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Zusammenfassung

Ein wesentlicher Beitrag, den die Komplexitatstheorie zum besseren Verstandnis von
Algorithmen leisten kann, ist die genaue Klassifikation algorithmischer Problemstel-
lungen hinsichtlich ihrer Kompliziertheit. Eine herausragende Rolle nimmt dabei die
Klasse der NP-vollstandigen Probleme ein, welche genau jene Probleme enthalt, die
genauso schwer zu l6sen sind wie das Problem, die Erfullbarkeit einer aussagenlo-
gischen Formel zu testen. Viele Probleme die in der Praxis auftauchen, zum Beispiel
das Erstellen von Planen oder das Suchen optimaler Routen, stellen sich bei genauerer
Betrachtung als NP-vollstandig heraus. Da es bisher noch niemandem gelungen ist,
einen schnellen Algorithmus fir irgendeines der zahllosen NP-vollstdndigen Probleme
anzugeben, gehen viele Komplexitatstheoretiker inzwischen davon aus, dass NP-voll-
standige Probleme nicht effizient I6sbar sind.

Unsere Untersuchungen haben das Ziel, festzustellen, inwiefern sich NP-vollstandige
Probleme unter minimaler Veranderung stabil verhalten. Genauer gesagt: es wird fir
verschiedene NP-vollstandige Probleme untersucht, ob die Kenntnis einer Losung (oder
eines anderen Hinweises) einer Instanz eine Hilfe beim Entscheiden einer geringfligig
modifizierten Instanz liefern kann. Diese Fragestellung spielt nicht nur tberall dort ein
grol3e Rolle, wo NP-vollstdndige Probleme in dynamischen Situationen schnell gel6st
werden mussen, sondern liefert auch tiefere Einsichten in die generelle Natur der Klasse
der NP-vollstandigen Probleme.

Wir unterscheiden vier verschiedene Mdglichkeiten welcher Art der gegebene Hin-
weis sein kann:

1. In unserem ersten Ansatz, den wir in Kapi@adiskutieren, lassen wir nur solche
Instanzen als Originalinstanz zu, die auch wirklich Losungen haben. Als Hin-
weis sei dabei eine beliebige dieser Losungen gegeben. Wir fragen ajgoleob
Ldsung der Originalinstanz einen nitzlichen Hinweis liefert, um modifizierte In-
stanzen zu entscheiden. Diese Fragestellung spielt immer dann eine Rolle, wenn
Probleminstanzen unvorhergesehen verandert werden.

Wir zeigen fir verschiedene NP-vollstandige Sprachen, dass das Problem eine
Losung fur eine modifizierte Instanz zu berechnen, abhangig von der Anderung,
entweder trivial oder aber selbst wieder NP-vollstandig ist. Letzteres bedeutet
aber, dass der gegebene Hinweis nutzlos ist. Diese Resultate kdnnen mit Hilfe
von Standardtechniken der Komplexitatstheorie gewonnen werden.

2. In Kapitel 4 untersuchen wir, ob, wenn schon nicht alle Losungen der Origi-
nalinstanz hilfreich sind, wenigstens einige méglichst geschickt ausgewahlte Lo6-
sungen helfen kénnen. Wir fragen also, ob es Losungen der Originalirgtanz
die einen nutzlichen Hinweis liefern. Diese Fragestellung spielt dann eine Rolle,
wenn man bereits vorher weil3, dass sich Instanzen eventuell andern, und des-
halb solche Lésungen gesucht werden kdnnen, die sich spater als hilfreich her-



ausstellen.

Um eine Theorie der Nutzlichkesiusgewahltet. 6sungen zu entwickeln erweisen

sich die Standardklassen und bekannten Reduzierungen der Komplexitatstheorie
als unzureichend. Wir fuhren deshalb neue Komplexitatsklaggss/ F ein, die
charakterisieren sollen wie schwer es ist, modifizierte Instanzen zu entscheiden,
wenn eine ausgewahlte Loésung gegeben ist. Desweiteren fihren wir geeignete
Reduktionsbegriffe ein, namentlick} -reduction und<} -interreduction, mit
deren Hilfe man fir viele NP-vollstdndige Probleme auf einfache Weise die Nutz-
losigkeit ausgewéhlter Hinweise zeigen kann.

3. In Kapitel 5 klaren wir die Frage, ob das Wissen Uber die Nichtexistenz von L6-
sungen der Originalinstanz einen nitzlichen Hinweis fir modifizierte Instanzen
liefert. Diese Ansatz ist vor allem dann interessant, wenn man eine initiale In-
stanz, fur die man keine Lésung gefunden hat, durch geringe Modifikation in eine
Instanz mit Lésung tberfihren will.

Wiederum erweisen sich bekannte Klassen als unzureichend um die Komplexi-
tat von Problemen beztiglich dieser Fragestellung zu charakterisieren. Analog
zu Kapitel4 fuhren wir deshalb wieder passende Komplexitatsklagsey /¢

und spezielle Reduktionen ein, namlighf -Reduktionen, um die Nutzlosigkeit
dieses Hinweises fur viele Probleme elegant beweisen zu kénnen.

4. In Kapitel 8 untersuchen wir die Frage, was geschieht, wenn statt einer Losung
ein beliebiger polynomieller Hinweis gegeben werden darf. Dieser Hinweis kann
zum Beispiel das Zwischenergebnisse eines Algorithmus’, eine Hilfsrechnung
oder eine Liste mehrere Losungen der Originalinstanz beinhalten. Dies ist der
allgemeinste der vier Ansétze.

Fir jedes dieser vier Szenarios kommen wir zu dem Ergebnis, dass in den meisten
Fallen ein gegebener Hinweis nicht besonders hilfreich ist. Wir zeigen dies fur die NP-
vollstandigen Erflllbarkeitsproblem®AT, 3SAT, EX3SAT und 1-3SAT sowie fur

die ProblemeCLIQUE, VERTEXCOVER, HAMILTONIAN CYCLE, THREEDIMENSION-
ALMATCHING und PARTITION.

Darlber hinaus Ubertragen wir in Kapitelinsere Theorie flNP-vollstandige Pro-
bleme auf das Problem der Graph-lsomorphie, welches wahrscheinlichiNtetoll-
standig ist. Wir betrachten wiederum verschiedene Mdglichkeiten von Hinweisen und
adaptieren die entsprechenden Techniken welche wiNfghvollstandige Probleme
entwickelt haben, um die Nutzlosigkeit solcher Hinweise auch fur das Graph-Isomor-
phie zu beweisen. Es stellt sich heraus, dass dieses von gegebenen Hinweisen ebenfalls
nicht profitieren kann.

Ganz anders verhélt es sich fir die in Kapitddetrachtete Klasse der NP-Optimie-
rungsprobleme. Die Kenntnis optimaler Lésungen flr eine Instanz eines solchen Pro-
blem kann durchaus hilfreich sein, um eine gute Lésung fur eine leicht veranderte
Instanz zu finden. Wir geben folgende Beispiele flr Optimierungsprobleme die von
der Kenntnis (irgend)einer optimalen Losung profitierehNVC, MINMAXMATCH,



MINST, MINTSPA, MAXTSPund MAXTSPA. Doch nicht jedes Optimierungspro-
blem kann gegebene Losungen gewinnbringend nutzen. Wir kdnnen zeigen, dass fur
die ProblemeVINTSPund MINMAXIS jede gegebene optimale Lésung nutzlos ist,
um eine gute Losung fur eine modifizierte Instanz zu finden.
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Chapter 1

Introduction

Complexity theory studies the inherent computational difficulty of problems. By prob-
lem we usually meadecision problemi.e., itis to decide whether a given input belongs
to a certain set. For instance, to decide if a Boolean formilas satisfiable, i.e., if
there exist truth values for the variablestothat makef’ true, is such a decision prob-
lem. In contrast, the problem of sortinghumbers is no decision problem, since we are
not interested in an answer "yes” or "no”, but in a sorted list of the given numbers.

These two examples, testing for satisfiability and sorting, not only differ in the output
they produce, but also in the time necessary to produce this output. While it is well
known that a list of» numbers can be sorted in a time that is specified by a polynomial
in n, it is a famous open problem whether the same polynomial bound holds when
deciding satisfiability of a formula with variables. The problem of satisfiability, or
shortSAT, is not a singular example of such a problem; many real-life problems are
exactly as hard aSAT. Complexity theorists introduced a special complexity class to
characterize problems that share the same time complexityS#ih these problems
are calledNP-complete.

In the last decades, theorists put much effort into finding an algorithm that solves
efficiently, i.e., in polynomial time, alNP-complete problem — without success. But
along this research, many concepts have been developed to deallWitiomplete
problems in other ways, e.g., fast exponential-time exact algorithms, fixed-parameter
algorithms, approximation algorithms, and heuristics. In this thesis, we discuss another
possible approach to attatk’-complete problems, namely to decide slightly modified
instances with help of prior knowledge.

To motivate the study of modified instances we give a simple exampleF Lt a
satisfiable formula an@ be a satisfying assignment fét. Let /7 be a formula that
is constructed fron¥’ by addition of a new clause. We ask: How hard is it to decide
if " is satisfiable when the satisfying assignmgniior £ is given as an additional
information?

In the above scenario we refer fo as theoriginal instance to F” as themodified
instance and tog as acertificatefor the original instance orlaint in finding a solution
of F’'. As we will see in SectiorB, an arbitrary assignmert for F' is in general
not helpful to decide ifF” is satisfiable, not to speak of constructing such satisfying
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assignments. More precisely, for formulas with added clauses the satisfiability problem
is computationally as hard &AT, namelyNP-complete, even if a certificate of the
original formula is known.

Extending a classification froniib04], we distinguish the following four possible
settings. Inthe first setting, we demand that hints are certificates of the original instance,
as we did in the introductory example. We ask whe#ikesuch hints, i.e., all certificates
of the original instance, yield a helpful information. This is relevant whenever an input
instance is unexpectedly modified and we want to avoid a complete reevaluation for
the modified instance, using the additional information we have. We study the question
whether all certificates are useful in Chapter

The second case, in contrast, applies to a scenario in which we know in advance that
the original instance is going to be modified, for example when we deal with at first
incorrect, but later to be corrected, data. Thus, the computation for the original instance
could select among all certificates of the original instance some especially convenient
certificate. In other words, we are interested if thexestsa certificate of the original
instance that helps to decide modified instances. This question is covered in Ghapter

In addition to the classification irL[b04], we consider as a third possibility that the
original instance has no certificate at all. The information that the original instance has
no certificate could be indeed useful in deciding modified instances, although it might
conflict with ones first intuition. If, for instance, a clause is added to an unsatisfiable
formula, the modified formula is still not satisfiable. Since it is impossible to give a
hint in the form of a certificate when no certificate exists, we best think of the hint as
something like a promise that the original instance has no certificate. Results about this
type kind of promise-aided computation are relevant whenever an initial instance that
has no certificate is to be transformed into an instance that has a certificate. We study
this scenario in Chapté.

Last, in the fourth setting the hint may be any polynomially bounded string. This
string may represent the result of some subcomputation, a composition of selected cer-
tificates, or the result of some preprocessing step. Obviously, this last setting is the most
general of all these four settings and matches a practitioners approach to the problem
of modified instances. Our results for this case can be found in Chéapter

We develop for each of these four settings a formal framework that can be used to
either prove or disprove that a problem has easy to decide modified instances. There-
fore, we introduce new complexity classes and reductions. We show that, for all of
the NP-complete problems that we examine, a certificate for the original instance is
useless if the original instance is appropriately modified. We also show that proving
hardness of deciding modified instances for some other modifications amounts to solve
some long-standing open problems in complexity theory, such as the non-collapse of
the polynomial hierarchy. Most of the results we establish are such negative results. We
find that modified instances profit from given certificates only in some trivial cases.

The list of discussedNP-complete problems consists of a variation of satisfiabil-

1For a quick overview on our results we point the reader to the 'Conclusions’-section at the end of each
chapter.
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ity problems such aSAT, 3SAT, EX3SAT and1-ExX3SAT as well as the remaining
five basic problems from@J79, namely CLIQUE, VERTEXCOVER (VC), HAMIL -
TONIANCYCLE (HC), THREEDIMENSIONALMATCHING (3DM), andPARTITION. In
establishing the above mentioned negative results we only consider the corresponding
decision problem— hardness of computing certificates for modified instances follows
immediately. Since it is an interesting question whether this uselessness of hints under
modification is an intrinsic property dfP-complete problems, we study in Chapter
6 modified instances of the graph isomorphism problem, which is probabliNRet
complete.

In an effort to find a scenario in which certificates are useful, we examine in Chapter
7 the influence of modification to optimization problems. In detail, we are interested
in the question if amptimumsolution of an original instance leads to good approxima-
tions of modified instances. This problem is known as reoptimizatah97 ABS03
AEMPO6 EMPO0O7, BHMWO08]. Again, we consider the scenario where an arbitrary
optimum solution is given as a hint and also the scenario where the optimum solution
is carefully selected among all optimum solutions. We find that for many optimization
problems reoptimization leads to better approximation guarantees than in the usual,
non-reoptimization case, even for arbitrary certificates. We mention, as an example,
that the metric travelling salesperson problem, for which no better approximation guar-
antee is known than a factor ®8f2, is reoptimizable with factot/3 when a single edge
weight is altered. We also find that sometimes reoptimization leads to no improved
approximation guarantees, the nonmetric version of the travelling salesperson problem
together with the modification of a single edge being an example.

1.1 Related Work

There has been extensive research on how computationally easy problems, i.e., prob-
lems inP, benefit from given hintsHen0Q HKO01, TKOO, FK99, EGIN97]. In this
context, the problem of modification is often being referred to as dynamic problem, or
problem in a dynamic environment. The most sophisticated algorithms and data struc-
tures have been developed for dynamic graph problems. For example, fast hint-using
algorithms are known for maintaining the minimum spanning forest of an undirected
graph HKO01] and the biconnected components of an undirected gitdph(Q. These
dynamic graph algorithms can also be used to develop fast algorithms for static graphs,
i.e., in a non-dynamic environmentliK00]. We mention in passing that there also ex-
ist graph problems i for which no efficient fully dynamic (that is, insertiorssd
deletions of edges are allowed) deterministic (thah@t,randomized) algorithms are
known, for example the maximum matching problem or the problem of finding the
transitive closure of a directed acyclic graptMW98]. For more information about
dynamic graph algorithms for polynomial problems we direct the readeFK®J]
and [EGIN97]. For a complexity theoretic view on dynamitproblems we refer to
[MSVT94] and [WSO07.

In contrast, in this thesis we mainly concentrate on dynafiiecomplete-problems.
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Dynamic versions of the followingyP-complete problems have already been studied
in the literature:

e SAT andVC [Lib04],
e Scheduling with forbidden setS¢h917,

e planning problems from the field of Artificial Intelligence (AINK92, Lib04,
Lib98b], and

e decision versions dlINTSHABS03 andMAXx TSHAEMPOg.

There are many other approaches to modification of instances, especially in the field
of Al. We only mention the following ones and point out differences to our approach.
In [NK92] the authors are concerned with planning problems, a prototypical problem
in Al research. They ask, given an original instance and a certificate for this instance,
whether there exists a certificate for a modified instance that does not differ too much
from the original certificate. They point out that sometimes it is even more complicated
to find such a 'similar’ certificate for the modified instance than reevaluating a new one
from scratch. In our approach, finding a certificate for the modified instance cannot be
any harder than computing a certificate from scratch.

Closely related is the concept of supermodels and robust@R93. There, the
authors address the issue, of finding a solution of the original instarticat can be
turned into a certificate of a slightly modified instanceby a small change to the
solution. If such a robust certificate exists, a certificateafotan easily be found by
testing all slightly altered certificates as a candidate. In a general approach, there could
be more sophisticated ideas to test'ifhas a certificate than testing all certificates in
the neighborhood of an original certificate. Consequently, hardness results for robust
certificates cannot be transferred to our general setting.

As a further specialization of the latter concept, it can be asked how much a given
instance of amptimization problenmay be varied such that the given solution remains
an optimum Gre98 LvdPSvdV98 VHW99]. Although this line of research is useful in
finding modifications for which a given certificate is useful, we allow in our approach
also modifications that lead to the loss of optimality of the old optimum solution.

The concept of not starting from scratch, but to use prior knowledge, when con-
fronted with a new problem-instance is also inheremqarsistent computatiorjsiK08,

Kos99g. There, one is concerned with solving not only a single instance, but with pro-
cessing a (possibly infinite) series of inputs. Thereby, we are allowed to reuse solutions
of past input instances to compute a solution for the current instance. In contrast to our
approach, in which we are interested in small and local modifications of instances, the
sequential inputs for persistent computations need not to be related in any way.

As a concluding remark to this section we like to emphasize the importance of the
concept of modification in a broader context. [BdI0S four solutions to important
problems are found to start from a trivial construct, and to apply an ingeniously de-
signed sequence of iterations that yields the desired nontrivial result. Thereby, in each
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iteration the construct is only modified in a moderate manner. In detail, the four works
that are referred to inGol0Y are:

the polynomial-time approximation of the permanent of non negative matrices,

the iterative (Zig-Zag) construction of expander graphs,

Reingold’s log-space algorithm for undirected connectivity, and

Dinur’s alternative proof of the PCP Theorem.

For a nice overview on how the iterative approach is employed to these four problems
we refer to [50l05.



Chapter 2

Preliminaries

In this chapter we fix the basic notions and concepts that are used in this thesis. Most of
the definitions are in the standard text books on complexity the®yd95 BDG90,
WW86, Pap94. We assume the reader to be familiar with the most basic set theoretical
notations and the fundamental concepts of propositional logic. The advanced reader
may skip the first few sections. But it is highly recommended to read at least Section
2.6.

2.1 Graph Theory

An undirected graph= is an ordered paifV, £), whereV are the vertices of; and
the set of edge#’ is a subset of {u,v} : u # v Au,v € V}. We say that: andv
areendpointsof the edge{u, v}. For a graph let V(G) and E(G) denote the set of
vertices and the set of edges@®@f respectively. Ifi/(G) is a finite set we say that is
afinite graph We say thatV' (G)| is thesizeof G. Within this thesis we only consider
undirected, finite graphs.

Given an undirected, finite graggh = (V, E') we denote by := (V, E’), where

E' = {{u,v}:u#vAu,v eV AN{uv} ¢ E}

the complement graplof G. We say that two edgesand f areincidentif and only
if e and f share a common endpoint. Likewise, an edgend a vertex: are called
incidentif and only if v is an endpoint ot. The two vertices of an edgeare called
adjacentvertices, omeighbors For a given vertex: in a graphG the neighborhood
of u in G, shortNg(u), is the set of vertices that are adjacenttoThe degreeof a
vertexu in a graphG;, shortdegq(u), is the number of edges that are incidentta.e.,
deg(u) = |Ng(u)|. In both casesN¢(u) anddegq (u), we usually omit the subscript if
the graphz is clear from the context.

A subgraphof a graphG is a graph whose vertex and edge sets are subsets of the
respective sets iy. A subgraphH of a graphG is said to be induced b, if and
only if E(H) C E(G) and every edge it/ (G) that consists of vertices frowi(H ) is
contained inF(H). A graph that contains all possible edges is calledrapletegraph.
Let K,, denote the complete graph ovevertices.
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A pathin a graph(G: is a sequencév, ..., v, ) of vertices such that every two consec-
utive vertices are joined by an edge@®f A path in that all the vertices of the sequence
are distinct is called aimple path A componenbf a graphGG = (V, E) is a maximal
setV’ C V such that for all pairs of different vertices frolf there exists a path be-
tween these two vertices. A graph is callamhnectedf an only if it consists of one
component. Acycleis a path(vy, ..., v,) with v; = v,,. We say that a cyclév,, ..., v,)
is asimple cyclaf and only if v; andw,, are the only vertices of the cycle that appear
multiple times. A simple cycle that includes all the vertices of the graph is called a
Hamiltonian cycle Sometimes we identify a (Hamiltonian) cyaléwith the subgraph
that is spanned by the edges@f A complete subgraph of a graph is calledligue,
whereas a subgraph that has a complete complement is caliedegendent setA
treeis a connected acyclic graph.farestis a graph in that every component is a tree.

Two graphs(Vy, E) and(V4, E,) areisomorphicif and only if there exists aiso-
morphismbetween them, that is, there exists a bijective functiorl; — V5, such that
for all u,v € V; it holds that{u,v} € E; < {o(u),¢(v)} € Es. A weighted graphs
a pair that consists of a graph’, £') and a weight function : £ — R.

For further particulars on graph theory we point the readeWesPg.

2.2 Words and Languages

In theoretical computer sciencignguagesare set of words over a finite alphabet.
Sometimes we refer to languages as problems; the two notions are interchangeable.
We use the alphabét = {0, 1} as our standard alphabet. We denote: ltlye empty

word, which contains no letters. The symligt denotes the set of all words that con-
sists of exactlyn letters fromX.. The set of all words over the alphal¥ts given by

the sety” := J,.y X". We denote byz| the length of a word;, i.e., the number of
letters thatr consistsof. The complement of a languageis given byA := ¥*\ A .

A languageA is trivial if and only if A = @ or A = ().

In order to treat graphs, formulas, sets, tuples, and other instances as a member of
some language, we use encodings that transform structures from a given domain to
a string fromX*. These encodings shall be easily computable and easily invertible,
that is, the encoding of an object is computable in polynomial time (see Settpn
and conversely also information about the object can be obtained from its encoding in
polynomial time. When we encode an object the size of the encoded object shall
properly reflect the size of. For example, when encoding a gragh= (V, E), the
size of the encoded graph shall be bounded from both sides by polynomiél®in
E. Such encodings exist for all the mathematical objects regarded in this thesis. To
avoid unnecessary formal overhead we usually speak of graphs, formulas, or sets (just
to name a few) when referring to members of some language where we formally had to
use encodings by words ovEr For instance, when considering the problei@ over
the domain of graphs we use a nice encoding functionthat transforms graphs to
words overy and just writeG € HC instead of the more formakh.c(G) € HC.
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2.3 Propositional Logic

Theliterals of a variablex arex and—z. The literalz is called a positive literal, the
literal —z is called a negative literal. A&lauseC' over a variable seV is a formula
LV LyV..VL,neN,whereL, is literal of a variable front/, forall1 < j <n. A
clause with exactly one literal isunit clause Let Var(F') denote the set of variables
of a formulaF’. A Boolean formulaF’ is in conjunctive normal fornfCNF) if and only

if F=CiANCoN...ANCy, m €N, andC} is a clause ovevar(F), forall1 < j < m.

A formula F' is in 3SCNFform if and only if F'is a CNF-formula and every clause Bf
contains at most three literals. A 3CNF-formwain in EX3CNFRform if and only if
every clause of’ consists of exactly three distinct literals.

Sometimes it notational benefits to represent clauses as sets of literals. For example,
the clause.; Vv ... V L, is represented by the sgi, ..., L, }. Likewise, we represent
a CNF-formulaC; A ... A C,, by the se{C1, ..., C,,,}. We switch seamlessly between
these two representations.

An assignmentor a Boolean formulaF’ over the variable seX is a functiong :

X — {true, false}. We use the number '1’ to represent the truth value 'true’, and the
number ‘0’ to represent 'false’. An assignmehsatisfies a CNF-formul&’ if and only

if in each clause of" there exists at least one positive literalvith 5(z) = 1 or at
least one negative literalz with 3(x) = 0. We denote bySAT the set of all satisfiable
CNF-formulas. Two formulag; andF; are said to be equivalent, abbreviatéd= F5,

if and only if for all assignmentg it holds thats satisfiesF; if and only if 5 satisfies

F.

2.4 Complexity Theory

2.4.1 Turing Machines

In structural complexity theory sets of languages, so called complexity classes, are stud-
ied. Often, a complexity class is a set of problems that share the same complexity in
terms of resources of some computational model, for example Turing machines. In this
thesis, our computational model is the multi-tape Turing machine. Due to the com-
monly accepted thesis of church, which says that no computational model exceeds the
computational power of Turing machines, we describe our algorithms in a rather infor-
mal way, instead of giving a detailed Turing machine program. For a formal definition
of Turing machines we refer tofW86] or [Pap94. We distinguish between deter-
ministic Turing machinesfTMs) and nondeterministic Turing machind$TMg. Let

M (z) denote the work of the Turing machié on inputz. A languageA is accepted

by a (nondeterministic) Turing machirdé if and only if for all z € ¥* it holds that

xr € A& M(x) accepts on some path

Given a machine\/ let L(M) denote the set of words accepted iy We say that a
Turing machineM accepts a languagé in time f, f : N — N, if and only if for all
inputsz € ¥* the machinel/ halts after at mosf (|z|) computational steps.
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Turing machines can be equipped with an oratle >*. A Turing machine\/ with
an oracleA has an additional query tape. Whenever a special query state is reached
the machineM immediately receives the answer ’'yes’ if the word on the query tape
belongs toA and the answer 'no’ otherwise. A machiné equipped with an oracle
A is called aroracle Turing machineWe use the abbreviatioh/* when referring to
such a machine.

2.4.2 Basic Complexity Classes

A languageA belongs to the complexity clagsif and only if there exista DTMV/ and
polynomialp such that)/ acceptsA in time p. Since the machiné/ works in a time
that is polynomial in the size of the input we say thétis adeterministic polynomial-
time Turing machindDPTM). Similarly, a languagel belongs to the classP if and
only if there exist anNT'M N and a polynomiap such thatNV acceptsA in time p.
We say thatV is anondeterministic polynomial-time Turing machifdPTM). If C is

a complexity class, the complementC of C is given by the sefA : A € C}. We say
that a complexity clas€ is nontrivial if and only if C contains nontrivial languages,
i.e., ifand only ifC \ {0, x*} # 0.

We can use Turing machines to compute functions. Therefore, we equip Turing
machines with a separated output tape. The content of the output tape at an accepting
halting state shall represent the computed function value. A non-accepting halting state
shall represent the fact, that the function value is not defined at the given input. The
classFP is defined as the class of functions that can be computed by a DPTM with an
output tape. The class¥ is defined as the class of functions that can be computed by
a DPTM with an output tape and an oracle froi.

For a complexity clasg, the classe®¢ andNP¢ are defined as the classes of lan-
guages that can be accepted by polynomial-time deterministic or nondeterministic ora-
cle Turing machines that make queries to a language ftomespectively.

2.4.3 Reductions

Reductions are a standard mean to compare the complexity of problems. In this thesis
we usemany-one-reductiongar7?.

Definition 2.1 ([Kar72]). Let A and B be two languages. We say thais polynomial-
time many-one reducible 8, shortA <? B, if and only if there exists a total function
f € FP such that for allx € X* it holds that

reAs f(x) e B.
Many-one-reductions are reflexive and transitive. We say that & ssthard for a

complexity clas€ with respect to some reductiehif and only if for every problemd
in C it holds thatA < B. We say that a s&8 is completeor a complexity clas§ w.r.t.
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some reductiorx< if and only if B is C-hard w.r.t.<? andB € C. A complexity class
C is closed unden reduction< if and only if for all setsA and B it holds that

(A<BABeC)=AcC.

Two problems4 and B areequivalentw.r.t. a certain reductior if and only if it holds
that bothA < BandB < A. If A andB are equivalent w.r.t<? -reduction we write
A =P B. The languag&AT is an example of atNP-complete problemQoo77]. The
set of NP-complete problems w.r.&? -reduction is exactly the s§td : A =2 SAT}.
Let NPC denote the set dfP-complete problems.

When applying the<? -reduction to scenarios in which we reduce a languade
a languageB of tuples(z, ..., z,,) we sometimes only give functiong, ..., f,, € FP
such that for alk- € >* it holds that

reAs (filz),..., fulz,)) € B.

It should be clear how to compose frof, ..., f,, a function f € FP such that the
formally correct equivalence € A < f(z) € B holds.
The class® and<? -reduction are related in the following way.

Observation 2.2. Any nontrivial complexity class that is closed undex? -reduction
contains the clasp.

Proof. Let C be a nontrivial complexity class and ldtbe a nontrivial problem i .
Every nontrivial problem is<? -complete for the clasB. Thus, for allB € P it holds
that B < A. SinceC is closed undex? -reduction we have that for alt < P it holds
thatB € C. O

2.4.4 Verifiers and Certificates

In this thesis, a fundamental notion is the notiosalutions or synonymous, the notion
of certificates For NP-problems the notion of a solution is defined with the help of the
following well known theorem:

Theorem 2.3. A languageA is in NP if and only if there exist a predicat8 € P and
a polynomialp such that for allz € ¥* it holds that

€ Ae (JyeX)lyl <p(lz|) A(z,y) € B

Rephrasing this theorem, we can say that the dfd3ss exactly the set of languages
with short and easy to verify membership proofs. In the context of the above theorem,
we say that those stringsthat proof membership af in A arecertificatesor solutions
and we call the predicat® a polynomial-time verifiefor A. Of course, there are
different verifiers for one and the same languagdut all of them share the following
properties.

10
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Definition 2.4. ArelationV C ¥* x ¥* is called a polynomial-time verifier if and only
if

1. VePand

2. there is a polynomiap such that for allx, 7 € >* it holds that

(z,m) € V = |r| < p(|z]).

For a verifierV let L(V') denote the language that is acceptedibythat is,

L(V) =A{z: By € ¥)[lyl < p(|z[) A (z,y) € V]}.

In the coming all the used verifiers will be polynomial-time verifiers. Thus, no
ambiguity arises when we use the shorter term ‘verifier’ instead of the more formal
'polynomial-time verifier’ henceforth.

Whenever dealing with solutions of NP-problem instances we first need to formally
specify the used verifier, thereby fixing the precise form of the solutions. For details on
how different verifiers for the same problem might influence the complexity of related
problems we refer for example t€he03.

2.4.5 The Polynomial Hierarchy

As a generalization of the classBsandNP, and in close analogy to the arithmetic hi-
erarchy in recursion theory (sele¢g67), Meyer and Stockmeyer introduced the poly-
nomial hierarchy $M73 Sto74. The classes of the polynomial hierarchy are defined
as follows.

Definition 2.5 ([SM73, Sto76). The complexity classég’, IT?, andA? are inductively
defined via

1. Af =% =1I§ =P,
2. AP, =P ¥ = NP, andIl?,, = coX?, , foralli > 1.
The classPH is defined bypH = (J, . X7

The inclusion structure of the polynomial hierarchy is shown in Fidutelt is not
clear if any of the inclusions is strict, or if the hierarchy is finite, but there exist several
conditions under which the hierarchy collapses. In particular, the polynomial hierarchy
satisfied the following upward collapse property.

Theorem 2.6 (Bto7q). Leti > 1. Then
1. ¥ =1I" = PH = ¥,
2. 3" =%, =PH=1%F and
3. X =AY = PH = AL,

11
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Figure 2.1 The polynomial hierarchy.

2.5 Advanced Complexity Theory

2.5.1 Counting Classes with Finite Acceptance Type

All the acceptance types considered so far had a qualitative character. For instance,
when we decide aNP-language with help of an NPTV it is only important whether

a certain accepting state is reached or not. The particular number of accepting paths of
M’s computation is of no interest. But such consideration play an important role in
the context of counting classes with finite acceptance type. These classes were first
introduced in BG8Z. Here, we follow a definition fromGNWO(.

Definition 2.7. Letaccy,(z) denote the number of accepting paths of an NPTMN
inputx and letC' C N. A languageA belongs to the counting clagsP if and only if
there exists an NPTM/ such that for allz € >* it holds that

r € Aeaccy(x) e C.

It follows from this definition thatoNP = {0}P andNP = (N\ {0})P. In this thesis
we also use the complexity classgs 1}P (which equals coNP) anfil }P. It is easy
to show that for every” C N the clas<CP is closed undex? -reduction and that'P
has complete problems. For instance, the following derivativ@Ar is a prototypical
<P -complete problem fo€'P:

CSAT :={ F : F'is aBoolean formula and the number
of satisfying assignments éf isinC' }.

Itis easy to show thatoNP C {1}P. Using this fact, we get the following corollary.
Corollary 2.8. {1}P C NP = NP = coNP.

Proof. Let {1}P C NP. SincecoNP C {1}P it follows thatcoNP C NP. O

12
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2.5.2 Function Classes

We already defined the most basic function clB&sin Section2.4.2 There,FP is
defined with help of Turing machines that have an output tape. In contrast, we now
base the definition of function (and relation) classes on well studied complexity classes
instead of the computation of Turing machines. We follow a definition frGmop4.

Definition 2.9 ([Gro04]). A relationr belongs to the function class rel if and only if
there exist a predicat® < C and a polynomiap such that for allz € ¥* it holds that

r(z) =A{y: [yl < p(|z]) A (z,y) € B}.
A functionf is contained in the class furC if and only if
ferel-CA Ve e X)) f(x) <1].

The classes fuNP and relNP are known in the literature as NPSV and NPMV (non-
deterministic polynomial-time computable single/multi-valued functioB&§84]. An
advantage of Definitio2.9is that it yields a uniform and systematic approach to oth-
erwise seemingly isolated notions.

2.5.3 Nonuniform Complexity Classes

The concept of Turing machines is a uniform model of computation; a Turing machine
M that decides a languageuses the same algorithmic idea for all given inputs. In or-
der to overcome this limitation, we allow that different algorithms are applied to inputs
of different length. For a formalization of this idea we use the following definition from
[KL8O0].

Definition 2.10 ([KL80]). Let F be a set of functions froi¥ to X* and letC be a
complexity class. A languagé is contained in the nonuniform complexity cla§sF
if and only if there exist a se&t' € C and a functionf € F such that for allx € ¥* it
holds that

reAs (z, f(lz]) € C.

In particular, we use the nonuniform classegpoly, NP /poly, and coNP /poly,
where the function-clagsly is defined by

poly := {f = (3 polynomialp)(vn € N)[|f(n)| < p(n)]}.

We say that a clag$/poly belongs to the nonuniform polynomial hierarchy if and only
if C belongs to the polynomial hierarchy.

At first glance, it seems that Definitich 10is highly dependent on the coding of
the instances. Since different coding functiensndc, could map one and the same
problem instance to strings of different lengths, the following scenario could arise:
While the first coding:; maps two different instancesandz’ to words of the same
length, the coding, maps those instances to words of different lengths. Consequently,

13



Chapter 2 Preliminaries

a nonuniform algorithm that decides these instances has the same hint for both instances
in the first case. But in the second case the hints may be different.

We show that for two reasonable codingsandc, the containment of a language
A in C/poly when the coding; is used also implicates containment4fin C/poly
when the coding; is used: Let: be the hint function that show$ € C/poly whenc,
is used as coding. Note that nice codings are polynomially relatedfor reasonable
codingsc; ande, it holds that|ci(x)| < pi(Je2(x)]) and|ea(x)| < pa(|ei(x)]) for all
instances: and some polynomials; andp,. We use as a polynomial hint fog(x) the
string h(0)#h(1)#...#h(p1(|c2(z)])). Whenc, is easily invertible we can compute in
polynomial-time fromey(x) the instance (x), and also the length @f;(x). The right
hint A(|ci(x)]) for ¢;(z) can be extracted from(0)#h(1)#...#h(p1(|c2(x)|)). This
shows that alse! € C/poly when the coding: is used. In consequence when show-
ing thatA € C/poly it suffices to show this for some convenient reasonable codirg of

There are several results that relate uniform with nonuniform complexity classes.
Much attention has been paid to the question, wheMris contained in certain
nonuniform complexity classes. The following theorem states the best results in this
direction that are currently known.

Theorem 2.11 (ai07, CCHOOQ5]).
e NP C P/poly = PH = S5,
e NP C coNP/poly = PH = S3*,
e NP C (NP N coNP)/poly = PH = S)PNcoNP,

Here, the class; is a class from the so called symmetric hierarchy and is defined as
follows:

Definition 2.12 ([Can96, RS9]). A languagel belongs taS; if and only if there exist
a 3-ary predicatd/ € P and a polynomiap such that for allx it holds that

1w e L= (3y: |yl <plal)(v=: |2l < p(l])[P(z,y, 2) = 1] and
2.0 ¢ L= (3z: |2| < pllal))(Vy : Iyl < p(Ja])[P(.y, 2) = 0].

Containment of a languagein the classS,, which is a superset ok} and a subset
of X¥ (see RS99), can be interpreted as follows. Suppose that deciding the language
is game of two persons that try to convince the verifier that L or x ¢ L, respec-
tively. If x € L then the first person has an irrefutable prgdat, independent of any
proof z given by the second person, verifies tha¢ L. On the other hand, if ¢ L
then the second person has such an irrefutable prémfthis fact, that withstands any
challengey from the first person. For more details Spsee RS99.

From Theoren2.11we conclude that if certain nonuniform complexity classes coin-
cide then a collapse of some uniform complexity classes occurs.

14
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Corollary 2.13. NP /poly = P/poly = PH = 5.

Proof. SinceNP C NP /poly we getNP C P /poly. The assertion follows from Theo-
rem2.11 [

Yap has shown infap83 that also the equality of other complexity classes from the
nonuniform polynomial hierarchy implicates a collapse of the polynomial hierarchy.

Theorem 2.14 (Yap83)). ¥ /poly = 117 /poly = X¥,, = PH.

2.6 Modification Functions

In the course of this thesis we want to distinguish between different kinds of modifi-
cation. On the one hand, we want to find modifications such that a certificate for an
original instance is a useful hint for deciding modified instances; on the other hand, we
are interested in those modification that render such a hint useless. Therefore we need
to formally specify the notion of modification. For this purpose we introduce so called
modification functions.

Definition 2.15. A functionf(x,m) : ¥* x ¥* — ¥* is called a modification function
ifand only if f € FP.

This definition assures that the modified instance is easy to compute from both the
original instancer and the stringn, which specifies the parts of the original instance
that are modified. To illustrate Definitidh15we give a simple example of a modifica-
tion function.

Example:Consider the problerB AT of all satisfiable propositional CNF-formulas. An
instance for this problem is any propositional formila As modification we choose
the deletion of a certain unit claugé } of F'. The appropriate modification function is
then given by the following functionm(F, L)) := F \ {L}.

In the remainder we mostly concentrate on modification functions from the 'seman-
tic’ domain of a problem, e.g., changes to the clauses of a formulas or to the edges of
a graph. We do not consider modifications that work on a binary level, like flipping a
single bit of an instance. We point the reader that is interested in such binary modifi-
cations to MSVT94]. We give three reasons for our decision to not explicitly examine
binary-level-modifications. First, we do not want our results to be dependent on a spe-
cial encoding of the instances of a problem. Second, we are more interested in scenarios
in which instances alter owing to some change within the problem domain; we are only
to a lesser extent interested in consequences of faulty transmission or broken hardware
that causes bit errors. Finally, results about binary modifications can often be derived
from results about other modification functions when choosing an appropriate encoding
of the instances.
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Arbitrary Solution as Hint

Throughout this thesis we are concerned with the question whether a solution for an
instancer can be any helpful when is modified in some way. This is relevant when-
ever instances might change from time to time. We are especially interested in modified
instances of computationally hard problems, e.g., NP-complete problems.

