 pipe_request := false;
68 second_run := false;
69 second_run_finished := false;
70
71 peri_wait <= '0';
72
73 STATE <= S_IDLE;

1

v_apb_bridge.vhd

74
75 --PADDR <= (others => '0');
76 APB_BRIDGE_MASTER_PORT_PWDATA <= (others => '0');
77 APB_BRIDGE_MASTER_PORT_PENABLE <= '0';
78 APB_BRIDGE_MASTER_PORT_PWRITE <= '0';
79
80
81 --PSELX <= (others => '0');
82 tmp_S_DATA32_o := (others => '0');
83 sample_S_ADDR24_i := (others => '0');
84
85 APB_BRIDGE_SLAVE_PORT_S_Data32_o <= tmp_S_DATA32_o;
86
87 elsif APB_BRIDGE_SYSTEM_PORT_Clk = '1' and APB_BRIDGE_SYSTEM_PORT_Clk'event then
88
89 case STATE is
90
91 when S_IDLE =>
92
93 APB_BRIDGE_MASTER_PORT_PENABLE <= '0';
94 pipe_request := false;
95 second_run := false;
96 second_run_finished := false;
97
98 if APB_BRIDGE_SLAVE_PORT_S_AccEn_i = '1' then
99

100 -- IDLE ===> SETUP
101
102 STATE <= S_SETUP;
103 --- SAMPLE ALL INPUTS
104 sample_S_ADDR24_i := APB_BRIDGE_SLAVE_PORT_S_Addr24_i;
105 sample_S_DATA32_i := APB_BRIDGE_SLAVE_PORT_S_Data32_i;
106 sample_S_DATASIZE2_i := APB_BRIDGE_SLAVE_PORT_S_DataSize2_i;
107 sample_S_WR_i := APB_BRIDGE_SLAVE_PORT_S_Wr_i;
108
109 APB_BRIDGE_MASTER_PORT_PWRITE <= sample_S_WR_i;
110
111 if sample_S_WR_i = '1' then
112 APB_BRIDGE_MASTER_PORT_PWDATA <= WRITE_DECODE(sample_S_ADDR24_i(1 downto 0),

sample_S_DATASIZE2_i, sample_S_DATA32_i);
113 peri_wait <= '0';
114
115 else
116 -- READ CASE, do always THROW WAIT
117 peri_wait <= '1';
118 end if;
119
120
121 -- ALL PSEL ASSIGNMENTS ARE TAKEN IN THE BUS
122
123 else
124 -- IDLE ===> IDLE
125 sample_S_ADDR24_i := (others => '0');
126 peri_wait <= '0';
127
128 STATE <= S_IDLE;
129
130 end if;
131
132
133
134
135 when S_SETUP => -- SETUP ===> ACCESS
136 STATE <= S_ACCESS;
137
138 -- PSEL ASSIGNED IN BUS
139 APB_BRIDGE_MASTER_PORT_PENABLE <= '1';
140 APB_BRIDGE_MASTER_PORT_PWRITE <= sample_S_WR_i;
141
142 if sample_S_WR_i = '0' then
143 peri_wait <= '1';
144
145 elsif second_run then

2

v_apb_bridge.vhd

146 pipe_request := false;
147 second_run := false;
148 second_run_finished := true;
149 peri_wait <= '1';
150
151 PIPELINED_WRITE_3:
152 REPORT "(WRITE CASE) Access->Setup with previous saved INPUT DATA!"
153 severity NOTE;
154
155 elsif APB_BRIDGE_SLAVE_PORT_S_AccEn_i = '1' then
156 peri_wait <= '1';
157 pipe_request := true;
158
159 -- save new data
160
161 pipe_sample_S_ADDR24_i := APB_BRIDGE_SLAVE_PORT_S_Addr24_i;
162 pipe_sample_S_DATA32_i := APB_BRIDGE_SLAVE_PORT_S_Data32_i;
163 pipe_sample_S_DATASIZE2_i := APB_BRIDGE_SLAVE_PORT_S_DataSize2_i;
164 pipe_sample_S_WR_i := APB_BRIDGE_SLAVE_PORT_S_Wr_i;
165
166
167 PIPELINED_WRITE_1:
168 REPORT "(WRITE CASE) New Data in Setup Phase!"
169 severity WARNING;
170
171 else
172 peri_wait <= '0';
173 end if;
174
175
176
177
178 when S_ACCESS =>
179
180 second_run := false;
181
182 if APB_BRIDGE_MASTER_PORT_PREADY = '1' then
183
184 APB_BRIDGE_MASTER_PORT_PENABLE <= '0';
185 -- Outputs not driven until the S_ACCESS State!
186
187 if sample_S_WR_i = '0' then
188 tmp_S_DATA32_o := READ_DECODE(sample_S_ADDR24_i(1 downto 0),

sample_S_DATASIZE2_i, APB_BRIDGE_MASTER_PORT_PRDATA);
189
190 peri_wait <= '0';
191 sample_S_ADDR24_i := (others => '0');
192 --!!!
193 -- ACCESS->STATE is not possible in the READ CASE
194 -- REASON: SIMPLE BUS WAIT GENERATION!
195 STATE <= S_IDLE;
196 --!!!
197
198
199 elsif (APB_BRIDGE_SLAVE_PORT_S_AccEn_i = '1' and not second_run_finished) or

pipe_request then
200
201 -- ACCESS ===> SETUP
202 STATE <= S_SETUP;
203
204 SAVE_CYCLE:
205 REPORT "(ACCESS=>SETUP) SAVING ONE CLK CYCLE."
206 severity NOTE;
207
208
209 if pipe_request then
210 second_run := true;
211 peri_wait <= '1';
212
213 sample_S_ADDR24_i := pipe_sample_S_ADDR24_i;
214 sample_S_DATA32_i := pipe_sample_S_DATA32_i;
215 sample_S_DATASIZE2_i := pipe_sample_S_DATASIZE2_i;
216 sample_S_WR_i := pipe_sample_S_WR_i;

