
On the Complexity of
Modified Instances

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat)

vorgelegt dem Rat der
Fakultät für Mathematik und Informatik
der Friedrich Schiller Universität Jena

von Diplom-Informatiker Tobias Berg
geboren am 28. Dezember 1978 in Jena



Gutachter:

1. PD Dr. Harald Hempel, Friedrich-Schiller-Universität Jena

2. Prof. Dr. Ulrich Hertrampf, Universität Stuttgart

3. Prof. Dr. Rolf Niedermeier, Friedrich-Schiller-Universität Jena

Tag der letzten Prüfung des Rigorosums: 22.12.2008

Tag der öffentlichen Verteidigung: 07.01.2009



Zusammenfassung

Ein wesentlicher Beitrag, den die Komplexitätstheorie zum besseren Verständnis von
Algorithmen leisten kann, ist die genaue Klassifikation algorithmischer Problemstel-
lungen hinsichtlich ihrer Kompliziertheit. Eine herausragende Rolle nimmt dabei die
Klasse der NP-vollständigen Probleme ein, welche genau jene Probleme enthält, die
genauso schwer zu lösen sind wie das Problem, die Erfüllbarkeit einer aussagenlo-
gischen Formel zu testen. Viele Probleme die in der Praxis auftauchen, zum Beispiel
das Erstellen von Plänen oder das Suchen optimaler Routen, stellen sich bei genauerer
Betrachtung als NP-vollständig heraus. Da es bisher noch niemandem gelungen ist,
einen schnellen Algorithmus für irgendeines der zahllosen NP-vollständigen Probleme
anzugeben, gehen viele Komplexitätstheoretiker inzwischen davon aus, dass NP-voll-
ständige Probleme nicht effizient lösbar sind.

Unsere Untersuchungen haben das Ziel, festzustellen, inwiefern sich NP-vollständige
Probleme unter minimaler Veränderung stabil verhalten. Genauer gesagt: es wird für
verschiedene NP-vollständige Probleme untersucht, ob die Kenntnis einer Lösung (oder
eines anderen Hinweises) einer Instanz eine Hilfe beim Entscheiden einer geringfügig
modifizierten Instanz liefern kann. Diese Fragestellung spielt nicht nur überall dort ein
große Rolle, wo NP-vollständige Probleme in dynamischen Situationen schnell gelöst
werden müssen, sondern liefert auch tiefere Einsichten in die generelle Natur der Klasse
der NP-vollständigen Probleme.

Wir unterscheiden vier verschiedene Möglichkeiten welcher Art der gegebene Hin-
weis sein kann:

1. In unserem ersten Ansatz, den wir in Kapitel3 diskutieren, lassen wir nur solche
Instanzen als Originalinstanz zu, die auch wirklich Lösungen haben. Als Hin-
weis sei dabei eine beliebige dieser Lösungen gegeben. Wir fragen also, objede
Lösung der Originalinstanz einen nützlichen Hinweis liefert, um modifizierte In-
stanzen zu entscheiden. Diese Fragestellung spielt immer dann eine Rolle, wenn
Probleminstanzen unvorhergesehen verändert werden.

Wir zeigen für verschiedene NP-vollständige Sprachen, dass das Problem eine
Lösung für eine modifizierte Instanz zu berechnen, abhängig von der Änderung,
entweder trivial oder aber selbst wieder NP-vollständig ist. Letzteres bedeutet
aber, dass der gegebene Hinweis nutzlos ist. Diese Resultate können mit Hilfe
von Standardtechniken der Komplexitätstheorie gewonnen werden.

2. In Kapitel 4 untersuchen wir, ob, wenn schon nicht alle Lösungen der Origi-
nalinstanz hilfreich sind, wenigstens einige möglichst geschickt ausgewählte Lö-
sungen helfen können. Wir fragen also, ob es Lösungen der Originalinstanzgibt,
die einen nützlichen Hinweis liefern. Diese Fragestellung spielt dann eine Rolle,
wenn man bereits vorher weiß, dass sich Instanzen eventuell ändern, und des-
halb solche Lösungen gesucht werden können, die sich später als hilfreich her-
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ausstellen.

Um eine Theorie der NützlichkeitausgewählterLösungen zu entwickeln erweisen
sich die Standardklassen und bekannten Reduzierungen der Komplexitätstheorie
als unzureichend. Wir führen deshalb neue KomplexitätsklassenC∈MOD/F ein, die
charakterisieren sollen wie schwer es ist, modifizierte Instanzen zu entscheiden,
wenn eine ausgewählte Lösung gegeben ist. Desweiteren führen wir geeignete
Reduktionsbegriffe ein, namentlich≤p

hi-reduction und≤p
hi-interreduction, mit

deren Hilfe man für viele NP-vollständige Probleme auf einfache Weise die Nutz-
losigkeit ausgewählter Hinweise zeigen kann.

3. In Kapitel 5 klären wir die Frage, ob das Wissen über die Nichtexistenz von Lö-
sungen der Originalinstanz einen nützlichen Hinweis für modifizierte Instanzen
liefert. Diese Ansatz ist vor allem dann interessant, wenn man eine initiale In-
stanz, für die man keine Lösung gefunden hat, durch geringe Modifikation in eine
Instanz mit Lösung überführen will.

Wiederum erweisen sich bekannte Klassen als unzureichend um die Komplexi-
tät von Problemen bezüglich dieser Fragestellung zu charakterisieren. Analog
zu Kapitel4 führen wir deshalb wieder passende KomplexitätsklassenCMOD//∈
und spezielle Reduktionen ein, nämlich≤p

pi-Reduktionen, um die Nutzlosigkeit
dieses Hinweises für viele Probleme elegant beweisen zu können.

4. In Kapitel 8 untersuchen wir die Frage, was geschieht, wenn statt einer Lösung
ein beliebiger polynomieller Hinweis gegeben werden darf. Dieser Hinweis kann
zum Beispiel das Zwischenergebnisse eines Algorithmus’, eine Hilfsrechnung
oder eine Liste mehrere Lösungen der Originalinstanz beinhalten. Dies ist der
allgemeinste der vier Ansätze.

Für jedes dieser vier Szenarios kommen wir zu dem Ergebnis, dass in den meisten
Fällen ein gegebener Hinweis nicht besonders hilfreich ist. Wir zeigen dies für die NP-
vollständigen ErfüllbarkeitsproblemeSAT, 3SAT, EX3SAT und 1-3SAT sowie für
die ProblemeCLIQUE, VERTEXCOVER, HAMILTONIAN CYCLE, THREEDIMENSION-
AL MATCHING undPARTITION.

Darüber hinaus übertragen wir in Kapitel6 unsere Theorie fürNP-vollständige Pro-
bleme auf das Problem der Graph-Isomorphie, welches wahrscheinlich nichtNP-voll-
ständig ist. Wir betrachten wiederum verschiedene Möglichkeiten von Hinweisen und
adaptieren die entsprechenden Techniken welche wir fürNP-vollständige Probleme
entwickelt haben, um die Nutzlosigkeit solcher Hinweise auch für das Graph-Isomor-
phie zu beweisen. Es stellt sich heraus, dass dieses von gegebenen Hinweisen ebenfalls
nicht profitieren kann.

Ganz anders verhält es sich für die in Kapitel7 betrachtete Klasse der NP-Optimie-
rungsprobleme. Die Kenntnis optimaler Lösungen für eine Instanz eines solchen Pro-
blem kann durchaus hilfreich sein, um eine gute Lösung für eine leicht veränderte
Instanz zu finden. Wir geben folgende Beispiele für Optimierungsprobleme die von
der Kenntnis (irgend)einer optimalen Lösung profitieren:M INVC, M INMAX MATCH,
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M INST, M INTSP∆, MAX TSPund MAX TSP∆. Doch nicht jedes Optimierungspro-
blem kann gegebene Lösungen gewinnbringend nutzen. Wir können zeigen, dass für
die ProblemeM INTSPund M INMAX IS jede gegebene optimale Lösung nutzlos ist,
um eine gute Lösung für eine modifizierte Instanz zu finden.

v
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Chapter 1

Introduction

Complexity theory studies the inherent computational difficulty of problems. By prob-
lem we usually meandecision problem, i.e., it is to decide whether a given input belongs
to a certain set. For instance, to decide if a Boolean formulasF is satisfiable, i.e., if
there exist truth values for the variables ofF that makeF true, is such a decision prob-
lem. In contrast, the problem of sortingn numbers is no decision problem, since we are
not interested in an answer ”yes” or ”no”, but in a sorted list of the given numbers.

These two examples, testing for satisfiability and sorting, not only differ in the output
they produce, but also in the time necessary to produce this output. While it is well
known that a list ofn numbers can be sorted in a time that is specified by a polynomial
in n, it is a famous open problem whether the same polynomial bound holds when
deciding satisfiability of a formula withn variables. The problem of satisfiability, or
shortSAT, is not a singular example of such a problem; many real-life problems are
exactly as hard asSAT. Complexity theorists introduced a special complexity class to
characterize problems that share the same time complexity withSAT; these problems
are calledNP-complete.

In the last decades, theorists put much effort into finding an algorithm that solves
efficiently, i.e., in polynomial time, anNP-complete problem — without success. But
along this research, many concepts have been developed to deal withNP-complete
problems in other ways, e.g., fast exponential-time exact algorithms, fixed-parameter
algorithms, approximation algorithms, and heuristics. In this thesis, we discuss another
possible approach to attackNP-complete problems, namely to decide slightly modified
instances with help of prior knowledge.

To motivate the study of modified instances we give a simple example: LetF be a
satisfiable formula andβ be a satisfying assignment forF . Let F ′ be a formula that
is constructed fromF by addition of a new clause. We ask: How hard is it to decide
if F ′ is satisfiable when the satisfying assignmentβ for F is given as an additional
information?

In the above scenario we refer toF as theoriginal instance, to F ′ as themodified
instance, and toβ as acertificatefor the original instance or ahint in finding a solution
of F ′. As we will see in Section3, an arbitrary assignmentβ for F is in general
not helpful to decide ifF ′ is satisfiable, not to speak of constructing such satisfying
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Chapter 1 Introduction

assignments. More precisely, for formulas with added clauses the satisfiability problem
is computationally as hard asSAT, namelyNP-complete, even if a certificate of the
original formula is known.

Extending a classification from [Lib04], we distinguish the following four possible
settings. In the first setting, we demand that hints are certificates of the original instance,
as we did in the introductory example. We ask whetherall such hints, i.e., all certificates
of the original instance, yield a helpful information. This is relevant whenever an input
instance is unexpectedly modified and we want to avoid a complete reevaluation for
the modified instance, using the additional information we have. We study the question
whether all certificates are useful in Chapter3.

The second case, in contrast, applies to a scenario in which we know in advance that
the original instance is going to be modified, for example when we deal with at first
incorrect, but later to be corrected, data. Thus, the computation for the original instance
could select among all certificates of the original instance some especially convenient
certificate. In other words, we are interested if thereexistsa certificate of the original
instance that helps to decide modified instances. This question is covered in Chapter4.

In addition to the classification in [Lib04], we consider as a third possibility that the
original instance has no certificate at all. The information that the original instance has
no certificate could be indeed useful in deciding modified instances, although it might
conflict with ones first intuition. If, for instance, a clause is added to an unsatisfiable
formula, the modified formula is still not satisfiable. Since it is impossible to give a
hint in the form of a certificate when no certificate exists, we best think of the hint as
something like a promise that the original instance has no certificate. Results about this
type kind of promise-aided computation are relevant whenever an initial instance that
has no certificate is to be transformed into an instance that has a certificate. We study
this scenario in Chapter5.

Last, in the fourth setting the hint may be any polynomially bounded string. This
string may represent the result of some subcomputation, a composition of selected cer-
tificates, or the result of some preprocessing step. Obviously, this last setting is the most
general of all these four settings and matches a practitioners approach to the problem
of modified instances. Our results for this case can be found in Chapter8.

We develop for each of these four settings a formal framework that can be used to
either prove or disprove that a problem has easy to decide modified instances. There-
fore, we introduce new complexity classes and reductions. We show that, for all of
the NP-complete problems that we examine, a certificate for the original instance is
useless if the original instance is appropriately modified. We also show that proving
hardness of deciding modified instances for some other modifications amounts to solve
some long-standing open problems in complexity theory, such as the non-collapse of
the polynomial hierarchy. Most of the results we establish are such negative results. We
find that modified instances profit from given certificates only in some trivial cases.1

The list of discussedNP-complete problems consists of a variation of satisfiabil-

1For a quick overview on our results we point the reader to the ’Conclusions’-section at the end of each
chapter.
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Chapter 1 Introduction

ity problems such asSAT, 3SAT, EX3SAT and1-EX3SAT as well as the remaining
five basic problems from [GJ79], namely CLIQUE, VERTEXCOVER (VC), HAMIL -
TONIANCYCLE (HC), THREEDIMENSIONALMATCHING (3DM), andPARTITION. In
establishing the above mentioned negative results we only consider the corresponding
decision problem— hardness of computing certificates for modified instances follows
immediately. Since it is an interesting question whether this uselessness of hints under
modification is an intrinsic property ofNP-complete problems, we study in Chapter
6 modified instances of the graph isomorphism problem, which is probably notNP-
complete.

In an effort to find a scenario in which certificates are useful, we examine in Chapter
7 the influence of modification to optimization problems. In detail, we are interested
in the question if anoptimumsolution of an original instance leads to good approxima-
tions of modified instances. This problem is known as reoptimization [Sch97, ABS03,
AEMP06, EMP07, BHMW08]. Again, we consider the scenario where an arbitrary
optimum solution is given as a hint and also the scenario where the optimum solution
is carefully selected among all optimum solutions. We find that for many optimization
problems reoptimization leads to better approximation guarantees than in the usual,
non-reoptimization case, even for arbitrary certificates. We mention, as an example,
that the metric travelling salesperson problem, for which no better approximation guar-
antee is known than a factor of3/2, is reoptimizable with factor4/3 when a single edge
weight is altered. We also find that sometimes reoptimization leads to no improved
approximation guarantees, the nonmetric version of the travelling salesperson problem
together with the modification of a single edge being an example.

1.1 Related Work

There has been extensive research on how computationally easy problems, i.e., prob-
lems inP, benefit from given hints [Hen00, HK01, TK00, FK99, EGIN97]. In this
context, the problem of modification is often being referred to as dynamic problem, or
problem in a dynamic environment. The most sophisticated algorithms and data struc-
tures have been developed for dynamic graph problems. For example, fast hint-using
algorithms are known for maintaining the minimum spanning forest of an undirected
graph [HK01] and the biconnected components of an undirected graph [Hen00]. These
dynamic graph algorithms can also be used to develop fast algorithms for static graphs,
i.e., in a non-dynamic environment [TK00]. We mention in passing that there also ex-
ist graph problems inP for which no efficient fully dynamic (that is, insertionsand
deletions of edges are allowed) deterministic (that is,not randomized) algorithms are
known, for example the maximum matching problem or the problem of finding the
transitive closure of a directed acyclic graph [KMW98]. For more information about
dynamic graph algorithms for polynomial problems we direct the reader to [FK99]
and [EGIN97]. For a complexity theoretic view on dynamicP-problems we refer to
[MSVT94] and [WS07].

In contrast, in this thesis we mainly concentrate on dynamicNP-complete-problems.

3



Chapter 1 Introduction

Dynamic versions of the followingNP-complete problems have already been studied
in the literature:

• SAT andVC [Lib04],

• Scheduling with forbidden sets [Sch97],

• planning problems from the field of Artificial Intelligence (AI) [NK92, Lib04,
Lib98b], and

• decision versions ofM INTSP[ABS03] andMAX TSP[AEMP06].

There are many other approaches to modification of instances, especially in the field
of AI. We only mention the following ones and point out differences to our approach.
In [NK92] the authors are concerned with planning problems, a prototypical problem
in AI research. They ask, given an original instance and a certificate for this instance,
whether there exists a certificate for a modified instance that does not differ too much
from the original certificate. They point out that sometimes it is even more complicated
to find such a ’similar’ certificate for the modified instance than reevaluating a new one
from scratch. In our approach, finding a certificate for the modified instance cannot be
any harder than computing a certificate from scratch.

Closely related is the concept of supermodels and robustness [GPR98]. There, the
authors address the issue, of finding a solution of the original instancex that can be
turned into a certificate of a slightly modified instancex′ by a small change to the
solution. If such a robust certificate exists, a certificate forx′ can easily be found by
testing all slightly altered certificates as a candidate. In a general approach, there could
be more sophisticated ideas to test ifx′ has a certificate than testing all certificates in
the neighborhood of an original certificate. Consequently, hardness results for robust
certificates cannot be transferred to our general setting.

As a further specialization of the latter concept, it can be asked how much a given
instance of anoptimization problemmay be varied such that the given solution remains
an optimum [Gre98, LvdPSvdV98, VHW99]. Although this line of research is useful in
finding modifications for which a given certificate is useful, we allow in our approach
also modifications that lead to the loss of optimality of the old optimum solution.

The concept of not starting from scratch, but to use prior knowledge, when con-
fronted with a new problem-instance is also inherent inpersistent computations[HK08,
Kos98]. There, one is concerned with solving not only a single instance, but with pro-
cessing a (possibly infinite) series of inputs. Thereby, we are allowed to reuse solutions
of past input instances to compute a solution for the current instance. In contrast to our
approach, in which we are interested in small and local modifications of instances, the
sequential inputs for persistent computations need not to be related in any way.

As a concluding remark to this section we like to emphasize the importance of the
concept of modification in a broader context. In [Gol05] four solutions to important
problems are found to start from a trivial construct, and to apply an ingeniously de-
signed sequence of iterations that yields the desired nontrivial result. Thereby, in each
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iteration the construct is only modified in a moderate manner. In detail, the four works
that are referred to in [Gol05] are:

• the polynomial-time approximation of the permanent of non negative matrices,

• the iterative (Zig-Zag) construction of expander graphs,

• Reingold’s log-space algorithm for undirected connectivity, and

• Dinur’s alternative proof of the PCP Theorem.

For a nice overview on how the iterative approach is employed to these four problems
we refer to [Gol05].
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Chapter 2

Preliminaries

In this chapter we fix the basic notions and concepts that are used in this thesis. Most of
the definitions are in the standard text books on complexity theory [BDG95, BDG90,
WW86, Pap94]. We assume the reader to be familiar with the most basic set theoretical
notations and the fundamental concepts of propositional logic. The advanced reader
may skip the first few sections. But it is highly recommended to read at least Section
2.6.

2.1 Graph Theory

An undirected graphG is an ordered pair(V, E), whereV are the vertices ofG and
the set of edgesE is a subset of{{u, v} : u 6= v ∧ u, v ∈ V }. We say thatu andv
areendpointsof the edge{u, v}. For a graphG let V (G) andE(G) denote the set of
vertices and the set of edges ofG, respectively. IfV (G) is a finite set we say thatG is
a finite graph. We say that|V (G)| is thesizeof G. Within this thesis we only consider
undirected, finite graphs.

Given an undirected, finite graphG = (V,E) we denote byG := (V,E ′), where

E ′ := {{u, v} : u 6= v ∧ u, v ∈ V ∧ {u, v} /∈ E},
the complement graphof G. We say that two edgese andf are incident if and only
if e andf share a common endpoint. Likewise, an edgee and a vertexu are called
incident if and only if u is an endpoint ofe. The two vertices of an edgee are called
adjacentvertices, orneighbors. For a given vertexu in a graphG the neighborhood
of u in G, shortNG(u), is the set of vertices that are adjacent tou. Thedegreeof a
vertexu in a graphG, shortdegG(u), is the number of edges that are incident tou, i.e.,
deg(u) = |NG(u)|. In both cases,NG(u) anddegG(u), we usually omit the subscript if
the graphG is clear from the context.

A subgraphof a graphG is a graph whose vertex and edge sets are subsets of the
respective sets inG. A subgraphH of a graphG is said to be induced byG, if and
only if E(H) ⊆ E(G) and every edge inE(G) that consists of vertices fromV (H) is
contained inE(H). A graph that contains all possible edges is called acompletegraph.
Let Kn denote the complete graph overn vertices.

6
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A path in a graphG is a sequence(v1, ..., vn) of vertices such that every two consec-
utive vertices are joined by an edge ofG. A path in that all the vertices of the sequence
are distinct is called asimple path. A componentof a graphG = (V, E) is a maximal
setV ′ ⊆ V such that for all pairs of different vertices fromV ′ there exists a path be-
tween these two vertices. A graph is calledconnectedif an only if it consists of one
component. Acycleis a path(v1, ..., vn) with v1 = vn. We say that a cycle(v1, ..., vn)
is asimple cycleif and only if v1 andvn are the only vertices of the cycle that appear
multiple times. A simple cycle that includes all the vertices of the graph is called a
Hamiltonian cycle. Sometimes we identify a (Hamiltonian) cycleC with the subgraph
that is spanned by the edges ofC. A complete subgraph of a graph is called aclique,
whereas a subgraph that has a complete complement is called anindependent set. A
tree is a connected acyclic graph. Aforestis a graph in that every component is a tree.

Two graphs(V1, E1) and(V2, E2) are isomorphicif and only if there exists aniso-
morphismbetween them, that is, there exists a bijective functionφ : V1 → V2 such that
for all u, v ∈ V1 it holds that{u, v} ∈ E1 ⇔ {φ(u), φ(v)} ∈ E2. A weighted graphis
a pair that consists of a graph(V,E) and a weight functionω : E → R.

For further particulars on graph theory we point the reader to [Wes96].

2.2 Words and Languages

In theoretical computer science,languagesare set of words over a finite alphabet.
Sometimes we refer to languages as problems; the two notions are interchangeable.
We use the alphabetΣ = {0, 1} as our standard alphabet. We denote byε the empty
word, which contains no letters. The symbolΣn denotes the set of all words that con-
sists of exactlyn letters fromΣ. The set of all words over the alphabetΣ is given by
the setΣ∗ :=

⋃
i∈NΣn. We denote by|x| the length of a wordx, i.e., the number of

letters thatx consistsof . The complement of a languageA is given byA := Σ∗ \ A .
A languageA is trivial if and only if A = ∅ or A = ∅.

In order to treat graphs, formulas, sets, tuples, and other instances as a member of
some language, we use encodings that transform structures from a given domain to
a string fromΣ∗. These encodings shall be easily computable and easily invertible,
that is, the encoding of an object is computable in polynomial time (see Section2.4)
and conversely also information about the object can be obtained from its encoding in
polynomial time. When we encode an objectx , the size of the encoded object shall
properly reflect the size ofx. For example, when encoding a graphG = (V, E), the
size of the encoded graph shall be bounded from both sides by polynomials inV or
E. Such encodings exist for all the mathematical objects regarded in this thesis. To
avoid unnecessary formal overhead we usually speak of graphs, formulas, or sets (just
to name a few) when referring to members of some language where we formally had to
use encodings by words overΣ. For instance, when considering the problemHC over
the domain of graphs we use a nice encoding functionenc that transforms graphs to
words overΣ and just writeG ∈ HC instead of the more formalenc(G) ∈ HC.

7
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2.3 Propositional Logic

The literals of a variablex arex and¬x. The literalx is called a positive literal, the
literal ¬x is called a negative literal. AclauseC over a variable setV is a formula
L1 ∨L2 ∨ ...∨Ln, n ∈ N, whereLj is literal of a variable fromV , for all 1 ≤ j ≤ n. A
clause with exactly one literal is aunit clause. Let V ar(F ) denote the set of variables
of a formulaF . A Boolean formulaF is in conjunctive normal form(CNF) if and only
if F = C1 ∧C2 ∧ ...∧Cm, m ∈ N, andCj is a clause overV ar(F ), for all 1 ≤ j ≤ m.
A formulaF is in 3CNF-form if and only ifF is a CNF-formula and every clause ofF
contains at most three literals. A 3CNF-formulaF in in EX3CNF-form if and only if
every clause ofF consists of exactly three distinct literals.

Sometimes it notational benefits to represent clauses as sets of literals. For example,
the clauseL1 ∨ ... ∨ Ln is represented by the set{L1, ..., Ln}. Likewise, we represent
a CNF-formulaC1 ∧ ... ∧ Cm by the set{C1, ..., Cm}. We switch seamlessly between
these two representations.

An assignmentfor a Boolean formulaF over the variable setX is a functionβ :
X → {true, false}. We use the number ’1’ to represent the truth value ’true’, and the
number ’0’ to represent ’false’. An assignmentβ satisfies a CNF-formulaF if and only
if in each clause ofF there exists at least one positive literalx with β(x) = 1 or at
least one negative literal¬x with β(x) = 0. We denote bySAT the set of all satisfiable
CNF-formulas. Two formulasF1 andF2 are said to be equivalent, abbreviatedF1 ≡ F2,
if and only if for all assignmentsβ it holds thatβ satisfiesF1 if and only if β satisfies
F2.

2.4 Complexity Theory

2.4.1 Turing Machines

In structural complexity theory sets of languages, so called complexity classes, are stud-
ied. Often, a complexity class is a set of problems that share the same complexity in
terms of resources of some computational model, for example Turing machines. In this
thesis, our computational model is the multi-tape Turing machine. Due to the com-
monly accepted thesis of church, which says that no computational model exceeds the
computational power of Turing machines, we describe our algorithms in a rather infor-
mal way, instead of giving a detailed Turing machine program. For a formal definition
of Turing machines we refer to [WW86] or [Pap94]. We distinguish between deter-
ministic Turing machines (DTMs) and nondeterministic Turing machines (NTMs). Let
M(x) denote the work of the Turing machineM on inputx. A languageA is accepted
by a (nondeterministic) Turing machineM if and only if for all x ∈ Σ∗ it holds that

x ∈ A ⇔ M(x) accepts on some path.

Given a machineM let L(M) denote the set of words accepted byM . We say that a
Turing machineM accepts a languageA in time f , f : N → N, if and only if for all
inputsx ∈ Σ∗ the machineM halts after at mostf(|x|) computational steps.

8
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Turing machines can be equipped with an oracleA ⊆ Σ∗. A Turing machineM with
an oracleA has an additional query tape. Whenever a special query state is reached
the machineM immediately receives the answer ’yes’ if the word on the query tape
belongs toA and the answer ’no’ otherwise. A machineM equipped with an oracle
A is called anoracle Turing machine. We use the abbreviationMA when referring to
such a machine.

2.4.2 Basic Complexity Classes

A languageA belongs to the complexity classP if and only if there exist a DTMM and
polynomialp such thatM acceptsA in time p. Since the machineM works in a time
that is polynomial in the size of the input we say thatM is adeterministic polynomial-
time Turing machine(DPTM). Similarly, a languageA belongs to the classNP if and
only if there exist anNTM N and a polynomialp such thatN acceptsA in time p.
We say thatN is anondeterministic polynomial-time Turing machine(NPTM). If C is
a complexity class, the complementco C of C is given by the set{A : A ∈ C}. We say
that a complexity classC is nontrivial if and only if C contains nontrivial languages,
i.e., if and only ifC \ {∅, Σ∗} 6= ∅.

We can use Turing machines to compute functions. Therefore, we equip Turing
machines with a separated output tape. The content of the output tape at an accepting
halting state shall represent the computed function value. A non-accepting halting state
shall represent the fact, that the function value is not defined at the given input. The
classFP is defined as the class of functions that can be computed by a DPTM with an
output tape. The class F∆p

2 is defined as the class of functions that can be computed by
a DPTM with an output tape and an oracle fromNP.

For a complexity classC, the classesPC andNPC are defined as the classes of lan-
guages that can be accepted by polynomial-time deterministic or nondeterministic ora-
cle Turing machines that make queries to a language fromC , respectively.

2.4.3 Reductions

Reductions are a standard mean to compare the complexity of problems. In this thesis
we usemany-one-reductions[Kar72].

Definition 2.1 ([Kar72]). LetA andB be two languages. We say thatA is polynomial-
time many-one reducible toB, shortA ≤p

m B, if and only if there exists a total function
f ∈ FP such that for allx ∈ Σ∗ it holds that

x ∈ A ⇔ f(x) ∈ B.

Many-one-reductions are reflexive and transitive. We say that a setB is hard for a
complexity classC with respect to some reduction≤ if and only if for every problemA
in C it holds thatA ≤ B. We say that a setB is completefor a complexity classC w.r.t.
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some reduction≤ if and only if B is C-hard w.r.t.≤p
m andB ∈ C. A complexity class

C is closed undera reduction≤ if and only if for all setsA andB it holds that

(A ≤ B ∧B ∈ C) ⇒ A ∈ C.

Two problemsA andB areequivalentw.r.t. a certain reduction≤ if and only if it holds
that bothA ≤ B andB ≤ A. If A andB are equivalent w.r.t.≤p

m-reduction we write
A ≡p

m B. The languageSAT is an example of anNP-complete problem [Coo71]. The
set ofNP-complete problems w.r.t.≤p

m-reduction is exactly the set{A : A ≡p
m SAT}.

Let NPC denote the set ofNP-complete problems.
When applying the≤p

m-reduction to scenarios in which we reduce a languageA to
a languageB of tuples(x1, ..., xn) we sometimes only give functionsf1, ..., fn ∈ FP
such that for allx ∈ Σ∗ it holds that

x ∈ A ⇔ (f1(x), ..., fn(xn)) ∈ B.

It should be clear how to compose fromf1, ..., fn a functionf ∈ FP such that the
formally correct equivalencex ∈ A ⇔ f(x) ∈ B holds.

The classP and≤p
m-reduction are related in the following way.

Observation 2.2.Any nontrivial complexity classC that is closed under≤p
m-reduction

contains the classP.

Proof. Let C be a nontrivial complexity class and letA be a nontrivial problem inC.
Every nontrivial problem is≤p

m-complete for the classP. Thus, for allB ∈ P it holds
thatB ≤ A. SinceC is closed under≤p

m-reduction we have that for allB ∈ P it holds
thatB ∈ C.

2.4.4 Verifiers and Certificates

In this thesis, a fundamental notion is the notion ofsolutions, or synonymous, the notion
of certificates. ForNP-problems the notion of a solution is defined with the help of the
following well known theorem:

Theorem 2.3. A languageA is in NP if and only if there exist a predicateB ∈ P and
a polynomialp such that for allx ∈ Σ∗ it holds that

x ∈ A ⇔ (∃y ∈ Σ∗)[|y| ≤ p(|x|) ∧ (x, y) ∈ B].

Rephrasing this theorem, we can say that the classNP is exactly the set of languages
with short and easy to verify membership proofs. In the context of the above theorem,
we say that those stringsy that proof membership ofx in A arecertificatesor solutions
and we call the predicateB a polynomial-time verifierfor A. Of course, there are
different verifiers for one and the same languageA, but all of them share the following
properties.

10
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Definition 2.4. A relationV ⊆ Σ∗×Σ∗ is called a polynomial-time verifier if and only
if

1. V ∈ P and

2. there is a polynomialp such that for allx, π ∈ Σ∗ it holds that

(x, π) ∈ V ⇒ |π| ≤ p(|x|).

For a verifierV let L(V ) denote the language that is accepted byV , that is,

L(V ) = {x : (∃y ∈ Σ∗)[|y| ≤ p(|x|) ∧ (x, y) ∈ V ]}.
In the coming all the used verifiers will be polynomial-time verifiers. Thus, no

ambiguity arises when we use the shorter term ’verifier’ instead of the more formal
’polynomial-time verifier’ henceforth.

Whenever dealing with solutions of NP-problem instances we first need to formally
specify the used verifier, thereby fixing the precise form of the solutions. For details on
how different verifiers for the same problem might influence the complexity of related
problems we refer for example to [Che03].

2.4.5 The Polynomial Hierarchy

As a generalization of the classesP andNP, and in close analogy to the arithmetic hi-
erarchy in recursion theory (see [Rog67]), Meyer and Stockmeyer introduced the poly-
nomial hierarchy [SM73, Sto76]. The classes of the polynomial hierarchy are defined
as follows.

Definition 2.5 ([SM73, Sto76]). The complexity classesΣp
i , Π

p
i , and∆p

i are inductively
defined via

1. ∆p
0 = Σp

0 = Πp
0 = P,

2. ∆p
i+1 = PΣp

i , Σp
i+1 = NPΣp

i , andΠp
i+1 = coΣp

i+1, for all i ≥ 1.

The classPH is defined byPH =
⋃

i∈NΣp
i .

The inclusion structure of the polynomial hierarchy is shown in Figure2.1. It is not
clear if any of the inclusions is strict, or if the hierarchy is finite, but there exist several
conditions under which the hierarchy collapses. In particular, the polynomial hierarchy
satisfied the following upward collapse property.

Theorem 2.6 ([Sto76]). Let i ≥ 1. Then

1. Σp
i = Πp

i ⇒ PH = Σp
i ,

2. Σp
i = Σp

i+1 ⇒ PH = Σp
i , and

3. Σp
i = ∆p

i ⇒ PH = ∆p
i .
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P

NP = Σp
1 Πp

1 = coNP

∆p
2

Σp
2 Πp

2

∆p
3

PH
...

Figure 2.1:The polynomial hierarchy.

2.5 Advanced Complexity Theory

2.5.1 Counting Classes with Finite Acceptance Type

All the acceptance types considered so far had a qualitative character. For instance,
when we decide anNP-language with help of an NPTMM it is only important whether
a certain accepting state is reached or not. The particular number of accepting paths of
M ’s computation is of no interest. But such consideration play an important role in
the context of counting classes with finite acceptance type. These classes were first
introduced in [BG82]. Here, we follow a definition from [GNW90].

Definition 2.7. Let accM(x) denote the number of accepting paths of an NPTMM on
input x and letC ⊆ N. A languageA belongs to the counting classCP if and only if
there exists an NPTMM such that for allx ∈ Σ∗ it holds that

x ∈ A ⇔ accM(x) ∈ C.

It follows from this definition thatcoNP = {0}P andNP = (N\{0})P. In this thesis
we also use the complexity classes{0, 1}P (which equals coNP) and{1}P. It is easy
to show that for everyC ⊆ N the classCP is closed under≤p

m-reduction and thatCP
has complete problems. For instance, the following derivative ofSAT is a prototypical
≤p

m-complete problem forCP:

CSAT := { F : F is a Boolean formula and the number

of satisfying assignments ofF is in C }.

It is easy to show thatcoNP ⊆ {1}P. Using this fact, we get the following corollary.

Corollary 2.8. {1}P ⊆ NP ⇒ NP = coNP.

Proof. Let {1}P ⊆ NP. SincecoNP ⊆ {1}P it follows thatcoNP ⊆ NP.
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2.5.2 Function Classes

We already defined the most basic function classFP in Section2.4.2. There,FP is
defined with help of Turing machines that have an output tape. In contrast, we now
base the definition of function (and relation) classes on well studied complexity classes
instead of the computation of Turing machines. We follow a definition from [Gro04].

Definition 2.9 ([Gro04]). A relationr belongs to the function class rel· C if and only if
there exist a predicateB ∈ C and a polynomialp such that for allx ∈ Σ∗ it holds that

r(x) = {y : |y| ≤ p(|x|) ∧ (x, y) ∈ B}.
A functionf is contained in the class fun· C if and only if

f ∈ rel · C ∧ (∀x ∈ Σ∗)[|f(x)| ≤ 1].

The classes fun·NP and rel·NP are known in the literature as NPSV and NPMV (non-
deterministic polynomial-time computable single/multi-valued functions) [BLS84]. An
advantage of Definition2.9 is that it yields a uniform and systematic approach to oth-
erwise seemingly isolated notions.

2.5.3 Nonuniform Complexity Classes

The concept of Turing machines is a uniform model of computation; a Turing machine
M that decides a languageA uses the same algorithmic idea for all given inputs. In or-
der to overcome this limitation, we allow that different algorithms are applied to inputs
of different length. For a formalization of this idea we use the following definition from
[KL80].

Definition 2.10 ([KL80]). Let F be a set of functions fromN to Σ∗ and letC be a
complexity class. A languageA is contained in the nonuniform complexity classC/F
if and only if there exist a setC ∈ C and a functionf ∈ F such that for allx ∈ Σ∗ it
holds that

x ∈ A ⇔ (x, f(|x|)) ∈ C.

In particular, we use the nonuniform classesP/poly, NP/poly, and coNP/poly,
where the function-classpoly is defined by

poly := {f : (∃ polynomialp)(∀n ∈ N)[|f(n)| ≤ p(n)]}.

We say that a classC/poly belongs to the nonuniform polynomial hierarchy if and only
if C belongs to the polynomial hierarchy.

At first glance, it seems that Definition2.10 is highly dependent on the coding of
the instances. Since different coding functionsc1 andc2 could map one and the same
problem instance to strings of different lengths, the following scenario could arise:
While the first codingc1 maps two different instancesx andx′ to words of the same
length, the codingc2 maps those instances to words of different lengths. Consequently,
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a nonuniform algorithm that decides these instances has the same hint for both instances
in the first case. But in the second case the hints may be different.

We show that for two reasonable codingsc1 andc2 the containment of a language
A in C/poly when the codingc1 is used also implicates containment ofA in C/poly
when the codingc2 is used: Leth be the hint function that showsA ∈ C/poly whenc1

is used as coding. Note that nice codings are polynomially related,i.e., for reasonable
codingsc1 andc2 it holds that|c1(x)| ≤ p1(|c2(x)|) and |c2(x)| ≤ p2(|c1(x)|) for all
instancesx and some polynomialsp1 andp2. We use as a polynomial hint forc2(x) the
stringh(0)#h(1)#...#h(p1(|c2(x)|)). Whenc2 is easily invertible we can compute in
polynomial-time fromc2(x) the instancec1(x), and also the length ofc1(x). The right
hint h(|c1(x)|) for c1(x) can be extracted fromh(0)#h(1)#...#h(p1(|c2(x)|)). This
shows that alsoA ∈ C/poly when the codingc2 is used. In consequence when show-
ing thatA ∈ C/poly it suffices to show this for some convenient reasonable coding ofA.

There are several results that relate uniform with nonuniform complexity classes.
Much attention has been paid to the question, whetherNP is contained in certain
nonuniform complexity classes. The following theorem states the best results in this
direction that are currently known.

Theorem 2.11 ([Cai07, CCHO05]).

• NP ⊆ P/poly ⇒ PH = S2,

• NP ⊆ coNP/poly ⇒ PH = SNP
2 ,

• NP ⊆ (NP ∩ coNP)/poly ⇒ PH = SNP∩coNP
2 .

Here, the classS2 is a class from the so called symmetric hierarchy and is defined as
follows:

Definition 2.12 ([Can96, RS98]). A languageL belongs toS2 if and only if there exist
a 3-ary predicateV ∈ P and a polynomialp such that for allx it holds that

1. x ∈ L ⇒ (∃y : |y| ≤ p(|x|))(∀z : |z| ≤ p(|x|))[P (x, y, z) = 1] and

2. x /∈ L ⇒ (∃z : |z| ≤ p(|x|))(∀y : |y| ≤ p(|x|))[P (x, y, z) = 0].

Containment of a languageL in the classS2, which is a superset of∆p
2 and a subset

of Σp
2 (see [RS98]), can be interpreted as follows. Suppose that deciding the language

is game of two persons that try to convince the verifier thatx ∈ L or x /∈ L, respec-
tively. If x ∈ L then the first person has an irrefutable proofy that, independent of any
proof z given by the second person, verifies thatx ∈ L. On the other hand, ifx /∈ L
then the second person has such an irrefutable proofz for this fact, that withstands any
challengey from the first person. For more details onS2 see [RS98].

From Theorem2.11we conclude that if certain nonuniform complexity classes coin-
cide then a collapse of some uniform complexity classes occurs.
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Corollary 2.13. NP/poly = P/poly ⇒ PH = S2.

Proof. SinceNP ⊆ NP/poly we getNP ⊆ P/poly. The assertion follows from Theo-
rem2.11.

Yap has shown in [Yap83] that also the equality of other complexity classes from the
nonuniform polynomial hierarchy implicates a collapse of the polynomial hierarchy.

Theorem 2.14 ([Yap83]). Σp
i /poly = Πp

i /poly ⇒ Σp
i+2 = PH.

2.6 Modification Functions

In the course of this thesis we want to distinguish between different kinds of modifi-
cation. On the one hand, we want to find modifications such that a certificate for an
original instance is a useful hint for deciding modified instances; on the other hand, we
are interested in those modification that render such a hint useless. Therefore we need
to formally specify the notion of modification. For this purpose we introduce so called
modification functions.

Definition 2.15. A functionf(x,m) : Σ∗ × Σ∗ → Σ∗ is called a modification function
if and only iff ∈ FP.

This definition assures that the modified instance is easy to compute from both the
original instancex and the stringm, which specifies the parts of the original instance
that are modified. To illustrate Definition2.15we give a simple example of a modifica-
tion function.

Example:Consider the problemSAT of all satisfiable propositional CNF-formulas. An
instance for this problem is any propositional formulaF . As modification we choose
the deletion of a certain unit clause{L} of F . The appropriate modification function is
then given by the following functionrm(F,L)) := F \ {L}.

In the remainder we mostly concentrate on modification functions from the ’seman-
tic’ domain of a problem, e.g., changes to the clauses of a formulas or to the edges of
a graph. We do not consider modifications that work on a binary level, like flipping a
single bit of an instance. We point the reader that is interested in such binary modifi-
cations to [MSVT94]. We give three reasons for our decision to not explicitly examine
binary-level-modifications. First, we do not want our results to be dependent on a spe-
cial encoding of the instances of a problem. Second, we are more interested in scenarios
in which instances alter owing to some change within the problem domain; we are only
to a lesser extent interested in consequences of faulty transmission or broken hardware
that causes bit errors. Finally, results about binary modifications can often be derived
from results about other modification functions when choosing an appropriate encoding
of the instances.
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Chapter 3

Arbitrary Solution as Hint

Throughout this thesis we are concerned with the question whether a solution for an
instancex can be any helpful whenx is modified in some way. This is relevant when-
ever instances might change from time to time. We are especially interested in modified
instances of computationally hard problems, e.g., NP-complete problems.

In this chapter in particular we deal with the question whether an arbitrary certifi-
cate for the original instance can be a helpful hint in deciding modified instances. In
other words: Areall solutions of the original instance helpful when deciding modified
instances?

3.1 Problem Formalization

We want to formalize the problem whether a slightly modified instance is an element
of a languageA when a solution for the original instance is already known. We use the
notion of a verifier and a modification function to define a decision problemMODcVA

that shall characterize the complexity of deciding modified instances.

Definition 3.1. Let VA be a verifier for a languageA ∈ NP and c be a modification
function. Then

MODcVA := {(x, π,m) : (x, π) ∈ VA and c(x,m) ∈ A}.

Regarding this definition, we refer tox as the original instance,π is a certificate (or
solution, hint) for the original instance andm is the modification of the instancex. The
modified instance, for which containment inA is to be be decided, can be obtained by
applying the modification functionc to x andm.

Note that the complexity of a problemMODcVA does not stem from the part of the
definition where it is verified thatπ is indeed a certificate forx. This verification process
can be done in polynomial time. Thus, forP-hard problemsMODcVA the decision
whether the modified instancec(x,m) belongs toA is as hard as deciding whether
(x, π, m) ∈ MODcVA. In other words: The complexity ofMODcVA characterizes the
complexity of deciding modified instancesc(x,m).
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As a last remark, observe that containment of an instance(x, π, m) in MODcVA

can be decided by verifying thatπ is a certificate forx, which can be done inP, and
disregarding the hintπ henceforth. Consequently ifC is a complexity class that contains
P — or even stronger, ifC is closed with respect to≤p

m-reduction (see Observation2.2)
— andA is a problem inC then deciding modified instances cannot be any harder than
the original problemA.