In this chapter in particular we deal with the question whether an arbitrary certifi-
cate for the original instance can be a helpful hint in deciding modified instances. In
other words: Areall solutions of the original instance helpful when deciding modified
instances?

3.1 Problem Formalization

We want to formalize the problem whether a slightly modified instance is an element
of a languaged when a solution for the original instance is already known. We use the
notion of a verifier and a modification function to define a decision proteoD .V 4

that shall characterize the complexity of deciding modified instances.

Definition 3.1. Let V4 be a verifier for a languagel € NP and ¢ be a modification
function. Then

MOD.Vy :={(z,m,m) : (z,7) € V4 and c(x,m) € A}.

Regarding this definition, we refer toas the original instance; is a certificate (or
solution, hint) for the original instance andis the modification of the instanae The
modified instance, for which containmentnis to be be decided, can be obtained by
applying the modification functionto = andm.

Note that the complexity of a probleMOD_.V, does not stem from the part of the
definition where it is verified that is indeed a certificate far. This verification process
can be done in polynomial time. Thus, fBrhard problemdMOD_.V, the decision
whether the modified instancgx, m) belongs toA is as hard as deciding whether
(x,m,m) € MOD_.Vy4. In other words: The complexity d1OD_.V,4 characterizes the
complexity of deciding modified instancege, m).

16
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As a last remark, observe that containment of an instamce, m) in MOD_.V,
can be decided by verifying thatis a certificate forc, which can be done i®, and
disregarding the hint henceforth. Consequentlydfis a complexity class that contains
P — or even stronger, If is closed with respect tg? -reduction (see Observati@i?)
— andA is a problem irC then deciding modified instances cannot be any harder than
the original problemA.

Observation 3.2. Let V4 be a verifier forA € C and letC be closed undek? -
reduction. ThetMOD_ .V, € C.

Therefore, in a proof oNP-completeness oMOD_.V,, where L(V,) € NP, it
suffices to proveNP-hardness oMOD V.

3.2 The Problem SAT

First, we modify instances of the prototypidaP-complete problenSAT. As already
mentioned in the introduction, when dealing with the notion of certificate we need to
specify the precise form of the certificates. This is done by fixing a specific verifier for
the respective problem. We use as canonical verifier for the proBfthe following
verifier Vsar:

(F, B) € Vsar < [ is a satisfying assignment for the CNF-formufa
Note that another verifier {dAT, such as the verifierd ,; with padded certificates,
(F, Bw) € Viar < (F, ) € Vaar Aw € 517,

could lead to different results (see al§€the03). For a discussion what makes a verifier
a 'natural’ choice we also refer t&[u08], where the notion of a universal verifier is
introduced.

The first elementary modification &AT-formulas that we examine is the addition
of a single unit clause. We define as the corresponding modification function

wd(F,L) = FU{{L}},

whereF' is a CNF-formula and. is a literal.

Can a satisfying assignment for a Boolean formkilaelp to find a solution for the
altered formula in that a single unit clause is added? An answer to this question has
already been given by Liberatore inilp04]. Liberatore shows that the problem of
decidingad-modified SAT-instances is exactly as hard as the prob&AT.

Theorem 3.3 (Lib04]). MOD,4Vsar is NP-complete.

Proof. The proof is already inlfib04]. We restate it here for convenience. To show
NP-hardness df10D ,;Vsar We reduce from the NP-hard probleé®#\T. Therefore we
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give three polynomial-time computable functiofis f2, andf; such that for allF" € >*
it holds that

F € SAT & (fi(F), f2(F), f3(F)) € MOD,4Vsar- (1)

The functionsfi, f», and f; are defined as follows. If' is no syntactically correct
formula, thenfy, fo, f3 map to a fixed nonmember MOD ,;Vsar, say({{z}},3,vy)
with 3'(x) = 0. Equation ) trivially holds in this case. Thus, we henceforth suppose
that /' is a syntactically correct CNF-formula.

Let FF = {C1,Cy, ...,Cy} and letVar(F) = {4, ...,z,}. The formulaf,(F") con-
sists of exactly the clausé§’; v y), (Cy Vy), ..., (Cy V y), Wherey ¢ Var(F). Ob-
viously, any assignmerit with 5(y) = 1 satisfies the formuld; (F'). We definefy(F')
to be any of these assignments, sawith 5(z) = 1, forall x € {z,...,z,,y}. Fi-
nally, we setf;(F') := —y. Apparently, the functiong;, f>, and f3 are computable in
polynomial time in the size of'.

Summarizing the construction above we have:

o fi(F):=U" {Ciu{y}},
e fo(F):= 3, wheref(z) =1,forallz € {z,...,x,,y}, and

o f3(F):=—w.

By construction off; and f; it holds that(f; (F), fo(F')) € Vsar. Furthermore, note
that the formulag” and f,(F') U {{-y}} are equivalent with respect to satisfiability,
that is, the former is satisfiable if and only if the latter is satisfiable. The equivalence

F € SAT & ((fi(F), fo(F)) € Voar A ad(fi(F), fs(F)) € SAT)

follows. The assertionl] is immediate. ]

Next, we examine the modificatianic, which adds alause not necessarily a unit-
clause, to a formula. Formally, we define

ade(F,C) .= FU{C}.

Adding a unit clausg L} to F' can be seen as a special case of adding an arbitrary
clauseC' to F'. Thus, the corresponding problétOD ;. Vsat is NP-complete as well.
Consequently, certificates of the original formula are useless as a hint.

Before turning to further results, we illustrate another possible approach to show
hardness oMOD,,.Vsar. The modification functiordc has an interesting property,
that is also shared by many other of the coming modifications: 8&dhrinstanceF
can be obtained by polynomially many (in the sizefof applications ofadc to an
initially trivial formula. That is, the formuld” = {C}, ..., C,,,} can be constructed in a

1We can always treat incorrect input data in such a trivial way. Therefore, in the coming proofs we will
always assume that the inputs are given in syntactically correct form.
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sequence of formula,, ..., F;,, where for examplé; = | J,_,{C;}. Thus, if one could
decide effectively, i.e., in polynomial time,dtlc-modified formulas are satisfiable then
this yields a polynomial time algorithm for deciding satisfiability of any formtla
ConsequentlySAT € P, and we could conclude that the problem of decidB®WT-
instances in which an additional clause is added and a certificate of the original formula
is given is exactly as hard, or easy in this case, as deciding satisfiability of the formula
from scratch. Namely both problems would belong’to

There are two technical pitfalls associated with this last approach. The first difficulty
is, that not all of the formulas in the sequence ..., F,, must be satisfiable. Thus, for
some of the formulag1, ..., F,, no certificate for the original instance can be given.
Nevertheless, we can overcome this difficulty if we are able to show that the knowledge
F; ¢ SAT is useful for deciding ifF;;; € SAT. This holds foradc and SAT, since
adding another clause only further restricts the set of possible satisfying assignments.
But this latter argument cannot be used for all the coming modificétions

Second, the above iterative argument only yields the result thMOD,,;.VsaT iS
in C thenSAT € PC. If C = P then this result is satisfactory, sin€® = P. But
for other complexity classes, as for examg@le- coNP, the valid consequenc®AT <
P<°NP cannot be used to deduce further statements about uselessness of certificates. In
contrast, our initial result thalOD,;.Vsar =, SAT yields such a statement.

After this slight digression, we now show that also for some o8#F-modifications
the knowledge of a certificate for the original instance is useless. Similar proofs as the
one of Theoren8.3 can be given for the&NP-completeness oMOD_.Vsar When the
modification functiorr is

e the deletion of a single literdl from a clause”’ of a CNF-formular’, formally

[ (F\{CchHu{Cc\{L}}, ifCeFandLeC,
rmic(F, (€, L)) := { F, otherwise,

¢ the negation of the single literal of a unit clause, formally

D) { (F\NUD ULy, if{Lyer,

F, otherwise,

e generally, the negation of a single litefain some clausé€’, formally

[ (P\{CHU{(CU{-L})\{L}}, ifCeF,LeC,
negl(F, (L)) = { F, otherwise.

The respective reduction functions for a proofNdP-hardness are given in Appendix
A.

2For example, if the modification is the removal of a triple froB2M-instance then the set of solutions
for the modified instance is not necessarily a subset of the solutions of the original instance (also see
Theorenm9.36).
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At this point, the reader might be curious if all modificatiensf SAT-formulas lead
to anNP-complete problenMOD_.Vsar. The following example demonstrates that this
is not the case. Consider the modification that deletes a clause from a formula, formally

rme(F,C) = F\ {C}.

The respective problemlOD.,.,,,.Vsar belongs toP since it can be verified in polyno-
mial time if the given assignment satisfies the original formul&’. If (F,3) € Vsar
then alsamc(F, C') € SAT, sinceg is also a satisfying assignment fanc(F, C).

The same argument holds when we add a single litetala clause” of F', formally

(F\{CHu{CUu{L}}, ifCeF,

adle(F, (C, L)) = { F otherwise.

Observation 3.4. MOD,.,,.Vsar € P andMOD4.Vsat € P.

3.3 The Problem EX3SAT and Interreduction

The next problem for which we examine the complexity of modified instances is the
languageExX3SAT — a subset o5 AT that contains all satisfiable EX3CNF-formulas.
We use as verifier foExX3SAT the following verifierVggssar:

(F, 6) € Vexasat & F'is an EX3CNF-formulan (F, ﬁ) € Vsat.

We examine as a first modification the addition or deletion of atomic components
of EX3CNF-formulas. Since adding unit clauses to an EX3CNF-formula destroys its
EX3CNF-form, we modify the formula by adding or deleting entire 3-clauses. The
corresponding modification functiohare given by

| Fu{C}, if Fisan EX3CNF-formula and'is a 3-clause,
ade(F, C) = { F, otherwise,
and \{C}, if 3CNF-f I
F , If F'is an EX3CNF-formula,
rme(F, C) := { F, otherwise.

Similar to SAT, the case where some 3-clause is deleted is easy.
Observation 3.5. MOD.,.,,,. Vexasat € P.

In contrast, when we add a 3-clause to an EX3CNF-formula, a solution for the origi-
nal instance does, in general, not help to find a solution for the modified instance.

Theorem 3.6. MOD 4. Vexasat IS NP-complete.

3Note that modification functions for different domains may go by the same name, e.g., we define a
modification functionadc for both, CNF-formulas and EX3CNF-formulas. It will always be clear
from the context which modification function has to be applied.
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Proof. To prove NP-completeness BfOD ;. Vexssar it is sufficient to reduce the NP-
complete problenMOD ,;Vsar (see Theoren3.3) to MOD ,4.Vexssar- We call such
a reduction between two problems of the for®©D_.V,4 aninterreduction We show
that there exist three polynomial-time computable reduction functfong, fs such
that for all triplesz := (F, 3, L) it holds that

x € MOD,Vsar < (fi(z), f2(z), f3(z)) € MODggcVexasar (2

In constructingf; and f, we make use of a well known reduction functigrthat
showsSAT <P EX3SAT, as for example given irffK00]. We give a short summary
on how f is defined:

Let F' be a CNF-formula. We give an EX3CNF-formulé := f(F) thatis satisfiable
if and only if F' is satisfiable. Initially, the formul&” consists of the seven clauses

{w17 wa, w3}7 {_'w17 W3y, w3}7 {w17 Way, w3}7 {w17 Wwa, _|'LU3},
{_'wl’ —Wa, U)g}, {_'wh Wwa, _|/LU3}, and{w17 —Wa, _‘U)g},

wherew, wy, w3 ¢ Var(F'). Note that this formula is satisfied by an assignmeift
and only if B(wy) = B(wy) = B(ws) = 1.

Now, we describe how to transform a clauSec F' into a set of 3-clauses aof".
Let{L4,...,L;} be a clause of". Dependent on the number of literdlswe add the
following 3-clauses td"":

o k=1:{Ly,wy,ws},

o k=2:{Ly, Ly, w1},

e k=3:{Ly, Lo, L3}, and

o k=4:{Ly, Ly,u},{—u, L3, Ly},{— L3, u, ~wi }, {—=Ly,u, ~w1},

wherew is a new variable not used in the construction so far. For the moment, we
postpone the case > 5. Correctness of the reduction for the cages {1,2,3}
should be obvious. In cage= 4 note that with3(w,) = 1 (which needs to hold in
order for £ to be satisfiable) the conjunction of the four given clauses is equivalent to

(Ly V Ly Vu) A (u< (Ls V Ly)).

Equivalence of the latter formula and the clag$e, Lo, L3, L4} is immediate.
For the casé& > 5 we inductively apply the procedure of the case- 4. It should
be an easy task for the reader to verify the equivalence

L, .., Ly} =LV Lo VU)A (ve (LgV -V L))
= {{Ll,LQ,’U}, {_\’U,Lg, ceey Lk}} U {{’U, _'Lz} 03 S 1 S ]{3},

wherewv is a new variable never used in the construction so far. We add the clauses
{Ly, La,v},{v, L3, ~w1},...,{v, "Ly, ~w;} to F’" and inductively apply this proce-
dure to the clausé—w, Ls, ..., Ly} }. As a result we obtain a formul&” which has at
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most quadratic size in the size 6t Clearly, the functionf that maps a formul&’ to
F' is polynomial-time computable and yields the desired réSAIT <P EX3SAT.

Note that the reduction functiofi has the following beneficial property. Given an
assignmeng for the SAT-instanceF’, we can easily construct a satisfying assignment
@' for the EX3CNF-formulaf(F'). This can be done in the following way. For all the
variables fromVar(F') the assignments and’ do not differ, that is3'(z) := ((z)
for all variablesz € Var(F'). For each additional variable introduced by splitting
aclause{Ly,..., Ly}, £ > 4, we obtain the truth value af by the equivalence <
Ls V ...V L. For the remaining variables,, ws, ws of F’ we setd’'(w;) = ('(w) =
B'(w3) = 1. This concludes our summary on the reduction function

Returning to our proof of2), we define the functiong,, /-, and f; as follows:

b fl(Fa ﬁa L) = f(F) U {{yh Y2, L}a {y17 Y2, L}7 {ﬁyhva L}}v
wherey; andy, are variables that are not contained/inr(f(F)),

o fo(F,B,L):=(,

where/s’ is constructed frony as described above, andy,) = ' (y2) = 1, and

i f3(F7ﬁa L) = {_'ylu_'y27L}'

Note thatf;,f2, and f; are polynomial-time computable. Furthermore, observe that
by construction off; and f; we get the equivalence

Sile) U{fs(x)} = f(F) U{{L}}. ®3)

To prove(2), first suppose that € MOD4Vsar, i.€., (F,5) € Vsarand F' A L €
SAT. If §is a satisfying assignment fdf then 5’ is a satisfying assignment fgi( £").
Thus(fi(x), fo(x)) € Vexssar- On the other hand, it follows froA' A L € SAT thatF
has a satisfying assignmesitwith 3(L) = 1. Thus, f(F’) has a satisfying assignment
with 5(L) = 1 (truth values of variables fror’ are preserved) anf{ F') A L € SAT.
Using 3), we have that the EX3CNF-formufa(z)U{ f;(x)} is contained ireEx 3SAT.
ThUS(f1 (I), fg(l’), fg(l')) € MOD ,4.Vex3saT-

Conversely, assume thatt MOD ,;Vsar, i.€., (i) (F, 5) ¢ Vsaror (i) FAL ¢ SAT.

In the first case, there exists a clayse = {Li, ..., Lx,, } in F' such that no literal is
made true by the assignmefit The reader may verify, that the reduction function
f transforms this claus€’,, to a set of clauses in which exists a 3-clause that is not
satisfied by?', yielding that( f,(x), fo(x)) ¢ Vexssar. In the second case, we conclude
from FF A L ¢ SAT that eitherF is not satisfiable or each satisfying assignment'of
assigns the truth valu@to L. By construction off, either f(F’) is not satisfiable or
each satisfying assignment ¢fF") assigns the truth valugto L, which implies that
f(F) A L ¢ Ex3SAT. Equivalence3) yields thatf;(z) U { f3(z)} ¢ Ex3SAT. In
both cases, (i) and (ii), we get thgh, (z), fa(z), f3(x)) € MOD,4VexssaT- O

We summarize our findings for satisfiability problems in Tablé The NP-com-
pleteness result foMOD,,.,; Vexssar IS proven in Appendix A, as well as the results
for the problem3SAT, a special case AT in which each clause hag mostthree
literals.
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| modification function | SAT /3SAT| EX3SAT |
ad (addition of a unit clause) NP-complete -
adc (addition of a clause) NP-complete|| NP-complete
adlc (addition of a literal to a clause) eP -
rm (removal of a unit clause) ePb -
rmc (removal of a clause) eP eP
rmlc(removal of a literal from a clauseNP-complete -
neg (negation of a unit clause) NP-complete -
negl (negation of a literal of a clause)] NP-complete|| NP-complete

Table 3.1:Hard and easy cases when deciding modified instances of various satisfiabil-
ity problems with help of arbitrary certificates.

3.4 Results for Other Problems

Up to now we introduced two techniques to prove that a langa@d .V, is NP-
complete. In the first setting, we reduce ldR-complete problemd to MOD_.V,, as
done in the proof of Theoref 3. The other technique involves a reduction from\ar
complete problenMOD.. V3, a so callednterreduction This latter technique was used

in the proof of Theoren3.6. We want to apply these both techniques to other problems
MOD.V,. Since there exist hundreds NiP-complete problems, we concentrate on
the six basidNP-complete problems listed in the influential book of Garey and Johnson
[GJ79. Namely, these six basic problems are

o EXACTTHREESATISFIABILTY 4 (EX3SAT),
e CLIQUE,

e VERTEXCOVER (VC),

HAMILTONIAN CYCLE (HC),

THREEDIMENSIONALMATCHING (3DM), and

PARTITION.

We already discussed the probl&m3SAT. For a formal definition of the other five
problems we refer to the respective chapters in Appendix A. For these five problems
we consider several modifications, among them the deletion or addition of atomic com-
ponents of their instances, for instance addition or removal of a single edge of a graph.
Our findings for the remaining five basic problems are summarized in Bahlerhe

“Note that the problem we calix3SAT is called 3SAT in [GJ79. Since we want to distinguish
between the satisfiability problem in which each clause has exactly three literals and the satisfiability
problem in which each clause has at most three literals, we use the lalEedB§AT and 3SAT,
respectively.
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modification: || easy (inP) NP-complete
add./rmvl.
VC of an edge MOD,.,,Vic [LiDO4] || MOD,4VA/c [LibO4]
CLIQUE of an edge MOD.qVevLioue MOD.,.,, Vevioue
HC of an edge MOD,.;Vuc MOD,.,Vuc
3DM of a triple MOD.4V3pm MOD.,.,,Vapm
PARTITION | of a natural MOD ,4VeartiTion
number MOD..,, Vearrition

Table 3.2:Hard and easy cases when deciding modified instances of the prodléms
CLIQUE, HC, 3DM, andPARTITION with help of arbitrary certificates.

respective proofs can be found in Appendix A. Also, the formal definition of the exam-
ined modification functions as well as the considered verifiers are given in Appendix A.
In addition to the five basic problems, th@-complete satisfiability probler-3SAT,

in which each clause needs to be satisfied by exactly one literal, is considered in Ap-
pendix A.

Conclusions

In this chapter we showed that in many cases the knowledge of a certificate is com-
pletely useless to decide locally modified instances. We introduced problems of the
form MOD.V 4, which characterize the complexity of deciding such modified instances.
For many modificationg, which were defined in this chapter, we could show that
MOD_ Vsar andMOD . Vecssar areNP-complete. This is equivalent to say that a certifi-
cate for arSAT- or EX3SAT-instance is a useless hint when the instance is modified by
c. For some other modifications we could show the converse, namely that certificates
allow to compute efficiently a solution of slightly modified instances (see also Table
3.0).

We showed our uselessness results,N€-completeness of a problemiOD_.V,, in
two different ways. First, we reduced a standaté-complete problem, namel$AT,
to a problem of the typMOD_.V,4. Second, we reduced &iP-complete problem of the
type MOD_.V, to another problem of this type. We called the latter form of reduction
an interreduction. We also indicated that these two techniques suffice to show that
certificates are a useless hint for instances of the six basic problem$G@#f, when
these instances are appropriately modified (see also Bab)le
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Selected Solution as Hint

The completeness proofs given in the last chapter have a drawback. What we have
actually proven is only that therexist certificates that are useless as a hint, but not
thatany certificate is useless. We illustrate the difference at an example. Consider the
problemSAT and a CNF-formuld 4, ..., C,,,}. We have proven that an assignment

B with 5(a) = 1 is a useless hint when deciding if the formuléd((C; V a) A ... A

(Cy V a),—a) is satisfiable (see proof of TheoreBm3). Nevertheless, it is obvious

that a satisfying assignment fo6€’;, ..., C,,,} would have been a much better hint. This
example shows that, although there is some assignment for the original formula that
does not help to solve the modified instance, there might exist other assignments that
are more helpful. The question of interest in this chapter is: Does there always exist
such a useful hint?

4.1 Problem Formalization

To formalize the idea of different possible hints we introduce the notion of certificate
functions. A certificate functioh for a languaged is a function that, given an instance

x of A, outputs a certificate for this instance, if there exists one. If there is no certificate
for the instancer thenh outputs the empty word. Since the form of the certificate
depends on the verifier we use, we define the notion of certificate functions with respect
to a given verifier.

Definition 4.1. LetV,4 be a verifier for alanguagd. The total functiorh is a certificate
function forV, if and only if for allz € X* it holds that

€ Vy(z), ifxe A,
h(x) { =€, otherwise.

Letcert(V,) denote the set of all certificate functions #dx. Letcert be the set of all
certificate functions, i.ecert := | cert(Vy).

V4 verifier

Note that we do not restrict the complexity of certificate functions. They may even be
nonrecursive. This model is insufficient if we actually want to implement an iterative
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algorithm that computes helpful certificates for later use. On the other hand, if we
can show that no certificate function yields helpful hints then we have a stronger result
compared to complexity-restricted hint functions. The important results in this chapter
are of the latter kind.

Until now we avoided to use the term 'modification problem’; we now formally
introduce this notion.

Definition 4.2. Let ¢ be a modification function antf, be a verifier for a language
A € NP. The modification problem fdr, andc is the pair(c, V).

A modification problem only describes the modificatioto be applied, the problem
we are dealing with (vid.(V4)), and the precise form of the certificates.

In this chapter we are interested in the question how easy it can be to decide if
c(x,m) € A when an appropriately chosen certificate function is used to give hints.
We want to express such results of easiness in termis bf;) being an element of cer-
tain complexity classes, e.g., oracle classes or nonuniform complexity classes. Unfor-
tunately, such well studies complexity classes seem to be insufficient for this purpose.
For that reason, we introduce new complexity clasigs,/cert(V4). Containment
of a madification problenic, V) in Cyop/cert(Va) expresses the fact that the deci-
sion whether a modified instaneér, m) is a member ofd is a problem that belongs
to C when adequate certificates are given. Since in later chapters we want to examine
modification problems for more general functions than certificate functions, we give the
following general definition, from which the definition of the clas§&s,,/cert(Va)
can easily be derived.

Definition 4.3. LetC be a complexity class anfl be a class of functions. The modifi-
cation problem(c, V) belongs taCy,qp/F if and only if

(3h € F)(3C € C)(Vx,m € Z*)[:v € A= [c(z,m) € A= (z,h(z),m) € C]]

The informal idea behind Definitiof.3is the following. When a modification prob-
lem (¢, V4) is contained in the clas¥;op/cert(Va) it follows that there exists a Turing
machine (or an algorithm) that (i) obeys the constraint§ ahd (ii) that decides con-
tainment of modified instances of the foufx, m) in A only by the knowledge of the
original instancer, the modificationm that is applied tar, and some clever chosen
certificateh(z) of the original instance:.. We want this algorithm to work correctly
whenever the original instanaeebelongs ta4, so thath(z) actually can return a certifi-
cate forz. The superscript in Cyop/cert(Va) accounts for this last property that the
original instance is an element df In Chapter5 we discuss the problem of deciding
modified instances when the promise is given, that no solution for the original instance
exists.

It is obvious by Definitiond.3 that the classeSy,op/F satisfy the following mono-
tonicity property.

Observation 4.4. LetC and D be complexity classes aifél be a class of functions. If
C C D thenCiop/F < Dyop/F-
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Also note the following. If/, is a verifier for a languagd € NP andcis a modifica-
tion function then the modification problefa, V) is an element oNPyop /cert(Va).
This formally expresses the fact that using a hint should only make easier the problem
of deciding if a modified instance belongs to a langudge NP.

Observation 4.5. Let V4 be a verifier for a language!l € C, C be closed undex? -
reduction, and: be a modification function. Thei, V) € Ciop/cert(Va).

Proof. Choose the predicaté from Definition4.3as
(x,m,m) € C & c(x,m) € A
for all = € ¥*. ObviouslyC' € C. The assertion follows. H

The clas’y,op/cert(Va) can best be compared to non-uniform complexity classes,
in particular toC/poly. However, there are some major differences. Egroly the
given advice only depends on the size of the input. In contrast, for the Ciags/
cert(Vy4) the hint depends on the whole original instance, not just its size. On the other
hand, the clasg /poly has more freedom in choosing the advice; every polynomial
string may be chosen. In contrast, for the clégsp/cert(V4) the hint must be a cer-
tificate for the original instance.

In this chapter we are especially interested in modification problems,) of NP-
complete problems! that belong taC§,qp/cert(Vy) for someC C NP, i.e., modifi-
cations problems that actually benefit from selected hints. Unfortunately, we find such
positive examples only for trivial cases, i.e., cases in which every certificate of the orig-
inal instance is also a certificate for the modified instance. This will be explained in
detail in the next section.

4.2 Hint-independent Reducibility and SAT

Recall the verifiel/sar for SAT from Section3.2. We consider the modification func-
tionsrm, andneg defined there.

First, we consider the modification functiem, which removes a unit clause. Since
any solutionr of the original instance is a solution for the modified instance, every
such solutionr is a helpful hint. Therefore, all certificate functiohse cert(Vsar)
give helpful hints. Generally, we can state the following observation.

Observation 4.6.1f MOD.V,4 € C then(c, Vi) € Cyop/cert(Va).

Proof. LetMOD_ .V, € C, A = L(V4), andh be a certificate function fovs. If z € A
we have(z, h(x)) € V4 (sinceh is a certificate function). Thus, if € A it holds for
all m € ¥* that

(x,h(z),m) € MOD.Vy < (z,h(z)) € VaAc(z,m) e A
& c(z,m) € A.
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Thus, for allz, m € ¥* it holds that
(Vh € cert(Va)) [z € A= (c(z,m) € A< (x,h(z),m) € MOD.V4)].
The assertion follows immediately by Definitidn3. ]

As a consequence of this observation, we disregard in the coming any modification
problem(c, V) for which alreadyMOD_.V,4 belongs taP.

In contrast to the easy case:, the modification functiomeg, which negates the sole
literal of a unit clause, allows for no helpful certificates. We show this in the following
way. We prove that under the assumption thatg, Vsar) € Cyiop/cert(Vsar) for
some complexity clas€ (e.g., choos& = P), the original problemSAT is in C.
Consequently, the modification problem is as easy as the original prdbfmand
therefore hints are useless.

Theorem 4.7. Let C be a complexity class that is closed undef,-reduction. If
(neg, VSAT) € CﬁOD/CGTt(VSAT) thenSAT e C.

Proof. The proof is already inL{ib04]. We restate it here for convenience. Webe
closed under? -reduction and letneg, Vsar) € Cyop/cert(Vsar) via the certificate
functionh for Vsar and the predicaté' € C, that is, for allF’, L € ¥* it holds that

F € SAT = [neg(F,L) € SAT & (F,h(F),L) € C]. (1)

Let /' be an arbitrary CNF-formuld/ar(F') = {x1,...,x,}, anda ¢ Var(F) and
F' be the CNF-formula that can be derived from the formula

aN[(xy Ao ANy Aa) VvV (F A —a))

by straightforward expansion. Note that the formdlastill contains the unit clause
{a}. Also, F’ has at most quadratic size ihand can be computed in polynomial time.
Apparently, /" has exactly one certificate, namely the assignnpethiat assigns 'true’
to all the variables of”. ThusF” € SAT and by () we get

neg(F' a) € SAT < (F',h(F'),a) € C.

SinceF’ has exactly one assignment, name)yhe certificate functiorh has no choice
buth(F’) := (. Thus,

neg(F',a) € SAT < (F',3,a) € C.
By propositional logic it follows that

FeSAT & —aA[(z1AN...ANx,Na)V (F A -a)] € SAT
& neg(F',a) € SAT
& (F',B,a) € C.
SinceF”’, f anda are polynomial time computable frofi we have shown theBAT is

<P -reducible toC. SinceC € C and( is closed undek? -reduction we geBAT <
C. O
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To restate Theorerh.7 in other words: If there exists a certificate function such that
a satisfying assignment for the modified instances can be found with the complexity
bound given byC then the original satisfiability problem also can be solved with this
complexity bound, not using any hint at all. This shows that when we negate a literal of
a propositional formula then no solution exists that helps to decide satisfiability of the
modified instance.

We summarize the key features that were used in the proof of Theérémrhe
essential part of the proof was to find a formyld ") (i.e., the formulaF” in the last
proof) such that

e there exists a modificatiofy(F') (i.e., the unit clause in the last proof) such that

F € SAT < neg(fi1(F), f3(F)) € SAT,

e f1(F) has exactly one solution, namefy(F') = 3, and

® f1, f2, [3 € FP.

These properties are sufficient to show similar results for other problems. To show
similar results in a succinct way, we translate these three properties to a notion of re-
duction. In comparison to the conditions given above we generalize in the following
way: we allow different problems to be mapped to each other, e.g., we allow the graph
problemB being reduced to a modification problem of formulas.

Definition 4.8. LetV4 be a verifier for some languagé € NP andc be a modification
function. We say that a language is hint-independently polynomial-time reducible
to (¢, Va), short B <. (¢, V4), if and only if there exist three reduction functions
f1, f2, f3 € FP such that for allz € X* it holds that

e v € B&cfi(x), f3(x)) € Aand

o Va(fi(x)) = {fa(2)}.

As already motivated, the functiorfs(F') :== a A [(z1 A ... Az, Aa) V (F A —a)l,
fa(F) := B, whereg(x) = 1 forall x € {z1,...,z,,a}, and f3(F) := a yield a hint-
independent reduction fro®AT to (neg, Vsar), i-€., a reduction t&AT-instances that
only allow one choice for a (selected) solution.

Observation 4.9. SAT <¥. (neg, Vsar).

Using the notion of hint-independent reduction we are able to generalize Theorem
4.7.

Theorem 4.10.Let V4, be a verifier for some languagé € NP and letC be some
complexity class that is closed unde€f, -reduction. Then for all languages it holds
that

(B <5 (e, Va) A (e, Va) € C,\GAOD/cert(VA)) = Bel.
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Proof. Let (¢, Va4) € Chop/cert(Va) and letB <V (¢, Vi) via fi, fo, f5 € FP. From
B <}. (c,Va) we derive that

e v € B&cfi(x), f3(x)) € Aand
o Va(fi(z)) = {fa(z)}.

From(c, V4) € Cyop/cert(Va) we conclude that there exist a certificate functioior
V4, and a predicaté’ € C such that for allz, m € >* it holds that

v € A= [c(x,m) € A& (z,h(z),m) € C].

SinceV,(fi(x)) = {f2(x)} it follows that fi(x) € A (henceVs(fi(x)) is nonempty)
andh(fi(z)) = fo(z) (hencefi(z) has only one certificate). Therefore,

(fi(2), fo(2), f3(z)) € C & (fi(z), h(fi(z)), fs(z)) € C
& ofi(x), f3(x)) € A

& e B.
ThusB <P (), and since& is closed undex? -reduction we geB € C. O

We apply Theorerd.10in the following way. We show thaB <. (¢, V) for two
NP-complete problemst = L(V,) andB. We then conclude that even a well chosen
certificate is useless if we want to decide whether the modified inst@nce.) belongs
to A. This suffices because assuming thal’y) € Cyop/cert(Va) the NP-complete
languageB would be an element af (Theorem4.10. ConsequentlyNP C C and
alsoA € C. But then, deciding modified instances4fis not harder than deciding the
original problemA, not using any hint at all.

As already shown inL[ib04], selected hints are also useless when the modification
function is the functiorud&rm, that deletes a clause from the formiaand simul-
taneously adds another clause to the formula. Using the notion of hint-independent
reducibility, we are able to succinctly rephrase this result as

Corollary 4.11 ([Lib04]). SAT <¥. (ad&rm, Vsar).
Proof. The proof is a carbon copy of the proof for Theordrid. Only the functionfs
has to be slightly altered. H

Summarizing the results for modification problemsS#T-instances we can say the
following. When an arbitrary solution is given as a hint we can show that this hint
is useless if a unit-clause is added(Theor&®). In contrast, when given a selected
solution as hint we can show that this hint is useless if

e a unit clause is negated or

e a unit clause is added and simultaneously another unit-clause is deleted.

It is not clear if a smaller modification, e.g., the modificatiafy suffices to render
selected hints useless. But, we will show in a later section that the technique of hint
independent reducibility is probably inappropriate to answer this question (Theorem
4.17).
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4.3 Hint-independent Interreducibility and EX3SAT

Recall the verifieVgyxzsar for EX3SAT from Section3.3. We consider the modifica-
tion functionnegl, which negates a certain literal of some 3-clausé’ofThe formal
definition ofnegl can be adapted from the functiaagl for SAT-instances.

For the modification functiomegl we aim to show that no certificate function helps
to decide if a modified EX3CNF-formula is satisfiable. But the techniques that were
introduced in the last section cannot be applied in a straightforward manner. Thus, we
present another possibility for proving uselessness of selected hints. This new method
involves the following reduction of a modification probleim V) to another modifi-
cation problem(c, V).

Definition 4.12. Let (¢, V4) and (¢, V) be two modification problems. The problem
(¢, V) is hint-independently interreducible (@', V) if and only if there exist three
functionsgy, g2, g3 € FP such that for allz, 7, m € X* it holds that

d VA(ZE) - {7‘(‘} = VB(gl(xvﬂ-ﬂm)) = {92(xv7ram)}7

that is, the single certificate far can easily be translated to the corresponding single
certificate forg, (x, 7, m), and

o ¢(x,m) € A& d(gi(z,m,m),gs(x,m,m)) € B (compatibility ofc and ).

We write(c, Va) <}, (¢, Vg). The meaning o£}, (in comparison to Definitior.8)
should be clear from the context.

We give a few remarks on this last definition. The second property in Definition
4.12 assures that the modification functionsand ¢ are compatiblewith respect to
this reduction, that is, any modification for the instancer can be translated to a
corresponding modificatiogs (x, 7, m) for the instancey (z, 7, m).

Closely related to the notion of hint-independent interreducibility are the notions of
parsimonious reduction and structure preserving reduction. A parsimonious reduction
is a reduction that preserves the number of certificates. A structure preserving reduc-
tion is a parsimonious reduction that is accompanied by a polynomial-time computable
function g that translates certificates of an instande certificates off (z). Formally:

Definition 4.13 ([Sim75]). Let V4, and V be two verifiers for problems! and B,
respectively. We say that is parsimoniously polynomial-time reducible i via f
w.rt. V4 and Vg if and only if

o (Vo € X)[|[Va(z)| = |[Vs(f(2))|] and
o f €FP.

Definition 4.14 ([LL78]). LetV, and Vg be two verifiers for problemd and B, re-
spectively. A reductiod < B via a reduction functiory is called structure preserving
w.r.t. V4,Vz, and a functiory € FP if and only if
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e Ais parsimoniously polynomial-time reducible Bovia f w.r.t. V4, and V3 and

o (v,m) e Va= (f(x),g(x,7)) € Vp. 1

To establish a connection between hint-independent interreduction and structure pre-
serving reduction we note the following. Létbe a structure preserving reduction
w.r.t. V4,Vpg, and a functiory € FP. Thenf andg induce a reduction that satisfies the
first property of Definitiord.12 Simply choose

e gi(z,m,m) = f(z)and

e go(x,mm) = g(x,T).

So results about structure preserving reductions are of some interest in the remainder of
this work. In detail, structure preserving reductions that additionally satisfy the second
property of Definition4.12 (compatibility), i.e., reductions for which a modification of

the typec in an instancer translates easily to a modification of typen the instance

f(z), are frequently used henceforth.

We are now prepare to attack our initial problem, namely the problem to show
that the modification functiomegl allows for no useful hints. We aim to show that
(neg, Vsat) <. (negl, Vexasar). But before proving this fact, we make clear in which
way this result justifies our initial assertion that hints are useles&#ayl, Vexzsat)-

For our argumentation we need the following Theoredt, which states a transitivity
result for <} -reduction. Note that there are different kinds<gjf;-reduction involved
in this theorem, hint-independent reduction and hint-independent interreduction.

Theorem 4.15.Let A, B,C' € NP and letVz andV, be verifiers forB andC', respec-
tively. Letc and ¢’ be modification functions. Then

(A < (e, Ve) Ale, Vi) <3 (¢, Vo)) = A < (¢, Vo).

Proof. Let A, B,C, Vg, Ve, ¢, andd be as stated above. Ldt <?. (¢, Vp) via three
functionsfi, f2, f3 € FP and(c, V) <}, (¢, V) via three functiong;, g2, g3 € FP.
By assumptiod <}, (¢, V) we have that for alk € 3* it holds that

v €A c(fi(r), f3(r) € B

andVg(fi(z)) = {f2(x)}. Using the assumption that, Vi) <). (¢, V) we con-

clude thatVC<gl(f1(x), fa(2), )) = {gz(ﬁ( ), fa(z), )} for all m € ¥*, and in
particular form = f3(z). We also conclude that

rE€As c’<g1<f1(x),f2(:t),f3(I)),93(f1(I),f2($),f3($))) eC.

INote that the converse directign, 7) € V4 < (f(x), g(z, 7)) € Vp follows from these two condi-
tions.
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We setl;(z) = gi(fi(z), fa(x), f3(x)), for i = 1,2,3. ConsequentlyVe(¢1(z)) =
{ly(x)} and
reAs (), l3(x)) € C.

