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Abstract. In 1988, Golumbic and Hammer characterized powers of cycles, relating them
to circular-arc graphs. We extend their results and propose several further structural
characterizations for both powers of cycles and powers of paths. The characterizations
lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a
generalization of powers of cycles, powers of paths, and even of the well-known circulant
graphs, we consider distance graphs. While colourings of these graphs have been intensively
studied, the recognition problem has been so far neglected. We propose polynomial-time
recognition algorithms for these graphs under additional restrictions.
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1 Introduction

In [15] Golumbic and Hammer proposed efficient algorithms for the maximum independent
set problem restricted to circular arc graphs. As a simple reduction rule, they eliminate
vertices whose closed neighbourhood contains the closed neighbourhood of another ver-
tex. They prove that a circular arc graph which does no longer allow such a reduction is
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isomorphic to the power of a cycle. In fact, their proof of this observation yields several
equivalent characterizations of powers of cycles.

This nice connection between a well-known graph class and the powers of some very
basic graph was our starting point for the present paper. We will first make all character-
izations of powers of cycles implicit in [15] explicit and add some more. Then we prove
a similar series of equivalent characterizations of powers of paths. Finally, we consider
so-called distance graphs, which generalize powers of paths.

We need to review some notation and refer the reader to [3,14] for further details. We
consider simple, finite, and undirected graphs G with vertex set V (G) and edge set E(G).
The order of G is the cardinality of V (G). For a vertex u ∈ V (G), the neighbourhood of
u in G is denoted by NG(u). The degree of u in G is dG(u) = |NG(u)| and the closed
neighbourhood of u in G is NG[u] = {u} ∪NG(u). The k-th power Gk of the graph G has
the same vertex set as G and two distinct vertices u and v of G are adjacent in Gk if and
only if their distance in G is at most k. If u and v are distinct vertices of G, then u and
v are twins, if NG[u] = NG[v] and v is a dominator of u, if NG[u] ⊆ NG[v]. A maximal
sequence of at least two vertices v1, v2, . . . , vl such that NG[vi] properly contains NG[vi+1]
for 1 ≤ i ≤ l − 1 is a dominator sequence. A vertex u of G is universal, if NG[v] = V (G).

The path of order n is denoted by Pn and the cycle of order n is denoted by Cn.
A graph is a circular arc graph if it is the intersection graph of open arcs on a circle.

A circular arc model for a circular arc graph G is a collection A = {av | v ∈ V (G)} of
open arcs av on a circle such that uv ∈ E(G) if and only if au and av intersect. Fixing an
orientation of the circle, the extreme points of the arcs can be distinguished into starting
points and ending points. As noted in [14], we may assume that no two arcs have a common
extreme point. If no arc in A contains another arc in A, then A is a proper circular arc
model (PCA model) and G is a proper circular arc graph (PCA graph). If all arcs in A
have the same lengths, then A is a unit circular arc model (UCA model) and G is a unit
circular arc graph (UCA graph).

If we replace open arcs on a circle with open intervals in R in the above definitions,
we obtain the notions of an interval graph and an interval model. The extreme points
of the intervals can again be distinguished into starting points and ending points and we
may assume that no two intervals in a model share an extreme point. If no interval in
an interval model A contains another interval in A, then A is a proper interval model (PI
model) and G is a proper interval graph (PI graph). If all intervals in A have the same
lengths, then A is a unit interval model (UI model) and G is a unit interval graph (UI
graph). It is well-known [2, 13, 26] that the classes of PI graphs and UI graphs coincide
while UCA graphs form a proper subclass of PCA graphs. It is easy to see that every
(proper, unit) interval model yields a (proper, unit) circular arc model for the same graph,
i.e. (proper, unit) interval graphs are special (proper, unit) circular arc graphs.