Observation 3.2. Let VA be a verifier forA ∈ C and let C be closed under≤p
m-

reduction. ThenMODcVA ∈ C.

Therefore, in a proof ofNP-completeness ofMODcVA, whereL(VA) ∈ NP, it
suffices to proveNP-hardness ofMODcVA.

3.2 The Problem SAT

First, we modify instances of the prototypicalNP-complete problemSAT. As already
mentioned in the introduction, when dealing with the notion of certificate we need to
specify the precise form of the certificates. This is done by fixing a specific verifier for
the respective problem. We use as canonical verifier for the problemSAT the following
verifierVSAT:

(F, β) ∈ VSAT ⇔ β is a satisfying assignment for the CNF-formulaF.

Note that another verifier forSAT, such as the verifierV ′
SAT with padded certificates,

(F, βω) ∈ V ′
SAT ⇔ (F, β) ∈ VSAT ∧ ω ∈ Σ|β|,

could lead to different results (see also [Che03]). For a discussion what makes a verifier
a ’natural’ choice we also refer to [Krü08], where the notion of a universal verifier is
introduced.

The first elementary modification ofSAT-formulas that we examine is the addition
of a single unit clause. We define as the corresponding modification function

ad(F, L) := F ∪ {{L}},

whereF is a CNF-formula andL is a literal.
Can a satisfying assignment for a Boolean formulaF help to find a solution for the

altered formula in that a single unit clause is added? An answer to this question has
already been given by Liberatore in [Lib04]. Liberatore shows that the problem of
decidingad-modifiedSAT-instances is exactly as hard as the problemSAT.

Theorem 3.3 ([Lib04]). MODadVSAT is NP-complete.

Proof. The proof is already in [Lib04]. We restate it here for convenience. To show
NP-hardness ofMODadVSAT we reduce from the NP-hard problemSAT. Therefore we
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give three polynomial-time computable functionsf1, f2, andf3 such that for allF ∈ Σ∗

it holds that

F ∈ SAT ⇔ (f1(F ), f2(F ), f3(F )) ∈ MODadVSAT. (1)

The functionsf1, f2, andf3 are defined as follows. IfF is no syntactically correct
formula, thenf1, f2, f3 map to a fixed nonmember ofMODadVSAT, say({{x}}, β′, y)
with β′(x) = 0. Equation (1) trivially holds in this case. Thus, we henceforth suppose
thatF is a syntactically correct CNF-formula.1

Let F = {C1, C2, ..., Cm} and letV ar(F ) = {x1, ..., xn}. The formulaf1(F ) con-
sists of exactly the clauses(C1 ∨ y), (C2 ∨ y), ..., (Cm ∨ y), wherey /∈ V ar(F ). Ob-
viously, any assignmentβ with β(y) = 1 satisfies the formulaf1(F ). We definef2(F )
to be any of these assignments, sayβ with β(x) = 1, for all x ∈ {x1, ..., xn, y}. Fi-
nally, we setf3(F ) := ¬y. Apparently, the functionsf1, f2, andf3 are computable in
polynomial time in the size ofF .

Summarizing the construction above we have:

• f1(F ) :=
⋃m

i=1

{
Ci ∪ {y}

}
,

• f2(F ) := β, whereβ(x) = 1, for all x ∈ {x1, ..., xn, y}, and

• f3(F ) := ¬y.

By construction off1 andf2 it holds that(f1(F ), f2(F )) ∈ VSAT. Furthermore, note
that the formulasF andf1(F ) ∪ {{¬y}} are equivalent with respect to satisfiability,
that is, the former is satisfiable if and only if the latter is satisfiable. The equivalence

F ∈ SAT ⇔ (
(f1(F ), f2(F )) ∈ VSAT ∧ ad

(
f1(F ), f3(F )

) ∈ SAT
)

follows. The assertion (1) is immediate.

Next, we examine the modificationadc, which adds aclause, not necessarily a unit-
clause, to a formula. Formally, we define

adc(F,C) := F ∪ {C}.

Adding a unit clause{L} to F can be seen as a special case of adding an arbitrary
clauseC to F . Thus, the corresponding problemMODadcVSAT is NP-complete as well.
Consequently, certificates of the original formula are useless as a hint.

Before turning to further results, we illustrate another possible approach to show
hardness ofMODadcVSAT. The modification functionadc has an interesting property,
that is also shared by many other of the coming modifications: eachSAT-instanceF
can be obtained by polynomially many (in the size ofF ) applications ofadc to an
initially trivial formula. That is, the formulaF = {C1, ..., Cm} can be constructed in a

1We can always treat incorrect input data in such a trivial way. Therefore, in the coming proofs we will
always assume that the inputs are given in syntactically correct form.
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sequence of formulasF1, ..., Fm, where for exampleFi =
⋃

j≤i{Cj}. Thus, if one could
decide effectively, i.e., in polynomial time, ifadc-modified formulas are satisfiable then
this yields a polynomial time algorithm for deciding satisfiability of any formulaF .
Consequently,SAT ∈ P, and we could conclude that the problem of decidingSAT-
instances in which an additional clause is added and a certificate of the original formula
is given is exactly as hard, or easy in this case, as deciding satisfiability of the formula
from scratch. Namely both problems would belong toP.

There are two technical pitfalls associated with this last approach. The first difficulty
is, that not all of the formulas in the sequenceF1, ..., Fm must be satisfiable. Thus, for
some of the formulasF1, ..., Fm no certificate for the original instance can be given.
Nevertheless, we can overcome this difficulty if we are able to show that the knowledge
Fi /∈ SAT is useful for deciding ifFi+1 ∈ SAT. This holds foradc andSAT, since
adding another clause only further restricts the set of possible satisfying assignments.
But this latter argument cannot be used for all the coming modifications2.

Second, the above iterative argument only yields the result that ifMODadcVSAT is
in C then SAT ∈ PC. If C = P then this result is satisfactory, sincePP = P. But
for other complexity classes, as for exampleC = coNP, the valid consequenceSAT ∈
PcoNP cannot be used to deduce further statements about uselessness of certificates. In
contrast, our initial result thatMODadcVSAT ≡p

m SAT yields such a statement.
After this slight digression, we now show that also for some otherSAT-modifications

the knowledge of a certificate for the original instance is useless. Similar proofs as the
one of Theorem3.3 can be given for theNP-completeness ofMODcVSAT when the
modification functionc is

• the deletion of a single literalL from a clauseC of a CNF-formulaF , formally

rmlc(F, (C, L)) :=

{
(F \ {C}) ∪ {C \ {L}}, if C ∈ F andL ∈ C,
F, otherwise,

• the negation of the single literal of a unit clause, formally

neg(F, L) :=

{
(F \ {{L}}) ∪ {{¬L}}, if {L} ∈ F ,
F, otherwise,

and

• generally, the negation of a single literalL in some clauseC, formally

negl(F, (C, L)) :=

{
(F \ {C}) ∪ {(C ∪ {¬L}) \ {L}}, if C ∈ F , L ∈ C,
F, otherwise.

The respective reduction functions for a proof ofNP-hardness are given in Appendix
A.

2For example, if the modification is the removal of a triple from a3DM-instance then the set of solutions
for the modified instance is not necessarily a subset of the solutions of the original instance (also see
Theorem9.36).
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At this point, the reader might be curious if all modificationsc of SAT-formulas lead
to anNP-complete problemMODcVSAT. The following example demonstrates that this
is not the case. Consider the modification that deletes a clause from a formula, formally

rmc(F,C) := F \ {C}.

The respective problemMODrmcVSAT belongs toP since it can be verified in polyno-
mial time if the given assignmentβ satisfies the original formulaF . If (F, β) ∈ VSAT

then alsormc(F, C) ∈ SAT, sinceβ is also a satisfying assignment forrmc(F, C).
The same argument holds when we add a single literalL to a clauseC of F , formally

adlc(F, (C,L)) :=

{
(F \ {C}) ∪ {C ∪ {L}}, if C ∈ F ,
F, otherwise.

Observation 3.4. MODrmcVSAT ∈ P andMODadlcVSAT ∈ P.

3.3 The Problem EX3SAT and Interreduction

The next problem for which we examine the complexity of modified instances is the
languageEX3SAT — a subset ofSAT that contains all satisfiable EX3CNF-formulas.
We use as verifier forEX3SAT the following verifierVEX3SAT:

(F, β) ∈ VEX3SAT ⇔ F is an EX3CNF-formula∧ (F, β) ∈ VSAT.

We examine as a first modification the addition or deletion of atomic components
of EX3CNF-formulas. Since adding unit clauses to an EX3CNF-formula destroys its
EX3CNF-form, we modify the formula by adding or deleting entire 3-clauses. The
corresponding modification functions3 are given by

adc(F,C) :=

{
F ∪ {C}, if F is an EX3CNF-formula andC is a 3-clause,
F, otherwise,

and

rmc(F, C) :=

{
F \ {C}, if F is an EX3CNF-formula,
F, otherwise.

Similar toSAT, the case where some 3-clause is deleted is easy.

Observation 3.5. MODrmcVEX3SAT ∈ P.

In contrast, when we add a 3-clause to an EX3CNF-formula, a solution for the origi-
nal instance does, in general, not help to find a solution for the modified instance.

Theorem 3.6. MODadcVEX3SAT is NP-complete.

3Note that modification functions for different domains may go by the same name, e.g., we define a
modification functionadc for both, CNF-formulas and EX3CNF-formulas. It will always be clear
from the context which modification function has to be applied.
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Proof. To prove NP-completeness ofMODadcVEX3SAT it is sufficient to reduce the NP-
complete problemMODadVSAT (see Theorem3.3) to MODadcVEX3SAT. We call such
a reduction between two problems of the formMODcVA an interreduction. We show
that there exist three polynomial-time computable reduction functionsf1, f2, f3 such
that for all triplesx := (F, β, L) it holds that

x ∈ MODadVSAT ⇔
(
f1(x), f2(x), f3(x)

) ∈ MODadcVEX3SAT. (2)

In constructingf1 andf2 we make use of a well known reduction functionf that
showsSAT ≤p

m EX3SAT, as for example given in [DK00]. We give a short summary
on howf is defined:

LetF be a CNF-formula. We give an EX3CNF-formulaF ′ := f(F ) that is satisfiable
if and only if F is satisfiable. Initially, the formulaF ′ consists of the seven clauses

{w1, w2, w3}, {¬w1, w2, w3}, {w1,¬w2, w3}, {w1, w2,¬w3},
{¬w1,¬w2, w3}, {¬w1, w2,¬w3}, and{w1,¬w2,¬w3},

wherew1, w2, w3 /∈ V ar(F ). Note that this formula is satisfied by an assignmentβ if
and only ifβ(w1) = β(w2) = β(w3) = 1.

Now, we describe how to transform a clauseC ∈ F into a set of 3-clauses ofF ′.
Let {L1, ..., Lk} be a clause ofF . Dependent on the number of literalsk, we add the
following 3-clauses toF ′:

• k = 1 : {L1,¬w1,¬w2},
• k = 2 : {L1, L2,¬w1},
• k = 3 : {L1, L2, L3}, and

• k = 4 : {L1, L2, u}, {¬u, L3, L4}, {¬L3, u,¬w1}, {¬L4, u,¬w1},
whereu is a new variable not used in the construction so far. For the moment, we
postpone the casek ≥ 5. Correctness of the reduction for the casesk ∈ {1, 2, 3}
should be obvious. In casek = 4 note that withβ(w1) = 1 (which needs to hold in
order forF ′ to be satisfiable) the conjunction of the four given clauses is equivalent to

(L1 ∨ L2 ∨ u) ∧ (u ⇔ (L3 ∨ L4)).

Equivalence of the latter formula and the clause{L1, L2, L3, L4} is immediate.
For the casek ≥ 5 we inductively apply the procedure of the casek = 4. It should

be an easy task for the reader to verify the equivalence

{{L1, ..., Lk}} ≡ (L1 ∨ L2 ∨ v) ∧ (v ⇔ (L3 ∨ · · · ∨ Lk))

≡ {{L1, L2, v}, {¬v, L3, ..., Lk}} ∪ {{v,¬Li} : 3 ≤ i ≤ k},
wherev is a new variable never used in the construction so far. We add the clauses
{L1, L2, v}, {v,¬L3,¬w1}, ..., {v,¬Lk,¬w1} to F ′ and inductively apply this proce-
dure to the clause{¬v, L3, ..., Lk}}. As a result we obtain a formulaF ′ which has at
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most quadratic size in the size ofF . Clearly, the functionf that maps a formulaF to
F ′ is polynomial-time computable and yields the desired resultSAT ≤p

m EX3SAT.
Note that the reduction functionf has the following beneficial property. Given an

assignmentβ for theSAT-instanceF , we can easily construct a satisfying assignment
β′ for the EX3CNF-formulaf(F ). This can be done in the following way. For all the
variables fromV ar(F ) the assignmentsβ andβ′ do not differ, that is,β′(x) := β(x)
for all variablesx ∈ V ar(F ). For each additional variableu introduced by splitting
a clause{L1, ..., Lk}, k ≥ 4, we obtain the truth value ofu by the equivalenceu ⇔
L3 ∨ ... ∨ Lk. For the remaining variablesw1, w2, w3 of F ′ we setβ′(w1) = β′(w2) =
β′(w3) = 1. This concludes our summary on the reduction functionf .

Returning to our proof of(2), we define the functionsf1, f2, andf3 as follows:

• f1(F, β, L) := f(F ) ∪ {{y1, y2, L}, {y1,¬y2, L}, {¬y1, y2, L}
}
,

wherey1 andy2 are variables that are not contained inV ar(f(F )),

• f2(F, β, L) := β′,

whereβ′ is constructed fromβ as described above, andβ′(y1) = β′(y2) = 1, and

• f3(F, β, L) := {¬y1,¬y2, L}.
Note thatf1,f2, andf3 are polynomial-time computable. Furthermore, observe that

by construction off1 andf3 we get the equivalence

f1(x) ∪ {f3(x)} ≡ f(F ) ∪ {{L}}. (3)

To prove(2), first suppose thatx ∈ MODadVSAT, i.e., (F, β) ∈ VSAT andF ∧ L ∈
SAT. If β is a satisfying assignment forF thenβ′ is a satisfying assignment forf(F ).
Thus(f1(x), f2(x)) ∈ VEX3SAT. On the other hand, it follows fromF ∧L ∈ SAT thatF
has a satisfying assignmentβ with β(L) = 1. Thus,f(F ) has a satisfying assignment
with β(L) = 1 (truth values of variables fromF are preserved) andf(F ) ∧ L ∈ SAT.
Using (3), we have that the EX3CNF-formulaf1(x)∪{f3(x)} is contained inEX3SAT.
Thus(f1(x), f2(x), f3(x)) ∈ MODadcVEX3SAT.

Conversely, assume thatx /∈ MODadVSAT, i.e., (i)(F, β) /∈ VSAT or (ii) F∧L /∈ SAT.
In the first case, there exists a clauseCm = {L1, ..., Lkm} in F such that no literal is
made true by the assignmentβ. The reader may verify, that the reduction function
f transforms this clauseCm to a set of clauses in which exists a 3-clause that is not
satisfied byβ′, yielding that(f1(x), f2(x)) /∈ VEX3SAT. In the second case, we conclude
from F ∧ L /∈ SAT that eitherF is not satisfiable or each satisfying assignment ofF
assigns the truth value0 to L. By construction off , eitherf(F ) is not satisfiable or
each satisfying assignment off(F ) assigns the truth value0 to L, which implies that
f(F ) ∧ L /∈ EX3SAT. Equivalence (3) yields thatf1(x) ∪ {

f3(x)
}

/∈ EX3SAT. In
both cases, (i) and (ii), we get that(f1(x), f2(x), f3(x)) /∈ MODadVEX3SAT.

We summarize our findings for satisfiability problems in Table3.1. TheNP-com-
pleteness result forMODneglVEX3SAT is proven in Appendix A, as well as the results
for the problem3SAT, a special case ofSAT in which each clause hasat mostthree
literals.
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modification function SAT / 3SAT EX3SAT

ad (addition of a unit clause) NP-complete -
adc (addition of a clause) NP-complete NP-complete
adlc (addition of a literal to a clause) ∈ P -
rm (removal of a unit clause) ∈ P -
rmc (removal of a clause) ∈ P ∈ P
rmlc(removal of a literal from a clause)NP-complete -
neg (negation of a unit clause) NP-complete -
negl (negation of a literal of a clause) NP-complete NP-complete

Table 3.1:Hard and easy cases when deciding modified instances of various satisfiabil-
ity problems with help of arbitrary certificates.

3.4 Results for Other Problems

Up to now we introduced two techniques to prove that a languageMODcVA is NP-
complete. In the first setting, we reduce anNP-complete problemA to MODcVA, as
done in the proof of Theorem3.3. The other technique involves a reduction from anNP-
complete problemMODc′VB, a so calledinterreduction. This latter technique was used
in the proof of Theorem3.6. We want to apply these both techniques to other problems
MODcVA. Since there exist hundreds ofNP-complete problems, we concentrate on
the six basicNP-complete problems listed in the influential book of Garey and Johnson
[GJ79]. Namely, these six basic problems are

• EXACTTHREESATISFIABILTY 4 (EX3SAT),

• CLIQUE,

• VERTEXCOVER (VC),

• HAMILTONIAN CYCLE (HC),

• THREEDIMENSIONALMATCHING (3DM), and

• PARTITION.

We already discussed the problemEX3SAT. For a formal definition of the other five
problems we refer to the respective chapters in Appendix A. For these five problems
we consider several modifications, among them the deletion or addition of atomic com-
ponents of their instances, for instance addition or removal of a single edge of a graph.
Our findings for the remaining five basic problems are summarized in Table3.2. The

4Note that the problem we callEX3SAT is called3SAT in [GJ79]. Since we want to distinguish
between the satisfiability problem in which each clause has exactly three literals and the satisfiability
problem in which each clause has at most three literals, we use the labellingEX3SAT and3SAT,
respectively.
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modification: easy (inP) NP-complete
add./rmvl.

VC of an edge MODrmVVC [Lib04] MODadVVC [Lib04]

CLIQUE of an edge MODadVCLIQUE MODrmVCLIQUE

HC of an edge MODadVHC MODrmVHC

3DM of a triple MODadV3DM MODrmV3DM

PARTITION of a natural MODadVPARTITION

number MODrmVPARTITION

Table 3.2:Hard and easy cases when deciding modified instances of the problemsVC,
CLIQUE, HC, 3DM, andPARTITION with help of arbitrary certificates.

respective proofs can be found in Appendix A. Also, the formal definition of the exam-
ined modification functions as well as the considered verifiers are given in Appendix A.
In addition to the five basic problems, theNP-complete satisfiability problem1-3SAT,
in which each clause needs to be satisfied by exactly one literal, is considered in Ap-
pendix A.

Conclusions

In this chapter we showed that in many cases the knowledge of a certificate is com-
pletely useless to decide locally modified instances. We introduced problems of the
form MODcVA, which characterize the complexity of deciding such modified instances.
For many modificationsc, which were defined in this chapter, we could show that
MODcVSAT andMODcVEX3SAT areNP-complete. This is equivalent to say that a certifi-
cate for anSAT- or EX3SAT-instance is a useless hint when the instance is modified by
c. For some other modifications we could show the converse, namely that certificates
allow to compute efficiently a solution of slightly modified instances (see also Table
3.1).

We showed our uselessness results, i.e.,NP-completeness of a problemMODcVA, in
two different ways. First, we reduced a standardNP-complete problem, namelySAT,
to a problem of the typeMODcVA. Second, we reduced anNP-complete problem of the
type MODcVA to another problem of this type. We called the latter form of reduction
an interreduction. We also indicated that these two techniques suffice to show that
certificates are a useless hint for instances of the six basic problems from[GJ79], when
these instances are appropriately modified (see also Table3.2).
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Selected Solution as Hint

The completeness proofs given in the last chapter have a drawback. What we have
actually proven is only that thereexist certificates that are useless as a hint, but not
thatanycertificate is useless. We illustrate the difference at an example. Consider the
problemSAT and a CNF-formula{C1, ..., Cm}. We have proven that an assignment
β with β(a) = 1 is a useless hint when deciding if the formulaad((C1 ∨ a) ∧ ... ∧
(Cm ∨ a),¬a) is satisfiable (see proof of Theorem3.3). Nevertheless, it is obvious
that a satisfying assignment for{C1, ..., Cm} would have been a much better hint. This
example shows that, although there is some assignment for the original formula that
does not help to solve the modified instance, there might exist other assignments that
are more helpful. The question of interest in this chapter is: Does there always exist
such a useful hint?

4.1 Problem Formalization

To formalize the idea of different possible hints we introduce the notion of certificate
functions. A certificate functionh for a languageA is a function that, given an instance
x of A, outputs a certificate for this instance, if there exists one. If there is no certificate
for the instancex thenh outputs the empty wordε. Since the form of the certificate
depends on the verifier we use, we define the notion of certificate functions with respect
to a given verifier.

Definition 4.1. LetVA be a verifier for a languageA. The total functionh is a certificate
function forVA if and only if for allx ∈ Σ∗ it holds that

h(x)

{ ∈ VA(x), if x ∈ A,
= ε, otherwise.

Let cert(VA) denote the set of all certificate functions forVA. Let cert be the set of all
certificate functions, i.e.,cert :=

⋃
VA verifier

cert(VA).

Note that we do not restrict the complexity of certificate functions. They may even be
nonrecursive. This model is insufficient if we actually want to implement an iterative
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algorithm that computes helpful certificates for later use. On the other hand, if we
can show that no certificate function yields helpful hints then we have a stronger result
compared to complexity-restricted hint functions. The important results in this chapter
are of the latter kind.

Until now we avoided to use the term ’modification problem’; we now formally
introduce this notion.

Definition 4.2. Let c be a modification function andVA be a verifier for a language
A ∈ NP. The modification problem forVA andc is the pair(c, VA).

A modification problem only describes the modificationc to be applied, the problemA
we are dealing with (viaL(VA)), and the precise form of the certificates.

In this chapter we are interested in the question how easy it can be to decide if
c(x,m) ∈ A when an appropriately chosen certificate function is used to give hints.
We want to express such results of easiness in terms of(c, VA) being an element of cer-
tain complexity classes, e.g., oracle classes or nonuniform complexity classes. Unfor-
tunately, such well studies complexity classes seem to be insufficient for this purpose.
For that reason, we introduce new complexity classesC∈MOD/cert(VA). Containment
of a modification problem(c, VA) in C∈MOD/cert(VA) expresses the fact that the deci-
sion whether a modified instancec(x,m) is a member ofA is a problem that belongs
to C when adequate certificates are given. Since in later chapters we want to examine
modification problems for more general functions than certificate functions, we give the
following general definition, from which the definition of the classesC∈MOD/cert(VA)
can easily be derived.

Definition 4.3. LetC be a complexity class andF be a class of functions. The modifi-
cation problem(c, VA) belongs toC∈MOD/F if and only if

(∃h ∈ F)(∃C ∈ C)(∀x,m ∈ Σ∗)
[

x ∈ A ⇒ [
c(x,m) ∈ A ⇔ (

x, h(x),m
) ∈ C

]]
.

The informal idea behind Definition4.3is the following. When a modification prob-
lem (c, VA) is contained in the classC∈MOD/cert(VA) it follows that there exists a Turing
machine (or an algorithm) that (i) obeys the constraints ofC and (ii) that decides con-
tainment of modified instances of the formc(x,m) in A only by the knowledge of the
original instancex, the modificationm that is applied tox, and some clever chosen
certificateh(x) of the original instancex. We want this algorithm to work correctly
whenever the original instancex belongs toA, so thath(x) actually can return a certifi-
cate forx. The superscript∈ in C∈MOD/cert(VA) accounts for this last property that the
original instance is an element ofA. In Chapter5 we discuss the problem of deciding
modified instances when the promise is given, that no solution for the original instance
exists.

It is obvious by Definition4.3 that the classesC∈MOD/F satisfy the following mono-
tonicity property.

Observation 4.4. Let C andD be complexity classes andF be a class of functions. If
C ⊆ D thenC∈MOD/F ⊆ D∈

MOD/F .
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Also note the following. IfVA is a verifier for a languageA ∈ NP andc is a modifica-
tion function then the modification problem(c, VA) is an element ofNP∈MOD/cert(VA).
This formally expresses the fact that using a hint should only make easier the problem
of deciding if a modified instance belongs to a languageA ∈ NP.

Observation 4.5. Let VA be a verifier for a languageA ∈ C, C be closed under≤p
m-

reduction, andc be a modification function. Then(c, VA) ∈ C∈MOD/cert(VA).

Proof. Choose the predicateC from Definition4.3as

(x, π, m) ∈ C ⇔ c(x,m) ∈ A

for all π ∈ Σ∗. ObviouslyC ∈ C. The assertion follows.

The classC∈MOD/cert(VA) can best be compared to non-uniform complexity classes,
in particular toC/poly. However, there are some major differences. ForC/poly the
given advice only depends on the size of the input. In contrast, for the classC∈MOD/
cert(VA) the hint depends on the whole original instance, not just its size. On the other
hand, the classC/poly has more freedom in choosing the advice; every polynomial
string may be chosen. In contrast, for the classC∈MOD/cert(VA) the hint must be a cer-
tificate for the original instancex.

In this chapter we are especially interested in modification problems(c, VA) of NP-
complete problemsA that belong toC∈MOD/cert(VA) for someC ⊂ NP, i.e., modifi-
cations problems that actually benefit from selected hints. Unfortunately, we find such
positive examples only for trivial cases, i.e., cases in which every certificate of the orig-
inal instance is also a certificate for the modified instance. This will be explained in
detail in the next section.

4.2 Hint-independent Reducibility and SAT

Recall the verifierVSAT for SAT from Section3.2. We consider the modification func-
tionsrm, andneg defined there.

First, we consider the modification functionrm, which removes a unit clause. Since
any solutionπ of the original instance is a solution for the modified instance, every
such solutionπ is a helpful hint. Therefore, all certificate functionsh ∈ cert(VSAT)
give helpful hints. Generally, we can state the following observation.

Observation 4.6. If MODcVA ∈ C then(c, VA) ∈ C∈MOD/cert(VA).

Proof. Let MODcVA ∈ C, A = L(VA), andh be a certificate function forVA. If x ∈ A
we have(x, h(x)) ∈ VA (sinceh is a certificate function). Thus, ifx ∈ A it holds for
all m ∈ Σ∗ that

(x, h(x),m) ∈ MODcVA ⇔ (x, h(x)) ∈ VA ∧ c(x,m) ∈ A

⇔ c(x,m) ∈ A.
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Thus, for allx,m ∈ Σ∗ it holds that

(∀h ∈ cert(VA))
[
x ∈ A ⇒ (

c(x,m) ∈ A ⇔ (x, h(x),m) ∈ MODcVA

)]
.

The assertion follows immediately by Definition4.3.

As a consequence of this observation, we disregard in the coming any modification
problem(c, VA) for which alreadyMODcVA belongs toP.

In contrast to the easy caserm, the modification functionneg, which negates the sole
literal of a unit clause, allows for no helpful certificates. We show this in the following
way. We prove that under the assumption that(neg, VSAT) ∈ C∈MOD/cert(VSAT) for
some complexity classC (e.g., chooseC = P), the original problemSAT is in C.
Consequently, the modification problem is as easy as the original problemSAT and
therefore hints are useless.

Theorem 4.7. Let C be a complexity class that is closed under≤p
m-reduction. If

(neg, VSAT) ∈ C∈MOD/cert(VSAT) thenSAT ∈ C.

Proof. The proof is already in [Lib04]. We restate it here for convenience. LetC be
closed under≤p

m-reduction and let(neg, VSAT) ∈ C∈MOD/cert(VSAT) via the certificate
functionh for VSAT and the predicateC ∈ C, that is, for allF, L ∈ Σ∗ it holds that

F ∈ SAT ⇒ [
neg(F,L) ∈ SAT ⇔ (F, h(F ), L) ∈ C

]
. (1)

Let F be an arbitrary CNF-formula,V ar(F ) = {x1, ..., xn}, anda /∈ V ar(F ) and
F ′ be the CNF-formula that can be derived from the formula

a ∧ [(x1 ∧ ... ∧ xn ∧ a) ∨ (F ∧ ¬a)]

by straightforward expansion. Note that the formulaF ′ still contains the unit clause
{a}. Also,F ′ has at most quadratic size inF and can be computed in polynomial time.
Apparently,F ′ has exactly one certificate, namely the assignmentβ that assigns ’true’
to all the variables ofF ′. ThusF ′ ∈ SAT and by (1) we get

neg(F ′, a) ∈ SAT ⇔ (F ′, h(F ′), a) ∈ C.

SinceF ′ has exactly one assignment, namelyβ, the certificate functionh has no choice
buth(F ′) := β. Thus,

neg(F ′, a) ∈ SAT ⇔ (F ′, β, a) ∈ C.

By propositional logic it follows that

F ∈ SAT ⇔ ¬a ∧ [(x1 ∧ ... ∧ xn ∧ a) ∨ (F ∧ ¬a)] ∈ SAT

⇔ neg(F ′, a) ∈ SAT

⇔ (F ′, β, a) ∈ C.

SinceF ′, β anda are polynomial time computable fromF we have shown thatSAT is
≤p

m-reducible toC. SinceC ∈ C andC is closed under≤p
m-reduction we getSAT ∈

C.
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To restate Theorem4.7 in other words: If there exists a certificate function such that
a satisfying assignment for the modified instances can be found with the complexity
bound given byC then the original satisfiability problem also can be solved with this
complexity bound, not using any hint at all. This shows that when we negate a literal of
a propositional formula then no solution exists that helps to decide satisfiability of the
modified instance.

We summarize the key features that were used in the proof of Theorem4.7. The
essential part of the proof was to find a formulaf1(F ) (i.e., the formulaF ′ in the last
proof) such that

• there exists a modificationf3(F ) (i.e., the unit clausea in the last proof) such that

F ∈ SAT ⇔ neg(f1(F ), f3(F )) ∈ SAT,

• f1(F ) has exactly one solution, namelyf2(F ) = β, and

• f1, f2, f3 ∈ FP.

These properties are sufficient to show similar results for other problems. To show
similar results in a succinct way, we translate these three properties to a notion of re-
duction. In comparison to the conditions given above we generalize in the following
way: we allow different problems to be mapped to each other, e.g., we allow the graph
problemB being reduced to a modification problem of formulas.

Definition 4.8. LetVA be a verifier for some languageA ∈ NP andc be a modification
function. We say that a languageB is hint-independently polynomial-time reducible
to (c, VA), short B ≤p

hi (c, VA), if and only if there exist three reduction functions
f1, f2, f3 ∈ FP such that for allx ∈ Σ∗ it holds that

• x ∈ B ⇔ c(f1(x), f3(x)) ∈ A and

• VA(f1(x)) = {f2(x)}.
As already motivated, the functionsf1(F ) := a ∧ [(x1 ∧ ... ∧ xn ∧ a) ∨ (F ∧ ¬a)],

f2(F ) := β, whereβ(x) = 1 for all x ∈ {x1, ..., xn, a}, andf3(F ) := a yield a hint-
independent reduction fromSAT to (neg, VSAT), i.e., a reduction toSAT-instances that
only allow one choice for a (selected) solution.

Observation 4.9. SAT ≤p
hi (neg, VSAT).

Using the notion of hint-independent reduction we are able to generalize Theorem
4.7.

Theorem 4.10.Let VA be a verifier for some languageA ∈ NP and letC be some
complexity class that is closed under≤p

m-reduction. Then for all languagesB it holds
that (

B ≤p
hi (c, VA) ∧ (c, VA) ∈ C∈MOD/cert(VA)

) ⇒ B ∈ C.
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Proof. Let (c, VA) ∈ C∈MOD/cert(VA) and letB ≤p
hi (c, VA) via f1, f2, f3 ∈ FP. From

B ≤p
hi (c, VA) we derive that

• x ∈ B ⇔ c(f1(x), f3(x)) ∈ A and

• VA(f1(x)) = {f2(x)}.
From(c, VA) ∈ C∈MOD/cert(VA) we conclude that there exist a certificate functionh for
VA and a predicateC ∈ C such that for allx,m ∈ Σ∗ it holds that

x ∈ A ⇒ [
c(x,m) ∈ A ⇔ (x, h(x),m) ∈ C

]
.

SinceVA(f1(x)) = {f2(x)} it follows thatf1(x) ∈ A (henceVA(f1(x)) is nonempty)
andh(f1(x)) = f2(x) (hencef1(x) has only one certificate). Therefore,

(f1(x), f2(x), f3(x)) ∈ C ⇔ (f1(x), h(f1(x)), f3(x)) ∈ C

⇔ c(f1(x), f3(x)) ∈ A

⇔ x ∈ B.

ThusB ≤p
m C, and sinceC is closed under≤p

m-reduction we getB ∈ C.

We apply Theorem4.10in the following way. We show thatB ≤p
hi (c, VA) for two

NP-complete problemsA = L(VA) andB. We then conclude that even a well chosen
certificate is useless if we want to decide whether the modified instancec(x,m) belongs
to A. This suffices because assuming that(c, VA) ∈ C∈MOD/cert(VA) theNP-complete
languageB would be an element ofC (Theorem4.10). Consequently,NP ⊆ C and
alsoA ∈ C. But then, deciding modified instances ofA is not harder than deciding the
original problemA, not using any hint at all.

As already shown in [Lib04], selected hints are also useless when the modification
function is the functionad&rm, that deletes a clause from the formulaF and simul-
taneously adds another clause to the formula. Using the notion of hint-independent
reducibility, we are able to succinctly rephrase this result as

Corollary 4.11 ([Lib04]). SAT ≤p
hi (ad&rm, VSAT).

Proof. The proof is a carbon copy of the proof for Theorem4.7. Only the functionf3

has to be slightly altered.

Summarizing the results for modification problems ofSAT-instances we can say the
following. When an arbitrary solution is given as a hint we can show that this hint
is useless if a unit-clause is added(Theorem3.3). In contrast, when given a selected
solution as hint we can show that this hint is useless if

• a unit clause is negated or

• a unit clause is added and simultaneously another unit-clause is deleted.

It is not clear if a smaller modification, e.g., the modificationad, suffices to render
selected hints useless. But, we will show in a later section that the technique of hint
independent reducibility is probably inappropriate to answer this question (Theorem
4.17).
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4.3 Hint-independent Interreducibility and EX3SAT

Recall the verifierVEX3SAT for EX3SAT from Section3.3. We consider the modifica-
tion functionnegl, which negates a certain literal of some 3-clause ofF . The formal
definition ofnegl can be adapted from the functionnegl for SAT-instances.

For the modification functionnegl we aim to show that no certificate function helps
to decide if a modified EX3CNF-formula is satisfiable. But the techniques that were
introduced in the last section cannot be applied in a straightforward manner. Thus, we
present another possibility for proving uselessness of selected hints. This new method
involves the following reduction of a modification problem(c, VA) to another modifi-
cation problem(c′, VB).

Definition 4.12. Let (c, VA) and (c′, VB) be two modification problems. The problem
(c, VA) is hint-independently interreducible to(c′, VB) if and only if there exist three
functionsg1, g2, g3 ∈ FP such that for allx, π, m ∈ Σ∗ it holds that

• VA(x) = {π} ⇒ VB(g1(x, π, m)) = {g2(x, π, m)},
that is, the single certificate forx can easily be translated to the corresponding single
certificate forg1(x, π,m), and

• c(x,m) ∈ A ⇔ c′
(
g1(x, π,m), g3(x, π, m)

) ∈ B (compatibility ofc andc′).

We write(c, VA) ≤p
hi (c′, VB). The meaning of≤p

hi (in comparison to Definition4.8)
should be clear from the context.

We give a few remarks on this last definition. The second property in Definition
4.12 assures that the modification functionsc and c′ are compatiblewith respect to
this reduction, that is, any modificationm for the instancex can be translated to a
corresponding modificationg3(x, π, m) for the instanceg1(x, π, m).

Closely related to the notion of hint-independent interreducibility are the notions of
parsimonious reduction and structure preserving reduction. A parsimonious reduction
is a reduction that preserves the number of certificates. A structure preserving reduc-
tion is a parsimonious reduction that is accompanied by a polynomial-time computable
functiong that translates certificates of an instancex to certificates off(x). Formally:

Definition 4.13 ([Sim75]). Let VA and VB be two verifiers for problemsA and B,
respectively. We say thatA is parsimoniously polynomial-time reducible toB via f
w.r.t. VA andVB if and only if

• (∀x ∈ Σ∗)[|VA(x)| = |VB(f(x))|] and

• f ∈ FP.

Definition 4.14 ([LL78]). Let VA andVB be two verifiers for problemsA andB, re-
spectively. A reductionA ≤ B via a reduction functionf is called structure preserving
w.r.t. VA,VB, and a functiong ∈ FP if and only if
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• A is parsimoniously polynomial-time reducible toB via f w.r.t. VA andVB and

• (x, π) ∈ VA ⇒ (f(x), g(x, π)) ∈ VB. 1

To establish a connection between hint-independent interreduction and structure pre-
serving reduction we note the following. Letf be a structure preserving reduction
w.r.t. VA,VB, and a functiong ∈ FP. Thenf andg induce a reduction that satisfies the
first property of Definition4.12. Simply choose

• g1(x, π,m) := f(x) and

• g2(x, π,m) := g(x, π).

So results about structure preserving reductions are of some interest in the remainder of
this work. In detail, structure preserving reductions that additionally satisfy the second
property of Definition4.12(compatibility), i.e., reductions for which a modification of
the typec in an instancex translates easily to a modification of typec′ in the instance
f(x), are frequently used henceforth.

We are now prepare to attack our initial problem, namely the problem to show
that the modification functionnegl allows for no useful hints. We aim to show that
(neg, VSAT) ≤p

hi (negl, VEX3SAT). But before proving this fact, we make clear in which
way this result justifies our initial assertion that hints are useless for(negl, VEX3SAT).
For our argumentation we need the following Theorem4.15, which states a transitivity
result for≤p

hi-reduction. Note that there are different kinds of≤p
hi-reduction involved

in this theorem, hint-independent reduction and hint-independent interreduction.

Theorem 4.15.LetA,B, C ∈ NP and letVB andVC be verifiers forB andC, respec-
tively. Letc andc′ be modification functions. Then

(
A ≤p

hi (c, VB) ∧ (c, VB) ≤p
hi (c′, VC)

) ⇒ A ≤p
hi (c′, VC).

Proof. Let A,B,C, VB, VC , c, andc′ be as stated above. LetA ≤p
hi (c, VB) via three

functionsf1, f2, f3 ∈ FP and(c, VB) ≤p
hi (c′, VC) via three functionsg1, g2, g3 ∈ FP.

By assumptionA ≤p
hi (c, VB) we have that for allx ∈ Σ∗ it holds that

x ∈ A ⇔ c(f1(x), f3(x)) ∈ B

andVB(f1(x)) = {f2(x)}. Using the assumption that(c, VB) ≤p
hi (c′, VC) we con-

clude thatVC

(
g1

(
f1(x), f2(x),m

))
=

{
g2

(
f1(x), f2(x),m

)}
for all m ∈ Σ∗, and in

particular form = f3(x). We also conclude that

x ∈ A ⇔ c′
(
g1

(
f1(x), f2(x), f3(x)

)
, g3

(
f1(x), f2(x), f3(x)

)) ∈ C.

1Note that the converse direction(x, π) ∈ VA ⇐ (f(x), g(x, π)) ∈ VB follows from these two condi-
tions.
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We set`i(x) := gi(f1(x), f2(x), f3(x)), for i = 1, 2, 3. Consequently,VC(`1(x)) =
{`2(x)} and

x ∈ A ⇔ c′(`1(x), `3(x)) ∈ C.

The assertion follows from the fact that`1, `2, `3 ∈ FP.

We apply Theorem4.15to the modification problem(negl, VEX3SAT) in the following
way. As shown in Section4.2, we have thatSAT ≤p

hi (neg, VSAT). If we are able to
prove that(neg, VSAT) ≤p

hi (negl, VEX3SAT) then Theorem4.15 yields thatSAT ≤p
hi

(negl, VEX3SAT). As we discussed in Section4.2, we may interpret this last result as that
no certificate function for the problem(negl, VEX3SAT) yields helpful hints. It remains
to prove

Theorem 4.16.(neg, VSAT) ≤p
hi (negl, VEX3SAT).

Proof. We use the reduction functionf from the proof of Theorem3.6. The reader may
verify that this reduction viaf is structure preserving with respect to some certificate
mapping functiong. We may chooseg such that corresponding assignments inF and
f(F ) do not differ at the variables fromF . More detailed knowledge on the reduction
functionf is not necessary in the remainder of this proof.

We only consider the case that the unit clauseL that is going to be negated is actually
contained in the original formulaF . The simple idea of the proof would otherwise
be unnecessarily dissembled. It is easy to modify the following proof such that it also
holds for the case in whichL is no part ofF .

First, we define the functiong1. Let F be a CNF-formula and lety1, y2 /∈ V ar(F ).
We defineg1 by

g1(F, β, L) := f(F \ {{L}}) ∪
{{L, y1, y2}, {L,¬y1, y2}, {L, y1,¬y2}, {L,¬y1,¬y2}} ∪
{{¬L, y1, y2}, {¬L,¬y1, y2}, {¬L, y1,¬y2}}.

Sincef is structure preserving w.r.t.g it is obvious thatg1 is structure preserving
w.r.t. the certificate mapping functiong2 that is defined byg2(F, β, L) := β′, where

β′(x) =

{
g(β)(x), if x ∈ V ar(F ),
1, if x ∈ {y1, y2}.

This shows that the first property of Definition4.12holds.
We now show that also the second property of Definition4.12holds, namely that the

negation of unit clause in a CNF-formulaF can be translated to a negation of a certain
literal in theEX3SAT-instanceg1(F, β, L). Formally, we need to show that there exists
g3 ∈ FP such that

neg(F,L) ∈ SAT ⇔ negl(g1(F, β, L), g3(F, β, L)) ∈ EX3SAT. (2)

We define the functiong3 as

g3(F, β, L) := ({L,¬y1,¬y2}, L).

33



Chapter 4 Selected Solution as Hint

modification function SAT / 3SAT EX3SAT 1-3SAT

ad (addition of a unit cl.) ? - ?
adc (addition of a clause) ? ? ?
adlc (add. of a lit. to a cl.) easy - ≤p

hi

rm (removal of a unit cl.) easy - easy
rmc (removal of a clause) easy easy easy
rmlc(rem. of a lit. from a cl.) ? - ≤p

hi

neg (negation of a unit cl.) ≤p
hi - ≤p

hi

negl (neg. of a lit. of a cl.) ≤p
hi ≤p

hi ≤p
hi

Table 4.1:Hard, easy, and uncertain cases when deciding modified instances of various
satisfiability problems with help of selected certificates.