The assertion follows from the fact that ¢, /5 € FP. H

We apply Theorem.15to the modification problertwegl, Vexssar) in the following
way. As shown in Sectiod.2, we have thaSBAT <}. (neg, Vsar). If we are able to
prove that(neg, Vsar) <}, (negl, Vexssar) then Theoremit.15yields thatSAT <7,
(negl, Vexssat). As we discussed in Secti@gn2, we may interpret this last result as that
no certificate function for the problemegl, Vexssar) yields helpful hints. It remains
to prove

Theorem 4.16. (neg, Vsar) <}; (negl, Vexasar).

Proof. We use the reduction functighfrom the proof of Theorer3.6. The reader may
verify that this reduction vig is structure preserving with respect to some certificate
mapping functiory. We may choosg such that corresponding assignmentg iand
f(F') do not differ at the variables frori. More detailed knowledge on the reduction
function f is not necessary in the remainder of this proof.

We only consider the case that the unit claligbat is going to be negated is actually
contained in the original formul&. The simple idea of the proof would otherwise
be unnecessarily dissembled. It is easy to modify the following proof such that it also
holds for the case in which is no part ofF'.

First, we define the functiop,. Let /' be a CNF-formula and lef;, y» ¢ Var(F).

We defineg; by

g(F.8,L) = f(F\{{L}}HU
{{LvylayQ}v{L7_'y17y2}’{Laylv_'yQ}?{Lvﬁylv_'g/Q}}U
{{_‘L,yl,y2}7{_‘L;_‘yl,y2}7{_‘L,yl,_‘y2}}~

Since f is structure preserving w.r.g. it is obvious thatg, is structure preserving
w.r.t. the certificate mapping functign that is defined by, (F, 5, L) := ', where

/ (B)(x), if x € Var(F),
Flo) = { i if 2 € {y1, 2}

This shows that the first property of Definitidnl2holds.

We now show that also the second property of Definildt? holds, namely that the
negation of unit clause in a CNF-formulacan be translated to a negation of a certain
literal in theEX3SAT-instancey, (F, 5, L). Formally, we need to show that there exists
g3 € FP such that

neg(F, L) € SAT < negl(g:1(F, 5, L), g3(F, 3, L)) € EX3SAT. 2

We define the function; as

gB(Fﬁ; L) = ({L7 _‘yla_‘y2}7L)'

33



Chapter 4 Selected Solution as Hint

]modification function

| SAT / 3SAT || EX3SAT | 1-3SAT |

ad (addition of a unit cl.) ? - ?
adc (addition of a clause) ? ? ?
adlc (add. of alit. to a cl.) easy - <
rm (removal of a unit cl.) easy - easy
rmc (removal of a clause) easy easy easy
rmlc(rem. of a lit. from a cl. ? - <4
neg (negation of a unit cl.) <% - <%
negl (neg. of alit. of acl.) <% < <

Table 4.1:Hard, easy, and uncertain cases when deciding modified instances of various
satisfiability problems with help of selected certificates.

In other words, we modify; (F, 3, L) by negating in the clausd., —y;, —y» } the literal
L. Note that

negl(gi(F, 3, L), gs(F, 8, L)) € EX3SAT & f(F\{{L}}) U{{~L}} € SAT. (3)

It remains to proved). To show the=- direction of @) let neg(F, L) € SAT and
let 5 be a satisfying assignment 6f\ {{L}} U {{—-L}} = neg(F, L). It follows that
F\ {{L}} € SAT and that3(L) = 0. Thusf(F \ {{L}}) € EX3SAT with g(5)
as a satisfying assignment. Sing@reserves the truth value of variables frdimwe
conclude thap’(L) = 0. Thusf(F\{{L}})U{{—-L}} € SAT and by @) we conclude
thatnegl(g,(F, 3, L), gs(F, 3, L)) € EX3SAT.

For the other direction, suppose thatyl (g, (F, 3, L), gs(F, 3, L)) € EX3SAT. Let
(' be a satisfying assignment faeeg(g,(F, 5, L), g3(F, 3, L)). By (3) we have that
F(F\{{L}}) is satisfiable with an assignmeptwheres(L) = 0. ThusF' \ {{L}} U
{{—L}} is satisfiable and therefore:g(F, L) € SAT. O

Table4.1 summarizes the results for satisfiability problems that were found in the
last sections. It also contains additional results, which are proven in Appendix A. In
Table4.1 the shortcut<?, stands for the fact that the respective modification problem
can be hint-independently reduced from soNie¢ complete problem, in our case the
problemSAT. For these problems a solution for the original instance yields no helpful
hint. The shortcut 'easy’ symbolizes that the respective modification problevi )
belongs taPy,qp/cert(Va).

As the question marks in Tabkel indicate, the usefulness of selected hints is not
clear for all kinds of modification functions. But, to show uselessness of selected hints
for these cases it is likely that we have to develop new techniques. We are able to show
that, unles® = NP, no <} -reduction from aiNP-complete problem téc, V4) exists,
whenc and A are the respective modification function and language from a '?’-entry in
Table4.1 For the moment, we just state this result for the easead andA = SAT.

Theorem 4.17.Let B be anNP-complete problem. Then
B Szl (CLd, VSAT) = P = NP.
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Proof. Let B be anNP-complete problem. Suppose that<}. (ad, Vsar). Thus, there
exist f1, fa, f3 € FP such that/sar(f1(F)) = {f2(F)} and

r € B&ad(fi(z), fs(x)) € SAT
& (3r € ) [(ad((fi(2), fa(x)),7) € Vsar]
& (ad(fi(2), f3(x)), fa()) € Vsar.

The last equivalence is owing to the fact that adding a unit clause only restricts the
possible set of satisfying assignments, and sifi¢e) has exactly one satisfying as-
signmentf,(z), the formulaad( fi(x), f3(x)) can only be satisfied by this assignment
f2(x). The last expression in the above sequence of equivalences clearly is decidable in
polynomial time — only a verifier, a modification function, and the functignsf, f3

are involved. Thus3 € P, and sinceB is NP-complete we geP = NP. H

We are able to show a results similar to Theorérh7 also for the other '?’-cases
of Table4.1. The essential part of the proof of Theoreni7 relied on the property
that the set of certificates of a formufa(z) is restricted by the modification function
ad. In other words, we used th&kar(ad, (F, L)) C Vsar(F') for all F, L € ©*. We
generalize Theorem.17in the following way.

Corollary 4.18. Let B be anNP-complete problem an@:, V1) be a modification prob-
lem such that/(z) 2 Va(c(x,m)), for all z,m € ¥*. Then

B <. (c,V4) = P = NP.

The proof for the corollary can be translated mutatis mutandis from the proof of The-
orem4.17. lIts not difficult to see, that the propertys(xz) 2 Va(c(z, m)) holds for all
the '?’-cases in Tabld.1 Thus, unles® = NP, we wont be able to prove for any of
these modification problems the uselessness of selected hints by using hint-independent
reductions.

For the problem<LIQUE, VC, HC, 3DM and PARTITION we use the techniques
of hint-independent reduction and hint-independent interreduction to obtain the results
that are summarized in Tabfe2 The respective proofs can be found in Appendix A.
As usual, an 'easy’-entry means that the corresponding modification prablém)
belongs taPyop /cert(Va), the shortcutsy; stands for the fact tha <j; (c, Va) for
someNP-complete seB3, and '?’ symbolizes the fact that uselessness of selected hints
is not likely to be provable via? .-reductions.

We give a final remark regarding structure preserving reductions. Note that a struc-
ture preserving reduction fro®AT to anothe™NP-complete probleni.(V;) via a re-
duction functionf often yields an upper bound for the amount of modification that is
necessary to make selected hints useless. For most of these structure preserving reduc-
tion it holds that the modificationeg of a formulaF’ can be translated to a modification
of a certain type’ in the B-instancef (F"). For this choice of modificatiod the second
property of Definitior4.12is satisfied. It follows thatneg, Vsar) <), (', V).
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easy ? <%
VC (rm, Vuc) [Lib04] | (ad, Vic) (ad&rm, Vic)
CLIQUE (ad, Vevioue) (rm, Vewoue) || (ad&rm, Veyoue)
HC (ad, Vuc) (rm, Viue) (ad&rm, Vic)
3DM (ad, V3pm) (rm, Vapm) (ad&rm, Vapm)
PARTITION (ad, Vearriion)
(rm, Vearrimion)

Table 4.2:Hard, easy, and uncertain cases when deciding modified instances of the
problemsVC, CLIQUE, HC, 3DM, andPARTITION with help of selected
certificates.

The above argument also holds when we choose an other modification problem than
(neg, Vsar) @s our starting point — the only condition on this other modification prob-
lem (¢, Vi) is that selected certificates are not useful, i®.<%. (c,Vp) for some
NP-complete problen.

4.4 A Connection Between (¢, V4) and MOD_.Vy4

In Chapter3 we showed that therexistsa certificate that is useless for deciding formu-
las in which a unit clause is negated. In this chapter we showed that an even stronger
statement holds, namely thany certificate is useless. Since the first statement is a
special case of the latter, we expect that the formal results for uselessness of selected
hints, e.g. SAT <. (neg, Vsar), translate to uselessness results for arbitrary hints, e.g.,
NP-completeness dfIOD,,.,Vsar.

Although it might seem obvious that the above mentioned result holds, there are
some technical difficulties. We first need to establish two simple lemmata.

Lemma 4.19.NP \ NPC is closed under? -reduction.

Proof. Assume to the contrary thatP \ NPC in not closed undex? -reduction. Con-
sequently, there exist languagésB C >* such that

A<P B AN BeNP\NPC A A¢NP\NPC.
N J N ~ 7 N ~~ 7
(i) (i4) (i)
By (i4i) it suffices to regard the following two cases:

Case 1: A€ NPC: From(i)we conclude thaB is NP-hard. From(i:) we conclude
that B € NP. ThusB € NPC, which contradictgii).
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Case 2: A ¢ NP: From (iz) it follows that B € NP. SinceNP is closed undex? -
reduction we have together with) thatA € NP. This contradicts the assumption

of this case.
O

Lemma 4.20. Let A be a nontrivial language frolWP, i.e., A € NP \ {0, X*}. Ifit
holds for all classe€ with C € NP andC closed undek? -reduction that

AeC < C=NP

thenA € NPC.
Proof. Let A € NP \ {0, X*}.

Case 1: P = NP: All nontrivial problems are<? -complete forP. Thus, A is com-
plete forP = NP. Consequentlyd € NPC, independent of the other precondi-
tions.

Case 2: P # NP: We prove the assertion by contraposition. Assume th@tNPC.
ThusA € NP\ NPC. We choos&€ = NP \ NPC. Now, the left hand side of the
eguation

AeC<C=NP

is valid; the right hand side fails to hold, sinb&@C = (). The assertion follows
from the fact thalNP \ NPC is closed undex? -reduction (see Lemmé& 19).
0

Now, we are prepared to formally prove that results for uselessness of selected hints
are also results for uselessness of arbitrary hints.

Theorem 4.21.Let(c, V4) be a modification problemd = L(V,) € NP, and B be an
NP-complete language. B <}. (¢, V4) thenMOD_.V, is NP-complete.

Proof. Let B € NPC and letB <}, (¢, Vy4). By Lemma4.20it suffices to show that
for all classe€ with C € NP andC closed underk? -reduction it holds that

MOD_. .V, € C < C = NP.

The direction form right to left is trivial (see Observati8r®). For the other direction
assume thaMOD_ V4 € C for some clasg€ C NP that is closed undex? -reduction.
By definition of MOD_V/,4 it holds for allx, 7, m € ¥* that

(x,m) € VaNe(z,m) € As (z,m,m) € MOD_/Vj,.

If z € A then for any certificate functioh it holds that(x, h(x)) € V4. Therefore, the
statement
v € A= [c(x,m) € A& (x,h(x),m) € MOD.V,]

is valid for any certificate function. SinceMOD_V, € C we get(c,V4) € Cop/
cert(Vy). The assertio@ = NP follows from Theoren#.10 O
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4.5 Beyond the <7 .-reducibility Method

In the preceding sections we introduced the notions of hint-independent reducibility and
hint-independent interreducibility. We applied these techniques to several modification
problems. Unfortunately, in some cases the-reducibility method does not apply,
e.g., it does not apply to the modification probléwma, Vsar) (see remark to Theorem
4.17). We do not settle the question whethied, Vsar) has useful hints in this section.
But, we prove that when the modification is the simultaneous addition of several unit
clauses then selected hints are not likely to make the modification problem very easy.

To show this result we need ideas and notations from the proof of Cook’s Theorem
[Coo71), which states that the proble®AT is NP-complete w.r.t.<? -reduction. We
recall the necessary details from Cook’s proof in the following subsection.

4.5.1 Cook’s Reduction

Let A € NP andM be an NPTM such that()M) = A. In the course of this subsection,
we demonstrate how to construct fralh and an inputc a CNF-formulaf.,.. (M, x)
such thatV (x) accepts if and only iff.... (M, x) is satisfiable.

W.l.o.g. we consider an NPTM/ for A that is normalized, that is, there exists
a polynomialp such that for each input of M every computational path o¥/ has
exactly lengthp(|z|). We may assume that’ uses a single work tape that is infinite to
the right but has a leftmost cell. This yields a numbefing 2, ... of the cells from left
to right. Suppose tha = {qo, ..., ¢z } are the states a¥/, ¢, being the starting state of
M. Suppose that = {0y, ..., 0;} is the alphabet od/, o, being the blank symbol. We
may assume that the head of the machine is in the leftmost cell at the beginning of the
computation.

SinceM is a nondeterministic machine, there exist multiple rules that may be applied
at a time. We suppose that there always exists an applicable rule ,i.e., the transition
function is total. Also, we assume that at any time the machineay choose among
at most two such rules. If there are two applicable rules ,i.e., two rules with the same
left hand side, we fix a left and a right rule. Otherwise we refer to the single applicable
rule as left rule. Finally, we may assume that the inpud/bfs written in the leftmost
cells and that\/ accepts the input if and only if M is in stateg, after exactlyp(|z|)
steps of computation.

The formulaf...r (M, x) consists of several CNF-subformulas, namely
e the formulaS(z) that represents the initial configurationf on inputz,

e the formulasF;(M, |z|), wherel < t < p(|z|), that characterize the possible
transitions between the configurationsid{x), and

e the formulaZ(|x|) that characterizes the accepting conditiorbf

In defining these formulas we use the following variables:

38



Chapter 4 Selected Solution as Hint
® ¢ 0<ti<p(|z]), o € X. The variable:, , shall be true if and only if after
M'’s tth computational step the cell with numbas occupied by the symbal,

e hi;, 0 <t i<p(|z]). The variableh,; shall be true if and only if aftep/’s tth
computational step/’s head is on the cell with number

e s, 0<t<p(|z]),q € Q. The variables, , shall be true if and only if afte#/’s
tth computational step/ is in stateg, and

e v, 1 <t < p(|z|). The variabley, shall be true if and only if\/ has applied the
left rule in itstth computational step.

The setY; is defined to contain all variables that characterize the configuration after the
tth computational step, that is,

Y, = { Ctios Mgy Stg 0 0<1<p(n), c €Y, ¢€Q }

Now, we give the formul&(z), which states that the machifé starts correctly. Let
T = Xg..Tp_1. THEN

S@) = N (coca) N N (oco0) Ahoo Asog A\ (-),

0<c<n n<e<p(|z) yeYy

whereY| contains the remaining variables frarip. The formulaF, (M, |x|) consists of
the conjunction of the following expressions:

L /\OSCSP(\JUD [((Ct—l,c,cr A _'ht—l,c) = Ct,c,a) A ((_'Ct—l,c,cr A _'hft—l,c> = _'Ct,c,o)]

e for each left rulerg — o’¢'r the two expressions:

/\ ((Ct—l,c,a A ht—l,c A St—l,q) = Ut) and
0<c<p(|z])

/\ Rctfl,c,a A htfl,c A St—1,q A Ut) = (St,q/ A /\ St,q"
0<c<p(|z|) q'#q
ht,c-‘,—l A /\ _‘ht,c’
c#c+1
Ct.c,o’ A /\ _‘Ct,c,o”)]
o—//¢o-/

e a similar expression for left rules of the formg — o'¢'l or og — o’q’0
e the above expression with substituted by-v, for every right rule.

The formulaE(|z|), which shall represent the accepting condition\éf is given by
E(|2]) = Zp(apa-

The formulay oox is given by feoor (M, z) := S(x) A Ny <ycp(a) Fr (M, [2]) A E(|2]).
For a proof thaff,.... yields a reduction fromd to SAT we refer to the standard literature
[DKO00, BDG95 WW86, Coo71, Wec0q.
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We just mention the following property. Each two different paths\s compu-
tation lead to assignments that differ when restricted to the variables < t <
p(|z|). Therefore each accepting path &f yields a different satisfying assignment
for fe.or(M,z). The converse, namely that two different satisfying assignment of
feoor (M, z) lead to two different accepting paths df (x), also holds. Consequently,
the functionf,... yields a parsimonious reduction fromto SAT.

It is plausible that Cook’s reduction is also structure preserving. In more detail, we
chooseM as a machine that nondeterministically guesses a proof in a first phase and
verifies it afterwards. Such a machiné always exists (see Theore3). For this
choice of machinel/ a satisfying assignment foft.,... (M, x) can be computed easily
from the nondeterministically guessed bits, i.e., the certificate, that is guessed in the
first phase of\/’s computation.

Note in the passing, that we can use Cook’s reduction to prove that the\@§ss, /
cert has<} .-complete problems.

Theorem 4.22.(neg, Vsar) is <} .-complete folNPy,op /cert.

Proof. Itis obvious that{neg, Vsar) € NPyop/cert (Observatiort.5). To show hard-
ness of(neg, Vsar) let (¢, V4) be a modification problem fromMPgop /cert(Va). It
suffices to show thdic, V4) <¥. (neg, Vsar). We give a structure preserving reduction
g1 (with respect td/,, Vsar, and a functiory, € FP) and a functiory; € FP such that
for all z, 7, m € X* it holds that

c(z,m) € A= neg(gi(z, m,m), gs(x,m,m)) € SAT.

Let M be an NPTM forL(V,) that works in two phases. Firs}/ nondetermin-
istically guesses a certificate for the inpuaind afterwards this certificate is verified
deterministically byl,. Without loss of generality we may assume that the machine
M obeys the restrictions of Cook’s Theorem.

The formulag, (z, 7, m) contains the two subformulas, and F., ,,, defined by
Fy = feoor(M,x) @nd Foiy 1y = feook(M, c(x,m)). LetY, andY,, . be the set of
variables off, andF,, ,,.), respectively. Let, N Y., ) = 0 andz ¢ Y, U Y., ). We
define

g1(z,m,m) = [(z/\ F, N /\ y) Y, (ﬂz/\Fc(x7m) A /\ y)} Az,
YEY (z,m) yeYy

or more exactly, the expanded CNF-form of this formula, which has at most quadratic
size and still contains the unit clause Since f.,., Yields a structure preserving re-
duction fromA to SAT w.r.t. the verifiers/, andVsar, the functiong; also induces a
structure preserving reduction. Furthermore, weyset, 7, m) := z, that is, we negate

the unit clause. Then

c(x,m) € LVa) & feook(M,c(x,m)) € SAT
& [zAFen N y)V(52AFuemy A J\ y] Aoz € SAT

erc(m,m) erZ
<~ neg(gl(‘ru T, m)> 93(:67 T, m)) € SAT.
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]

We show in Appendix A thatneg, Vsar) <7. (c,Va) for many other modifica-
tion problems(c, V4). Since<?. is transitive (a fact for which we omit the proof)
all the following modification problems are’,-complete forNPy,,/cert (also see
FigureQ.l): (negl, VSAT); (neg, Vgs/_\‘r), (negl, Vgsm’), (negl, VEXSSAT); (adlc, Vl-3$AT)|
(Tmlc, V1-3SAT)7 (’I’L@g, V1-3SAT)1 (negl, V1-3SAT)7 (ad&rm, VCLIQUE)1 and(ad&rm, ch).

4.5.2 Results

We now return to our proof that the addition of several unit clauses is not likely to be
a modification that allows for useful hints. More precisely, we will show that if the
modification problen{adi?, Vsar) was easy then some unlikely collapses would occur.
Here,id is the identity functionid(n) := n, for all n € N, whereas the notion of the
modification functiomd® is fixed by the following definition.

Definition 4.23. Let ¢ be a modification function. The modification functidnwhich
performsk modifications of the form at the same time, is inductively defined by

c(x, (my)) :

&z, (my,...,mp))

(x7m1)7

c( F M, (ma, oy my_1)), M)

For a functionf : N — N let

) = { F(xz, (my,....,my)), ifk<f(z]),

f =
e, (ma, .. x, otherwise.

Note that the<} -reducibility method cannot be applied to the modification problem
(ad™, Vsar) (see Corollaryt.18. But, we are able to show that the modification prob-
lem (ad™®, Vsar) is not likely to be very easy via the following Theorefri24 Note
that Theoren#.24will be strengthened afterwards with respect to the amount of mod-
ification. Nevertheless we prove this weaker theorem first, as the proof would become
slightly intricate otherwise.

Theorem 4.24.LetC be closed undex? -reduction. Then
(ad™®, Vsar) € Chop/cert(Vsar) = NP C C/poly.

Proof. Let C be closed undex? -reduction. Let(ad™, Vsar) € Ciop/cert(Vsar) Via
the certificate functior for Vsar and the predicaté’ € C, that is, for allk € N and all
F, Ly, ..., Ly € ¥* it holds that

F € SAT = [ad(F, (L, ...,Ly)) € SAT & (F,h(F), (L1, ..., L)) € C].  (4)

We show that under this assumptidd€ < C/poly. 2

2The problemSAT could have also been chosen but we consider the proHI€rn order to make the
proof clearer.

41



Chapter 4 Selected Solution as Hint

Let G be a graph witm > 3 vertices; graphs with less than three vertices cannot
contain a Hamiltonian cycle. Consider a nondeterministic polynomial-time Turing ma-
chineM for HC that obeys the restrictions of Cook’s theorem. Additionally, we assume
that |G| (the size of the coding off as input forAf) only depends om, the number
of vertices ofGG, and is strictly increasing with. This is achieved by coding via an
adjacency matrix.

Referring to the notations introduced in Sect#h.1, we definefis ¢ := \o<;<,a)
F,(M,|G|) A E(|G]). Intuitively, Fiy ¢ contains all those parts gf,..()/, G) that are
only dependent on the size of the input but not the precise form of the input. The for-
mula Fy | resembles the work of the machiné on an unknown input of sizg~|.

The key idea of the proof is that the inpitcan be coded intd’, | by addition of

S(G), which solely consists of unit clauses. Thus, the number of unit clauses that need
to be added is bounded ky. In the remainder of this proof we elaborate this idea more
formally.

Note that any complete gragh,, with n > 3 vertices contains a Hamiltonian cycle.
Thus the formulaf...r (M, K,,) = Fu ik, N S(|K,|) is satisfiable. SinceG| only
depends on the number of vertices(afthe formulaly, ¢ is satisfiable for any graph
G with more than two vertices. By} it holds for allk € N, all L4, ..., L, € ¥*, and
all G with more than two vertices that

lad"(Fury), (L1, .., Li)) € SAT < (Faria) M(Faray), (L, .., Li)) € CJ.
SinceFy¢,| = Fu ., ifand only if |G| = |G2| we can unambiguously define

B (i) = h(Fur, ), if iis the size of some graph,
Y= €, otherwise.

Let S’(G) denote the tuple of unit clauses $fG). Formally, if S(G) = Ly A ... A Ly,
thenS’'(G) = (Ly, ..., Lg). The predicat€’ defined by

(G,w) € " & (Fuye,w,S'(G)) € C

belongs taC sinceC is closed under? -reduction. Note that the number of elements
in $'(G) is smaller tharid(| Fyrc|). Now

GeHC & fon(M,G) e SAT

Furjg) A S(G) € SAT
ad(Fyryc), S'(G)) € SAT
(Farjay M(Fare), S'(G)) € C
(G, h(Fuye) € C'
(G,h(|G])) e C".

to et

Sincel’ € poly we getHC € C/poly. O
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As we already mentioned, Theore#n24 can be strengthened to also hold for a
smaller amount of modification. In detail, we use a padding idea, that is, an instance is
padded in a way that the amount of modification becomes very small in comparison to
the length of the padded instance.

Theorem 4.25.LetC be closed undex? -reduction,K € N\ {0}, andq(n) = ¥/n.
Then
(ad?, Vsar) € Cyop/cert(Vsar) = NP C C/poly.

Proof. We refer to the notions from the proof of Theoreén24 Let¢(n) = §/n for
someK > 1 and letr(n) := n’. Let pad, be the function that pads a formulaby
adding unit clauses over new distinct variables such that the padded formula has size
r(|F|). Formally, for a formulaF’ over the variables, ..., z,, we define

pad,(F) == FU | J {{z:}}.

1=n+1

where N is chosen to be the smallest number such thad,.(F)| > r(|F|). For a
reasonable coding of formulas the padding funcgied, has some useful properties:

e pad, € FP,
o F' ¢ SAT & pad,(F) € SAT, for all F € ¥*, and

e FAS € SAT & pad,.(F) NS € SAT, for all formulassS that do not contain any
of the padding variables, .1, ..., zx.

In the proof of Theoremt.24 the number of unit clauses that need to be added is
bounded byS’(G)| and since

S'@)] < |Fugall = (| Fujal)) < a( pady(Fyrja)] )

the number of unit clauses to be added is bounded by the fungtiorthe size of

pad, (Farc). When substitutingy ) by pad,(Fi, ) in the proof of Theorerd.24

we obtain the desired result. For a more detailed elaboration of this idea also see the
coming Theorend.27. ]

The following corollaries show that if the modification problémi?, Vsar), where
q(n) = ¥/nandK € N\ {0}, would be easy, e.g., an elementRffop/cert(Vsar)
or (NP N coNP)§op/cert(Vsar), then some collapses would occur that most computer
scientist do not believe to happen. The corollaries use the best known collapse results
whenNP C P/poly or NP C (NP N coNP)/poly, respectively (also see Theor&m 1
in the Preliminaries).

Corollary 4.26. Let K € N\ {0} andg(n) = ¥/n. Then
i (a’dq7 VSAT) € PﬁOD/Ceﬁ(VSAT) = 52 = PH’
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e (ad?,Vsar) € coNPyop/cert(Vsar) = SY¥ = PH, and
e (ad!, Vsar) € (NP N coNP)§op/cert(Vsar) = SYPNoNP = PH,

Up to now, we only considered the modification probleni?, Vsar). Now, we want
to transfer our result to other modification problefmsl’,). The following theorem is
helpful for this task.

Theorem 4.27.LetC be closed undex? -reduction,(c, V4 ) be a modification problem,
A = L(Vy), K € N\ {0}, andg(n) = §/n. If there exist functiong, f3; € FP such
thatforallk > 1andallF, L, ..., L, € ¥* it holds that

e Fe SAT < f1(F) € Aand
o ad(F,(Ly,...,Ly)) € SAT < ¢(f1(F), f3((L1, ..., L)) € A

then the following statement holds:
(¢, Va) € Cyop/cert(Va) = NP C C/poly.

Proof. The proof is similar to the proof of Theorem24 LetC be closed undex? -
reduction. Let(c,V4) € Cyop/cert(Va) via the certificate functiorh for V4 and the
predicateC € C, that is, for allx, m € >* it holds that

reA= [c(m,m) cEAs (m,h(m),m) EC}. (5)
Let f1, f3 € FP such that for alk > 1 and allF, L4, ..., L, € ¥* it holds that

F e SAT & fi(F) € A, (6)

deq(F, (Ll, ceey Lk)) € SAT & C(f1<F), f3<<L1, e Lk))) e A (7)

We show that under this assumptidd€ < C/poly.

W.l.o.g. we may assume théatis a graph withn > 3 vertices. Consider a nonde-
terministic polynomial-time Turing machin&/ for HC that obeys the restrictions of
Cooks Theorem. We assume tltais coded via an adjacency matrix. The formulas
Fuygp and S(G) are defined as in the proof of Theoreh?4. Let S'(G) denote the
tuple of unit clauses of (G). Letr(n) := n® andpad, be the padding function from
the proof of Theorend.25 For a formulaF” we abbreviatead, (F') by FP*. Following
the arguments from the proof of Theoren25we get

56 < a (| Fit]) ®)

for all graphsG. Note that for each grapfy the formulaF}, | is satisfiable. Conse-

quently, F77¢. is satisfiable and therefore, b§)( f1(Fiy|;) € A. It follows from (5)
that for all graphs+ and allm € ¥* it holds that

C(fl(F]{)/ng\)vm) €A (fl(F]I\JXTlG\)vh(f1<FJ}\';L|ig|>>7m) eC. (9)
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We define a functioi’ € poly and a predicaté’ by
W(i) == h(fu(F379),

(G,w) € C" & (fi(Fyfig) w, f5(S'(G))),
forall: € Nand allG,w € ¥*. Obviously,C" <P ( and since’ € C andC is closed
under<? -reduction we ge€”’ € C. Now

GeHC < fou(M,G) e SAT
& Fuje ANS(G) € SAT

FYG A S(G) € SAT

ad’(Fijie, S'(G)) € SAT

c(fi(Fiia): 5(S'(G))) € A

(F(Flfe), h(AFRG)), f3(S(G))) € C

(A(Fa) (G, f5(5'(G))) € C

(G, 1 (|G)) e C.

¢

$z

3

T ¢ =9

This impliesHC € C/poly. O

Theoremd.27implicates an interesting corollary, namely that the choice of the veri-
fier Vsar IS not crucial in Theorem.25

Corollary 4.28. LetC be closed undex? -reduction,K € N\ {0}, andg(n) = ¥/n.
Let V<, be any verifier folSAT. Then

(ad?, Vipr) € Crop/cert(Véar) = NP C C/poly.

Proof. We choos€c, V) = (ad?, Vi,r) in Theoremd.27. The functionsf,(F') := F
and f3(m) := m satisfy the conditions posed g and f5. O

We use Theorend.27to show that selected solutions are also not likely to be a
good hint for some other modification problems, suctirasic?, Vsar), (ad?, Vasar),
(adcq, VEX3SAT>1 (Cldq, V1-3SAT), (adq, V\/c), (qu, VCUQUE), (rmq, VHC)1 and the modifi-
cation problen(rm?, V3pym). The respective proofs are given in Appendix A.

4.6 Computationally Restricted Certificate
Functions

Certificate function may be nonrecursive, in general. We already mentioned that this
approach leads to strong results of uselessness of selected hints. But, for some modifi-
cation problems, likéad, Vsar), We were unable to prove uselessness of selected hints
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w.r.t. such a powerful certificate function. In this section we show that if the certificate
function is appropriately restricted théd, Vsar) is not likely to have helpful selected
certificates.

Only some special cases of certificate function are computable by computationally
restricted machines, e.g., the functions that compute the maximum or the minimum so-
lution with respect to some ordering are computablEAj. Even worse, infiNOS94
the authors show that no certificate functionsfgkr can exist in the clasgun - NP,
unlessNP C (NP N coNP)/poly, and consequentlg}"°NF — PH (see Theorem
2.11). In the spirit of this result, we show that the existence of a certificate function
h € fun-NP thatrenders the modification problémi, Vsar) @ member ofoNPy,op/
(cert(Vsar) N fun - NP) is even more unlikely.

Theorem 4.29. (ad, Vsar) € coNPyop/(cert(Vsar) N fun - NP) = {1}P C NP.

Proof. Let (ad, Vsar) € coNPyop/(cert(Vsar) N fun-NP) via the certificate function
h € fun - NP for Vsar and the predicat® € coNP, that is, for allF, L. € ¥* it holds
that

'€ SAT = [ad(F, L) e SAT < (F,h(F),L) € B}. (10)

We show thaf{ 1} SAT € NP under this assumption. Therefore, we give an NPITM
that decideq 1} SAT.

Let /' be a CNF-formula and lét’ar(F) = {x,...,z,}. We describe a machine
M that decideq 1} SAT rather informally: In a first stage, the machifié nondeter-
ministically guesses the hin{ F'). Afterwards, in a second nondeterministic phase, the
machineM verifies that the guess is correct. This is possible since the certificate func-
tion h belongs tofun - NP, or equivalently3C' € NP) [h(z) =y < (z,y) € C]. For
the correct hint.(F") this might result in several accepting paths, whereas for all other
guesses no path accepts. In a third phase, the maghideterministically tests on all
the second-phase-accepting-paths whetheh(F')) € Vsar. If (F, h(F)) ¢ Vsar then
F ¢ SAT, sinceh is a certificate function. In this case, all the paths become rejecting
paths. If (F, h(F)) € Vsar then a fourth phase is appended.

Before we describe the work of the machihgin this fourth phase we state a few
facts. The fourth phase is only reached’ifc SAT. Furthermore, the certificate( F')
for F is given by the guess in the first phaseMfs computation. Consequently, we
have a simplified form ofX0), namely

ad(F,L) € SAT < (F,h(F),L) € B.
The key idea of the proof is to exploit the following characterization of {SA]:
Fe{0,1}SAT & (V1<i<n)[-((FAuz;) e SATA(FA-x;) € SAT)].

Since we only deal with satisfiable formulas in the fourth phasé/ofve use this
equivalence to accept only those formulas that belong }&AT: For eachw the test

3Note that all second-phase-accepting-paths behave similar after the third phase since all these paths
belong to the same guessidfF).
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whether(31 < i < n)[(F,w,z;) € BA(F,w, ;) € B] can be achieved withicoNP,
sincecoNP is closed under union and intersection. Consequently, the set

A={(F,w): (V1<i<n)[-((F,w,z;) € BA(F,w,—z;) € B)|}

belongs toNP. Now, the fourth phase o/ simply consist of checking whether
(F,h(F)) € Ausing an NPTM forA. Correctness follows from the following equiva-
lences

Fe{0,1}SAT & (V1<i<n)[-((ad(F,z;) € SAT A ad(F,—x;) € SAT))]
& (V1<i<n)[=((Fh(F),z) € BA(F,h(F),~z;) € B),
< (F,h(F)) € A.

O
Since{1}P C NP = NP = coNP (Corollary2.8) we get the following corollary.
Corollary 4.30. (ad, Vsar) € coNPyop/(cert(Vsar) N fun - NP) = NP = coNP.

In order to show a similar result for other modification problgm3/,) we establish
the following theorem.

Theorem 4.31.Let(c, V4) be a modification problemd = L(V,), fi, f3 € FP, and
e ad(F,L) € SAT & c(fi(F), fs(L)) € A*

Then(c,V4) € coNPyop/(cert(Va) N fun-NP) = {1}P C NP.

Proof. The proof is similar to the proof 0£.29 We assume the reader to be familiar
with this proof. Let(c, V) € coNPyop/(cert(Va) N fun - NP) via the certificate
functionh € fun - NP for Vsar and the predicat® € coNP, that is, for allz, m € ¥*
it holds that

v € A= [c(z,m) € A& (z,h(z),m) € B).

We show thaf 1}SAT € NP under this assumption.

Let F' be a CNF-formula and le¥ar(F) = {z1,...,2,}. We give a five-phased
NPTM M that decides iff' € {1}SAT. In a first stage, the maching determin-
istically computesf;(F). In a second stage, it nondeterministically guesses a hint
h(fi(F)). Afterwards, in a third nondeterministic phase, it verifies that the guess is
correct. For the correct hini(f,(F')) this might result in several accepting paths;
for all other guesses no path accepts. In a fourth phase, the mathuoeterminis-
tically test on all the third-phase-accepting-paths whetigiF'), h(f1(F))) € Va. If
(f1(F),h(f1(F))) ¢ Vathenfi(F) ¢ AandM rejects on these paths. Otherwise ,if
(f1(F),h(f1(F))) € V4, then a fifth phase is appended.

The fifth phase is only reachedff(F) € A. Consequently,

c(fi(F), fs(F,L)) € As (f1(F),hf1(F)), fs(L)) € B

“Note the similarity of this condition to the second condition of Theode?T.
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for all F,m € ¥*. We define a predicat€ by

(Fw)eC« (V1 <i<n) [(fl(F)aWafs(SCi)) € BV (fi(F),w, fs(-x;)) € T :

Obviously,C' € NP. Now, the fifth phase of/ consist of checking it F, h(f1(F))) €
C', using an NPTM foiC. Correctness follows from the following equivalences:

Fe{0,1}SAT & (V1 <i<n)[~(ad(F,z;) € SATAad(F,~z;) € SAT)]
& (V1 <i<n)[=(c(fi(F), fa(z:) € AN
c(fi(F), fs(—z:)) € A)}
& (VI <i<n)[= ((A(F),Mfi(F)), fa(z:) € BA
(f1(F), h(f1(F)), fs(-x:)) € B)]
& (Fh(fi(F)) € C.

Thus, after the fifth phase we have an accepting path if and©rdy{1} SAT. ]

We just mention here, that TheorefiB1 can be used to show that also the mod-
ification prOblemS(TmlC, VSAT)! (ad, V3SAT)1 (adc, VEX3SAT)1 (ad, V1.35AT), (ad, ch),
(rm, Veuoue), (rm, Vic), and (rm, Vapy) are probably not a member of the class
coNPyop/(cert(Va) N fun - NP). The respective proof are given in Appendix A.
Similar to Corollary4.28 we can also use Theoreth31to show that(ad, V,r) is
probably no member afoNPy,op/(cert(Va) N fun - NP) for any choice of verifier
Véar for SAT.

Conclusions

In this chapter we examined the scenario in which the given certificate is not an ar-
bitrary certificate, but may be chosen carefully among all certificates. Thereby, we
assumed, that the original instance has at least one certificate. To formalize this prob-
lem it was necessary to introduce the notions of a certificate function and a modifica-
tion problem. We also introduced new complexity clasSgs,/F to categorize the
complexity of modification problems. We showed how easiness results for arbitrary
strings, e.g.MOD_.V,4 € P, can be translated to easiness results for selected hints,
e.g.,(c, Va) € Pyop/certVa. Conversely, we also showed how to translate uselessness
results for selected certificates to uselessness results for arbitrary certificates (Theorem
4.27).

We proved uselessness of selected hint in two ways: (i) by a hint-independent re-
duction from anNP-complete problem4 to a modification problenic, Vi) or (ii)
by a hint-independent interreduction between two modification problems,) and
(¢, Vg). We applied these two methods to the proble3W§ andExX3SAT. These two
techniques are also used in Appendix A to show that a selected certificate is a useless
hint for instances of the six basic problems fré@J79, when these instances are ap-
propriately modified. We also indicated how structure preserving reductions might help
to find hint-independent interreductions.
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For some modification problems, e.@ud, Vsar), we were unable to show easiness or
hardness. New techniques are necessary to answer this question, since hint-independent
(inter)reductions are insufficient to show uselessness of selected hirtgl fdkar).