A natural and important generalization of powers of cycles are circulant graphs: For
n ∈ N and D ⊆ N, the circulant graph CD

n has vertex set {v0, v1, . . . , vn−1} and NCD
n

(vi) =
{vi+d | |d| ∈ D} for 0 ≤ i ≤ n − 1 where indices are identified modulo n. Clearly, we
may assume maxD ≤ n

2
for every circulant graph CD

n . Circulant graphs are the Cayley
graphs of cyclic groups and due to their symmetry and connectivity properties, they have
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been proposed for various practical applications [1]. Isomorphism testing and recognition
of circulant graphs had been long-standing open problems [22,23,25] and were completely
solved only recently [12,24].

A similarly defined class of graphs are distance graphs: For n ∈ N and D ⊆ N, the
distance graph PD

n has vertex set {v0, v1, . . . , vn−1} and NPD
n

(vi) = {vi+d | |d| ∈ D and 0 ≤
i + d ≤ n − 1} for 0 ≤ i ≤ n − 1. Equivalently, vivj ∈ E(PD

n ) if and only if |j − i| ∈ D.
Clearly, we may assume maxD ≤ n − 1 for every distance graph PD

n . Distance graphs
lack the symmetry of circulant graphs and the algebraic methods used in [12, 24] do not
apply to them. At first sight they seem to generalize powers of paths in a similar way as
circulant graphs generalize powers of cycles. Nevertheless, the circulant graph CD

n with
maxD ≤ n

2
is isomorphic to the distance graph PD′

n for D′ = D∪{n−d | d ∈ D}, i.e. every
circulant graph is in fact also a distance graphs. Originally motivated by research due to
Eggleton, Erdős, and Skilton [10,11] who considered coloring problems for infinite distance
graphs, coloring problems for distance graphs and circulant graphs have been intensely
studied [4,8,9,19,20,27,28]. While isomorphism testing and recognition of circulant graphs
have been investigated for a long time, these problems seem to have been neglected for the
more general distance graphs.

2 Powers of Cycles and Paths

Our first result collects several equivalent descriptions of powers of cycles. Theorem 1 in [15]
actually only states that a circular arc graph without dominators is a power of a cycle.
Nevertheless, the given arguments imply the following equivalences from our Theorem 1
below:

(i)⇔ (v)⇔ (vii)⇔ (ix)

Theorem 1 For a graph G of order n which is not complete, the following statements are
equivalent.

(i) G is isomorphic to Ck
n for some integer k.

(ii) G is a regular UCA graph with no twins.

(iii) G is a regular PCA graph with no twins.

(iv) G is a UCA graph without dominators.

(v) G is a PCA graph without dominators.

(vi) G is a UCA graph and in every UCA model of G the starting and ending points
alternate.

(vii) G is a PCA graph and in every PCA model of G the starting and ending points
alternate.
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(viii) G is a UCA graph and in some UCA model of G the starting and ending points
alternate.

(ix) G is a PCA graph and in some PCA model of G the starting and ending points
alternate.

Proof: The implications (ii)⇒ (iii), (viii)⇒ (ix), (vi)⇒ (viii), and (vii)⇒ (ix) are trivial.
(i) ⇒ (ii): Clearly, Ck

n is regular and has not twins. If x0, x1, . . . , xn−1 are n equally
spaced points on a circle C, then the set A which contains the n open arcs of equal length
with starting point xi and ending point between xi+k and xi+k+1 for 0 ≤ i ≤ n − 1 is a
UCA model for Ck

n.
(ii) ⇒ (iv) (and (iii) ⇒ (v)): If NG[u] ⊆ NG[v], then the regularity of G implies

NG[u] = NG[v] and the twin-freeness of G implies u = v. Hence G is a UCA (PCA) graph
without dominators.

(iv) ⇒ (vi) (and (v) ⇒ (vii)): For contradiction, we assume that su and sv are two
consecutive extreme points of a UCA (PCA) model of G which are both starting points of
the arcs au and av corresponding to the vertices u and v of G. This implies that every arc of
the model which intersects au also intersects av and yields the contradiction NG[u] ⊆ NG[v].