3

v_apb_bridge.vhd

217
218 else
219 --- SAMPLE ALL INPUTS
220 sample_S_ADDR24_i := APB_BRIDGE_SLAVE_PORT_S_Addr24_i;
221 sample_S_DATA32_i := APB_BRIDGE_SLAVE_PORT_S_Data32_i;
222 sample_S_DATASIZE2_i := APB_BRIDGE_SLAVE_PORT_S_DataSize2_i;
223 sample_S_WR_i := APB_BRIDGE_SLAVE_PORT_S_Wr_i;
224 end if;
225
226 APB_BRIDGE_MASTER_PORT_PWRITE <= sample_S_WR_i;
227 -- PADDR and PSEL assignments are taken in the BUS
228
229 if sample_S_WR_i = '1' then
230 APB_BRIDGE_MASTER_PORT_PWDATA <= WRITE_DECODE(sample_S_ADDR24_i(1 downto 0),

sample_S_DATASIZE2_i, sample_S_DATA32_i);
231 end if;
232
233
234 else -- NO SB_TRANSFER_REQ
235 -- ACCESS ===> IDLE
236 STATE <= S_IDLE;
237
238 peri_wait <= '0';
239 APB_BRIDGE_MASTER_PORT_PWDATA <= (others => '0');
240 sample_S_ADDR24_i := (others => '0');
241
242 -- dont touch PADDR, PWRITE to save energy (V2-5.2.2)
243
244 end if;
245
246 else -- PREADY not 1
247 -- ACCESS ===> ACCESS
248 STATE <= S_ACCESS;
249
250 -- dont touch:
251 -- PSEL, PENABLE, PWDATA, PADDR, PWRITE
252
253
254 if sample_S_WR_i = '0' then
255
256 tmp_S_DATA32_o := READ_DECODE(sample_S_ADDR24_i(1 downto 0),

sample_S_DATASIZE2_i, APB_BRIDGE_MASTER_PORT_PRDATA);
257 peri_wait <= '1';
258
259 elsif APB_BRIDGE_SLAVE_PORT_S_AccEn_i = '1' then
260 -- Not Ready, WRITE Case, New Access (can be only Write)
261
262 if not pipe_request then
263
264
265 PIPELINE_WRITE_2:
266 REPORT "(WRITE CASE) New Data in ACCESS Phase, while PREADY not 1!"
267 severity WARNING;
268
269 pipe_sample_S_ADDR24_i := APB_BRIDGE_SLAVE_PORT_S_Addr24_i;
270 pipe_sample_S_DATA32_i := APB_BRIDGE_SLAVE_PORT_S_Data32_i;
271 pipe_sample_S_DATASIZE2_i := APB_BRIDGE_SLAVE_PORT_S_DataSize2_i;
272 pipe_sample_S_WR_i := APB_BRIDGE_SLAVE_PORT_S_Wr_i;
273
274 -- SAVE DATA
275
276 pipe_request := true;
277 end if;
278
279
280 peri_wait <= '1';
281
282 else -- Not Ready, Write Case, No new Access
283 peri_wait <= '0';
284
285 end if;
286
287 end if;

4

v_apb_bridge.vhd

288
289 when others => pipe_request := false;
290
291 STATE <= S_IDLE;
292
293 APB_BRIDGE_MASTER_PORT_PWDATA <= (others => '0');
294 APB_BRIDGE_MASTER_PORT_PENABLE <= '0';
295 APB_BRIDGE_MASTER_PORT_PWRITE <= '0';
296 peri_wait <= '0';
297
298 tmp_S_DATA32_o := (others => '0');
299 APB_BRIDGE_SLAVE_PORT_S_Data32_o <= tmp_S_DATA32_o;
300
301 end case;
302
303
304 -- DO ALWAYS ASSIGN IF CLK = 1 AND APB_BRIDGE_SYSTEM_PORT_Clk'EVENT
305 APB_BRIDGE_SLAVE_PORT_S_Data32_o <= tmp_S_DATA32_o;
306 APB_BRIDGE_MASTER_PORT_PADDR(sample_S_ADDR24_i'range) <= sample_S_ADDR24_i;
307
308 end if;
309
310
311
312 end process P_STATES;
313
314 assert not (APB_BRIDGE_MASTER_PORT_PREADY = '0' AND APB_BRIDGE_SLAVE_PORT_S_AccEn_i = '1' AND STATE =

S_IDLE)
315 report "STATE: IDLE, PREADY is still 0 ?!, S_ACCEN_i gets 1 --> New Action Request"
316 severity error;
317
318
319 end Arch_apb_bridge;

5

A. Appendix

A.3. AMBA APB Slave Example

2008-12-09/161/II03/2235 92

v_apb_slave.vhd

1 architecture Arch_sif_apb of sif_apb is
2
3 constant REG_CNT : integer range 0 to 31 := 3;
4 subtype REG_WIDTH is bit_vector(31 downto 0);
5 type REGISTERS is array (integer range 0 to REG_CNT) of REG_WIDTH;
6
7 -- signal TL_REG : REGISTERS;
8 -- signal TL_PREADY : bit;
9