Open problem 1. Are selected certificates of any use when decidifignodifiedSAT-
instances?

As a first step in answering this open question, we found the following two results:

1. Unless the polynomial hierarchy collapses, the probled) Vsar) has no useful
selected certificates that are easily computable.

2. Unless the polynomial hierarchy collapses, the related prolbief, Vsar) has
no useful selected certificates.

We also gave sufficient conditions such that the latter results can be translated to other
modification problems.
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Chapter 5

No Solution as a Promise

In this chapter we are concerned with original instances that have no certificate, and
therefore no certificate can be given as a hint. This describes an scenario in which an
earlier computation yielded that the original instance has no solutions, and now we want
to decide if a modified instance has one.

5.1 Problem Formalization

Can the knowledge that the original instance has no certificates be any useful in deciding
modified instances? It can, as the following trivial example illustrates: Consider the
problemSAT and the modification functiond. Apparently, if the original instance

F is not satisfiable then the modified instanc F, L) also has no certificate. Thus
ad(F,L) ¢ A.

Since no certificates are involved in this decision problem the precise form of the
certificates needs not to be specified via a verifier. All the results obtained in this section
are independent of specific verifiers. Thus, we can simplify what we understand as
modification problem within this chapter.

Definition 5.1. Let ¢ be a modification function and € NP. Then the modification
problem forA andc is the pair(c, A).

Note that the notion of a modification problem is overloaded (Definiddhand
Definition 5.1) but it should be clear from notatioff¢, V4) vs. (¢, A), which one is
meant.

Given a modification problertr, A), we now formalize the problem of deciding con-
tainment ofc(z, m) in A when the promise is given that¢ A. In analogy to Chaptet
we define new class&%op/¢ that characterize the complexity of the aforementioned
modification problenic, A).

Definition 5.2. LetC be a complexity class. The modification problemA) belongs
to Cwop/¢ if and only if

3FCeC)(Va,meX) [z ¢ A= [c(z,m) € A (z,m) € C]].
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In a nutshell, Definitiorb.2 says that if(c, A) € Cuwop/¢ then a modified instance
c(x,m) can also be decided with help o€gpredicate” whenever the original instance
has no solutions. As usual, the modification problem cannot be harder than the original
problem, as the following observation shows.

Observation 5.3.Letc be a modification functiort; be a complexity class closed under
<P -reduction, and4 € C. Then(c, A) € Cmop/¢.

Proof. ChooseC' := {(x,m) : ¢(x,m) € A} in Definition5.2 O
We use Definitiorb.2to rephrase our initial example in a more formal way.

Observation 5.4. (ad, SAT) € Pyop/¢.

Proof. ChooseC' = () in Definition 5.2 The empty set belongs . H
Also, by Definition5.2 the following monotonicity property is obvious.

Observation 5.5. LetC and D be complexity classes aifél be a class of functions. If
C cD thenCMOD/¢ - DMOD/%-

5.2 Promise-independent Reducibility and SAT

Do there exist problems that dhmt benefit from the hint, that the original instance has
no certificates? We show existence of such a problem via the following theorem.

Theorem 5.6. LetC be closed undex? -reduction. Then
(rm, SAT) S CMOD/¢ = SAT € C.

Proof. Let C be closed undek? -reduction and le(rm,SAT) € Cwop/¢ Vvia the
predicate”’ € C, that is, for allF, L € ¥* it holds that

F ¢ SAT = [rm(F,L) € SAT & (F, L) € C].
Let F' be a CNF-formula and ¢ Var(F'). Apparently,/" A a A —a ¢ SAT. Thus,

FeSAT & FAaec SAT
< rm(F Aa A —a,—a) € SAT
< (FANaA-a,—a)eC.

Sincefi(F) := F Aa A —a andfy(F) := —a are polynomial time computable froi

and sincem belongs ta'P we have shown theé8 AT is <? -reducible toC'. SinceC is
closed undex? we getSAT € C. O
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We conclude from the last theorem that the knowledge that no solution for the orig-
inal instance exists is generally not helpful for the probl8MT and the modification
functionrm. If the problem(rm, SAT) was in some clasgyop/¢ then alsdSAT € C.

We want to condense the key idea of the above proof into an appropriate notion of
a reduction. Basically, if we want to show that the knowledge?’ A’ is useless for a
problemA it is sufficient to give for alle € X*

e aninstance;(z) ¢ A
e for which the decision problem for the modified instanegs (), f2(z)) resem-
bles the complexity of some problemthat is as hard ad.

Definition 5.7. Let A € NP andc¢ be a modification function. We say that a problem
B is promise-independently polynomial-time reduciblétod), short B <, (c, A), if
and only if there exist two function§, f; € FP such that for allx € >* the following
two conditions hold:

o filz) & A,
e € B&cfi(x), foz)) € A

It should be obvious how to translate the proof of Theo®®Bito the result that
SAT <7, (rm, SAT).
Corollary 5.8. SAT <V, (rm, SAT).

We use the notion of hint-independent reducibility to generalize the assertion of The-
orem5.6to other modification problemg:, A).

Theorem 5.9.Let A € NP, ¢ be a modification function, and be a complexity class
that is closed undex? -reduction. For all language$s it holds that

B S; (C,A) N (C,A) ECMOD/¢ = B e (.

Proof. Let (¢, A) € Cmop/¢ Vvia the predicate€’ € C, that is, for allz, m € ¥* it holds
that

v¢ A= (c(z,m) € As (z,m) € C).
SinceB <}, (c, A) we conclude thaf(z) ¢ A, for all » € ¥*. Therefore we get the
following equivalences:

r€B & cfilz), folz) €A
& (filx), fo(z)) € C.

Thus, we have shown th&t <P (', and since& is closed undex? -reduction we get
B eC. ]

Consequently, if we are able to show for a problérthatA <7; (c, A) then we have
that the no-solution promise is useless when modifying instancasgfc. Also, if we
can show for two problemd and B with A = B (and in particular folNP-complete
problemsA and B) that A <7; (c, B) we can conclude likewise that the no-solution
promise is useless.
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Chapter 5 No Solution as a Promise

5.3 Promise-independent Interreducibility and
EX3SAT

In analogy to Sectiod.3 we aim to show the uselessness of the no-solution promise
in an alternative way, namely by reduction from other modification problems for which
such uselessness results are already known. The following definition proposes an ap-
propriate notion of interreduction for this purpose.

Definition 5.10. Let (¢, A) and (¢, B) be two modification problems as defined in Defi-
nition 5.1 The problenic, A) is promise-independently interreducible(to, B), short

(c, A) <7 (¢, B), if and only if there exist two functiong, g» € FP such that for all
x,m € X* it holds that

e v ¢ A= gi(xr,m) ¢ Band
e c(x,m) € A& d(gi(x,m),g2(x,m)) € B.

In close analogy to Sectioh3, we show uselessness of the no-solution promise for
a modification problenic’, C') by <7;-reduction from some appropriate modification
problem (¢, B). The following quasi-transitivity result, that connects both kinds of
promise-independent reductions, will be used.

Theorem 5.11.Let A € NP and let(c, B) and (¢, C') be modification problems. Then
(A <pi (¢, B) A (¢, B) <, (d,0) ) = A< (d,0).

Proof. Let A <7, (c, B) via reduction functiong; and f, and(c, B) <, (¢, C) via
reduction functiong; andgs. It is an easy task to show thdt<?. (¢, C') via the two
reduction functiong, h, € FP defined by

o hi(z):=gi1(fi(z), fo(x)) and
o ha(z) = go(f1(2), fa()). O

By the combination of Corollar.8, Theorem5.9 and Theorenb.11it suffices to
show that(rm, SAT) <V (c, A) to prove that the modification problem, A) cannot
benefit from the hint that the original instance has no solution. Thereby, the prob-
lem (¢, A) also becomes a problem that can be used as a starting point for a promise-
independent interreduction.

Note that any reductiold <? B that is compatible with respect to the modifica-
tionsc and¢’ yields a promise-independent interreductiond) <. (¢, B). To show
promise-independent interreducibility of two modification problems it often suffices to
slightly alter previous hint-independent interreductions from Secti@ror Appendix
A. We demonstrate this at the example of the modification proljlem!, Ex3SAT).

Note that is is shown in Appendix A, Observati®rB, that SAT <7, (neg, SAT).
Thus, by application of Theore;11, the following Theoren®.12yields thatSAT <7
(negl, EX3SAT).
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Theorem 5.12. (neg, SAT) <7 (negl, EX3SAT).

Proof. We use the<}.-reduction given in the proof of Theore#nl6 and in particular
the functiong, defined there a%s

g(F,8,L) = f(F\{{L}})U
ULy, w2 b AL~y v b AL yn, 2 b AL, —y1, —w2 b U
{{_‘Lvyl,yQ}7{_'La_‘yl’yQ}7{_'Layla_'yQ}}'

We give two reduction functiong; and g, that realize the reductiofmeg, SAT) <7,
(negl, EX3SAT). We definey; by

wheree denotes the empty wotd The reader may verify that for any fixed literal
the functiong; is a reduction function foBAT <P EX3SAT, thus satisfying the first
property in Definition5.10 namely

F ¢ SAT = ¢|(F, L) ¢ EX3SAT.

Furthermore, the reduction functighyields a reduction that is compatible with respect
to the modification functiongseg andnegl. We use the reduction functiag from the
proof of Theoren®.16to define a functiory, that translates a negation of a unit clause
{L} in F to a negation of a literal ig/, (F’, L):

g;(F7 L) = g3<F757 L) = ({L7 Y1, _‘92}7 L)
Now, it is not difficult to show that the property
neg(F, L) € SAT < negl(gy(F, L), go(F, L)) € EX3SAT

holds. Hencey; andg, yield the desired<”, reduction. ]

=i
Table5.1 summarizes our results for modified satisfiability problems when the no-
solution promise is given. The missing proofs fgf,;-reducibility of the respective
modification problems are given in Appendix A.
Regarding the problemgC, CLIQUE, HC ,3DM, andPARTITION our results are

summarized in Tabl.2 For the proofs we refer to the respective sections in Appendix
A.

INote that for the sake of simplicity we only consider the case F, just as we did in the proof of
Theoremd.16 For the definition of the reduction functighwe refer to the proof of Theore®6.
2Sinceg; does not depend qi, any other polynomial string besidesould have been chosen as well.
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Chapter 5 No Solution as a Promise

|modification function | SAT / 3SAT || EX3SAT | 1-3SAT |
ad (addition of a unit cl.) easy - easy
adc (addition of a clause) easy easy easy
adle (add. of alit. toacl.) <pi - <7
rm (removal of a unit cl.) <pi - <’
rmc (removal of a clause) <pi <ri <ri
rmlc(rem. of a lit. from a cl. easy - <
neg (negation of a unit cl.) <pi - <
negl (neg. of alit. of acl.) <pi < <

Table 5.1:Hard and easy cases when deciding modified instances of various satisfiabil-
ity problems with help of the no-solution promise.

easy € Pfop) | hard &% -(inter)reducible)
VC (ad,VC) (rm,VC)
CLIQUE (rm, CLIQUE) | (ad, CLIQUE)
HC (rm,HC) (ad,HC)
3DM (ad,3DM)
(rm,3DM)
PARTITION (ad, PARTITION)
(rm, PARTITION)

Table 5.2:Hard and easy cases when deciding modified instances of the proléms
CLIQUE, HC, 3DM, andPARTITION with help of the no-solution promise.

5.4 Composing the Cases

In Chapterd we showed that many problems do not benefit from selected certificates.
But, we assumed that the original instance has at least one certificate that can be given
as a hint. In this chapter we examined the scenario in which no certificate for the
original instance exists. Now, we combine the results for these both cases such that
the benefit of a selected certificate can be judged independent of whether the original
instance has a solution or not. Therefore we introduce the nétjen /F, which is

similar to the definition oy,op/F, except that no demand on the membership of the
original instance to the probler is put.

Definition 5.13. LetC be a complexity class anfl be a class of functions. The modi-
fication problem(c, V) belongs taCyop/F if and only if

(3h € F)(3C € C)(Vz,m € &*) [c(x,m) € A< (z,h(z),m) € C].
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With regard to the function clagsrt, containment of a modification problefm V)
in Cmop/cert(Va) expresses the fact that modified instances of the fgrmmn) can be
decided with help of a selected certificates of the original instance @hdradicate,
independent of whether the original instance has a solution or not. It is intuitively
clear that the complexity of a modification problgm V) w.r.t. Cuop/cert(Vy) is
dominated by the harder of the both aforementioned cases, namely the case where the
original instancer has a solution and the casef A. This fact is formally expressed
by the following theorem.

Theorem 5.14.LetC andD be complexity classes that are closed undgrreduction,
let (¢, V4) be a modification problem, and let = L(V4). Then

(¢, Va) € Cyop/cert(Va) A (¢, A) € Dmon/¢ = (¢,Va) € (CUD)mop/cert(Vy).

Proof. Let (c,Va) € Cyop/cert(Va) via the certificate functiork and the predicate
C € C. Let(c,V4) € Duop/¢ via a predicatd) € D. Consequently,

o Vz,meX*) [z € A= [c(x,m) € A& (z,h(z),m) € C]] and
o Ve,meX)|[x¢ A= [c(x,m) e A& (x,m) € D]].
We define a predicate € C U D by

($,7T,m) € C? if ($,7T) € VA;

(z,m,m) € E & { (x,m) € D,  otherwise.

Now it obviously holds that(z,m) € A < (z,h(z), m) € E, which concludes the
proof of the theorem. H

Although the last theorem gives an upper bound on the complexity of a modification
problem(c, V4) w.r.t. Cyop/cert(Va), it fails to provide any results about uselessness
of hints. Such results can be given with help of the following observation.

Observation 5.15. Let (¢, V,4) be a modification problemd = L(V,), andC be a
complexity class that is closed undef,-reduction. LetB <}, (c,Va) or B <7, (c, A)
for some languagé. It holds that

(¢, Va) € Cmop/cert(Va) = B € C.

Proof. Let (¢, V4) € Cmop/cert(Va). It follows by the definition ofCyqp/cert(Va)
that (¢, Va) € Cyop/cert(Va). It also follows by (i) the definition o€yop/¢ and
(ii) the fact that a certificate function fdr, outputs the empty word for all inputs
x ¢ A, that(c,A) € Cuop/¢. Now, the assertion follows by Theorefnl(Q in case
that B <}, (c, V), and from Theorenb.9, in case thaB3 <7, (c, A). O

Thus, if we can show for twdXP-complete problemsl = L(V,) and B thatB <},
(c,Va) or B <P, (c, A), we conclude thafc, V) has no useful selected hints. Assume
to the contrary thatc, V) € Cmop/cert(Va) for some complexity clas§ ¢ NP that
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|modification function | SAT / 3SAT || EX3SAT | 1-3SAT |
ad (addition of a unit cl.) ? - ?
adc (addition of a clause) ? ? ?
adle (add. of alit. toacl.) <pi - <hir <pi
rm  (removal of a unit cl.) <pi - <ri
rme (removal of a clause) <pi <ri <ri
rmlc(rem. of a lit. from a cl. ? - <hir <pi
neg (negation of a unit cl.) <hir <pi - <hi» <b;
negl (neg. of alit. of acl.) <hir <pi <o <o | 0o <o

Table 5.3:The complexity of modified satisfiability problems.

modification: ad rm
add./rmvl.

p

VC of an edge ? <pi

CLIQUE of an edge gzi ?

p

HC of an edge < ?

H p p

3DM of a triple < <y
PARTITION | of a number || <p. <P || <}, <P,

Table 5.4 The complexity ofVC, CLIQUE, HC, 3DM, andPARTITION when modi-
fied.

is closed undex® -reduction. Then, als® € C by the above observation. Sinékis
NP-complete we geNP C C, a contradiction.

The following Tables.3and5.4 summarize the results for the complexity of mod-
ified instances when we use selected certificates, but the original instance does not
necessarily has a solution. Abbreviations in the table should be clear from previous
comments.

Conclusions

In this chapter we examined the case that the original instance has no solution and
therefore no certificate can be given as a hint to decide modified instances. Instead,
we get the promise that the original instance has no certificates. Since no verifiers are
necessary to specify the form of certificates, we adapted the notion of a modification
problem to be independent of a specific verifier. We introduced new complexity classes
Cmop/ ¢ to categorize the complexity of these modification problems. We used these
classes to state easiness and hardness results, i.e., we gave modification problems where
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the no-solution promise is useless and problems where it is not.

We proved uselessness of the no-solution promise in two ways. First, we showed
uselessness by a promise-independent reduction franPacomplete problem to a
modification problenic, B). Second, we showed uselessness by an promise-indepen-
dentinterreduction between two modification problémsl) and(c’, B). Exemplarily,
we applied the two methods of promise-independent reduction and promise-indepen-
dent interreduction to the probler8AT andExX3SAT. In Appendix A these two tech-
niques are also used to show that the no-solution promise is useless for instances of the
six basic problems fromMiGJ79, when these instances are appropriately modified. In
contrast to the scenario in which selected certificates are given, we could show for all
of the examined modification problems that either the no-solution promise is useless or
that it yields a polynomial-time algorithm to decide modified instances.

In the last part of this chapter, we combined the results for selected hints from Chapter
4 and the results about the no-solution promise from this chapter. In consequence,
we are able to appraise the use of selected hints independent of whether the original
instance has a solution. Not to our surprise, we find that all considered modification
problem are not easy, i.e., probably not an elementwp/cert, when a selected
certificate or the no-solution promise is given (see Tabl8snd5.4). There are still a
few open cases for which no unconditional uselessness results could be proven. But, for
these open cases we showed in Chaptand in Appendix A that selected certificates
are probably hard to compute. Thus, in a scenario where no restriction is put on whether
the original instance must have a certificate we find that selected hints are useless in all
cases that we considered.

The reader may conjecture that selected hints are useleali fapdification prob-
lems(c, V4). This is not the case, as modification functions and verifiers may be chosen
in very artificial ways. In Chapte8 (Theorem8.1) for example, we give a verifiérdr
for SAT such that(ad, Viar) € Pmop/cert(V}). Also, the function that substitutes
each given formula by a fixed 'yes’-instance®AT is an extreme example of a modi-
fication function that makes deciding modified formulas easy.
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Chapter 6

Non-NP-complete Problems

In this chapter we are concerned with the applicability of our techniques to problems
that are probably naVP-complete. A candidate for such a problem is the graph iso-
morphism problem.

The graph-isomorphism problem, abbreviated Gl, is to decide for a given pair of
graphs whether they are isomorphic. In other words, the problem is to find a bijective
function between the vertices of the graphs such that the edge incidences are respected.
Formally,

Gl :={(G, H) : there exists an isomorhism betwe@rand H }.

The problem Gl is one of the few problems that is neither known tdl{Becomplete
nor known to be inP. The problem GI belongs t8PP [AKO6], and is useless as an
oracle for>} [Sch87. As a consequence of these fadf$;-completeness of Gl would
imply the collapse of the polynomial-time hierarchy to its second leévehB7.

When dealing with problems that possibly belongPtowe have to use a stronger
reduction than<? -reduction, e.g.<!?9-reduction. Despite this fact we stick to? -
reduction and to modification functions froRP for the following reason. Our theory
of uselessness of hints was developed for probldms NP with a verifierV4. Since
the notion of a verifier becomes pathological for problems fi®mur theory applies
best to problems fromVP \ P. Also, if GI € P then hints become less important since
the problem is tractable evevithoutthe use of any hint.

We use the following verifier for Gl:

((G,H),¢) € Vg < ¢ is an isomorphism fronds to H.

For this verifier, we address in the next secttbi the issue of deciding modified
Gl-instances when an arbitrary solution is given. Afterwards, in Seétidwe address
this issue for selected certificates. In SecttB we study the scenario in which the
promise is given that the original instance has no solution.

1Actually, evenP-hardness of GI w.r.t. some adequate reduction is uncertain. The strongest known
result towards this direction is that Gl is hard uneg} -reduction for the complexity clasSET,

the class of problems that are solvableNsy! circuits with additional oracle gates that compute the
determinant of integer matricesdro4.
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Chapter 6 Non-NP-complete Problems

6.1 Uselessness of Arbitrary Certificate

Our theory of arbitrary hints, which was developed in Chaffeand in particular the
notion
MOD_ .V, := {(z,m,m) : (z,7) € V4 and c(x,m) € A},

is independent oV, being a verifier for alNP-completeproblem, and is also applica-
ble to the verifiel/g,. Also, Observatior8.2, which says that the probleMOD_.V
cannot be any harder thaty holds for the special cadg;. Thus, if we want to show,
that a problemMOD V%, is as hard as the problem Gl it suffices to show hardness of
MOD_Vg, i.e., that GI<?, MOD_.Vg;.

When looking at Gl-instance®7, H), it suffices to consider graplis and H with
the same number of vertices and edges. Otheryisdi) ¢ Gl and consequently
(G, H),p,m) ¢ MOD_.Vg, for all ¢, m € ¥* and any modification function

The most elementary nontrivial possibility of modification is the addition or removal
of a single edge in each ¢f andH. Letad, andrm, denote the corresponding modi-
fication functions. The subscript '2’ accounts for the property that two edges are added
to or removed from the Gl-instance. Formalyl, andrm, are defined by

ady((G,H), (e, 1) = ((V(G). B(G) Uie}) . (VIH), E(H) ULTY) ).
rma (G, ), (e, 1)) = ((VIGLE@\{e}) . (V(H), E()\{1}) ).

We show existence of useless hints for Gl w.r.t. these both modification function via
the following results.

Theorem 6.1.GI <. MOD 4, VG-

Proof. Letz = (G, H) be a Gl-instance. Le¥' (G) = {vi,...,v,} and letV(H) =
{wy, ...,w, }. LetG’ denote the graph defined by

e V(G"):=V(G)UV(H)U{u; : 1 <i<4}and

e E(G'):=FE(G)UEH)U{{v,u},{w;,uz} : 1 <i<n}.
Now the reduction functiong,, f>, f3 € FP are given by

e fi(x):=(G,G"),

e fo(x):=1id, and

o fa(r) := ({ur, ua}, {us, us}).

See Figures.1 for an illustration of the instanceds(f1(x), f3(x)). It is obvious that
fa(z) € Vai(fi(z)). Furthermore, the instancel(f;(z), f3(x)) is in Gl if and only
if the two n + 1-vertex components afd(fi(x), fs(z)) are isomorphic. The latter is
equivalent to the proposition tha&tand H are isomorphic. Thus

z € Gl & (fi(x), fa(x)) € Var A ad(fi(x), f3(x)) € G.
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® ® © ®
Z G &@&
, =0

Figure 6.1.The Gl-instanced:(f1((G, H)), f3((G, H))).

The problemMOD,4, V5 is as hard as the problem GI. We conclude that there exist
certificates that are useless as a hint. An analogous result holds for the modification
functionrms.

Theorem 6.2.GI < MOD,.,,, V.

Proof. The proof is similar to the proof of Theorefl The only difference to the
proof of Theorenb.1is that the edge$u;, u,} and{us, u,} are already contained in
both copies ofZ’. The modification consists of deletiq@s, u4} from one copy of’
and{u,,us} from the other one, such that the resulting Gl-instance is identical to the
instancends (f1((G, H)), f5((G, H))) from the proof of Theorers.1 O

6.2 Uselessness of Selected Certificate

The notions and definitions that we established in Chaftand which we applied to
NP-complete problems, are also applicable to the problem GI, which is probably not
NP-complete. In particular we use Theorehl(Q which we restate here for conve-
nience.

Theorem4.1Q LetV, be a verifier for some languagé € NP and letC
be some complexity class that is closed und&rreduction. Then for all
languagesB it holds that

(B <5, (e,Va) A (e, Va) € Ciiop/cert(Va)) = B € C.

We apply Theorernd.10in the following way. We show that G£%, (¢, Vi) for some
modification functionc. Under the assumption that modified instances are easy to de-
cide with selected certificates, i.e.,(if, Vo) € Cyop/cert(Va) for some complexity
classC C {A: A <2 Gl}, we get by Theorerd.10that the language G| would be-
come an element a@f. But, if Gl € C there is no use of deciding the modified instance
with help of selected certificates and gredicate, since the modified instance can be
decided directly, without the hint.

Unfortunately, we are unable to show uselessness of selected certificates for a small,
e.g., constant, amount of modification. Any attempt to prove<@l (c, V) for some
small modificationc was frustrated by the apparently much more constrained nature
of Gl in comparison to theNP-complete problems that are studied in Appendix A.
The smallest modification for which we are able to show uselessness of selected hints
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Figure 6.2.The Gl-instancéG’, G') before modification.

is the simultaneous addition, or removal,@f(G, H)|) edges in both graphs, where
q(n) = ¥/nandK € N a constant.

Theorem 6.3.Let K € N\ {0} andq(n) = ¥/n. Then GI<). (rmi, V).

Proof. Let (G, H) be a Gl-instance. In a nutshell, the proof is as follows. First, we
construct from(G, H) a Gl instancef,((G, H)) := (G’,G’) that has exactly one iso-
morphism, namely, the obvious isomorphisih Afterwards, we modify(G’, G') to
(G',G")™ by deleting2 |V (G)| edges in both parts @¢f=’, G’). We then show that the
modified instancéG’, G')™ belongs to Gl if and only i G, H) € GI. Last, we use
a padding argument in a way that thél/(G)| many modification become relatively
small in comparison to the size o', G’).

LetV(G) = {v,...,v,} andV (H) = {wy, ..., w, }. Let ¢,; denote the mapping that
is given by¢;q(v;) == w;, forall 1 < i < n. We may assume in the following that
0;q IS N0 iIsomorphism betweed and H andn > 3; the other cases can be dealt with
separately. We construct an auxiliary grag@has follows:

e V(G =V(G)UV(H)U{z;yy : 1 <i<n}U{uy,us us},

o B(G') = E(G)UEH) U {{vi, i}, {vi, ua}, {ws, yi }, {wi,uz} : 1 < i <nju
Hzis i b i v} 1 1 <i <n— 13U

Hz1, 1}y {wa, ua}, {ur, us}}.

The instancef, ((G, H)) is given by(G’, G") and is depicted in Figuré.2.
We now show thaid is the only isomorphism fofG’, G'). Assume to the contrary
that there exists another isomorphigm# id for (G’, G'). Note that sincex > 3 the
verticesu, anduz are the only vertices of maximum degreeGh The vertexu; is
the only vertex that has distance 1 to both of the vertices of maximum degree, thus

¢(U1) = us.

Case 1: ¢(us) = uz: Note that there are only two vertices @ that have degree 2
and distance greater tharfrom uy or us, namelyz,, andy,,. Among these two
verticesz,, andy,,, the vertexz,, is the only vertex with distance 2 tg, and the
vertexy,, is the only vertex with distance 2 tg = ¢(us). Thuse(z,) = yn.
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Figure 6.3.The modified Gl-instanc&~’, G')™.

The vertexz,,_; is the sole vertex with distance 1 tg, and distance 2 ta..
The same holds for the verticgs_1, v, andus. Consequentlyp(x,,_1) = yn_1.
Inductive application of this argument, namely tha(y,) is the sole vertex with
distance 1 tar; ; (y;_1) and distance 2 ta, (u3), we obtaing(z;) = y; for all
i < n.

For every vertex;, 1 < i < n, there is only one adjacent vertex that has distance
1 to uy, namelyv;. The same holds foy; andus, which havew; as a common
neighbor. Consequently(v;) = w; for all 1 < i < n. Thus, ¢, yields an
isomorphism on{G, H), a contradiction to our assumptions.

Case 2: ¢(uq) = uy: Using similar arguments as in Case 1, we can showghat=
vforallv € V(G'). But theng = id, a contradiction to the assumptign# id.

Thus,(G’, G") has exactly one isomorphism.

Now we modify (G’, G’) to (G', G')™ such thatG',G')" € Gl & (G,H) € Gl.
The modification consists of the deletion of all the edgesz; ;1 } and{y;,y; .1}, for
1 <i < n-—1,aswell as the deletion of the edfie,, y; }. All these edges are deleted in
both copies of+’. Furthermore, we delete the edfye, u3} in one copy ofG’ and the
edge{us, us} in the other copy. For an illustration of the modified instafGg G')™
see Figureés.3. Note that(G’, G')™ consists of graphs that have two components each,
one component witBn + 1 vertices and another component w2 + 2 vertices. It is
easy to see that the respective components are isomorphic if and énignél H are
isomorphic. Consequentli:’. G')™ € Gl & (G, H) € GlI.

Up to now, we know that GI<?. (rmg‘V(G)‘,VG.). Now, we show that GI<?.
(rmi, Va)), whereg(n) = ¥/nandK € N\ {0}. Therefore, we pad the graghf by
adding toG’ a componen&,,,; With at least* \V(G)|’“ vertices and such that,,, #

G' and(Gpad, Gpaa) has only the trivial isomorphisrii. An example of such a graph
Gpeq 1S @ long enough path in which an additional vertex is appended to one of the two
vertices with distance to an endpoint of the path. Correctness of this construction is
obvious. O

Theorem 6.4.Let K € N\ {0} andg(n) = ¥/n. Then GI<}. (adi, V).
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Figure 6.4.The Gl-instancéG’, G') when the modification iad?.

Proof. The proof is similar to the proof of Theoret3. The auxiliary graph’ is
almost as in the proof of Theoref3, except that the edges:y, us},{u,us}, and
{z1,y1} are missing and that new verticesandy are introduced, together with the
edges{z,,z} and{y,,y}. The instancef,((G, H)) is again given by(G’,G’). See
Figure6.4for an illustration of(G’, G). Using similar arguments as above, it is obvious
that also for this grapli’’ the Gl-instancéG’, G') has only the trivial isomorphisnal.
We modify (G’, G') by adding all the missing edges between the vertices, ..., z,,
and all the edges between the vertigesg, ..., y,,, which results in twor + 1-cliques.
Also, we add in one copy af’ the edge{u,, u2} and in the other copy af’ the edge
{uy,uz}. Itis easy to see, that this modified instaric&, G')" € Gl if and only if
(G,H) € Gl.

The assertion follows by a padding argument:. We simply add large enough graphs
G'pad» €.9., graphs of siz#" - |V (G)|**, to G’. To make this construction work, we also
assume that the Gl-instan(@ .4, G,.q) only has one isomorphism, namety. O

6.3 No Solution as a Promise

In this section we answer the question if the knowledge that two graphs are not isomor-
phic is of any use when modifying these graphs. We use our framework from Section
5 to answer this question. In detail, we use Theof® which we restate here for
convenience.

Theorem 5.9 Let A € NP, ¢ be a modification function, an@ be a
complexity class that is closed undef, -reduction. For all language® it
holds that

B SZ% (C,A) N (C,A) € CMOD/¢ = B e (.

By this theorem, it suffices to prove that GI¥; (¢, Gl) in order to show that the
no-solution promise is a useless hint for the modification prolilei@!). We are able
to show this for the two modification functiong, andrms.

Theorem 6.5.GI <7, (c, Gl) for ¢ € {ady, rma}.
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079

Figure 6.5:The Gl-instancéG’, H') from the proof of GI<?, (rmay, GI).

ipi

Proof. Let (G, H) be a Gl-instance with'(G) = V(H) = {v4,...,v,}. We assume
thatn > 4; the finite many special cases with< 4 can be handled separately. We
construct from(G, H) the Gl instancef, ((G, H)) as illustrated in Figuré.5. That is,
(G H)) = (G',H"), whereV (G") =V (H') = V(G) U{v,uq, ..., us},

E(G") = E(G)U{{v,v}:1<i<n}U{{uy,us}, {us, us}, {us,us}, {us, u1}},

E(H") = E(H)U{{v;,v}:1<i<n}U{{us,us}, {us,us}, {us,ur },{us, us}}.

Obviously,G’ andH’ are not isomorphic, singg’ has no degree-one vertex in its single
4-vertex component, bui’ has. Thusf, (G, H) ¢ GI. The functionf; is the same for
both modificationsid, andrms,.

Now, letc = rmy. We modify (G’, H') by deleting the edgéus, u3} in both of G’

and H'. In consequence, the resulting graphs have as their single four-vertex compo-

nents paths of length three. Thet 1-vertex components of the modified graphs are
isomorphic if and only ifG and H are isomorphic. This shows the assertion.

In casec = ad,, the modification is the addition of the edge,, u,} in both of G’
and H’, which results in isomorphic four-vertex components. ]

Conclusions

In this chapter we showed that the techniques that we have developed in the last few

chapters are also applicable to problems that are probablyjlratomplete. In partic-
ular, we showed for the problem GI, which contains pairs of isomorphic graphs, that

1. there exist useless certificates when the modification is the removal or the addition

of two edges,

2. all certificates are useless when the modification is the removal or the addition of

polynomially many edges, and

3. the no-solution promise is a useless hint when the modification is the removal or

the addition of two edges.

We were unable to show uselessness of selected hint for a small amount of modification.

Open problem 2. Does GI<?. (ad}, Vi) or GI <P (rm%, Vi) hold for some constant
k>1?
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Approximated Solutions of
Modified Instances

We have seen in the last chapters that often a solution for the original instance is a
completely useless hint when we ask for a solution of a slightly modified instance. For
practical purposes these are rather unsatisfying results. In this section we show that
when we weaken our demands on the quality of solutions then modified instances can
indeed benefit from given hints.

In detail, we ask if an optimum solution for the original instance can be helpful to
find a not necessarily optimum, but sufficiently good, solution for a modified instance.
In other words, can we find good approximated solutions for modified instances of
optimization problems?

7.1 Approximation Basics

We start by defining the notion of an optimization problem. For each input instance
of an optimization problem there is a set of feasible solutions associated to it. For
each feasible solution a certain cost is defined. The task is to find a feasible solution
with optimum cost. Slightly rephrasing definitions fromGG*99], we define ariNP-
optimization problem as a 3-tup(&, cost, goal), where

e U is a verifier for some languagB € NP. We say that/z(z) is the set of
feasible solutions af.

e Given an instance and a feasible solution € Vs (z), cost(x,y) is a polynomial-
time computable positive rational and

e goal is eithermin or max.

We denote byNPO the class of allNP-optimization problems. As it is usual in the
literature, we define an optimization problgsnn the following way:

PROBLEM: PROBLEM NAME (which begins with 'Min’ or '"Max’)
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INSTANCE: Specifies the input instances Bt
SoLUTION: Specifies the feasible solutions for an input
MEASURE Defines how the cost of a feasible solution is measured.

From this description, the formal triplé/s, cost, goal) can be derived. For an exam-
ple of anNP-optimization problem see the definition BfINTSP at the beginning of
Section7.4.

For anNP-optimization problem the task is to find a feasible solugjdhat achieves
the best objective value, i.e., a solutipmvith

cost(x,y) = goal{cost(x,y") : v/ € Vg(x)}.

We denote bypt(x) the cost of the optimum solution for an instancéf y is a solution
for z then theperformance ratiof y is defined as

cost(z,y)/opt(x), if goal = min,
opt(x)/cost(z,y), if goal = maz.

R(z,y) = {

Thus R(z,y) is always at least 1; the closer it is to 1, the closer the solution is to the
optimum. For a functiory : N — [1,00), we say that an algorithm is an f(n)-
approximation algorithmif and only if for every inputz it holds thatR(x, A(x)) <
f(lz).

We categorize the hardness of optimization problems by sorting them into the fol-
lowing descending chain of complexity classes. We say that an optimization problem
(Vg, cost, goal) € NPO belongs to the class

e APX: if and only if there exist a constant functigiin) = § and an algorithm
A such thatA is an f(n)-approximation algorithm. In this case we say that
(Vg, cost, goal) is j-approximable.

e PTAS (polynomial-time approximation scheme), or haB'BAS: if and only if
there exists an algorithm such that for every input pair, ), e € R ande > 0,
the algorithmA computes a solutiop with R(z,y) < 1+ ¢ in time p.(|z|),
wherep. is a polynomial that depends enbut not onz.

e FPTAS (fully polynomial-time approximation scheme), or haslBRTAS: if
and only if there exists an algorithzd and a polynomiap such that for every
input pair(z,¢), e € R ande > 0, the algorithmA computes a solutiog with
R(z,y) <1+ceintimep(|z|,1/e).

It is obvious thatFPTAS C PTAS C APX C NPO. UnlessP = NP these
inclusions are strict. For more details on approximation we refeh@d"99].

Finally, we say that an optimization problensisivable with an absolute-error guar-
antee ofk if there exists an algorithml such that for every input the solutionA(z)
differs from an optimum solution by at masti.e., |cost(A(x)) — opt(z)| < k. From a
practitioners point of view an approximation algorithm with an absolute error guarantee
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of 1 is the best one can get. But, such a constant error approximation even exists for
problems that do not belong toPX, unless P=NP.

7.2 Approximation of modification problems

In the context of this thesis, we are interested in approximating solutions of slightly
modified instances of optimization problems, assuming thas@imumsolution for

the original instance is known. This problem is referred taemgptimizationin the
literature Bch97 ABS03 AEMPO0O6, EMP07, BHMWO8]. Again, we distinct between

the following two scenarios: 1.) knowledge of an arbitrary optimum solution and 2.)
knowledge of a carefully selected optimum solution of the original instance. In the
literature, so far only the first approach is considered. We will show our positive results,
i.e., good approximation algorithms, to be valid for any given solution. In contrast we
will prove that all our negative results, i.e., nonexistence df BA'AS or nonexistence

of an f(n)-approximation, are valid independent of the given optimum solution.

To formally distinguish between these both cases, we introduce, in analogy to previ-
ous chapters, the two notiohdOD.(V3, cost, goal) and(c, (Vp, cost, goal)). Herec
is a modification function an@Vz, cost, goal) € NPO. We say that an algorithr is
an f(n)-approximation algorithnior MOD..(V3, cost, goal) if and only for all original
instancesr € ¥*, for all modificationsm € X*, and forall optimum solutionsy,,,
of z, the algorithmA computes from(z, y,,:, m) a solutiony” for ¢(z, m) such that
R(c(z,m),y*) < f(|e(z,m))).

To define the notion of (n)-approximability for the problentx, (Vg, cost, goal)) we
substitute the phrase 'f@ll optimum solutionsy,,; of =’ by 'there existsan optimum
solutiony,,: of z’. Hence, we say that an algorithrhis an f(n)-approximation algo-
rithm for (¢, (V, cost, goal)), if for all original instances: € ¥*, for all modifications
m € X¥, thereexistsan optimum solutiony,,; of z such that the algorithm computes
from (z, yp:, m) @ solutiony” for c(x, m) with R(c(x,m),y?) < f(le(z,m)|).