In other words, we modifyg1(F, β, L) by negating in the clause{L,¬y1,¬y2} the literal
L. Note that

negl(g1(F, β, L), g3(F, β, L)) ∈ EX3SAT⇔ f(F \ {{L}}) ∪ {{¬L}} ∈ SAT. (3)

It remains to prove (2). To show the⇒ direction of (2) let neg(F, L) ∈ SAT and
let β be a satisfying assignment ofF \ {{L}} ∪ {{¬L}} ≡ neg(F, L). It follows that
F \ {{L}} ∈ SAT and thatβ(L) = 0. Thusf(F \ {{L}}) ∈ EX3SAT with g(β)
as a satisfying assignment. Sinceg preserves the truth value of variables fromF we
conclude thatβ′(L) = 0. Thusf(F \{{L}})∪{{¬L}} ∈ SAT and by (3) we conclude
thatnegl(g1(F, β, L), g3(F, β, L)) ∈ EX3SAT.

For the other direction, suppose thatnegl(g1(F, β, L), g3(F, β, L)) ∈ EX3SAT. Let
β′ be a satisfying assignment forneg(g1(F, β, L), g3(F, β, L)). By (3) we have that
f(F \ {{L}}) is satisfiable with an assignmentβ, whereβ(L) = 0. ThusF \ {{L}} ∪
{{¬L}} is satisfiable and thereforeneg(F,L) ∈ SAT.

Table4.1 summarizes the results for satisfiability problems that were found in the
last sections. It also contains additional results, which are proven in Appendix A. In
Table4.1 the shortcut≤p

hi stands for the fact that the respective modification problem
can be hint-independently reduced from someNP complete problem, in our case the
problemSAT. For these problems a solution for the original instance yields no helpful
hint. The shortcut ’easy’ symbolizes that the respective modification problem(c, VA)
belongs toP∈MOD/cert(VA).

As the question marks in Table4.1 indicate, the usefulness of selected hints is not
clear for all kinds of modification functions. But, to show uselessness of selected hints
for these cases it is likely that we have to develop new techniques. We are able to show
that, unlessP = NP, no≤p

hi-reduction from anNP-complete problem to(c, VA) exists,
whenc andA are the respective modification function and language from a ’?’-entry in
Table4.1. For the moment, we just state this result for the casec = ad andA = SAT.

Theorem 4.17.LetB be anNP-complete problem. Then

B ≤p
hi (ad, VSAT) ⇒ P = NP.
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Proof. Let B be anNP-complete problem. Suppose thatB ≤p
hi (ad, VSAT). Thus, there

existf1, f2, f3 ∈ FP such thatVSAT(f1(F )) = {f2(F )} and

x ∈ B⇔ad(f1(x), f3(x)) ∈ SAT

⇔ (∃π ∈ Σ∗)
[(

ad((f1(x), f3(x)), π
) ∈ VSAT

]

⇔(
ad(f1(x), f3(x)), f2(x)

) ∈ VSAT.

The last equivalence is owing to the fact that adding a unit clause only restricts the
possible set of satisfying assignments, and sincef1(x) has exactly one satisfying as-
signmentf2(x), the formulaad(f1(x), f3(x)) can only be satisfied by this assignment
f2(x). The last expression in the above sequence of equivalences clearly is decidable in
polynomial time — only a verifier, a modification function, and the functionsf1, f2, f3

are involved. ThusB ∈ P, and sinceB is NP-complete we getP = NP.

We are able to show a results similar to Theorem4.17 also for the other ’?’-cases
of Table4.1. The essential part of the proof of Theorem4.17 relied on the property
that the set of certificates of a formulaf1(x) is restricted by the modification function
ad. In other words, we used thatVSAT(ad, (F, L)) ⊆ VSAT(F ) for all F,L ∈ Σ∗. We
generalize Theorem4.17in the following way.

Corollary 4.18. LetB be anNP-complete problem and(c, VA) be a modification prob-
lem such thatVA(x) ⊇ VA(c(x,m)), for all x,m ∈ Σ∗. Then

B ≤p
hi (c, VA) ⇒ P = NP.

The proof for the corollary can be translated mutatis mutandis from the proof of The-
orem4.17. Its not difficult to see, that the propertyVA(x) ⊇ VA(c(x,m)) holds for all
the ’?’-cases in Table4.1. Thus, unlessP = NP, we wont be able to prove for any of
these modification problems the uselessness of selected hints by using hint-independent
reductions.

For the problemsCLIQUE, VC, HC, 3DM andPARTITION we use the techniques
of hint-independent reduction and hint-independent interreduction to obtain the results
that are summarized in Table4.2. The respective proofs can be found in Appendix A.
As usual, an ’easy’-entry means that the corresponding modification problem(c, VA)
belongs toP∈MOD/cert(VA), the shortcut≤p

hi stands for the fact thatB ≤p
hi (c, VA) for

someNP-complete setB, and ’?’ symbolizes the fact that uselessness of selected hints
is not likely to be provable via≤p

hi-reductions.

We give a final remark regarding structure preserving reductions. Note that a struc-
ture preserving reduction fromSAT to anotherNP-complete problemL(VB) via a re-
duction functionf often yields an upper bound for the amount of modification that is
necessary to make selected hints useless. For most of these structure preserving reduc-
tion it holds that the modificationneg of a formulaF can be translated to a modification
of a certain typec′ in theB-instancef(F ). For this choice of modificationc′, the second
property of Definition4.12is satisfied. It follows that(neg, VSAT) ≤p

pi (c′, VB).
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easy ? ≤p
hi

VC (rm, VVC) [Lib04] (ad, VVC) (ad&rm, VVC)

CLIQUE (ad, VCLIQUE) (rm, VCLIQUE) (ad&rm, VCLIQUE)

HC (ad, VHC) (rm, VHC) (ad&rm, VHC)

3DM (ad, V3DM) (rm, V3DM) (ad&rm, V3DM)

PARTITION (ad, VPARTITION)

(rm, VPARTITION)

Table 4.2:Hard, easy, and uncertain cases when deciding modified instances of the
problemsVC, CLIQUE, HC, 3DM, andPARTITION with help of selected
certificates.

The above argument also holds when we choose an other modification problem than
(neg, VSAT) as our starting point — the only condition on this other modification prob-
lem (c, VB) is that selected certificates are not useful, i.e.,A ≤p

hi (c, VB) for some
NP-complete problemA.

4.4 A Connection Between (c, VA) and MODcVA

In Chapter3 we showed that thereexistsa certificate that is useless for deciding formu-
las in which a unit clause is negated. In this chapter we showed that an even stronger
statement holds, namely thatany certificate is useless. Since the first statement is a
special case of the latter, we expect that the formal results for uselessness of selected
hints, e.g.,SAT ≤p

hi (neg, VSAT), translate to uselessness results for arbitrary hints, e.g.,
NP-completeness ofMODnegVSAT.

Although it might seem obvious that the above mentioned result holds, there are
some technical difficulties. We first need to establish two simple lemmata.

Lemma 4.19.NP \ NPC is closed under≤p
m-reduction.

Proof. Assume to the contrary thatNP \NPC in not closed under≤p
m-reduction. Con-

sequently, there exist languagesA,B ⊆ Σ∗ such that

A ≤p
m B︸ ︷︷ ︸

(i)

∧ B ∈ NP \ NPC︸ ︷︷ ︸
(ii)

∧ A /∈ NP \ NPC︸ ︷︷ ︸
(iii)

.

By (iii) it suffices to regard the following two cases:

Case 1: A ∈ NPC : From(i) we conclude thatB isNP-hard. From(ii) we conclude
thatB ∈ NP. ThusB ∈ NPC, which contradicts(ii).
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Case 2: A /∈ NP: From(ii) it follows thatB ∈ NP. SinceNP is closed under≤p
m-

reduction we have together with(i) thatA ∈ NP. This contradicts the assumption
of this case.

Lemma 4.20. Let A be a nontrivial language fromNP, i.e.,A ∈ NP \ {∅, Σ∗}. If it
holds for all classesC with C ⊆ NP andC closed under≤p

m-reduction that

A ∈ C ⇔ C = NP

thenA ∈ NPC.

Proof. Let A ∈ NP \ {∅, Σ∗}.
Case 1: P = NP: All nontrivial problems are≤p

m-complete forP. Thus,A is com-
plete forP = NP. Consequently,A ∈ NPC, independent of the other precondi-
tions.

Case 2: P 6= NP: We prove the assertion by contraposition. Assume thatA /∈ NPC.
ThusA ∈ NP \NPC. We chooseC = NP \NPC. Now, the left hand side of the
equation

A ∈ C ⇔ C = NP

is valid; the right hand side fails to hold, sinceNPC 6= ∅. The assertion follows
from the fact thatNP \ NPC is closed under≤p

m-reduction (see Lemma4.19).

Now, we are prepared to formally prove that results for uselessness of selected hints
are also results for uselessness of arbitrary hints.

Theorem 4.21.Let (c, VA) be a modification problem,A = L(VA) ∈ NP, andB be an
NP-complete language. IfB ≤p

hi (c, VA) thenMODcVA is NP-complete.

Proof. Let B ∈ NPC and letB ≤p
hi (c, VA). By Lemma4.20it suffices to show that

for all classesC with C ⊆ NP andC closed under≤p
m-reduction it holds that

MODcVA ∈ C ⇔ C = NP.

The direction form right to left is trivial (see Observation3.2). For the other direction
assume thatMODcVA ∈ C for some classC ⊆ NP that is closed under≤p

m-reduction.
By definition ofMODcVA it holds for allx, π, m ∈ Σ∗ that

(x, π) ∈ VA ∧ c(x,m) ∈ A ⇔ (x, π,m) ∈ MODcVA.

If x ∈ A then for any certificate functionh it holds that(x, h(x)) ∈ VA. Therefore, the
statement

x ∈ A ⇒ [
c(x,m) ∈ A ⇔ (x, h(x),m) ∈ MODcVA

]

is valid for any certificate functionh. SinceMODcVA ∈ C we get(c, VA) ∈ C∈MOD/
cert(VA). The assertionC = NP follows from Theorem4.10.
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4.5 Beyond the ≤p
hi-reducibility Method

In the preceding sections we introduced the notions of hint-independent reducibility and
hint-independent interreducibility. We applied these techniques to several modification
problems. Unfortunately, in some cases the≤p

hi-reducibility method does not apply,
e.g., it does not apply to the modification problem(ad, VSAT) (see remark to Theorem
4.17). We do not settle the question whether(ad, VSAT) has useful hints in this section.
But, we prove that when the modification is the simultaneous addition of several unit
clauses then selected hints are not likely to make the modification problem very easy.

To show this result we need ideas and notations from the proof of Cook’s Theorem
[Coo71], which states that the problemSAT is NP-complete w.r.t.≤p

m-reduction. We
recall the necessary details from Cook’s proof in the following subsection.

4.5.1 Cook’s Reduction

Let A ∈ NP andM be an NPTM such thatL(M) = A. In the course of this subsection,
we demonstrate how to construct fromM and an inputx a CNF-formulafcook(M,x)
such thatM(x) accepts if and only iffcook(M,x) is satisfiable.

W.l.o.g. we consider an NPTMM for A that is normalized, that is, there exists
a polynomialp such that for each inputx of M every computational path ofM has
exactly lengthp(|x|). We may assume thatM uses a single work tape that is infinite to
the right but has a leftmost cell. This yields a numbering0, 1, 2, ... of the cells from left
to right. Suppose thatQ = {q0, ..., qk} are the states ofM , q0 being the starting state of
M . Suppose thatΣ = {σ0, ..., σl} is the alphabet ofM , σ0 being the blank symbol. We
may assume that the head of the machine is in the leftmost cell at the beginning of the
computation.

SinceM is a nondeterministic machine, there exist multiple rules that may be applied
at a time. We suppose that there always exists an applicable rule ,i.e., the transition
function is total. Also, we assume that at any time the machineM may choose among
at most two such rules. If there are two applicable rules ,i.e., two rules with the same
left hand side, we fix a left and a right rule. Otherwise we refer to the single applicable
rule as left rule. Finally, we may assume that the input ofM is written in the leftmost
cells and thatM accepts the inputx if and only if M is in stateqk after exactlyp(|x|)
steps of computation.

The formulafcook(M,x) consists of several CNF-subformulas, namely

• the formulaS(x) that represents the initial configuration ofM on inputx,

• the formulasFt(M, |x|), where1 ≤ t ≤ p(|x|), that characterize the possible
transitions between the configurations ofM(x), and

• the formulaE(|x|) that characterizes the accepting condition ofM .

In defining these formulas we use the following variables:
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• ct,i,σ, 0 ≤ t, i ≤ p(|x|), σ ∈ Σ. The variablect,i,σ shall be true if and only if after
M ’s tth computational step the cell with numberi is occupied by the symbolσ,

• ht,i, 0 ≤ t, i ≤ p(|x|). The variableht,i shall be true if and only if afterM ’s tth
computational stepM ’s head is on the cell with numberi,

• st,q, 0 ≤ t ≤ p(|x|), q ∈ Q. The variablest,q shall be true if and only if afterM ’s
tth computational stepM is in stateq, and

• vt, 1 ≤ t ≤ p(|x|). The variablevt shall be true if and only ifM has applied the
left rule in itstth computational step.

The setYt is defined to contain all variables that characterize the configuration after the
tth computational step, that is,

Yt :=
{

ct,i,σ, ht,i, st,q : 0 ≤ i ≤ p(n), σ ∈ Σ, q ∈ Q
}
.

Now, we give the formulaS(x), which states that the machineM starts correctly. Let
x = x0...xn−1. Then

S(x) :=
∧

0≤c<n

(c0,c,xc) ∧
∧

n≤c≤p(|x|)
(c0,c,σ0) ∧ h0,0 ∧ s0,q0 ∧

∧

y∈Y ′0

(¬y),

whereY ′
0 contains the remaining variables fromY0. The formulaFt(M, |x|) consists of

the conjunction of the following expressions:

• ∧
0≤c≤p(|x|)

[(
(ct−1,c,σ ∧ ¬ht−1,c) ⇒ ct,c,σ

) ∧ (
(¬ct−1,c,σ ∧ ¬ht−1,c) ⇒ ¬ct,c,σ

)]

• for each left ruleσq −→ σ′q′r the two expressions:∧

0≤c<p(|x|)

(
(ct−1,c,σ ∧ ht−1,c ∧ st−1,q) ⇒ vt

)
and

∧

0≤c<p(|x|)

[
(ct−1,c,σ ∧ ht−1,c ∧ st−1,q ∧ vt)⇒

(
st,q′ ∧

∧

q′′ 6=q′
¬st,q′′

ht,c+1 ∧
∧

c′ 6=c+1

¬ht,c′

ct,c,σ′ ∧
∧

σ′′ 6=σ′
¬ct,c,σ′′

)]

• a similar expression for left rules of the formσq −→ σ′q′l or σq −→ σ′q′0

• the above expression withvt substituted by¬vt for every right rule.

The formulaE(|x|), which shall represent the accepting condition ofM , is given by
E(|x|) := zp(|x|),qk

.
The formulafcook is given byfcook(M, x) := S(x)∧∧

1≤t≤p(|x|) Ft(M, |x|)∧E(|x|).
For a proof thatfcook yields a reduction fromA to SAT we refer to the standard literature
[DK00, BDG95, WW86, Coo71, Wec00].
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We just mention the following property. Each two different paths ofM ’s compu-
tation lead to assignments that differ when restricted to the variablesvt, 1 ≤ t ≤
p(|x|). Therefore each accepting path ofM yields a different satisfying assignment
for fcook(M, x). The converse, namely that two different satisfying assignment of
fcook(M,x) lead to two different accepting paths ofM(x), also holds. Consequently,
the functionfcook yields a parsimonious reduction fromA to SAT.

It is plausible that Cook’s reduction is also structure preserving. In more detail, we
chooseM as a machine that nondeterministically guesses a proof in a first phase and
verifies it afterwards. Such a machineM always exists (see Theorem2.3). For this
choice of machineM a satisfying assignment forfcook(M, x) can be computed easily
from the nondeterministically guessed bits, i.e., the certificate, that is guessed in the
first phase ofM ’s computation.

Note in the passing, that we can use Cook’s reduction to prove that the classNP∈MOD/
cert has≤p

hi-complete problems.

Theorem 4.22.(neg, VSAT) is≤p
hi-complete forNP∈MOD/cert.

Proof. It is obvious that(neg, VSAT) ∈ NP∈MOD/cert (Observation4.5). To show hard-
ness of(neg, VSAT) let (c, VA) be a modification problem fromNP∈MOD/cert(VA). It
suffices to show that(c, VA) ≤p

hi (neg, VSAT). We give a structure preserving reduction
g1 (with respect toVA, VSAT, and a functiong2 ∈ FP) and a functiong3 ∈ FP such that
for all x, π,m ∈ Σ∗ it holds that

c(x,m) ∈ A ⇔ neg
(
g1(x, π, m), g3(x, π,m)

) ∈ SAT.

Let M be an NPTM forL(VA) that works in two phases. First,M nondetermin-
istically guesses a certificate for the inputx and afterwards this certificate is verified
deterministically byVA. Without loss of generality we may assume that the machine
M obeys the restrictions of Cook’s Theorem.

The formulag1(x, π, m) contains the two subformulasFx and Fc(x,m) defined by
Fx := fcook(M, x) andFc(x,m) := fcook(M, c(x, m)). Let Yx andYc(x,m) be the set of
variables ofFx andFc(x,m), respectively. LetYx ∩Yc(x,m) = ∅ andz /∈ Yx ∪Yc(x,m). We
define

g1(x, π,m) :=
[(

z ∧ Fx ∧
∧

y∈Yc(x,m)

y
) ∨ (¬z ∧ Fc(x,m) ∧

∧
y∈Yx

y
)] ∧ z,

or more exactly, the expanded CNF-form of this formula, which has at most quadratic
size and still contains the unit clausez. Sincefcook yields a structure preserving re-
duction fromA to SAT w.r.t. the verifiersVA andVSAT, the functiong1 also induces a
structure preserving reduction. Furthermore, we setg3(x, π, m) := z, that is, we negate
the unit clausez. Then

c(x,m) ∈ L(VA) ⇔ fcook(M, c(x,m)) ∈ SAT

⇔ [(
z ∧ Fx ∧

∧
y∈Yc(x,m)

y
) ∨ (¬z ∧ Fc(x,m) ∧

∧
y∈Yx

y
] ∧ ¬z ∈ SAT

⇔ neg(g1(x, π,m), g3(x, π, m)) ∈ SAT.
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We show in Appendix A that(neg, VSAT) ≤p
hi (c, VA) for many other modifica-

tion problems(c, VA). Since≤p
hi is transitive (a fact for which we omit the proof)

all the following modification problems are≤p
hi-complete forNP∈MOD/cert (also see

Figure9.1): (negl, VSAT), (neg, V3SAT), (negl, V3SAT), (negl, VEX3SAT), (adlc, V1-3SAT),
(rmlc, V1-3SAT), (neg, V1-3SAT), (negl, V1-3SAT), (ad&rm, VCLIQUE), and(ad&rm, VVC).

4.5.2 Results

We now return to our proof that the addition of several unit clauses is not likely to be
a modification that allows for useful hints. More precisely, we will show that if the
modification problem(adid, VSAT) was easy then some unlikely collapses would occur.
Here,id is the identity functionid(n) := n, for all n ∈ N, whereas the notion of the
modification functionadid is fixed by the following definition.

Definition 4.23. Let c be a modification function. The modification functionck, which
performsk modifications of the formc at the same time, is inductively defined by

c1(x, (m1)) := c(x,m1),

ck(x, (m1, ..., mk)) := c
(

ck−1(x, (m1, ...,mk−1)),mk

)
.

For a functionf : N→ N let

cf (x, (m1, ...,mk)) :=

{
ck(x, (m1, ...,mk)), if k ≤ f(|x|),
x, otherwise.

Note that the≤p
hi-reducibility method cannot be applied to the modification problem

(adid, VSAT) (see Corollary4.18). But, we are able to show that the modification prob-
lem (adid, VSAT) is not likely to be very easy via the following Theorem4.24. Note
that Theorem4.24will be strengthened afterwards with respect to the amount of mod-
ification. Nevertheless we prove this weaker theorem first, as the proof would become
slightly intricate otherwise.

Theorem 4.24.LetC be closed under≤p
m-reduction. Then

(adid, VSAT) ∈ C∈MOD/cert(VSAT) ⇒ NP ⊆ C/poly.

Proof. Let C be closed under≤p
m-reduction. Let(adid, VSAT) ∈ C∈MOD/cert(VSAT) via

the certificate functionh for VSAT and the predicateC ∈ C, that is, for allk ∈ N and all
F, L1, ..., Lk ∈ Σ∗ it holds that

F ∈ SAT ⇒ [
adid

(
F, (L1, ..., Lk)

) ∈ SAT ⇔ (
F, h(F ), (L1, ..., Lk)

) ∈ C
]
. (4)

We show that under this assumptionsHC ∈ C/poly. 2

2The problemSAT could have also been chosen but we consider the problemHC in order to make the
proof clearer.
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Let G be a graph withn ≥ 3 vertices; graphs with less than three vertices cannot
contain a Hamiltonian cycle. Consider a nondeterministic polynomial-time Turing ma-
chineM for HC that obeys the restrictions of Cook’s theorem. Additionally, we assume
that |G| (the size of the coding ofG as input forM ) only depends onn, the number
of vertices ofG, and is strictly increasing withn. This is achieved by codingG via an
adjacency matrix.

Referring to the notations introduced in Section4.5.1, we defineFM,|G| :=
∧

0≤t≤p(|G|)
Ft(M, |G|)∧E(|G|). Intuitively, FM,|G| contains all those parts offcook(M, G) that are
only dependent on the size of the input but not the precise form of the input. The for-
mulaFM,|G| resembles the work of the machineM on an unknown input of size|G|.
The key idea of the proof is that the inputG can be coded intoFM,|G| by addition of
S(G), which solely consists of unit clauses. Thus, the number of unit clauses that need
to be added is bounded byid. In the remainder of this proof we elaborate this idea more
formally.

Note that any complete graphKn with n ≥ 3 vertices contains a Hamiltonian cycle.
Thus the formulafcook(M, Kn) = FM,|Kn| ∧ S(|Kn|) is satisfiable. Since|G| only
depends on the number of vertices ofG, the formulaFM,|G| is satisfiable for any graph
G with more than two vertices. By (4) it holds for allk ∈ N, all L1, ..., Lk ∈ Σ∗, and
all G with more than two vertices that

[
adid

(
FM,|G|, (L1, ..., Lk)

) ∈ SAT ⇔ (
FM,|G|, h(FM,|G|), (L1, ..., Lk)

) ∈ C
]
.

SinceFM,|G1| = FM,|G2| if and only if |G1| = |G2| we can unambiguously define

h′(i) :=

{
h(FM,|G|), if i is the size of some graphG,
ε, otherwise.

Let S ′(G) denote the tuple of unit clauses ofS(G). Formally, ifS(G) = L1 ∧ ... ∧ Lk

thenS ′(G) = (L1, ..., Lk). The predicateC ′ defined by

(G,ω) ∈ C ′ ⇔ (FM,|G|, ω, S ′(G)) ∈ C

belongs toC sinceC is closed under≤p
m-reduction. Note that the number of elements

in S ′(G) is smaller thanid(
∣∣FM,|G|

∣∣). Now

G ∈ HC ⇔ fcook(M, G) ∈ SAT

⇔ FM,|G| ∧ S(G) ∈ SAT

⇔ adid(FM,|G|, S
′(G)) ∈ SAT

⇔ (FM,|G|, h(FM,|G|), S
′(G)) ∈ C

⇔ (G, h(FM,|G|)) ∈ C ′

⇔ (G, h′(|G|)) ∈ C ′.

Sinceh′ ∈ poly we getHC ∈ C/poly.

42



Chapter 4 Selected Solution as Hint

As we already mentioned, Theorem4.24 can be strengthened to also hold for a
smaller amount of modification. In detail, we use a padding idea, that is, an instance is
padded in a way that the amount of modification becomes very small in comparison to
the length of the padded instance.

Theorem 4.25.Let C be closed under≤p
m-reduction,K ∈ N \ {0}, andq(n) = K

√
n.

Then
(adq, VSAT) ∈ C∈MOD/cert(VSAT) ⇒ NP ⊆ C/poly.

Proof. We refer to the notions from the proof of Theorem4.24. Let q(n) = K
√

n for
someK ≥ 1 and letr(n) := nK . Let padr be the function that pads a formulaF by
adding unit clauses over new distinct variables such that the padded formula has size
r(|F |). Formally, for a formulaF over the variablesx1, ..., xn we define

padr(F ) := F ∪
N⋃

i=n+1

{{xi}},

whereN is chosen to be the smallest number such that|padr(F )| ≥ r(|F |). For a
reasonable coding of formulas the padding functionpadr has some useful properties:

• padr ∈ FP,

• F ∈ SAT ⇔ padr(F ) ∈ SAT, for all F ∈ Σ∗, and

• F ∧S ∈ SAT ⇔ padr(F )∧S ∈ SAT, for all formulasS that do not contain any
of the padding variablesxn+1, ..., xN .

In the proof of Theorem4.24, the number of unit clauses that need to be added is
bounded by|S ′(G)| and since

|S ′(G)| ≤
∣∣FM,|G|

∣∣ = q(r(
∣∣FM,|G|

∣∣)) ≤ q
( ∣∣padr(FM,|G|)

∣∣
)

the number of unit clauses to be added is bounded by the functionq in the size of
padr(FM,|G|). When substitutingFM,|G| by padr(FM,|G|) in the proof of Theorem4.24
we obtain the desired result. For a more detailed elaboration of this idea also see the
coming Theorem4.27.

The following corollaries show that if the modification problem(adq, VSAT), where
q(n) = K

√
n andK ∈ N \ {0}, would be easy, e.g., an element ofP∈MOD/cert(VSAT)

or (NP∩ coNP)∈MOD/cert(VSAT), then some collapses would occur that most computer
scientist do not believe to happen. The corollaries use the best known collapse results
whenNP ⊆ P/poly or NP ⊆ (NP∩ coNP)/poly, respectively (also see Theorem2.11
in the Preliminaries).

Corollary 4.26. LetK ∈ N \ {0} andq(n) = K
√

n. Then

• (adq, VSAT) ∈ P∈MOD/cert(VSAT) ⇒ S2 = PH,
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• (adq, VSAT) ∈ coNP∈MOD/cert(VSAT) ⇒ SNP
2 = PH, and

• (adq, VSAT) ∈ (NP ∩ coNP)∈MOD/cert(VSAT) ⇒ SNP∩coNP
2 = PH.

Up to now, we only considered the modification problem(adq, VSAT). Now, we want
to transfer our result to other modification problems(c, VA). The following theorem is
helpful for this task.

Theorem 4.27.LetC be closed under≤p
m-reduction,(c, VA) be a modification problem,

A = L(VA), K ∈ N \ {0}, andq(n) = K
√

n. If there exist functionsf1, f3 ∈ FP such
that for all k > 1 and allF, L1, ..., Lk ∈ Σ∗ it holds that

• F ∈ SAT ⇔ f1(F ) ∈ A and

• adq(F, (L1, ..., Lk)) ∈ SAT ⇔ c(f1(F ), f3((L1, ..., Lk))) ∈ A

then the following statement holds:

(c, VA) ∈ C∈MOD/cert(VA) ⇒ NP ⊆ C/poly.

Proof. The proof is similar to the proof of Theorem4.24. Let C be closed under≤p
m-

reduction. Let(c, VA) ∈ C∈MOD/cert(VA) via the certificate functionh for VA and the
predicateC ∈ C, that is, for allx,m ∈ Σ∗ it holds that

x ∈ A ⇒ [
c
(
x, m

) ∈ A ⇔ (
x, h(x), m

) ∈ C
]
. (5)

Let f1, f3 ∈ FP such that for allk > 1 and allF,L1, ..., Lk ∈ Σ∗ it holds that

F ∈ SAT ⇔ f1(F ) ∈ A, (6)

adq(F, (L1, ..., Lk)) ∈ SAT ⇔ c(f1(F ), f3((L1, ..., Lk))) ∈ A. (7)

We show that under this assumptionsHC ∈ C/poly.
W.l.o.g. we may assume thatG is a graph withn ≥ 3 vertices. Consider a nonde-

terministic polynomial-time Turing machineM for HC that obeys the restrictions of
Cooks Theorem. We assume thatG is coded via an adjacency matrix. The formulas
FM,|G| andS(G) are defined as in the proof of Theorem4.24. Let S ′(G) denote the
tuple of unit clauses ofS(G). Let r(n) := nK andpadr be the padding function from
the proof of Theorem4.25. For a formulaF we abbreviatepadr(F ) by F pad. Following
the arguments from the proof of Theorem4.25we get

|S ′(G)| ≤ q
(∣∣∣F pad

M,|G|

∣∣∣
)

(8)

for all graphsG. Note that for each graphG the formulaFM,|G| is satisfiable. Conse-
quently,F pad

M,|G| is satisfiable and therefore, by (6), f1(F
pad
M,|G|) ∈ A. It follows from (5)

that for all graphsG and allm ∈ Σ∗ it holds that

c
(
f1(F

pad
M,|G|),m

) ∈ A ⇔ (
f1(F

pad
M,|G|), h(f1(F

pad
M,|G|)),m

) ∈ C. (9)
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We define a functionh′ ∈ poly and a predicateC by

h′(i) := h(f1(F
pad
M,i )),

(G,ω) ∈ C ′ ⇔ (f1(F
pad
M,|G|), ω, f3(S

′(G))),

for all i ∈ N and allG,ω ∈ Σ∗. Obviously,C ′ ≤p
m C and sinceC ∈ C andC is closed

under≤p
m-reduction we getC ′ ∈ C. Now

G ∈ HC ⇔ fcook(M, G) ∈ SAT

⇔ FM,|G| ∧ S(G) ∈ SAT

⇔ F pad
M,|G| ∧ S(G) ∈ SAT

(8)⇔ adq(F pad
M,|G|, S

′(G)) ∈ SAT
(7)⇔ c(f1(F

pad
M,|G|), f3(S

′(G))) ∈ A
(9)⇔ (f1(F

pad
M,|G|), h(f1(F

pad
M,|G|)), f3(S

′(G))) ∈ C

⇔ (f1(F
pad
M,|G|), h

′(|G|), f3(S
′(G))) ∈ C

⇔ (G, h′(|G|)) ∈ C ′.

This impliesHC ∈ C/poly.

Theorem4.27implicates an interesting corollary, namely that the choice of the veri-
fier VSAT is not crucial in Theorem4.25.

Corollary 4.28. LetC be closed under≤p
m-reduction,K ∈ N \ {0}, andq(n) = K

√
n.

LetV ′
SAT be any verifier forSAT. Then

(adq, V ′
SAT) ∈ C∈MOD/cert(V ′

SAT) ⇒ NP ⊆ C/poly.

Proof. We choose(c, VA) = (adq, V ′
SAT) in Theorem4.27. The functionsf1(F ) := F

andf3(m) := m satisfy the conditions posed onf1 andf3.

We use Theorem4.27 to show that selected solutions are also not likely to be a
good hint for some other modification problems, such as(rmlcq, VSAT), (adq, V3SAT),
(adcq, VEX3SAT), (adq, V1-3SAT), (adq, VVC), (rmq, VCLIQUE), (rmq, VHC), and the modifi-
cation problem(rmq, V3DM). The respective proofs are given in Appendix A.

4.6 Computationally Restricted Certificate
Functions

Certificate function may be nonrecursive, in general. We already mentioned that this
approach leads to strong results of uselessness of selected hints. But, for some modifi-
cation problems, like(ad, VSAT), we were unable to prove uselessness of selected hints
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w.r.t. such a powerful certificate function. In this section we show that if the certificate
function is appropriately restricted then(ad, VSAT) is not likely to have helpful selected
certificates.

Only some special cases of certificate function are computable by computationally
restricted machines, e.g., the functions that compute the maximum or the minimum so-
lution with respect to some ordering are computable inF∆p

2. Even worse, in [HNOS96]
the authors show that no certificate functions forVSAT can exist in the classfun · NP,
unlessNP ⊆ (NP ∩ coNP)/poly, and consequentlySNP∩coNP

2 = PH (see Theorem
2.11). In the spirit of this result, we show that the existence of a certificate function
h ∈ fun·NP that renders the modification problem(ad, VSAT) a member ofcoNP∈MOD/
(cert(VSAT) ∩ fun · NP) is even more unlikely.

Theorem 4.29.(ad, VSAT) ∈ coNP∈MOD/(cert(VSAT) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. Let (ad, VSAT) ∈ coNP∈MOD/(cert(VSAT) ∩ fun·NP) via the certificate function
h ∈ fun · NP for VSAT and the predicateB ∈ coNP, that is, for allF, L ∈ Σ∗ it holds
that

F ∈ SAT ⇒ [
ad(F,L) ∈ SAT ⇔ (F, h(F ), L) ∈ B

]
. (10)

We show that{1}SAT ∈ NP under this assumption. Therefore, we give an NPTMM
that decides{1}SAT.

Let F be a CNF-formula and letV ar(F ) = {x1, ..., xn}. We describe a machine
M that decides{1}SAT rather informally: In a first stage, the machineM nondeter-
ministically guesses the hinth(F ). Afterwards, in a second nondeterministic phase, the
machineM verifies that the guess is correct. This is possible since the certificate func-
tion h belongs tofun · NP, or equivalently(∃C ∈ NP) [h(x) = y ⇔ (x, y) ∈ C]. For
the correct hinth(F ) this might result in several accepting paths, whereas for all other
guesses no path accepts. In a third phase, the machineM deterministically tests on all
the second-phase-accepting-paths whether(F, h(F )) ∈ VSAT. If (F, h(F )) /∈ VSAT then
F /∈ SAT, sinceh is a certificate function. In this case, all the paths become rejecting
paths3. If (F, h(F )) ∈ VSAT then a fourth phase is appended.

Before we describe the work of the machineM in this fourth phase we state a few
facts. The fourth phase is only reached ifF ∈ SAT. Furthermore, the certificateh(F )
for F is given by the guess in the first phase ofM ’s computation. Consequently, we
have a simplified form of (10), namely

ad(F, L) ∈ SAT ⇔ (F, h(F ), L) ∈ B.

The key idea of the proof is to exploit the following characterization of {0,1}SAT:

F ∈ {0, 1}SAT ⇔ (∀1 ≤ i ≤ n) [¬ ((F ∧ xi) ∈ SAT∧ (F ∧ ¬xi) ∈ SAT)] .

Since we only deal with satisfiable formulas in the fourth phase ofM we use this
equivalence to accept only those formulas that belong to{1}SAT: For eachω the test

3Note that all second-phase-accepting-paths behave similar after the third phase since all these paths
belong to the same guess ofh(F ).
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whether(∃1 ≤ i ≤ n)
[
(F, ω, xi) ∈ B∧(F, ω,¬xi) ∈ B

]
can be achieved withincoNP,

sincecoNP is closed under union and intersection. Consequently, the set

A := {(F, ω) : (∀1 ≤ i ≤ n) [¬ ((F, ω, xi) ∈ B ∧ (F, ω,¬xi) ∈ B)]}
belongs toNP. Now, the fourth phase ofM simply consist of checking whether
(F, h(F )) ∈ A using an NPTM forA. Correctness follows from the following equiva-
lences

F ∈ {0, 1}SAT ⇔ (∀1 ≤ i ≤ n) [¬ ((ad(F, xi) ∈ SAT∧ ad(F,¬xi) ∈ SAT))]

⇔ (∀1 ≤ i ≤ n) [¬ ((F, h(F ), xi) ∈ B ∧ (F, h(F ),¬xi) ∈ B)]

⇔ (F, h(F )) ∈ A.

Since{1}P ⊆ NP ⇒ NP = coNP (Corollary2.8) we get the following corollary.

Corollary 4.30. (ad, VSAT) ∈ coNP∈MOD/(cert(VSAT) ∩ fun · NP) ⇒ NP = coNP.

In order to show a similar result for other modification problems(c, VA) we establish
the following theorem.

Theorem 4.31.Let (c, VA) be a modification problem,A = L(VA), f1, f3 ∈ FP, and

• ad(F, L) ∈ SAT ⇔ c(f1(F ), f3(L)) ∈ A.4

Then(c, VA) ∈ coNP∈MOD/(cert(VA) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The proof is similar to the proof of4.29. We assume the reader to be familiar
with this proof. Let(c, VA) ∈ coNP∈MOD/(cert(VA) ∩ fun · NP) via the certificate
functionh ∈ fun ·NP for VSAT and the predicateB ∈ coNP, that is, for allx,m ∈ Σ∗

it holds that
x ∈ A ⇒ [

c(x,m) ∈ A ⇔ (x, h(x),m) ∈ B
]
.

We show that{1}SAT ∈ NP under this assumption.
Let F be a CNF-formula and letV ar(F ) = {x1, ..., xn}. We give a five-phased

NPTM M that decides ifF ∈ {1}SAT. In a first stage, the machineM determin-
istically computesf1(F ). In a second stage, it nondeterministically guesses a hint
h(f1(F )). Afterwards, in a third nondeterministic phase, it verifies that the guess is
correct. For the correct hinth(f1(F )) this might result in several accepting paths;
for all other guesses no path accepts. In a fourth phase, the machineM determinis-
tically test on all the third-phase-accepting-paths whether(f1(F ), h(f1(F ))) ∈ VA. If
(f1(F ), h(f1(F ))) /∈ VA thenf1(F ) /∈ A andM rejects on these paths. Otherwise ,if
(f1(F ), h(f1(F ))) ∈ VA, then a fifth phase is appended.

The fifth phase is only reached iff1(F ) ∈ A. Consequently,

c(f1(F ), f3(F, L)) ∈ A ⇔ (f1(F ), h(f1(F )), f3(L)) ∈ B

4Note the similarity of this condition to the second condition of Theorem4.27.
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for all F, m ∈ Σ∗. We define a predicateC by

(F, ω) ∈ C ⇔ (∀1 ≤ i ≤ n)
[
(f1(F ), ω, f3(xi)) ∈ B ∨ (f1(F ), ω, f3(¬xi)) ∈ B

]
.

Obviously,C ∈ NP. Now, the fifth phase ofM consist of checking if(F, h(f1(F ))) ∈
C, using an NPTM forC. Correctness follows from the following equivalences:

F ∈ {0, 1}SAT ⇔ (∀1 ≤ i ≤ n) [¬ ( ad(F, xi) ∈ SAT∧ ad(F,¬xi) ∈ SAT)]

⇔ (∀1 ≤ i ≤ n)
[¬(

c(f1(F ), f3(xi)) ∈ A ∧
c(f1(F ), f3(¬xi)) ∈ A

)]

⇔ (∀1 ≤ i ≤ n)
[¬ ( (f1(F ), h(f1(F )), f3(xi)) ∈ B ∧

(f1(F ), h(f1(F )), f3(¬xi)) ∈ B)
]

⇔ (F, h(f1(F ))) ∈ C.

Thus, after the fifth phase we have an accepting path if and onlyF ∈ {1}SAT.

We just mention here, that Theorem4.31 can be used to show that also the mod-
ification problems(rmlc, VSAT), (ad, V3SAT), (adc, VEX3SAT), (ad, V1-3SAT), (ad, VVC),
(rm, VCLIQUE), (rm, VHC), and (rm, V3DM) are probably not a member of the class
coNP∈MOD/(cert(VA) ∩ fun · NP). The respective proof are given in Appendix A.
Similar to Corollary4.28 we can also use Theorem4.31 to show that(ad, V ′

SAT) is
probably no member ofcoNP∈MOD/(cert(VA) ∩ fun · NP) for any choice of verifier
V ′

SAT for SAT.

Conclusions

In this chapter we examined the scenario in which the given certificate is not an ar-
bitrary certificate, but may be chosen carefully among all certificates. Thereby, we
assumed, that the original instance has at least one certificate. To formalize this prob-
lem it was necessary to introduce the notions of a certificate function and a modifica-
tion problem. We also introduced new complexity classesC∈MOD/F to categorize the
complexity of modification problems. We showed how easiness results for arbitrary
strings, e.g.,MODcVA ∈ P, can be translated to easiness results for selected hints,
e.g.,(c, VA) ∈ P∈MOD/certVA. Conversely, we also showed how to translate uselessness
results for selected certificates to uselessness results for arbitrary certificates (Theorem
4.21).

We proved uselessness of selected hint in two ways: (i) by a hint-independent re-
duction from anNP-complete problemA to a modification problem(c, VB) or (ii)
by a hint-independent interreduction between two modification problems(c, VA) and
(c′, VB). We applied these two methods to the problemsSAT andEX3SAT. These two
techniques are also used in Appendix A to show that a selected certificate is a useless
hint for instances of the six basic problems from[GJ79], when these instances are ap-
propriately modified. We also indicated how structure preserving reductions might help
to find hint-independent interreductions.

48



Chapter 4 Selected Solution as Hint

For some modification problems, e.g.,(ad, VSAT), we were unable to show easiness or
hardness. New techniques are necessary to answer this question, since hint-independent
(inter)reductions are insufficient to show uselessness of selected hints for(ad, VSAT).

Open problem 1. Are selected certificates of any use when decidingad-modifiedSAT-
instances?

As a first step in answering this open question, we found the following two results:

1. Unless the polynomial hierarchy collapses, the problem(ad, VSAT) has no useful
selected certificates that are easily computable.

2. Unless the polynomial hierarchy collapses, the related problem(adid, VSAT) has
no useful selected certificates.

We also gave sufficient conditions such that the latter results can be translated to other
modification problems.
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Chapter 5

No Solution as a Promise

In this chapter we are concerned with original instances that have no certificate, and
therefore no certificate can be given as a hint. This describes an scenario in which an
earlier computation yielded that the original instance has no solutions, and now we want
to decide if a modified instance has one.

5.1 Problem Formalization

Can the knowledge that the original instance has no certificates be any useful in deciding
modified instances? It can, as the following trivial example illustrates: Consider the
problemSAT and the modification functionad. Apparently, if the original instance
F is not satisfiable then the modified instancead(F,L) also has no certificate. Thus
ad(F,L) /∈ A.

Since no certificates are involved in this decision problem the precise form of the
certificates needs not to be specified via a verifier. All the results obtained in this section
are independent of specific verifiers. Thus, we can simplify what we understand as
modification problem within this chapter.

Definition 5.1. Let c be a modification function andA ∈ NP. Then the modification
problem forA andc is the pair(c, A).

Note that the notion of a modification problem is overloaded (Definition4.2 and
Definition 5.1) but it should be clear from notation,(c, VA) vs. (c, A), which one is
meant.

Given a modification problem(c, A), we now formalize the problem of deciding con-
tainment ofc(x,m) in A when the promise is given thatx /∈ A. In analogy to Chapter4
we define new classesCMOD//∈ that characterize the complexity of the aforementioned
modification problem(c, A).

Definition 5.2. Let C be a complexity class. The modification problem(c, A) belongs
to CMOD//∈ if and only if

(∃C ∈ C)(∀x,m ∈ Σ∗)
[

x /∈ A ⇒ [
c(x,m) ∈ A ⇔ (

x,m
) ∈ C

]]
.
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In a nutshell, Definition5.2 says that if(c, A) ∈ CMOD//∈ then a modified instance
c(x,m) can also be decided with help of aC-predicateC whenever the original instance
has no solutions. As usual, the modification problem cannot be harder than the original
problem, as the following observation shows.