(ix) ⇒ (i): Let s0, t0, s1, t1, . . . , sn−1, tn−1 be the cyclically consecutive extreme points
of a PCA model A of G as in (ix). It suffices to prove the existence of some k ∈ N such that
A consists of the open arcs with starting point si and ending point ti+k for 0 ≤ i ≤ n− 1
and some k ∈ N where indices are identified modulo n.

For contradiction, we may assume that the arc starting with s0 ends with tk and that
the arc starting with s1 ends with tk+i for some k with i 6= 1. Since the model is proper,
we obtain i ≥ 2. Let the arc ending with tk+1 start with sj for some j. Again, since the
model is proper, the arc from sj to tk+1 is not contained in the arc from s1 to tk+i which
implies j < 1. Similarly, the arc from sj to tk+1 does not contain the arc from s0 to tk
which implies j > 0. We obtain the contradiction that the integer j satisfies 0 < j < 1.

In view of the following diagram of the implications this completes the proof.

(i) ⇒ (ii) ⇒ (iv) ⇒ (vi) ⇒ (viii)
⇓ ⇓

(iii) ⇒ (v) ⇒ (vii) ⇒ (ix) ⇒ (i)

2

Our next result collects several equivalent descriptions of powers of paths. Before we can
state it, we need some further definitions.

Let A = {(si, ti) | 1 ≤ i ≤ n} be a proper interval model for a connected graph G with
vertex set {v1, v2, . . . , vn} such that

(si, ti) corresponds to vi for 1 ≤ i ≤ n (1)

and

s1 < s2 < . . . < sn. (2)
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As noted by Roberts [26], the ordering v1, v2, . . . , vn of the vertices of G is unique up to
permutation of twins and up to reversion and is therefore called a canonical ordering.

If

p = max{i | 1 ≤ i ≤ n, vi ∈ NG[v1]} and q = min{i | 1 ≤ i ≤ n, vi ∈ NG[vn]}, (3)

then
{vi | min{p, q} ≤ i ≤ max{p, q}}

is the set of middle vertices. By Roberts’ result [26], this set does not depend on the model
A. Note that the vertices vi with q ≤ i ≤ p are exactly the universal vertices of G.

Theorem 2 For a connected graph G of order n which is not complete, the following
statements are equivalent.

(i) G is isomorphic to P k
n for some integer k.

(ii) G is a UI graph in which all twins are universal and whose middle vertices have the
same degree.

(iii) G is a UI graph in which all twins are universal. Furthermore, if v1, v2, . . . , vn is a
canonical ordering and p and q are as in (3), then the only dominator sequences of
G are

vr, vmin{p,q}−1, vmin{p,q}−2, . . . , v1

with min{p, q} ≤ r ≤ p and

vs, vmax{p,q}+1, vmax{p,q}+2, . . . , vn

with q ≤ s ≤ max{p, q}.

(iv) G is a UI graph and for all PI models A = {(si, ti) | 1 ≤ i ≤ n} with (1) and (2),
and p and q as in (3), the starting and ending points between sp and tq alternate.

(v) G is a UI graph and for some UI model A = {(si, ti) | 1 ≤ i ≤ n} with (1) and (2),
and p and q as in (3), the starting and ending points between sp and tq alternate.

Proof: (i) ⇒ (ii): Clearly, in P k
n all twins are universal and

{(
i, i+ k + 1

2

)
| 1 ≤ i ≤ n

}
is

a UI model for P k
n which yields the desired degree property.