We can use the above notion ffn)-approximability to state, in analogy to the last
section, what containment 810D, (V5, cost, goal) and(c, (Vg, cost, goal)) in APX
means. Similar definitions can also be given to state that a reoptimization problem
MOD..(Vg, cost, goal) or (¢, (Vg, cost, goal)) has anPTAS, has anFPTAS, or has an
approximation with an absolute-error guarantee.

7.3 Some Trivial Results

Given an optimization probler® and a modification function, an algorithm that com-
putes a solution fot(z, m) may ignore the hint, i.e., the optimum solution of the orig-

The problemMINTSP" with cost*(G,T) = ( Y c(e)) - ( max cle) - |V (G)| )71 does not belong
T ec

ec
to APX, unless? = NP. On the other hand, for every feasible solutibof aMINTSP -instances
it holds thatcost(G,T") < 1. Consequently, it it not hard to find a feasible solution with an absolute
error of 1.
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inal instancer. ThusMOD.B and(c, B) are not harder thap.

Observation 7.1.Let B € NPO. If B is f(n)-approximable (has &#TAS, has an
FPTAS, or is solvable with an absolute-error guarantee /of then MOD_.B and
(¢, B) are f(n)-approximable (have & TAS, have anFPTAS, or are solvable with
an absolute-error guarantee @j.

Furthermore, any result for approximability ¢f, B) is also valid for the problem
MOD.B.

Observation 7.2.1f (¢, B) is f(n)-approximable (has & TAS, has anFPTAS, or is
solvable with an absolute-error guarantee/9f thenMOD._B is f(n)-approximable
(has aPTAS, has anFPTAS, or is solvable with an absolute-error guarantee/of
respectively).

This last result is valid because the respective definitiong(af-approximability
only differ by the quantifier for the hinj.

A nice criterion forNP-hardness of a reoptimization probleOD_ A is given in
[BHMWOS].

Lemma 7.3 (BHMWO08]). Let A be anNP-hard optimization problen; be a mod-
ification function, andB be a subset of the input instances Afthat is solvable in
polynomial time. lic is a modification function, such that every input instamaaf A
can be obtained from &-instance by polynomial many applications:pthenMOD A
is NP-hard.

For a proof we refer toBHMWO08] — in a nutshell, the proof uses the fact that
Turing reductions are sufficient to shawP-hardness of an optimization problem. By
application of this Lemma, it is an easy task for the reader to verify, that all coming
reoptimization problems&OD_ A areNP-hard.

Next we show two simple examples of reoptimization problems for whrghopti-
mum solutiony,,,; of the original instance can be used to get a very good solution for
a modified instance(z, m). In detail, we give two examples where the old optimum
solutiony,,; is slightly modified and gives a solution for the modified instances that
differs by at most 1 or 2, respectively, fraspt(c(x, m)). The first example is the prob-
lemMINVERTEXCOVER (MINVC, for definition seeACG™99]) and the modification
function ad, which adds an edge tG. Note thatMINVC is not approximable with
factor1.37 in the usual non-reoptimization cade305.

Theorem 7.4.MOD,,MINVC is approximable with an absolute error of 1.

Proof. Let G be the original instance;, be a minimum vertex cover fai°, and
{u,v} be the edge that is added €. Each solution folG"™ := ad(G°, {u,v}) has
at least sizéC , otherwiseC? , was no optimum solution fot°. Thus,opt(G™) >

gpt opt
}Cgpt|. Furthermore, by adding one afor v to C? , we get a vertex cover faz"™ of
size at mostCs,| + 1 < opt(G™) + 1. O

opt
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Our second exemplary problem, which is a bit more interesting, is the problem
MINMAXMATCH. Itis defined as follows:

PROBLEM: MINMAXMATCH
INSTANCE GraphG = (V, E).

SoLuTION: A maximal matchingt’, i.e., a subsek” C FE such that no two edges
in £’ share a common endpoint and every edgé i £’ shares a
common endpoint with some edge in E'.

MEASURE Cardinality of the matching, i.e[E’|.

The problemMINMAXMATCH is APX-complete YG80] and has a factor 2 ap-
proximation ACG™99], but is approximable with a constant error dfvhen reopti-
mization is used.

Theorem 7.5.MOD,,MINMAXMATCH is approximable with an absolute error of 2.

Proof. Let G° = (V, E) be the original instancey/;, be a maximal matching of min-
imum size forG, ande = {u,v} be an edge to be added. L&t := ad(G?,e) be
the modified graph and/!”, be an optimum solution foz™. We claim that‘ M;gt| >

opt
|MZ,| — 1. Assume to the contrary that/", | < | Mg, | — 2.

Case 1: e ¢ My, eandM;, share no common vertexthen;7, is not maximal, a

contradiction.

Case 2: e ¢ M7, eandM?, share at least one common vertex witff,: Thus, the
matching M/, is also a maximal matching fak°, but is smaller than/y ;, a

A opt?
contradiction.

Case 3: e € M;;,: When removing the edge from A, we obtain a matching of
size|M(§gt — 1. But, this matching does not need to be maximakih If this is

the case the/[;, \ {e} can be expanded to a maximum matching by adding at

most two other edgeg andg, wheref, g # e, that contain the vertices andv

respectively. This matching/;>, \ {e} U {f, g} is @ maximal matching fof:* of

size at mostM,| + 1, and hence smaller thaw?,,. This contradicts the fact,

opt"
that My, is optimum forGe.

This shows thatM,| > |Mg,| — 1.

An algorithm that approximates a minimum maximal matchingd6r with an ab-
solute error of 2 works as follows. First, we test if the matchidg, is still maximal
for G™. If this is the case we output/;,, which results in a solution with an absolute
error of at most.. If M, is not maximal inG:"™, it can be made maximal by adding the

edgee to M. This yields an approximation with an absolute error of at most Z.]

Using similar arguments, it should be an easy task for the reader to verify that the
problemsMOD,.,,MINVC andMOD,.,,MINMAXMATCH also are approximable with
an absolute error guarantee of 1 and 2, respectively. For the majority of unweighted
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approximation problems listed iCG*99] we were able to give algorithms that ap-
proximate a solution for slightly modified instances with an absolute error of 1 or 2.
The respective modifications are chosen in a canonical way. We desist from giving a
detailed list of all of these easy problems. But, we give in Appetiglan example of

an unweighted optimization problem that hasabsolute-error approximation, unless

P = NP. Namely, we show this for the problemMINMAXIS.

7.4 The Travelling Salesperson Problem ( MINTSP)

In the last section we indicated that many unweighted optimization problems have an
approximation with an absolute-error of at most 1 or 2. If we deal witlghtedmodifi-

cation problems, for example weighted graphs or formulas, a solution for the modified
instance with some absolute error seems hard to find. In this section we exemplar-
ily study approximability of weighted modification problems for the famous travelling
salesperson problent §P).

PROBLEM: MINTSP

INSTANCE: A complete graplG = K, and a functionv : E(G) — N assigning
a weight to each edge ¢f.

SOLUTION: A Hamiltonian cycleT” in G. Such a cycle is called a tour.
MEASURE The length of the tout, i.e., >~ w(e).

ecT

A problemMAXTSP can be defined in the same way and is studied in Appendix B.
The problemMINTSPis NPO-complete and admits ngn)-approximationp polyno-
mial,unless® = NP.

For MINTSPandMAX TSP, the task of reoptimization has already been addressed
in [AEMPO@. The modification that is considered IAEMPO] is the addition of a
vertex, i.e., a new city, to the graph, thereby also assigning a cost to all newly intro-
duced edges. Letdv denote the corresponding modification function. It is shown in
[AEMPOg that MOD,,;,MINTSPis not approximable with rati@*™, p polynomial,
unlessP = NP.

In this thesis, we examine reoptimization w.r.t. edge-cost modifications, that is, small
modifications to the weight-functiow. In detail, we consider the modification func-
tions

e inc((G,w),(e,1)) := (G,w'), wherew'(e) := w(e) + i, and
o dec((G,w)), (e,i) := (G,w'), wherew'(e) := w(e) — 1,

andw’(e') = w(e’) for all other edges’ # e. Reoptimization oMINTSPw.r.t. inc
anddec has already been examined BAH"07] and BHMWO08]. For example, the
following result is already inBFH*07].

Theorem 7.6 (BFH"07]). Letp be a polynomial. Unles® = NP, the problems
MOD;..MINTSPandMOD;,,.MINTSPare notp(n)-approximable.
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Thus, whersome unselecteoptimum solution of the original instance is given, the
problem of reoptimizingINTSPis as hard as the probleMINTSPitself. We are
able to improve on this result, by showing thrat solution is sufficient for this task.
First, we prove hardness 6fic, MINTSP).

Theorem 7.7.UnlessP = NP, (inc, MINTSP) is not2!"l-approximable.

Proof. Let (inc, MINTSP) be2!VI-approximable. Letd be an algorithm that, given an
original instance~?, an optimum solutiofy , of G°, and a modificatiomn, computes
a solutionT4 for G™ := inc(G°, m) with cost(G™, T4) < 2V(Elopt(G™). We show
thatHC € P under this assumption.

LetG = ({vy,...,v,}, E) be a graph. We assume the reader to be familiar with the
proof of Theoren®.27. Let G’ be defined as in the proof of Theoréh?7. Using G’
we construct & SPinstanceG® = (Ky(q), w) where

1, if e € E(G") \ {{v1, vi}},
w(e) =1 2, if e = {v], v},
287 . (8n + 1), otherwise.

Recall from the proof of Theorerf.27 that C’ is the sole Hamiltonian cycle of the
graph(V(G"), E(G') \ {v{,v}}), thereforeC’ is the sole optimum tour i having
cost(G°,C") = |V(G")| = 8n. Thus, the optimum solution that gets as part of its
input has to be”’. We modify G° by incrementing the weight of the eddes, v}}
from 1 to 2% - (8n + 1). Let G™ denote the modified graph and let be such that
G™ = inc(G°,m).

When applying4 to the input(G°, C’, m) we obtain a solutio™*. We claim that

G € HC & cost(G™, T*) < 28" . (8n + 1),

which yields a polynomial time algorithm fdéi C.

To show sufficiency, suppose th@thas a Hamiltonian cycle. This cycle induces a
tour with cost8n+1in G™, i.e.,opt(G™) < 8n+1. SinceA gives a2!V/-approximation
we conclude that

cost(G™, T*) < 25" . opt(G™) < 28" - (8n + 1).

To show necessity, suppose thatt(G™, T4) < 2% . (8n + 1). Since all edge-
weights are nonzerd;4 is a tour that does not use an edge of weijtit- (8n + 1).
Therefore, the tou™* only uses edges that correspond to some edge in the graph
(V(G), E(G") \ {{v3,v3}}). Hence, the grapltV'(G"), E(G") \ {{v3,v;}}) has a
Hamiltonian cycle and, as we have seen in the proof of The®&@m it follows thatG
has a Hamiltonian cycle. O

We can show the same non-approximability results as in Thedr&for the modi-
fication functiondec.

Theorem 7.8.UnlessP = NP, (dec, MINTSP) is not2!VI-approximable.
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Proof. (Sketch)Ve use the same construction as in the proof of Thear&pbut assign
the following weights to the edges 6F:

1, if e € E(G) \ {{v1, 03}, {v3, 053},
w(e) =< 287 (8n+1), ife={vi,vi},
28" . (8n +2), otherwise.

Note that each Hamiltonian tour througH has to use one of the edgés;,v;} or
{vi,vi}. Consequently” is the sole optimum tour iG:.

We modify G° to G™ by decreasing the weight of the edgs, v} } from 257 (8n+2)
to 1. Thus, ifG € HC thenG™ has a tour of sizé&n, otherwise a tour iz has cost
at least®" - (8n + 1). Consequently,

G € HC & cost(G™, T4) < 25" . 8n.

7.5 Metric TSP (MINTSP,)

In this section we study the travelling salesperson problem when restricted to special
instances. We pose the restriction that for every instaace) the triangle inequality

shall be satisfied, that is, for every three different vertices = € V(G) it holds that
w({u,v}) + w({v, z}) > w({u, z}). The problem of finding an optimum tour in such
restrictedT SP-instances is called the metficSP(TSPa).

PROBLEM: MINTSPA

INSTANCE A complete grapltz = K, and a functionv : E(G) — N assigning
a weight to each edge @f. Each triple of vertices fron¥'(G) shall
satisfy the triangle inequality.

SoLuTION: A Hamiltonian cycleC' in G.

MEASURE The length of the cycl€’, i.e., > c(e).
ecC

A problemMAX TSP, is defined in the same way.

The best known approximation results fdnNTSP, is ag-approximation due to
Christofides Chr7q. It is unlikely that MINTSP, has aPTAS since it isAPX-
complete PY93. Regarding the modificationdv it has been shown InAEMPOg
that

e MOD,4,MINTSP, is approximable with ratid,

1

e MOD,;,-MINTSP,, for k € N, is approximable with rati@ —~ @)

where the modification functiomdv® is the addition oft vertices to the original graph
(also see Definitio.23. In this thesis, we consider as modification the change of
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single edge weights. Thereby, we are only interested in weight changes that do not
lead to a violation of the triangle inequality. Otherwise, we had to change several
other weights in the graph to reestablish the triangle inequality, which contradicts our
approach ominimalmodification. The modification functions that increases the weight
of a single edge and respects the triangle inequality is given by

inc(G, (e,1)), if G andinc(G, (e,i)) satisfy
inca (G, (e,i)) = the triangle inequalilty,
((0,0),0), otherwise.

A modification functiondecy is defined in the same way. IBHMWO08] the authors
show thatdeca-MINTSP, is 7/5-approximable. In the same paper the authors estab-
lished the following lemma.

Lemma 7.9 (BHMWO08]). LetG° be a complete, weighted graphe E(G), i € N,
¢ € {deca,inca}, andG™ = ¢(G°, (e,4)). If G™ is not the empty graph(®, 0), 0),
i.e., G andG™ satisfy the triangle inequality, then every edge incident bas cost at
leasti/2.

Proof. Let {u, v} be the modified edge. We just show the assertion for the modification
deca and edges incident ta. Let ¢, denote the weight of the edgein G°. Let

z € V(G)\ {u,v}. Applying the triangle inequality to the triangle inducedy, and

z we get

w{u,z}) + w({z,v}) > Ce (triangle inequality inG°),
w{u,z}) + (ce—1) > w({z,v}) (triangleinequality inG™).

Summarizing these inequalities we getw({u, z}) —i > 0. O
Using Lemmar.9, we improve on the factor/5 given in[BHMWO08] by showing
Theorem 7.10.MOD .., MINTSP, is 4/3-approximable.

Proof. Given an original grapld-°, a modified graptG™ := deca(G°, (e,i)), and an
optimum tourZy, for G°, an algorithmA that approximates a tour fe#™ with a factor
4/3 works as follows. The cas@™ = ((0, ), 0) is trivial. Otherwise,A computes a
solutionT7;, for G™ using Christofides’s algorithnmChr7g. We now argue that the
better of the both tourg; , and7y;,, yields a4 /3-approximation.

Without going into detail, we mention that in general the cost@f. is bounded by
the size of a minimum spanning tree @f* (short, M/ ST(G™)) added to the size of a
minimum perfect matching/ between the vertices of odd degreefc7(G,,). Also,
the size ofM is bounded by;opt(G™). For details seeGhr7§. By Lemma7.9, an
optimum tour77”, in G™ uses at least one edge of weigj. SinceT, without that
i/2-weight edge is a spanning tree, we have the87'(G™) < opt(G™) — i. Thus,
cost(G™, Tf.) < Sopt(G™) — L.

On the other hand, note thait(G°) < opt(G™) + i, since optimum solutions iG*°
andG™ differ by at most. Also,

opt(G°) — i, if eis part of T}y,

7 opt opt(G°), otherwise,

cost(6™, 15,0 = |
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and thereforeost(G™, Ty,,,) < opt(G°). By combining the two inequalities we get that

cost(G™, Tg,) < opt(G™) + i
In case: < iopt(G™) the tourTy, yields a4/3-approximation inG™. In case
i > sopt(G™) the tourT;,, is a4/3-approximation inG"™. O

This proof translates mutatis mutandisit@ .
Theorem 7.11.The probleminca-MINTSP, is 4/3-approximable.
Proof. Let G™ := inca(G?, (e, 1)). Obviously,opt(G°) < opt(G™). Also,

opt(G°) +1i, if eis partofTy ,

’ ot opt(G°), otherwise,

cost(G™, T°,) = {

and thereforeost(G™, Ty ,) < opt(G°) +i. By combining the two inequalities we get

thatcost(G™,T°,) < opt(G™) + i. The rest of the proof is a carbon copy of the proof

)~ opt

of Theorem7.10Q O]

We can generalize the above idea, to the case in which more than one edge is de-
creased or increased.

Theorem 7.12.MOD . x MINTSP, andMOD;,,.x MINTSP, are approximable with

ratio 344, for all k € N.

Proof. (Sketch)As in the proof of Theoren7.10we output the better one of the old
solution and the solution obtained by Christofides’s algorithm.let, i, be the num-
bers by which the edges are decreagatteased. The analysis relies on the facts that

cost(G™, T2 ,) < opt(G™) + k - max i, , and

» T opt 1<j<k
cost(Thy,) < §opt(Gm) — max 4
Chr/ =9 1<j<k 2

If max i; < opt(G™)/(2k+1) thenT” is a3+ -approximation, otherwisg?;,, yields
7>

such a bound. 0

As another generalization, it is shown iIBFH"07] that reoptimization also yields
improved bounds for input instances that satisfy a relaxed form of triangle inequality,
namely thes-triangle inequalityw{u, z} < 3 - (w{u,v} + w{v, z}) for g > 1.

Besides these positive results, we show the following lower bound for approximabil-
ity.

Theorem 7.13. There is noFPTAS for (deca, MINTSPA) and (inca, MINTSP,),
unlessP = NP.
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Proof. First, we show thatdeca, MINTSP,) has noFPTAS. Assume to the contrary
that there is aif'PTAS for (deca, MINTSP,). Letp be a polynomial andi be an
algorithm that, given a weighted graghf, an optimum tour inG°, a modification
m, ande > 0, outputs a tourl'* for G™ := deca(G°, m) with cost(G™, T4) <
(14¢)-opt(G™) intimep(|V(G)|, 1/¢). We show that under this assumptid€ € P.

Let G be a graph. We assume the reader to be familiar with the proof of Theorem
9.27, and in particular with the construction of the gragh UsingG’ we construct a
MINTSPy-instanceG® = (Kjy ), w) where

w(e) = { 2, ifee B(G)\ {{ur,vi}},

3, otherwise.

Note that any complete graph with weights 2 and 3 satisfies the triangle inequality, and
even so if the weight of a single edge is reduced to 1.

Letn := |V(G)| andn’ := |V (G°)| = 8n. First, note that the tour

OOpt = (U%,U%,U%,Ué,Ui,Ué,U%,Ué,U%, "'7U§L—1>U711a Uy, Uy, Vg, VY, Vg, U7 5 U U%)a

is the sole optimum tour id-° and has costn’. Now we modify the graplG° by
decreasing the cost of the edfye', v} } to 1. The resulting graph is the gragf*. Note
thatTy , still has cosn’ in G™, thereforeopt(G™) < 2n’. In addition, we claim that
G™ has a tour with cos2n’ — 1 if and only if G has a Hamiltonian cycle. For a proof
of this fact, note that a tour with co8t’ — 1 has to use the edge{,vi} and has to
avoid all edges with cost 3. Consequently, it traverses the gddigeind also all other
gadgetsH;, via (vi, vi, vi vl vl vl vk i), 1 < i < n. This is possible if and only if
G is Hamiltonian (see proof of Theore#n27).

Lete = 1/(3n'). For every toufl’ with cost(G™,T') = opt(G™) + 1 we have

cost(G™,T) = (1 + m) opt(G™) > (1 + %) opt(G™) > (1 + €)opt(G™).

Consequently, the outp@t! of the algorithmA(G°, Ty, m, €) is an optimum solution
of G™. Now, cost(G™, T#) = 2n’ — 1 if and only if G € HC. The assertion follows
from the fact that the running time of(G°, T}, m, ) is bounded byp(1/e,n’) =
p(24n,8n).

The proof for(inca, MINTSP) is essentially the same, except that the efidevy }
has weight 1 irG° and has weight 3 iG6"". O

Conclusions
In this chapter, we presented the concep@pproximationof slightly modified in-

stances, also known as reoptimization. We showed that reoptimization can help to im-
prove the approximability of hard optimization problems. In detail, we indicated that
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Chapter 7 Approximated Solutions of Modified Instances

reoptimization leads for mostuinweighted optimization problems to approximations
with an absolute error of 1 or 2.

For (natural) weighted optimization problems we were unable to find such absolute
error approximations. But, we gave an example of a reoptimization problem, namely
MOD;,., MINTSP,, where modification leads to an improved approximation ratio of
4/3.

Open problem 3. Do MOD;,,., MINTSP, andMOD .., MINTSPA have aj-approxi-
mation witho < 4/3?

In Appendix B we even give @TAS for an reoptimization problem that iSPX-
complete in its classical non-reoptimization variant. It is an open question if the same
result holds foIMINTSP,.

Open problem 4. Is there aPTAS for inca-MINTSPA or deca-MINTSPA?

As a first step in this direction, we showed that there isFlA'AS for these two
problems. Besides the above mentioned positive results, we also gave an example where
reoptimization does not help at all, namely when altering an edge-weight of (nonmetric)
TSP-instances.

Table7.1summarizes our main results for reoptimization. It also includes the results
that are given in Appendi®s.

2An example for an unweighted reoptimization problem that i@absolute error guarantee, unless
P = NP, is the problemMINMAXIS, which is studied in Appendix B.
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best known
approximation

reoptimization
for inc/inca

reoptimization
for dec/decn

MINVC no 1.37-app.PS0]3 absolute error 1 absolute error 1
MINTSP no 2Vl-approx. no2!VI-approx. no 2!VI-approx.
MINTSPy | 3/2-approx. Chr7q 4/3-approx. 4/3-approx.

no FPTAS no FPTAS
MAXTSP | 4/3-approx. Her84 5/4-approx. ?

no FPTAS no FPTAS
MAXTSP, | 8/7-approx. CNO7] PTAS PTAS

no FPTAS no FPTAS
MINST 1.55-approx. RZ05 s-approx. BBH"08] | 1.3-approx. BBH'0§]

no FPTAS no FPTAS
MINMAXIS | no|V|'-app. Hal93 || no|V|' “-approx. | no|V|' “-approx.

Table 7.1:An overview on reoptimization results
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Chapter 8

Polynomial Strings as Hint

In this section we are concerned with the question what happens when we loose our
restriction on the hint being a certificate of the original instance. Instead, we allow any
polynomially bounded strinigas a hint. The applicability of this approach to practice
stems from the scenario in which a computation produces intermediate results or ad-
ditional information about how the solution was obtained. This information might be
useful for further computations.

To formalize the idea of polynomially bounded strings as possible hint we introduce
the notion of hint functions.

Definition 8.1. A total functionh is a hint function if and only if the size of the output
of h is polynomially bounded in the length of its argument, that is, there exists a poly-
nomialp such that for allz € >* it holds that|i(x)| < p(|z|). Letstr denote the set of

all hint functions.

Using Definition5.13we can define class&yop/str, which characterize the com-
plexity of deciding if a modified instance belongs to a problérwhen the hinth(z)
is given, whereh is a hint function. We may writ¢c, A) € Cuop/str instead of the
more formal(c, V4) € Cuwop/str, since no certificates are involved in the definition of
CMQD/StT.

Note thatcert(V4) C str, for any verifierVV,. Thus, the following observation is
obvious by Definitiorb.13

Observation 8.2. (C, VA) € CMQD/CGTt(VA) = (C, L(VA)) € CMOD/St’I“.

In other words, each modification problefa V) that is easy with selected hints
(which includes the no-solution promise) is also easy when using hint functions. This
is not surprising, as the hint function may also output selected certificates or the empty
word.

But not only easiness results f6pop /cert(V4) translate tadyop/str; we can also
reuse our results about improbable easiness of certain modification problems.

We bound the length of the string in order to avoid algorithms that use too much space.
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Theorem 8.3. LetC be closed undex? -reduction,(c, A) be a modification problem,
K € N\ {0}, andg(n) = ¥§/n, . If there exist functiong;, f3 € FP such that for all
ke NandallF, L,..., L, € X* it holds that

e e SAT & f1(F) e Aand
o ad’(F,(Ly, ..., Ly)) € SAT & ¢(f1(F), f3((L1, ..., Ly))) € A
then the following statement holds:
(¢, A) € Cmop/str = NP C C/poly.

Proof. Let (¢, A) € Cwop/str. Thus(c, A) € Cyop/str. Now, the proof translates
mutatis mutandis from the proof of Theoreh24 The main difference is that every
occurrence ofert(V,) is replaced bytr. O

Choosingfi(F') := F and f3((L1, ..., Lx)) := (L4, ..., Lx) in Theorem3.3we get

Corollary 8.4. LetC be closed undex? -reduction, K € N\ {0}, andg(n) = /n. If
(ad?, Vsat) € Cmop/str thenNP C C/poly.

We conclude from the last corollary thatifd?, Vsar) € Puop/str then the polyno-
mial hierarchy collapses to its second level.

8.1 The Table-Lookup Method

The power of polynomial hints allows us to show that some modification problems
(¢, A) for which we were not able to prove containmenPifiop /cert(V4) are a mem-

ber of Pyop/str. For example, while it is not known {fud, Vsar) € Pmop/cert(Vsar)

(see Tablé.3), the modification problenfud®, Vsar), k being a constant, can be shown
to be a member dPyop/str.

Observation 8.5. (ad*, Vsat) € Pumop/(str N FAD).

The following proof of this fact stands exemplarily for the proof of the upcoming
Observatior8.6.

Proof. Let F' be a formula and let = |Var(F)|. First, we show that the number of
ad*-modified formulas of a formuld’ is bounded by a polynomial|F'|). Just for the

proof, suppose that the unit clauses are added sequentially, instead of all at once. Thus,
even before the last addition of a unit clause there exist at masti — 1) different
variables in the hitherto existing modified formuld. For each: € Var(F’) one of

the two unit clause$x} or {—x} may be added td”. Consequently, only one of at
most2(n+ (k — 1)) unit clauses of/ar(F”) and one of two unit clauses over some new
variable may be added at any given time. Thus, for each individual addition of a single
unit clause the number of possible modified instances is bounded by the polynomial
2n + 2k. The total number of modified instances afteaipplications of:d is therefore
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bounded by;(n) = (2n + 2k)*, which yields a polynomial upper bound in the size of
|F'|, for every constant.

We choose as hint string a table that contains all of the at pi05st) possible mod-
ified formulas together with a satisfying assignment for each formula, if existent. Note
that each modified formula is bounded in its size by a polynonti&l|). Thus, the size
of the table is polynomial in#|.

Now, the decision process fad?(F, m) € SAT is just a matter of table lookup. This
table can be computed froii by a functionf € FAY that (i) computes all possible
modified instances and (ii) uses its oracle to compute bitwise a satisfying assignments
for each modified instance. O

Observation 8.6 (Lib04]). Let A € NP andc be a modification function. If there exist
polynomialsgy andr such that for allx € X* it holds that

U, ez m)}| < allel)
and for allm € X* it holds that|c(xz, m)| < r(|z|) then(e, A) € Pyop/str.

Note that the hint function that shows A) € Pyop/str in Observatior8.6 does not
need to be necessarily a membefdf}. The function probably cannot compute the at
mostq(n) modified instances in polynomial time.

ObservatiorB8.6 only gives a sufficient condition for when a problémV,) belongs
to Pwop/str. There also exist modification probleras V) for which exponentially
many modified instances can be decided in polynomial time with a polynomial string
as hint. We give the following (rather artificial) example of such a problem. Consider
the following padded version GAT:

SAT .= {(F,w): F € SAT Aw = {0,1}F1}.
Obviously,SAT is NP-complete. For the modification function

/ n._ ) (B, if ] = w
c ((F, w),w) T { (F)w)7 otherwise,

and a given formuld there exise!”! different modifiedSAT -instances. Nevertheless
each of those instances can be decided with the 1-bit-hint 'A’ig satisfiable and '0’

if F'is not satisfiable. Thug¢/, SAT') € Pyop/str. Another problem of this kind,
namely 'CyclelnHamiltonianReduction’ (CHR), which uses the padding idea in a more
practical fashion, is given inJDLS02.

From Observatior8.6 we also conclude that if theizeof the modification is small
enough then the respective modification problem is easy when hint strings are allowed.
In detail, if the size of the modification is bounded Blog(|z|)), wherex is the
instance that is going to be modified, then there exist at 1gSt? ") modified in-
stances — one for each possible modification. Also, the size of each modified instance
must be polynomial irjz| sincec € FP. A table that contains all the modified in-
stances can be computed in polynomial time. For each modified instance in the table, a
solution, e.g., the minimum solution, can be found by a function frakj.

81



Chapter 8 Polynomial Strings as Hint

Corollary 8.7. Let A € NP, ¢ be a modification function, and let the second argument
m of ¢ be bounded by)(log(|z])), wherex is the first argument of. Then(c, A) €
PMOD/<StT’ N FAS)

On an sidenote, we mention that the modification functidr?(* is no such mod-
ification function as desired in the last corollary, since the size of the modification
is O (log (|z|) - log (|[Var(F)|)). On the other hand, the modification functiari,
wherek is a constant, is clearly a modification function of the desired form since
Var(F)| < |z].

At first glance, it seems that hint-strings are more powerful than selected certificates,
since they are more flexible when choosing a hint. But, a closer look reveals that Ob-
servation8.6 can be rephrased as a results for selected certificates when an appropriate
verifier is chosen.

Theorem 8.8.Let A € NP andc be a modification function If there exist polynomials
g andr such that for allz € ¥* it holds that

U ey Ll m)}| < a(la)

and for allm € ¥* it holds that|c(z, m)| < r(|x|) then there exists a verifidr; for A
such that(c, V) € Puop/cert(V}).

Proof. Let A € NP, V4 be an arbitrary verifier foA, andc be a modification function.
Let ¢ andr be as above. Let be some polynomial such théat, 7) € V4 = |7| <
p(|x]), thatis,p bounds the size of certificates w.if,. Consider the verifiev’; defined

by

(r,w) € Vi & w=((x,7),(x1,71), ..., (xe, 7)) N (x,7) € V4 A
C<q(lz) A (VI <@ < O] < r(le]) Alrl < p(fai)].

In other words, the certificate for 2 not only contains information whethere A, or
equivalently, if there exists with (x, 7) € V4, but it also contains pairs of other strings,
which we interpret as a modified instancgetogether with a corresponding certificate
m; for x;, if existent. Note that’} is indeed a verifier fod since (i) |w| is polynomial
in the size ofz, (ii) there exists a with (z,w) € V} ifand only if x € A, and (iii)
(z,w) € V} can be decided in polynomial time.

We choose as hint function fér, V) the functioni that, given an instance outputs
astring((z, ), (x1,m), ..., (xg, ™)), Where

e 7 is a certificate forr w.r.t. V4, if existent,

e {x1,...,x,} is the set of all possible modified instances, of which there are at most
¢(|=[), and

e foralli </, the stringr; is a certificate for; w.r.t. Vy, if existent.
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To decide if a modified instancgz, m) belongs toA, we just need to find the corre-
sponding modified instance in the table given by the hint. All we then need to do is
to evaluate whether:;, ;) € V4, which is possible in polynomial time. O

This last theorem illustrates that the results in Chagtmre highly dependent on the
chosen verifier. For instance, it shows that there exists a verifigrfor SAT such that
(ad, Véar) € Phop/cert(Vsar).?

8.2 Connection to Preprocessing

In this section we outline a connection between the problem of modification with hint
strings and a related problem, namely the problem of preprocessing. First, we give an
informal summary on preprocessing.

Subject to preprocessing are problems of pairg/) for which the first part of the
input z is known before the regt, and the known part remains the same for several
subsequent inputg. In this case, it could be beneficial to preprocess from the known
partz an additional information(z) that is helpful for deciding future inputs. The extra
cost for preprocessing is justified when the complexity of deciding coming instances is
thereby significantly decreased. We refer to the preprocessing of the known part as
compilation For more details se€PLS02 Lib01, Lib98a CD97, SK9q.

8.2.1 Uniform Preprocessing

The following subsection consists of three parts. First, we give a brief summary on pre-
processing. FollowinggDLS03, we define classes of uniform compilability and show
hardness results for these classes with the help of an appropriate notion of reduction.
Second, we show how preprocessing results relate to modification problems. Last, we
demonstrate our results at an example, albeit a fairly artificial example.

We start by formally defining classes of uniform compilability. These classes capture
our intuitive notion of compilability. In the next subsection we also consiagruni-
form compilability classes, but for the moment we postpone a discussion on why these
nonuniform classes are necessatry.

Definition 8.9 ([CDLSO02], Definition 2.4). A languageA C ¥* x ¥* of pairs belongs
to the class~C (in words, compilable t@) if and only if

(3C € C)(3h € str)(Vx,y € X)[(z,y) € A< (h(zx),y) € C].

Informally, a language of pairs;, y), wherez is the known part and is given online,
belongs taC if there exists &-predicateC' such that(x,y) € A can also be decided

2Since a table of atid-modified formulas is computable in polynomial time, we even HadeV< ) €
Piop/ (cert(Vsar) NFAY). We can contrast this result with the fact thaitl, Vixr) € coNPyop/
(cert(Vsar) N fun - NP) thenNP = coNP (see Theorem.31).
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Y bttt > ‘
/
I/
L C > (x,y) € A? :L' C pF>c(x,m) e A?

) m

(a) (b)

Figure 8.1:Schematic depiction of the classes{ay and (b)Cwop/str.

by asking whether the preprocessed strifig) together with the missing pagtof the
input belongs ta”. The class~C and the clas€yop/str are quite similar according
to their definitions. Both aim to find a string that only depends on either the original
instances or the known part of the input to decide instances that are later to be specified,
either by an unknown modification or an online given partA comparison of these
classes is depicted in Figugl The dotted line in Figur&.1indicates that the fixed
part of the input may w.l.0.g. be assumed to be know€'tsinceh can givex as part
of its output.

It has already been shown i@PLS0F that classical complexity classes and compi-
lability classes share the same inclusion structure.

Theorem 8.10 (CDLS02], Theorem 2.11).LetC and D be complexity classes that
are closed undex? -reduction and that have? -complete problems. Then

~C C D & CCD.

We now aim to establish a notion of non-compilability, which then leads to hard-
ness results for modification problems. @LS0F the authors propose the following
reduction to show such hardness results.

Definition 8.11 ([CDLS02], Definition 2.5). A <.,,,-reduction between two languages
of pairs A and B is a triple (f1, f2, g), wherefy, f, € str andg € FP, such that for all
pairs of strings(z, y) it holds that

(l’,y) €EAs (fl(x)ag(f2(x>7y)) €B.

For a discussion on the benefits of this last definition we refelCioL[S0J. In
[CDLSO0] it is also demonstrated how to find complete,,,,-problems for a class
~~C, provided that a complete problem f@rexists. In detail, given th&? -complete
problem A for C, the problemeA = {(e,y) : y € A} is < mp-cOmplete for~C.
Intuitively, the problent A cannot benefit from preprocessing, since the fixed past
empty, and therefore there is no possibility to take advantage of preprocessing.

Theorem 8.12 (CDLS02], Theorem 2.3). LetC be a complexity class and let be
<P -complete irC. TheneA is ~~C-complete w.r.t<,,,,,-reduction.
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To show<,,,,-hardness of a probler for the class+~C it suffices to show that
€A <.omp B for some problenH that is<? -complete irC.

We now turn to our discussion on how compilability and the problem of modified
instances are related. We already mentioned, that compilability classes and modifica-
tion problems are similar regarding to their definitions. The similarity between the two
complexity classeSwop/str and~-C is formally expressed by the following theorem.

Theorem 8.13.Let (¢, A) be a modification problems artibe a complexity class that
is closed undek? -reduction. Then

{(z,m) : e¢(x,m) € A} € ~C < (¢, A) € Cuop/str.

Proof. Let S := {(x,m) : ¢(x,m) € A}. For the =’-direction assume thaf € ~~C.
Consequently, there exist € C' andh € str such that

(Vz,m € ¥*) [(x,m) € S < (h(xz),m) € B].
We define a new s&%’ .= {(z,w,m) : (w,m) € B Ax € ¥*} and get that
(Vz,m € ¥*) [e(x,m) € A< (x,h(z),m) € B].

SinceB’ € C we have thatc, A) € Cvop/str.
For the other direction, assume thiatA) € Cuop/str. Therefore, there exidt € C
andh € str such that

(Vz,m € %) [e(x,m) € A< (x,h(x),m) € B.
We definel’(x) := (z, h(x)) andB’ := {((z,w), m) : (x,w,m) € B} and get that
(Vz,m € ) [(x,m) € S & (W(x),m) € B'].
SinceB’ € C andh’ € str we have thatc, A) € Cuop/str. O

We use TheorerB.13to establish a connection between uselessness of hint strings
for a modification problenic, A) and~~C-completeness of the corresponding language
of pairs{(z,m) : ¢(x,m) € A}.

Corollary 8.14. LetC andD be complexity classes that are closed undgrreduction
and (¢, A) be a modification problem for whicB := {(x,m) : ¢(x,m) € A} is ~C-
complete W.r.t<.,,-reduction. If(c, A) € Duop/str thenC C D.

Proof. LetC, D, (¢, A), andB be as above. L€k, A) € Dyop/str. By TheorenB.13
we getB € ~D. It has been shown irdDLS0F (Theorem 2.2 in CDLS03) that if
D is closed undex? -reduction then~D is closed undeK,,,,,-reduction. Since3 is
~(C-complete we conclude thatC C ~~D. By TheorenB.10we getthat C D. [
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We use this last corollary to argue for useless of hint strings in the following way.
For example, assume that, A) is a modification problem for atNP-complete lan-
guageA. Also, assume that we showedNP-completeness of the corresponding lan-
guage of pairq (z,m) : ¢(x,m) € A}. If there are useful hints fofc, A), that is, if
(c, A) € Cmop/str for some complexity clas€ C NP, thenNP C C by Corollary
8.14 Consequently, we have that the NP-complete prohlem also inC, without
using any hints.

Finally, we illustrate our arguments with a rather artificial example. We give more
practical examples in the next subsection.