Observation 5.3.Letc be a modification function,C be a complexity class closed under
≤p

m-reduction, andA ∈ C. Then(c, A) ∈ CMOD//∈.

Proof. ChooseC := {(x,m) : c(x, m) ∈ A} in Definition5.2.

We use Definition5.2to rephrase our initial example in a more formal way.

Observation 5.4. (ad, SAT) ∈ PMOD//∈.

Proof. ChooseC = ∅ in Definition5.2. The empty set belongs toP.

Also, by Definition5.2the following monotonicity property is obvious.

Observation 5.5. Let C andD be complexity classes andF be a class of functions. If
C ⊆ D thenCMOD//∈ ⊆ DMOD//∈.

5.2 Promise-independent Reducibility and SAT

Do there exist problems that donot benefit from the hint, that the original instance has
no certificates? We show existence of such a problem via the following theorem.

Theorem 5.6.LetC be closed under≤p
m-reduction. Then

(rm, SAT) ∈ CMOD//∈ ⇒ SAT ∈ C.

Proof. Let C be closed under≤p
m-reduction and let(rm, SAT) ∈ CMOD//∈ via the

predicateC ∈ C, that is, for allF, L ∈ Σ∗ it holds that

F /∈ SAT ⇒ [
rm(F, L) ∈ SAT ⇔ (F, L) ∈ C

]
.

Let F be a CNF-formula anda /∈ V ar(F ). Apparently,F ∧ a ∧ ¬a /∈ SAT. Thus,

F ∈ SAT ⇔ F ∧ a ∈ SAT

⇔ rm(F ∧ a ∧ ¬a,¬a) ∈ SAT

⇔ (F ∧ a ∧ ¬a,¬a) ∈ C.

Sincef1(F ) := F ∧ a ∧ ¬a andf2(F ) := ¬a are polynomial time computable fromF
and sincerm belongs toFP we have shown thatSAT is≤p

m-reducible toC. SinceC is
closed under≤p

m we getSAT ∈ C.
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We conclude from the last theorem that the knowledge that no solution for the orig-
inal instance exists is generally not helpful for the problemSAT and the modification
functionrm. If the problem(rm, SAT) was in some classCMOD//∈ then alsoSAT ∈ C.

We want to condense the key idea of the above proof into an appropriate notion of
a reduction. Basically, if we want to show that the knowledge ’x /∈ A’ is useless for a
problemA it is sufficient to give for allx ∈ Σ∗

• an instancef1(x) /∈ A

• for which the decision problem for the modified instancesc(f1(x), f2(x)) resem-
bles the complexity of some problemB that is as hard asA.

Definition 5.7. Let A ∈ NP andc be a modification function. We say that a problem
B is promise-independently polynomial-time reducible to(c, A), shortB ≤p

pi (c, A), if
and only if there exist two functionsf1, f2 ∈ FP such that for allx ∈ Σ∗ the following
two conditions hold:

• f1(x) /∈ A,

• x ∈ B ⇔ c
(
f1(x), f2(x)

) ∈ A.

It should be obvious how to translate the proof of Theorem5.6 to the result that
SAT ≤p

pi (rm, SAT).

Corollary 5.8. SAT ≤p
pi (rm, SAT).

We use the notion of hint-independent reducibility to generalize the assertion of The-
orem5.6to other modification problems(c, A).

Theorem 5.9. Let A ∈ NP, c be a modification function, andC be a complexity class
that is closed under≤p

m-reduction. For all languagesB it holds that

B ≤p
pi (c, A) ∧ (c, A) ∈ CMOD//∈ ⇒ B ∈ C.

Proof. Let (c, A) ∈ CMOD//∈ via the predicateC ∈ C, that is, for allx,m ∈ Σ∗ it holds
that

x /∈ A ⇒ (
c(x,m) ∈ A ⇔ (x,m) ∈ C

)
.

SinceB ≤p
pi (c, A) we conclude thatf1(x) /∈ A, for all x ∈ Σ∗. Therefore we get the

following equivalences:

x ∈ B ⇔ c(f1(x), f2(x)) ∈ A

⇔ (f1(x), f2(x)) ∈ C.

Thus, we have shown thatB ≤p
m C, and sinceC is closed under≤p

m-reduction we get
B ∈ C.

Consequently, if we are able to show for a problemA thatA ≤p
pi (c, A) then we have

that the no-solution promise is useless when modifying instances ofA by c. Also, if we
can show for two problemsA andB with A ≡p

m B (and in particular forNP-complete
problemsA andB) that A ≤p

pi (c, B) we can conclude likewise that the no-solution
promise is useless.
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5.3 Promise-independent Interreducibility and
EX3SAT

In analogy to Section4.3 we aim to show the uselessness of the no-solution promise
in an alternative way, namely by reduction from other modification problems for which
such uselessness results are already known. The following definition proposes an ap-
propriate notion of interreduction for this purpose.

Definition 5.10. Let(c, A) and(c′, B) be two modification problems as defined in Defi-
nition 5.1. The problem(c, A) is promise-independently interreducible to(c′, B), short
(c, A) ≤p

pi (c′, B), if and only if there exist two functionsg1, g2 ∈ FP such that for all
x,m ∈ Σ∗ it holds that

• x /∈ A ⇒ g1(x,m) /∈ B and

• c(x,m) ∈ A ⇔ c′(g1(x,m), g2(x,m)) ∈ B.

In close analogy to Section4.3, we show uselessness of the no-solution promise for
a modification problem(c′, C) by ≤p

pi-reduction from some appropriate modification
problem(c, B). The following quasi-transitivity result, that connects both kinds of
promise-independent reductions, will be used.

Theorem 5.11.LetA ∈ NP and let(c, B) and(c′, C) be modification problems. Then
(
A ≤p

pi (c, B) ∧ (c, B) ≤p
pi (c′, C)

) ⇒ A ≤p
pi (c′, C).

Proof. Let A ≤p
pi (c, B) via reduction functionsf1 andf2 and(c, B) ≤p

pi (c′, C) via
reduction functionsg1 andg2. It is an easy task to show thatA ≤p

hi (c′, C) via the two
reduction functionsh1, h2 ∈ FP defined by

• h1(x) := g1

(
f1(x), f2(x)

)
and

• h2(x) := g2

(
f1(x), f2(x)

)
.

By the combination of Corollary5.8, Theorem5.9 and Theorem5.11 it suffices to
show that(rm, SAT) ≤p

pi (c, A) to prove that the modification problem(c, A) cannot
benefit from the hint that the original instance has no solution. Thereby, the prob-
lem (c, A) also becomes a problem that can be used as a starting point for a promise-
independent interreduction.

Note that any reductionA ≤p
m B that is compatible with respect to the modifica-

tionsc andc′ yields a promise-independent interreduction(c, A) ≤p
pi (c′, B). To show

promise-independent interreducibility of two modification problems it often suffices to
slightly alter previous hint-independent interreductions from Section4.3 or Appendix
A. We demonstrate this at the example of the modification problem(negl, EX3SAT).
Note that is is shown in Appendix A, Observation9.3, that SAT ≤p

pi (neg, SAT).
Thus, by application of Theorem5.11, the following Theorem5.12yields thatSAT ≤p

pi

(negl, EX3SAT).
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Theorem 5.12.(neg, SAT) ≤p
pi (negl, EX3SAT).

Proof. We use the≤p
hi-reduction given in the proof of Theorem4.16, and in particular

the functiong1 defined there as1

g1(F, β, L) := f(F \ {{L}}) ∪
{{L, y1, y2}, {L,¬y1, y2}, {L, y1,¬y2}, {L,¬y1,¬y2}} ∪
{{¬L, y1, y2}, {¬L,¬y1, y2}, {¬L, y1,¬y2}}.

We give two reduction functionsg′1 andg′2 that realize the reduction(neg, SAT) ≤p
pi

(negl, EX3SAT). We defineg′1 by

g′1(F, L) := g1(F, ε, L),

whereε denotes the empty word2. The reader may verify that for any fixed literalL
the functiong′1 is a reduction function forSAT ≤p

m EX3SAT, thus satisfying the first
property in Definition5.10, namely

F /∈ SAT ⇒ g′1(F,L) /∈ EX3SAT.

Furthermore, the reduction functiong′1 yields a reduction that is compatible with respect
to the modification functionsneg andnegl. We use the reduction functiong3 from the
proof of Theorem4.16to define a functiong′2 that translates a negation of a unit clause
{L} in F to a negation of a literal ing′1(F, L):

g′2(F, L) := g3(F, β, L) = ({L,¬y1,¬y2}, L).

Now, it is not difficult to show that the property

neg(F, L) ∈ SAT ⇔ negl(g′1(F, L), g′2(F,L)) ∈ EX3SAT

holds. Henceg′1 andg′2 yield the desired≤p
pi reduction.

Table5.1 summarizes our results for modified satisfiability problems when the no-
solution promise is given. The missing proofs for≤p

pi-reducibility of the respective
modification problems are given in Appendix A.

Regarding the problemsVC, CLIQUE, HC ,3DM, andPARTITION our results are
summarized in Table5.2. For the proofs we refer to the respective sections in Appendix
A.

1Note that for the sake of simplicity we only consider the caseL ∈ F , just as we did in the proof of
Theorem4.16. For the definition of the reduction functionf we refer to the proof of Theorem3.6.

2Sinceg1 does not depend onβ, any other polynomial string besidesε could have been chosen as well.
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modification function SAT / 3SAT EX3SAT 1-3SAT

ad (addition of a unit cl.) easy - easy
adc (addition of a clause) easy easy easy
adlc (add. of a lit. to a cl.) ≤p

pi - ≤p
pi

rm (removal of a unit cl.) ≤p
pi - ≤p

pi

rmc (removal of a clause) ≤p
pi ≤p

pi ≤p
pi

rmlc(rem. of a lit. from a cl.) easy - ≤p
pi

neg (negation of a unit cl.) ≤p
pi - ≤p

pi

negl (neg. of a lit. of a cl.) ≤p
pi ≤p

pi ≤p
pi

Table 5.1:Hard and easy cases when deciding modified instances of various satisfiabil-
ity problems with help of the no-solution promise.

easy (∈ P/∈
MOD) hard (≤p

hi-(inter)reducible)

VC (ad, VC) (rm, VC)

CLIQUE (rm, CLIQUE) (ad, CLIQUE)

HC (rm, HC) (ad, HC)

3DM (ad, 3DM)
(rm, 3DM)

PARTITION (ad, PARTITION)
(rm, PARTITION)

Table 5.2:Hard and easy cases when deciding modified instances of the problemsVC,
CLIQUE, HC, 3DM, andPARTITION with help of the no-solution promise.

5.4 Composing the Cases

In Chapter4 we showed that many problems do not benefit from selected certificates.
But, we assumed that the original instance has at least one certificate that can be given
as a hint. In this chapter we examined the scenario in which no certificate for the
original instance exists. Now, we combine the results for these both cases such that
the benefit of a selected certificate can be judged independent of whether the original
instance has a solution or not. Therefore we introduce the notionCMOD/F , which is
similar to the definition ofC∈MOD/F , except that no demand on the membership of the
original instance to the problemA is put.

Definition 5.13. LetC be a complexity class andF be a class of functions. The modi-
fication problem(c, VA) belongs toCMOD/F if and only if

(∃h ∈ F)(∃C ∈ C)(∀x,m ∈ Σ∗)
[
c(x,m) ∈ A ⇔ (

x, h(x), m
) ∈ C

]
.
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With regard to the function classcert, containment of a modification problem(c, VA)
in CMOD/cert(VA) expresses the fact that modified instances of the formc(x,m) can be
decided with help of a selected certificates of the original instance and aC-predicate,
independent of whether the original instance has a solution or not. It is intuitively
clear that the complexity of a modification problem(c, VA) w.r.t. CMOD/cert(VA) is
dominated by the harder of the both aforementioned cases, namely the case where the
original instancex has a solution and the casex /∈ A. This fact is formally expressed
by the following theorem.

Theorem 5.14.LetC andD be complexity classes that are closed under≤p
m-reduction,

let (c, VA) be a modification problem, and letA = L(VA). Then

(c, VA) ∈ C∈MOD/cert(VA) ∧ (c, A) ∈ DMOD//∈ ⇒ (c, VA) ∈ (C ∪ D)MOD/cert(VA).

Proof. Let (c, VA) ∈ C∈MOD/cert(VA) via the certificate functionh and the predicate
C ∈ C. Let (c, VA) ∈ DMOD//∈ via a predicateD ∈ D. Consequently,

• (∀x,m ∈ Σ∗)
[
x ∈ A ⇒ [

c(x, m) ∈ A ⇔ (
x, h(x),m

) ∈ C
]]

and

• (∀x,m ∈ Σ∗)
[
x /∈ A ⇒ [

c(x, m) ∈ A ⇔ (
x,m

) ∈ D
]]

.

We define a predicateE ∈ C ∪ D by

(x, π, m) ∈ E ⇔
{

(x, π, m) ∈ C, if (x, π) ∈ VA,
(x,m) ∈ D, otherwise.

Now it obviously holds thatc(x,m) ∈ A ⇔ (x, h(x),m) ∈ E, which concludes the
proof of the theorem.

Although the last theorem gives an upper bound on the complexity of a modification
problem(c, VA) w.r.t. CMOD/cert(VA), it fails to provide any results about uselessness
of hints. Such results can be given with help of the following observation.

Observation 5.15. Let (c, VA) be a modification problem,A = L(VA), and C be a
complexity class that is closed under≤p

m-reduction. LetB ≤p
hi (c, VA) or B ≤p

pi (c, A)
for some languageB. It holds that

(c, VA) ∈ CMOD/cert(VA) ⇒ B ∈ C.

Proof. Let (c, VA) ∈ CMOD/cert(VA). It follows by the definition ofC∈MOD/cert(VA)
that (c, VA) ∈ C∈MOD/cert(VA). It also follows by (i) the definition ofCMOD//∈ and
(ii) the fact that a certificate function forVA outputs the empty wordε for all inputs
x /∈ A, that (c, A) ∈ CMOD//∈. Now, the assertion follows by Theorem4.10, in case
thatB ≤p

hi (c, VA), and from Theorem5.9, in case thatB ≤p
pi (c, A).

Thus, if we can show for twoNP-complete problemsA = L(VA) andB thatB ≤p
hi

(c, VA) or B ≤p
pi (c, A), we conclude that(c, VA) has no useful selected hints. Assume

to the contrary that(c, VA) ∈ CMOD/cert(VA) for some complexity classC ⊂ NP that
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modification function SAT / 3SAT EX3SAT 1-3SAT

ad (addition of a unit cl.) ? - ?
adc (addition of a clause) ? ? ?
adlc (add. of a lit. to a cl.) ≤p

pi - ≤p
hi,≤p

pi

rm (removal of a unit cl.) ≤p
pi - ≤p

pi

rmc (removal of a clause) ≤p
pi ≤p

pi ≤p
pi

rmlc(rem. of a lit. from a cl.) ? - ≤p
hi,≤p

pi

neg (negation of a unit cl.) ≤p
hi,≤p

pi - ≤p
hi,≤p

pi

negl (neg. of a lit. of a cl.) ≤p
hi,≤p

pi ≤p
hi,≤p

pi ≤p
hi,≤p

pi

Table 5.3:The complexity of modified satisfiability problems.

modification: ad rm
add./rmvl.

VC of an edge ? ≤p
pi

CLIQUE of an edge ≤p
pi ?

HC of an edge ≤p
pi ?

3DM of a triple ≤p
pi ≤p

pi

PARTITION of a number ≤p
hi,≤p

pi ≤p
hi,≤p

pi

Table 5.4:The complexity ofVC, CLIQUE, HC, 3DM, andPARTITION when modi-
fied.

is closed under≤p
m-reduction. Then, alsoB ∈ C by the above observation. SinceB is

NP-complete we getNP ⊆ C, a contradiction.

The following Tables5.3 and5.4 summarize the results for the complexity of mod-
ified instances when we use selected certificates, but the original instance does not
necessarily has a solution. Abbreviations in the table should be clear from previous
comments.

Conclusions

In this chapter we examined the case that the original instance has no solution and
therefore no certificate can be given as a hint to decide modified instances. Instead,
we get the promise that the original instance has no certificates. Since no verifiers are
necessary to specify the form of certificates, we adapted the notion of a modification
problem to be independent of a specific verifier. We introduced new complexity classes
CMOD//∈ to categorize the complexity of these modification problems. We used these
classes to state easiness and hardness results, i.e., we gave modification problems where
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Chapter 5 No Solution as a Promise

the no-solution promise is useless and problems where it is not.
We proved uselessness of the no-solution promise in two ways. First, we showed

uselessness by a promise-independent reduction from anNP-complete problemA to a
modification problem(c, B). Second, we showed uselessness by an promise-indepen-
dent interreduction between two modification problems(c, A) and(c′, B). Exemplarily,
we applied the two methods of promise-independent reduction and promise-indepen-
dent interreduction to the problemsSAT andEX3SAT. In Appendix A these two tech-
niques are also used to show that the no-solution promise is useless for instances of the
six basic problems from[GJ79], when these instances are appropriately modified. In
contrast to the scenario in which selected certificates are given, we could show for all
of the examined modification problems that either the no-solution promise is useless or
that it yields a polynomial-time algorithm to decide modified instances.

In the last part of this chapter, we combined the results for selected hints from Chapter
4 and the results about the no-solution promise from this chapter. In consequence,
we are able to appraise the use of selected hints independent of whether the original
instance has a solution. Not to our surprise, we find that all considered modification
problem are not easy, i.e., probably not an element ofPMOD/cert, when a selected
certificate or the no-solution promise is given (see Tables5.3and5.4). There are still a
few open cases for which no unconditional uselessness results could be proven. But, for
these open cases we showed in Chapter4 and in Appendix A that selected certificates
are probably hard to compute. Thus, in a scenario where no restriction is put on whether
the original instance must have a certificate we find that selected hints are useless in all
cases that we considered.

The reader may conjecture that selected hints are useless forall modification prob-
lems(c, VA). This is not the case, as modification functions and verifiers may be chosen
in very artificial ways. In Chapter8 (Theorem8.1) for example, we give a verifierV ′

SAT

for SAT such that(ad, V ′
SAT) ∈ PMOD/cert(V ′

A). Also, the function that substitutes
each given formula by a fixed ’yes’-instance ofSAT is an extreme example of a modi-
fication function that makes deciding modified formulas easy.
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Chapter 6

Non-NP-complete Problems

In this chapter we are concerned with the applicability of our techniques to problems
that are probably notNP-complete. A candidate for such a problem is the graph iso-
morphism problem.

The graph-isomorphism problem, abbreviated GI, is to decide for a given pair of
graphs whether they are isomorphic. In other words, the problem is to find a bijective
function between the vertices of the graphs such that the edge incidences are respected.
Formally,

GI := {(G,H) : there exists an isomorhism betweenG andH }.
The problem GI is one of the few problems that is neither known to beNP-complete
nor known to be inP. The problem GI belongs toSPP [AK06], and is useless as an
oracle forΣp

2 [Sch87]. As a consequence of these facts,NP-completeness of GI would
imply the collapse of the polynomial-time hierarchy to its second level [Sch87].

When dealing with problems that possibly belong toP1 we have to use a stronger
reduction than≤p

m-reduction, e.g.,≤log
m -reduction. Despite this fact we stick to≤p

m-
reduction and to modification functions fromFP for the following reason. Our theory
of uselessness of hints was developed for problemsA ∈ NP with a verifierVA. Since
the notion of a verifier becomes pathological for problems fromP our theory applies
best to problems fromNP \ P. Also, if GI ∈ P then hints become less important since
the problem is tractable evenwithout the use of any hint.

We use the following verifier for GI:

((G,H), φ) ∈ VGI ⇔ φ is an isomorphism fromG to H.

For this verifier, we address in the next section6.1 the issue of deciding modified
GI-instances when an arbitrary solution is given. Afterwards, in Section6.2we address
this issue for selected certificates. In Section6.3 we study the scenario in which the
promise is given that the original instance has no solution.

1Actually, evenP-hardness of GI w.r.t. some adequate reduction is uncertain. The strongest known
result towards this direction is that GI is hard under≤p

log-reduction for the complexity classDET,

the class of problems that are solvable byNC1 circuits with additional oracle gates that compute the
determinant of integer matrices [Tor04].
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Chapter 6 Non-NP-complete Problems

6.1 Uselessness of Arbitrary Certificate

Our theory of arbitrary hints, which was developed in Chapter3, and in particular the
notion

MODcVA := {(x, π,m) : (x, π) ∈ VA and c(x,m) ∈ A},
is independent ofVA being a verifier for anNP-completeproblem, and is also applica-
ble to the verifierVGI. Also, Observation3.2, which says that the problemMODcVA

cannot be any harder thanA, holds for the special caseVGI. Thus, if we want to show,
that a problemMODcVGI is as hard as the problem GI it suffices to show hardness of
MODcVGI, i.e., that GI≤p

m MODcVGI.
When looking at GI-instances(G,H), it suffices to consider graphsG andH with

the same number of vertices and edges. Otherwise(G,H) /∈ GI and consequently
((G,H), φ, m) /∈ MODcVGI for all φ,m ∈ Σ∗ and any modification functionc.

The most elementary nontrivial possibility of modification is the addition or removal
of a single edge in each ofG andH. Let ad2 andrm2 denote the corresponding modi-
fication functions. The subscript ’2’ accounts for the property that two edges are added
to or removed from the GI-instance. Formally,ad2 andrm2 are defined by

ad2

(
(G,H), (e, f)

)
:=

( (
V (G), E(G) ∪ {e}) ,

(
V (H), E(H) ∪ {f})

)
,

rm2

(
(G,H), (e, f)

)
:=

( (
V (G), E(G) \ {e}) ,

(
V (H), E(H) \ {f})

)
.

We show existence of useless hints for GI w.r.t. these both modification function via
the following results.

Theorem 6.1.GI ≤p
m MODad2VGI.

Proof. Let x = (G,H) be a GI-instance. LetV (G) = {v1, ..., vn} and letV (H) =
{w1, ..., wn}. Let G′ denote the graph defined by

• V (G′) := V (G) ∪ V (H) ∪ {ui : 1 ≤ i ≤ 4} and

• E(G′) := E(G) ∪ E(H) ∪ {{vi, u1}, {wi, u3} : 1 ≤ i ≤ n}.
Now the reduction functionsf1, f2, f3 ∈ FP are given by

• f1(x) := (G′, G′),

• f2(x) := id, and

• f3(x) := ({u1, u2}, {u3, u4}).
See Figure6.1 for an illustration of the instancead2(f1(x), f3(x)). It is obvious that
f2(x) ∈ VGI(f1(x)). Furthermore, the instancead(f1(x), f3(x)) is in GI if and only
if the two n + 1-vertex components ofad(f1(x), f3(x)) are isomorphic. The latter is
equivalent to the proposition thatG andH are isomorphic. Thus

x ∈ GI ⇔ (f1(x), f2(x)) ∈ VGI ∧ ad(f1(x), f3(x)) ∈ GI.

60



Chapter 6 Non-NP-complete Problems

G H
u1

u2

u3

u4

G H
u1

u2

u3

u4( ),
Figure 6.1:The GI-instancead2(f1((G,H)), f3((G,H))).

The problemMODad2VGI is as hard as the problem GI. We conclude that there exist
certificates that are useless as a hint. An analogous result holds for the modification
functionrm2.

Theorem 6.2.GI ≤p
m MODrm2VGI.

Proof. The proof is similar to the proof of Theorem6.1. The only difference to the
proof of Theorem6.1 is that the edges{u1, u2} and{u3, u4} are already contained in
both copies ofG′. The modification consists of deleting{u3, u4} from one copy ofG′

and{u1, u2} from the other one, such that the resulting GI-instance is identical to the
instancead2(f1((G, H)), f3((G, H))) from the proof of Theorem6.1.

6.2 Uselessness of Selected Certificate

The notions and definitions that we established in Chapter4, and which we applied to
NP-complete problems, are also applicable to the problem GI, which is probably not
NP-complete. In particular we use Theorem4.10, which we restate here for conve-
nience.

Theorem 4.10: LetVA be a verifier for some languageA ∈ NP and letC
be some complexity class that is closed under≤p

m-reduction. Then for all
languagesB it holds that

(
B ≤p

hi (c, VA) ∧ (c, VA) ∈ C∈MOD/cert(VA)
) ⇒ B ∈ C.

We apply Theorem4.10in the following way. We show that GI≤p
hi (c, VGI) for some

modification functionc. Under the assumption that modified instances are easy to de-
cide with selected certificates, i.e., if(c, VGI) ∈ C∈MOD/cert(VGI) for some complexity
classC ⊂ {A : A ≤p

m GI}, we get by Theorem4.10that the language GI would be-
come an element ofC. But, if GI ∈ C there is no use of deciding the modified instance
with help of selected certificates and aC-predicate, since the modified instance can be
decided directly, without the hint.

Unfortunately, we are unable to show uselessness of selected certificates for a small,
e.g., constant, amount of modification. Any attempt to prove GI≤p

hi (c, VGI) for some
small modificationc was frustrated by the apparently much more constrained nature
of GI in comparison to theNP-complete problems that are studied in Appendix A.
The smallest modification for which we are able to show uselessness of selected hints
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Figure 6.2:The GI-instance(G′, G′) before modification.

is the simultaneous addition, or removal, ofq(|(G,H)|) edges in both graphs, where
q(n) = K

√
n andK ∈ N a constant.

Theorem 6.3.LetK ∈ N \ {0} andq(n) = K
√

n. Then GI≤p
hi (rmq

2, VGI).

Proof. Let (G,H) be a GI-instance. In a nutshell, the proof is as follows. First, we
construct from(G,H) a GI instancef1((G,H)) := (G′, G′) that has exactly one iso-
morphism, namely, the obvious isomorphismid. Afterwards, we modify(G′, G′) to
(G′, G′)m by deleting2 |V (G)| edges in both parts of(G′, G′). We then show that the
modified instance(G′, G′)m belongs to GI if and only if(G,H) ∈ GI. Last, we use
a padding argument in a way that the2 |V (G)| many modification become relatively
small in comparison to the size of(G′, G′).

Let V (G) = {v1, ..., vn} andV (H) = {w1, ..., wn}. Let φid denote the mapping that
is given byφid(vi) := wi, for all 1 ≤ i ≤ n. We may assume in the following that
φid is no isomorphism betweenG andH andn ≥ 3; the other cases can be dealt with
separately. We construct an auxiliary graphG′ as follows:

• V (G′) := V (G) ∪ V (H) ∪ {xi, yi : 1 ≤ i ≤ n} ∪ {u1, u2, u3},
• E(G′) := E(G) ∪ E(H) ∪ {{vi, xi}, {vi, u2}, {wi, yi}, {wi, u3} : 1 ≤ i ≤ n}∪

{{xi, xi+1}, {yi, yi+1} : 1 ≤ i ≤ n− 1}∪
{{x1, y1}, {u1, u2}, {u1, u3}}.

The instancef1((G,H)) is given by(G′, G′) and is depicted in Figure6.2.
We now show thatid is the only isomorphism for(G′, G′). Assume to the contrary

that there exists another isomorphismφ 6= id for (G′, G′). Note that sincen ≥ 3 the
verticesu2 andu3 are the only vertices of maximum degree inG′. The vertexu1 is
the only vertex that has distance 1 to both of the vertices of maximum degree, thus
φ(u1) = u1.

Case 1: φ(u2) = u3: Note that there are only two vertices inG′ that have degree 2
and distance greater than1 from u2 or u3, namelyxn andyn. Among these two
verticesxn andyn, the vertexxn is the only vertex with distance 2 tou2 and the
vertexyn is the only vertex with distance 2 tou3 = φ(u2). Thusφ(xn) = yn.

62



Chapter 6 Non-NP-complete Problems

u1

u2 u3

vn

vn−1

v1

v2

v3

xn

xn−1

x3 x1x2

wn

wn−1

w1

w2

w3

yn

yn−1

y3y1 y2

G H

u1

u2 u3

vn

vn−1

v1

v2

v3

xn

xn−1

x3 x1x2

wn

wn−1

w1

w2

w3

yn

yn−1

y3y1 y2

G H( , )
Figure 6.3:The modified GI-instance(G′, G′)m.

The vertexxn−1 is the sole vertex with distance 1 toxn and distance 2 tou2.
The same holds for the verticesyn−1, yn andu3. Consequently,φ(xn−1) = yn−1.
Inductive application of this argument, namely thatxi (yi) is the sole vertex with
distance 1 toxi−1 (yi−1) and distance 2 tou2 (u3), we obtainφ(xi) = yi for all
i ≤ n.

For every vertexxi, 1 ≤ i ≤ n, there is only one adjacent vertex that has distance
1 to u2, namelyvi. The same holds foryi andu3, which havewi as a common
neighbor. Consequently,φ(vi) = wi for all 1 ≤ i ≤ n. Thus,φid yields an
isomorphism on(G,H), a contradiction to our assumptions.

Case 2: φ(u2) = u2: Using similar arguments as in Case 1, we can show thatφ(v) =
v for all v ∈ V (G′). But thenφ = id, a contradiction to the assumptionφ 6= id.

Thus,(G′, G′) has exactly one isomorphism.
Now we modify(G′, G′) to (G′, G′)m such that(G′, G′)m ∈ GI ⇔ (G,H) ∈ GI.

The modification consists of the deletion of all the edges{xi, xi+1} and{yi, yi+1}, for
1 ≤ i ≤ n−1, as well as the deletion of the edge{x1, y1}. All these edges are deleted in
both copies ofG′. Furthermore, we delete the edge{u1, u3} in one copy ofG′ and the
edge{u2, u3} in the other copy. For an illustration of the modified instance(G′, G′)m

see Figure6.3. Note that(G′, G′)m consists of graphs that have two components each,
one component with2n + 1 vertices and another component with2n + 2 vertices. It is
easy to see that the respective components are isomorphic if and only ifG andH are
isomorphic. Consequently,(G′, G′)m ∈ GI ⇔ (G, H) ∈ GI.

Up to now, we know that GI≤p
hi (rm

2|V (G)|
2 , VGI). Now, we show that GI≤p

hi

(rmq
2, VGI), whereq(n) = K

√
n andK ∈ N \ {0}. Therefore, we pad the graphG′ by

adding toG′ a componentGpad with at least2k |V (G)|k vertices and such thatGpad 6=
G′ and(Gpad, Gpad) has only the trivial isomorphismid. An example of such a graph
Gpad is a long enough path in which an additional vertex is appended to one of the two
vertices with distance2 to an endpoint of the path. Correctness of this construction is
obvious.

Theorem 6.4.LetK ∈ N \ {0} andq(n) = K
√

n. Then GI≤p
hi (adq

2, VGI).
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Figure 6.4:The GI-instance(G′, G′) when the modification isadq.

Proof. The proof is similar to the proof of Theorem6.3. The auxiliary graphG′ is
almost as in the proof of Theorem6.3, except that the edges{u1, u2},{u1, u3}, and
{x1, y1} are missing and that new verticesx andy are introduced, together with the
edges{xn, x} and{yn, y}. The instancef1((G,H)) is again given by(G′, G′). See
Figure6.4for an illustration of(G′, G′). Using similar arguments as above, it is obvious
that also for this graphG′ the GI-instance(G′, G′) has only the trivial isomorphismid.
We modify (G′, G′) by adding all the missing edges between the verticesx, x1, ..., xn

and all the edges between the verticesy, y1, ..., yn, which results in twon + 1-cliques.
Also, we add in one copy ofG′ the edge{u1, u2} and in the other copy ofG′ the edge
{u1, u3}. It is easy to see, that this modified instance(G′, G′)m ∈ GI if and only if
(G, H) ∈ GI.

The assertion follows by a padding argument: We simply add large enough graphs
Gpad, e.g., graphs of size2k · |V (G)|2k, to G′. To make this construction work, we also
assume that the GI-instance(Gpad, Gpad) only has one isomorphism, namelyid.

6.3 No Solution as a Promise

In this section we answer the question if the knowledge that two graphs are not isomor-
phic is of any use when modifying these graphs. We use our framework from Section
5 to answer this question. In detail, we use Theorem5.9, which we restate here for
convenience.

Theorem 5.9: Let A ∈ NP, c be a modification function, andC be a
complexity class that is closed under≤p

m-reduction. For all languagesB it
holds that

B ≤p
pi (c, A) ∧ (c, A) ∈ CMOD//∈ ⇒ B ∈ C.

By this theorem, it suffices to prove that GI≤p
pi (c, GI) in order to show that the

no-solution promise is a useless hint for the modification problem(c, GI). We are able
to show this for the two modification functionsad2 andrm2.

Theorem 6.5.GI ≤p
pi (c, GI) for c ∈ {ad2, rm2}.
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Figure 6.5:The GI-instance(G′, H ′) from the proof of GI≤p
pi (rm2, GI).

Proof. Let (G,H) be a GI-instance withV (G) = V (H) = {v1, ..., vn}. We assume
thatn ≥ 4; the finite many special cases withn < 4 can be handled separately. We
construct from(G,H) the GI instancef1((G,H)) as illustrated in Figure6.5. That is,
f1((G, H)) = (G′, H ′), whereV (G′) = V (H ′) = V (G) ∪ {v, u1, ..., u4},

E(G′) = E(G) ∪ {{vi, v} : 1 ≤ i ≤ n} ∪ {{u1, u2}, {u2, u3}, {u3, u4}, {u4, u1}},
E(H ′) = E(H) ∪ {{vi, v} : 1 ≤ i ≤ n} ∪ {{u1, u2}, {u2, u3}, {u3, u1}, {u3, u4}}.

Obviously,G′ andH ′ are not isomorphic, sinceG′ has no degree-one vertex in its single
4-vertex component, butH ′ has. Thus,f1(G,H) /∈ GI. The functionf1 is the same for
both modificationsad2 andrm2.

Now, let c = rm2. We modify(G′, H ′) by deleting the edge{u2, u3} in both ofG′

andH ′. In consequence, the resulting graphs have as their single four-vertex compo-
nents paths of length three. Then + 1-vertex components of the modified graphs are
isomorphic if and only ifG andH are isomorphic. This shows the assertion.

In casec = ad2, the modification is the addition of the edge{u2, u4} in both ofG′

andH ′, which results in isomorphic four-vertex components.

Conclusions

In this chapter we showed that the techniques that we have developed in the last few
chapters are also applicable to problems that are probably notNP-complete. In partic-
ular, we showed for the problem GI, which contains pairs of isomorphic graphs, that

1. there exist useless certificates when the modification is the removal or the addition
of two edges,

2. all certificates are useless when the modification is the removal or the addition of
polynomially many edges, and

3. the no-solution promise is a useless hint when the modification is the removal or
the addition of two edges.

We were unable to show uselessness of selected hint for a small amount of modification.

Open problem 2. Does GI≤p
hi (adk

2, VGI) or GI ≤p
hi (rmk

2, VGI) hold for some constant
k ≥ 1?
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Chapter 7

Approximated Solutions of
Modified Instances

We have seen in the last chapters that often a solution for the original instance is a
completely useless hint when we ask for a solution of a slightly modified instance. For
practical purposes these are rather unsatisfying results. In this section we show that
when we weaken our demands on the quality of solutions then modified instances can
indeed benefit from given hints.

In detail, we ask if an optimum solution for the original instance can be helpful to
find a not necessarily optimum, but sufficiently good, solution for a modified instance.
In other words, can we find good approximated solutions for modified instances of
optimization problems?

7.1 Approximation Basics

We start by defining the notion of an optimization problem. For each input instance
of an optimization problem there is a set of feasible solutions associated to it. For
each feasible solution a certain cost is defined. The task is to find a feasible solution
with optimum cost. Slightly rephrasing definitions from [ACG+99], we define anNP-
optimization problem as a 3-tuple(VB, cost, goal), where

• VB is a verifier for some languageB ∈ NP. We say thatVB(x) is the set of
feasible solutions ofx.

• Given an instancex and a feasible solutiony ∈ VB(x), cost(x, y) is a polynomial-
time computable positive rational and

• goal is eithermin or max.

We denote byNPO the class of allNP-optimization problems. As it is usual in the
literature, we define an optimization problemB in the following way:

PROBLEM: PROBLEM NAME (which begins with ’Min’ or ’Max’)
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INSTANCE: Specifies the input instances forB.

SOLUTION: Specifies the feasible solutions for an inputx.

MEASURE: Defines how the cost of a feasible solution is measured.

From this description, the formal triple(VB, cost, goal) can be derived. For an exam-
ple of anNP-optimization problem see the definition ofM INTSPat the beginning of
Section7.4.

For anNP-optimization problem the task is to find a feasible solutiony that achieves
the best objective value, i.e., a solutiony with

cost(x, y) = goal{cost(x, y′) : y′ ∈ VB(x)}.

We denote byopt(x) the cost of the optimum solution for an instancex. If y is a solution
for x then theperformance ratioof y is defined as

R(x, y) =

{
cost(x, y)/opt(x), if goal = min,
opt(x)/cost(x, y), if goal = max.

ThusR(x, y) is always at least 1; the closer it is to 1, the closer the solution is to the
optimum. For a functionf : N → [1,∞), we say that an algorithmA is anf(n)-
approximation algorithmif and only if for every inputx it holds thatR(x,A(x)) ≤
f(|x|).

We categorize the hardness of optimization problems by sorting them into the fol-
lowing descending chain of complexity classes. We say that an optimization problem
(VB, cost, goal) ∈ NPO belongs to the class

• APX: if and only if there exist a constant functionf(n) = δ and an algorithm
A such thatA is an f(n)-approximation algorithm. In this case we say that
(VB, cost, goal) is δ-approximable.

• PTAS (polynomial-time approximation scheme), or has aPTAS: if and only if
there exists an algorithmA such that for every input pair(x, ε), ε ∈ R andε > 0,
the algorithmA computes a solutiony with R(x, y) ≤ 1 + ε in time pε(|x|),
wherepε is a polynomial that depends onε, but not onx.

• FPTAS (fully polynomial-time approximation scheme), or has anFPTAS: if
and only if there exists an algorithmA and a polynomialp such that for every
input pair(x, ε), ε ∈ R andε > 0, the algorithmA computes a solutiony with
R(x, y) ≤ 1 + ε in timep(|x| , 1/ε).

It is obvious thatFPTAS ⊆ PTAS ⊆ APX ⊆ NPO. UnlessP = NP these
inclusions are strict. For more details on approximation we refer to [ACG+99].

Finally, we say that an optimization problem issolvable with an absolute-error guar-
antee ofk if there exists an algorithmA such that for every inputx the solutionA(x)
differs from an optimum solution by at mostk, i.e.,|cost(A(x))− opt(x)| ≤ k. From a
practitioners point of view an approximation algorithm with an absolute error guarantee
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of 1 is the best one can get. But, such a constant error approximation even exists for
problems that do not belong toAPX, unless P=NP.1

7.2 Approximation of modification problems

In the context of this thesis, we are interested in approximating solutions of slightly
modified instances of optimization problems, assuming that anoptimumsolution for
the original instance is known. This problem is referred to asreoptimizationin the
literature [Sch97, ABS03, AEMP06, EMP07, BHMW08]. Again, we distinct between
the following two scenarios: 1.) knowledge of an arbitrary optimum solution and 2.)
knowledge of a carefully selected optimum solution of the original instance. In the
literature, so far only the first approach is considered. We will show our positive results,
i.e., good approximation algorithms, to be valid for any given solution. In contrast we
will prove that all our negative results, i.e., nonexistence of anFPTAS or nonexistence
of anf(n)-approximation, are valid independent of the given optimum solution.

To formally distinguish between these both cases, we introduce, in analogy to previ-
ous chapters, the two notionsMODc(VB, cost, goal) and(c, (VB, cost, goal)). Herec
is a modification function and(VB, cost, goal) ∈ NPO. We say that an algorithmA is
anf(n)-approximation algorithmfor MODc(VB, cost, goal) if and only for all original
instancesx ∈ Σ∗, for all modificationsm ∈ Σ∗, and forall optimum solutionsyopt

of x, the algorithmA computes from(x, yopt,m) a solutionyA for c(x,m) such that
R(c(x,m), yA) ≤ f(|c(x,m)|).

To define the notion off(n)-approximability for the problem(c, (VB, cost, goal)) we
substitute the phrase ’forall optimum solutionsyopt of x’ by ’there existsan optimum
solutionyopt of x’. Hence, we say that an algorithmA is anf(n)-approximation algo-
rithm for (c, (VB, cost, goal)), if for all original instancesx ∈ Σ∗, for all modifications
m ∈ Σ∗, thereexistsan optimum solutionyopt of x such that the algorithmA computes
from (x, yopt, m) a solutionyA for c(x,m) with R(c(x,m), yA) ≤ f(|c(x,m)|).

We can use the above notion off(n)-approximability to state, in analogy to the last
section, what containment ofMODc(VB, cost, goal) and(c, (VB, cost, goal)) in APX
means. Similar definitions can also be given to state that a reoptimization problem
MODc(VB, cost, goal) or (c, (VB, cost, goal)) has anPTAS, has anFPTAS, or has an
approximation with an absolute-error guarantee.

7.3 Some Trivial Results

Given an optimization problemB and a modification functionc, an algorithm that com-
putes a solution forc(x,m) may ignore the hint, i.e., the optimum solution of the orig-

1The problemM INTSP∗ with cost∗(G,T ) =
( ∑

e∈T

c(e)
) · ( max

e∈E(G)
c(e) · |V (G)| )−1

does not belong

to APX, unlessP = NP. On the other hand, for every feasible solutionT of a M INTSP∗-instanceG
it holds thatcost(G,T ) ≤ 1. Consequently, it it not hard to find a feasible solution with an absolute
error of 1.
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inal instancex. ThusMODcB and(c, B) are not harder thanB.

Observation 7.1. Let B ∈ NPO. If B is f(n)-approximable (has aPTAS, has an
FPTAS, or is solvable with an absolute-error guarantee ofk) then MODcB and
(c, B) are f(n)-approximable (have aPTAS, have anFPTAS, or are solvable with
an absolute-error guarantee ofk).

Furthermore, any result for approximability of(c, B) is also valid for the problem
MODcB.

Observation 7.2. If (c, B) is f(n)-approximable (has aPTAS, has anFPTAS, or is
solvable with an absolute-error guarantee ofk), thenMODcB is f(n)-approximable
(has aPTAS, has anFPTAS, or is solvable with an absolute-error guarantee ofk,
respectively).

This last result is valid because the respective definitions off(n)-approximability
only differ by the quantifier for the hinty.

A nice criterion forNP-hardness of a reoptimization problemMODcA is given in
[BHMW08].

Lemma 7.3 ([BHMW08]). Let A be anNP-hard optimization problem,c be a mod-
ification function, andB be a subset of the input instances ofA that is solvable in
polynomial time. Ifc is a modification function, such that every input instancex of A
can be obtained from aB-instance by polynomial many applications ofc, thenMODcA
is NP-hard.

For a proof we refer to [BHMW08] — in a nutshell, the proof uses the fact that
Turing reductions are sufficient to showNP-hardness of an optimization problem. By
application of this Lemma, it is an easy task for the reader to verify, that all coming
reoptimization problemsMODcA areNP-hard.