(ii) ⇒ (iii): Since G is connected and not complete, we obtain 1 < min{p, q} ≤
max{p, q} < n. By (1) to (3), this implies

NG[v1] ⊆ NG[v2] ⊆ . . . ⊆ NG[vmin{p,q}−1] ⊆ NG[vr]

for min{p, q} ≤ r ≤ p, and

NG[vn] ⊆ NG[vn−1] ⊆ . . . ⊆ NG[vmax{p,q}+1] ⊆ NG[vs]
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for q ≤ s ≤ max{p, q}. Since v1, . . . , vmin{p,q}−1 are not adjacent to vn and vmax{p,q}+1, . . . , vn
are not adjacent to v1, all these vertices are not universal and (ii) implies that all the above
inclusions are proper. This yields the dominator sequences described in (iii). It remains to
prove that there are no further dominator sequences.

Since, by (ii), all middle vertices have the same degree, every dominator sequence
contains at most one middle vertex.

If i < min{p, q} and p < j, then v1 ∈ NG[vi] \NG[vj]. Furthermore, either q ≤ j which
implies vn ∈ NG[vj] \ NG[vi], or q > j which implies that vj is a middle vertex and, by
(ii), dG(vj) = dG(vp) > dG(vi). Hence, in both cases, vi and vj do not both appear in one
dominator sequence.

Similarly, if i > max{p, q} and j < q, then vi and vj do not both appear in one
dominator sequence. Altogether, this implies that there are no further dominator sequences
as those described in (iii).

(iii) ⇒ (iv): Let A be a PI model for G. For contradiction, we may assume, by
symmetry, that there are two consecutive extreme points which are starting point si and
si+1 between sp and tq. By (3), the extreme point following sp is t1 which implies i > p.
Since A is a proper interval model, we obtain NG[vi] ⊆ NG[vi+1]. Since v1 6∈ NG[vi] ∪
NG[vi+1], the vertices vi and vi+1 are not universal. Hence, by (iii), vi+1 and vi are no twins
and they appear in this order in some dominator sequence of G. By (iii), this implies the
contradiction i+ 1 ≤ p.

(iv) ⇒ (v): trivial.
(v) ⇒ (i): Let A be a UI model as described in (v). By (3), (v), and the fact that

si < sj implies ti < tj, the order of the extreme points is as follows

s1 < s2 < . . . < sp < t1 < sp+1 < t2 < sp+2 < t3 < . . . < sn < tq < tq+1 < . . . < tn

which implies that p = n− q − 1 and that G is isomorphic to Cp−1
n . 2

In view of the corresponding recognition algorithms for circular arc graphs [7, 18, 21] and
interval graphs [5, 6, 16, 17], Theorems 1 and 2 imply that powers of cycles and paths can
be recognized in linear time.

3 Distance Graphs

For a set D = {d1, d2, . . . , dk} ⊆ N and n ∈ N, we consider the distance graph PD
n with

vertex set {v0, v1, . . . , vn−1} where

vivj is an edge if and only if |i− j| ∈ D. (4)

The next lemma collects some simple observations about PD
n .

Lemma 3 Let 1 ≤ d1 < d2 < . . . < dk ≤ n− 1.

(i) PD
n has

∑k
i=1(n− di) edges.
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(ii) If PD
n is connected, then the greatest common divisor gcd(D) of the elements in D

equals 1.

(iii) If gcd(D) = 1 and dk ≤ n− gcd
({
di | 1 ≤ i ≤ k, di ≤ n−1

2

})
, then PD

n is connected.

Proof: (i) Since there are exactly n− di edges of the form vivi+di
, the statement follows.

(ii) If PD
n is connected, then there is a path from v0 to v1. This implies that 1 is an

integral linear combination of the elements of D and hence gcd(D) = 1.
(iii) Let d = gcd

({
di | 1 ≤ i ≤ k, di ≤ n−1

2

})
. Let

d =
r∑

µ=1

aµ −
s∑

ν=1

bν (5)

be such that aµ, bν ∈
{
di | 1 ≤ i ≤ k, di ≤ n−1

2

}
for 1 ≤ µ ≤ r and 1 ≤ ν ≤ s, and r + s

is minimum. (The existence of such a representation of d follows from the Euclidean
algorithm.) Clearly, r ≥ 1. Furthermore, if r + s ≥ 2, then r, s ≥ 1.