Example:Consider the following probler&Q:

EQ:= {(F,G) : F andG are Boolean formulas/ar(F) C Var(G), and
there exist an assignmentoverVar(G) such that

ﬁ(G) 7’é 6|Var(F)(F) }

Here, 3(G) denotes the truth value d@f under the assignment and 3|y o (r)(F)
denotes the truth value df when the assignmertt is restricted to the variables of
Var(F). Informally spoken, the problerBQ consists of pairs of formulas that are
nonequivalent, but where the notion of equivalence is adapted to hold for formulas with
different variables. Note th&Q is NP-complete.

We modify EQ-instances with the following modificaticmb,:

suby((F,G),G") .= (F,G"),

that is, the second formul@ is substituted with a new formul@’. We aim to apply
Corollary8.14in order to show that polynomial strings are useless when decidiig
modifiedEQ-instance. Therefore, we need the following result.

Lemma 8.15. B := {((F,G),G") : suby((F,G),G") € EQ} is ~NP-complete w.r.t.
<comp-reduction.

Proof. Containment of3 in ~- NP is clear from the facts th&Q € NP andsub, € FP.
To prove<,,,, -hardness o5 we show thatSAT <,,,,, B viathe following reduction
functionsf;, f», andg:

o fi(z):= (21 V —wy,21),3
e fy(x) =z, and

- F, if £ =c¢,
x1 V —xy, otherwise.

o g(z,F) ¢={

3We assume that formulas are coded in way such that the varialigecontained in any formuld’.
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It suffices to show that
(v, F) € eSAT & (f1(2), g(fo(x), F)) € B. (1)
We consider two cases,= ¢ andx # e. If z # e then(z, F') ¢ eSAT. Also,

(f1(®),g(fa(z), F)) = ((x1 V =21, 21), 21 V —21)

is no element o3, sincesubs ((x1V —xy, 1), 21V —xq) yields two equivalent formulas.
If z = ethen

(z,F) € ¢SAT & F € SAT

& (3 € X9)[(-F, ) ¢ Vsar]
< {f : fis an assignment ovéfar(F') } # Vsar(—F)

<~ (ZE1V_|ZE17—|F) EE_Q
& suby((zy V —21,71),~F) € EQ
& (fi(z),9(f2(x), F)) € B.

]

By Corollary8.14we conclude thatsub,, EQ) has no useful polynomial hints.

8.2.2 Nonuniform Preprocessing

The results on uniform compilability that are given in the last section suffer from a
severe technical problem. The notions~ef” and <,,,,,,-reduction are useful to state
strict and unconditionatesults of compilability or non-compilability; but these notions
are insufficient to express non-compilability results for problems thatialikelyto be
compilable. For example, it is shown i€@PLS0Z that if the problem of constrained
satisfiability, which is defined by

C-SAT := {(F,3) : F'is a CNF-formula and’ is a partial assignment
that can be extended to a satisfying assignmeirit jof

is solvable in deterministic polynomial time with the help of preprocessing ¥ieh
poly C P/poly. However, we are unable to formally derive this fact using uniform
compilability classes and..,,,,-reduction. To overcome this shortcoming, new classes
of nonuniformcompilability are introduced inGDLS02.

Definition 8.16 ([CDLS02], Definition 2.7). Alanguaged C Y* x ¥* of pairs belongs
to the classh~C (in words, non-uniformly compilable ©) if and only if

(3B € C)(3h € str)(Vz,y € X9)[(z,y) € A< (h(x,|y|),y) € B].
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Here, preprocessing not only depends on the known fixedrpErthe input, but also
on thesizeof the unknown pary. We assume thdy| is given in unary notion. This
definition corresponds to scenarios where the size of the missing part of the input, or
equivalently, a polynomial upper bound on this size, is known in advance. The problem
C-SAT is an example of such a problem.

Again, we establish a notion of hardness for classes of the fert But, <.,,,-
reduction are not useful for this purpose (for details SeBL{S0]). Therefore, we
introduce a more suitable notion of reduction.

Definition 8.17 ([CDLS02], Definition 2.8). A |~reduction between two languages of
pairs A and B is a triple (f1, f2, g), wheref,, fo € str andg € FP, such that for all
pairs (z,y) it holds that

(z,y) € A & (filz, |yl). 9(fa(z, |yl y))) € B.

This definition extends in a natural way the definition<of,,,, such that the size of
the unknown pary is incorporated. We just mention that for a complexity cldsbat
is closed undex? -reduction the complexity clags-C is closed undej~—reduction
(see EDLS03, Theorem 2.8). Again, we can show that complete problems for a class
C yield complete problems for the clas C.

Theorem 8.18 (CDLS02], Theorem 2.9). LetC be closed undex? -reduction and
A be aC-complete problem w.r.t<? -reduction. ThereA is |~C-complete w.r.t.|~
reduction.

It has already been shown iI@PDLS0F (see Propositions 3.1 and 3.2 there) that the
problems C-SAT and the problem ConstrainedVertexCover,

C-VC := {(G,k),V') : G has a vertex covef' of size at leask with V' C C'}

are~~NP-complete.
Nonuniform compilability classes and classical nonuniform complexity classes are
related in the following way.

Theorem 8.19 (CDLS02], Theorem 2.12).LetC and D be complexity classes that
are closed undex? -reduction and that have? -complete problems. Then

;~C C D <« C/poly € D/poly.

Using this framework, we now exemplarily show how hardness results for nonuni-
form compilability classes can be used to show that certain modification problems have
probably no useful polynomial hints.

Example 1:As a first example, we examine the already discussed modification prob-

lem (ad™, SAT). Assume thatad'®, SAT) € Cyop/str, whereC is closed undex? -
reduction. We have already argued at the beginning of this chapter, that this assumption
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implies thatNP C C/poly (Theorem8.3). Using compilability classes, we now show,
under the same assumption, the slightly weaker coll&ji3&oly C C/poly.

First, we show that ifad’®, SAT) € Cwop/str then the problem C-SAT would be-
come an element df~C. This is easy to see, as adding unit clauses over certain vari-
ables to a formulaF’ corresponds to fixing the values of satisfying assignments for
these variables. Thus, we reduced the question whether a fixed fofimdes a sat-
isfying assignment that extends a given partial assignment to the question whether the
formula F' in thats the respective unit clauses are added is satisfiable. This shows that
C-SAT € |C, a formal proof is omitted. Since C-SAT jis-NP-complete and~~C
is closed with respect tfp~reduction we conclude th@t-NP C |~C. The assertion
NP /poly C C/poly follows by Theoren8.19 Consequently, ifadé, SAT) € Pyop/
str thenPH = S, (see Corollary2.13 and if (ad®, SAT) € coNPyop/str then
PH = X% (see Theoren2.14). These are consequences that are considered unlikely
by most theoretical computer scientists.

Example 2: A similar results as in Example 1 holds for the modification problem
(app, VC), whereapp is the modification function that takes as inpu¥&-instance
(G, k) as well as a sefvy, ..., vy} of vertices ofG and outputs an instanc¢é”, k) where
at each vertex; a new vertex; is appended. Formally, for @C-instance(G, k) and
asubset” := {vy, ..., v} of V(G) we define

app((G, k), V') == ((V(G) U {urs ooy e}, B(G) U {{on, i} 11 <0 < E}),k:).

Containment of the modification problefpp, VC) in Cyop/str, whereC is closed
under <? -reduction, would lead to C-VCc |~C. To see this, lefapp, VC) in
Cwmop/str. Note that in a modified instanep((G, k), {v1, ..., v, }) with new vertices
uq, ..., up at least one ob; or u; has to be contained in a minimum vertex cover, for each
1 <4 < /. But choosingy; is always better than choosing. Thus, we may assume
that a vertex cover foipp((G, k), V') does not contaim, ..., us, but contains all ver-
tices fromV”’. Therefore, the question whetherp((G, k), V') is an element oV C is
reduced to the question whethé€, k), V') € C-VC. This shows that C-V& |~C.

Since C-VC islp~NP-complete we geNP /poly C C/poly, with the already in Ex-
ample 1 mentioned implications for special choice€ of

Example 3:As a last example, we examine a problem that is already discussed in
[LibO4]. There, the problem of satisfiability is considered, together with the modifica-
tion that allows for an arbitrary change to the original formula as long as the set of used
variables remains unaltered. Assume that this modification problem is a member of
Cmop/str, C closed under? -reduction. The analysis relies on tife NP complete-
ness of the set

nSAT := {(i,F) : F € SAT Ai = 1VortFly

which is just mentioned inLib04] without a proof.

Lemma 8.20.nSAT is | NP complete w.r.t/~reduction.
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Proof. We show thatSAT is |f~reducible too SAT. Therefore we give three functions
f1, f2 € str andg € FP such that

(2,F) € €SAT & (fi(x. |F|), g(falx, |F), F)) € nSAT.

Let ' be a CNF-formula withWar(F) = {zi,...,z,}. We assume that formulas
are coded in a reasonable way such thak |F|. We definef,(z, |F|) = 117,
fo(z,|F|) := x, and

| pad(F), ifx=cg¢,
g, F) = { x1 A —xy, otherwise,
wherepad(F') is generated fronk’ by addition of unit clausege,,+1), ..., (z|#)), result-
ing in a CNF-formula with|F'| variables. We distinguish two cases. 2if# ¢ then
(z, F) ¢ eSAT and the desired equivalence

(z, F) € eSAT & (1! 2y A —zy) € nSAT
is valid. If x = ¢, the following equivalences yield the desired results

(e, F) € eSAT & F € SAT
< pad(F) € SAT
& (17 pad(F)) € nSAT.

]

We now return to our proof of hardness for the modification that leaves the set of
variables unchanged. A helpful polynomial hint functiothat renders this problem a
member ofCyop/str also yields a helpful functioh’ for preprocessing. The function
h'is given byh’(1") := h(F},), for an arbitrary but fixed formul#;, overn variables.
Now, satisfiability of an online given formul&” over n variables can be decided by
modifying the formulaF,, to F’ and testing whethef” is satisfiable, using the hint
h'(1™) = h(F,). By assumption we getSAT € |~C. Thus,NP/poly C C/poly.

Conclusions

In this chapter we studied the scenario in which a polynomial hint is used to decide
modified instances. We introduced the notion of a hint function and obtained complex-
ity classes of the forn®yop/str, which allowed us to categorize the complexity of
modification problems with respect to polynomial strings as a hint.

First, we observed that some of our unlikeliness results for selected hints from Sec-
tion 4 can be used to show also unlikeliness for polynomial hints. In detail, we showed
this for the problen{ad?, SAT), whereq(n) = ¥/n andK € N\ {0}, but this result
also holds for many other modification problems.
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The power of polynomial hints allowed us to show that some modification problems
(¢, A), for which we have not been able to prove containmeap /cert(Vya), are
a member oPyop/str. We showed these results with the help of the so called table-
lookup method — a very simple method that involves a table of solutions for all possible
modified instances. We applied this technique to the modification profalémVsar),
k a constant, and showed that this problem benefits from polynomial strings. But still,
the complexity of some modification problems is not clear.

Open problem 5. Does the modification probletad'e?, SAT) benefit from polynomial
hints?

In the last part of this chapter, we showed how the concept of compilability relates
to modification problems. We summarized the necessary details about compilability in
order to prove hardness results for compilability classes. We translated unconditional
results on non-compilability, i.es....,-hardness for a class C, to unconditional use-
lessness results for modification problems that have polynomial hints. Also, we showed
exemplarily how results about probable non-compilability, ife-hardness for a class
[mC, can be translated to results about probable uselessness of polynomial hints.
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Appendix A - Decision Problems

In this chapter, we examine ti&P-complete problems
e THREESATISFIABILITY (3SAT),
e ONEINTHREESATISFIABILITY (1-3SAT),

e CLIQUE,

VERTEXCOVER (VC),

HAMILTONIAN CYCLE (HC),
e THREEDIMENSIONALMATCHING (3DM), and
e PARTITION

with respect to several modification functions.We also give the missing proofs for the
problemsSAT andEx3SAT.

Easiness results of the forMOD_ .V, € P and(c, Va) € Pyop/cert(Va) that are
due to the trivial argumentation that each certificate of the original instance is also a
certificate for the modified instance are omitted. For an overview on laness
results for the other problems are obtained, we refer to FiguteAn arrow in Figure
9.1 indicates that hardness of one problem can be derived from hardness of the other
either by

e <P -(inter)reduction: We use this technique to shsW-completeness for prob-
lems of the formMOD_.V, on the left side of Figur®.1 The number in the box
on the arrow points to the respective theorem where this fact is proven.

¢ hint-independent (inter)reduction: We use this technique for problems of the form
(¢, Va) on the right side of Figur®.1 The number in the box on the arrow points
to the respective theorem where this fact is proven.
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3SAT EX3SAT

(adle,SAT)

gen

(rmc,SAT)

(rmc,EX3SAT)

(rmc,3SAT) «—{gen}— (rm,3SAT) (adlc,3SAT) (neg,3SAT)—zen}—(negl,3SAT)

(adle,1-3SAT) (rm,1-3SAT) gen »(rme,1-3SAT)

(neg,1-3SAT) gen} > (negl,1-3SAT)

1-3SAT PARTITION

Figure 9.2:0verview on how hardness results are obtained when the no-solution
promise is given.

e generalization from some other modification function: This case applies, if some
modification is a special case of the other, and therefore hardness results can be
transferred. A box with the letters 'gen’ symbolizes these cases.

e generalization from &c, V4)-problem to aMOD_.V4 problem: As we have seen
in Section4.4 (Theorem4.21), if each selected certificate is useless as a hint then
an arbitrary certificate must be useless a fortiori. A box filled witt21 sym-
bolizes the cases where hardnesM@D_.V 4 is obtained by this argumentation.

Similarly, Figure9.2 illustrates how we prove our results in the case that the no-
solution promise is given. Again, easy cases are omitted. The main tool to prove
uselessness of the no-solution promise are promise-independent reductions. But as we
see in Figured.2, also some cases of generalization and some promise-independent
interreductions are given — although these results could have been proven also with
some promise-independent reduction and only little more effort.

94



Chapter 9 Appendix A - Decision Problems

9.1 SATISFIABILITY (SAT)

Arbitrary solution as hint

Theorem 9.1. MODadVSAT Sg@ MODrmlcVSAT-

Proof. Let F' be aformulay ar(F) = {z1, ..., z,}, 5 be a satisfying assignment fér,
andy ¢ Var(F). We define

L4 fl(Faﬁ7L> =FU U?:l{{xhy}? {_'mivy}}i
o [2(F.3,L) == @, with #(y) = 1 and@(z;) = Bla;), 1 < i < n, and
i f3(Faﬁ7L> = ({L7y}7y>

Apparently, these functions yield the desired reduction. O

Selected solution as hint

Theorem 9.2. LetC be closed undex? -reduction,V¢,; be a verifier forSAT, K €
N\ {0}, andg(n) = §/n. Then

1. (rmlc?, Vi) € Chiop/cert(Viar) = NP C C/poly,
2. (rmic, Vinr) € coNPyop/(cert(Viar) N fun - NP) = {1}P C NP.

Proof. The reduction functiong, and f; that are given in the proof of NP-completeness
of MOD,,,....Vsat (Theoren®.1) can easily be altered to hold for multiple modifications
of the formrmlic?. Consequently, the conditions in Theordn27 are satisfied. The
assertions follow by application of Theoreh27and Theorens.31, respectively. [

No solution as promise
Observation 9.3. SAT <. (neg, SAT).
Proof. Let F' be a formula and let ¢ Var(F). We define
e fi(F):=FAaA —a,
o fo(F):= —a.
Apparently, this yields & -reduction. O
Observation 9.4. SAT <7, (adlc, SAT).
Proof. Let /" be a formula and let, b ¢ Var(F). We define
o fi(F):=FAaA a,
 fo(F):= ({a},0).
Apparently, this yields &, -reduction. H
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9.2 EXACTTHREESATISFIABILITY (EX3SAT)

Selected solution as hint

Theorem 9.5.LetC be closed undex? -reduction,V, ;sar be a verifier forEX3SAT,
K € N\ {0}, andg(n) = ¥/n. Then

1. (adc?, VEzsar) € Chaop/cert(Vexasar) = NP C C/poly,
2. (ade, Viyzsar) € cONPryop/(cert(Vigasar) N fun - NP) = {1}P C NP.

Proof. The reduction functiong, and f; that are given in the proof of NP-completeness
of MOD 4.Vexssar (Theorem3.6) can easily be altered to hold for multiple modifica-
tions of the formudc?. Consequently, the conditions in Theorédr7are satisfied. The
assertions follow by application of Theoreh27and Theoren#.31, respectively. [

No solution as promise
Observation 9.6. EX3SAT <7, (rmc, EX3SAT).

Proof. Let F' be anEx3SAT-instance and let,b,c ¢ Var(F). Let E denote the
formula that consists of all eight 3-clauses that can be built with the variableand
c. We define

o fI(F)=FAEFE,
o fo(F) :={—a,—b,~c}.

Apparently, this yields & -reduction. O
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9.3 THREESATISFIABILITY (3SAT)

Formally, the problen8SAT is defined as
3SAT:= {F: I € SAT andF has at most three literals per clayise
and the verifier we use f@SAT is given by
(F,m) € Vasar & (F, ) € Vsar and each clause df has at most three literals
Note that in contrast to the proble®AT the modification functiomdic for 3SAT may

only add literals to clauses of size at most two.

Arbitrary solution as hint
Theorem 9.7.

1. MODVsar <, MOD,4Vasar,
2. MODqVsar <8, MOD,.;,1cV3sar.

Proof. Let f be the reduction function f@AT <? EX3SAT as described in the proof
of Theorem3.6. Recall from this proof that a satisfying assignmehtfor f(F') is
polynomial time computable from a satisfying assignmérdf F. Let g denote the
respective function that computgs

Proof of 1.)Let (F, 3, L) be aMOD,,Vsar-instance. We reduce via

b fl(FaﬁaL> = f(F)’
e fo(F,B3,L):=g(F,3),and
e f3(F,8,L):=L.

Correctness follows by arguments similar to the ones in the proof of The®i@m
Proof of 2.) Let F' be a formulaVar(F) = {x1,...,z,}, andy ¢ Var(f(F)). We
reduce via

4 fl(Faﬁa L) = f(F) U U?:f{{l'i;y}a {_‘xivy}}’

° {2(}]?, B, L) :=f',wheref'(y) = 1andpg'(z) = g(F, B)(x) forx € Var(f(F))\
Yy,

i f3(F767L> = ({Lvy}ay)
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Selected solution as hint

Theorem 9.8. (neg, VSAT) SI;” (neg, VSSAT)~

Proof. The proof is similar to the proof of Theoreth1l6 We just describe how to
modify the proof of Theorem.16to obtain a proof fofneg, Vsar) <, (neg, Vasar) :

e 0u(F.5,1) ;:{ f(;)}{{L}} JU{{L}}, f{L}eF,

f( otherwise,
o g93(F,3,L) = L.
The rest of the proof can be translated mutatis mutandis. ]

Theorem 9.9. Let C be closed undek? -reduction, V35, be a verifier for3SAT,
c € {ad,rmlc}, K € N\ {0}, andg(n) = §/n. Then

L. (c%, Visar) € Ciop/cert(Vasar) = NP C C/poly,
2. (¢, V4sar) € coNPyop/(cert(Visar) N fun - NP) = {1}P C NP.

Proof. The reduction functiong; and f; that are given in the proofs of NP-complete-
ness oMMOD 4Vzsar andMOD,.,..;.Vasar (Theorem9.7) can easily be altered to hold
for multiple modifications of the form?. Consequently, the conditions in Theorem
4.27 are satisfied. The assertions follow by application of Theofetiiand Theorem
4.31, respectively. [

No solution as promise
Theorem 9.10.

1. 3SAT <, (adlc, 3SAT),
2. 3SAT <7, (rm, 3SAT), and
3. 3SAT <, (neg, 3SAT).

Proof. Let F' be a3SAT-instance and, b ¢ Var(F).
Proof of 1.)Copy of the proof for Observatio.4.
Proof of 2.)Copy of the proof for TheorerB.6.
Proof of 3.)Copy of the proof for Observatiof.3.
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9.4 ONEINTHREESATISFIABILITY (1-3SAT)

We study as a last satisfiability problem the language

1-3SAT:= { F : I € SAT, each clause of consists of at most three
literals, and there exists a satisfying assignmenft tfat
satisfies exactly one literal in each claus€-of.
If 3 is an assignment that satisfies a formflan the sense ol-3SAT we say that?

one-satisfied’. The probleml-3SATis NP-complete ch78. We use the following
verifier V1.3sar fOr the probleml-3SAT:

(F, ﬁ) - V1-3SAT = (F, ﬁ) - ‘/3SAT A\ ﬁ one-satisfied’.

Arbitrary solution as hint
Theorem 9.11. MOD,4Vasat S% MOD,4V1-35AT-

Proof. We use a reductioBSAT <? 1-3SATfrom [HMRS99 (proof of Theorem 3.8
(8SAT — 1-EX3SAT) in HMRS99). There, the reduction functiofimaps

e each 3-claus€’; := {z,, z,, 2, } to the set of clauses

C = {{zp, 0,07}, {~zg, !, W}, {07, 0w W}, {2, 07 27} )
e each 2-claus€’; := {z,, z,} to the set of clauses

C = {{zp, 0/, 0"}, {~zg, !, W}, {07, 0! ¥}, {=d 07 2,

{@jadjyej}a {aj’€j7fj}’ {dj? ej> fj}}a

wherew’, v/, w’, 7, 27, a?,d’, ¢, f7 are new distinct variables local @. We expand
the domain off to also handle unit clauses. The functipshall map

e each unit claus€’; := {z,} to the formulaC’ := {{z,}}.

This transformation is done for every clausefofThe reduction functiorf is formally
given by
(P = ¢
CjeF

For a proof that this functiorf yields the reductioBSAT <P 1-3SAT we refer to
[HMRS9§. It is also shown in HMRS9§ that a satisfying assignment fd@t can be
transformed in polynomial time to an assignment that one-satigfies Compatibility
with the modification functiord follows from the fact that unit clauses are mapped to
unit clauses. Consequently an added unit clausé nesults in an added unit clause
in f(F). The corresponding modification is computable in polynomial time. This
concludes the proof of the theorem. H
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Selected solution as hint

Theorem 9.12. (neg, Vgs/_\‘r) an (neg, Vl-SSAT)-

Proof. A closer examination of the modification functighfrom [HMRS9§, which is
also used in the proof of Theore®nl], reveals thaf is actually a structure preserving
reduction that is compatible with the modification functiary. For details we refer to
[HMRS9§. O

Theorem 9.13. (negl, VEX3SAT) Szz (adlc, Vl-3SAT)'

Proof. It is sufficient to give three functiong, ¢-, g3 € FP such that for each =
(F, 3, (C, L)) the following two conditions hold:

Vexasar(F) = {8} = Viasar(g1(z)) = {g2(2)}, 1)

negl(F, (C,L)) € EX3SAT < adlc(g:(x), g3(z)) € 1-3SAT. 2

Let FF = {C4,...,C,,} be anEx3SAT-formula. The functiory, is mapping each
3-clauseC; = {z,, z,, 2. } to the set of clauses

Cl = {{zp, ', '}, {2, !, ~07 } {2, 7, 207} {2, mw0} {7, —w?, —y }

wheres’, 7, u/, v7, w’, 3/ are new distinct variables local &&. Formally, the reduction
functiong; is given by
gl(F757 <C7 L)) = U CJ/’
C]'EF
a function that is computable in polynomial time. Now the assertion is a consequence
of the following two claims.

Claim 1: There existg;, € FP such that {) holds.

Proof of Claim 1: Let Vegssar(F) = {#}. Thus, in each claus€; = {z,, z,, 2, } of

I’ at least one literal is satisfied. Consequently, the set of claUisesone-satisfiable
when we expand’ to the variabless’, t7/, v/, v7, w’,y’ according to Tabl&).1. The
function g, is defined to yield the assignmefitthat appropriately is expanded to the
additional variables?, ¢/, v/, v/, w’,y?, 1 < j < m. Apparently, the functiony, is
polynomial-time computable.

It remains to show that the assignmesit) is the sole one-satisfying assignment for
g1(F,3,(C,L)). Assume to the contrary that(F, 5, (C, L)) has two one-satisfying
assignmentg; andf,. Note that for all clause§'; the truth values of the variables of
C; uniquely determine the truth values of the variables’, v/, v/, w’, 3’ in C} (see
Table9.1). We conclude that the assignmentsand3, differ on some variable frona'.
Furthermore, for each claugg < F' both assignments; and /3, induce a satisfying
assignment fo€’'; when restricted to variables fro@y. Consequently, when restricting
(1 and 3, to the variables fron” we obtain two distinct satisfying assignments far
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clause (1) clause (1) | clause (IT) | clause (IV) clause (V)

O I B O O I O R 2
Bzp) Blzq) Blzr) | B(s7) BEH) | Blu?) B(v7) Bw?) By)
0 0 0 v S h . ,
LR T U I R I
AT 1
0o 1 1 S B , ! !
100 o o | , ! !
10 1 o o | ] , ! !
S T oo | ] : . '
I T o o | ] : X .

Table 9.1:This table shows how to obtain the unique one-satisfying assignment, if ex-
istent, for the set of claus&s; depending on the truth values of the literals
2y, 2q, @Ndz,.. The assignment is constructed from left to right. A case dis-
tinction is performed when ambiguity arises. Aeéntry symbolizes that the
corresponding variable is not considered since a contradiction can be derived
independently. Theg-entry stands for a contradiction of the corresponding
clause with the partial assignment constructed so far.

This contradicts our initial assumption, which concludes the proof of Claim 1.

Claim 2: There existg; € FP such that?) holds.

Proof of Claim 2:Let Cy, = {L1, Lo, L} be the clause of" in that L will be negated.
Note that the functiorf; maps the claus€’, to the clause

C]/g = {{Lh 8k7 tk}u {_'Lla _'uku _'Uk}7 {_'L27 tka _'Uk}a {L7 _'wk}a {Skv _'wka _'yk}}u

We definegs by
g3(F7 ﬁv (Ck7 L)) = <{L= _'wk}7 Sk>7

that is, we add the literal* to the clausg{L, —w"*} in C;. Obviously,g; € FP. It
remains to show that (2) holds.

To show sulfficiency, let be a satisfying assignment faegl(F, (Cy, L)). For each
clauseC;, j # k, fromnegl(F, (Cy, L)) the assignment can be expanded to a one-
satisfying assignment faf”; according to Tabl®.1 The satisfying assignmept for
negl(F, (Cy, L)), which in particular satisfie§L,, L,, =L}, can be expanded to a one-
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modified
clause (I) clause (II) clause (III) clause (IV) clause (V)
{zp,s? t7} {=zp,~ud v} | {—zg t? =0} | {2087 ~w? ) {87, ~w? ,—y?}
B(zp) Blzq) Blzr) | B(s7) B(H) | B(u!) B(v7) Bw) By’)
0 1 . . h
0 0 0 1 0 1 1 1 1
o 1 | - :
0 0 1 L - b
0 1 1 1 0 1
0 1 0 1 0 ] 1 :
0 1 1 1 1 0
0 1 1 1 0 ) 1 ’
0 1 0 1
1 0 0 0 0 1 0 f
0 1 1 0
1 0 1 0 0 1 0 .
0 1 h
1 1 0 0 0 1 0 0 1
0 1 h
1 1 1 0 0 1 0 1 0

Table 9.2:This table shows the unique one-satisfying assignment for the modified set
of clauses{{z,, s", t*}, {-z,, ~uF, —=0*}, {—z,t*, "}, {7, " ~w"},
{s*,~w*, —y*}} depending on the truth values of the literajsz,, andz,.

For further explanation see Talfel

satisfying assignment of
{{Lb 8k7 tk}a {_'Llu _'U’k7 _'Uk}a {_'L27 tk7 _'Uk}7 {La Sk? _'wk}a {Ska _‘wk7 _'yk}})

according to Tabl®.2 In consequence, we obtain a one-satisfying assignment for the
formulaadlc(g, (), gs(x)).

For the other direction assume thét one-satisfiesidic(g:(z), gs(z)). Thus, for
each set of claus&s;, j # k, the assignment’ restricted to variables frorY; yields a
satisfying assignment far'; (see Tabl®.1). For the remaining set of clauses

{{Ll, s 5}, {=Ly, ~u®, ="} { =Ly, t*, ") {L, 8%, —wY, {s¥, -w”, ﬂyk}}

in adle(gi(x), gs(x)) the restriction of¥’ to L,, Lo, L yields a satisfying assignment for
the claus€ L, Lo, —L) (see Tablé.2). In total we obtain a satisfying assignment for
negl(F, (Cy, L)). This concludes the proof of Claim 2. O

<p

Theorem 9.14. (negl, VEX3SAT) Shi (rmlc, V1-3SAT)-

Proof. The proof is similar to the proof of Theore®nl3 Let F' = {CY, ...,C,,} be an
Ex3SAT-formula. The functiory; is mapping each 3-clause;, = {z,, z,, 2. } to the
set of clauses

Cl = {{zp, &, 7} {2, !, 07} {2, 7, 07} {2, 87—} {7, !, g/ } )
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wheres’, t7,u7, 07, w’, 3’ are new distinct variables local €. The reduction functions
g1 andgs are given by

gl(F7ﬂ7 <C7L>> = U lea

C]‘EF

g3(F, B3, (Ch, 2)) := ({2, 8%, ~w*}, s%).

We can prove claims that are similar to the ones in the proof of The8r&& Again,
Table9.1 and Table9.2 are helpful to establish these claims. We leave a formal proof
to the reader. O

Theorem 9.15.LetC be closed undex? -reduction,V; ;5.1 be a verifier forl-3SAT,
K € N\ {0}, andq(n) = §/n. Then

1. (ad?, V] 3sa1) € CI\E/IOD/CeTt(Vl,-BSAT> = NP C C/poly,
2. (ad, V] 3sa1) € cONPyop/(cert(V] zsar) N fun - NP) = {1}P C NP.

Proof. The reduction functiong, and f5 that are implied by the proof of NP-complete-
ness ofMOD,,V1.3sa1 (Theoren9.11) can easily be altered to hold for multiple mod-
ifications of the formud?. Consequently, for alF’, m € X* it holds that

o F € 3SAT& f,(F) € 1-3SAT,
e ad’(F,m) € 3SAT & ad?(f1(F), f3(m)) € 1-3SAT.

By the construction in the proof of CorollaBy9there exist functiong;, g3 € FP such
that for all F, m € ¥* it holds that

e '€ SAT & ¢i(F) € 3SATand
e ad!(F,m) € SAT < ad(g,(F), gs(m)) € 3SAT.
By composition of these functions we get functidnshs € FP, for which
e ¢ SAT & hy(F) € 1-3SATand
e adi(F,m) € SAT & adi(hy(F), hz(m)) € 1-3SAT.

Now, the assertions follow from Theoreft27and Theorend.31, respectively. [

No solution as promise
Observation 9.16.

1. 1-3SAT <, (adlc, 1-3SAT),
2. 1-3SAT <", (rm, 1-3SAT),
3. 1-3SAT <%, (rmlc, 1-3SAT), and
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4. 1-3SAT <7, (neg, 1-3SAT).

Proof. Let F' be al-3SAT-instance ana, b, c ¢ Var(F). The following functionsf;
and f, yield the desired<’;-reduction:
Proof of 1.)

e fi(F):=FAaA—a,
o fo(F) = ({-a},b).
Proof of 2.)
o fi(F):=FAaAa,
o fo(F) :=—a.
Proof of 3.)
e filF):==FANaAbAcA(aVbV—c)!
e fo(F):=((aVbV-c),b).
Proof of 4.)
o fi(F):=FAaNbA(aVD),

o fo(F) :=a.

1We choose this rather 'complicated’ construction to avoid modified instances in which the same clause
appears twice.
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9.5 CLIQUE

The problemCLIQUE is defined as follows:
CLIQUE := {(G, k) : the graph& contains a clique of size at leds}.
The verifierVg, oue We use for the probler@LIQUE is given by
((G,k),C) € Veugue & C CV(G) A Cinduces &-clique onG.

We consider the modification functiond, rm, andad&rm, which add an edge to a
graphG, or remove an edge, or simultaneously add and remove an edge, respectively.
Additionally, we examine the case where a single edge is added anithcremented
by one. Formally,

e ad((G, k), ¢) = ((V(G), E(G) U{e}), k),
o rm((G,k),e) = ((V(G), E(G) \ {e}), k),

. V(G), (E(G)u{e) \{f}).k), i f € EG),
o adlrm((G, k). (e, f)) = { ((G, k) ) otherwise,

e adinc((G,k),e) = (V(Q), E(G)U{e}),k +1).

Arbitrary solution as hint

We antedate a result from the next section. There, we showMED,,;14,c is NP-
complete. Thus, to shoWP-completeness d1OD,.,,, Ve ioue, it is sufficient to show
the following.

Theorem 9.17. MODadVVC an MODTTT’LVCLIQUE'

Proof. The standard reduction function fofC <? CLIQUE, as for example given in
[GJ79, which uses the strong connection

(G,k) € VC < (G, |V(G)| — k) € CLIQUE

is structure preserving. Also it is compatible w.r.t. the modificatiehandrm, since
adding an edge i corresponds to deleting an edge in the complementary graph
0

BecauseMOD,; V¢, oue IS €asy (proof omitted), we examine if knowing:eclique
of G can help in finding & + 1-clique in aninc-modified graph. This problem is
NP-complete.

Theorem 9.18.MOD ,4in:VeLioue IS NP-complete.

Proof. We reduceCLIQUE to MOD ,4n-Vewique Via the three functiong;, f», and f;
defined as
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o LG K) = ((V(@) U Lo oy}, BG)U{{on 0} 1< i< <k}
U{{v.y} v e VG \ {u}}) k),

o fo((G,k)) :={v1, ..., v},

o £5((G.R) = {u,y},

whereuy, ..., v, y are pairwise different vertices that are not contained’iandu is
fixed vertex fromV/ (G). The functionsfi, f», andf; are polynomial-time computable.

Note that(f, (G, k), f2(G,k)) € Vergue- TOo ShowCLIQUE <P MOD 44incVevioue it
only remains to prove the equivalence

(G, k) € CLIQUE < adinc(f1((G,k)), f3((G, k))) € CLIQUE.

To show sulfficiency, suppose th@t, k) contains a&-cliqueC' C V(G). The graph
f1((G, k)) joined with the edgdu, y} contains & + 1-clique, namelyC' U {y}. Thus
adine(f1((G,k)), f3((G,k))) € CLIQUE.

Conversely, assume that the grafifi(G, k)) joined with the edggqu, y} contains
ak + 1-cligue C. No vertex from{vy,...,vx} can be part of this + 1-clique C.
ThereforeC' C V(G) U {y}. The setC' \ {y} is a clique of size at leadtin G. Thus
(G, k) € CLIQUE. O

Selected solution as hint

We aim to show that for the modificationi&rm no certificate function is helpful to
decide if the modified instances have appropriate sized cliques. In order to prove this,
we use a reduction functiofifrom [Kar72 that showsSAT <P CLIQUE. There, the
author gives the following functiofi that maps a formul&’' = {C}, ..., C,,,} to the pair
(G,m), whereG is given by

e V(G)={(L,k) : LeCy} and
o BE(G)={ ((Li),(L,j) : i#j N L#-L}.

The reader may verify that this yields a reduction fr&AT to CLIQUE. Note that
the reduction functiory has the following useful properties: For any formwla=
{C4,....Cn}

(P1) there exists nen + 1-clique in f(F'),

(P2) if C, = {L} isaunitclause of then eachn-clique of f(F') contains the vertex
(L, k),

(P3) if F has exactly one satisfying assignment thf¢') has exactly onen-clique?

2|t is stated frequently in the literature that this reduction is parsimonious, but it is not. For example,
the formulaz; A (x1 V x2 V x3) has four satisfying assignments, but the grgph’) has only three
cliques of size two.
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Figure 9.3:The graphG from the proof of Theoren®.19 A dashed line indicates a
modified edge.

(P4) if Vsar(F) = {5} then the sole clique of (F') can be computed from” and 3
by a functiong € FP.

Property(P1) and property( P2) follow from the fact that the vertex se{sL, k) :
L € Cy}, 1 < k < m, are independent sets jf{F'). Property(P3) can easily be
verified by contraposition. The last property is obvious.

Theorem 9.19. (neg, Vsar) <}, (ad&rm, Veiioue)-

Proof. We give three reduction functions, ¢», g3 € FP such that for allF, 5, m € X*
it holds that

VSAT(F) = {6} = VCLIQUE(,gl(Fvﬁ? L)) = {92(F767L>}7 3

neg(F, L) € SAT < ad&rm(gi(F, 3, L), gs(F,3,L)) € CLIQUE. (4)

To defineg; we use the above mentioned reduction funcifdor SAT <P CLIQUE.
We distinguish two case§,.} € F and{L} ¢ F. The total functiongy, g-, g3 can
then be composed of their partial counterparts.

We start with the easier ca$é} ¢ F'. Therefore F' is not modified at all. We define

gl(F7ﬁ7L) = f(F) and gQ(FuﬁuL) ::g(F’6>7

where g is the certificate mapping function from (P4). The equivalerB)efdllows
from (P3) and (P4). If we defing;(F, 5, L) to be some tuple of edges not contained in
f(F) we have thatd&rm(gi(F, 5, L), g3(F,5,L)) = q1(F, 3, L) = f(F). Now, the
equivalence4) is a consequence of the fact thfais a reduction function foBAT <P,
CLIQUE.

Now, let{L} € F, FF = Cy A--- AN Cp, andCy, = {L}. Our starting point for the
definition of g, ((F, 8, L)) is the graplG’ := f(neg(F, L)). ToG' we add a new vertex
z and connect it to all the vertices fro@ except the vertexLZ, k), which corresponds
to the unit clause’;, = {L}. We also add t@~" an extram + 1-clique. The resulting
graph is the graply, as depicted in Figur@.3. Formally,G is defined as follows:
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o V(G):=V(G")U{zuy,...,ums1} and

e E(G) =EG)U{{v,z} :v e V(G)ANv# (L k)}U
Huiyuj} 1 <i<j<m+1}.

We claim that 8) holds when we defing, andg, as
gl(Faﬁ7L> = (G,m + 1) and

gQ(Faﬁu L) = {ula ce. 7um+1}'

Therefore, we show that the single+ 1-clique of G is {uy, ..., u,,41} (independent of
|Vsar(F)|): By property (P1), the grapi’ cannot contain a clique of size greater than
m. Therefore, by property (P2) eaeh+ 1-clique of G other thar{u., ..., u,, 11} has
to contain the edgéz, (L, k) }. Since this edge is not presentifwe conclude that the
solem + 1-clique of G is given bygs(F, 3, L).