10 -- component SIF_TEST
11 -- port (CLK : in bit;
12 -- RST : in bit;
13 -- CONTROL : in bit_vector(31 downto 0);
14 -- DATAOUT : out bit;
15 -- READY : out bit;
16 -- DATAIN : in bit_vector(31 downto 0)
17 --);
18 -- end component;
19
20 begin
21
22 -- SIF_0: SIF_TEST port map
23 -- (CLK => CLK,
24 -- RST => RST,
25 -- CONTROL => TL_REG(0),
26 -- DATAOUT => open,
27 -- READY => TL_PREADY,
28 -- DATAIN => TL_REG(1)
29 --);
30
31 DUMMY: process (SIF_APB_SYSTEM_PORT_Clk, SIF_APB_SYSTEM_PORT_Rst)
32 variable REG : REGISTERS;
33 variable REG_SEL: integer range 0 to REG_CNT;
34
35 begin
36
37 if SIF_APB_SYSTEM_PORT_Rst = '0' then
38
39 for I in 0 to REG_CNT loop
40 REG(I) := x"0000_0000";
41 -- TL_REG(I) <= REG(I);
42 end loop;
43 SIF_APB_SLAVE_PORT_PRDATA <= (others => '0');
44
45 elsif SIF_APB_SYSTEM_PORT_Clk = '1' and SIF_APB_SYSTEM_PORT_Clk'event then
46
47 if SIF_APB_SLAVE_PORT_PSEL = '1' then
48
49 REG_SEL := VEC2INT(SIF_APB_SLAVE_PORT_PADDR(3 downto 0));
50
51 if SIF_APB_SLAVE_PORT_PWRITE = '0' then
52 SIF_APB_SLAVE_PORT_PRDATA <= REG(REG_SEL);
53 else
54 REG(REG_SEL) := SIF_APB_SLAVE_PORT_PWDATA;
55 end if;
56
57 -- for I in 0 to REG_CNT loop
58 -- TL_REG(I) <= REG(I);
59 -- end loop;
60
61 else
62 SIF_APB_SLAVE_PORT_PRDATA <= (others => '0');
63 end if;
64 end if;
65
66 end process DUMMY;
67
68 --PREADY <= TL_READY;
69 SIF_APB_SLAVE_PORT_PREADY <= '1';
70 SIF_APB_SLAVE_PORT_PSLVERR <= '0'; -- not used in this SLAVE
71
72 end Arch_sif_apb;

1

A. Appendix

A.4. AssertionInterface XML Example

2008-12-09/161/II03/2235 94

IFX_SPINNI_AHB_BRIDGE_MODELCONFIGURATION_100.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <ModelConfiguration>
3 <Custom></Custom>
4 <Hidden>false</Hidden>
5 <ID>1</ID>
6 <LongDescription>
7 <html></html>
8 </LongDescription>
9 <Name>AHB_BRIDGE_MODELCONFIGURATION</Name>

10 <ShortDescription>Language Specific and optional Assertion Interface Declaration</ShortDescription>
11 <ConstDefBlock>
12 <Custom></Custom>
13 <Hidden>false</Hidden>
14 <ID>2</ID>
15 <LongDescription>
16 <html></html>
17 </LongDescription>
18 <Name>DefaultName</Name>
19 <ShortDescription></ShortDescription>
20 </ConstDefBlock>
21 <EssenceVersion>210</EssenceVersion>
22 <GenericDeclBlock>
23 <Custom></Custom>
24 <Hidden>false</Hidden>
25 <ID>3</ID>
26 <LongDescription>
27 <html></html>
28 </LongDescription>
29 <Name>DefaultName</Name>
30 <ShortDescription></ShortDescription>
31 </GenericDeclBlock>
32 <ParamDeclBlock>
33 <Custom></Custom>
34 <Hidden>false</Hidden>
35 <ID>4</ID>
36 <LongDescription>
37 <html></html>
38 </LongDescription>
39 <Name>DefaultName</Name>
40 <ShortDescription></ShortDescription>
41 <ParamDecl xsi:type="IntegerDecl" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
42 <Custom></Custom>
43 <Hidden>false</Hidden>
44 <ID>5</ID>
45 <LongDescription>
46 <html></html>
47 </LongDescription>
48 <Name>MUX_BIT</Name>
49 <ShortDescription>One bit is needed to distinguish between Assertion IF and IP Core

</ShortDescription>
50 <DefaultValue>23</DefaultValue>
51 </ParamDecl>
52 </ParamDeclBlock>
53 <VLNV>
54 <Vendor>IFX</Vendor>
55 <Library>SPINNI</Library>
56 <Name>AHB_BRIDGE_MODELCONFIGURATION</Name>
57 <Version>100</Version>
58 </VLNV>
59 <RefXMLType>Component</RefXMLType>
60 <ExtVLNV>
61 <Vendor>IFX</Vendor>
62 <Library>SPINNI</Library>
63 <Name>AHB_BRIDGE</Name>
64 <Version>100</Version>
65 </ExtVLNV>
66 <ModelConfigurationPath>not used</ModelConfigurationPath>
67 <AssertionInterface>
68 <XRefSlaveInterface>
69 <XRefTargetID>12</XRefTargetID>
70 </XRefSlaveInterface>
71 <Scope>
72 <Custom></Custom>

1

IFX_SPINNI_AHB_BRIDGE_MODELCONFIGURATION_100.xml

73 <Hidden>false</Hidden>
74 <ID>6</ID>
75 <LongDescription>
76 <html></html>
77 </LongDescription>
78 <Name>Periphal_Assertions_Group</Name>
79 <ShortDescription></ShortDescription>
80 <ScopeAddress>5</ScopeAddress>
81 <Assertion>
82 <Custom></Custom>
83 <Hidden>false</Hidden>
84 <ID>8</ID>
85 <LongDescription>
86 <html></html>
87 </LongDescription>
88 <Name>RST_Assertion</Name>
89 <ShortDescription>This Assertions checks the Reset Signal</ShortDescription>
90 <Address>77</Address>
91 <Property></Property>
92 <Language>UAL</Language>
93 <ExtVLNV>
94 <Vendor>IFX</Vendor>
95 <Library>SPINNI</Library>
96 <Name>AHB_BRIDGE</Name>
97 <Version>100</Version>
98 </ExtVLNV>
99 <RefInterfaceAssertion>