Claim For every 0 ≤ i ≤ n− 1− d, there is a path in PD
n from vi to vi+d.

Proof of the Claim: We will argue by induction on r+s. If r+s = 1, then d ∈ D and vivi+d
is an edge of PD

n . If r+s > 1 and i ≤ n−1
2

, then vivi+a1 is an edge of PD
n and, by induction,

there is a path from vi+a1 to vi+d = v(i+a1)+(d−a1). If r + s > 1 and i ≥ n−1
2

, then vivi−b1 is
an edge of PD

n and, by induction, there is a path from vi−b1 to vi+d = v(i−b1)+(d+b1). This
completes the proof of the claim. 2

By the claim, for every 0 ≤ i ≤ n − 1, there are paths between vi and vertices vj and vj′
with j, j′ ≡ i mod d, 0 ≤ j ≤ d− 1 and n− d ≤ j′ ≤ n− 1. Since dk ≤ n− d, this implies
that for every 0 ≤ i ≤ n− 1 and every d′ with |d′| ∈ D, there is a path from vi to a vertex
vj with j ≡ (i+ d′) mod d.

Since gcd(D) = 1, 1 is an integral linear combination of the elements of D. This implies,
by an inductive argument, that for every 0 ≤ i ≤ n− 2, there is a path from vi to a vertex
vj with j ≡ (i+ 1) mod d. Applying the claim again, we obtain that there is a path from
vi to vi+1 which completes the proof. 2

As we have already observed in the introduction, circulant graphs are special distance
graphs. Since isomorphism testing and recognition of circulant graphs were major achieve-
ments, these problems will be very hard for distance graphs. In order to represent a
circulant graph as a distance graphs PD

n , the set D typically contains elements which are
larger than n−1

2
. In the sequel we will restrict our attention to the case

1 = d1 < d2 < . . . < dk ≤
n− 1

2
. (6)

This assumption essentially results in distance graphs which seem closer to powers of paths
than to circulant graphs. The assumption d1 = 1 ensures that the path v0v1v2 . . . vn−1 is
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always contained in PD
n . The assumption dk ≤ n−1

2
ensures that for 0 ≤ i ≤ k − 1, the set

of vertices of PD
n of degree k + i is exactly

{vj | di ≤ j ≤ di+1 − 1} ∪ {vj | n− di+1 ≤ j ≤ n− di − 1} (7)

where d0 := 0. Furthermore, the vertices vj with dk ≤ j ≤ n − 1 − dk are all of degree
2k. Hence PD

n has 2(di+1 − di) vertices of degree k + i for 0 ≤ i ≤ k − 1 and the set D is
uniquely determined by the degree sequence of the graph PD

n .

We consider the recognition problem for distance graphs. Equivalently, for a distance graph
PD
n given up to isomorphism, we consider the problem to reconstruct the set D and an

ordering v0, v1, . . . , vn−1 of its vertices which satisfies (4). As we have already observed,
the set D is uniquely determined by the degree sequence of PD

n .
We call some r with 1 ≤ r ≤ n−1

2
an index of ambiguity of PD

n , if there is an index
r < s ≤ n− 1− r such that

NPD
n

(vr) ∩ {vj | 0 ≤ j ≤ r − 1} = NPD
n

(vs) ∩ {vj | 0 ≤ j ≤ r − 1}, (8)

NPD
n

(vr) ∩ {vj | n− r ≤ j ≤ n− 1} = NPD
n

(vs) ∩ {vj | n− r ≤ j ≤ n− 1}, (9)

dPD
n

(vr) = dPD
n

(vs), (10)

NPD
n

[vr] 6= NPD
n

[vs]. (11)

We call vs a cuckoo twin of vr. The role of these notions is captured by the following result.