Finally, we defingy; as

g3(F,ﬁ, L) = ({27 <L> k)}v {u1>u2})7

that is, we add the missing edge betweesnd (L, k) and remove an edge in the only
m + 1-clique of G.

To see that4) holds assume thaieg(F, L) € SAT. Thusf(neg(F, L)) contains an
m-cligueC andad&rm(G,{z, (L, k)},{u1,us}) contains then + 1 cliqueC U {z}.

For the other direction, assume that&rm(G,{z, (L, k)}, {u1,us}) contains an
m + 1 clique. Obviously, this clique does not contain any of the vertiges., u,, 1.
Thus, the subgraph of induced by’ (G")U{z} contains amn+1-clique and therefore
f(neg(F, L)) has ann-clique. This impliesweg(F, L) € SAT. O

Theorem 9.20.LetC be closed undex? -reduction,V¢, . be a verifier forCLIQUE,
K € N\ {0}, andq(n) = §/n. Then

1. (qua VCILIQUE> € CI\E/IOD/cert<VC/:LIQUE) = NP C C/pOZy’
2. (rm, VC’UQUE) € CONPfAOD/(cert(VC’UQUE) N fun-NP) = {1}P C NP.

Proof. The proof ofNP-completeness oMOD, ;i c (Theorem9.22 can easily be
altered to hold for multiple modifications of the forad?. Using the close connection
betweenVC and CLIQUE we can derive by composition of the respective reductions
(also see Theore®.19 two functionsfi, f3 € FP such that for allF, m € X* it holds
that

e '€ SAT & f(F) € CLIQUE,
e ad’(F,m) € 3SAT < rm?(f,(F), fs(m)) € CLIQUE.

The assertions follow from Theorefn27and Theorend.31, respectively. H
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No solution as promise
Theorem 9.21. SAT <. (ad, CLIQUE).

Proof. Again, we use the reduction functighfor SAT <P CLIQUE from [Kar72, as
described at the beginning of the last subsection.A.et {C}, ..., C,, }. We construct
a graphG by adding two additional vertices and z, to the graphf(F'). Then we
connectz; andz, to every vertex inf (F'). Formally,

o V(G):=V(f(F)U{z,2}
o E(G):=E(f(F)U{{z, v} {z,v} v e V(F(F)}

wherezy, zo ¢ V(f(F)). By property(P1) of the reductionf it is clear thatf(F')
has at most am-clique. Therefore(Z has at most am + 1-clique. Now the desired
<};-reduction is given by

o fi(F):=(G,m+2),
° fQ(F) = {21,22}.

Correctness of the reduction follows from the fact thétf; (F'), fo(F')) has ann + 2-
clique if and only if f(F") has anm-clique. The latter is the case if and only/fis
satisfiable. O
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9.6 VERTEXCOVER (VC)

A vertex covernf a graphG is a subset of the vertices 6f that covers all the edges,
that is, for every edge € E(G) one of its endpoints belongs to the vertex cover. The
decision problenVC is defined as follows,

VC = {(G, k) : G has a vertex cover of size at mdst
We fix our verifierl4y,c for VC as
(G,k),C) e VWe & C CV(G) AN |C| <k A Cisavertex cover ofr

We consider the modificationsl, rm, andad&rm as defined in Sectio®.5.

Arbitrary solution as hint
Theorem 9.22 ([_|b04]) MOD .4Vsar Sg@ MOD 4W.c.

Proof. The proofis already inlfib04]. We restate it here for convenience. We construct
three reduction functiong,, f», and f; such that for all: := (F', 3, L) it holds that

T € MODadVS/_\T = ((f1<$),f2($),f3($)) c MODadVVc. (5)

To definef;, we use a reduction functiohfrom [BC94 that showsSAT <? VC. We
give a short summary on the work of the functifn

Let ' = {C},...,C,,} be CNF-formula and/ar(F) = {xy,..,x,}. The function
f mapsF to a graphGz that consists of truth-setting components, satisfaction testing
components, and communication edges between these components. For each variable
x; in F'we add as a truth-setting-component the subgtéph —z; }, {z;, ~z;}) to G,
that is, we add the two vertices and —z; joined by a single edge. For each clause
C; we add toGG  as a satisfaction testing component thg-clique that consists of the
verticesay, ..., alci'. Furthermore, for each clausg = {L;,, ..., Li\c-\} the communi-
cation edges are distributed between the truth-setting componénts and the satisfaction
testing components according to the literals in this clause, thatiis, i z; thena} is
connected ta:; and so on. Figur®.4illustrates the graply'» that is constructed by
whenF = {{xl,_\fﬂg,xg}, {—z9, ~x3, 14, x5}, {ﬂx4,ﬂx5}}. If we set

F(F) = (Gron+ Y (1G] = 1)

we have the complete definition @gf For a proof of the fact that' » contains a vertex
cover of sizen + 3", (|C;| — 1) if and only if the CNF-formulal” is satisfiable we
refer to BC94].

To show(5) we define

o fi((F5,1)) = (V(Gr) U{y} BGr)).n+ X (IC] - 1),
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Figure 9.4:A showcase example for the reductidAT <P VC if FF =
{{I’l,_‘.fg,xg},{_‘CUQ,_‘I37.T4,_‘J;5}./{_‘ZE4,_‘SU5}}.

wherey is a new vertex not contained In(Gr) and

o f»((F.B,L)):=C",

whereC’ is constructed from the satisfying assignmeats explained in the following.
For each variable; from ' we put the vertex; into C” if 5(z;) = 1 and we add-z;

to C' if f(x;) = 0. For each clausé€’; we search for a literal that is made true by the
assignmengs. If there exits such a literal;;, with a corresponding vertex, we add

all the vertices{a} : 1 < k < |Ci] , k # j} to C". If no such literalL;, exists, we put
all the vertices{a’ : 1 < k < |C;|} into C”. Finally, we define

 fa(z)={y, L},

that is, we modify the VC-instancg (x) by adding an edge between the isolated vertex
y and the literalL.. The vertexy now acts as a satisfaction testing component for the
unit clause{ L}. All three functionsf;, f», and f; are polynomial-time computable.

To prove(5), first suppose that € MOD,;Vsar, thatis,(F, 3) € Vsarand A L €
SAT. Sinceg is a satisfying assignment fdr, the vertex cover” contains exactly
n+Yy . (|Ci| —1) vertices, which implie$f, (), f2(z)) € Wc. Furthermore, observe
that theVC-instanceud( f1(x), f5(z)) equalsf(F A L). Sincef is a reduction function
for SAT <P VC it holds thatf(F' A L) € VC. Thus, alsad(fi(F), f2(F')) € VC.

Conversely, assume that ¢ MOD,,Vsar, that is, (i) (F,3) ¢ Vsar or (i) ' A
L ¢ SAT. In the first case,f, transforms(F, 3, L) to a cover that has more than
n+ Y, (|Ci| — 1) vertices. Such a cover can be no solution for Ye-instance
(Gr,n+Y 1", (|C;i| —1)). Thus(fi(x), f2(z)) ¢ Vic. Inthe second case, we conclude
thatad(fi(z), f3(x)), which equalsf(F A L), is not contained iV C, since otherwise
the formulaF' A L was satisfiable. In both cases, we get thatz), fo(z), f3(x)) ¢
MOD,,Vyc. O

Selected solution as hint
Theorem 9.23. (ad&rm, Veiique) <h; (ad&rm, Vyc).
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Proof. The standard reduction functigifor CLIQUE <P VC (see [5J79) is structure
preserving and an additigdeletion of an edge in th€LIQUE-instance(G, k) corre-
sponds to a deletigiaddition of an edge in th&C-instancef ((G, k)). O

Theorem 9.24.LetC be closed undex? -reduction,Vy,- be a verifier forVC, K €
N\ {0}, andg(n) = {/n. Then

1. (ad?, V) € Cyop/cert(Vye) = NP C C/poly,
2. (ad, V{¢c) € coNPyop/(cert(Vic) N fun-NP) = {1}P C NP.

Proof. The reduction functiong; and f; that are given in the proof of NP-completeness
of MOD ;Wi c (Theorem9.22) can easily be altered to hold for multiple modifications
of the formad?. Consequently, the conditions in Theoreh27 are satisfied. The
assertions follow by application of Theorefr®7and Theorend.31, respectively. [

No solution as promise
Theorem 9.25. (ad, CLIQUE) <P, (rm,VC).

Proof. The standard reduction functighfor CLIQUE <P VC, as for example given
in [GJ79, is parsimonious. The reductiof is also compatible with respect to the
modification functionsud andrm, that is, the addition of an edge in tl& IQUE-
instance(G, k) corresponds to the deletion of an edge in YHe-instancef((G, k)).
Therefore, both properties of Definitidn7 are satisfied. O
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9.7 HAMILTONIAN CYCLE (HC)

The problemHC consists of all graphs that have a Hamiltonian cycle. We use the
following verifier V4 for HC:

(G,C) € Vjc & C C E(G) N C forms a Hamiltonian cycle in G

Note that a cycle oty usually is defined as a sequence of vertices. This would lead
to several cycles, with different starting points and directions, all corresponding to es-
sentially thesameHamiltonian cycle. With the verifieVyc a graphG has exactly as
many certificates as the graphcontains 'different’ Hamiltonian cycles. Nevertheless,
for notational benefits we often refer to Hamiltonian cycleg&sias a sequence of the
vertices ofG.

We consider the three modification functiang rm, andad&rm as defined by

e ad(G,e) = (V(G), E(G)U{e}),
e rm(G,e) := (V(G), E(G) \ {e}), and
+ (@, e.0) = { (€ FOUEDVUD), 11 2 PG

G, otherwise.

Arbitrary solution as hint
Theorem 9.26.MOD;V3sar <P, MOD,.,,, Viic.

Proof. We construct three reduction functiorfs, f>, and f; such that for allx :=
(F, 3, L) it holds that

xr € MODadV35AT = ((f1($), f2($), fg(iB)) - MODTmVHc. (6)

We use an idea fronAS7§, where it is shown thaEx3SAT <P HC. First, we give
a sketch of the proof inS7§. Then we show how to reducgSAT to HC, using
basically the same idea. Last, we will alter this reduction fi®@8AT to HC in a way
that is becomes compatible w.ratd andrm.

First, we summarize the proof f&x3SAT <P HC from [PS78. The following
two graph gadgetst and B, which are depicted in Figurg.5 a) and Figured.5 d),
are very helpful in the proof. We just mention the following propertydoffor details
see PS83). Assume thatA is an induced subgraph of some Hamiltonian gréph
Furthermore, assume that the vertiees.., z;» are only incident to edges frodi(A).
Then, each Hamiltonian cycle @f traverses the gadget by using one of the ways
depicted in Figur®.5b). Thus, the grap behaves as if it was just a pair of edges
{u,v'} and {v,v'} of G with the additional restriction that each Hamiltonian cycle
of GG traverses exactly one of them. We represent this as shown in Fgbi®. A
similar property holds for the gadgst In short, each Hamiltonian path through can
traverse the gadget by using an arbitrary subset of the §dgesu;1} : i = 1,2, 3},
except the case where it uses all three of these edges.
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The graph gadget A The graph gadgets B and D
e OV g

us
us

—O— u
U

Uy
uO Ov "

c) d) €)

Figure 9.5:The graph gadgetd,B, and D, which are shown im),d), ande), respec-
tively. The only two possible ways to traverdeare given irb). A pictorial
representation of the gadgétis given inc).

Let /' = {C},...,C,,} be a EX3CNF-formula and létar(F) = {z1,...,z,}. We
show how to construct a gragh = f(F) such thatt" € Ex3SAT < f(F) € HC.

For each variable;, 1 < i < n, we have two vertices; andw; as well as an 'upper’
and a 'lower’ copy of the edgév;, w;}3. These two edges shall represent the fact that
the variabler; is set to either ’false’ or 'true’, respectively. We also have the edges
{w;,vis1}, 1 <i <n— 1, that connect these so called truth-setting components.

For each 3-claus€;, 1 < j < m, we add a copy3’ of the graphB. Let«’ denote
the vertices fromB’ that correspond to the-vertices inB. We add the edgegu1, v: },

{ul w,}, and{u], ul ™'}, 1 < j < m—1, to the graph constructed so far. Now, we take
into account the exact form of the clausesFoby 'connecting’ edges from the truth-
setting component with edges from the copieg3ofWe use the gadget to 'connect’
the edge{u/, u/, , } with the 'upper’ copy of{vy, w; } in case that théth literal of C; is
-z, and with the "lower’ copy of{ vy, wy} if itis x;. This concludes the construction
of GG. For a proof of correctness we refer 8383.

Now we alter this reduction to hold f@SAT-formulas as well. The construction
of the needed grap@’ works exactly as above, except when unit clauses or 2-clauses
appear. For each unit-clausg of F' we add a new vertex on the 'lower’ copy of the
edge{vx, wy}. For each negated unit-clause;, of F' we add a vertex on the 'upper’
copy of the edgd v, wi}. This new vertey is added as direct neighbor of so that
it does not interfere with any (potentially to be adde@dyertices on this edge. As a
consequence, for a unit claugey} ({—x,}) each Hamiltonian cycle trougf’ has to
use the 'lower’ (upper’) copy of the edde, wy }, thereby fixing the variable.

For each 2-claus€ of I’ we add toG’ a copyD’ of the gadgeD depicted in Figure
9.5e) . This gadgeD has the same property & namely that not both of the edges
{uy,us} and{uq, us3} can be used when trying to traverBe- but any other selection
allows a traversal. The edgés’,«}} and{u},u}} are connected to the truth setting
components in the usual manner. This concludes the constructi@fibEhould be
clear from the arguments given iR$83 that I’ € 3SAT & G’ € HC.

3These both edges will later be made distinct by inserting vertices along the edges.
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Figure 9.6:A showcase example for the reduction functiGnwhere the input instance
iISE = (mx1 VayVag) A (—xg V xg V oxy) A (xs V xg) A 2.

In a last step, we now alter the reduction such that the addition of a unit clause in
F is equivalent to the removal of an edge in some grégh:= f(F,3,L). Our
starting point is the grapli’ from above. For each vertex, in G/, 1 < k < n,
we add new vertices; ,w?,w3,w; to the copies of vy, wy} as indicated by Figur@.6.
Additionally, we add the edgdsv;, wi} and{w}, w}}. This concludes the construction
of G" = f1(F, 3, L).

To show 6) note that a cycle through” can easily be computed from a satisfying as-
signment forF’, and vice versa. Lef, be the respective function that maps assignments
to cycles. Thus,

(F,B) € Vasar & fi(F, 3, L), fa(F, 3,L) € Vic.
It remains to show that there exists a functigne FP such that
ad(F, L) € 3SAT < rm(f1(F, 3, L), f-(F,3,L)) € HC.
The functionfs;(F, 5, L) is given by

{wi, wi}, if L=y,
{wi,wi}, if L= -x.

f3(F, B, L) = {

This modification forces each Hamiltonian cycle of the modified graph to use the lower
(upper) copy of{vg, wi} in case thatl = x; (L = —x). This is possible if and
only if ' has a satisfying assignmefitwith 5(L) = 1 (3(L) = 0), or equivalently,

F N L e SAT. O

Selected solution as hint
Theorem 9.27.HC <} (ad&rm, Viic).
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Figure 9.7.The graph gadget/; and its two Hamiltonian traversals. The vertices
vi, vt vl vs are the only vertices that may be connected to other vertices.

Proof. We give three reduction functions, fs, f3 € FP such that
e G € HC & ad&rm(f1(G), f3(G)) € HC and

o Vuc(f1(G)) = {f2(G)}.

In defining f; we follow a construction fromKru05]. There, the author shows how
to transform a given grapfi to a graph’ that has certain Hamiltonian cycles that cor-
respond to Hamiltonian cycles 6f and one additional Hamiltonian cycle that does not
correspond to any of the Hamiltonian cycles(@f This additional Hamiltonian cycle
will be the hint that is given byf,. The gadgetH;, which is depicted in Figur8.7,
is a useful tool when constructing’. So, before turning to formal definitions of the
reduction functions, we state a useful structural property of the gddget

Claim: Each Hamiltonian cycle through the gadgBt contains either the path
(’Ui7 'Ué, Ué’ Ué? Uf’l? Ué? v%? ’Ué) Or the path(/L)g? Ué? 'Ui, Uz;l’ Ué’ Ué? U%’ Ué).

A proof of the claim by exhaustive case distinction iskai{j05].

Now, we describe the transformation of a graghnto a graphG’ := f;(G). Let
vy, ..., U, e the vertices of7. For each vertex;, 1 < i < n, we add the gadget
H; to the graphG’, which results in a graph that consistsofgadgetsH,, ..., H,,.
Let v, ..., vi denote the vertices dff; as depicted in Figur®.7. For each gadgeti;,

1 < i < n— 1, we connect the vertices; andv™. Furthermore, we add the edge
{vz,vi}. Consequently, the resulting graph contains the Hamiltonian cycle

O = (v%,vé,vg,v;,vi,vé,v%,vé,vf, "'705731_1?’U?’v;’vg’vg’UZ’Ug’U?’Ug’U%)'
As a last step in the construction 6f we want to establish a connection between
Hamiltonian cycles inG and corresponding Hamiltonian cycles@. Therefore, for
each edgdv;,v;} € E(G) we add the edgebus, v} } and{v], v} to the graph con-
structed so far. The resulting graph is the grgphFor an illustration of the construc-
tion of G’ also see Figur8.8. We define

o [i(G) =G\ {vr, vy}

4within this proof, we use the shorthait\ e to denote the grap&' in thate is removed.
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Figure 9.8:An example for the grap” (on the right) that is constructed from the graph
G (on the left).

e fo(G):=C" and

i f3(G) = ({U%,Ui},{@%,@é}),

that is, we modifyG’ by adding the edgév;, v; } and removing the edg3, vi }.

In the remainder of the proof we restriefC to graphs with at least three vertices.
This is justified, since there are only finitely many graphs with fewer than three ver-
tices, all of them non-members BfC. By mapping these graphs to a fixed, appropri-
ately chosend C-instance the reduction functiorfs, f>, and f3 remain polynomial-time
computable.

Now we show thatic(f1(G)) = {f2(G)}, i.e., that the graply’ \ {v{,v;} hasC’
as single Hamiltonian cycle. By the claim, a Hamiltonian cy€léhroughG’\ {v}, vi}
has to traverse the gadglt along one of the two mentioned possible paths. One of
these paths contains the edge, v; }. Consequently(’ uses the other path and entéers
leaves the gadget; atv] andvi. But then, the rest of the cycle is predetermined and
is equal toC".

What remains to be proven is the equivalence

G € HC & G'\ {v;,vi} € HC.

To show necessity, suppose tidate HC. Let (v;,, ..., v;, , v;, ) denote a Hamiltonian
cycle inG. Then clearly

i1 il ’il i1 il i1 il ’il i2 in—l (2 7 7 7 % 1 7 7 i1
(ZJ?; y Vg, Uy, Uy, Vs, Vg, Up 5 Vg 5 Vg™ ey Ug 73]3n7 U2n7 U1n7 U4n7 U5n7 U8n7 U7n7 U6n7 Us )
path throught; path throught{;,,
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is a Hamiltonian cycle ir’ that does not use the edge;, v3}.

Conversely, leC denote a Hamiltonian cycle i’\ {v3, v} }. Note that” has to leave
or enter the gadget/; through the vertex?, which is a vertex of degree two i@’ \
{v3, v} and has only one incident edge in the gadijet Therefore, the above claim
ensures that the gadg# is traversed by’ via the path(vi, vi, v], v}, vi, vi, vl v}).
Since any Hamiltonian cycle that enters the gaddetat v} has to enter every other
gadgetH; atv: we conclude that the cyclé has the form

i1 .21 .21 .01 %1 .01 .21 .01 .12 in—1 1 7 % A % 7 in i1
(US y Ug 71)1 y Vg 5 Us JUS y Uy >U6 , Ug 7--'71}6 73}3n>v2nuvln7v4nuU5nav8nuv7n7v6n7v3 )

path throughf7;, path throught;,

Therefore the edge;; v;,,, },1 < j < n — 1, and{v;,,v;, } are contained i(G).
Now, sincen > 2, the path(v;,, ..., v;,,v;;) forms a Hamiltonian cycle iz, which
impliesG € HC. O

Theorem 9.28.Let C be closed under? -reduction, letV}- be a verifier forHC,
K € N\ {0}, andg(n) = §/n. Then

1. (rm?%, V}ic) € Caop/cert(Viic) = NP C C/poly,
2. (rm, V}ic) € coNPyop/(cert(Viie) N fun-NP) = {1}P C NP.

Proof. The reduction functiong, and f; that are given in the proof of NP-completeness
of MOD,.,.,Vhc (TheorenB.26) can easily be altered to hold for multiple modifications
of the formrm?. The rest of the proof is similar to the proof of Theoréri5 H

No solution as promise
Theorem 9.29.HC <7, (ad, HC).

Proof. Let G be a graph and letbe a vertex of~. Letuy, ..., ux be the neighbors af.
We give two reduction functiong, g € FP such that

e 9.(G) ¢ HC,
o G € HC & ad(g1(G), g2(G)) € HC.

Let G \ {v} denote the subgraph induced by the vertit¢é&) \ {v}. We construct an
auxiliary graphG’ that is defined by

o V(G :=V(G\{v})U{vi,vs,v3} and
o E(G") = E(G\ {v}) U{{vr, v}, {v2,vs}} UUL {{ve, wi}, {vs, ui}},

wherevy, vy, andv; are three new vertices that are not containetl {i7). Informally,
the vertexv is expanded to a 3-chain of vertices, v,, andwvs, in which the outer
verticesv; andwvs are connected to the old neighborsvof

Now the functionsj; andg, are defined as follows:
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e 91(G) = (V(G), E(G) \ {{v1, v2}}),
e 32(G) = {v1,v2}.

Obviously, the graply; (G) does not contain a Hamiltonian Cycle, since the vertex
has degree one. Furthermotg¢,(G), g2(G)) = G'. Itis not difficult to verify that

G’ has a Hamiltonian cycle if and only @ has one. We leave this as an easy task for
the reader. N
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9.8 THREEDIMENSIONALMATCHING (3DM)

The problem3DM is defined as follows. Input instances3®M are sets of triples
over an alphabet. A setS C X2 is contained irBDM if and only if it has a three-
dimensional matching, or for short, a 3D-matching. A 3D-matching of aSsista
subset)M of S that covers each element 6fat its respective coordinate, but in a way
such that no two elements 61 agree in the same coordinate. We choose as verifier for
3DM the verifierV3py that is characterized by

(S, M) € Vapy & S C ¥* A M C Sis a 3D-matching folS.

The elementary modifications of interest are the addition of a trifr¢he set of triples
S, the deletion of such a triple frorfi, and the simultaneous addition and deletion of
triples. The respective modification functions are given by

e ad(S,t) := SU{t},
e rm(S,t) := S\ {t}, and

(Su{ti}) \ {to}, iftae s,

o ad&rm(S, (t1,t2)) = { g otherwise.

Before turning to the results, we state a few facts about 3D-matchings and introduce
some helpful notions. Lef; denote the set of different alphabetic characters that occur
asith component in the set C 32, e.g.,5; := {z : (Jy,2 € ¥) [(z,y,2) € S|}. Note
that a setS can only have a 3D-matching ib;| = S| = |S3]. We call such set§
with |S1] = |S2| = |S3| well-formed. For well-formed setS let {z4, ..., x,} := S,

{y1, .., ye} := Sz, @and{zy, ..., 2} := Ss.

Arbitrary solution as hint
Observation 9.30.MOD,;V3pm € P.

Proof. Let M be a 3D-matching for a sét. Containment otid(S, (z,y, z)) in 3DM
can be decided with the following polynomial-time algorithm.

First, determine ifr € S;, y € S, andz € S3. If this is the case thed/ is a
3D-matching forad(S, (z,y, z)) and the algorithm outputs "yes”. If the first case does
not apply, testifr ¢ Si,y ¢ S, andz ¢ Ss;. Then a 3D-matching foid(S, (z,y, 2))
is given by M U {(z,y, z)} and the algorithm outputs "yes”. Otherwise, if none of
the above cases apply, the algorithm outputs "no” since the&ét (z,y, z)) is not
well-formed. O

Theorem 9.31.3DM <? MOD,.,,V3pwm.

Proof. We show existence of three polynomial-time computable functigng,, and
f3 such that for all set§' it holds that

S € 3DM & (f1(S5), f2(S5)) € Vapm Arm(f1(S), f3(S)) € 3DM. (7)
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Assume thatS is a well-formed3DM-instance, otherwise the proof is trivial. Let
S1 = A{x1,..,xe}, So = {y1,...,ye}, and Sy = {z1,...,2,}. The basic idea for the
definition of the reduction functiosfi; originates from N96]. In this paper a function
f € FP is given such that, for any set of triples the setf(S) contains (i) at least
two 3D-matchings ifS € 3DM (ii) contains exactly one 3D-matching$f ¢ 3DM. In
detail, the functiorf from [UN96] is given by

f(S):=SUMuUCAV,

wherez, y, 2", 1 < < (, are new variables that are not containedinJ S, U Ss,

o M :={(wy,y;,2):1<i<}U{(z),y,2):1<i</(} and

o CAV :={(af,yfy, %) 1 1 <i <L =1YU{(af, 9, %)}
Note that)M’ is a 3D-matching forf(.S). Informally, the set\/’ may be referred to as
an extra matching and’AV may be seen as cover set for the additionally introduced
variables.

Now we are prepared to define the functighsf,, and fs:

o f1(S) = f(5),
e f5(S):= M’ , and

i f3(S) = (miF?yfr?Zl)'

The functionsf, f,, and f; are polynomial-time computable. Before turning to the
proof that these functiong, fs, f3 satisfy (7), we establish a helpful claim.

Claim: Let M be a 3D-matching form(f;(S), f3(5)). ThenM N M’ = ().

Proof of claim: Let M be a 3D-matching forf,(S) \ {(z1,v;,21)}. The triple
(z7,ys, 27) is contained inM since it is the only element of; (S) \ {(z], v, 21)}
that contains the charactef. Thus, the elemeny; is already covered and therefore
(x5, 95, 22) ¢ M. Considering the element] we conclude thatz3, vy, 25) € M.
Repeated use of this argument yields thatl” C M. Since CAV covers all of the
additional variables:;", y;", z;", 1 < i < ¢, and all of the triples from\/’ contain at
least one of these additional variables, we concludehat M’ = (). This proves the
claim.

To show(7), it is sufficient to show the equivalence
S € 3DM < rm(f1(S), f5(5)) € 3DM
since(fl(S), fg(S)) € Vapwm is obviously true.

To prove sufficiency, suppose thdte 3DM and letM be a 3D-matching fors.
Thus,M U CAV is apparently a matching foi(S) = f1(.S). Sincef;(S) ¢ MU CAV
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the setV/ U CAV is a matching forf; (S)\ { f3(S)}, which impliesrm(f1(.S), f5(S)) €
3DM.

Conversely, assume thatn(f1(S5), f3(S)) € 3DM and letM be a matching for
rm(f1(S), f3(S)). Using the claim, we obtain the result thet' N M = (). Therefore
M C SU CAV. Now, the setM \ CAV is a matching forS. ConsequentlyS €
3DM. [

Selected solution as hint
Theorem 9.32.3DM <7 (ad&rm, Vipwm).

Proof. We give three reduction functions, g2, g3 € FP such that

e Vapm(g1(5)) = {g2(5)} and
e S € 3DM & ad&krm(g:1(S), g5(S)) € 3DM.

Recall the proof of Theorer®.31and the functiory defined there. The three func-
tions g, g andgs are given by

o 91(S) = f()\{a1 93,5}
e go(S):=M',and

o g5(5) = ((a],y5,27), (=1, i, 21)).

First, we show thatzpm(g1(S5)) = {g2(S)}. Obviously,g.(S) is a 3D-matching for
91(S). To show uniqueness of the solutigs(.S), assume to the contrary that.S) has
another 3D-matching/. The triple(z}, 3", 21) has to be contained il since it is the
only element off (S)\ {(x,y4, z{")} that contains the charactef. Thus, the element
y; is already covered and therefdte, yi", z,) ¢ M. Considering the elemenf” we
conclude thatz;, v, , z/) € M. Repeated use of this argument yields thét= )/, a
contradiction.

Furthermore the setd&rm(g:1(S), g3(S)) and the setm(f1(S), f3(S)) from the
proof of Theoren®.31are identical. Regarding the latter set we already have shown in
the proof of Theoren®.31that

S € 3DM & rm(f.(S), 5(S)) € 3DM.

The assertion follows. O

Next, we show an analog to Theoren25 that is, we show that for the modification
problem(rm?, Vapm), Whereg(n) = §/nandK € N\ {0}, the existence of useful hints
is not likely. We could proceed similar to the caseHt€ where we gave a reduction
that had the necessary properties in order to be applicable to Theb&mSuch a
reduction can easily be found by altering a well known reducEsr3SAT < 3DM
from [GJ79. Nevertheless, we demonstrate how to prove this result directly, as the
proof demonstrates a more general idea.
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Theorem 9.33.LetC be closed undex? -reduction, K € N\ {0}, andq(n) = ¥/n.
Then

(rmq, V3DM) c C,\EAOD/CeT't(VgDM) = NP C C/poly

Proof. Let C, K, andq be as stated above and [etn?, Vapm) € Crop/cert(Vapm)
via the certificate functiork for Vzpy and the predicaté’ € C, that is, for all3DM-
instancess, all k < ¢(|S|), and every series, = (my, ..., my) of triples from.S it holds
that

S € 3DM = [rm?(S,m) € 3DM < (S, h(S),m) € C].

We show that under these assumptiBEsM € C/poly.

Recall the definition of5;, i« = 1,2, 3, given at the beginning of this chapter and let
¢ = |S1| = |S2| = |Ss]. We consider a coding &DM-instances such that| = |5’
for all well formed setsS and.S” with |S;| = |S7|. This can be achieved by codirty
via 0/1 entries in a three-dimensional array of dimension ¢ x ¢. We also want to
pad thes&DM-instances, such that the conditions posed in the proof of Thedr2n
as restated below, are satisfied. Namely, these conditions can be restab&aMer
instances by posing that there exists a funcgied. € FP such that for allS € >* it
holds that

e pad, € FP,

e pad(5)| > |5|",

e S€3DM & pad,(S) € 3DM,

e S\ M € 3DM < pad,(S)\ M € 3DM, forall M C S.
Such a padding functiopad, does exist, e.g., by adding ® the triples(a;, a;, a;),
(+1<i<|S|", wherea; ¢ S; U S, U S;.

Let S be some well forme@DM-instance with|S;| = ¢. Let K, := S; x Sy x S5
denote the8DM instance that contains all possible triples over the coordinates$tom
Note that|S| = | K,| and that K;| # | K], fori # j, for our coding of3DM-instances.
Furthermorel, € 3DM and therefore for alln € X* it holds that

qu(Kg,m) € 3DM & (Kg,h(Kg),m) eC.
Let S denote the missing triples i}, i.e.,S = K, \ S. If we define
o I(|Ky|) := h(pad,(K,))® and

e (S,w) €' & (pad,(K,),w,S) € C

°Note that the elements 6f , S,, andSs; may be thought of as the natural numbgts..., £}. Therefore
Ky is not dependent on the structure of the $§tsSs, S3 but only on their sizé.
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then obviouslyh’ € poly and since& is closed undex?® -reduction als@’’ € C. Now,
the following equivalences hold

Sec3DM < rm™ (K, S) € 3DM

rm?(pad,(K;),S) € 3DM
(pad,(Ky), h(pad,(K;)), S) € C
(S, h(pad,(K¢))) € C*

(S, W' (|Kof) € C
(

S, K(|S])) € C".

to e

This shows thaBDM € C/poly. O

This last result can easily be adapted to also hold for modification prolleris,)
in which all instances of the same size can be obtained by applying the modifi¢dtion
to a fixed instancé’, € A. For the problenHC for instance K, is given by a complete
graph with? vertices, from which every other graph witlvertices can be obtained by
edge deletions.

Theorem 9.34.LetC be closed undex? -reduction andVyy,, be a verifier forHC.
Then(rm, Vipm) € coNPyop/(cert(Vipy) N fun - NP) = {1}P C NP.

Proof. We refer to the already mentioned reducti®x3SAT <P 3DM from [GJ79.
It is easy to derive from this reduction a reduct®B8AT < 3DM via f;, f3 € FP such
that

e '€ 3SAT < fi(F) € 3DM and
e adi(F,m) € 3SAT < rm?(fi(F), f3(m)) € 3DM.
The rest of the proof is similar to the proof of Theor8m5 H

No solution as promise
Theorem 9.35.3DM <7, (ad, 3DM).

Proof. Let S be a collection of triples and let € Sy, 2’ ¢ S,y ¢ Ss, andz’ ¢ Ss.
We define

o f1(S):=SU{(z,y,2)} and
o f2(5) = (2",y, 7).

The setf;(S) is not well-formed, hencé, (S) ¢ 3DM. The assertion follows from the
obvious equivalence

S e€3DM < SU{(x,y,2), (v, 2")} € 3DM.
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Theorem 9.36.3DM <7 (rm, 3DM),

Proof. Let S be a collection of triples and lete S,y ¢ S,, andz’ ¢ S;. Let
o fi(S):=SUu{(z,y,2)},
o f2(S) = (z,y, 7).

The setf;(S) is not well-formed, henc¢; (S) ¢ 3DM. Also, rm(fi(S), f2(S)) = S.
The assertion follows immediately. O
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9.9 PARTITION

For the problenmPARTITION we depart form the classical problem definition given in
[GJ79, which uses finite sets and size functions. We do so for description-simplicity
— the definition from (53379 is slightly intricate for our purposes. Instead, we use
sequences of natural numbers as instanceBABRTITION.

PARTITION := {(a1,...,a,) € (N\ {0})" : n € Nand there exists

Ic{l,..,npwith Ya= > a }.

i€l i€{1,..n\I
We use the following verifieVparririon fOr the problemPARTITION:

(S,I) € Vearrmon & S = (ay,...,a,) € (N\{0})" A T C{1,...,n}

ANlel A Z a; = Z Q;.
icl i€{1,....,n}\I

The conditionl € [ is a necessary condition for excluding the trivial second partitions
{1,...,n}\ I as a certificate; an instanteshall not have two solution when there really
is only one.

We consider the modification functiond andrm that add or delete a single natural
number from a given sequence, respectively. Formally,

o ad((z1,...,Tn),y) = (z1, ..., T, y) and

L (Ib"‘7xi—17x7§+1)-"7xn)7 Ify:xu
o rm((xy,...,T,),y) = { (21, .. Th), otherwise.

Arbitrary solution as hint

Theorem 9.37.PARTITION <P MOD,;Vparrimion-
Proof. Let S = (ay, ..., a,). We define
o f1(S) = (ar, . an, 200, i),
e fo(S):={1,...,n}, and
o f3(5) =21 a
Obviously, (f1(S), f2(S)) € Vearrmon. Consequently, it remains to show that
S € PARTITION < ad(f1(S), f3(S)) € PARTITION.

To show sufficiency, suppose thatis a certificate forS. Thus,/ U {n + 1} is a
certificate forad(f1(S), f3(S)) = (a1, .., n, Dory G5y 2ory @)
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Conversely, assume thais a certificate fofa,, ..., an, Y ;. @i, Y iy a;). The sum
of the sequencéuy, ..., a,42) iIS3 - Y ", a;. It follows that

3 n
Zai: Zalzﬁz_;al

i€l 1e{l,...,n+2}\1

Thus, it is impossible that both+ 1 andn + 2 are contained id or{1,...,n+ 2} \ I.
W.l.0.g. generality assume that+ 1 € 7 andn + 2 € {1,...,n + 2} \ I. Thus,

Z a; = Z ag,
ieI\{n+1} ie{l,..,n}\I
which implies thatS = (ay, ..., a,) € PARTITION. O
Theorem 9.38. PARTITION <P MOD,.,,, Veagrition -
Proof. We use the same reduction functions as in the proof of The®8r8ih

o fi(S) = (a1, ..., an, > 1 a;),
o f2(S):={1,..,n},
o f3(5):= Z?:l Qi

Obviously, (f1(S), f2(S)) € Vearrmon. Furthermoreym(fi(S), f3(S)) = S. The
desired result is immediate. O

Selected solution as hint

The problenPARTITION seems especially susceptible to slight modifications. Not only
that both adding and deleting an element from the sequg&yoeld NP-complete prob-
lemsMOD . Vearrimion, DUt We can also prove that generally solution yields a helpful
hint in this case. This can be proven by hint-independent reductionsRr&mITION

to (ad, Vearrimion) @nd(rm, Vearrimion ), respectively. The reductions given in the proofs
of Theorems9.37and9.38are hint-independent reductions sifGg@xrron (f1(S)) =
{f2(5)} in both cases.

Corollary 9.39. PARTITION <} (¢, Vearmimion) fOr ¢ € {ad, rm}.

No solution as promise

Theorem 9.40.PARTITION <7, (rm, PARTITION).
Proof. Let S = (ay, ..., a,). We obtain the desireggi-reduction by defining
e f1(S) = (a1,...,an, (31 a;) + 1) and
o f2(9) = (il @) +1.
O

The reduction functiong; and f, from the last proof can also be used to show that
PARTITION <V (ad, PARTITION).
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Chapter 10

Appendix B - Optimization
Problems

10.1 MAXIMUM TRAVELLING SALESPERSON(MAXTSP)

We consider the probleml AX TSPas defined in Section.4. Without reoptimization,

the best known approximation result flsfax TSPis a4/3-approximation $er84. In
contrast toMINTSP, the generaMAX TSP problem benefits from reoptimization. It
has been shown inAEMPOg that MOD,,,MAXTSP is approximable with ratioZ—

(for the definition ofadv see Sectiof7.4). In thesis we show thaOD,,,.,MAXTSPis
5/4-approximable. Before we prove this result, we introduce some additional notation.

Definition 10.1 ([LP86]). LetG be a graph andf : V(G) — N. An f-factor of G is a
subgraphH of G such thatdegy (v) = f(v), forall v € V(G).

Whenf is a constant function, i.ef,(v) = k for all v € V(G) and some fixed € N
,we get the notion of &-factor. Note that a 1-factor @ is a perfect matching af. A
2-factor ofG is a partition ofGG into node disjoint cycles, or short, a cycle cover.

Lemma 10.2. Let G be a weighted graph an® = (p, ..., pn), m > 2 a constant, be
a path inG. There is a polynomial-time algorithm that finds among all 2-factor§ of
that contain the pathP a 2-factor of maximum weight.