100 <XRefInterface>
101 <XRefTargetID>12</XRefTargetID>
102 </XRefInterface>
103 <ExtVLNV>
104 <Vendor>IFX</Vendor>
105 <Library>SPINNI</Library>
106 <Name>SIMPLE_BUS_IFD</Name>
107 <Version>100</Version>
108 </ExtVLNV>
109 <RefSensitivityPort>
110 <XRefPort>
111 <XRefTargetID>21</XRefTargetID>
112 </XRefPort>
113 </RefSensitivityPort>
114 <RefSensitivityPort>
115 <XRefPort>
116 <XRefTargetID>22</XRefTargetID>
117 </XRefPort>
118 </RefSensitivityPort>
119 <RefSensitivityPort>
120 <XRefPort>
121 <XRefTargetID>23</XRefTargetID>
122 </XRefPort>
123 </RefSensitivityPort>
124 <RefSensitivityPort>
125 <XRefPort>
126 <XRefTargetID>24</XRefTargetID>
127 </XRefPort>
128 </RefSensitivityPort>
129 <RefSensitivityPort>
130 <XRefPort>
131 <XRefTargetID>25</XRefTargetID>
132 </XRefPort>
133 </RefSensitivityPort>
134 <RefSensitivityPort>
135 <XRefPort>
136 <XRefTargetID>26</XRefTargetID>
137 </XRefPort>
138 </RefSensitivityPort>
139 <RefSensitivityPort>
140 <XRefPort>
141 <XRefTargetID>27</XRefTargetID>
142 </XRefPort>
143 </RefSensitivityPort>
144 </RefInterfaceAssertion>
145 <RefInterfaceAssertion>

2

IFX_SPINNI_AHB_BRIDGE_MODELCONFIGURATION_100.xml

146 <XRefInterface>
147 <XRefTargetID>13</XRefTargetID>
148 </XRefInterface>
149 <ExtVLNV>
150 <Vendor>IFX</Vendor>
151 <Library>SPINNI</Library>
152 <Name>SYSTEM_IFD</Name>
153 <Version>100</Version>
154 </ExtVLNV>
155 <RefSensitivityPort>
156 <XRefPort>
157 <XRefTargetID>9</XRefTargetID>
158 </XRefPort>
159 </RefSensitivityPort>
160 <RefSensitivityPort>
161 <XRefPort>
162 <XRefTargetID>10</XRefTargetID>
163 </XRefPort>
164 </RefSensitivityPort>
165 </RefInterfaceAssertion>
166 </Assertion>
167 </Scope>
168 </AssertionInterface>
169 </ModelConfiguration>
170

3

A. Appendix

A.5. Assertion Wrapper Example

2008-12-09/161/II03/2235 98

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

1
2 library ieee;
3 use work.my_func.all;
4
5 entity WRAPPER_ahb_bridge is
6
7 generic(
8 TEST_GEN_1: integer := 22;
9 TEST_GEN_2: integer := 2);

10
11 port(
12 -- the ports here are from interface AHB_BRIDGE_MASTER_PORT
13 AHB_BRIDGE_MASTER_PORT_HTRANS: out bit_vector(1 downto 0);
14 AHB_BRIDGE_MASTER_PORT_HADDR: out bit_vector(23 downto 0);
15 AHB_BRIDGE_MASTER_PORT_HWRITE: out bit;
16 AHB_BRIDGE_MASTER_PORT_HSIZE: out bit_vector(2 downto 0);
17 AHB_BRIDGE_MASTER_PORT_HBURST: out bit_vector(2 downto 0);
18 AHB_BRIDGE_MASTER_PORT_HWDATA: out bit_vector(31 downto 0);
19 AHB_BRIDGE_MASTER_PORT_HRDATA: in bit_vector(31 downto 0);
20 AHB_BRIDGE_MASTER_PORT_HREADY: in bit;
21 AHB_BRIDGE_MASTER_PORT_HRESP: in bit_vector(1 downto 0);
22 -- the ports here are from interface AHB_BRIDGE_SB_SLAVE_PORT
23 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i: in bit_vector(1 downto 0);
24 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i: in bit;
25 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i: in bit;
26 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i: in bit_vector(23 downto 0);
27 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i: in bit_vector(31 downto 0);
28 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o: out bit_vector(31 downto 0);
29 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o: out bit;
30 -- the ports here are from interface AHB_BRIDGE_AHB_SLAVE_PORT
31 AHB_BRIDGE_AHB_SLAVE_PORT_HSEL: in bit;
32 AHB_BRIDGE_AHB_SLAVE_PORT_HADDR: in bit_vector(31 downto 0);
33 AHB_BRIDGE_AHB_SLAVE_PORT_HWRITE: in bit;
34 AHB_BRIDGE_AHB_SLAVE_PORT_HTRANS: in bit_vector(1 downto 0);
35 AHB_BRIDGE_AHB_SLAVE_PORT_HSIZE: in bit_vector(2 downto 0);
36 AHB_BRIDGE_AHB_SLAVE_PORT_HBURST: in bit_vector(2 downto 0);
37 AHB_BRIDGE_AHB_SLAVE_PORT_HWDATA: in bit_vector(31 downto 0);
38 AHB_BRIDGE_AHB_SLAVE_PORT_HRDATA: out bit_vector(31 downto 0);
39 AHB_BRIDGE_AHB_SLAVE_PORT_HREADY: out bit;
40 AHB_BRIDGE_AHB_SLAVE_PORT_HRESP: out bit_vector(1 downto 0);
41 -- the ports here are from interface AHB_BRIDGE_SYSTEM_PORT
42 AHB_BRIDGE_SYSTEM_PORT_Clk: in bit;
43 AHB_BRIDGE_SYSTEM_PORT_Rst: in bit);
44
45 end WRAPPER_ahb_bridge;
46
47
48 architecture Wrapper_Arch_ahb_bridge of WRAPPER_ahb_bridge is
49
50 component ahb_bridge is
51
52 generic(
53 TEST_GEN_1: integer := 22;
54 TEST_GEN_2: integer := 2);
55
56
57 port(
58 -- the ports here are from interface AHB_BRIDGE_MASTER_PORT
59 AHB_BRIDGE_MASTER_PORT_HTRANS: out bit_vector(1 downto 0);
60 AHB_BRIDGE_MASTER_PORT_HADDR: out bit_vector(23 downto 0);
61 AHB_BRIDGE_MASTER_PORT_HWRITE: out bit;
62 AHB_BRIDGE_MASTER_PORT_HSIZE: out bit_vector(2 downto 0);
63 AHB_BRIDGE_MASTER_PORT_HBURST: out bit_vector(2 downto 0);
64 AHB_BRIDGE_MASTER_PORT_HWDATA: out bit_vector(31 downto 0);
65 AHB_BRIDGE_MASTER_PORT_HRDATA: in bit_vector(31 downto 0);
66 AHB_BRIDGE_MASTER_PORT_HREADY: in bit;
67 AHB_BRIDGE_MASTER_PORT_HRESP: in bit_vector(1 downto 0);
68 -- the ports here are from interface AHB_BRIDGE_SB_SLAVE_PORT
69 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i: in bit_vector(1 downto 0);
70 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i: in bit;
71 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i: in bit;
72 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i: in bit_vector(23 downto 0);
73 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i: in bit_vector(31 downto 0);