Theorem 4 Let D satisfy (6). If PD
n has no index of ambiguity, then D and an ordering

v0, v1, . . . , vn−1 of its vertices which satisfies (4) can be obtained from PD
n in time O(n2).

Proof: Since d1 = 1, PD
n has exactly two vertices of degree k. Since vi 7→ vn−1−i is an

automorphism of PD
n , we can select any of the two vertices as v0 and the other as vn−1.

In view of an inductive approach, we assume that we have already identified the vertices
in

U = {vj | 0 ≤ j ≤ r − 1} ∪ {vj | n− r ≤ j ≤ n− 1}

for some r ≥ 1. Now, since PD
n has no index of ambiguity, vr and vn−1−r are uniquely

determined by D, their degrees, and their neighbours within U . (Note that a vertex v of
the same degree as vr and with the same neighbours within U , does not satisfy (11). Hence
v and vr are twins and we can select an arbitrary such vertex as vr).

Clearly, this approach can be implemented in quadratic time. 2

The next lemma captures some properties of indices of ambiguity.

Lemma 5 Let D satisfy (6). If r is an index of ambiguity of PD
n and dPD

n
(vr) = k + i for

some 0 ≤ i ≤ k, then the following statements hold.

(i) 1 ≤ i ≤ k − 1.
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(ii) di ≤ r ≤ di+1 − 1 and n− di+1 ≤ s ≤ n− 1− di.

(iii) s − r = dk − di = dk−1 − di−1 = . . . = dk−i+1 − d1. Furthermore, vr has a unique
cuckoo twin vs, and vs is no cuckoo twin of a vertex vr′ with r′ 6= r.

(iv) NPD
n

(vr) ∩ {vj | s+ 1 ≤ j ≤ n− 1} = NPD
n

(vs) ∩ {vj | s+ 1 ≤ j ≤ n− 1}.

(v) n− di − 1− 2(di+1 − di − 1) ≤ dk ≤ n− di − 1.

Proof: Since r ≥ 1 and 1 ∈ D, we obtain i ≥ 1. If i = k, then r − dk ≥ 0 and
vr−dk

∈ NPD
n

(vr) \NPD
n

(vs) which contradicts (8). Hence i ≤ k − 1 and (i) follows.
Since r ≤ n−1

2
, (7) implies di ≤ r ≤ di+1 − 1. Furthermore, (6) and (8) imply that

vr has exactly k neighbours vj with j > r and exactly i neighbours vj with j < r. If
s ≤ n−1

2
, then (6) and (8) imply that vs has k neighbours vj with j > s, i neighbours vj

with 0 ≤ j ≤ r−1 and at least one further neighbour vs−1. This implies dPD
n

(vs) ≥ k+i+1
which contradicts (10). Hence s > n−1

2
, vs has exactly k neighbours vj with j < s and

exactly i neighbours vj with j > s. By (7), n− di+1 ≤ s ≤ n− 1− di and (ii) follows.
Since NPD

n
(vr) ∩ {vj | 0 ≤ j ≤ r − 1} = {vr−d1 , vr−d2 , . . . , vr−di

}, (8) implies

s− r = dk − di = dk−1 − di−1 = . . . = dk−i+1 − d1.

Since s = r + dk − di, the cuckoo twin vs of vr is uniquely determined. If vs is also the
cuckoo twin of a vertex vr′ for an index of ambiguity r′ different from r, then the degree
of vs implies that vr′ has exactly i neighbours vj with j < r′ which coincide with the i
neighbours vr−d1 , vr−d2 , . . . , vr−di

of vs. This clearly implies the contradiction r′ = r and
(iii) follows.

Furthermore, NPD
n

(vs) ∩ {vj | s + 1 ≤ j ≤ n − 1} = {vs+d1 , vs+d2 , . . . , vs+di
}, and, by

(iii), (iv) follows. (ii) and (iii) imply n− 2di+1 + 1 ≤ dk− di ≤ n− 2di− 1, and (v) follows.
2

In view of Theorem 4, situations with no or with only few indices of ambiguity are of
interest. The following two corollaries make this more precise.