Next we show two simple examples of reoptimization problems for whichanyopti-
mum solutionyopt of the original instancex can be used to get a very good solution for
a modified instancec(x,m). In detail, we give two examples where the old optimum
solutionyopt is slightly modified and gives a solution for the modified instances that
differs by at most 1 or 2, respectively, fromopt(c(x,m)). The first example is the prob-
lem M INVERTEXCOVER (M INVC, for definition see [ACG+99]) and the modification
function ad, which adds an edge toG. Note thatM INVC is not approximable with
factor1.37 in the usual non-reoptimization case [DS05].

Theorem 7.4. MODadM INVC is approximable with an absolute error of 1.

Proof. Let Go be the original instance,Co
opt be a minimum vertex cover forGo, and

{u, v} be the edge that is added toGo. Each solution forGm := ad(Go, {u, v}) has
at least size

∣∣Co
opt

∣∣, otherwiseCo
opt was no optimum solution forGo. Thus,opt(Gm) ≥∣∣Co

opt

∣∣. Furthermore, by adding one ofu or v to Co
opt we get a vertex cover forGm of

size at most
∣∣Co

opt

∣∣ + 1 ≤ opt(Gm) + 1.
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Our second exemplary problem, which is a bit more interesting, is the problem
M INMAX MATCH. It is defined as follows:

PROBLEM: M INMAX MATCH

INSTANCE: GraphG = (V,E).

SOLUTION: A maximal matchingE ′, i.e., a subsetE ′ ⊆ E such that no two edges
in E ′ share a common endpoint and every edge inE \ E ′ shares a
common endpoint with some edge in E’.

MEASURE: Cardinality of the matching, i.e.,|E ′|.
The problemM INMAX MATCH is APX-complete [YG80] and has a factor 2 ap-

proximation [ACG+99], but is approximable with a constant error of2 when reopti-
mization is used.

Theorem 7.5. MODadM INMAX MATCH is approximable with an absolute error of 2.

Proof. Let Go = (V,E) be the original instance,M o
opt be a maximal matching of min-

imum size forG, ande = {u, v} be an edge to be added. LetGm := ad(Go, e) be
the modified graph andMm

opt be an optimum solution forGm. We claim that
∣∣Mm

opt

∣∣ ≥∣∣M o
opt

∣∣− 1. Assume to the contrary that
∣∣Mm

opt

∣∣ ≤
∣∣M o

opt

∣∣− 2.

Case 1: e /∈ Mm
opt, e andMm

opt share no common vertex:ThenMm
opt is not maximal, a

contradiction.

Case 2: e /∈ Mm
opt, e andMm

opt share at least one common vertex withMm
opt: Thus, the

matchingMm
opt is also a maximal matching forGo, but is smaller thanM o

opt, a
contradiction.

Case 3: e ∈ Mm
opt: When removing the edgee from Mm

opt we obtain a matching of
size

∣∣Mm
opt

∣∣− 1. But, this matching does not need to be maximal inGo. If this is
the case thenMm

opt \ {e} can be expanded to a maximum matching by adding at
most two other edgesf andg, wheref, g 6= e, that contain the verticesu andv
respectively. This matchingMm

opt \ {e} ∪ {f, g} is a maximal matching forGo of
size at most

∣∣Mm
opt

∣∣ + 1, and hence smaller thanM o
opt. This contradicts the fact,

thatM o
opt is optimum forGo.

This shows that
∣∣Mm

opt

∣∣ ≥
∣∣M o

opt

∣∣− 1.
An algorithm that approximates a minimum maximal matching forGm with an ab-

solute error of 2 works as follows. First, we test if the matchingM o
opt is still maximal

for Gm. If this is the case we outputM o
opt, which results in a solution with an absolute

error of at most1. If M o
opt is not maximal inGm, it can be made maximal by adding the

edgee to M o
opt. This yields an approximation with an absolute error of at most 2.

Using similar arguments, it should be an easy task for the reader to verify that the
problemsMODrmM INVC andMODrmM INMAX MATCH also are approximable with
an absolute error guarantee of 1 and 2, respectively. For the majority of unweighted
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approximation problems listed in [ACG+99] we were able to give algorithms that ap-
proximate a solution for slightly modified instances with an absolute error of 1 or 2.
The respective modifications are chosen in a canonical way. We desist from giving a
detailed list of all of these easy problems. But, we give in AppendixB an example of
an unweighted optimization problem that hasno absolute-error approximation, unless
P = NP. Namely, we show this for the problemM INMAX IS.

7.4 The Travelling Salesperson Problem ( M INTSP)

In the last section we indicated that many unweighted optimization problems have an
approximation with an absolute-error of at most 1 or 2. If we deal withweightedmodifi-
cation problems, for example weighted graphs or formulas, a solution for the modified
instance with some absolute error seems hard to find. In this section we exemplar-
ily study approximability of weighted modification problems for the famous travelling
salesperson problem (TSP).

PROBLEM: M INTSP

INSTANCE: A complete graphG = Kn and a functionw : E(G) → N assigning
a weight to each edge ofG.

SOLUTION: A Hamiltonian cycleT in G. Such a cycle is called a tour.

MEASURE: The length of the tourT , i.e.,
∑
e∈T

w(e).

A problemMAX TSPcan be defined in the same way and is studied in Appendix B.
The problemM INTSPis NPO-complete and admits nop(n)-approximation,p polyno-
mial,unlessP = NP.

For M INTSPandMAX TSP, the task of reoptimization has already been addressed
in [AEMP06]. The modification that is considered in [AEMP06] is the addition of a
vertex, i.e., a new city, to the graph, thereby also assigning a cost to all newly intro-
duced edges. Letadv denote the corresponding modification function. It is shown in
[AEMP06] that MODadvM INTSPis not approximable with ratio2p(n), p polynomial,
unlessP = NP.

In this thesis, we examine reoptimization w.r.t. edge-cost modifications, that is, small
modifications to the weight-functionw. In detail, we consider the modification func-
tions

• inc((G,w), (e, i)) := (G,w′), wherew′(e) := w(e) + i, and

• dec((G,w)), (e, i) := (G, w′), wherew′(e) := w(e)− i,

andw′(e′) = w(e′) for all other edgese′ 6= e. Reoptimization ofM INTSPw.r.t. inc
anddec has already been examined in [BFH+07] and [BHMW08]. For example, the
following result is already in [BFH+07].

Theorem 7.6 ([BFH+07]). Let p be a polynomial. UnlessP = NP, the problems
MODdecM INTSPandMODincM INTSPare notp(n)-approximable.
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Thus, whensome unselectedoptimum solution of the original instance is given, the
problem of reoptimizingM INTSPis as hard as the problemM INTSPitself. We are
able to improve on this result, by showing thatno solution is sufficient for this task.
First, we prove hardness of(inc, M INTSP).

Theorem 7.7.UnlessP = NP, (inc, M INTSP) is not2|V |-approximable.

Proof. Let (inc, M INTSP) be2|V |-approximable. LetA be an algorithm that, given an
original instanceGo, an optimum solutionT o

opt of Go, and a modificationm, computes
a solutionTA for Gm := inc(Go,m) with cost(Gm, TA) ≤ 2|V (Gm)|opt(Gm). We show
thatHC ∈ P under this assumption.

Let G = ({v1, ..., vn}, E) be a graph. We assume the reader to be familiar with the
proof of Theorem9.27. Let G′ be defined as in the proof of Theorem9.27. UsingG′

we construct aTSP-instanceGo = (K|V (G′)|, w) where

w(e) :=





1, if e ∈ E(G′) \ {{v1
1, v

1
4}},

2, if e = {v1
1, v

1
4},

28n · (8n + 1), otherwise.

Recall from the proof of Theorem9.27 that C ′ is the sole Hamiltonian cycle of the
graph

(
V (G′), E(G′) \ {v1

1, v
1
4}), thereforeC ′ is the sole optimum tour inGo having

cost(Go, C ′) = |V (G′)| = 8n. Thus, the optimum solution thatA gets as part of its
input has to beC ′. We modify Go by incrementing the weight of the edge{v1

3, v
1
5}

from 1 to 28n · (8n + 1). Let Gm denote the modified graph and letm be such that
Gm := inc(Go,m).

When applyingA to the input(Go, C ′,m) we obtain a solutionTA. We claim that

G ∈ HC ⇔ cost(Gm, TA) ≤ 28n · (8n + 1),

which yields a polynomial time algorithm forHC.
To show sufficiency, suppose thatG has a Hamiltonian cycle. This cycle induces a

tour with cost8n+1 in Gm, i.e.,opt(Gm) ≤ 8n+1. SinceA gives a2|V |-approximation
we conclude that

cost(Gm, TA) ≤ 28n · opt(Gm) ≤ 28n · (8n + 1).

To show necessity, suppose thatcost(Gm, TA) ≤ 28n · (8n + 1). Since all edge-
weights are nonzero,TA is a tour that does not use an edge of weight28n · (8n + 1).
Therefore, the tourTA only uses edges that correspond to some edge in the graph
(V (G′), E(G′) \ {{v1

3, v
1
5}}). Hence, the graph(V (G′), E(G′) \ {{v1

3, v
1
5}}) has a

Hamiltonian cycle and, as we have seen in the proof of Theorem9.27, it follows thatG
has a Hamiltonian cycle.

We can show the same non-approximability results as in Theorem7.7 for the modi-
fication functiondec.

Theorem 7.8.UnlessP = NP, (dec, M INTSP) is not2|V |-approximable.
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Proof. (Sketch)We use the same construction as in the proof of Theorem7.7, but assign
the following weights to the edges ofGo:

w(e) :=





1, if e ∈ E(G′) \ {{v1
1, v

1
4}, {v1

3, v
1
5}},

28n · (8n + 1), if e = {v1
3, v

1
5},

28n · (8n + 2), otherwise.

Note that each Hamiltonian tour throughG′ has to use one of the edges{v1
1, v

1
4} or

{v1
3, v

1
5}. Consequently,C ′ is the sole optimum tour inGo.

We modifyGo toGm by decreasing the weight of the edge{v1
1, v

1
4} from 28n ·(8n+2)

to 1. Thus, ifG ∈ HC thenGm has a tour of size8n, otherwise a tour inGm has cost
at least28n · (8n + 1). Consequently,

G ∈ HC ⇔ cost(Gm, TA) ≤ 28n · 8n.

7.5 Metric TSP ( M INTSP∆)

In this section we study the travelling salesperson problem when restricted to special
instances. We pose the restriction that for every instance(G,w) the triangle inequality
shall be satisfied, that is, for every three different verticesu, v, z ∈ V (G) it holds that
w({u, v}) + w({v, z}) ≥ w({u, z}). The problem of finding an optimum tour in such
restrictedTSP-instances is called the metricTSP(TSP∆).

PROBLEM: M INTSP∆

INSTANCE: A complete graphG = Kn and a functionw : E(G) → N assigning
a weight to each edge ofG. Each triple of vertices fromV (G) shall
satisfy the triangle inequality.

SOLUTION: A Hamiltonian cycleC in G.

MEASURE: The length of the cycleC, i.e.,
∑
e∈C

c(e).

A problemMAX TSP∆ is defined in the same way.
The best known approximation results forM INTSP∆ is a 3

2
-approximation due to

Christofides [Chr76]. It is unlikely that M INTSP∆ has aPTAS since it isAPX-
complete [PY93]. Regarding the modificationadv it has been shown in [AEMP06]
that

• MODadvM INTSP∆ is approximable with ratio4
3
,

• MODadvk M INTSP∆, for k ∈ N, is approximable with ratio3
2
− 1

(4k+2)
,

where the modification functionadvk is the addition ofk vertices to the original graph
(also see Definition4.23). In this thesis, we consider as modification the change of
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single edge weights. Thereby, we are only interested in weight changes that do not
lead to a violation of the triangle inequality. Otherwise, we had to change several
other weights in the graph to reestablish the triangle inequality, which contradicts our
approach ofminimalmodification. The modification functions that increases the weight
of a single edge and respects the triangle inequality is given by

inc∆(G, (e, i)) :=





inc(G, (e, i)), if G andinc(G, (e, i)) satisfy
the triangle inequalilty,

((∅, ∅), ∅), otherwise.

A modification functiondec∆ is defined in the same way. In [BHMW08] the authors
show thatdec∆-M INTSP∆ is 7/5-approximable. In the same paper the authors estab-
lished the following lemma.

Lemma 7.9 ([BHMW08]). Let Go be a complete, weighted graph,e ∈ E(G), i ∈ N,
c ∈ {dec∆, inc∆}, andGm := c(Go, (e, i)). If Gm is not the empty graph((∅, ∅), ∅),
i.e.,Go andGm satisfy the triangle inequality, then every edge incident toe has cost at
leasti/2.

Proof. Let {u, v} be the modified edge. We just show the assertion for the modification
dec∆ and edges incident tou. Let ce denote the weight of the edgee in Go. Let
z ∈ V (G) \ {u, v}. Applying the triangle inequality to the triangle induced byu,v, and
z we get

w({u, z}) + w({z, v}) ≥ ce (triangle inequality inGo),
w({u, z}) + (ce − i) ≥ w({z, v}) (triangle inequality inGm).

Summarizing these inequalities we get2 · w({u, z})− i ≥ 0.

Using Lemma7.9, we improve on the factor7/5 given in [BHMW08] by showing

Theorem 7.10.MODdec∆M INTSP∆ is 4/3-approximable.

Proof. Given an original graphGo, a modified graphGm := dec∆(Go, (e, i)), and an
optimum tourT o

opt for Go, an algorithmA that approximates a tour forGm with a factor
4/3 works as follows. The caseGm = ((∅, ∅), ∅) is trivial. Otherwise,A computes a
solutionTm

Chr for Gm using Christofides’s algorithm [Chr76]. We now argue that the
better of the both toursT o

opt andTm
Chr yields a4/3-approximation.

Without going into detail, we mention that in general the cost ofTm
Chr is bounded by

the size of a minimum spanning tree ofGm (short,MST (Gm)) added to the size of a
minimum perfect matchingM between the vertices of odd degree inMST (Gm). Also,
the size ofM is bounded by1

2
opt(Gm). For details see [Chr76]. By Lemma7.9, an

optimum tourTm
opt in Gm uses at least one edge of weighti/2. SinceTm

opt without that
i/2-weight edge is a spanning tree, we have thatMST (Gm) ≤ opt(Gm) − i

2
. Thus,

cost(Gm, Tm
Chr) ≤ 3

2
opt(Gm)− i

2
.

On the other hand, note thatopt(Go) ≤ opt(Gm) + i, since optimum solutions inGo

andGm differ by at mosti. Also,

cost(Gm, T o
opt) =

{
opt(Go)− i, if e is part ofT o

opt,
opt(Go), otherwise,
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and thereforecost(Gm, T o
opt) ≤ opt(Go). By combining the two inequalities we get that

cost(Gm, T o
opt) ≤ opt(Gm) + i

In casei ≤ 1
3
opt(Gm) the tourT o

opt yields a4/3-approximation inGm. In case
i > 1

3
opt(Gm) the tourTm

Chr is a4/3-approximation inGm.

This proof translates mutatis mutandis toinc∆.

Theorem 7.11.The probleminc∆-M INTSP∆ is 4/3-approximable.

Proof. Let Gm := inc∆(Go, (e, i)). Obviously,opt(Go) ≤ opt(Gm). Also,

cost(Gm, T o
opt) =

{
opt(Go) + i, if e is part ofT o

opt,
opt(Go), otherwise,

and thereforecost(Gm, T o
opt) ≤ opt(Go) + i. By combining the two inequalities we get

thatcost(Gm, T o
opt) ≤ opt(Gm) + i. The rest of the proof is a carbon copy of the proof

of Theorem7.10.

We can generalize the above idea, to the case in which more than one edge is de-
creased or increased.

Theorem 7.12.MODdeck
∆

M INTSP∆ andMODinck
∆

M INTSP∆ are approximable with

ratio 3k+1
2k+1

, for all k ∈ N.

Proof. (Sketch)As in the proof of Theorem7.10we output the better one of the old
solution and the solution obtained by Christofides’s algorithm. Leti1, ..., ik be the num-
bers by which the edges are decreased/increased. The analysis relies on the facts that

cost(Gm, T o
opt) ≤ opt(Gm) + k · max

1≤j≤k
ij , and

cost(Tm
Chr) ≤

3

2
opt(Gm)− max

1≤j≤k

ij
2

.

If max
1≤j≤k

ij ≤ opt(Gm)/(2k+1) thenT o is a 3k+1
2k+1

-approximation, otherwiseTm
Chr yields

such a bound.

As another generalization, it is shown in [BFH+07] that reoptimization also yields
improved bounds for input instances that satisfy a relaxed form of triangle inequality,
namely theβ-triangle inequalityw{u, z} ≤ β · (w{u, v}+ w{v, z}) for β ≥ 1.

Besides these positive results, we show the following lower bound for approximabil-
ity.

Theorem 7.13. There is noFPTAS for (dec∆, M INTSP∆) and (inc∆, M INTSP∆),
unlessP = NP.
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Proof. First, we show that(dec∆, M INTSP∆) has noFPTAS. Assume to the contrary
that there is anFPTAS for (dec∆, M INTSP∆). Let p be a polynomial andA be an
algorithm that, given a weighted graphGo, an optimum tour inGo, a modification
m, and ε > 0, outputs a tourTA for Gm := dec∆(Go,m) with cost(Gm, TA) ≤
(1+ε) ·opt(Gm) in timep(|V (G)| , 1/ε). We show that under this assumptionHC ∈ P.

Let G be a graph. We assume the reader to be familiar with the proof of Theorem
9.27, and in particular with the construction of the graphG′. UsingG′ we construct a
M INTSP∆-instanceGo = (K|V (G′)|, w) where

w(e) :=

{
2, if e ∈ E(G′) \ {{v1

1, v
1
4}},

3, otherwise.

Note that any complete graph with weights 2 and 3 satisfies the triangle inequality, and
even so if the weight of a single edge is reduced to 1.

Let n := |V (G)| andn′ := |V (Go)| = 8n. First, note that the tour

T o
opt = (v1

1, v
1
2, v

1
3, v

1
5, v

1
4, v

1
6, v

1
7, v

1
8, v

2
1, ..., v

n−1
8 , vn

1 , vn
2 , vn

3 , vn
5 , vn

4 , vn
6 , vn

7 , vn
8 , v1

1),

is the sole optimum tour inGo and has cost2n′. Now we modify the graphGo by
decreasing the cost of the edge{v1

1, v
1
4} to 1. The resulting graph is the graphGm. Note

thatT o
opt still has cost2n′ in Gm, thereforeopt(Gm) ≤ 2n′. In addition, we claim that

Gm has a tour with cost2n′ − 1 if and only if G has a Hamiltonian cycle. For a proof
of this fact, note that a tour with cost2n′ − 1 has to use the edge{v1

1, v
1
4} and has to

avoid all edges with cost 3. Consequently, it traverses the gadgetH1, and also all other
gadgetsHi, via (vi

3, v
i
2, v

i
1, v

i
4, v

i
5, v

i
8, v

i
7, v

i
6), 1 ≤ i ≤ n. This is possible if and only if

G is Hamiltonian (see proof of Theorem9.27).
Let ε = 1/(3n′). For every tourT with cost(Gm, T ) = opt(Gm) + 1 we have

cost(Gm, T ) =

(
1 +

1

opt(Gm)

)
opt(Gm) ≥

(
1 +

1

2n′

)
opt(Gm) > (1 + ε)opt(Gm).

Consequently, the outputTA of the algorithmA(Go, T o
opt,m, ε) is an optimum solution

of Gm. Now, cost(Gm, TA) = 2n′ − 1 if and only if G ∈ HC. The assertion follows
from the fact that the running time ofA(Go, T o

opt,m, ε) is bounded byp(1/ε, n′) =
p(24n, 8n).

The proof for(inc∆, M INTSP) is essentially the same, except that the edge{v1
1, v

n
8 }

has weight 1 inGo and has weight 3 inGm.

Conclusions

In this chapter, we presented the concept ofapproximationof slightly modified in-
stances, also known as reoptimization. We showed that reoptimization can help to im-
prove the approximability of hard optimization problems. In detail, we indicated that
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reoptimization leads for most2 unweighted optimization problems to approximations
with an absolute error of 1 or 2.

For (natural) weighted optimization problems we were unable to find such absolute
error approximations. But, we gave an example of a reoptimization problem, namely
MODinc∆M INTSP∆, where modification leads to an improved approximation ratio of
4/3.

Open problem 3.Do MODinc∆M INTSP∆ andMODdec∆M INTSP∆ have aδ-approxi-
mation withδ < 4/3?

In AppendixB we even give aPTAS for an reoptimization problem that isAPX-
complete in its classical non-reoptimization variant. It is an open question if the same
result holds forM INTSP∆.

Open problem 4. Is there aPTAS for inc∆-M INTSP∆ or dec∆-M INTSP∆?

As a first step in this direction, we showed that there is noFPTAS for these two
problems. Besides the above mentioned positive results, we also gave an example where
reoptimization does not help at all, namely when altering an edge-weight of (nonmetric)
TSP-instances.

Table7.1summarizes our main results for reoptimization. It also includes the results
that are given in AppendixB.

2An example for an unweighted reoptimization problem that hasno absolute error guarantee, unless
P = NP, is the problemM INMAX IS, which is studied in Appendix B.
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best known reoptimization reoptimization
approximation for inc/inc∆ for dec/dec∆

M INVC no 1.37-app. [DS05] absolute error 1 absolute error 1

M INTSP no2|V |-approx. no2|V |-approx. no2|V |-approx.

M INTSP∆ 3/2-approx. [Chr76] 4/3-approx. 4/3-approx.

no FPTAS no FPTAS

MAX TSP 4/3-approx. [Ser84] 5/4-approx. ?

no FPTAS no FPTAS

MAX TSP∆ 8/7-approx. [CN07] PTAS PTAS

no FPTAS no FPTAS

M INST 1.55-approx. [RZ05] 4
3
-approx. [BBH+08] 1.3-approx. [BBH+08]

no FPTAS no FPTAS

M INMAX IS no |V |1−ε-app. [Hal93] no |V |1−ε-approx. no |V |1−ε-approx.

Table 7.1:An overview on reoptimization results
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Chapter 8

Polynomial Strings as Hint

In this section we are concerned with the question what happens when we loose our
restriction on the hint being a certificate of the original instance. Instead, we allow any
polynomially bounded string1 as a hint. The applicability of this approach to practice
stems from the scenario in which a computation produces intermediate results or ad-
ditional information about how the solution was obtained. This information might be
useful for further computations.

To formalize the idea of polynomially bounded strings as possible hint we introduce
the notion of hint functions.

Definition 8.1. A total functionh is a hint function if and only if the size of the output
of h is polynomially bounded in the length of its argument, that is, there exists a poly-
nomialp such that for allx ∈ Σ∗ it holds that|h(x)| ≤ p(|x|). Letstr denote the set of
all hint functions.

Using Definition5.13we can define classesCMOD/str, which characterize the com-
plexity of deciding if a modified instance belongs to a problemA when the hinth(x)
is given, whereh is a hint function. We may write(c, A) ∈ CMOD/str instead of the
more formal(c, VA) ∈ CMOD/str, since no certificates are involved in the definition of
CMOD/str.

Note thatcert(VA) ⊆ str, for any verifierVA. Thus, the following observation is
obvious by Definition5.13.

Observation 8.2. (c, VA) ∈ CMOD/cert(VA) ⇒ (c, L(VA)) ∈ CMOD/str.

In other words, each modification problem(c, VA) that is easy with selected hints
(which includes the no-solution promise) is also easy when using hint functions. This
is not surprising, as the hint function may also output selected certificates or the empty
word.

But not only easiness results forCMOD/cert(VA) translate toCMOD/str; we can also
reuse our results about improbable easiness of certain modification problems.

1We bound the length of the string in order to avoid algorithms that use too much space.
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Theorem 8.3. Let C be closed under≤p
m-reduction,(c, A) be a modification problem,

K ∈ N \ {0}, andq(n) = K
√

n, . If there exist functionsf1, f3 ∈ FP such that for all
k ∈ N and allF, L1, ..., Lk ∈ Σ∗ it holds that

• F ∈ SAT ⇔ f1(F ) ∈ A and

• adq(F, (L1, ..., Lk)) ∈ SAT ⇔ c(f1(F ), f3((L1, ..., Lk))) ∈ A

then the following statement holds:

(c, A) ∈ CMOD/str ⇒ NP ⊆ C/poly.

Proof. Let (c, A) ∈ CMOD/str. Thus(c, A) ∈ C∈MOD/str. Now, the proof translates
mutatis mutandis from the proof of Theorem4.24. The main difference is that every
occurrence ofcert(VA) is replaced bystr.

Choosingf1(F ) := F andf3((L1, ..., Lk)) := (L1, ..., Lk) in Theorem8.3we get

Corollary 8.4. LetC be closed under≤p
m-reduction,K ∈ N \ {0}, andq(n) = K

√
n. If

(adq, VSAT) ∈ CMOD/str thenNP ⊆ C/poly.

We conclude from the last corollary that if(adq, VSAT) ∈ PMOD/str then the polyno-
mial hierarchy collapses to its second level.

8.1 The Table-Lookup Method

The power of polynomial hints allows us to show that some modification problems
(c, A) for which we were not able to prove containment inPMOD/cert(VA) are a mem-
ber ofPMOD/str. For example, while it is not known if(ad, VSAT) ∈ PMOD/cert(VSAT)
(see Table5.3), the modification problem(adk, VSAT), k being a constant, can be shown
to be a member ofPMOD/str.

Observation 8.5. (adk, VSAT) ∈ PMOD/(str ∩ F∆p
2).

The following proof of this fact stands exemplarily for the proof of the upcoming
Observation8.6.

Proof. Let F be a formula and letn = |V ar(F )|. First, we show that the number of
adk-modified formulas of a formulaF is bounded by a polynomialq(|F |). Just for the
proof, suppose that the unit clauses are added sequentially, instead of all at once. Thus,
even before the last addition of a unit clause there exist at mostn + (k − 1) different
variables in the hitherto existing modified formulaF ′. For eachx ∈ V ar(F ′) one of
the two unit clauses{x} or {¬x} may be added toF ′. Consequently, only one of at
most2(n+(k−1)) unit clauses ofV ar(F ′) and one of two unit clauses over some new
variable may be added at any given time. Thus, for each individual addition of a single
unit clause the number of possible modified instances is bounded by the polynomial
2n + 2k. The total number of modified instances afterk applications ofad is therefore
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bounded byq(n) = (2n + 2k)k, which yields a polynomial upper bound in the size of
|F |, for every constantk.

We choose as hint string a table that contains all of the at mostq(|F |) possible mod-
ified formulas together with a satisfying assignment for each formula, if existent. Note
that each modified formula is bounded in its size by a polynomialr(|F |). Thus, the size
of the table is polynomial in|F |.

Now, the decision process foradq(F, m) ∈ SAT is just a matter of table lookup. This
table can be computed fromF by a functionf ∈ F∆p

2 that (i) computes all possible
modified instances and (ii) uses its oracle to compute bitwise a satisfying assignments
for each modified instance.

Observation 8.6 ([Lib04]). LetA ∈ NP andc be a modification function. If there exist
polynomialsq andr such that for allx ∈ Σ∗ it holds that

∣∣∣
⋃

m∈Σ∗

{
c(x,m)

}∣∣∣ ≤ q(|x|)

and for allm ∈ Σ∗ it holds that|c(x,m)| ≤ r(|x|) then(c, A) ∈ PMOD/str.

Note that the hint function that shows(c, A) ∈ PMOD/str in Observation8.6does not
need to be necessarily a member ofF∆p

2. The function probably cannot compute the at
mostq(n) modified instances in polynomial time.

Observation8.6only gives a sufficient condition for when a problem(c, VA) belongs
to PMOD/str. There also exist modification problems(c, VA) for which exponentially
many modified instances can be decided in polynomial time with a polynomial string
as hint. We give the following (rather artificial) example of such a problem. Consider
the following padded version ofSAT:

SAT′ := {(F, ω) : F ∈ SAT∧ ω = {0, 1}|F |}.
Obviously,SAT′ is NP-complete. For the modification function

c′((F, ω), ω′) :=

{
(F, ω′), if |ω′| = |ω|,
(F, ω), otherwise,

and a given formulaF there exist2|F | different modifiedSAT′-instances. Nevertheless
each of those instances can be decided with the 1-bit-hint ’1’ ifF is satisfiable and ’0’
if F is not satisfiable. Thus,(c′, SAT′) ∈ PMOD/str. Another problem of this kind,
namely ’CycleInHamiltonianReduction’ (CHR), which uses the padding idea in a more
practical fashion, is given in [CDLS02].

From Observation8.6 we also conclude that if thesizeof the modification is small
enough then the respective modification problem is easy when hint strings are allowed.
In detail, if the size of the modification is bounded byO(log(|x|)), wherex is the
instance that is going to be modified, then there exist at most|Σ|O(log(|x|)) modified in-
stances — one for each possible modification. Also, the size of each modified instance
must be polynomial in|x| sincec ∈ FP. A table that contains all the modified in-
stances can be computed in polynomial time. For each modified instance in the table, a
solution, e.g., the minimum solution, can be found by a function fromF∆p

2.
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Corollary 8.7. LetA ∈ NP, c be a modification function, and let the second argument
m of c be bounded byO(log(|x|)), wherex is the first argument ofc. Then(c, A) ∈
PMOD/(str ∩ F∆p

2).

On an sidenote, we mention that the modification functionadlog(|x|) is no such mod-
ification function as desired in the last corollary, since the size of the modification
is O (log (|x|) · log (|V ar(F )|)). On the other hand, the modification functionadk,
wherek is a constant, is clearly a modification function of the desired form since
|V ar(F )| ≤ |x|.

At first glance, it seems that hint-strings are more powerful than selected certificates,
since they are more flexible when choosing a hint. But, a closer look reveals that Ob-
servation8.6can be rephrased as a results for selected certificates when an appropriate
verifier is chosen.

Theorem 8.8. Let A ∈ NP andc be a modification function If there exist polynomials
q andr such that for allx ∈ Σ∗ it holds that

∣∣∣
⋃

m∈Σ∗

{
c(x,m)

}∣∣∣ ≤ q(|x|)

and for allm ∈ Σ∗ it holds that|c(x, m)| ≤ r(|x|) then there exists a verifierV ′
A for A

such that(c, V ′
A) ∈ PMOD/cert(V ′

A).

Proof. Let A ∈ NP, VA be an arbitrary verifier forA, andc be a modification function.
Let q andr be as above. Letp be some polynomial such that(x, π) ∈ VA ⇒ |π| ≤
p(|x|), that is,p bounds the size of certificates w.r.t.VA. Consider the verifierV ′

A defined
by

(x, ω) ∈ V ′
A ⇔ ω = ((x, π), (x1, π1), ..., (x`, π`)) ∧ (x, π) ∈ VA ∧

` ≤ q(|x|) ∧ (∀1 ≤ i ≤ `)[|xi| ≤ r(|x|) ∧ |π| ≤ p(|xi|)].

In other words, the certificateω for x not only contains information whetherx ∈ A, or
equivalently, if there existsπ with (x, π) ∈ VA, but it also contains pairs of other strings,
which we interpret as a modified instancexi together with a corresponding certificate
πi for xi, if existent. Note thatV ′

A is indeed a verifier forA since (i)|ω| is polynomial
in the size ofx, (ii) there exists anω with (x, ω) ∈ V ′

A if and only if x ∈ A, and (iii)
(x, ω) ∈ V ′

A can be decided in polynomial time.
We choose as hint function for(c, V ′

A) the functionh that, given an instancex, outputs
a string((x, π), (x1, π1), ..., (x`, π`)), where

• π is a certificate forx w.r.t. VA, if existent,

• {x1, ..., x`} is the set of all possible modified instances, of which there are at most
q(|x|), and

• for all i ≤ `, the stringπi is a certificate forxi w.r.t. VA, if existent.
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To decide if a modified instancec(x, m) belongs toA, we just need to find the corre-
sponding modified instancexi in the table given by the hint. All we then need to do is
to evaluate whether(xi, πi) ∈ VA, which is possible in polynomial time.

This last theorem illustrates that the results in Chapter4 are highly dependent on the
chosen verifier. For instance, it shows that there exists a verifierV ′

SAT for SAT such that
(ad, V ′

SAT) ∈ P∈MOD/cert(VSAT).2

8.2 Connection to Preprocessing

In this section we outline a connection between the problem of modification with hint
strings and a related problem, namely the problem of preprocessing. First, we give an
informal summary on preprocessing.

Subject to preprocessing are problems of pairs(x, y) for which the first part of the
input x is known before the resty, and the known partx remains the same for several
subsequent inputsy. In this case, it could be beneficial to preprocess from the known
partx an additional informationh(x) that is helpful for deciding future inputs. The extra
cost for preprocessing is justified when the complexity of deciding coming instances is
thereby significantly decreased. We refer to the preprocessing of the known part as
compilation. For more details see [CDLS02, Lib01, Lib98a, CD97, SK96].

8.2.1 Uniform Preprocessing

The following subsection consists of three parts. First, we give a brief summary on pre-
processing. Following [CDLS02], we define classes of uniform compilability and show
hardness results for these classes with the help of an appropriate notion of reduction.
Second, we show how preprocessing results relate to modification problems. Last, we
demonstrate our results at an example, albeit a fairly artificial example.

We start by formally defining classes of uniform compilability. These classes capture
our intuitive notion of compilability. In the next subsection we also considernonuni-
form compilability classes, but for the moment we postpone a discussion on why these
nonuniform classes are necessary.

Definition 8.9 ([CDLS02], Definition 2.4). A languageA ⊆ Σ∗×Σ∗ of pairs belongs
to the classÃC (in words, compilable toC) if and only if

(∃C ∈ C)(∃h ∈ str)(∀x, y ∈ Σ∗)[(x, y) ∈ A ⇔ (h(x), y) ∈ C].

Informally, a language of pairs(x, y), wherex is the known part andy is given online,
belongs toC if there exists aC-predicateC such that(x, y) ∈ A can also be decided

2Since a table of allad-modified formulas is computable in polynomial time, we even have(ad, V ′
SAT) ∈

P∈MOD/(cert(VSAT)∩F∆p
2). We can contrast this result with the fact that if(ad, V ′

SAT) ∈ coNP∈MOD/
(cert(VSAT) ∩ fun ·NP) thenNP = coNP (see Theorem4.31).
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m

x h C c(x, m) ∈ A?

y

x h C (x, y) ∈ A?

(b)(a)

Figure 8.1:Schematic depiction of the classes (a)ÃC and (b)CMOD/str.

by asking whether the preprocessed stringh(x) together with the missing party of the
input belongs toC. The classÃC and the classCMOD/str are quite similar according
to their definitions. Both aim to find a string that only depends on either the original
instances or the known part of the input to decide instances that are later to be specified,
either by an unknown modification or an online given party. A comparison of these
classes is depicted in Figure8.1. The dotted line in Figure8.1 indicates that the fixed
part of the input may w.l.o.g. be assumed to be known toC, sinceh can givex as part
of its output.

It has already been shown in [CDLS02] that classical complexity classes and compi-
lability classes share the same inclusion structure.

Theorem 8.10 ([CDLS02], Theorem 2.11). Let C andD be complexity classes that
are closed under≤p

m-reduction and that have≤p
m-complete problems. Then

ÃC ⊆ ÃD ⇔ C ⊆ D.

We now aim to establish a notion of non-compilability, which then leads to hard-
ness results for modification problems. In [CDLS02] the authors propose the following
reduction to show such hardness results.

Definition 8.11 ([CDLS02], Definition 2.5). A≤comp-reduction between two languages
of pairsA andB is a triple (f1, f2, g), wheref1, f2 ∈ str andg ∈ FP, such that for all
pairs of strings(x, y) it holds that

(x, y) ∈ A ⇔ (
f1(x), g(f2(x), y)

) ∈ B.

For a discussion on the benefits of this last definition we refer to [CDLS02]. In
[CDLS02] it is also demonstrated how to find complete≤comp-problems for a class
ÃC, provided that a complete problem forC exists. In detail, given the≤p

m-complete
problemA for C, the problemεA := {(ε, y) : y ∈ A} is ≤comp-complete forÃC.
Intuitively, the problemεA cannot benefit from preprocessing, since the fixed partx is
empty, and therefore there is no possibility to take advantage of preprocessing.

Theorem 8.12 ([CDLS02], Theorem 2.3). Let C be a complexity class and letA be
≤p

m-complete inC. ThenεA is ÃC-complete w.r.t.≤comp-reduction.
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To show≤comp-hardness of a problemB for the classÃC it suffices to show that
εA ≤comp B for some problemA that is≤p

m-complete inC.

We now turn to our discussion on how compilability and the problem of modified
instances are related. We already mentioned, that compilability classes and modifica-
tion problems are similar regarding to their definitions. The similarity between the two
complexity classesCMOD/str andÃC is formally expressed by the following theorem.

Theorem 8.13.Let (c, A) be a modification problems andC be a complexity class that
is closed under≤p

m-reduction. Then

{(x,m) : c(x,m) ∈ A} ∈ ÃC ⇔ (c, A) ∈ CMOD/str.

Proof. Let S := {(x,m) : c(x,m) ∈ A}. For the ’⇒’-direction assume thatS ∈ ÃC.
Consequently, there existB ∈ C andh ∈ str such that

(∀x,m ∈ Σ∗) [(x,m) ∈ S ⇔ (h(x),m) ∈ B].

We define a new setB′ := {(x, ω, m) : (ω,m) ∈ B ∧ x ∈ Σ∗} and get that

(∀x,m ∈ Σ∗) [c(x,m) ∈ A ⇔ (x, h(x),m) ∈ B′].

SinceB′ ∈ C we have that(c, A) ∈ CMOD/str.
For the other direction, assume that(c, A) ∈ CMOD/str. Therefore, there existB ∈ C

andh ∈ str such that

(∀x,m ∈ Σ∗) [c(x, m) ∈ A ⇔ (x, h(x),m) ∈ B].

We defineh′(x) := (x, h(x)) andB′ := {((x, ω),m) : (x, ω,m) ∈ B} and get that

(∀x,m ∈ Σ∗) [(x,m) ∈ S ⇔ (h′(x),m) ∈ B′].

SinceB′ ∈ C andh′ ∈ str we have that(c, A) ∈ CMOD/str.

We use Theorem8.13to establish a connection between uselessness of hint strings
for a modification problem(c, A) andÃC-completeness of the corresponding language
of pairs{(x,m) : c(x, m) ∈ A}.

Corollary 8.14. LetC andD be complexity classes that are closed under≤p
m-reduction

and(c, A) be a modification problem for whichB := {(x,m) : c(x,m) ∈ A} is ÃC-
complete w.r.t.≤comp-reduction. If(c, A) ∈ DMOD/str thenC ⊆ D.

Proof. Let C,D, (c, A), andB be as above. Let(c, A) ∈ DMOD/str. By Theorem8.13
we getB ∈ ÃD. It has been shown in [CDLS02] (Theorem 2.2 in [CDLS02]) that if
D is closed under≤p

m-reduction thenÃD is closed under≤comp-reduction. SinceB is
ÃC-complete we conclude thatÃC ⊆ ÃD. By Theorem8.10we get thatC ⊆ D.
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We use this last corollary to argue for useless of hint strings in the following way.
For example, assume that(c, A) is a modification problem for anNP-complete lan-
guageA. Also, assume that we showedÃNP-completeness of the corresponding lan-
guage of pairs{(x,m) : c(x,m) ∈ A}. If there are useful hints for(c, A), that is, if
(c, A) ∈ CMOD/str for some complexity classC ⊂ NP, thenNP ⊆ C by Corollary
8.14. Consequently, we have that the NP-complete problemA is also inC, without
using any hints.

Finally, we illustrate our arguments with a rather artificial example. We give more
practical examples in the next subsection.

Example:Consider the following problemEQ:

EQ := {(F, G) : F andG are Boolean formulas,V ar(F ) ⊆ V ar(G), and

there exist an assignmentβ overV ar(G) such that

β(G) 6= β|V ar(F )(F ) }.

Here, β(G) denotes the truth value ofG under the assignmentβ and β|V ar(F )(F )
denotes the truth value ofF when the assignmentβ is restricted to the variables of
V ar(F ). Informally spoken, the problemEQ consists of pairs of formulas that are
nonequivalent, but where the notion of equivalence is adapted to hold for formulas with
different variables. Note thatEQ isNP-complete.

We modifyEQ-instances with the following modificationsub2:

sub2((F,G), G′) := (F,G′),

that is, the second formulaG is substituted with a new formulaG′. We aim to apply
Corollary8.14in order to show that polynomial strings are useless when decidingsub2-
modifiedEQ-instance. Therefore, we need the following result.

Lemma 8.15. B := {((F, G), G′) : sub2((F, G), G′) ∈ EQ} is ÃNP-complete w.r.t.
≤comp-reduction.

Proof. Containment ofB in ÃNP is clear from the facts thatEQ∈ NP andsub2 ∈ FP.
To prove≤comp -hardness ofB we show thatεSAT ≤comp B via the following reduction
functionsf1, f2, andg:

• f1(x) := (x1 ∨ ¬x1, x1),3

• f2(x) := x, and

• g(x, F ) :=

{ ¬F, if x = ε,
x1 ∨ ¬x1, otherwise.

3We assume that formulas are coded in way such that the variablex1 is contained in any formulaF .
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It suffices to show that

(x, F ) ∈ εSAT ⇔ (f1(x), g(f2(x), F )) ∈ B. (1)

We consider two cases,x = ε andx 6= ε. If x 6= ε then(x, F ) /∈ εSAT. Also,

(f1(x), g(f2(x), F )) = ((x1 ∨ ¬x1, x1), x1 ∨ ¬x1)

is no element ofB, sincesub2((x1∨¬x1, x1), x1∨¬x1) yields two equivalent formulas.
If x = ε then

(x, F ) ∈ εSAT ⇔ F ∈ SAT

⇔ (∃β ∈ Σ∗)[(¬F, β) /∈ VSAT]

⇔ {β : β is an assignment overV ar(F ) } 6= VSAT(¬F )

⇔ (x1 ∨ ¬x1,¬F ) ∈ EQ

⇔ sub2((x1 ∨ ¬x1, x1),¬F ) ∈ EQ

⇔ (f1(x), g(f2(x), F )) ∈ B.

By Corollary8.14we conclude that(sub2, EQ) has no useful polynomial hints.

8.2.2 Nonuniform Preprocessing

The results on uniform compilability that are given in the last section suffer from a
severe technical problem. The notions ofÃC and≤comp-reduction are useful to state
strict and unconditionalresults of compilability or non-compilability; but these notions
are insufficient to express non-compilability results for problems that areunlikelyto be
compilable. For example, it is shown in [CDLS02] that if the problem of constrained
satisfiability, which is defined by

C-SAT := {(F, β) : F is a CNF-formula andβ is a partial assignment

that can be extended to a satisfying assignment ofF},

is solvable in deterministic polynomial time with the help of preprocessing thenNP/
poly ⊆ P/poly. However, we are unable to formally derive this fact using uniform
compilability classes and≤comp-reduction. To overcome this shortcoming, new classes
of nonuniformcompilability are introduced in [CDLS02].