1

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

74 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o: out bit_vector(31 downto 0);
75 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o: out bit;
76 -- the ports here are from interface AHB_BRIDGE_AHB_SLAVE_PORT
77 AHB_BRIDGE_AHB_SLAVE_PORT_HSEL: in bit;
78 AHB_BRIDGE_AHB_SLAVE_PORT_HADDR: in bit_vector(31 downto 0);
79 AHB_BRIDGE_AHB_SLAVE_PORT_HWRITE: in bit;
80 AHB_BRIDGE_AHB_SLAVE_PORT_HTRANS: in bit_vector(1 downto 0);
81 AHB_BRIDGE_AHB_SLAVE_PORT_HSIZE: in bit_vector(2 downto 0);
82 AHB_BRIDGE_AHB_SLAVE_PORT_HBURST: in bit_vector(2 downto 0);
83 AHB_BRIDGE_AHB_SLAVE_PORT_HWDATA: in bit_vector(31 downto 0);
84 AHB_BRIDGE_AHB_SLAVE_PORT_HRDATA: out bit_vector(31 downto 0);
85 AHB_BRIDGE_AHB_SLAVE_PORT_HREADY: out bit;
86 AHB_BRIDGE_AHB_SLAVE_PORT_HRESP: out bit_vector(1 downto 0);
87 -- the ports here are from interface AHB_BRIDGE_SYSTEM_PORT
88 AHB_BRIDGE_SYSTEM_PORT_Clk: in bit;
89 AHB_BRIDGE_SYSTEM_PORT_Rst: in bit);
90
91 end component;
92
93
94 -- ### ### ### ### ### ###
95 -- constants, signals, ... for the Assertion IF
96 constant AIF_ID12_AssCnt : integer range 1 to 2 := 2;
97
98
99 --- STATIC

100 signal AIF_ID12_rd_data : bit_vector(31 downto 0);
101
102
103 --STATIC 1-time Register for ASS_IF
104 signal AIF_ID12_Ass_Addr_Reg : bit_vector(31 downto 0);
105 signal AIF_ID12_Ass_CFG_Reg : bit_vector(31 downto 0);
106 signal AIF_ID12_Ass_STAT_Reg : bit_vector(31 downto 0);
107 signal AIF_ID12_Ass_ErrInd_Reg : bit_vector(1 downto 0);
108
109
110 -- STATIC, btw this construct is synthesizable! no problem at all!
111 subtype AIF_ID12_REG_WIDTH is bit_vector(31 downto 0);
112 type AIF_ID12_ASS_REG is array (integer range 0 to AIF_ID12_AssCnt-1) of AIF_ID12_REG_WIDTH;
113 type AIF_ID12_RES_REG is array (integer range 0 to AIF_ID12_AssCnt-1) of bit;
114
115
116 -- also static
117 signal AIF_ID12_CFG_REG_x : AIF_ID12_ASS_REG;
118 signal AIF_ID12_STAT_REG_x : AIF_ID12_ASS_REG;
119 signal AIF_ID12_RES_REG_x : AIF_ID12_RES_REG;
120 signal AIF_ID12_RES : bit;
121
122
123 -- DYNAMIC, DO GENERATE FOR EVERY ASSERTION WHICH
124 -- performs check on output signals
125 signal tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o : bit_vector(31 downto 0);
126 signal tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o : bit;
127
128
129 -- DUMMY SIGNAL
130 signal dummy_signal : bit;
131
132
133
134 component AIF_ID12_ScopeAdr5_AssAdr77 is
135
136 port (
137 -- These ports are for the Assertion IF
138 CFG_REG: in bit_vector(31 downto 0);
139 STAT_REG: out bit_vector(31 downto 0);
140 RES_REG: out bit;
141 -- These ports are for the assertion itself
142 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i: in bit_vector(1 downto 0);
143 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i: in bit;
144 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i: in bit;
145 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i: in bit_vector(23 downto 0);
146 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i: in bit_vector(31 downto 0);