Corollary 6 Let D satisfy (6).

(i) If dk <
n+2

3
, then PD

n has no index of ambiguity.

(ii) If δ = max{di+1−di | 1 ≤ i ≤ k−1}, then PD
n has at most δ−1 indices of ambiguity.

Proof: Let r be an index of ambiguity and let dPD
n

(vr) = k + i. Let vs be the cuckoo twin
of vr.

(i) By Lemma 5 (v), n ≤ dk + 2di+1 − di − 1 ≤ 3dk − 2 which implies the contradiction
dk ≥ n+2

3
.

(ii) By the definition of δ, the vertex vr has a neighbour vj with j ≤ δ − 1. By Lemma
5 (ii), n+1

2
≤ n − di+1 ≤ s ≤ j + dk ≤ δ − 1 + n−1

2
. By Lemma 5 (iii), there are at most

δ − 1 cuckoo twins and hence also at most δ − 1 indices of ambiguity. 2
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Corollary 7 Let D satisfy (6). If PD
n has l indices of ambiguity, then D and an ordering

v0, v1, . . . , vn−1 of its vertices which satisfies (4) can be obtained from PD
n in time O(4ln2).

Proof: Note that if r is an index of ambiguity, then also n−1−r satisfies similar conditions
as r. If PD

n has l indices of ambiguity, then a similar strategy as used in the proof of
Theorem 4 can be applied: Every time an index r of ambiguity is reached, one has to
branch into 4 possibilities according to the two choices for each of vr and vn−1−r. Since
the branching depth is at most l, the resulting time complexity of this modified approach
is O(4ln2). 2

By Lemma 5 (iii), indices of ambiguity typically lead to repeated differences among the
elements of D. Therefore, we will consider the following choice for D with most repeated
differences:

D = {1 + (i− 1)p | 1 ≤ i ≤ k} (12)

for some p, k ∈ N. Note that for p = 1, PD
n = P k

n . Furthermore, for p = 2, PD
n is a proper

interval bigraph [16].

Theorem 8 If D satisfies (12) for some p, k ∈ N and 1 + (k− 1)p ≤ n−1
2

, then D and an
ordering v0, v1, . . . , vn−1 of its vertices which satisfies (4) can be obtained from PD

n in time
O(n2).

Proof: We only need to argue how to resolve the indices of ambiguity. Therefore, let r be
an index of ambiguity and let vs be the cuckoo twin of vr.

By (8), (11), and Lemma 5 (iv), there is some j with r < j < s such that vj ∈
NPD

n
(vs) \NPD

n
(vr). This implies p ≥ 3.

Clearly, we may assume that n ≥ 4. In this case v1 is the unique neighbour of v0 of
degree k+ 1 which implies r ≥ 2. Now vr−2 and vj are adjacent while vr−2 is non-adjacent
to the vertices in the non-empty set NPD

n
(vr)\NPD

n
(vs). This allows to distinguish between

vr and its cuckoo twin vs and completes the proof. 2

4 Induced subgraphs

The graph classes to which we have related the powers of cycles, the powers of paths,
and the distance graphs are hereditary. Therefore, it makes sense to consider the induced
subgraphs of these graphs.

Theorem 9 (i) A graph is an induced subgraph of a power of a cycle if and only it is a
UCA graph.

(ii) A graph is an induced subgraph of a power of a path if and only it is a UI graph.

(iii) Every graph is an induced subgraph of a distance graph.
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Proof: Since the proofs of (i) and (ii) are very similar, we will only give details for the
proofs of (ii) and (iii).