Proof. A maximum weight 2-factor for7 that respects a given path, ..., p,) is in-
duced by a maximum weigljt-factor for G, where

0, ifx€{p2...,Pm-1},
fle) =4 1, ifze{p,pm}

2, ifzecV(G)\{p1, ..., Pm}

Chapter 10.1. ofl[P86 contains a reduction function, callgt such that for any graph

G it holds that? has anf-factor if and only ifg(G) has a perfect matching. We can alter
this reduction to yield a similar statement for weighted graphs. Utilizing an algorithm
from [Gab74 for finding a maximum weight perfect matching, we obtain@m?)
algorithm for finding a maximum weight-factor of G. O
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We are now prepared to prove our main result of this section.
Theorem 10.3.MOD,,,.MAXTSPis 5/4-approximable.

Proof. Let G° denote the original instance and [gf, be a maximum tour foG°.
Let G™ := inc(G°, (e, 7)) denote the modified graplk, = {u,v}, and letT,;, be a

maximum tour forG™. Note thatcost(G°, Ty,,) > cost(G™,T,},) — 4, since otherwise
TO

o Was not an optimum tour fo&°. Also, we assume that ¢ T, ande € T,,,
otherwiseT’;, is an optimum tour inG™ and is chosen as output when compared to

other solutions that are obtained in the coming.

1. Case: |V(G?)|is even From Ty, we can, in an obvious way, obtain a perfect

matchingM with cost(G°, M) > cost(G°, Ty,)/2 > (cost(G™,T},) — i)/2.
By adding the edge to M we obtain a sefl/’ that contains a path of length 3

and withcost(G™, M') > (cost(G™,T2,) + i) /2.

)~ opt

Now, consider a 2-factoF = (C1, ..., Cy) of G™ such that (a} is contained in

(4, (b)|Cy] > 5, and (c)F is of maximum weight among all 2-factors 6f" that
satisfy (a) and (b). We can find such a 2-factor in polynomial-time by constructing
a maximum weighted 2-factor fagF™ that contains the patfr, s, ¢, u,v) (see
Lemmal0.2), for all possibilities of expanding to a cycle-free path of length
four, and selecting the costliest of these 2-factors. SineeT}), we have that
cost(G™, F) > cost(G™,T™,).

opt

Applying the method of Serdyuko®sgr84, we iteratively, forp = 1, ..., ¢, delete

an edge fronC), and add this edge td/’ such that the modified sét’ is still a
union of paths. Fof'; = (r, s,t,u, v, ...) thisis possible since s, t are endpoints

of a path inM’ (only v andv are no endpoints) but only two of them can be
endpoints of the same path. Hence, ond of} or {s,¢} can be added td/’.

For all other cycleg’,, this is possible since only vertices from already processed
cyclesC;, 1 < j < p, can have degree 2 ill’. Thus, all (of at least 3) vertices
of C, are endpoints of some path id’ but only two of them can be endpoints of
the same path.

By this procedure, the 2-factdr and the set of edgel/’ are transformed into
two sets of path$’, and P, that satisfy

cost(G™, Py) + cost(G™, Py) = cost(G™, M) + cost(G™, F)
> (cost(G™,To) +1)/2 + cost(G™, To,).

9 opt Y Opt

By taking the costlier ofP?, and P, we get a set of paths with cost larger than
3(cost(G™,Tim,) + L. Let T denote the completion of this partial tour to a cycle

) - opt
in G™; sinceG™ is a complete grapti’ always exists.

Now fori < tcost(G™, T,) the solutionT?, yields a5/4-approximation, for

i > tcost(G™, Tim,) the tourT yields such a bound.

)~ opt
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2. Case: |V(G?)|is odd We construct fron; ; a set of paths\/ with at most one
path of length 2 such that (a)st(G?, M) > cost(G°,Ty,)/2, (b) insertinge into
M prolongs the longest path it¥, and (c)u andv are no endpoints i/ U {e}.
Thus,M’ := M U {e} only consists of paths of length 1, with the exception of a
single path of length at most 4 containin@ndv, andu, v being no endpoints of

the path.

Now, consider a maximum cost 2-factbr= (C4, ..., Cy) of G™ that containg

as an edge i} and|C;| > 8. SinceM’ contains at mos} vertices that are not

an endpoint of a path ifa/’, the cycleC; contains 3 consecutive vertices that are
endpoints inM’. The rest of the proof translates mutatis mutandis from the case
|V(G°)| is even.

A similar result for the modificatiodec has not been found.

Open problem 6. DoesMAX TSP benefit from reoptimization when the modification
is dec, i.e., iSMOD4..MAX TSP, d-approximable for somé < 37?

In analogy to the proof of Theorefh.13we are able to show the following non-
approximability result.

Theorem 10.4.There is noFPTAS for (inc, MAXTSP) and (dec, MAXTSP), unless
P = NP.

For a proof we refer to the coming Theordifd.§ in which it is shown that already
some restricted versions gfec, MAXTSP) and(inc, MAXTSP) have noFPTAS.
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10.2 MAXIMUM METRICTRAVELLING SALESPERSON
(MAXTSPA)

We consider the proble AX TSP, as defined in Section5. The problenMAX TSPy
is approximable with raticﬁ when no hint is given@NO7]. It has been shown in
[AEMPOg thatMOD,;,MAX TSP, admits aPTAS.

In this thesis, we prove that there exist®&AS for MOD .., MAXTSPA. There-
fore, we use the following theorem about approximability of alternative solutions for
MAX TSP, — a result interesting in its own right.

Theorem 10.5.Let G be aMAXTSPa-instanceT,,; be a maximum tour iz, ande
be an edge df’,;. We can find in polynomial-time a toiif such that does not belong

to 7" andcost(G,T") > (1 — W)cost(G, Topt)-

Proof. LetT,,; = (v1, ..., v,) be a maximum tour of = (K, w). We assume without
loss of generality that = {v,,v;}. First, we prove that there exist three consecutive

verticesv; 1, v;, andv;; in T, such that

w({vi—1,vi}) + w{v, v }) <

2
2coszf(G, Topt)-

Assume to the contrary that({v,_1,v;}) + w({vs, vis1}) > 25c0st(G, T,y), for all
2 <i < n — 1. But then, by summarizing the weights of the pathg_i, vo;, v9;11),
1 <i< [(n—1)/2]in T,y we getthatost(G, T,,) > (%5 — 3) - =25 - cost(G, Top),
a contradiction.

By deleting the edgegv,,, v1 }, {vi—1,v;}, and{v;, v;11} from T,,,; and inserting the
edges{v,, v; }, {v;, v1}, and{v;,_1,v;11} we obtain a toufl” that does not contain the
edgee. Because of the triangle inequality the cost of the thy)y increases when taking
the path(v,,, v;, v1) instead of the shortcyt,,, v;). Thus,7” is shortened by at most
w({vi—1,v;}) + w({vi, vi11}) compared td ;. O

Corollary 10.6. MOD .., MAXTSPA has aPTAS.

Proof. We may assume that the modified edgaoes belong to a maximum toiff ,
in the original grapl:°, but not to a maximum tour?, in the modified grapli:"". Let
e > 0. In case that > W Theoreml0.5yields a solutiori?” with cost(G°, T") >
(1 — e)cost(G°,T2,). The assertion follows from the facts thaist(G°,72,) >

)~ opt )~ opt

cost(G™, Tyy,) and thatcost(G°, T") = cost(G™,T"). In case that < = we
O

perform a brute force search for a maximum touéim.

Note that the proof of the above Theorem does not use the assertion that the modified
graphG™ satisfies the triangle inequality. Thus, we also hav&laS for the more
general modificatiomec that might output modified instances that violate the triangle
inequality.

Theorem 10.7.MOD,,,., MAXTSP, has aPTAS.
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Proof. Lete > 0 andG be aMAX TSPa-instance. Ife < W(Gﬁ we perform a brute
force search for an optimum solution@i”. In the other case, > W we output
the old solutioriTy,,. This suffices sinceost(G™,Ty,) > (1 — e)cost(G™, Ty,).

To see this, take an optimum tdiif, of G™. If e is contained iff;}, we use Theorem

10.5to get a tour!” that does not containand for which
m ! 2 m m m m
cost(G™,T") > (1 — m) cost(G™,Ton) > (1 —e)cost(G™, Ty,).

If e is not contained i, we setl” := T,7,. Since the modified edgeis not contained

in 7" and sincel 7, is maximum inG* we have

cost(G™,T") = cost(G°,T") < cost(G°, Ty,,) < cost(G™, Ty,,).
The assertion follows immediately. H
Theorem 10.8.There is na'PTAS for (inca, MAXTSPA) and (deca, MAXTSPa).

Proof. The proof is similar to the proof of Theoreim1l3 except that we assign the
weights 2, 3, and 4 to the edges, in order to satisfy the triangle inequality. ]
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10.3 MINIMUM STEINERTREE (MINST)

The problemMINST is defined as follows:

PROBLEM: MINST

INSTANCE A complete grapiG = K, a functionw : E(G) — N assigning
a weight to each edge af, and a subset C V(@) of so called
terminal vertices.

SOLUTION: A Steiner tree, i.e., a subtree @fthat includes all the vertices i\

MEASURE The sum of the weights of the edges in the subtree.

The nonterminal vertices aff are called Steiner vertices. The problédmNST is
approximable with factofl + “%3) ~ 1.55 [RZ05 and isAPX-complete BP89.

A Steiner tree instancé' can be transformed to an equivalent Steiner tree instance
A(G) that satisfies the triangle inequality as follows. For every edgeG we search
for a shortest path i that connects the two endpointscodnd modify the weight of
e to be the weight of this shortest path. L&tG) denote the resulting graph, which
clearly satisfies the triangle inequality. Now a Steiner tree soldtidor A(G) can be
transformed into a Steiner tree solution @of at most the same weight by expanding
every edge: of 7' into the shortest paths between the endpointsinfG.

In this thesis we study the problem of reoptimization when changing the weight of
single edges. The corresponding modification functibnsand dec are defined as
usual. But, the decrease of a single edgé-imight lead to the decrease of several
edges in the grapA (G), as there could be several new shortest patkisletween the
endpoints of some edges. Since we are mainly interested insveayl modifications
of the original instance we also consider a modification functliery, that does not
allow an edge decrease nthat would lead to multiple edge decrease\z). The
respective modification functiafec, is defined as follows

dec(G, (e,1)), if A(G)andA(dec(G, (e,i))) differ
deca (G, (e,1)) = in the weight of at most one edge,
trivial instance otherwise.

A modification functioninca can be defined in the same way.

The problem ofreoptimizingMIN ST-instances has already been discussed in liter-
ature. In EMPO7 it is shown, that the problelMOD,;,MINST is %-approximable
(the added vertex may be a terminal or a Steiner vertex)BHK*] the modification
consists of changing the type of a single vertex from being a Steiner vertex to being a
nonterminal vertex, and vice versa, and a 3/2-approximation is given for this problem.
Just recently, inBBH"08] these last results have been improved to 1.33 for the aug-
mentation of the terminal set and 1.4 for restricting the terminal set. AlSBi[ 08]
are the following results.

Theorem 10.9 (BBH"08]).
1. MOD;,.MINST is 3-approximable and
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2. MOD.,MINST is 1.3-approximable.

We complement these results, by giving lower bounds on the reoptimizabiyr$ T
when the modification igeca Or inca.

Theorem 10.10.UnlessP = NP, (deca, MINST) has noFPTAS.

Proof. Assume thatdeca, MINST) has anFPTAS A. We show thaSAT € P under

this assumption. In a nutshell, the proof is as follows: We will construct in a series of
transformations from a formul& a CLIQUE-instanceG’, from G a VC-instance,

and fromG’ aMINST-instance’° that has exactly one optimum solution. We will then
modify G° to G™ such that containment df in SAT can be decided with help of the
FPTAS A.

Let ' = {C},...,C},} be a Boolean formula. We assume the reader to be familiar
with the construction and the notations from Sec®0df) in particular with the subsec-
tion 'Selected solutions as hint’. Application of the reduction functidnom [Kar72,
which is described in Sectioh5, gives aCLIQUE-instancef(F'). Let vy, ..., v, be the
vertices off (F’). To f(F') we add another vertexthat is connected to all vertices from
f(F). Also we add a separated complete graph ewer 1 new verticesu,, ..., Uy, 11-

The resulting grapld”’

e has anm + 1-cliqueC* = {uy, ..., U1},
e has nomn + 2-clique,
e has anothem + 1-clique if and only ifF' is satisfiable, and

e every such additionah + 1-clique contains the vertexand does not contain any
of the vertices uy, ..., U411}

We leave a formal proof of these simple facts to the reader. Using the standard re-
duction for CLIQUE < VC (see [5J79 for example) we obtain fron&z’ a graph
G' = (V(G"), £') such that

(P1) G’ has a vertex coveb* := {v,, ..., v,, z} of sizem’ := [V(G")| — (m + 1),
(P2) G’ has no vertex cover of size’ — 1,
(P3) G’ has another vertex cover of sizé€ if and only if F is satisfiable, and

(P4) every such additional vertex cover of sizé does not contain the vertexand
contains the vertice§u, ..., u, }.

See Figurel0.1for an illustration of the graph’. Let ¢ denote the number of edges of
G e, q:= ‘F|

FromG’ we construct a Steiner tree instar@@ewith weight functionw in the follow-
ing way. Lete,, ..., ¢, denote the edges il’. W.l.o.g. lete; = {z,u;}, 1 < j <m+1.
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Figure 10.1TheVC-instance’’.

We also assume thaf, 11+, = {w1,v,;}, 1 < j < n. Every edgez;, 2 < j < g, is
replaced by a length-2 path in that the middle vertex is a newly introduced terminal
vertext; and the two weight§q + 1 and6q + 2 are assigned to the both edges of the
path. Thereby, we assign the smaller valyet- 1 to the edge that is incident to one of
the verticesy, ..., v, or z and the valu&gq + 2 to the other edge. In case that both of
the two edges of the path are incident to a vertex.., v, the two weight$q + 1 and

6g + 2 are allocated arbitrarily between these two edges. The @dge{z, u, } is also
replaced by such a path, but{z,t,}) = 8¢ + 1 andw({t1,u,}) = 10q + 1. Also,

an additional terminal vertex is added. The terminal vertices mentioned are the only
terminal vertices o&:°, i.e., S := {t; : 1 < j < ¢} U {a}. Beside the already specified
edges, the weight of thetheredges is given by

6q, if u = a andv is a Steiner vertex,

12g+ 2, if ue S\ {a} andv is a Steiner vertex,
w{u,v}) =< 12¢, if w andv are Steiner vertices,

12¢, if u=aandv e S\ {a},

12+ 2, ifu,ve S\ {a}.

See also Figuré0.2for an illustration ofG°.
Given a vertex coveD of G’ we construct a Steiner trééfor G° by the following
algorithm.

Algorithm  InducedSteinerTree(D)
Input: A vertex coverD for G’
Output: A Steiner tre€l” for G°
begin
1. Choose as Steiner verticeslirthe vertices inD.
2. For each terminal vertex in S\ {a} connect; to some Steiner vertex df
via an edge of weight at mo$6q + 1. If two such connections are possible,
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Weigth of other edges:

C 12¢ C 0 12¢ +2 C o 12¢ o o 12¢ +2 e

Figure 10.2The MINST-instanceG that is constructed frond’. Only edges with
weight at mostlOg + 1 are shown. White vertices are Steiner vertices,
black vertices are terminal vertices.

then choose the cheaper one.
3. For each Steiner vertex € D connectw to a by the edggw, a}.
end,

We claim thatly , := InducedSteinerTree(D*) is the sole optimum solution i
(see Claim (iv) at the end of this proof). We mod by decreasing the weight of the
edge{t;,u, } from 10q + 1 to 6¢ + 1. Note that the original graph and the modified
graph both satisfy the triangle inequality, thiks:» is applicable. We claim that the
modified graphG"™ has a solutjo™ with cost(G™,T™) < cost(G°,Ty,) — q if and
only if G has a sizen’ vertex coverD other thanD* (see Claim (v) at the end of this
proof).

Lete :=1/(cost(G°, Ty,) +1). The input for out*PTAS A consists of the original
graphG®, its sole optimum solutiofi’; ,, the modification that turn&* into G™, and
the error bound. Let T denote the output of. Note thatopt(G™) < cost(G°,T3,,),
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q — { times

¢ times

Figure 10.3A Steiner tree in normal form.

sinceT?

ot ONly uses unmodified edges. Now,

cost(G™, T4) < (1 4 €)opt(G™)

1
cost(G°, Ty,) + 1
< opt(G™) + 1.

< opt(G™) +

~cost(G°,T,)

In other words A always yields an optimum solution f6#™. Thus, giveril'! it is easy
to decide whether there exists a Steiner tfeewith cost(G™,T™) < cost(G°, Ty,;) —
¢, which is the case if and only i’ has a sizen’ vertex coverD other thanD*.
The latter is the case if and only K is satisfiable by (P2). The asserti®AT € P
follows from the fact that all our reductions are computable in polynomial time and our
FPTAS A runs in polynomial time as well, sineest(G°, Ty,,), and therefore alsb/«,
is bounded by a polynomial ip (see also proof of Claim (iv)).
We conclude by giving proofs for the postponed Claims(iv) and (v). In order to prove

these claims, we first establish some auxiliary results.

Claim (i): A Steiner tre€l’ in G° or G can be transformed to a Steiner trééthat
consists of the same verticesBshas the same cost (or less)’Bsand only uses edges
of weight at most0q + 1 or edges of the fornjt;, a}. Additionally, we can choosg’
such that every terminal vertex iff has degree 1. We say that has normal form (see
also Figure10.3.

Proof of Claim: First, we show how an edgfe:, v} with cost greater thahOq + 1 in
T can be locally substituted by edges of weight at most+ 1 without increasing the
weight of the Steiner tree.

Let {u,v} be an edge of weight greater thafy + 1, or equivalently, an edge of
weight at leasti2q. The vertexa is a vertex ofT’, since it is a terminal vertex. By
deleting the edgé¢u, v} from 7" we obtain a forest with two components — one of the
components containg the other one contains If « andu are in the same component
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the edge{a, v} (of weight at mostl2q) is added to connect the two components to a
Steiner tree. Otherwise, if andv are in the same component, we add the efdge: }
(of weight at most 2¢). Thus we may assume tHawnly contains the above mentioned
types of edges.

Next we show how to assure that every terminal verteX'ithas degree 1. This is
again done by local transformations on vertices that violate this propertyz; Lt
a terminal vertex with degree at least two. Letindv be two vertices adjacent to
t;. Since we may assume tHAtonly uses the above mentioned normal-form-edges it
suffices to consider the following two cases.

Case 1: u = a andv is a Steiner vertexRemoval of the edgé’;, v} of weight at least
6¢ + 1 and addition of the edgf:, v} of weight6q decreases the degreetpby
one.

Case 2: v andv are Steiner verticesDeletion of {u,;} (of weight at leastg + 1)
results in a forest with two componentsulfinda belong to the same component
we add the edgéa, v}. Otherwise, ifv anda belong to the same component, we
add the edgéa, u}. This reduces the degreefgfby one.

Repeated application of this procedure leads to the desiredtree

Claim (ii): LetT be a Steiner tree in normal form (see Claim (i}), ..., s, be the
Steiner vertices df’, and{q, t;, }, ..., {a, t;,} be the edges of weigh®q in 7. ThenT
induces a vertex cover of sizer ¢ in G’ that uses the vertices, ..., s,. Additionally,
for every edgda, t;} of weight12q in T the vertex for the vertex cover may be arbi-
trarily chosen frome;.

Proof of Claim: This fact is obvious by the construction Gf from G'.

Claim (iii): LetT" be a Steiner tree in normal form f@r® (see Claim (i)),r be the
number of Steiner vertices i, ¢ be the number of edges of weight, in 7", and

cost(G°,T) < q(6g+ 1) +m’ - 6q + 2q. (1)
Thenr + ¢ = m/. The same statement holds for the graph.

Proof of Claim: Let 7', r, [, andcost(G°,T) be as above. Note that+ ¢ > m/, since
otherwise we could construct froffi a vertex cover of sizen’ — 1 for G’ (see Claim
(i), which contradicts (P2). Thus, it suffices to show that ¢ < m/. Assume to the
contrary that + ¢ > m/ + 1. Then

cost(G°,T) > (¢q—0)(6g+ 1) +1r-6g+¢-12q
=q(6g+1)+6q(r+1¢)—+¢
> q(6g + 1) +6g(m’ +1) — ¢
> q(6g + 1) +m' - 6q+ 2q,
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since4q > (. This contradicts) and thus- + ¢ = m/.
Claim (iv): Ty, is the only optimum solution i°.

Proof of claim: First, we examine the structure of the solutiif),, which is given by
Ty, = InducedSteinerTree(D*). Note that sincer € D* the algorithmInduced-
SteinerTree connects in its second stepto z via the edge of weightq + 1 and all
of the vertices,, ..., t,, 1 t0 z via an edge of weightg + 1. Sincevy,...,v, € D* it
also connects all of the remaining terminal verti¢gs,, ..., ¢, to a Steiner vertex via
an edge of weightq + 1. In the third step of the algorithmw’ edges of weigh6q are
added. In summary we getst(G°,7°,) = q(6g + 1) +m’ - 6¢ + 2q.

)~ opt
Let T}, be an optimum Steiner trepem’ with cost(G°, T, ;) < cost(G°, T,,) other
thanTy,. We may assume that, , is in normal form (see Claim (i)). Let’ denote
the number of Steiner vertices'if,, and/’ denote the number of weighq edges in
T;,:- By application of Claim (jii) we have that + ¢’ = m/'.
First, we show that is contained irf; .. Assume to the contrary, thats no Steiner
vertex inT, ,. Then, there are only two possibilities to makea vertex of degree 1 in

the normal form tred’;, ;.

Case 1: {a,t,} is contained ir} ,: In this case, the edgfu, t»} is no edge irl; ,,
since otherwise we could obtain a better tree tiign by deleting{a,?,} and
{a,t;} and adding the edg€s:, z},{z,t:} and{z,t,}, which contradicts opti-
mality of 77 ,. Sincez is no Steiner vertex the only possibility to connégto
the tree is to use the edg&, u, }. Henceu, is a Steiner vertex df; .. But then,
T, induces a vertex cover of sizé+ (' = m/' in G’ that uses the vertices and
z. This contradicts (P1) or (P4).

Case 2: {uy,t} is contained irf} ,: Sincew({ui,t:}) = 10g + 1 we have

cost(G°, T, ) > (¢ — ' = 1)(6q + 1) + r'6q + £'12q + (10q + 1)
=q(6g+ 1)+ 6q(r'+¢)— 0 +4q
=q(6g+1)+m'-6qg— ' +4q
= cost(G, Tyy) +2q — '
> cost(G?, Ty ,),

since2q > ¢. This contradicts our initial assumption thatst(G°, T,
cost(G°,T2.).

)~ opt

) <

Thus we have shown thatis contained in7”

opt- Next, observe that none of the
vertices{uy, ..., u,,} may be contained iff,,. OtherwiseT, , would induce a vertex

opt

cover of sizer’ + ¢/ = m/ that contains both of andw; for somej < m (see Claim

(i1)). This is impossible since (P1) and (P4). In particular,is no Steiner vertex of

T ..
opt

Also, none of the edge§a, 1145}, 1 < j < n, is contained inl},, since such

an edge would also induce a forbidden vertex cover witnd u; (see Claim (ii)).
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Consequently/; , has no other choice but to use the ed@es;1,;,v,;}, 1 < j < n.
Thus, all the vertices,, ..., v, are Steiner vertices iy, ,.
In consequence]? , and T"t use the same Steiner vertices. Also, sifige is in
normal form, 77 , usesm’ edges of weigh6q to connect its Steiner vertices &0 Just

as inTy, the terminal vertices,, ..., ¢, are connected to the Steiner verticedgf via
edges of weigh6q + 1 (or 8¢ + 1 for ¢,), otherwisel; , is not optimum. Since only
one such edge of weigley + 1 (or 8¢ + 1 for ¢;) exists for every terminal vertes,
1 <j < ¢, weconclude thaty, =T, ,.

Claim (v): There exists a Steiner tree of size at mast(G°,T;,) — ¢ — 1in G™ if

and only if there exists a size’ vertex cover irG’ other thanD*.

Proof of claim: Note that we have already shown in Claim (iv) thatt(G°, T ,) =
q-(6g+1)+m'-6q+2q.

To show sufficiency, IeT’ be a Steiner tree wittvst (G™, T') < q-(6g+1)+m’-6¢+q.

We assume thaf' is given in normal form (see Claim (i)). Letdenote the number of
Steiner vertices iri” and ¢ denote the number of terminal vertices that are directly
connected ta. By Claim (ii) we have + r = m/.

We show thaf” induces a vertex cover of siz& that uses the vertax . Therefore, it
suffices to show that; is a Steiner vertex df’ (see Claim(ii)). Assume to the contrary
thatu, is no Steiner vertex ifi’. Then, there are only two possibilities how the terminal
vertext; is connected td'".

Case 1: {a,t,}is contained irf: We may assume that the edfye ¢, } is no edge in
T, since otherwise we could obtain a better tree tiaoy deleting{a,¢;} and
{a,t;} and adding the edg€ds:, z},{z,t1}, and{z,t2}. Thus, eitheqz,t,} or
{t2,us} is an edge of". In either case, we can construct frdfma vertex cover
of sizel +r = m/ for G’ that includes: and one of the vertices, or u,. This
contradicts (P1) or (P4).

Case 2: {z,t;}is contained irl: Sincew{z,t;} = 8¢ + 1 we have

cost(G™,T) > (q—€—1)(6g+1)+1r-6g+(-12¢+ (8¢ + 1)
=q(6g+1)+6q(r+10)—0+2q

q(6g+ 1) +m'-6q —+ 2q

> q(6g+1) +m'-6q+q,

sincel < ¢. This contradicts our initial assumption thatst(G™,T) < q(6q +
1) +m' - 6q+q.

Thus,u, is a Steiner vertex of. By Claim (iii) the Steiner tred’ induces a vertex

cover of sizd + r = m/ for G’ that uses the vertex;, therefore being unliké*.
To show necessity, 1D # D* be a vertex cover of size’ for 7. By (P4) the vertex
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coverD contains the vertex,. Thus,

cost(G™, InducedSteinerTree(D)) < (¢ — 1)(6¢ + 2) + (6¢ + 1) +m' - 6¢q
=q(6g+1)+m'-6g+q—1.

]

The last proof can be adapted to show thatc,, MINST) is unlikely to have a
FPTAS.

Corollary 10.11. UnlessP = NP, (inca, MINST) has noFPTAS.

Proof. The construction of-° follows the proof of Theorem0.1Q with the exception
thatw({z,t1}) = 6¢ + 1 andw({t;,u;}) = 8¢ + 1. The modification consists of
the increase of the weight gk, ¢, } from 6¢ + 1 to 10¢ + 1. The rest of the proof is
similar. O
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10.4 MINIMUM MAXIMAL INDEPENDENTSET
(MINMAXIS)

We already mentioned in Sectigithat many optimization problems have an approx-
imation with an absolute error df or 2. We gave two examples of such problems,
namelyMINVC andMINMAX MATCH. But do all unweightetioptimization problems
have such constant absolute error reoptimizations of 1 or 2?

We answer this question to the negative, by giving the rare example of an unweighted
problem that has no absolute error approximation in the reoptimization case (unless
P = NP). Namely, we show this for the probleMINIMUM MAXIMAL INDEPEN-
DENTSET, or shortMINMAXIS. This problem is also known @4 INIMUM INDEPEN-
DENTDOMINATING SET (see RCG199]) and is defined as follows:

PROBLEM: MINMAXIS
INSTANCE: An (undirected) graplés = (V, E).

SoLUTION: A maximal independent set i@, that is, a set/’ C V of mutually
non-adjacent vertices such that the introduction of an additional vertex
destroys the non-adjacency property.

MEASURE |V’|.

UnlessP = NP, the problenMINMAX S has no factofV/|'*-approximation, for any

e > 0 [Hal93. We show, that the same non-approximability result also holds wden
optimizingMINMAX 1S, whereas the considered modifications are the deletion and the
insertion of a single edge. We first prove this for the modification funciignvhich

adds a single edge.

Theorem 10.12.UnlessP = NP, (ad, MINMAXIS) has no|V|'~*-approximation, for
anye > 0.

Proof. Let (ad, MINMAXIS) be |V|'“-approximable for somé < ¢ < 1 via an
algorithm A. We show thaSAT € P under this assumption.

In the course of the proof we use a construction fréfalP3 that, given a formula
F = {Cy,...,C,,} over variablesey, ..., x,,, constructs a grapli(F') as follows. The
graph f(F") has for each variable; two vertices labelled:; and—z;. Also, for every
clauseC}, 1 < j < m, it contains a certain numberof verticeSy{, .., yl. We fix the
numbert later in the proof. For the moment, just assume thatlarge, e.g.f = 2n.
The edges of (F) are{z;, ~x;}, foralli < n, and{l,y/}, ..., {l,y!} for all literals/ of
the clause”;, 1 < j < m. The graphf(F") has some interesting properties.

1. For any fixedj, all the verticeg/, ..., y/ share the same neighborhood. Thus, if
one ofyi, ...,y is contained in a maximal independent set then al}/of.., 3/
are contained.

10Obviously, optimization problems in which the cost depends on some weight function can have a
constant error of at leakt k& constant, by multiplying the weights with a large enough natural number.
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2. If F € SAT thenf(F') has a maximal independent set of sizelo see this, le
be a satisfying assignment 6t Note that the independent set given by choosing
all verticesz; with 3(x;) = 1 and all vertices-z; with 5(z;) = 0,1 <i < n,is
maximal, since all clauses are 'covered’ by some literal.

3. If t > n the independent sets from 2. are minimum. For a proof, note that a
minimum maximal matching cannot contain a vertex of typgsee 1.). But is
has to contain one of the verticesor —z; for eachj in order to be maximal.

4. If F ¢ SAT then a minimum maximal independent $ehas size at least No
matter what combination af;- and—z;-vertices are chosen, there must be at least
one claus&’; that contains none of the corresponding literals. Consequently, all
of 1, ...,y have to be in the resulting maximal independent set.

In constructing an original grap&° with exactly one optimum solution, we use an
auxiliary graph gadgel/,. For anys € N, the gadget{, consist of a vertex, which
is the only vertex that may be connected to other vertices outgjdands additional
verticesby, ..., bs, which are solely connected to The gadge#d, is useful for making
specific vertices costly. In detall, if another verteis connected to the gadg#t, then
together withv also the vertices,, ..., b, are in a maximal matching. Thus, a maximal
matching that contains has cost at least+ 1.

We are now prepared to define an original gr&ghthat will be the input for our
|V|'~*-approximation algorithmi. Let F = {C}, ..., C,,,} be a formula over variables
x1, ..., T,. FromFE we construct a CNF-formula

= (_|Cl\/01>
(aV xq)

A (maVCy) A ... A (maVCy,) A
AN (aVay) AN .. A (aVazy,).
Note thatF” has exactly one satisfying assignmgnwith 5(a) = 0, namelyg(z;) = 1
for all variablesr;, 1 < i < n. Also, F’ has a satisfying assignmeftwith 3(a) = 1
if and only if £ € SAT. Our starting point in defining:° is the graphf (F"), to which
we add the two gadgetd, and H;. We connect the gadgéi, to the vertexa. This
concludes the construction 6f. For an illustration of7° see Figurel0.4

Note thatG° has a solution of size + 3, namelyS = {x1,...,z,,a,z,2'}. If
t > n + 2 this solutionS is a unique minimum. To see this I8t £ S be a minimum
solution inG®°.

Case 1: a € S’: ThenS’ also containg, andb,. Furthermore,S’ has to contain at
least one ot/ b, ..., b;. Also, S’ does not contain a verteggf, since this would
lead to a suboptimum solution of size- 4 (> n + 6). Hence, by maximality of
S’, one ofz; or —x; is contained inS’ for everyi < n. In total this leads to a
solution of sizen + 4. Thus|S’| > |S| and.S” is no optimum.

Case 2: a ¢ S In order to obtain aninimummaximal independent set ai’ it is
best to choose the verticesand 2’ to be in the cover. Also no vertey is part
of S’, otherwiseS’ has size at least+ 2 > n + 4, which is clearly not optimum.
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Figure 10.4The MINMAXIS-instances-° andG™. The dashed line is presentd#i™,
but missing inG°.

If no yj' vertex is used irt’ then one ofr; or —z;, 1 < i < n, and the vertexua
have to be part of’ by maximality ofS’. SinceS’ # S there exists an index
with —z; € S’. This implies a satisfying assignmemnfor / with 3(a) = 0 and
B(x;) = 0, a contradiction to the construction &f.

This shows that if is large enough the@ has exactly one optimum solution.

We modify G° by connecting the gadgét; to —a. The resulting graph i&™. Intu-
itively, this modification prevents the vertex: to be in a small maximal independent
set. ThusG™ has a small solution if and only if there exists an assignmenktfahat
hasf(a) = 1, or equivalentlyF’ € SAT. We now elaborate this sketch more formally.

If t > n+4then

[ <n+4, if FeSAT,
W“G){:>a if ' ¢ SAT.

For a proof of this claim, lef" € SAT. Thus,F’ has a satisfying assignmefitwith
B(a) = 1. Consequently,

S :={a,by, by, 2"} U{x; : B(x;) = 1} U{—a; : B(z;) =0}

is a maximal independent set ™. For the casd” ¢ SAT we argue as follows.
Assume to the contrary that is a solution ofG™ of size at most. Thus,S’ does not

contain anyy, vertex. Also, the vertexa is not contained ir§’, since otherwise also
b, ..., b are contained. The assignment

1, ifx; €58,
5@”_{o,wﬂ%e&

yields a satisfying assignment féf with 5(a) = 1, a contradiction td"" ¢ SAT.

In a last step, we now show how to choasen our construction ofz° such that
existence of 4V/|' “-approximation for(ad, MINMAX1S) yields thatSAT € P. We
aim to choose large enough such that aftéf|' ~-approximating an optimum solution
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in G™, we can distinguish between the cagés SAT andF' ¢ SAT. Let S’ be such
an approximated solution. F € SAT andt > n + 4 then

[S' < opt(G™) - [V(G™)['° < (n+4) - ((m+ 1)t +2(n +1) +4)' .

If £ ¢ SAT then trivially |S’| > ¢, since this is a bound on the size of an optimum
solution in this case. We are able to distinguish the ca5esSAT and F' ¢ SAT by
the size of 5’| if

(n+4)- (m+1t+2n+1)+4)"= <t (2)

We claim that ift > maz{[(n + 4)[(m + 1) + 1)]]1/6,2(71 + 1) + 4} then @)
holds. From the first condition

t> [(n+4)[(m+ 1)+ 1)]]°
it follows that
> m+4)[(m+1)F+1).

Consequently
t>(n+4)-[(m+1)7+1] -7

or equivalently,
t>(m+4)[(m+ 1)t e,

Sincet > 2(n + 1) + 4 we conclude that
t>n+4((m+1)-)"+2(n+1)+4)".

Sincef(a +b) < f(a) + f(b) for every continuous, concave functigrwith f(0) > 0
(and in particular for the functiofi(n) = n' ) the assertion2) follows.

Sincet is polynomial in the size of’, we conclude that:° is polynomial-time com-
putable. O

The ideas of the last proof are also helpful for showing

Theorem 10.13.UnlessP = NP, (rm, MINMAXIS) has no|V|'*-approximation,
forall e > 0.

Proof. Using the assumption thé&tm, MINMAXIS) is |V |'~*-approximable we show
that SAT € P. Thereby we assume that the given forméla= {C,...,C,,} is over
variablesz, ..., z,,, that no clause of’ contains an unnegated literAland the corre-
sponding negated literalL at the same time, and that the assignnantth 5(x;) = 1,

1 < < n, is no satisfying assignment faér.

Similar to the proof of Theorerh0.12we start with the formuld”. We construct a
graphG° by composing the grapli( ') with the two gadgetdi, and H, ;. Further-
more, the gadgeli; is connected ta and H;_; is connected te-a. An illustration of
G° as well as the labels of the vertices of the gadgets are depicted in Bigire

We claim that ift > n then{-a, by, ...,b;_1,2', 21, ..., 2, } is the sole optimum solu-
tion of G°. To see this let’ # S be a minimum solution of7°.

145



Chapter 10 Appendix B - Optimization Problems

Figure 10.5The MINMAXIS-instancesG° and G™ when removing an edge. The
dashed line is present {&°, but missing inG™.

Case 1: ¢ € S": ThenS’ also containg, ..., b; andz. In order to avoid choosing a
vertexy, it also has to contain one af or —z; for each variable:;. In total this
leads to a solution of size+ n + 2. Thus|S’| > |S| andS’ is no optimum.

Case 2. —a € S’: ThenS’ also containg,, ..., b,_; and the vertex’. FurthermoreS’
does not contain a verte%, otherwiseS’ was not optimum. Consequently, one
of z; or —z;, 1 <1 < n, has to be part of’ by maximality ofS’. SinceS” # S
there exists an indexwith —z; € S’. This implies a satisfying assignmemnfor
F"with (a) = 0 andf(z;) = 0, a contradiction to the construction 6f.

Case 3: {—a,a} NS’ =: Thusz andz’ are part ofS’. Note thatS’ does not con-
tain all of the vertices/], ..., v/ andy{', ...,yi, for different numberg, 5/, since
otherwisg|.S’| is too big.

Assume for the moment that contain vertices of typgg for exactlyone natural
number;. By our assumptions, no two literal and—z; are contained in the
corresponding clausg; of F'. Thus, for every < n, we can choose one vertex
amongz; and—z; to be in the sef’. Hence,|S'| = ¢t 4+ n + 2, which is clearly
no optimum.

By the former arguments, we may assume #iadoes not contain any vertex of
typeyg at all. Then, all the vertices,, ..., z,, have to be part o’ — otherwise,

if x; ¢ S’ for somei < n then all the verticeg?, ..., 37 that correspond to the
clauseC, = (a Vv z;) in F" would be inS’. Recall that by our assumptions the
assignmenty with g(z;) = 1, 1 < i < n, is no satisfying assignment far.
Let C be a clause irF” that is not satisfied by this last assignmgnfThen, the
verticesyy, ...y{ that correspond to the clauég = (Cy v —a) of I’ have to be
contained inS’, a contradiction.
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We modify G° to G™ by deleting the edgéz’, a}. Now,

[ <n+4, if FeSAT,
opt(G ){ >t if ¢ SAT.

The rest of the proof is similar to the proof of Theorém12
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