Definition 8.16 ([CDLS02], Definition 2.7). A languageA ⊆ Σ∗×Σ∗ of pairs belongs
to the class||ÃC (in words, non-uniformly compilable toC) if and only if

(∃B ∈ C)(∃h ∈ str)(∀x, y ∈ Σ∗)[(x, y) ∈ A ⇔ (h(x, |y|), y) ∈ B].
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Here, preprocessing not only depends on the known fixed partx of the input, but also
on thesizeof the unknown party. We assume that|y| is given in unary notion. This
definition corresponds to scenarios where the size of the missing part of the input, or
equivalently, a polynomial upper bound on this size, is known in advance. The problem
C-SAT is an example of such a problem.

Again, we establish a notion of hardness for classes of the form||ÃC. But,≤comp-
reduction are not useful for this purpose (for details see [CDLS02]). Therefore, we
introduce a more suitable notion of reduction.

Definition 8.17 ([CDLS02], Definition 2.8). A ||Ã-reduction between two languages of
pairs A andB is a triple (f1, f2, g), wheref1, f2 ∈ str andg ∈ FP, such that for all
pairs (x, y) it holds that

(x, y) ∈ A ⇔ (
f1(x, |y|), g(f2(x, |y| , y))

) ∈ B.

This definition extends in a natural way the definition of≤comp such that the size of
the unknown party is incorporated. We just mention that for a complexity classC that
is closed under≤p

m-reduction the complexity class||ÃC is closed under||Ã−reduction
(see [CDLS02], Theorem 2.8). Again, we can show that complete problems for a class
C yield complete problems for the class||ÃC.

Theorem 8.18 ([CDLS02], Theorem 2.9). Let C be closed under≤p
m-reduction and

A be aC-complete problem w.r.t.≤p
m-reduction. ThenεA is ||ÃC-complete w.r.t.||Ã-

reduction.

It has already been shown in [CDLS02] (see Propositions 3.1 and 3.2 there) that the
problems C-SAT and the problem ConstrainedVertexCover,

C-VC := {(G, k), V ′) : G has a vertex coverC of size at leastk with V ′ ⊆ C}

areÃNP-complete.
Nonuniform compilability classes and classical nonuniform complexity classes are

related in the following way.

Theorem 8.19 ([CDLS02], Theorem 2.12). Let C andD be complexity classes that
are closed under≤p

m-reduction and that have≤p
m-complete problems. Then

||ÃC ⊆ ||ÃD ⇔ C/poly ⊆ D/poly.

Using this framework, we now exemplarily show how hardness results for nonuni-
form compilability classes can be used to show that certain modification problems have
probably no useful polynomial hints.

Example 1:As a first example, we examine the already discussed modification prob-
lem (adid, SAT). Assume that(adid, SAT) ∈ CMOD/str, whereC is closed under≤p

m-
reduction. We have already argued at the beginning of this chapter, that this assumption
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implies thatNP ⊆ C/poly (Theorem8.3). Using compilability classes, we now show,
under the same assumption, the slightly weaker collapseNP/poly ⊆ C/poly.

First, we show that if(adid, SAT) ∈ CMOD/str then the problem C-SAT would be-
come an element of||ÃC. This is easy to see, as adding unit clauses over certain vari-
ables to a formulaF corresponds to fixing the values of satisfying assignments for
these variables. Thus, we reduced the question whether a fixed formulaF has a sat-
isfying assignment that extends a given partial assignment to the question whether the
formulaF in thats the respective unit clauses are added is satisfiable. This shows that
C-SAT ∈ ||ÃC, a formal proof is omitted. Since C-SAT is||ÃNP-complete and||ÃC
is closed with respect to||Ã-reduction we conclude that||ÃNP ⊆ ||ÃC. The assertion
NP/poly ⊆ C/poly follows by Theorem8.19. Consequently, if(adid, SAT) ∈ PMOD/
str then PH = S2 (see Corollary2.13) and if (adid, SAT) ∈ coNPMOD/str then
PH = Σp

3 (see Theorem2.14). These are consequences that are considered unlikely
by most theoretical computer scientists.

Example 2:A similar results as in Example 1 holds for the modification problem
(app, VC), whereapp is the modification function that takes as input aVC-instance
(G, k) as well as a set{v1, ..., v`} of vertices ofG and outputs an instance(G′, k) where
at each vertexvi a new vertexui is appended. Formally, for aVC-instance(G, k) and
a subsetV ′ := {v1, ..., v`} of V (G) we define

app((G, k), V ′) :=
((

V (G) ∪ {u1, ..., u`}, E(G) ∪ {{vi, ui} : 1 ≤ i ≤ `}), k
)
.

Containment of the modification problem(app, VC) in CMOD/str, whereC is closed
under≤p

m-reduction, would lead to C-VC∈ ||ÃC. To see this, let(app, VC) in
CMOD/str. Note that in a modified instanceapp((G, k), {v1, ..., v`}) with new vertices
u1, ..., u` at least one ofvi or ui has to be contained in a minimum vertex cover, for each
1 ≤ i ≤ `. But choosingvi is always better than choosingui. Thus, we may assume
that a vertex cover forapp((G, k), V ′) does not containu1, ..., u`, but contains all ver-
tices fromV ′. Therefore, the question whetherapp((G, k), V ′) is an element ofVC is
reduced to the question whether((G, k), V ′) ∈ C-VC. This shows that C-VC∈ ||ÃC.

Since C-VC is||ÃNP-complete we getNP/poly ⊆ C/poly, with the already in Ex-
ample 1 mentioned implications for special choices ofC.

Example 3:As a last example, we examine a problem that is already discussed in
[Lib04]. There, the problem of satisfiability is considered, together with the modifica-
tion that allows for an arbitrary change to the original formula as long as the set of used
variables remains unaltered. Assume that this modification problem is a member of
CMOD/str, C closed under≤p

m-reduction. The analysis relies on the||ÃNP complete-
ness of the set

nSAT := {(i, F ) : F ∈ SAT∧ i = 1|V ar(F )|},
which is just mentioned in [Lib04] without a proof.

Lemma 8.20.nSAT is ||ÃNP complete w.r.t.||Ã-reduction.
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Chapter 8 Polynomial Strings as Hint

Proof. We show thatεSAT is ||Ã-reducible tonSAT. Therefore we give three functions
f1, f2 ∈ str andg ∈ FP such that

(x, F ) ∈ εSAT ⇔ (f1(x, |F |), g(f2(x, |F |), F )) ∈ nSAT.

Let F be a CNF-formula withV ar(F ) = {x1, ..., xn}. We assume that formulas
are coded in a reasonable way such thatn ≤ |F |. We definef1(x, |F |) := 1|F |,
f2(x, |F |) := x, and

g(x, F ) :=

{
pad(F ), if x = ε,
x1 ∧ ¬x1, otherwise,

wherepad(F ) is generated fromF by addition of unit clauses(xn+1), ..., (x|F |), result-
ing in a CNF-formula with|F | variables. We distinguish two cases. Ifx 6= ε then
(x, F ) /∈ εSAT and the desired equivalence

(x, F ) ∈ εSAT ⇔ (1|F |, x1 ∧ ¬x1) ∈ nSAT

is valid. If x = ε, the following equivalences yield the desired results

(ε, F ) ∈ εSAT ⇔ F ∈ SAT

⇔ pad(F ) ∈ SAT

⇔ (1|F |, pad(F )) ∈ nSAT.

We now return to our proof of hardness for the modification that leaves the set of
variables unchanged. A helpful polynomial hint functionh that renders this problem a
member ofCMOD/str also yields a helpful functionh′ for preprocessing. The function
h′ is given byh′(1n) := h(Fn), for an arbitrary but fixed formulaFn overn variables.
Now, satisfiability of an online given formulaF ′ over n variables can be decided by
modifying the formulaFn to F ′ and testing whetherF ′ is satisfiable, using the hint
h′(1n) = h(Fn). By assumption we getnSAT ∈ ||ÃC. Thus,NP/poly ⊆ C/poly.

Conclusions

In this chapter we studied the scenario in which a polynomial hint is used to decide
modified instances. We introduced the notion of a hint function and obtained complex-
ity classes of the formCMOD/str, which allowed us to categorize the complexity of
modification problems with respect to polynomial strings as a hint.

First, we observed that some of our unlikeliness results for selected hints from Sec-
tion 4 can be used to show also unlikeliness for polynomial hints. In detail, we showed
this for the problem(adq, SAT), whereq(n) = K

√
n andK ∈ N \ {0}, but this result

also holds for many other modification problems.
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Chapter 8 Polynomial Strings as Hint

The power of polynomial hints allowed us to show that some modification problems
(c, A), for which we have not been able to prove containment inPMOD/cert(VA), are
a member ofPMOD/str. We showed these results with the help of the so called table-
lookup method — a very simple method that involves a table of solutions for all possible
modified instances. We applied this technique to the modification problem(adk, VSAT),
k a constant, and showed that this problem benefits from polynomial strings. But still,
the complexity of some modification problems is not clear.

Open problem 5. Does the modification problem(adlog, SAT) benefit from polynomial
hints?

In the last part of this chapter, we showed how the concept of compilability relates
to modification problems. We summarized the necessary details about compilability in
order to prove hardness results for compilability classes. We translated unconditional
results on non-compilability, i.e,≤comp-hardness for a classÃC, to unconditional use-
lessness results for modification problems that have polynomial hints. Also, we showed
exemplarily how results about probable non-compilability, i.e.,||Ã-hardness for a class
||ÃC, can be translated to results about probable uselessness of polynomial hints.
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Chapter 9

Appendix A - Decision Problems

In this chapter, we examine theNP-complete problems

• THREESATISFIABILITY (3SAT),

• ONEINTHREESATISFIABILITY (1-3SAT),

• CLIQUE,

• VERTEXCOVER (VC),

• HAMILTONIAN CYCLE (HC),

• THREEDIMENSIONALMATCHING (3DM), and

• PARTITION

with respect to several modification functions.We also give the missing proofs for the
problemsSAT andEX3SAT.

Easiness results of the formMODcVA ∈ P and(c, VA) ∈ P∈MOD/cert(VA) that are
due to the trivial argumentation that each certificate of the original instance is also a
certificate for the modified instance are omitted. For an overview on howhardness
results for the other problems are obtained, we refer to Figure9.1. An arrow in Figure
9.1 indicates that hardness of one problem can be derived from hardness of the other
either by

• ≤p
m-(inter)reduction: We use this technique to showNP-completeness for prob-

lems of the formMODcVA on the left side of Figure9.1The number in the box
on the arrow points to the respective theorem where this fact is proven.

• hint-independent (inter)reduction: We use this technique for problems of the form
(c, VA) on the right side of Figure9.1. The number in the box on the arrow points
to the respective theorem where this fact is proven.
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Chapter 9 Appendix A - Decision Problems

SAT 3SAT EX3SAT

(adlc,SAT)

(rm,SAT) (rmc,SAT)

(neg,SAT) (negl,SAT)

(negl,EX3SAT) (rmc,EX3SAT)

(rmc,3SAT) (rm,3SAT) (adlc,3SAT) (neg,3SAT) (negl,3SAT)

(ad,CLIQUE)

(rm,VC)

(adlc,1-3SAT) (rm,1-3SAT) (rmc,1-3SAT)

(rmlc,1-3SAT) (neg,1-3SAT) (negl,1-3SAT)

(ad,HC)

(ad,PARTITION) (rm,PARTITION)

(ad,3DM) (rm,3DM)

1-3SAT HCPARTITION 3DM

9.21

9.3
5.8

9.4

9.10 9.10 9.10
9.6gen

gen
5.12

gen gen

9.25

gen

gen

9.16
9.16

9.16 9.16

9.29
9.40 9.40

9.35 9.36

Figure 9.2:Overview on how hardness results are obtained when the no-solution
promise is given.

• generalization from some other modification function: This case applies, if some
modification is a special case of the other, and therefore hardness results can be
transferred. A box with the letters ’gen’ symbolizes these cases.

• generalization from a(c, VA)-problem to aMODcVA problem: As we have seen
in Section4.4(Theorem4.21), if each selected certificate is useless as a hint then
an arbitrary certificate must be useless a fortiori. A box filled with ’4.21’ sym-
bolizes the cases where hardness ofMODcVA is obtained by this argumentation.

Similarly, Figure9.2 illustrates how we prove our results in the case that the no-
solution promise is given. Again, easy cases are omitted. The main tool to prove
uselessness of the no-solution promise are promise-independent reductions. But as we
see in Figure9.2, also some cases of generalization and some promise-independent
interreductions are given — although these results could have been proven also with
some promise-independent reduction and only little more effort.
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9.1 SATISFIABILITY (SAT)

Arbitrary solution as hint

Theorem 9.1. MODadVSAT ≤p
m MODrmlcVSAT.

Proof. Let F be a formula,V ar(F ) = {x1, ..., xn}, β be a satisfying assignment forF ,
andy /∈ V ar(F ). We define

• f1(F, β, L) := F ∪⋃n
i=1{{xi, y}, {¬xi, y}},

• f2(F, β, L) := β′, with β′(y) = 1 andβ′(xi) = β(xi), 1 ≤ i ≤ n, and

• f3(F, β, L) := ({L, y}, y).

Apparently, these functions yield the desired reduction.

Selected solution as hint

Theorem 9.2. Let C be closed under≤p
m-reduction,V ′

SAT be a verifier forSAT, K ∈
N \ {0}, andq(n) = K

√
n. Then

1. (rmlcq, V ′
SAT) ∈ C∈MOD/cert(V ′

SAT) ⇒ NP ⊆ C/poly,

2. (rmlc, V ′
SAT) ∈ coNP∈MOD/(cert(V ′

SAT) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are given in the proof of NP-completeness
of MODrmlcVSAT (Theorem9.1) can easily be altered to hold for multiple modifications
of the formrmlcq. Consequently, the conditions in Theorem4.27are satisfied. The
assertions follow by application of Theorem4.27and Theorem4.31, respectively.

No solution as promise

Observation 9.3. SAT ≤p
pi (neg, SAT).

Proof. Let F be a formula and leta /∈ V ar(F ). We define

• f1(F ) := F ∧ a ∧ ¬a,

• f2(F ) := ¬a.

Apparently, this yields a≤p
pi-reduction.

Observation 9.4. SAT ≤p
pi (adlc, SAT).

Proof. Let F be a formula and leta, b /∈ V ar(F ). We define

• f1(F ) := F ∧ a ∧ ¬a,

• f2(F ) := ({a}, b).
Apparently, this yields a≤p

pi-reduction.
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9.2 EXACTTHREESATISFIABILITY (EX3SAT)

Selected solution as hint

Theorem 9.5.LetC be closed under≤p
m-reduction,V ′

EX3SAT be a verifier forEX3SAT,
K ∈ N \ {0}, andq(n) = K

√
n. Then

1. (adcq, V ′
EX3SAT) ∈ C∈MOD/cert(V ′

EX3SAT) ⇒ NP ⊆ C/poly,

2. (adc, V ′
EX3SAT) ∈ coNP∈MOD/(cert(V ′

EX3SAT) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are given in the proof of NP-completeness
of MODadcVEX3SAT (Theorem3.6) can easily be altered to hold for multiple modifica-
tions of the formadcq. Consequently, the conditions in Theorem4.27are satisfied. The
assertions follow by application of Theorem4.27and Theorem4.31, respectively.

No solution as promise

Observation 9.6. EX3SAT≤p
pi (rmc, EX3SAT).

Proof. Let F be anEX3SAT-instance and leta, b, c /∈ V ar(F ). Let E denote the
formula that consists of all eight 3-clauses that can be built with the variablesa, b, and
c. We define

• f1(F ) := F ∧ E,

• f2(F ) := {¬a,¬b,¬c}.
Apparently, this yields a≤p

pi-reduction.
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9.3 THREESATISFIABILITY (3SAT)

Formally, the problem3SAT is defined as

3SAT := {F : F ∈ SAT andF has at most three literals per clause}

and the verifier we use for3SAT is given by

(F, π) ∈ V3SAT ⇔ (F, π) ∈ VSAT and each clause ofF has at most three literals.

Note that in contrast to the problemSAT the modification functionadlc for 3SAT may
only add literals to clauses of size at most two.

Arbitrary solution as hint

Theorem 9.7.

1. MODadVSAT ≤p
m MODadV3SAT,

2. MODadVSAT ≤p
m MODrmlcV3SAT.

Proof. Let f be the reduction function forSAT ≤p
m EX3SAT as described in the proof

of Theorem3.6. Recall from this proof that a satisfying assignmentβ′ for f(F ) is
polynomial time computable from a satisfying assignmentβ of F . Let g denote the
respective function that computesβ′.

Proof of 1.)Let (F, β, L) be aMODadVSAT-instance. We reduce via

• f1(F, β, L) := f(F ),

• f2(F, β, L) := g(F, β), and

• f3(F, β, L) := L.

Correctness follows by arguments similar to the ones in the proof of Theorem3.6.
Proof of 2.) Let F be a formula,V ar(F ) = {x1, ..., xn}, andy /∈ V ar(f(F )). We

reduce via

• f1(F, β, L) := f(F ) ∪⋃n
i=1{{xi, y}, {¬xi, y}},

• f2(F, β, L) := β′, whereβ′(y) = 1 andβ′(x) = g(F, β)(x) for x ∈ V ar(f(F ))\
{y},

• f3(F, β, L) := ({L, y}, y).
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Selected solution as hint

Theorem 9.8. (neg, VSAT) ≤p
hi (neg, V3SAT).

Proof. The proof is similar to the proof of Theorem4.16. We just describe how to
modify the proof of Theorem4.16to obtain a proof for(neg, VSAT) ≤p

hi (neg, V3SAT) :

• g1(F, β, L) :=

{
f
(
F \ {{L}} ) ∪ {{L}}, if {L} ∈ F ,

f(F ), otherwise,

• g3(F, β, L) := L.

The rest of the proof can be translated mutatis mutandis.

Theorem 9.9. Let C be closed under≤p
m-reduction,V ′

3SAT be a verifier for3SAT,
c ∈ {ad, rmlc}, K ∈ N \ {0}, andq(n) = K

√
n. Then

1. (cq, V ′
3SAT) ∈ C∈MOD/cert(V ′

3SAT) ⇒ NP ⊆ C/poly,

2. (c, V ′
3SAT) ∈ coNP∈MOD/(cert(V ′

3SAT) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are given in the proofs of NP-complete-
ness ofMODadV3SAT andMODrmlcV3SAT (Theorem9.7) can easily be altered to hold
for multiple modifications of the formcq. Consequently, the conditions in Theorem
4.27are satisfied. The assertions follow by application of Theorem4.27and Theorem
4.31, respectively.

No solution as promise

Theorem 9.10.

1. 3SAT≤p
pi (adlc, 3SAT),

2. 3SAT≤p
pi (rm, 3SAT), and

3. 3SAT≤p
pi (neg, 3SAT).

Proof. Let F be a3SAT-instance anda, b /∈ V ar(F ).
Proof of 1.)Copy of the proof for Observation9.4.
Proof of 2.)Copy of the proof for Theorem5.6.
Proof of 3.)Copy of the proof for Observation9.3.
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9.4 ONEINTHREESATISFIABILITY (1-3SAT)

We study as a last satisfiability problem the language

1-3SAT := { F : F ∈ SAT, each clause ofF consists of at most three

literals, and there exists a satisfying assignment ofF that

satisfies exactly one literal in each clause ofF }.
If β is an assignment that satisfies a formulaF in the sense of1-3SAT we say thatβ
one-satisfiesF . The problem1-3SAT is NP-complete [Sch78]. We use the following
verifierV1-3SAT for the problem1-3SAT:

(F, β) ∈ V1-3SAT ⇔ (F, β) ∈ V3SAT ∧ β one-satisfiesF .

Arbitrary solution as hint

Theorem 9.11.MODadV3SAT ≤p
m MODadV1-3SAT.

Proof. We use a reduction3SAT≤p
m 1-3SATfrom [HMRS98] (proof of Theorem 3.8

(3SAT→ 1-EX3SAT) in [HMRS98]). There, the reduction functionf maps

• each 3-clauseCj := {zp, zq, zr} to the set of clauses

C ′
j :=

{{zp, u
j, vj}, {¬zq, u

j, wj}, {vj, wj, tj}, {¬zr, v
j, xj}},

• each 2-clauseCj := {zp, zq} to the set of clauses

C ′
j :=

{{zp, u
j, vj}, {¬zq, u

j, wj}, {vj, wj, tj}, {¬aj, vj, xj},

{aj, dj, ej}, {aj, ej, f j}, {dj, ej, f j}},

whereuj, vj, wj, tj, xj, aj, dj, ej, f j are new distinct variables local toC ′
j. We expand

the domain off to also handle unit clauses. The functionf shall map

• each unit clauseCj := {zp} to the formulaC ′
j := {{zp}}.

This transformation is done for every clause ofF . The reduction functionf is formally
given by

f(F ) :=
⋃

Cj∈F

C ′
j.

For a proof that this functionf yields the reduction3SAT ≤p
m 1-3SATwe refer to

[HMRS98]. It is also shown in [HMRS98] that a satisfying assignment forF can be
transformed in polynomial time to an assignment that one-satisfiesf(F ). Compatibility
with the modification functionad follows from the fact that unit clauses are mapped to
unit clauses. Consequently an added unit clause inF results in an added unit clause
in f(F ). The corresponding modification is computable in polynomial time. This
concludes the proof of the theorem.
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Selected solution as hint

Theorem 9.12.(neg, V3SAT) ≤p
hi (neg, V1-3SAT).

Proof. A closer examination of the modification functionf from [HMRS98], which is
also used in the proof of Theorem9.11, reveals thatf is actually a structure preserving
reduction that is compatible with the modification functionneg. For details we refer to
[HMRS98].

Theorem 9.13.(negl, VEX3SAT) ≤p
hi (adlc, V1-3SAT).

Proof. It is sufficient to give three functionsg1, g2, g3 ∈ FP such that for eachx =
(F, β, (C, L)) the following two conditions hold:

VEX3SAT(F ) = {β} ⇒ V1-3SAT

(
g1(x)

)
= {g2(x)}, (1)

negl(F, (C, L)) ∈ EX3SAT⇔ adlc(g1(x), g3(x)) ∈ 1-3SAT. (2)

Let F = {C1, ..., Cm} be anEX3SAT-formula. The functiong1 is mapping each
3-clauseCj = {zp, zq, zr} to the set of clauses

C ′
j :=

{{zp, s
j, tj}, {¬zp,¬uj,¬vj}, {¬zq, t

j,¬vj}, {zr,¬wj}, {sj,¬wj,¬yj}},

wheresj, tj, uj, vj, wj, yj are new distinct variables local toC ′
j. Formally, the reduction

functiong1 is given by
g1(F, β, (C, L)) :=

⋃
Cj∈F

C ′
j,

a function that is computable in polynomial time. Now the assertion is a consequence
of the following two claims.

Claim 1: There existsg2 ∈ FP such that (1) holds.

Proof of Claim 1: Let VEX3SAT(F ) = {β}. Thus, in each clauseCj = {zp, zq, zr} of
F at least one literal is satisfied. Consequently, the set of clausesC ′

j is one-satisfiable
when we expandβ to the variablessj, tj, uj, vj, wj, yj according to Table9.1. The
function g2 is defined to yield the assignmentβ that appropriately is expanded to the
additional variablessj, tj, uj, vj, wj, yj, 1 ≤ j ≤ m. Apparently, the functiong2 is
polynomial-time computable.

It remains to show that the assignmentg2(β) is the sole one-satisfying assignment for
g1(F, β, (C,L)). Assume to the contrary thatg1(F, β, (C, L)) has two one-satisfying
assignmentsβ1 andβ2. Note that for all clausesCj the truth values of the variables of
Cj uniquely determine the truth values of the variablessj, tj, uj, vj, wj, yj in C ′

j (see
Table9.1). We conclude that the assignmentsβ1 andβ2 differ on some variable fromF .
Furthermore, for each clauseCj ∈ F both assignmentsβ1 andβ2 induce a satisfying
assignment forCj when restricted to variables fromCj. Consequently, when restricting
β1 andβ2 to the variables fromF we obtain two distinct satisfying assignments forF .
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clause (I) clause (II) clause (III) clause (IV) clause (V)

{zp,sj ,tj} {¬zp,¬uj ,¬vj} {¬zq,tj ,¬vj} {zr,¬wj} {sj ,¬wj ,¬yj}

β(zp) β(zq) β(zr) β(sj) β(tj) β(uj) β(vj) β(wj) β(yj)

0 0 0 0 1 . . \
1 . . . 0 \

0 0 1
0 1 . . \

1 0 1 1 1 1

0 1 0
0 1 1 1 0 1
1 0 . 1 \

0 1 1
0 1 1 1 1 1
1 0 . 1 \

1 0 0 0 0
0 1 0 1
1 0 \

1 0 1 0 0
0 1 1 0
1 0 \

1 1 0 0 0
0 1 \

1 0 0 1

1 1 1 0 0
0 1 \

1 0 1 0

Table 9.1:This table shows how to obtain the unique one-satisfying assignment, if ex-
istent, for the set of clausesC ′

j depending on the truth values of the literals
zp, zq, andzr. The assignment is constructed from left to right. A case dis-
tinction is performed when ambiguity arises. A ’·’-entry symbolizes that the
corresponding variable is not considered since a contradiction can be derived
independently. The ’\’-entry stands for a contradiction of the corresponding
clause with the partial assignment constructed so far.

This contradicts our initial assumption, which concludes the proof of Claim 1.

Claim 2: There existsg3 ∈ FP such that (2) holds.

Proof of Claim 2:Let Ck = {L1, L2, L} be the clause ofF in thatL will be negated.
Note that the functionf1 maps the clauseCk to the clause

C ′
k :=

{{L1, s
k, tk}, {¬L1,¬uk,¬vk}, {¬L2, t

k,¬vk}, {L,¬wk}, {sk,¬wk,¬yk}},

We defineg3 by

g3(F, β, (Ck, L)) := ({L,¬wk}, sk),

that is, we add the literalsk to the clause{L,¬wk} in C ′
k. Obviously,g3 ∈ FP. It

remains to show that (2) holds.
To show sufficiency, letβ be a satisfying assignment fornegl(F, (Ck, L)). For each

clauseCj, j 6= k, from negl(F, (Ck, L)) the assignmentβ can be expanded to a one-
satisfying assignment forC ′

j according to Table9.1. The satisfying assignmentβ for
negl(F, (Ck, L)), which in particular satisfies{L1, L2,¬L}, can be expanded to a one-
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clause (I) clause (II) clause (III)
modified

clause (IV) clause (V)

{zp,sj ,tj} {¬zp,¬uj ,¬vj} {¬zq,tj ,¬vj} {zr,sj ,¬wj} {sj ,¬wj ,¬yj}

β(zp) β(zq) β(zr) β(sj) β(tj) β(uj) β(vj) β(wj) β(yj)

0 0 0 0 1 . . \
1 0 1 1 1 1

0 0 1
0 1 . . \

1 . . . \

0 1 0
0 1 1 1 0 1
1 0 . 1 \

0 1 1
0 1 1 1 1 0
1 0 . 1 \

1 0 0 0 0
0 1 0 1
1 0 \

1 0 1 0 0
0 1 1 0
1 0 \

1 1 0 0 0
0 1 \

1 0 0 1

1 1 1 0 0
0 1 \

1 0 1 0

Table 9.2:This table shows the unique one-satisfying assignment for the modified set
of clauses

{{zp, s
k, tk}, {¬zp,¬uk, ¬vk}, {¬zq, t

k, ¬vk}, {zr, s
k,¬wk},

{sk,¬wk,¬yk}} depending on the truth values of the literalszp, zq, andzr.
For further explanation see Table9.1

satisfying assignment of
{{L1, s

k, tk}, {¬L1,¬uk,¬vk}, {¬L2, t
k,¬vk}, {L, sk,¬wk}, {sk,¬wk,¬yk}},

according to Table9.2. In consequence, we obtain a one-satisfying assignment for the
formulaadlc(g1(x), g3(x)).

For the other direction assume thatβ′ one-satisfiesadlc(g1(x), g3(x)). Thus, for
each set of clausesC ′

j, j 6= k, the assignmentβ′ restricted to variables fromCj yields a
satisfying assignment forCj (see Table9.1). For the remaining set of clauses

{{L1, s
k, tk}, {¬L1,¬uk,¬vk}, {¬L2, t

k,¬vk}, {L, sk,¬wk}, {sk,¬wk,¬yk}}

in adlc(g1(x), g3(x)) the restriction ofβ′ to L1, L2, L yields a satisfying assignment for
the clause(L1, L2,¬L) (see Table9.2). In total we obtain a satisfying assignment for
negl(F, (Ck, L)). This concludes the proof of Claim 2.

Theorem 9.14.(negl, VEX3SAT) ≤p
hi (rmlc, V1-3SAT).

Proof. The proof is similar to the proof of Theorem9.13. Let F = {C1, ..., Cm} be an
EX3SAT-formula. The functiong1 is mapping each 3-clauseCj = {zp, zq, zr} to the
set of clauses

C ′
j :=

{{zp, s
j, tj}, {¬zp,¬uj,¬vj}, {¬zq, t

j,¬vj}, {¬zr, s
j,¬wj}, {sj,¬wj,¬yj}},
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wheresj, tj, uj, vj, wj, yj are new distinct variables local toC ′
j. The reduction functions

g1 andg3 are given by
g1(F, β, (C, L)) :=

⋃
Cj∈F

C ′
j,

g3(F, β, (Ck, zr)) := ({zr, s
k,¬wk}, sk).

We can prove claims that are similar to the ones in the proof of Theorem9.13. Again,
Table9.1 and Table9.2 are helpful to establish these claims. We leave a formal proof
to the reader.

Theorem 9.15.LetC be closed under≤p
m-reduction,V ′

1-3SAT be a verifier for1-3SAT,
K ∈ N \ {0}, andq(n) = K

√
n. Then

1. (adq, V ′
1-3SAT) ∈ C∈MOD/cert(V ′

1-3SAT) ⇒ NP ⊆ C/poly,

2. (ad, V ′
1-3SAT) ∈ coNP∈MOD/(cert(V ′

1-3SAT) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are implied by the proof of NP-complete-
ness ofMODadV1-3SAT (Theorem9.11) can easily be altered to hold for multiple mod-
ifications of the formadq. Consequently, for allF, m ∈ Σ∗ it holds that

• F ∈ 3SAT⇔ f1(F ) ∈ 1-3SAT,

• adq(F,m) ∈ 3SAT⇔ adq(f1(F ), f3(m)) ∈ 1-3SAT.

By the construction in the proof of Corollary9.9there exist functionsg1, g3 ∈ FP such
that for allF, m ∈ Σ∗ it holds that

• F ∈ SAT ⇔ g1(F ) ∈ 3SAT and

• adq(F,m) ∈ SAT ⇔ adq(g1(F ), g3(m)) ∈ 3SAT.

By composition of these functions we get functionsh1, h3 ∈ FP, for which

• F ∈ SAT ⇔ h1(F ) ∈ 1-3SATand

• adq(F,m) ∈ SAT ⇔ adq(h1(F ), h3(m)) ∈ 1-3SAT.

Now, the assertions follow from Theorem4.27and Theorem4.31, respectively.

No solution as promise

Observation 9.16.

1. 1-3SAT≤p
pi (adlc, 1-3SAT),

2. 1-3SAT≤p
pi (rm, 1-3SAT),

3. 1-3SAT≤p
pi (rmlc, 1-3SAT), and
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4. 1-3SAT≤p
pi (neg, 1-3SAT).

Proof. Let F be a1-3SAT-instance anda, b, c /∈ V ar(F ). The following functionsf1

andf2 yield the desired≤p
pi-reduction:

Proof of 1.)

• f1(F ) := F ∧ a ∧ ¬a,

• f2(F ) := ({¬a}, b).
Proof of 2.)

• f1(F ) := F ∧ a ∧ ¬a,

• f2(F ) := ¬a.

Proof of 3.)

• f1(F ) := F ∧ a ∧ b ∧ c ∧ (a ∨ b ∨ ¬c),1

• f2(F ) := ((a ∨ b ∨ ¬c), b).

Proof of 4.)

• f1(F ) := F ∧ a ∧ b ∧ (a ∨ b),

• f2(F ) := a.

1We choose this rather ’complicated’ construction to avoid modified instances in which the same clause
appears twice.
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9.5 CLIQUE

The problemCLIQUE is defined as follows:

CLIQUE := {(G, k) : the graphG contains a clique of size at leastk}.
The verifierVCLIQUE we use for the problemCLIQUE is given by

((G, k), C) ∈ VCLIQUE ⇔ C ⊆ V (G) ∧ C induces ak-clique onG.

We consider the modification functionsad, rm, andad&rm, which add an edge to a
graphG, or remove an edge, or simultaneously add and remove an edge, respectively.
Additionally, we examine the case where a single edge is added andk is incremented
by one. Formally,

• ad((G, k), e) := ((V (G), E(G) ∪ {e}), k),

• rm((G, k), e) := ((V (G), E(G) \ {e}), k),

• ad&rm((G, k), (e, f)) :=

{ (
(V (G), (E(G) ∪ {e}) \ {f}), k)

, if f ∈ E(G),
(G, k) otherwise,

• adinc((G, k), e) := ((V (G), E(G) ∪ {e}), k + 1).

Arbitrary solution as hint

We antedate a result from the next section. There, we show thatMODadVVC is NP-
complete. Thus, to showNP-completeness ofMODrmVCLIQUE, it is sufficient to show
the following.

Theorem 9.17.MODadVVC ≤p
m MODrmVCLIQUE.

Proof. The standard reduction function forVC ≤p
m CLIQUE, as for example given in

[GJ79], which uses the strong connection

(G, k) ∈ VC ⇔ (G, |V (G)| − k) ∈ CLIQUE

is structure preserving. Also it is compatible w.r.t. the modificationsad andrm, since
adding an edge inG corresponds to deleting an edge in the complementary graphG.

BecauseMODadVCLIQUE is easy (proof omitted), we examine if knowing ak-clique
of G can help in finding ak + 1-clique in aninc-modified graph. This problem is
NP-complete.

Theorem 9.18.MODadincVCLIQUE is NP-complete.

Proof. We reduceCLIQUE to MODadincVCLIQUE via the three functionsf1, f2, andf3

defined as
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• f1((G, k)) :=
((

V (G) ∪ {v1, ..., vk, y} , E(G) ∪ {{vi, vj} : 1 ≤ i < j ≤ k}
∪ {{v, y} : v ∈ V (G) \ {u}} )

, k
)

,

• f2((G, k)) := {v1, ..., vk},
• f3((G, k)) := {u, y},

wherev1, ..., vk, y are pairwise different vertices that are not contained inG andu is
fixed vertex fromV (G). The functionsf1, f2, andf3 are polynomial-time computable.

Note that(f1(G, k), f2(G, k)) ∈ VCLIQUE. To showCLIQUE ≤p
m MODadincVCLIQUE it

only remains to prove the equivalence

(G, k) ∈ CLIQUE ⇔ adinc
(
f1((G, k)), f3((G, k))

) ∈ CLIQUE.

To show sufficiency, suppose that(G, k) contains ak-cliqueC ⊆ V (G). The graph
f1((G, k)) joined with the edge{u, y} contains ak + 1-clique, namelyC ∪ {y}. Thus
adinc(f1((G, k)), f3((G, k))) ∈ CLIQUE.

Conversely, assume that the graphf1((G, k)) joined with the edge{u, y} contains
a k + 1-clique C. No vertex from{v1, ..., vk} can be part of thisk + 1-clique C.
ThereforeC ⊆ V (G) ∪ {y}. The setC \ {y} is a clique of size at leastk in G. Thus
(G, k) ∈ CLIQUE.

Selected solution as hint

We aim to show that for the modificationad&rm no certificate function is helpful to
decide if the modified instances have appropriate sized cliques. In order to prove this,
we use a reduction functionf from [Kar72] that showsSAT ≤p

m CLIQUE. There, the
author gives the following functionf that maps a formulaF = {C1, ..., Cm} to the pair
(G, m), whereG is given by

• V (G) = { (L, k) : L ∈ Ck} and

• E(G) =
{ (

(L, i), (L′, j)
)

: i 6= j ∧ L 6= ¬L′
}

.

The reader may verify that this yields a reduction fromSAT to CLIQUE. Note that
the reduction functionf has the following useful properties: For any formulaF =
{C1, ..., Cm}
(P1) there exists nom + 1-clique inf(F ),

(P2) if Ck = {L} is a unit clause ofF then eachm-clique off(F ) contains the vertex
(L, k),

(P3) if F has exactly one satisfying assignment thenf(F ) has exactly onem-clique,2

2It is stated frequently in the literature that this reduction is parsimonious, but it is not. For example,
the formulax1 ∧ (x1 ∨ x2 ∨ x3) has four satisfying assignments, but the graphf(F ) has only three
cliques of size two.

106



Chapter 9 Appendix A - Decision Problems

f(neg(F,L)) Km+1z

(L, k)

...

Figure 9.3:The graphG from the proof of Theorem9.19. A dashed line indicates a
modified edge.

(P4) if VSAT(F ) = {β} then the sole clique off(F ) can be computed fromF andβ
by a functiong ∈ FP.

Property(P1) and property(P2) follow from the fact that the vertex sets{(L, k) :
L ∈ Ck}, 1 ≤ k ≤ m, are independent sets inf(F ). Property(P3) can easily be
verified by contraposition. The last property is obvious.

Theorem 9.19.(neg, VSAT) ≤p
hi (ad&rm, VCLIQUE).

Proof. We give three reduction functionsg1, g2, g3 ∈ FP such that for allF, β, m ∈ Σ∗

it holds that

VSAT(F ) = {β} ⇒ VCLIQUE(g1(F, β, L)) = {g2(F, β, L)}, (3)

neg(F, L) ∈ SAT ⇔ ad&rm
(
g1(F, β, L), g3(F, β, L)

) ∈ CLIQUE. (4)

To defineg1 we use the above mentioned reduction functionf for SAT ≤p
m CLIQUE.

We distinguish two cases,{L} ∈ F and{L} /∈ F . The total functionsg1, g2, g3 can
then be composed of their partial counterparts.

We start with the easier case{L} /∈ F . Therefore,F is not modified at all. We define

g1(F, β, L) := f(F ) and g2(F, β, L) := g(F, β),

whereg is the certificate mapping function from (P4). The equivalence (3) follows
from (P3) and (P4). If we defineg3(F, β, L) to be some tuple of edges not contained in
f(F ) we have thatad&rm(g1(F, β, L), g3(F, β, L)) = g1(F, β, L) = f(F ). Now, the
equivalence (4) is a consequence of the fact thatf is a reduction function forSAT ≤p

m

CLIQUE.
Now, let {L} ∈ F , F = C1 ∧ · · · ∧ Cm, andCk = {L}. Our starting point for the

definition ofg1((F, β, L)) is the graphG′ := f(neg(F, L)). To G′ we add a new vertex
z and connect it to all the vertices fromG′ except the vertex(L, k), which corresponds
to the unit clauseCk = {L}. We also add toG′ an extram + 1-clique. The resulting
graph is the graphG, as depicted in Figure9.3. Formally,G is defined as follows:
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• V (G) := V (G′) ∪ {z, u1, ..., um+1} and

• E(G) := E(G′) ∪ {{v, z} : v ∈ V (G) ∧ v 6= (L, k)} ∪
{{ui, uj} : 1 ≤ i < j ≤ m + 1}.

We claim that (3) holds when we defineg1 andg2 as

g1(F, β, L) := (G,m + 1) and

g2(F, β, L) := {u1, . . . , um+1}.
Therefore, we show that the singlem+1-clique ofG is {u1, ..., um+1} (independent of
|VSAT(F )|): By property (P1), the graphG′ cannot contain a clique of size greater than
m. Therefore, by property (P2) eachm + 1-clique ofG other than{u1, ..., um+1} has
to contain the edge{z, (L, k)}. Since this edge is not present inG we conclude that the
solem + 1-clique ofG is given byg2(F, β, L).

Finally, we defineg3 as

g3(F, β, L) := ({z, (L, k)}, {u1, u2}),

that is, we add the missing edge betweenz and(L, k) and remove an edge in the only
m + 1-clique ofG.

To see that (4) holds assume thatneg(F, L) ∈ SAT. Thusf(neg(F, L)) contains an
m-cliqueC andad&rm(G, {z, (L, k)}, {u1, u2}) contains them + 1 cliqueC ∪ {z}.

For the other direction, assume thatad&rm(G, {z, (L, k)}, {u1, u2}) contains an
m + 1 clique. Obviously, this clique does not contain any of the verticesu1, ..., um+1.
Thus, the subgraph ofG induced byV (G′)∪{z} contains anm+1-clique and therefore
f(neg(F, L)) has anm-clique. This impliesneg(F, L) ∈ SAT.

Theorem 9.20.LetC be closed under≤p
m-reduction,V ′

CLIQUE be a verifier forCLIQUE,
K ∈ N \ {0}, andq(n) = K

√
n. Then

1. (rmq, V ′
CLIQUE) ∈ C∈MOD/cert(V ′

CLIQUE) ⇒ NP ⊆ C/poly,

2. (rm, V ′
CLIQUE) ∈ coNP∈MOD/(cert(V ′

CLIQUE) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The proof ofNP-completeness ofMODadVVC (Theorem9.22) can easily be
altered to hold for multiple modifications of the formadq. Using the close connection
betweenVC andCLIQUE we can derive by composition of the respective reductions
(also see Theorem9.15) two functionsf1, f3 ∈ FP such that for allF, m ∈ Σ∗ it holds
that

• F ∈ SAT ⇔ f1(F ) ∈ CLIQUE,

• adq(F,m) ∈ 3SAT⇔ rmq(f1(F ), f3(m)) ∈ CLIQUE.

The assertions follow from Theorem4.27and Theorem4.31, respectively.
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No solution as promise

Theorem 9.21.SAT ≤p
pi (ad, CLIQUE).

Proof. Again, we use the reduction functionf for SAT ≤p
m CLIQUE from [Kar72], as

described at the beginning of the last subsection. LetF = {C1, ..., Cm}. We construct
a graphG by adding two additional verticesz1 andz2 to the graphf(F ). Then we
connectz1 andz2 to every vertex inf(F ). Formally,

• V (G) := V (f(F )) ∪ {z1, z2},
• E(G) := E(f(F )) ∪ {{z1, v}, {z2, v} : v ∈ V (f(F ))},

wherez1, z2 /∈ V (f(F )). By property(P1) of the reductionf it is clear thatf(F )
has at most anm-clique. Therefore,G has at most anm + 1-clique. Now the desired
≤p

pi-reduction is given by

• f1(F ) := (G,m + 2),

• f2(F ) := {z1, z2}.
Correctness of the reduction follows from the fact thatad(f1(F ), f2(F )) has anm + 2-
clique if and only iff(F ) has anm-clique. The latter is the case if and only ifF is
satisfiable.
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9.6 VERTEXCOVER (VC)

A vertex coverof a graphG is a subset of the vertices ofG that covers all the edges,
that is, for every edgee ∈ E(G) one of its endpoints belongs to the vertex cover. The
decision problemVC is defined as follows,

VC := {(G, k) : G has a vertex cover of size at mostk}.
We fix our verifierVVC for VC as

((G, k), C) ∈ VVC ⇔ C ⊆ V (G) ∧ |C| ≤ k ∧ C is a vertex cover ofG

We consider the modificationsad, rm, andad&rm as defined in Section9.5.