2

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

147 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o: in bit_vector(31 downto 0);
148 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o: in bit;
149 AHB_BRIDGE_SYSTEM_PORT_Clk: in bit;
150 AHB_BRIDGE_SYSTEM_PORT_Rst: in bit);
151 end component;
152
153
154 component AIF_ID12_ScopeAdr5_AssAdr76 is
155
156 port (
157 -- These ports are for the Assertion IF
158 CFG_REG: in bit_vector(31 downto 0);
159 STAT_REG: out bit_vector(31 downto 0);
160 RES_REG: out bit;
161 -- These ports are for the assertion itself
162 AHB_BRIDGE_SYSTEM_PORT_Clk: in bit;
163 AHB_BRIDGE_SYSTEM_PORT_Rst: in bit);
164 end component;
165
166
167
168
169
170 ---
171 -- ARCHITECTURE CODE PART
172 begin
173
174 -- Map the Wrapper to the real model
175 -- placeholder
176
177 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o <= tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o;
178
179
180 Instance_ahb_bridge: ahb_bridge
181 generic map(
182 TEST_GEN_1 => TEST_GEN_1,
183 TEST_GEN_2 => TEST_GEN_2)
184
185 port map(
186
187 AHB_BRIDGE_AHB_SLAVE_PORT_HSEL => AHB_BRIDGE_AHB_SLAVE_PORT_HSEL,
188 AHB_BRIDGE_AHB_SLAVE_PORT_HADDR => AHB_BRIDGE_AHB_SLAVE_PORT_HADDR,
189 AHB_BRIDGE_AHB_SLAVE_PORT_HWRITE => AHB_BRIDGE_AHB_SLAVE_PORT_HWRITE,
190 AHB_BRIDGE_AHB_SLAVE_PORT_HTRANS => AHB_BRIDGE_AHB_SLAVE_PORT_HTRANS,
191 AHB_BRIDGE_AHB_SLAVE_PORT_HSIZE => AHB_BRIDGE_AHB_SLAVE_PORT_HSIZE,
192 AHB_BRIDGE_AHB_SLAVE_PORT_HBURST => AHB_BRIDGE_AHB_SLAVE_PORT_HBURST,
193 AHB_BRIDGE_AHB_SLAVE_PORT_HWDATA => AHB_BRIDGE_AHB_SLAVE_PORT_HWDATA,
194 AHB_BRIDGE_AHB_SLAVE_PORT_HRDATA => AHB_BRIDGE_AHB_SLAVE_PORT_HRDATA,
195 AHB_BRIDGE_MASTER_PORT_HRDATA => AHB_BRIDGE_MASTER_PORT_HRDATA,
196 AHB_BRIDGE_MASTER_PORT_HREADY => AHB_BRIDGE_MASTER_PORT_HREADY,
197 AHB_BRIDGE_MASTER_PORT_HRESP => AHB_BRIDGE_MASTER_PORT_HRESP,
198 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i => AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i,
199 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i,
200 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i => AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i,
201 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i,
202 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i,
203 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o => tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o,
204 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o => tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o,
205 AHB_BRIDGE_SYSTEM_PORT_Clk => AHB_BRIDGE_SYSTEM_PORT_Clk,
206 AHB_BRIDGE_SYSTEM_PORT_Rst => AHB_BRIDGE_SYSTEM_PORT_Rst);
207
208
209 Instance_Ass_ID12_ScopeAdr5_AssAdr77: AIF_ID12_ScopeAdr5_AssAdr77
210 port map(
211 CFG_REG => AIF_ID12_CFG_REG_x(0),
212 STAT_REG => AIF_ID12_STAT_REG_x(0),
213 RES_REG => AIF_ID12_RES_REG_x(0),
214 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i => AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i,
215 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i,
216 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i => AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i,
217 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i,
218 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i => AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i,
219 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o => tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o,

3

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

220 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o => tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o,
221 AHB_BRIDGE_SYSTEM_PORT_Clk => AHB_BRIDGE_SYSTEM_PORT_Clk,
222 AHB_BRIDGE_SYSTEM_PORT_Rst => AHB_BRIDGE_SYSTEM_PORT_Rst);
223
224
225 Instance_Ass_ID12_ScopeAdr5_AssAdr76: AIF_ID12_ScopeAdr5_AssAdr76
226 port map(
227 CFG_REG => AIF_ID12_CFG_REG_x(1),
228 STAT_REG => AIF_ID12_STAT_REG_x(1),
229 RES_REG => AIF_ID12_RES_REG_x(1),
230 AHB_BRIDGE_SYSTEM_PORT_Clk => AHB_BRIDGE_SYSTEM_PORT_Clk,
231 AHB_BRIDGE_SYSTEM_PORT_Rst => AHB_BRIDGE_SYSTEM_PORT_Rst);
232
233
234
235
236
237 -- processes for the Assertion IF (IF-Demux, IF-Register R/W, Virtual Reg Demux, Result-Demux)
238 --##
239
240
241 --decoder part
242 --select either the real IP or the Assertion IF
243 -- AND
244 --READ_DATA demulitplexer
245 DECODE_IF_ID_12:
246 process (AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i, AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i,

tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o, AIF_ID12_rd_data, AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i,
AIF_ID12_Ass_STAT_Reg, AIF_ID12_Ass_CFG_Reg, AIF_ID12_Ass_ErrInd_Reg, AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i,
AIF_ID12_Ass_Addr_Reg, AIF_ID12_STAT_REG_x)