(ii) By Theorem 2, powers of paths are UI graphs and, hence, so are their induced
subgraphs. For the converse, we assume that G is a UI graph and that A = {(sv, tv) | v ∈
V (G)} is a UI model for G. As we have noted in the introduction, we may assume that
all 2|V (G)| extreme points are distinct. Therefore, there is some n ∈ N such that strictly
between every two consecutive extreme points of A there are at least two points from the
set Z/n =

{
i
n
| i ∈ Z

}
.

If I1 and I2 are two open intervals of the same length, then |I1 ∩ Z/n| and |I2 ∩ Z/n|
differ by at most one. Therefore, suitably replacing every extreme point x with one of the
two smallest elements of Z/n which are larger than x, we obtain a UI model A′ for G which
uses only extreme points from Z/n. Suitably adding further intervals of the same length
with starting points in Z/n yields in a UI model for a power of a path.

(iii) In view of a simple inductive argument, we may assume that G− v is an induced
subgraph of PD

n for some n and D with maxD ≤ n− 1. If NG(v) = {vi1 , vi2 , . . . , vil}, then
G is an induced subgraph of PD′

2n with D′ = D ∪ {n+ i1, n+ i2, . . . , n+ il}. 2

5 Conclusion

We have presented several characterizations of powers of cycles and powers of paths relating
them to well-known graphs classes. Furthermore, we studied the recognition problem for
distance graphs which generalize powers of paths. The main problem left open in this
paper is the recognition of distance graphs without further simplifying assumptions.
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[11] R.B. Eggleton, P. Erdős, and D.K. Skilton, Colouring prime distance graphs, Graphs
Combin. 6 (1990), 17-32.

[12] S.A. Evdokimov and I.N. Ponomarenko, Circulant graphs: recognizing and isomor-
phism testing in polynomial time, (English. Russian original), St. Petersbg. Math. J. 15
(2004), 813-835, translation from Algebra Anal. 15 (2003), 1-34.

[13] F. Gardi, The Roberts characterization of proper and unit interval graphs, Discrete
Math. 307 (2007), 2906-2908.

[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, NY, 1980.

[15] M.C. Golumbic and P.L. Hammer, Stability in circular arc graphs, J. Algorithms 9
(1988), 314-320.

[16] P. Hell and J. Huang, Certifying LexBFS recognition algorithms for proper interval
graphs and proper interval bigraphs, SIAM J. Discrete Math. 18 (2005), 554-570.

[17] C.M. Herrera de Figueiredo, J. Meidanis, and C. Picinin de Mello, A linear-time
algorithm for proper interval graph recognition, Inform. Process. Lett. 56 (1995), 179-
184.

[18] H. Kaplan and Y. Nussbaum, Certifying algorithms for recognizing proper circular-arc
graphs and unit circular-arc graphs, in: Graph-Theoretic Concepts in Computer Science,
vol. 4271 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, 289-300.

[19] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191
(1998), 113-123.

[20] A. Kemnitz and M. Marangio, Colorings and list colorings of integer distance graphs,
Congr. Numerantium 151 (2001), 75-84.

[21] R.M. McConnell, Linear-Time Recognition of Circular-Arc Graphs, Algorithmica 37
(2003), 93-147.

12



[22] M Muzychuk and G. Tinhofer, Recognizing circulant graphs of prime order in poly-
nomial time, J. Comb. 5 (1998), 347-374.

[23] M Muzychuk and G. Tinhofer, Recognizing circulant graphs in polynomial time: An
application of association schemes, Electronic J. Combin. 8 (2001), #R26.

[24] M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proc.
Lond. Math. Soc., III. Ser. 88 (2004), 1-41.

[25] I. Ponomarenko, Polynomial-time algorithms for recognizing and isomorphism testing
of cyclic tournaments, Acta applicandae Mathematicae 29 (1992), 139-160.

[26] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (Proc. Sec-
ond Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), Academic Press, New
York, 1969, 139-146.

[27] M. Voigt, Colouring of distance graphs, Ars Combin. 52 (1999), 3-12.

[28] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl.
Math. 51 (1994), 197-209.

13