Arbitrary solution as hint

Theorem 9.22 ([Lib04]). MODadVSAT ≤p
m MODadVVC.

Proof. The proof is already in [Lib04]. We restate it here for convenience. We construct
three reduction functionsf1, f2, andf3 such that for allx := (F, β, L) it holds that

x ∈ MODadVSAT ⇔ ((f1(x), f2(x), f3(x)) ∈ MODadVVC. (5)

To definef1, we use a reduction functionf from [BC94] that showsSAT ≤p
m VC. We

give a short summary on the work of the functionf .
Let F = {C1, ..., Cm} be CNF-formula andV ar(F ) = {x1, .., xn}. The function

f mapsF to a graphGF that consists of truth-setting components, satisfaction testing
components, and communication edges between these components. For each variable
xi in F we add as a truth-setting-component the subgraph({xi,¬xi}, {xi,¬xi}) to GF ,
that is, we add the two verticesxi and¬xi joined by a single edge. For each clause
Ci we add toGF as a satisfaction testing component the|Ci|-clique that consists of the
verticesa1

i , ..., a
|Ci|
i . Furthermore, for each clauseCi = {Li1 , ..., Li|Ci|} the communi-

cation edges are distributed between the truth-setting components and the satisfaction
testing components according to the literals in this clause, that is, ifLi1 = xj thena1

i is
connected toxj and so on. Figure9.4 illustrates the graphGF that is constructed byf
whenF =

{{x1,¬x2, x3}, {¬x2,¬x3, x4,¬x5}, {¬x4,¬x5}
}

. If we set

f(F ) := (GF , n +
m∑

i=1

(|Ci| − 1)).

we have the complete definition off . For a proof of the fact thatGF contains a vertex
cover of sizen +

∑m
i=1(|Ci| − 1) if and only if the CNF-formulaF is satisfiable we

refer to [BC94].
To show(5) we define

• f1((F, β, L)) :=
((

V (GF ) ∪ {y}, E(GF )
)
, n +

∑m
i=1(|Ci| − 1)

)
,
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x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

a1
1

a2
1

a3
1 a1

2 a4
2

a2
2 a3

2

a1
3 a2

3

Figure 9.4:A showcase example for the reductionSAT ≤p
m VC if F ={{x1,¬x2, x3}, {¬x2,¬x3, x4,¬x5}, {¬x4,¬x5}

}
.

wherey is a new vertex not contained inV (GF ) and

• f2((F, β, L)) := C ′,

whereC ′ is constructed from the satisfying assignmentβ as explained in the following.
For each variablexi from F we put the vertexxi into C ′ if β(xi) = 1 and we add¬xi

to C ′ if β(xi) = 0. For each clauseCi we search for a literal that is made true by the
assignmentβ. If there exits such a literalLij , with a corresponding vertexaj

i , we add
all the vertices{ak

i : 1 ≤ k ≤ |Ci| , k 6= j} to C ′. If no such literalLij exists, we put
all the vertices{ak

i : 1 ≤ k ≤ |Ci|} into C ′. Finally, we define

• f3(x) := {y, L},
that is, we modify the VC-instancef1(x) by adding an edge between the isolated vertex
y and the literalL. The vertexy now acts as a satisfaction testing component for the
unit clause{L}. All three functionsf1, f2, andf3 are polynomial-time computable.

To prove(5), first suppose thatx ∈ MODadVSAT, that is,(F, β) ∈ VSAT andF ∧L ∈
SAT. Sinceβ is a satisfying assignment forF , the vertex coverC ′ contains exactly
n+

∑m
i=1(|Ci|−1) vertices, which implies(f1(x), f2(x)) ∈ VVC. Furthermore, observe

that theVC-instancead(f1(x), f3(x)) equalsf(F ∧L). Sincef is a reduction function
for SAT ≤p

m VC it holds thatf(F ∧ L) ∈ VC. Thus, alsoad(f1(F ), f2(F )) ∈ VC.
Conversely, assume thatx /∈ MODadVSAT, that is, (i) (F, β) /∈ VSAT or (ii) F ∧

L /∈ SAT. In the first case,f2 transforms(F, β, L) to a cover that has more than
n +

∑m
i=0(|Ci| − 1) vertices. Such a cover can be no solution for theVC-instance

(GF , n+
∑m

i=0(|Ci|−1)). Thus(f1(x), f2(x)) /∈ VVC. In the second case, we conclude
thatad(f1(x), f3(x)), which equalsf(F ∧ L), is not contained inVC, since otherwise
the formulaF ∧ L was satisfiable. In both cases, we get that(f1(x), f2(x), f3(x)) /∈
MODadVVC.

Selected solution as hint

Theorem 9.23.(ad&rm, VCLIQUE) ≤p
hi (ad&rm, VVC).
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Proof. The standard reduction functionf for CLIQUE ≤p
m VC (see [GJ79]) is structure

preserving and an addition/deletion of an edge in theCLIQUE-instance(G, k) corre-
sponds to a deletion/addition of an edge in theVC-instancef((G, k)).

Theorem 9.24.Let C be closed under≤p
m-reduction,V ′

VC be a verifier forVC, K ∈
N \ {0}, andq(n) = K

√
n. Then

1. (adq, V ′
VC) ∈ C∈MOD/cert(V ′

VC) ⇒ NP ⊆ C/poly,

2. (ad, V ′
VC) ∈ coNP∈MOD/(cert(V ′

VC) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are given in the proof of NP-completeness
of MODadVVC (Theorem9.22) can easily be altered to hold for multiple modifications
of the form adq. Consequently, the conditions in Theorem4.27 are satisfied. The
assertions follow by application of Theorem4.27and Theorem4.31, respectively.

No solution as promise

Theorem 9.25.(ad, CLIQUE) ≤p
pi (rm, VC).

Proof. The standard reduction functionf for CLIQUE ≤p
m VC, as for example given

in [GJ79], is parsimonious. The reductionf is also compatible with respect to the
modification functionsad and rm, that is, the addition of an edge in theCLIQUE-
instance(G, k) corresponds to the deletion of an edge in theVC-instancef((G, k)).
Therefore, both properties of Definition5.7are satisfied.
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9.7 HAMILTONIAN CYCLE (HC)

The problemHC consists of all graphs that have a Hamiltonian cycle. We use the
following verifierVHC for HC:

(G,C) ∈ VHC ⇔ C ⊆ E(G) ∧ C forms a Hamiltonian cycle in G.

Note that a cycle ofG usually is defined as a sequence of vertices. This would lead
to several cycles, with different starting points and directions, all corresponding to es-
sentially thesameHamiltonian cycle. With the verifierVHC a graphG has exactly as
many certificates as the graphG contains ’different’ Hamiltonian cycles. Nevertheless,
for notational benefits we often refer to Hamiltonian cycles inG as a sequence of the
vertices ofG.

We consider the three modification functionsad, rm, andad&rm as defined by

• ad(G, e) := (V (G), E(G) ∪ {e}),
• rm(G, e) := (V (G), E(G) \ {e}), and

• ad&rm(G, (e, f)) :=

{ (
V (G) , (E(G) ∪ {e}) \ {f} )

, if f ∈ E(G),
G, otherwise.

Arbitrary solution as hint

Theorem 9.26.MODadV3SAT ≤p
m MODrmVHC.

Proof. We construct three reduction functionsf1, f2, and f3 such that for allx :=
(F, β, L) it holds that

x ∈ MODadV3SAT ⇔ ((f1(x), f2(x), f3(x)) ∈ MODrmVHC. (6)

We use an idea from [PS76], where it is shown thatEX3SAT ≤p
m HC. First, we give

a sketch of the proof in [PS76]. Then we show how to reduce3SAT to HC, using
basically the same idea. Last, we will alter this reduction from3SAT to HC in a way
that is becomes compatible w.r.t.ad andrm.

First, we summarize the proof forEX3SAT ≤p
m HC from [PS76]. The following

two graph gadgetsA andB, which are depicted in Figure9.5 a) and Figure9.5 d),
are very helpful in the proof. We just mention the following property ofA (for details
see [PS82]). Assume thatA is an induced subgraph of some Hamiltonian graphG.
Furthermore, assume that the verticesz1, ..., z12 are only incident to edges fromE(A).
Then, each Hamiltonian cycle ofG traverses the gadgetA by using one of the ways
depicted in Figure9.5 b). Thus, the graphA behaves as if it was just a pair of edges
{u, u′} and {v, v′} of G with the additional restriction that each Hamiltonian cycle
of G traverses exactly one of them. We represent this as shown in Figure9.5 c). A
similar property holds for the gadgetB. In short, each Hamiltonian path throughB, can
traverse the gadget by using an arbitrary subset of the edges{{ui, ui+1} : i = 1, 2, 3},
except the case where it uses all three of these edges.
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Figure 9.5:The graph gadgetsA,B, andD, which are shown ina),d), ande), respec-
tively. The only two possible ways to traverseA are given inb). A pictorial
representation of the gadgetA is given inc).

Let F = {C1, ..., Cm} be a EX3CNF-formula and letV ar(F ) = {x1, ..., xn}. We
show how to construct a graphG = f(F ) such thatF ∈ EX3SAT ⇔ f(F ) ∈ HC.
For each variablexi, 1 ≤ i ≤ n, we have two verticesvi andwi as well as an ’upper’
and a ’lower’ copy of the edge{vi, wi}3. These two edges shall represent the fact that
the variablexi is set to either ’false’ or ’true’, respectively. We also have the edges
{wi, vi+1}, 1 ≤ i ≤ n− 1, that connect these so called truth-setting components.

For each 3-clauseCj, 1 ≤ j ≤ m, we add a copyBj of the graphB. Let uj denote
the vertices fromBj that correspond to theu-vertices inB. We add the edges{u1

1, v1},
{um

4 , wn}, and{uj
4, u

j+1
1 }, 1 ≤ j ≤ m−1, to the graph constructed so far. Now, we take

into account the exact form of the clauses ofF by ’connecting’ edges from the truth-
setting component with edges from the copies ofB. We use the gadgetA to ’connect’
the edge{uj

i , u
j
i+1} with the ’upper’ copy of{vk, wk} in case that theith literal ofCj is

¬xk and with the ’lower’ copy of{vk, wk} if it is xk. This concludes the construction
of G. For a proof of correctness we refer to [PS82].

Now we alter this reduction to hold for3SAT-formulas as well. The construction
of the needed graphG′ works exactly as above, except when unit clauses or 2-clauses
appear. For each unit-clausexk of F we add a new vertexy on the ’lower’ copy of the
edge{vk, wk}. For each negated unit-clause¬xk of F we add a vertex on the ’upper’
copy of the edge{vk, wk}. This new vertexy is added as direct neighbor ofvk so that
it does not interfere with any (potentially to be added)A-vertices on this edge. As a
consequence, for a unit clause{xk} ({¬xk}) each Hamiltonian cycle troughG′ has to
use the ’lower’ (’upper’) copy of the edge{vk, wk}, thereby fixing the variablexk.

For each 2-clauseCj of F we add toG′ a copyDj of the gadgetD depicted in Figure
9.5 e) . This gadgetD has the same property asB, namely that not both of the edges
{u1, u2} and{u2, u3} can be used when trying to traverseD - but any other selection
allows a traversal. The edges{uj

1, u
j
2} and{uj

2, u
j
3} are connected to the truth setting

components in the usual manner. This concludes the construction ofG′ it should be
clear from the arguments given in [PS82] thatF ∈ 3SAT⇔ G′ ∈ HC.

3These both edges will later be made distinct by inserting vertices along the edges.
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Figure 9.6:A showcase example for the reduction functionf1, where the input instance
is F = (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x3 ∨ x4) ∧ x1.

In a last step, we now alter the reduction such that the addition of a unit clause in
F is equivalent to the removal of an edge in some graphG′′ := f1(F, β, L). Our
starting point is the graphG′ from above. For each vertexwk in G′, 1 ≤ k ≤ n,
we add new verticesw1

k,w2
k,w3

k,w4
k to the copies of{vk, wk} as indicated by Figure9.6.

Additionally, we add the edges{w1
k, w

2
k} and{w3

k, w
4
k}. This concludes the construction

of G′′ = f1(F, β, L).
To show (6) note that a cycle throughG′′ can easily be computed from a satisfying as-

signment forF , and vice versa. Letf2 be the respective function that maps assignments
to cycles. Thus,

(F, β) ∈ V3SAT ⇔ f1(F, β, L), f2(F, β, L) ∈ VHC.

It remains to show that there exists a functionf3 ∈ FP such that

ad(F, L) ∈ 3SAT⇔ rm(f1(F, β, L), f2(F, β, L)) ∈ HC.

The functionf3(F, β, L) is given by

f3(F, β, L) :=

{ {w2
k, w

4
k}, if L = xk,

{w1
k, w

3
k}, if L = ¬xk.

This modification forces each Hamiltonian cycle of the modified graph to use the lower
(upper) copy of{vk, wk} in case thatL = xk (L = ¬xk). This is possible if and
only if F has a satisfying assignmentβ with β(L) = 1 (β(L) = 0), or equivalently,
F ∧ L ∈ SAT.

Selected solution as hint

Theorem 9.27.HC ≤p
hi (ad&rm, VHC).
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Figure 9.7:The graph gadgetHi and its two Hamiltonian traversals. The vertices
vi

1, v
i
3, v

i
6, v

i
8 are the only vertices that may be connected to other vertices.

Proof. We give three reduction functionsf1, f2, f3 ∈ FP such that

• G ∈ HC ⇔ ad&rm(f1(G), f3(G)) ∈ HC and

• VHC(f1(G)) = {f2(G)}.
In definingf1 we follow a construction from [Krü05]. There, the author shows how

to transform a given graphG to a graphG′ that has certain Hamiltonian cycles that cor-
respond to Hamiltonian cycles ofG and one additional Hamiltonian cycle that does not
correspond to any of the Hamiltonian cycles ofG. This additional Hamiltonian cycle
will be the hint that is given byf2. The gadgetHi, which is depicted in Figure9.7,
is a useful tool when constructingG′. So, before turning to formal definitions of the
reduction functions, we state a useful structural property of the gadgetHi.

Claim: Each Hamiltonian cycle through the gadgetHi contains either the path
(vi

1, v
i
2, v

i
3, v

i
5, v

i
4, v

i
6, v

i
7, v

i
8) or the path(vi

3, v
i
2, v

i
1, v

i
4, v

i
5, v

i
8, v

i
7, v

i
6).

A proof of the claim by exhaustive case distinction is in [Krü05].

Now, we describe the transformation of a graphG into a graphG′ := f1(G). Let
v1, ..., vn be the vertices ofG. For each vertexvi, 1 ≤ i ≤ n, we add the gadget
Hi to the graphG′, which results in a graph that consists ofn gadgetsH1, ..., Hn.
Let vi

1, ..., v
i
8 denote the vertices ofHi as depicted in Figure9.7. For each gadgetHi,

1 ≤ i ≤ n − 1, we connect the verticesvi
8 andvi+1

1 . Furthermore, we add the edge
{vn

8 , v1
1}. Consequently, the resulting graph contains the Hamiltonian cycle

C ′ := (v1
1, v

1
2, v

1
3, v

1
5, v

1
4, v

1
6, v

1
7, v

1
8, v

2
1, ..., v

n−1
8 , vn

1 , vn
2 , vn

3 , vn
5 , vn

4 , vn
6 , vn

7 , vn
8 , v1

1).

As a last step in the construction ofG′ we want to establish a connection between
Hamiltonian cycles inG and corresponding Hamiltonian cycles inG′. Therefore, for
each edge{vi, vj} ∈ E(G) we add the edges{vi

3, v
j
6} and{vj

3, v
i
6} to the graph con-

structed so far. The resulting graph is the graphG′. For an illustration of the construc-
tion of G′ also see Figure9.8. We define

• f1(G) := G′ \ {v1
1, v

1
4},4

4Within this proof, we use the shorthandG \ e to denote the graphG in thate is removed.
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Figure 9.8:An example for the graphG′ (on the right) that is constructed from the graph
G (on the left).

• f2(G) := C ′, and

• f3(G) := ({v1
1, v

1
4}, {v1

3, v
1
5}),

that is, we modifyG′ by adding the edge{v1
1, v

1
4} and removing the edge{v1

3, v
1
5}.

In the remainder of the proof we restrictHC to graphs with at least three vertices.
This is justified, since there are only finitely many graphs with fewer than three ver-
tices, all of them non-members ofHC. By mapping these graphs to a fixed, appropri-
ately chosenHC-instance the reduction functionsf1,f2, andf3 remain polynomial-time
computable.

Now we show thatVHC(f1(G)) = {f2(G)}, i.e., that the graphG′ \ {v1
1, v

1
4} hasC ′

as single Hamiltonian cycle. By the claim, a Hamiltonian cycleC throughG′ \{v1
1, v

1
4}

has to traverse the gadgetH1 along one of the two mentioned possible paths. One of
these paths contains the edge{v1

1, v
1
4}. Consequently,C uses the other path and enters/

leaves the gadgetHi at v1
1 andv1

8. But then, the rest of the cycle is predetermined and
is equal toC ′.

What remains to be proven is the equivalence

G ∈ HC ⇔ G′ \ {v1
3, v

1
5} ∈ HC.

To show necessity, suppose thatG ∈ HC. Let (vi1 , ..., vin , vi1) denote a Hamiltonian
cycle inG. Then clearly

(vi1
3 , vi1

2 , vi1
1 , vi1

4 , vi1
5 , vi1

8 , vi1
7 , vi1

6︸ ︷︷ ︸
path throughHi1

, vi2
3 , ..., v

in−1

6 , vin
3 , vin

2 , vin
1 , vin

4 , vin
5 , vin

8 , vin
7 , vin

6 , vi1
3︸ ︷︷ ︸

path throughHin

)
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is a Hamiltonian cycle inG′ that does not use the edge{v1
3, v

1
5}.

Conversely, letC denote a Hamiltonian cycle inG′\{v1
3, v

1
5}. Note thatC has to leave

or enter the gadgetH1 through the vertexv3
1, which is a vertex of degree two inG′ \

{v1
3, v

1
5} and has only one incident edge in the gadgetH1. Therefore, the above claim

ensures that the gadgetH1 is traversed byC via the path(v1
3, v

1
2, v

1
1, v

1
4, v

1
5, v

1
8, v

1
7, v

1
6).

Since any Hamiltonian cycle that enters the gadgetH1 at v1
3 has to enter every other

gadgetHi atvi
3 we conclude that the cycleC has the form

(vi1
3 , vi1

2 , vi1
1 , vi1

4 , vi1
5 , vi1

8 , vi1
7 , vi1

6︸ ︷︷ ︸
path throughHi1

, vi2
3 , ..., v

in−1

6 , vin
3 , vin

2 , vin
1 , vin

4 , vin
5 , vin

8 , vin
7 , vin

6 , vi1
3︸ ︷︷ ︸

path throughHin

).

Therefore the edges{vij vij+1
}, 1 ≤ j ≤ n − 1, and{vin , vi1} are contained inE(G).

Now, sincen > 2, the path(vi1 , ..., vin , vi1) forms a Hamiltonian cycle inG, which
impliesG ∈ HC.

Theorem 9.28. Let C be closed under≤p
m-reduction, letV ′

HC be a verifier forHC,
K ∈ N \ {0}, andq(n) = K

√
n. Then

1. (rmq, V ′
HC) ∈ C∈MOD/cert(V ′

HC) ⇒ NP ⊆ C/poly,

2. (rm, V ′
HC) ∈ coNP∈MOD/(cert(V ′

HC) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. The reduction functionsf1 andf3 that are given in the proof of NP-completeness
of MODrmVHC (Theorem9.26) can easily be altered to hold for multiple modifications
of the formrmq. The rest of the proof is similar to the proof of Theorem9.15.

No solution as promise

Theorem 9.29.HC ≤p
pi (ad, HC).

Proof. Let G be a graph and letv be a vertex ofG. Let u1, ..., uk be the neighbors ofv.
We give two reduction functionsg1, g2 ∈ FP such that

• g1(G) /∈ HC,

• G ∈ HC ⇔ ad(g1(G), g2(G)) ∈ HC.

Let G \ {v} denote the subgraph induced by the verticesV (G) \ {v}. We construct an
auxiliary graphG′ that is defined by

• V (G′) := V (G \ {v}) ∪ {v1, v2, v3} and

• E(G′) := E(G \ {v}) ∪ {{v1, v2}, {v2, v3}} ∪
⋃k

i=1{{v1, ui}, {v3, ui}},
wherev1, v2, andv3 are three new vertices that are not contained inV (G). Informally,
the vertexv is expanded to a 3-chain of verticesv1, v2, andv3, in which the outer
verticesv1 andv3 are connected to the old neighbors ofv.

Now the functionsg1 andg2 are defined as follows:
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• g1(G) := (V (G′), E(G′) \ {{v1, v2}}),
• g2(G) := {v1, v2}.

Obviously, the graphg1(G) does not contain a Hamiltonian Cycle, since the vertexv2

has degree one. Furthermore,ad(g1(G), g2(G)) = G′. It is not difficult to verify that
G′ has a Hamiltonian cycle if and only ifG has one. We leave this as an easy task for
the reader.
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9.8 THREEDIMENSIONALMATCHING (3DM)

The problem3DM is defined as follows. Input instances to3DM are sets of triples
over an alphabetΣ. A setS ⊆ Σ3 is contained in3DM if and only if it has a three-
dimensional matching, or for short, a 3D-matching. A 3D-matching of a setS is a
subsetM of S that covers each element ofS at its respective coordinate, but in a way
such that no two elements ofM agree in the same coordinate. We choose as verifier for
3DM the verifierV3DM that is characterized by

(S, M) ∈ V3DM ⇔ S ⊆ Σ3 ∧ M ⊆ S is a 3D-matching forS.

The elementary modifications of interest are the addition of a triplet to the set of triples
S, the deletion of such a triple fromS, and the simultaneous addition and deletion of
triples. The respective modification functions are given by

• ad(S, t) := S ∪ {t},
• rm(S, t) := S \ {t}, and

• ad&rm(S, (t1, t2)) :=

{
(S ∪ {t1}) \ {t2}, if t2 ∈ S,
S, otherwise.

Before turning to the results, we state a few facts about 3D-matchings and introduce
some helpful notions. LetSi denote the set of different alphabetic characters that occur
asith component in the setS ⊆ Σ3, e.g.,S1 := {x : (∃y, z ∈ Σ) [(x, y, z) ∈ S]}. Note
that a setS can only have a 3D-matching if|S1| = |S2| = |S3|. We call such setsS
with |S1| = |S2| = |S3| well-formed. For well-formed setsS let {x1, ..., x`} := S1,
{y1, ..., y`} := S2, and{z1, ..., z`} := S3.

Arbitrary solution as hint

Observation 9.30.MODadV3DM ∈ P.

Proof. Let M be a 3D-matching for a setS. Containment ofad(S, (x, y, z)) in 3DM
can be decided with the following polynomial-time algorithm.

First, determine ifx ∈ S1, y ∈ S2, andz ∈ S3. If this is the case thenM is a
3D-matching forad(S, (x, y, z)) and the algorithm outputs ”yes”. If the first case does
not apply, test ifx /∈ S1, y /∈ S2 andz /∈ S3. Then a 3D-matching forad(S, (x, y, z))
is given byM ∪ {(x, y, z)} and the algorithm outputs ”yes”. Otherwise, if none of
the above cases apply, the algorithm outputs ”no” since the setad(S, (x, y, z)) is not
well-formed.

Theorem 9.31.3DM ≤p
m MODrmV3DM.

Proof. We show existence of three polynomial-time computable functionsf1, f2, and
f3 such that for all setsS it holds that

S ∈ 3DM ⇔ (
f1(S), f2(S)

) ∈ V3DM ∧ rm
(
f1(S), f3(S)

) ∈ 3DM. (7)
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Assume thatS is a well-formed3DM-instance, otherwise the proof is trivial. Let
S1 = {x1, ..., x`}, S2 = {y1, ..., y`}, andS3 = {z1, ..., z`}. The basic idea for the
definition of the reduction functionf1 originates from [UN96]. In this paper a function
f ∈ FP is given such that, for any set of triplesS, the setf(S) contains (i) at least
two 3D-matchings ifS ∈ 3DM (ii) contains exactly one 3D-matching ifS /∈ 3DM. In
detail, the functionf from [UN96] is given by

f(S) := S ∪M ′ ∪ CAV ,

wherex+
i , y+

i , z+
i , 1 ≤ i ≤ `, are new variables that are not contained inS1 ∪ S2 ∪ S3,

• M ′ := {(xi, yi, z
+
i ) : 1 ≤ i ≤ `} ∪ {(x+

i , y+
i , zi) : 1 ≤ i ≤ `}, and

• CAV := {(x+
i , y+

i+1, z
+
i ) : 1 ≤ i ≤ `− 1} ∪ {(x+

` , y+
1 , z+

` )}.
Note thatM ′ is a 3D-matching forf(S). Informally, the setM ′ may be referred to as
an extra matching andCAV may be seen as cover set for the additionally introduced
variables.

Now we are prepared to define the functionsf1, f2, andf3:

• f1(S) := f(S),

• f2(S) := M ′, and

• f3(S) := (x+
1 , y+

1 , z1).

The functionsf1, f2, andf3 are polynomial-time computable. Before turning to the
proof that these functionsf1, f2, f3 satisfy (7), we establish a helpful claim.

Claim: Let M be a 3D-matching forrm(f1(S), f3(S)). ThenM ∩M ′ = ∅.
Proof of claim: Let M be a 3D-matching forf1(S) \ {(x+

1 , y+
1 , z1)}. The triple

(x+
1 , y+

2 , z+
1 ) is contained inM since it is the only element off1(S) \ {(x+

1 , y+
1 , z1)}

that contains the characterx+
1 . Thus, the elementy+

2 is already covered and therefore
(x+

2 , y+
2 , z2) /∈ M . Considering the elementx+

2 we conclude that(x+
2 , y+

3 , z+
2 ) ∈ M .

Repeated use of this argument yields thatCAV ⊆ M . SinceCAV covers all of the
additional variablesx+

i , y+
i , z+

i , 1 ≤ i ≤ `, and all of the triples fromM ′ contain at
least one of these additional variables, we conclude thatM ∩M ′ = ∅. This proves the
claim.

To show(7), it is sufficient to show the equivalence

S ∈ 3DM ⇔ rm(f1(S), f3(S)) ∈ 3DM

since
(
f1(S), f2(S)

) ∈ V3DM is obviously true.
To prove sufficiency, suppose thatS ∈ 3DM and letM be a 3D-matching forS.

Thus,M ∪CAV is apparently a matching forf(S) = f1(S). Sincef3(S) /∈ M ∪CAV
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the setM ∪CAV is a matching forf1(S)\{f3(S)}, which impliesrm(f1(S), f3(S)) ∈
3DM.

Conversely, assume thatrm
(
f1(S), f3(S)

) ∈ 3DM and letM be a matching for
rm

(
f1(S), f3(S)

)
. Using the claim, we obtain the result thatM ′ ∩M = ∅. Therefore

M ⊆ S ∪ CAV . Now, the setM \ CAV is a matching forS. Consequently,S ∈
3DM.

Selected solution as hint

Theorem 9.32.3DM ≤p
hi (ad&rm, V3DM).

Proof. We give three reduction functionsg1, g2, g3 ∈ FP such that

• V3DM(g1(S)) = {g2(S)} and

• S ∈ 3DM ⇔ ad&rm(g1(S), g3(S)) ∈ 3DM.

Recall the proof of Theorem9.31and the functionf defined there. The three func-
tionsg1, g2 andg3 are given by

• g1(S) := f(S) \ {x+
1 , y+

2 , z+
1 },

• g2(S) := M ′, and

• g3(S) :=
(
(x+

1 , y+
2 , z+

1 ), (x+
1 , y+

1 , z1)
)
.

First, we show thatV3DM(g1(S)) = {g2(S)}. Obviously,g2(S) is a 3D-matching for
g1(S). To show uniqueness of the solutiong2(S), assume to the contrary thatg1(S) has
another 3D-matchingM . The triple(x+

1 , y+
1 , z1) has to be contained inM since it is the

only element off(S)\{(x+
1 , y+

2 , z+
1 )} that contains the characterx+

1 . Thus, the element
y+

1 is already covered and therefore(x+
` , y+

1 , z+
` ) /∈ M . Considering the elementx+

` we
conclude that(x+

` , y+
` , z`) ∈ M . Repeated use of this argument yields thatM ′ = M , a

contradiction.
Furthermore the setad&rm(g1(S), g3(S)) and the setrm(f1(S), f3(S)) from the

proof of Theorem9.31are identical. Regarding the latter set we already have shown in
the proof of Theorem9.31that

S ∈ 3DM ⇔ rm(f1(S), f3(S)) ∈ 3DM.

The assertion follows.

Next, we show an analog to Theorem4.25, that is, we show that for the modification
problem(rmq, V3DM), whereq(n) = K

√
n andK ∈ N\{0}, the existence of useful hints

is not likely. We could proceed similar to the case ofHC where we gave a reduction
that had the necessary properties in order to be applicable to Theorem4.27. Such a
reduction can easily be found by altering a well known reductionEX3SAT ≤ 3DM
from [GJ79]. Nevertheless, we demonstrate how to prove this result directly, as the
proof demonstrates a more general idea.
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Theorem 9.33.Let C be closed under≤p
m-reduction,K ∈ N \ {0}, andq(n) = K

√
n.

Then

(rmq, V3DM) ∈ C∈MOD/cert(V3DM) ⇒ NP ⊆ C/poly.

Proof. Let C, K, andq be as stated above and let(rmq, V3DM) ∈ C∈MOD/cert(V3DM)
via the certificate functionh for V3DM and the predicateC ∈ C, that is, for all3DM-
instancesS, all k ≤ q(|S|), and every seriesm = (m1, ..., mk) of triples fromS it holds
that

S ∈ 3DM ⇒ [
rmq(S, m) ∈ 3DM ⇔ (S, h(S), m) ∈ C

]
.

We show that under these assumptions3DM ∈ C/poly.
Recall the definition ofSi, i = 1, 2, 3, given at the beginning of this chapter and let

` = |S1| = |S2| = |S3|. We consider a coding of3DM-instances such that|S| = |S ′|
for all well formed setsS andS ′ with |S1| = |S ′1|. This can be achieved by codingS
via 0/1 entries in a three-dimensional array of dimension` × ` × `. We also want to
pad these3DM-instances, such that the conditions posed in the proof of Theorem4.25,
as restated below, are satisfied. Namely, these conditions can be restated for3DM-
instances by posing that there exists a functionpadr ∈ FP such that for allS ∈ Σ∗ it
holds that

• padr ∈ FP,

• |padr(S)| ≥ |S|K ,

• S ∈ 3DM ⇔ padr(S) ∈ 3DM,

• S \M ∈ 3DM ⇔ padr(S) \M ∈ 3DM, for all M ⊆ S.

Such a padding functionpadr does exist, e.g., by adding toS the triples(ai, ai, ai),
` + 1 ≤ i ≤ |S|K , whereai /∈ S1 ∪ S2 ∪ S3.

Let S be some well formed3DM-instance with|S1| = `. Let K` := S1 × S2 × S3

denote the3DM instance that contains all possible triples over the coordinates fromS.
Note that|S| = |K`| and that|Ki| 6= |Kj|, for i 6= j, for our coding of3DM-instances.
FurthermoreK` ∈ 3DM and therefore for allm ∈ Σ∗ it holds that

rmq(K`,m) ∈ 3DM ⇔ (K`, h(K`),m) ∈ C.

Let S denote the missing triples inS, i.e.,S = K` \ S. If we define

• h′(|K`|) := h(padr(K`))
5 and

• (S, ω) ∈ C ′ ⇔ (padr(K`), ω, S) ∈ C

5Note that the elements ofS1, S2, andS3 may be thought of as the natural numbers{1, ..., `}. Therefore
K` is not dependent on the structure of the setsS1, S2, S3 but only on their sizè.
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then obviouslyh′ ∈ poly and sinceC is closed under≤p
m-reduction alsoC ′ ∈ C. Now,

the following equivalences hold

S ∈ 3DM ⇔ rmid(K`, S) ∈ 3DM

⇔ rmq(padr(K`), S) ∈ 3DM

⇔ (padr(K`), h(padr(K`)), S) ∈ C

⇔ (S, h(padr(K`))) ∈ C ′

⇔ (S, h′(|K`|)) ∈ C ′

⇔ (S, h′(|S|)) ∈ C ′.

This shows that3DM ∈ C/poly.

This last result can easily be adapted to also hold for modification problems(cq, VA)
in which all instances of the same size can be obtained by applying the modificationcid

to a fixed instanceK` ∈ A. For the problemHC for instance,K` is given by a complete
graph with` vertices, from which every other graph with` vertices can be obtained by
edge deletions.

Theorem 9.34.Let C be closed under≤p
m-reduction andV ′

3DM be a verifier forHC.
Then(rm, V ′

3DM) ∈ coNP∈MOD/(cert(V ′
3DM) ∩ fun · NP) ⇒ {1}P ⊆ NP.

Proof. We refer to the already mentioned reductionEX3SAT ≤p
m 3DM from [GJ79].

It is easy to derive from this reduction a reduction3SAT≤ 3DM via f1, f3 ∈ FP such
that

• F ∈ 3SAT⇔ f1(F ) ∈ 3DM and

• adq(F,m) ∈ 3SAT⇔ rmq(f1(F ), f3(m)) ∈ 3DM.

The rest of the proof is similar to the proof of Theorem9.15.

No solution as promise

Theorem 9.35.3DM ≤p
pi (ad, 3DM).

Proof. Let S be a collection of triples and letx ∈ S1, x′ /∈ S1, y′ /∈ S2, andz′ /∈ S3.
We define

• f1(S) := S ∪ {(x, y′, z′)} and

• f2(S) := (x′, y′, z′).

The setf1(S) is not well-formed, hencef1(S) /∈ 3DM. The assertion follows from the
obvious equivalence

S ∈ 3DM ⇔ S ∪ {(x, y′, z′), (x′, y′, z′)} ∈ 3DM.
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Theorem 9.36.3DM ≤p
pi (rm, 3DM).

Proof. Let S be a collection of triples and letx ∈ S1, y′ /∈ S2, andz′ /∈ S3. Let

• f1(S) := S ∪ {(x, y′, z′)},
• f2(S) := (x, y′, z′).

The setf1(S) is not well-formed, hencef1(S) /∈ 3DM. Also, rm(f1(S), f2(S)) = S.
The assertion follows immediately.
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9.9 PARTITION

For the problemPARTITION we depart form the classical problem definition given in
[GJ79], which uses finite sets and size functions. We do so for description-simplicity
— the definition from [GJ79] is slightly intricate for our purposes. Instead, we use
sequences of natural numbers as instances forPARTITION.

PARTITION :=
{
(a1, ..., an) ∈ (N \ {0})n : n ∈ N and there exists

I ⊂ {1, ..., n} with
∑
i∈I

ai =
∑

i∈{1,...,n}\I
ai

}
.

We use the following verifierVPARTITION for the problemPARTITION:

(S, I) ∈ VPARTITION ⇔ S = (a1, ..., an) ∈ (N \ {0})n ∧ I ⊂ {1, ..., n}
∧ 1 ∈ I ∧ ∑

i∈I

ai =
∑

i∈{1,...,n}\I
ai.

The condition1 ∈ I is a necessary condition for excluding the trivial second partitions
{1, ..., n}\I as a certificate; an instanceS shall not have two solution when there really
is only one.

We consider the modification functionsad andrm that add or delete a single natural
number from a given sequence, respectively. Formally,

• ad((x1, ..., xn), y) := (x1, ..., xn, y) and

• rm((x1, ..., xn), y) :=

{
(x1, ..., xi−1, xi+1, ..., xn), if y = xi,
(x1, ..., xn), otherwise.

Arbitrary solution as hint

Theorem 9.37.PARTITION ≤p
m MODadVPARTITION .

Proof. Let S = (a1, ..., an). We define

• f1(S) := (a1, ..., an,
∑n

i=1 ai),

• f2(S) := {1, ..., n}, and

• f3(S) :=
∑n

i=1 ai.

Obviously,
(
f1(S), f2(S)

) ∈ VPARTITION . Consequently, it remains to show that

S ∈ PARTITION ⇔ ad
(
f1(S), f3(S)

) ∈ PARTITION.

To show sufficiency, suppose thatI is a certificate forS. Thus,I ∪ {n + 1} is a
certificate forad

(
f1(S), f3(S)

)
= (a1, ..., an,

∑n
i=1 ai,

∑n
i=1 ai).
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Conversely, assume thatI is a certificate for(a1, ..., an,
∑n

i=1 ai,
∑n

i=1 ai). The sum
of the sequence(a1, ..., an+2) is 3 ·∑n

i=1 ai. It follows that

∑
i∈I

ai =
∑

i∈{1,...,n+2}\I
ai =

3

2

n∑
i=1

ai.

Thus, it is impossible that bothn + 1 andn + 2 are contained inI or {1, ..., n + 2} \ I.
W.l.o.g. generality assume thatn + 1 ∈ I andn + 2 ∈ {1, ..., n + 2} \ I. Thus,

∑

i∈I\{n+1}
ai =

∑

i∈{1,...,n}\I
ai,

which implies thatS = (a1, ..., an) ∈ PARTITION.

Theorem 9.38.PARTITION ≤p
m MODrmVPARTITION .

Proof. We use the same reduction functions as in the proof of Theorem9.37:

• f1(S) := (a1, ..., an,
∑n

i=1 ai),

• f2(S) := {1, ..., n},
• f3(S) :=

∑n
i=1 ai,

Obviously,
(
f1(S), f2(S)

) ∈ VPARTITION . Furthermore,rm
(
f1(S), f3(S)

)
= S. The

desired result is immediate.

Selected solution as hint

The problemPARTITION seems especially susceptible to slight modifications. Not only
that both adding and deleting an element from the sequenceS yield NP-complete prob-
lemsMODcVPARTITION , but we can also prove that generallynosolution yields a helpful
hint in this case. This can be proven by hint-independent reductions fromPARTITION

to (ad, VPARTITION) and(rm, VPARTITION), respectively. The reductions given in the proofs
of Theorems9.37and9.38are hint-independent reductions sinceVPARTITION(f1(S)) =
{f2(S)} in both cases.

Corollary 9.39. PARTITION ≤p
hi (c, VPARTITION) for c ∈ {ad, rm}.

No solution as promise

Theorem 9.40.PARTITION ≤p
pi (rm, PARTITION).

Proof. Let S = (a1, ..., an). We obtain the desired≤p
pi-reduction by defining

• f1(S) =
(
a1, ..., an, (

∑n
i=1 ai) + 1

)
and

• f2(S) = (
∑n

i=1 ai) + 1.

The reduction functionsf1 andf2 from the last proof can also be used to show that
PARTITION ≤p

pi (ad, PARTITION).
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Appendix B - Optimization
Problems

10.1 MAXIMUM TRAVELLING SALESPERSON(MAX TSP)

We consider the problemMAX TSPas defined in Section7.4. Without reoptimization,
the best known approximation result forMAX TSPis a4/3-approximation [Ser84]. In
contrast toM INTSP, the generalMAX TSPproblem benefits from reoptimization. It
has been shown in [AEMP06] that MODadvMAX TSP is approximable with ratio5

4

(for the definition ofadv see Section7.4). In thesis we show thatMODincMAX TSPis
5/4-approximable. Before we prove this result, we introduce some additional notation.

Definition 10.1 ([LP86]). LetG be a graph andf : V (G) → N. Anf -factor ofG is a
subgraphH of G such thatdegH(v) = f(v), for all v ∈ V (G).

Whenf is a constant function, i.e.,f(v) = k for all v ∈ V (G) and some fixedk ∈ N
,we get the notion of ak-factor. Note that a 1-factor ofG is a perfect matching ofG. A
2-factor ofG is a partition ofG into node disjoint cycles, or short, a cycle cover.

Lemma 10.2. Let G be a weighted graph andP = (p1, ..., pm), m ≥ 2 a constant, be
a path inG. There is a polynomial-time algorithm that finds among all 2-factors ofG
that contain the pathP a 2-factor of maximum weight.

Proof. A maximum weight 2-factor forG that respects a given path(p1, ..., pm) is in-
duced by a maximum weightf -factor forG, where

f(x) =





0, if x ∈ {p2, ..., pm−1},
1, if x ∈ {p1, pm},
2, if x ∈ V (G) \ {p1, ..., pm}.

Chapter 10.1. of [LP86] contains a reduction function, call itg, such that for any graph
G it holds thatG has anf -factor if and only ifg(G) has a perfect matching. We can alter
this reduction to yield a similar statement for weighted graphs. Utilizing an algorithm
from [Gab74] for finding a maximum weight perfect matching, we obtain anO(n3)
algorithm for finding a maximum weightf -factor ofG.
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We are now prepared to prove our main result of this section.

Theorem 10.3.MODincMAX TSPis 5/4-approximable.

Proof. Let Go denote the original instance and letT o
opt be a maximum tour forGo.

Let Gm := inc(Go, (e, i)) denote the modified graph,e = {u, v}, and letTm
opt be a

maximum tour forGm. Note thatcost(Go, T o
opt) ≥ cost(Gm, Tm

opt)− i, since otherwise
T o

opt was not an optimum tour forGo. Also, we assume thate /∈ T o
opt ande ∈ Tm

opt,
otherwiseT o

opt is an optimum tour inGm and is chosen as output when compared to
other solutions that are obtained in the coming.

1. Case: |V (Go)| is even: From T o
opt we can, in an obvious way, obtain a perfect

matchingM with cost(Go,M) ≥ cost(Go, T o
opt)/2 ≥ (cost(Gm, Tm

opt) − i)/2.
By adding the edgee to M we obtain a setM ′ that contains a path of length 3
and withcost(Gm, M ′) ≥ (cost(Gm, Tm

opt) + i)/2.

Now, consider a 2-factorF = (C1, ..., C`) of Gm such that (a)e is contained in
C1, (b) |C1| ≥ 5, and (c)F is of maximum weight among all 2-factors ofGm that
satisfy (a) and (b). We can find such a 2-factor in polynomial-time by constructing
a maximum weighted 2-factor forGm that contains the path(r, s, t, u, v) (see
Lemma10.2), for all possibilities of expandinge to a cycle-free path of length
four, and selecting the costliest of these 2-factors. Sincee ∈ Tm

opt we have that
cost(Gm, F ) ≥ cost(Gm, Tm

opt).

Applying the method of Serdyukov [Ser84], we iteratively, forp = 1, ..., `, delete
an edge fromCp and add this edge toM ′ such that the modified setM ′ is still a
union of paths. ForC1 = (r, s, t, u, v, ...) this is possible sincer, s, t are endpoints
of a path inM ′ (only u andv are no endpoints) but only two of them can be
endpoints of the same path. Hence, one of{s, r} or {s, t} can be added toM ′.
For all other cyclesCp, this is possible since only vertices from already processed
cyclesCj, 1 ≤ j < p, can have degree 2 inM ′. Thus, all (of at least 3) vertices
of Cp are endpoints of some path inM ′ but only two of them can be endpoints of
the same path.