247
248 variable tmp_stat : bit_vector(31 downto 0);
249 variable AIF_ID12_enable : bit;
250
251 begin
252
253 if AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i = '1' then
254
255 AIF_ID12_enable := '0';
256
257 --AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i(<<ASS_IF_MUX_BIT_OF_ADD>>)
258 case AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i(23) is
259 when '0' => AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o <= tempout_AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o;
260
261 when '1' => AIF_ID12_enable := '1';
262
263 ASSIF_SELECT:
264 REPORT "ADDR(23) = 1, ACCESSING ASSERTION IF ID12!"
265 severity NOTE;
266
267 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o <= AIF_ID12_rd_data;
268
269 when others => AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o <= (others => '0');
270
271 end case;
272
273 else
274
275 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o <= (others => '0');
276 AIF_ID12_enable := '0';
277
278 end if;
279
280
281
282
283 --##
284 --write register part(bus specific!)
285 -- check if ass_if is enabled and perform write/read action of 1of4 register
286
287
288 if AIF_ID12_enable = '1' then
289

4

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

290 --use leftmost 2 bits of the (22:0) remaining bits
291 case AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i(1 downto 0) is
292 when "00" => AIF_ID12_ASS_ADR_SELECT:
293 REPORT "AIF_ID12: Assertion Address Register selected"
294 severity NOTE;
295
296 if AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i = '0' then
297 AIF_ID12_rd_data <= AIF_ID12_Ass_Addr_Reg;
298 else
299 AIF_ID12_Ass_Addr_Reg <= AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i;
300 end if;
301
302
303
304 when "01" => AIF_ID12_ASS_CFG_SELECT:
305 -- READ and WRITE is allowed
306
307 REPORT "AIF_ID12: Assertion Config Register selected"
308 severity NOTE;
309
310 if AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i = '0' then
311 AIF_ID12_rd_data <= AIF_ID12_Ass_CFG_Reg;
312 else
313 AIF_ID12_Ass_CFG_Reg <= AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i;
314 end if;
315
316
317
318 when "10" => AIF_ID12_ASS_STAT_SELECT:
319 -- ONLY READ IS ALLOWED
320 REPORT "AIF_ID12: Assertion Status Register selected"
321 severity NOTE;
322
323 if AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i = '0' then
324 AIF_ID12_rd_data <= AIF_ID12_Ass_STAT_Reg;
325 else
326 REPORT "AIF_ID12: Assertion Status Register CANNOT be written from Bus Side"
327 severity WARNING;
328 end if;
329
330
331
332 when "11" => AIF_ID12_ERR_IND_SELECT:
333 REPORT "AIF_ID12: Error Indicating Register selected"
334 severity NOTE;
335
336 if AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i = '0' then
337
338 AIF_ID12_rd_data <= (others => '0');
339 AIF_ID12_rd_data(1 downto 0) <= AIF_ID12_Ass_ErrInd_Reg;
340 else
341
342
343 --ONLY BIT 1 can be written by Software, else
344 AIF_ID12_Ass_ErrInd_Reg(1) <= AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i(1);
345 end if;
346
347
348 when others => AIF_ID12_rd_data <= (others => '0');
349
350 end case;
351
352 end if;
353
354
355
356
357 --##
358 -- real register to virtual register map
359 -- NEEDS TO GET GENERATED
360
361 case AIF_ID12_Ass_Addr_Reg(31 downto 28) is
362

5

iFX_SPINNI_AHB_BRIDGE_WRAPPER.vhd

363 when x"0" => tmp_stat := (others => '0');
364
365 for I in 0 to (AIF_ID12_AssCnt-1) loop
366 AIF_ID12_CFG_REG_x(I) <= AIF_ID12_Ass_CFG_Reg;
367 tmp_stat := tmp_stat OR AIF_ID12_STAT_REG_x(I);
368 end loop;
369
370
371 AIF_ID12_BROADCAST:
372 REPORT "AIF_ID12: SCOPE = 0, Broadcast to all Assertions!"
373 severity NOTE;
374
375
376 when others =>
377
378 --###
379 -- THE REAL "SCOPE & ASSID" to internal register mapping!
380 -- NEEDS TO GET GENERATED
381
382
383 case AIF_ID12_Ass_Addr_Reg is
384
385
386
387 when x"5_000004d" => --SCOPE No. 0, ASSERTION No. 0
388 AIF_ID12_CFG_REG_x(0) <= AIF_ID12_Ass_CFG_Reg;
389 tmp_stat := AIF_ID12_STAT_REG_x(0);
390
391 when x"5_000004c" => --SCOPE No. 0, ASSERTION No. 1
392 AIF_ID12_CFG_REG_x(1) <= AIF_ID12_Ass_CFG_Reg;
393 tmp_stat := AIF_ID12_STAT_REG_x(1);
394
395
396 when others => REPORT "There is no Assertion with that Address = SCOPE & ASS_ID"
397 severity WARNING;
398
399 tmp_stat := (others => '0');
400
401 end case;
402
403 end case;
404
405
406 AIF_ID12_Ass_STAT_Reg <= tmp_stat;
407
408
409 end process;
410
411
412
413 -- Assertion result demuxer
414 -- STATIC
415 AIF_ID12_RES_REG_x_or_12:
416 process (AIF_ID12_RES_REG_x)
417 variable tmp_res : bit;
418
419 begin
420
421 tmp_RES := '0';
422 for I in 0 to (AIF_ID12_RES_REG_x'high) loop
423 tmp_RES := tmp_RES OR AIF_ID12_RES_REG_x(i);
424 end loop;
425
426 AIF_ID12_RES <= tmp_RES;
427
428 end process;
429
430 -- processes for the Assertion IF (IF-Demux, IF-Register R/W, Virtual Reg Demux, Result-Demux)
431
432
433 end Wrapper_Arch_ahb_bridge;
434
435

6

A. Appendix

A.6. Assertion Interface Example

2008-12-09/161/II03/2235 105

COMPONENT_ahb_bridge__AIF_ID12_ScopeAdr5_AssAdr77.vhd

1 library ieee;
2 entity COMPONENT_ahb_bridge_AIF_ID12_ScopeAdr5_AssAdr77 is
3
4 port(
5 CFG_REG: in bit_vector(31 downto 0);
6 STAT_REG: out bit_vector(31 downto 0);
7 RES_REG: out bit;
8 AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i: in bit_vector(1 downto 0);
9 AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i: in bit;

10 AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i: in bit;
11 AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i: in bit_vector(23 downto 0);
12 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i: in bit_vector(31 downto 0);
13 AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o: in bit_vector(31 downto 0);
14 AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o: in bit;
15 AHB_BRIDGE_SYSTEM_PORT_Clk: in bit;
16 AHB_BRIDGE_SYSTEM_PORT_Rst: in bit);
17
18 end COMPONENT_ahb_bridge_AIF_ID12_ScopeAdr5_AssAdr77;
19
20
21 architecture COMPONENT_ahb_bridge_AIF_ID12_ScopeAdr5_AssAdr77_Arch of

COMPONENT_ahb_bridge_AIF_ID12_ScopeAdr5_AssAdr77 is
22 begin
23
24 -- Assertion: RST_Assertion, Scope: Periphal_Assertions_Group
25 Process_AIF_ID12_ScopeAdr5_AssAdr77:
26 process (AHB_BRIDGE_SB_SLAVE_PORT_S_DataSize2_i, AHB_BRIDGE_SB_SLAVE_PORT_S_Wr_i,

AHB_BRIDGE_SB_SLAVE_PORT_S_AccEn_i, AHB_BRIDGE_SB_SLAVE_PORT_S_Addr24_i, AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_i,
AHB_BRIDGE_SB_SLAVE_PORT_S_Data32_o, AHB_BRIDGE_SB_SLAVE_PORT_S_Wait_o, AHB_BRIDGE_SYSTEM_PORT_Clk,
AHB_BRIDGE_SYSTEM_PORT_Rst)

27
28 --##
29 --DO ALWAYS GENERATE THE ALIAS below
30
31 -- MANAGING ASSERTION
32 alias CFG_Enable : bit is CFG_REG(0);
33 alias CFG_ClearRes : bit is CFG_REG(1);
34
35 -- EXECUTION SEMANTICS
36 alias CFG_RestartOnEC : bit is CFG_REG(2);
37 alias CFG_Threading : bit is CFG_REG(3);
38
39 -- RESET
40 alias CFG_Reset : bit is CFG_REG(4);
41 alias CFG_Failures : bit is CFG_REG(5);
42 alias CFG_Coverage : bit is CFG_REG(6);
43
44 -- QueryDebug Informations
45 alias CFG_getAssertionFail : bit is CFG_REG(7);
46 alias CFG_getAssertionCover : bit is CFG_REG(8);
47 alias CFG_getAssertionThreads : bit is CFG_REG(9);
48 alias CFG_getErrorID : bit is CFG_REG(10);
49
50 -- ALIAS FOR REGISTERS
51 alias RESULT : bit is RES_REG;
52 alias STATUS : bit_vector is STAT_REG;
53
54 --##
55 -- PLACE CUSTOM variables in here (fail_cnt, cover_cnt, ...)
56
57 begin
58 -- This Assertion models the property:
59
60 if AHB_BRIDGE_SYSTEM_PORT_Rst = '0' then
61 RESULT <= '0';
62 elsif AHB_BRIDGE_SYSTEM_PORT_Clk = '1' and AHB_BRIDGE_SYSTEM_PORT_Clk'event then
63
64 -- insert checker functionality here
65
66 end if;
67 end process;
68
69 end COMPONENT_ahb_bridge_AIF_ID12_ScopeAdr5_AssAdr77_Arch;

1

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Chapter Overview

	Related Work
	Assertion based Verification
	What is an Assertion
	Assertions in Silicon Debug

	Similar Approaches

	Infineon XChange Flow
	Fundamentals
	Meta data and meta models
	SPIRIT
	SPRINT
	Unified Modeling Language
	Extensible Markup Language
	XML Metadata Interchange
	Python
	Templating with MAKO
	AMBA Overview
	AMBA APB

	The Essence Meta Model
	Component Data Model
	Interface Definition Data Model
	XRef Data Model
	Bus Data Model
	System Data Model
	ModelConfig Data model
	Other Data Models

	Toolchain
	Essimport
	Essemplate

	Infineon SPINNI Example System
	Existing System
	Architecture
	Simple Bus Specification

	Extensions to the SPINNI System
	APB Bridge Architecture
	APB Bridge Behavior
	APB
	APB Peripheral
	APB Subsystem
	Interface Mapping

	Debuggable Assertion Interface
	Requirement Analysis
	Hardware
	Architecture
	Bus Interfacing
	Multiple Assertion Interfaces per component

	Assertion Interface Meta Model
	AssertionInterface
	Scope
	Assertion
	RefInterfaceAssertion
	RefSensitivityPort

	Target Code Architecture
	Assertion Register Constraints

	Requirement fulfillment

	Assertion Interface Generation
	Challenges on Template development
	General Coding Style
	Wrapper Part
	AssertionInterface Part
	Assertion Part

	Plugin and Template overview

	Simulation
	Enhanced SPINNI System
	Mixed Language Simulation
	Assertion Interface
	Application Results

	Summary and Outlook
	References
	Appendix
	Essence ModelConfiguration data model
	AMBA APB Bridge Example
	AMBA APB Slave Example
	AssertionInterface XML Example
	Assertion Wrapper Example
	Assertion Interface Example