By this procedure, the 2-factorF and the set of edgesM ′ are transformed into
two sets of pathsP1 andP2 that satisfy

cost(Gm, P1) + cost(Gm, P2) = cost(Gm,M ′) + cost(Gm, F )

≥ (cost(Gm, Tm
opt) + i)/2 + cost(Gm, Tm

opt).

By taking the costlier ofP1 andP2 we get a set of paths with cost larger than
3
4
(cost(Gm, Tm

opt) + i
4
. Let T denote the completion of this partial tour to a cycle

in Gm; sinceGm is a complete graphT always exists.

Now for i ≤ 1
5
cost(Gm, Tm

opt) the solutionT o
opt yields a5/4-approximation, for

i > 1
5
cost(Gm, Tm

opt) the tourT yields such a bound.
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2. Case: |V (Go)| is odd: We construct fromT o
opt a set of pathsM with at most one

path of length 2 such that (a)cost(Go,M) ≥ cost(Go, T o
opt)/2, (b) insertinge into

M prolongs the longest path inM , and (c)u andv are no endpoints inM ∪ {e}.
Thus,M ′ := M ∪ {e} only consists of paths of length 1, with the exception of a
single path of length at most 4 containingu andv, andu, v being no endpoints of
the path.

Now, consider a maximum cost 2-factorF = (C1, ..., C`) of Gm that containse
as an edge inC1 and|C1| ≥ 8. SinceM ′ contains at most3 vertices that are not
an endpoint of a path inM ′, the cycleC1 contains 3 consecutive vertices that are
endpoints inM ′. The rest of the proof translates mutatis mutandis from the case
|V (Go)| is even.

A similar result for the modificationdec has not been found.

Open problem 6. DoesMAX TSP∆ benefit from reoptimization when the modification
is dec, i.e., isMODdecMAX TSP∆ δ-approximable for someδ < 4

3
?

In analogy to the proof of Theorem7.13 we are able to show the following non-
approximability result.

Theorem 10.4.There is noFPTAS for (inc, MAX TSP) and(dec, MAX TSP), unless
P = NP.

For a proof we refer to the coming Theorem10.8, in which it is shown that already
some restricted versions of(dec, MAX TSP) and(inc, MAX TSP) have noFPTAS.
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10.2 MAXIMUM METRICTRAVELLING SALESPERSON

(MAX TSP∆)

We consider the problemMAX TSP∆ as defined in Section7.5. The problemMAX TSP∆

is approximable with ratio8
7

when no hint is given [CN07]. It has been shown in
[AEMP06] that MODadvMAX TSP∆ admits aPTAS.

In this thesis, we prove that there exists aPTAS for MODdec∆MAX TSP∆. There-
fore, we use the following theorem about approximability of alternative solutions for
MAX TSP∆ — a result interesting in its own right.

Theorem 10.5.Let G be aMAX TSP∆-instance,Topt be a maximum tour inG, ande
be an edge ofTopt. We can find in polynomial-time a tourT ′ such thate does not belong
to T ′ andcost(G, T ′) ≥ (

1− 2
|V (G)|−2

)
cost(G, Topt).

Proof. Let Topt = (v1, ..., vn) be a maximum tour ofG = (Kn, w). We assume without
loss of generality thate = {vn, v1}. First, we prove that there exist three consecutive
verticesvi−1, vi, andvi+1 in T o

opt such that

w({vi−1, vi}) + w({vi, vi+1}) ≤ 2

n− 2
cost(G, Topt).

Assume to the contrary thatw({vi−1, vi}) + w({vi, vi+1}) > 2
n−2

cost(G, Topt), for all
2 ≤ i ≤ n − 1. But then, by summarizing the weights of the paths(v2i−1, v2i, v2i+1),
1 ≤ i ≤ b(n− 1)/2c in Topt we get thatcost(G, Topt) > (n−1

2
− 1

2
) · 2

n−2
· cost(G, Topt),

a contradiction.
By deleting the edges{vn, v1}, {vi−1, vi}, and{vi, vi+1} from Topt and inserting the

edges{vn, vi}, {vi, v1}, and{vi−1, vi+1} we obtain a tourT ′ that does not contain the
edgee. Because of the triangle inequality the cost of the tourTopt increases when taking
the path(vn, vi, v1) instead of the shortcut(vn, v1). Thus,T ′ is shortened by at most
w({vi−1, vi}) + w({vi, vi+1}) compared toTopt.

Corollary 10.6. MODdec∆MAX TSP∆ has aPTAS.

Proof. We may assume that the modified edgee does belong to a maximum tourT o
opt

in the original graphGo, but not to a maximum tourTm
opt in the modified graphGm. Let

ε > 0. In case thatε ≥ 2
|V (G)|−2

Theorem10.5yields a solutionT ′ with cost(Go, T ′) ≥
(1 − ε)cost(Go, T o

opt). The assertion follows from the facts thatcost(Go, T o
opt) ≥

cost(Gm, Tm
opt) and thatcost(Go, T ′) = cost(Gm, T ′). In case thatε < 2

|V (G)|−2
we

perform a brute force search for a maximum tour inGm.

Note that the proof of the above Theorem does not use the assertion that the modified
graphGm satisfies the triangle inequality. Thus, we also have aPTAS for the more
general modificationdec that might output modified instances that violate the triangle
inequality.

Theorem 10.7.MODinc∆MAX TSP∆ has aPTAS.
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Proof. Let ε ≥ 0 andG be aMAX TSP∆-instance. Ifε < 2
|V (G)|−2

we perform a brute

force search for an optimum solution inGm. In the other case,ε ≥ 2
|V (G)|−2

, we output

the old solutionT o
opt. This suffices sincecost(Gm, T o

opt) ≥
(
1− ε)cost(Gm, Tm

opt).
To see this, take an optimum tourTm

opt of Gm. If e is contained inTm
opt we use Theorem

10.5to get a tourT ′ that does not containe and for which

cost(Gm, T ′) ≥
(

1− 2

|V (G)| − 2

)
cost(Gm, Tm

opt) ≥
(
1− ε

)
cost(Gm, Tm

opt).

If e is not contained inTm
opt we setT ′ := Tm

opt. Since the modified edgee is not contained
in T ′ and sinceT o

opt is maximum inGo we have

cost(Gm, T ′) = cost(Go, T ′) ≤ cost(Go, T o
opt) ≤ cost(Gm, T o

opt).

The assertion follows immediately.

Theorem 10.8.There is noFPTAS for (inc∆, MAX TSP∆) and(dec∆, MAX TSP∆).

Proof. The proof is similar to the proof of Theorem7.13, except that we assign the
weights 2, 3, and 4 to the edges, in order to satisfy the triangle inequality.
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10.3 M INIMUM STEINERTREE (M INST)

The problemM INST is defined as follows:

PROBLEM: M INST

INSTANCE: A complete graphG = Kn, a functionw : E(G) → N assigning
a weight to each edge ofG, and a subsetS ⊆ V (G) of so called
terminal vertices.

SOLUTION: A Steiner tree, i.e., a subtree ofG that includes all the vertices inS.

MEASURE: The sum of the weights of the edges in the subtree.

The nonterminal vertices ofG are called Steiner vertices. The problemM INST is
approximable with factor(1 + ln3

2
) ≈ 1.55 [RZ05] and isAPX-complete [BP89].

A Steiner tree instanceG can be transformed to an equivalent Steiner tree instance
∆(G) that satisfies the triangle inequality as follows. For every edgee of G we search
for a shortest path inG that connects the two endpoints ofe and modify the weight of
e to be the weight of this shortest path. Let∆(G) denote the resulting graph, which
clearly satisfies the triangle inequality. Now a Steiner tree solutionT for ∆(G) can be
transformed into a Steiner tree solution forG of at most the same weight by expanding
every edgee of T into the shortest paths between the endpoints ofe in G.

In this thesis we study the problem of reoptimization when changing the weight of
single edges. The corresponding modification functionsinc and dec are defined as
usual. But, the decrease of a single edge inG might lead to the decrease of several
edges in the graph∆(G), as there could be several new shortest paths inG between the
endpoints of some edges. Since we are mainly interested in verysmall modifications
of the original instance we also consider a modification functiondec∆ that does not
allow an edge decrease inG that would lead to multiple edge decreases in∆(G). The
respective modification functiondec∆ is defined as follows

dec∆(G, (e, i)) :=





dec(G, (e, i)), if ∆(G) and∆(dec(G, (e, i))) differ
in the weight of at most one edge,

trivial instance, otherwise.

A modification functioninc∆ can be defined in the same way.
The problem ofreoptimizingM INST-instances has already been discussed in liter-

ature. In [EMP07] it is shown, that the problemMODadvM INST is 3
2
-approximable

(the added vertex may be a terminal or a Steiner vertex). In [BHK+] the modification
consists of changing the type of a single vertex from being a Steiner vertex to being a
nonterminal vertex, and vice versa, and a 3/2-approximation is given for this problem.
Just recently, in [BBH+08] these last results have been improved to 1.33 for the aug-
mentation of the terminal set and 1.4 for restricting the terminal set. Also in [BBH+08]
are the following results.

Theorem 10.9 ([BBH+08]).

1. MODincM INST is 4
3
-approximable and
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2. MODdec∆M INST is 1.3-approximable.

We complement these results, by giving lower bounds on the reoptimizability ofM INST
when the modification isdec∆ or inc∆.

Theorem 10.10.UnlessP = NP, (dec∆, M INST) has noFPTAS.

Proof. Assume that(dec∆, M INST) has anFPTAS A. We show thatSAT ∈ P under
this assumption. In a nutshell, the proof is as follows: We will construct in a series of
transformations from a formulaF a CLIQUE-instanceG′, from G′ a VC-instanceG′,
and fromG′ aM INST-instanceGo that has exactly one optimum solution. We will then
modify Go to Gm such that containment ofF in SAT can be decided with help of the
FPTAS A.

Let F = {C1, ..., Cm} be a Boolean formula. We assume the reader to be familiar
with the construction and the notations from Section9.5, in particular with the subsec-
tion ’Selected solutions as hint’. Application of the reduction functionf from [Kar72],
which is described in Section9.5, gives aCLIQUE-instancef(F ). Let v1, ..., vn be the
vertices off(F ). Tof(F ) we add another vertexz that is connected to all vertices from
f(F ). Also we add a separated complete graph overm + 1 new verticesu1, ..., um+1.
The resulting graphG′

• has anm + 1-cliqueC∗ = {u1, ..., um+1},
• has nom + 2-clique,

• has anotherm + 1-clique if and only ifF is satisfiable, and

• every such additionalm+1-clique contains the vertexz and does not contain any
of the vertices{u1, ..., um+1}.

We leave a formal proof of these simple facts to the reader. Using the standard re-
duction for CLIQUE ≤p

m VC (see [GJ79] for example) we obtain fromG′ a graph
G′ = (V (G′), E ′) such that

(P1) G′ has a vertex coverD∗ := {v1, ..., vn, z} of sizem′ := |V (G′)| − (m + 1),

(P2) G′ has no vertex cover of sizem′ − 1,

(P3) G′ has another vertex cover of sizem′ if and only if F is satisfiable, and

(P4) every such additional vertex cover of sizem′ does not contain the vertexz and
contains the vertices{u1, ..., um}.

See Figure10.1for an illustration of the graphG′. Let q denote the number of edges of
G′, i.e,q :=

∣∣E ′∣∣.
FromG′ we construct a Steiner tree instanceGo with weight functionw in the follow-

ing way. Lete1, ..., eq denote the edges inE ′. W.l.o.g. letej = {z, uj}, 1 ≤ j ≤ m+1.
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z

...

Km+1

f(F )

Figure 10.1:TheVC-instanceG′.

We also assume thatem+1+j = {u1, vj}, 1 ≤ j ≤ n. Every edgeej, 2 ≤ j ≤ q, is
replaced by a length-2 path in that the middle vertex is a newly introduced terminal
vertextj and the two weights6q + 1 and6q + 2 are assigned to the both edges of the
path. Thereby, we assign the smaller value6q + 1 to the edge that is incident to one of
the verticesv1, ..., vn or z and the value6q + 2 to the other edge. In case that both of
the two edges of the path are incident to a vertexv1, ..., vn the two weights6q + 1 and
6q + 2 are allocated arbitrarily between these two edges. The edgee1 = {z, u1} is also
replaced by such a path, butw({z, t1}) = 8q + 1 andw({t1, u1}) = 10q + 1. Also,
an additional terminal vertexa is added. The terminal vertices mentioned are the only
terminal vertices ofGo, i.e.,S := {tj : 1 ≤ j ≤ q} ∪ {a}. Beside the already specified
edges, the weight of theotheredges is given by

w({u, v}) :=





6q, if u = a andv is a Steiner vertex,
12q + 2, if u ∈ S \ {a} andv is a Steiner vertex,
12q, if u andv are Steiner vertices,
12q, if u = a andv ∈ S \ {a},
12q + 2, if u, v ∈ S \ {a}.

See also Figure10.2for an illustration ofGo.
Given a vertex coverD of G′ we construct a Steiner treeT for Go by the following

algorithm.

Algorithm InducedSteinerTree(D)
Input: A vertex coverD for G′

Output: A Steiner treeT for Go

begin
1. Choose as Steiner vertices inT the vertices inD.
2. For each terminal vertextj in S \ {a} connecttj to some Steiner vertex ofT

via an edge of weight at most10q + 1. If two such connections are possible,
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vn

u1
um+1

a
z
t1
tm+1

tm+2
tm+n+1

Weigth of other edges:12q 12q + 2 12q 12q + 2tj a tj ti tj

f(F ) Km+1

6q 6q 6q6q
6q + 16q + 1

6q + 16q + 1 6q + 26q + 26q + 26q + 2
6q + 1=+ 2

6q + 1=+ 2
6q + 2 6q+1
10q + 1 8q + 1

1

Figure 10.2:The M INST-instanceG that is constructed fromG′. Only edges with
weight at most10q + 1 are shown. White vertices are Steiner vertices,
black vertices are terminal vertices.

then choose the cheaper one.
3. For each Steiner vertexw ∈ D connectw to a by the edge{w, a}.

end;

We claim thatT o
opt := InducedSteinerTree(D∗) is the sole optimum solution inGo

(see Claim (iv) at the end of this proof). We modifyGo by decreasing the weight of the
edge{t1, u1} from 10q + 1 to 6q + 1. Note that the original graph and the modified
graph both satisfy the triangle inequality, thusdec∆ is applicable. We claim that the
modified graphGm has a solutionTm with cost(Gm, Tm) < cost(Go, T o

opt) − q if and
only if G′ has a sizem′ vertex coverD other thanD∗ (see Claim (v) at the end of this
proof).

Let ε := 1/(cost(Go, T o
opt) + 1). The input for ourFPTAS A consists of the original

graphGo, its sole optimum solutionT o
opt, the modification that turnsGo into Gm, and

the error boundε. Let TA denote the output ofA. Note thatopt(Gm) ≤ cost(Go, T o
opt),
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︸ ︷︷ ︸
` times

︸︷︷︸ q − ` times

s1 sr

. . .

. . .

. . . . . .

a

Figure 10.3:A Steiner tree in normal form.

sinceT o
opt only uses unmodified edges. Now,

cost(Gm, TA) ≤ (1 + ε)opt(Gm)

≤ opt(Gm) +
1

cost(Go, T o
opt) + 1

· cost(Go, T o
opt)

< opt(Gm) + 1.

In other words,A always yields an optimum solution forGm. Thus, givenTA it is easy
to decide whether there exists a Steiner treeTm with cost(Gm, Tm) < cost(Go, T o

opt)−
q, which is the case if and only ifG′ has a sizem′ vertex coverD other thanD∗.
The latter is the case if and only ifF is satisfiable by (P2). The assertionSAT ∈ P
follows from the fact that all our reductions are computable in polynomial time and our
FPTAS A runs in polynomial time as well, sincecost(Go, T o

opt), and therefore also1/ε,
is bounded by a polynomial inq (see also proof of Claim (iv)).

We conclude by giving proofs for the postponed Claims(iv) and (v). In order to prove
these claims, we first establish some auxiliary results.

Claim (i): A Steiner treeT in Go or Gm can be transformed to a Steiner treeT ′ that
consists of the same vertices asT , has the same cost (or less) asT , and only uses edges
of weight at most10q + 1 or edges of the form{tj, a}. Additionally, we can chooseT ′

such that every terminal vertex inT ′ has degree 1. We say thatT ′ has normal form (see
also Figure10.3).

Proof of Claim: First, we show how an edge{u, v} with cost greater than10q + 1 in
T can be locally substituted by edges of weight at most10q + 1 without increasing the
weight of the Steiner tree.

Let {u, v} be an edge of weight greater than10q + 1, or equivalently, an edge of
weight at least12q. The vertexa is a vertex ofT , since it is a terminal vertex. By
deleting the edge{u, v} from T we obtain a forest with two components — one of the
components containsu, the other one containsv. If a andu are in the same component
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the edge{a, v} (of weight at most12q) is added to connect the two components to a
Steiner tree. Otherwise, ifa andv are in the same component, we add the edge{a, u}
(of weight at most12q). Thus we may assume thatT only contains the above mentioned
types of edges.

Next we show how to assure that every terminal vertex inT ′ has degree 1. This is
again done by local transformations on vertices that violate this property. Lettj be
a terminal vertex with degree at least two. Letu and v be two vertices adjacent to
tj. Since we may assume thatT only uses the above mentioned normal-form-edges it
suffices to consider the following two cases.

Case 1: u = a andv is a Steiner vertex: Removal of the edge{tj, v} of weight at least
6q + 1 and addition of the edge{a, v} of weight6q decreases the degree oftj by
one.

Case 2: u andv are Steiner vertices: Deletion of{u, tj} (of weight at least6q + 1)
results in a forest with two components. Ifu anda belong to the same component
we add the edge{a, v}. Otherwise, ifv anda belong to the same component, we
add the edge{a, u}. This reduces the degree oftj by one.

Repeated application of this procedure leads to the desired treeT ′.

Claim (ii): Let T be a Steiner tree in normal form (see Claim (i)),s1, ..., sr be the
Steiner vertices ofT , and{a, ti1}, ..., {a, ti`} be the edges of weight12q in T . ThenT
induces a vertex cover of sizer + ` in G′ that uses the verticess1, ..., sr. Additionally,
for every edge{a, tj} of weight12q in T the vertex for the vertex cover may be arbi-
trarily chosen fromej.

Proof of Claim: This fact is obvious by the construction ofGo from G′.

Claim (iii): Let T be a Steiner tree in normal form forGo (see Claim (i)),r be the
number of Steiner vertices inT , ` be the number of edges of weight12q in T , and

cost(Go, T ) ≤ q(6q + 1) + m′ · 6q + 2q. (1)

Thenr + ` = m′. The same statement holds for the graphGm.

Proof of Claim: Let T, r, l, andcost(Go, T ) be as above. Note thatr + ` ≥ m′, since
otherwise we could construct fromT a vertex cover of sizem′ − 1 for G′ (see Claim
(ii)), which contradicts (P2). Thus, it suffices to show thatr + ` ≤ m′. Assume to the
contrary thatr + ` ≥ m′ + 1. Then

cost(Go, T ) ≥ (q − `)(6q + 1) + r · 6q + ` · 12q

= q(6q + 1) + 6q(r + `)− `

≥ q(6q + 1) + 6q(m′ + 1)− `

> q(6q + 1) + m′ · 6q + 2q,
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since4q > `. This contradicts (1) and thusr + ` = m′.

Claim (iv): T o
opt is the only optimum solution inGo.

Proof of claim: First, we examine the structure of the solutionT o
opt, which is given by

T o
opt := InducedSteinerTree(D∗). Note that sincez ∈ D∗ the algorithmInduced-

SteinerTree connects in its second stept1 to z via the edge of weight8q + 1 and all
of the verticest2, ..., tm+1 to z via an edge of weight6q + 1. Sincev1, ..., vn ∈ D∗ it
also connects all of the remaining terminal verticestm+1, ..., tq to a Steiner vertex via
an edge of weight6q + 1. In the third step of the algorithmm′ edges of weight6q are
added. In summary we getcost(Go, T o

opt) = q(6q + 1) + m′ · 6q + 2q.
Let T ′

opt be an optimum Steiner tree inGo with cost(Go, T ′
opt) ≤ cost(Go, T o

opt) other
thanT o

opt. We may assume thatT ′
opt is in normal form (see Claim (i)). Letr′ denote

the number of Steiner vertices inT ′
opt and`′ denote the number of weight-12q edges in

T ′
opt. By application of Claim (iii) we have thatr′ + `′ = m′.
First, we show thatz is contained inT ′

opt. Assume to the contrary, thatz is no Steiner
vertex inT ′

opt. Then, there are only two possibilities to maket1 a vertex of degree 1 in
the normal form treeT ′

opt.

Case 1: {a, t1} is contained inT ′
opt: In this case, the edge{a, t2} is no edge inT ′

opt,
since otherwise we could obtain a better tree thanT ′

opt by deleting{a, t1} and
{a, t2} and adding the edges{a, z},{z, t1} and{z, t2}, which contradicts opti-
mality of T ′

opt. Sincez is no Steiner vertex the only possibility to connectt2 to
the tree is to use the edge{t2, u2}. Hence,u2 is a Steiner vertex ofT ′

opt. But then,
T ′

opt induces a vertex cover of sizer′ + `′ = m′ in G′ that uses the verticesu1 and
z. This contradicts (P1) or (P4).

Case 2: {u1, t1} is contained inT ′
opt: Sincew({u1, t1}) = 10q + 1 we have

cost(Go, T ′
opt) ≥ (q − `′ − 1)(6q + 1) + r′6q + `′12q + (10q + 1)

= q(6q + 1) + 6q(r′ + `′)− `′ + 4q

= q(6q + 1) + m′ · 6q − `′ + 4q

= cost(Go, T o
opt) + 2q − `′

> cost(Go, T o
opt),

since2q > `′. This contradicts our initial assumption thatcost(Go, T ′
opt) ≤

cost(Go, T o
opt).

Thus we have shown thatz is contained inT ′
opt. Next, observe that none of the

vertices{u1, ..., um} may be contained inT ′
opt. OtherwiseT ′

opt would induce a vertex
cover of sizer′ + `′ = m′ that contains both ofz anduj for somej ≤ m (see Claim
(ii)). This is impossible since (P1) and (P4). In particular,u1 is no Steiner vertex of
T ′

opt.
Also, none of the edges{a, tm+1+j}, 1 ≤ j ≤ n, is contained inT ′

opt, since such
an edge would also induce a forbidden vertex cover withz andu1 (see Claim (ii)).
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Consequently,T ′
opt has no other choice but to use the edges{tm+1+j, vj}, 1 ≤ j ≤ n.

Thus, all the verticesv1, ..., vn are Steiner vertices inT ′
opt.

In consequence,T ′
opt andT o

opt use the same Steiner vertices. Also, sinceT ′
opt is in

normal form,T ′
opt usesm′ edges of weight6q to connect its Steiner vertices toa. Just

as inT o
opt the terminal verticest1, ..., tq are connected to the Steiner vertices ofT ′

opt via
edges of weight6q + 1 (or 8q + 1 for t1), otherwiseT ′

opt is not optimum. Since only
one such edge of weight6q + 1 (or 8q + 1 for t1) exists for every terminal vertextj,
1 ≤ j ≤ q, we conclude thatT o

opt = T ′
opt.

Claim (v): There exists a Steiner tree of size at mostcost(Go, T o
opt) − q − 1 in Gm if

and only if there exists a sizem′ vertex cover inG′ other thanD∗.

Proof of claim: Note that we have already shown in Claim (iv) thatcost(Go, T o
opt) =

q · (6q + 1) + m′ · 6q + 2q.
To show sufficiency, letT be a Steiner tree withcost(Gm, T ) < q·(6q+1)+m′·6q+q.

We assume thatT is given in normal form (see Claim (i)). Letr denote the number of
Steiner vertices inT and ` denote the number of terminal vertices that are directly
connected toa. By Claim (ii) we havel + r = m′.

We show thatT induces a vertex cover of sizem′ that uses the vertexu1. Therefore, it
suffices to show thatu1 is a Steiner vertex ofT (see Claim(ii)). Assume to the contrary
thatu1 is no Steiner vertex inT . Then, there are only two possibilities how the terminal
vertext1 is connected toT .

Case 1: {a, t1} is contained inT : We may assume that the edge{a, t2} is no edge in
T , since otherwise we could obtain a better tree thanT by deleting{a, t1} and
{a, t2} and adding the edges{a, z},{z, t1}, and{z, t2}. Thus, either{z, t2} or
{t2, u2} is an edge ofT . In either case, we can construct fromT a vertex cover
of sizel + r = m′ for G′ that includesz and one of the verticesu1 or u2. This
contradicts (P1) or (P4).

Case 2: {z, t1} is contained inT : Sincew{z, t1} = 8q + 1 we have

cost(Gm, T ) ≥ (q − `− 1)(6q + 1) + r · 6q + ` · 12q + (8q + 1)

= q(6q + 1) + 6q(r + `)− ` + 2q

= q(6q + 1) + m′ · 6q − ` + 2q

≥ q(6q + 1) + m′ · 6q + q,

sincel ≤ q. This contradicts our initial assumption thatcost(Gm, T ) < q(6q +
1) + m′ · 6q + q.

Thus,u1 is a Steiner vertex ofT . By Claim (iii) the Steiner treeT induces a vertex
cover of sizel + r = m′ for G′ that uses the vertexu1, therefore being unlikeD∗.

To show necessity, letD 6= D∗ be a vertex cover of sizem′ for G′. By (P4) the vertex
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coverD contains the vertexu1. Thus,

cost(Gm, InducedSteinerTree(D)) ≤ (q − 1)(6q + 2) + (6q + 1) + m′ · 6q
= q(6q + 1) + m′ · 6q + q − 1.

The last proof can be adapted to show that(inc∆, M INST) is unlikely to have a
FPTAS.

Corollary 10.11. UnlessP = NP, (inc∆, M INST) has noFPTAS.

Proof. The construction ofGo follows the proof of Theorem10.10, with the exception
that w({z, t1}) = 6q + 1 andw({t1, u1}) = 8q + 1. The modification consists of
the increase of the weight of{z, t1} from 6q + 1 to 10q + 1. The rest of the proof is
similar.
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10.4 M INIMUM MAXIMAL INDEPENDENTSET

(M INMAX IS)

We already mentioned in Section7 that many optimization problems have an approx-
imation with an absolute error of1 or 2. We gave two examples of such problems,
namelyM INVC andM INMAX MATCH. But do all unweighted1 optimization problems
have such constant absolute error reoptimizations of 1 or 2?

We answer this question to the negative, by giving the rare example of an unweighted
problem that has no absolute error approximation in the reoptimization case (unless
P = NP). Namely, we show this for the problemM INIMUM MAXIMAL INDEPEN-
DENTSET, or shortM INMAX IS. This problem is also known asM INIMUM INDEPEN-
DENTDOMINATING SET (see [ACG+99]) and is defined as follows:

PROBLEM: M INMAX IS

INSTANCE: An (undirected) graphG = (V, E).

SOLUTION: A maximal independent set inG, that is, a setV ′ ⊆ V of mutually
non-adjacent vertices such that the introduction of an additional vertex
destroys the non-adjacency property.

MEASURE: |V ′|.
UnlessP = NP, the problemM INMAX IS has no factor|V |1−ε-approximation, for any
ε > 0 [Hal93]. We show, that the same non-approximability result also holds whenre-
optimizingM INMAX IS, whereas the considered modifications are the deletion and the
insertion of a single edge. We first prove this for the modification functionad, which
adds a single edge.

Theorem 10.12.UnlessP = NP, (ad, M INMAX IS) has no|V |1−ε-approximation, for
anyε > 0.

Proof. Let (ad, M INMAX IS) be |V |1−ε-approximable for some0 < ε < 1 via an
algorithmA. We show thatSAT ∈ P under this assumption.

In the course of the proof we use a construction from [Hal93] that, given a formula
F = {C1, ..., Cm} over variablesx1, ..., xn, constructs a graphf(F ) as follows. The
graphf(F ) has for each variablexi two vertices labelledxi and¬xi. Also, for every
clauseCj, 1 ≤ j ≤ m, it contains a certain numbert of verticesyj

1, ..., y
j
t . We fix the

numbert later in the proof. For the moment, just assume thatt is large, e.g.,t = 2n.
The edges off(F ) are{xi,¬xi}, for all i ≤ n, and{l, yj

1}, ..., {l, yj
t} for all literalsl of

the clauseCj, 1 ≤ j ≤ m. The graphf(F ) has some interesting properties.

1. For any fixedj, all the verticesyj
1, ..., y

j
t share the same neighborhood. Thus, if

one ofyj
1, ..., y

j
t is contained in a maximal independent set then all ofyj

1, ..., y
j
t

are contained.

1Obviously, optimization problems in which the cost depends on some weight function can have a
constant error of at leastk, k constant, by multiplying the weights with a large enough natural number.
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2. If F ∈ SAT thenf(F ) has a maximal independent set of sizen. To see this, letβ
be a satisfying assignment ofF . Note that the independent set given by choosing
all verticesxi with β(xi) = 1 and all vertices¬xi with β(xi) = 0, 1 ≤ i ≤ n, is
maximal, since all clauses are ’covered’ by some literal.

3. If t > n the independent sets from 2. are minimum. For a proof, note that a
minimum maximal matching cannot contain a vertex of typeyj

` (see 1.). But is
has to contain one of the verticesxi or¬xi for eachj in order to be maximal.

4. If F /∈ SAT then a minimum maximal independent setS has size at leastt. No
matter what combination ofxi- and¬xi-vertices are chosen, there must be at least
one clauseCj that contains none of the corresponding literals. Consequently, all
of yj

1, ..., y
j
t have to be in the resulting maximal independent set.

In constructing an original graphGo with exactly one optimum solution, we use an
auxiliary graph gadgetHs. For anys ∈ N, the gadgetHs consist of a vertexz, which
is the only vertex that may be connected to other vertices outsideHs, ands additional
verticesb1, ..., bs, which are solely connected toz. The gadgetHs is useful for making
specific vertices costly. In detail, if another vertexv is connected to the gadgetHs then
together withv also the verticesb1, ..., bs are in a maximal matching. Thus, a maximal
matching that containsv has cost at leasts + 1.

We are now prepared to define an original graphGo that will be the input for our
|V |1−ε-approximation algorithmA. Let F = {C1, ..., Cm} be a formula over variables
x1, ..., xn. FromF we construct a CNF-formula

F ′ := (¬a ∨ C1) ∧ (¬a ∨ C2) ∧ . . . ∧ (¬a ∨ Cm) ∧
(a ∨ x1) ∧ (a ∨ x2) ∧ . . . ∧ (a ∨ xn).

Note thatF ′ has exactly one satisfying assignmentβ with β(a) = 0, namelyβ(xi) = 1
for all variablesxi, 1 ≤ i ≤ n. Also, F ′ has a satisfying assignmentβ with β(a) = 1
if and only if F ∈ SAT. Our starting point in definingGo is the graphf(F ′), to which
we add the two gadgetsH2 andHt. We connect the gadgetH2 to the vertexa. This
concludes the construction ofGo. For an illustration ofGo see Figure10.4.

Note thatGo has a solution of sizen + 3, namelyS = {x1, ..., xn,¬a, z, z′}. If
t ≥ n + 2 this solutionS is a unique minimum. To see this letS ′ 6= S be a minimum
solution inGo.

Case 1: a ∈ S ′: ThenS ′ also containsb1 andb2. Furthermore,S ′ has to contain at
least one ofz′, b′1, ..., b

′
t. Also, S ′ does not contain a vertexyj

` , since this would
lead to a suboptimum solution of sizet + 4 (≥ n + 6). Hence, by maximality of
S ′, one ofxi or ¬xi is contained inS ′ for everyi ≤ n. In total this leads to a
solution of sizen + 4. Thus|S ′| > |S| andS ′ is no optimum.

Case 2: a /∈ S ′: In order to obtain aminimummaximal independent set onGo it is
best to choose the verticesz andz′ to be in the cover. Also no vertexyj

` is part
of S ′, otherwiseS ′ has size at leastt + 2 ≥ n + 4, which is clearly not optimum.
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¬a

a

z′

z
b1

b2

b′1
b′2

b′t

...

f(F ′)

H2

Ht

Figure 10.4:TheM INMAX IS-instancesGo andGm. The dashed line is present inGm,
but missing inGo.

If no yj
` vertex is used inS ′ then one ofxi or ¬xi, 1 ≤ i ≤ n, and the vertex¬a

have to be part ofS ′ by maximality ofS ′. SinceS ′ 6= S there exists an indexj
with ¬xj ∈ S ′. This implies a satisfying assignmentβ for F ′ with β(a) = 0 and
β(xj) = 0, a contradiction to the construction ofF ′.

This shows that ift is large enough thenGo has exactly one optimum solution.
We modifyGo by connecting the gadgetHt to ¬a. The resulting graph isGm. Intu-

itively, this modification prevents the vertex¬a to be in a small maximal independent
set. Thus,Gm has a small solution if and only if there exists an assignment forF ′ that
hasβ(a) = 1, or equivalentlyF ∈ SAT. We now elaborate this sketch more formally.

If t ≥ n + 4 then

opt(Gm)

{ ≤ n + 4, if F ∈ SAT,
> t, if F /∈ SAT.

For a proof of this claim, letF ∈ SAT. Thus,F ′ has a satisfying assignmentβ with
β(a) = 1. Consequently,

S := {a, b1, b2, z
′} ∪ {xi : β(xi) = 1} ∪ {¬xi : β(xi) = 0}

is a maximal independent set inGm. For the caseF /∈ SAT we argue as follows.
Assume to the contrary thatS ′ is a solution ofGm of size at mostt. Thus,S ′ does not
contain anyyj

` vertex. Also, the vertex¬a is not contained inS ′, since otherwise also
b′1, ..., b

′
t are contained. The assignment

β(xi) =

{
1, if xi ∈ S,
0, if ¬xi ∈ S,

yields a satisfying assignment forF ′ with β(a) = 1, a contradiction toF /∈ SAT.
In a last step, we now show how to chooset in our construction ofGo such that

existence of a|V |1−ε-approximation for(ad, M INMAX IS) yields thatSAT ∈ P. We
aim to chooset large enough such that after|V |1−ε-approximating an optimum solution
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in Gm, we can distinguish between the casesF ∈ SAT andF /∈ SAT. Let S ′ be such
an approximated solution. IfF ∈ SAT andt ≥ n + 4 then

|S ′| ≤ opt(Gm) · |V (Gm)|1−ε ≤ (n + 4) · ((m + 1)t + 2(n + 1) + 4)1−ε.

If F /∈ SAT then trivially |S ′| > t, since this is a bound on the size of an optimum
solution in this case. We are able to distinguish the casesF ∈ SAT andF /∈ SAT by
the size of|S ′| if

(n + 4) · ((m + 1)t + 2(n + 1) + 4)1−ε ≤ t. (2)

We claim that ift ≥ max
{[

(n + 4)[(m + 1)1−ε + 1)]
]1/ε

, 2(n + 1) + 4} then (2)
holds. From the first condition

t ≥ [
(n + 4)[(m + 1)1−ε + 1)]

]1/ε

it follows that
tε ≥ (n + 4)[(m + 1)1−ε + 1)].

Consequently
t ≥ (n + 4) · [(m + 1)1−ε + 1] · t1−ε,

or equivalently,
t ≥ (n + 4)[(m + 1)1−ε · t1−ε + t1−ε].

Sincet ≥ 2(n + 1) + 4 we conclude that

t ≥ (n + 4)[((m + 1) · t)1−ε + (2(n + 1) + 4)1−ε].

Sincef(a + b) ≤ f(a) + f(b) for every continuous, concave functionf with f(0) ≥ 0
(and in particular for the functionf(n) = n1−ε) the assertion (2) follows.

Sincet is polynomial in the size ofF , we conclude thatGo is polynomial-time com-
putable.

The ideas of the last proof are also helpful for showing

Theorem 10.13.UnlessP = NP, (rm, M INMAX IS) has no|V |1−ε-approximation,
for all ε ≥ 0.

Proof. Using the assumption that(rm, M INMAX IS) is |V |1−ε-approximable we show
that SAT ∈ P. Thereby we assume that the given formulaF = {C1, ..., Cm} is over
variablesx1, ..., xn, that no clause ofF contains an unnegated literalL and the corre-
sponding negated literal¬L at the same time, and that the assignmentβ with β(xi) = 1,
1 ≤ i ≤ n, is no satisfying assignment forF .

Similar to the proof of Theorem10.12we start with the formulaF ′. We construct a
graphGo by composing the graphf(F ′) with the two gadgetsHt andHt−1. Further-
more, the gadgetHt is connected toa andHt−1 is connected to¬a. An illustration of
Go as well as the labels of the vertices of the gadgets are depicted in Figure10.5.

We claim that ift > n then{¬a, b1, ..., bt−1, z
′, x1, ..., xn} is the sole optimum solu-

tion of Go. To see this letS ′ 6= S be a minimum solution ofGo.
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a

¬a

z′

z

b1

b2

bt−1

b′1
b′2

b′t

...

...

f(F ′)

Ht−1

Ht

Figure 10.5:The M INMAX IS-instancesGo and Gm when removing an edge. The
dashed line is present inGo, but missing inGm.

Case 1: a ∈ S ′: ThenS ′ also containsb′1, ..., b
′
t andz. In order to avoid choosing a

vertexyj
` it also has to contain one ofxi or ¬xi for each variablexi. In total this

leads to a solution of sizet + n + 2. Thus|S ′| > |S| andS ′ is no optimum.

Case 2: ¬a ∈ S ′: ThenS ′ also containsb1, ..., bt−1 and the vertexz′. Furthermore,S ′

does not contain a vertexyj
` , otherwiseS ′ was not optimum. Consequently, one

of xi or ¬xi, 1 ≤ i ≤ n, has to be part ofS ′ by maximality ofS ′. SinceS ′ 6= S
there exists an indexj with ¬xj ∈ S ′. This implies a satisfying assignmentβ for
F ′ with β(a) = 0 andβ(xj) = 0, a contradiction to the construction ofF ′.

Case 3: {¬a, a} ∩ S ′ = ∅: Thusz andz′ are part ofS ′. Note thatS ′ does not con-
tain all of the verticesyj

1, ..., y
j
t andyj′

1 , ..., yj′
t for different numbersj, j′, since

otherwise|S ′| is too big.

Assume for the moment thatS ′ contain vertices of typeyj
` for exactlyone natural

numberj. By our assumptions, no two literalxi and¬xi are contained in the
corresponding clauseCj of F ′. Thus, for everyi ≤ n, we can choose one vertex
amongxi and¬xi to be in the setS ′. Hence,|S ′| = t + n + 2, which is clearly
no optimum.

By the former arguments, we may assume thatS ′ does not contain any vertex of
typeyj

` at all. Then, all the verticesx1, ..., xn have to be part ofS ′ — otherwise,
if xi /∈ S ′ for somei ≤ n then all the verticesyp

1, ..., y
p
t that correspond to the

clauseCp = (a ∨ xi) in F ′ would be inS ′. Recall that by our assumptions the
assignmentβ with β(xi) = 1, 1 ≤ i ≤ n, is no satisfying assignment forF .
Let Ck be a clause inF ′ that is not satisfied by this last assignmentβ. Then, the
verticesyq

1, ...y
q
t that correspond to the clauseCq = (Ck ∨ ¬a) of F ′ have to be

contained inS ′, a contradiction.
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We modifyGo to Gm by deleting the edge{z′, a}. Now,

opt(Gm)

{ ≤ n + 4, if F ∈ SAT,
> t, if F /∈ SAT.

The rest of the proof is similar to the proof of Theorem10.12.

147



Index

C/F , 13
CMOD/F , 55
CMOD//∈, 50
∆(G), 133
≤comp, 84
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hi, 29, 31
||Ã− reduction, 88
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pi, 52
C∈MOD/F , 26
3DM, 120
3SAT, 97
||ÃC, 87
1-3SAT, 99
3CNF,8
3D matching,120

absolut error guarantee,67
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ad,seemodification function
ad&rm, seemodification function
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adc,seemodification function
adjacent,6
adlc,seemodification function
adv,seemodification function
app,seemodification function
APX, 67
assignment,8

C-SAT(ConstrainedSAT), 87
C-VC (ConstrainedVC), 88
cert,25
cert(VA), 25
certificate,10, 16

certificate function,25
CHR,81
clause,8
CLIQUE, 105
clique,7
closure (of a complexity class),10
CNF,seeconjunctive normal form
coC,9
compatible,31
compilability

nonuniform,87
uniform,83

compilation,83
completeness (of a problem),9
complexity class

trivial, 9
component,seegraph
conjunctive normal form,8
counting class,12
CP,12
CSAT,12
cycle,7

simple,7
cycle cover,128

dec,seemodification function
dec∆, seemodification function
degree,6
DPTM, 9
DTM, 8

empty word,7
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EQ (Equivalence of formulas),86
equivalence (of formulas),8
equivalence (of problems),10
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2, 9
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FP,9
FPTAS,67
fun·C, 13

GI, 59
graph

complement,6
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finite, 6
isomorphism,7
size,6
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weighted,7

Hamiltonian cycle,7
hardness (of a problem),9
HC, 113
hint function,79
hint-independent interreduction,31
hint-independent reduction,29

id, 41
inc, seemodification function
inc∆, seemodification function
incident,6
independent set,7
interreduction,21, 23
isomorphism,seegraph

L(M), 8
L(V), 11
language,7

complement,7
trivial, 7

literal, 8

many-one-reductions,9
MaxTSP∆, 73
MaxTSP, 71

MinTSP∆, 73
MinTSP, 71
MinVC, 69
MinMaxIS, 142
MinMaxMatch,70
MinST, 133
MODcA (optimization),68
MODcVA, 16
modification function,15

ad (3DM),120
ad (PARTITION), 126
ad (CLIQUE,VC),105
ad (CNF-formula),17
ad (graphs),113
ad&rm (3DM), 120
ad&rm (CLIQUE,VC),105
ad&rm (CNF-formula),30
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adlog(|x|) (SAT), 82
ad2 (GI), 60
adc (CNF-formula),18
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adinc (CLIQUE),105
adlc (CNF-formula),20
adv (graph),71
app (VC), 89
ck, 41
c’ (SAT’), 81
dec,71
dec∆, 74, 133
inc, 71
inc∆, 74
neg (CNF-formula),19
negl (CNF-formula),19
rm (3DM), 120
rm (PARTITION), 126
rm (CLIQUE,VC),105
rm (CNF-formula),15
rm (graphs),113
rm2 (GI), 60
rmc (CNF-formula),20
rmc (EX3CNF-formula),20
rmlc (CNF-formula),19
sub2, 86
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nonuniform complexity,13
nonuniform polynomial hierarchy,13
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NPC,10
NPMV, 13
NPO,66
NPSV,13
NPTM, 9
NTM, 8

one-satisfiable,99
oracle Turing machine,9
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pad (padding function),90
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PARTITION, 126
path,7

simple,7
perfect matching,128
performance ratio,67
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promise-independent interreduction,53
promise-independent reduction,52
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