

PROCEEDINGS 11-15 September 2006

FACULTY OF ELECTRICAL ENGINEERING
AND INFORMATION SCIENCE

INFORMATION TECHNOLOGY AND
ELECTRICAL ENGINEERING -
DEVICES AND SYSTEMS,
MATERIALS AND TECHNOLOGIES
FOR THE FUTURE

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=12391

51. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224759518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Herausgeber: Der Rektor der Technischen Universität llmenau
 Univ.-Prof. Dr. rer. nat. habil. Peter Scharff

Redaktion: Referat Marketing und Studentische

Angelegenheiten
 Andrea Schneider

 Fakultät für Elektrotechnik und Informationstechnik
 Susanne Jakob
 Dipl.-Ing. Helge Drumm

Redaktionsschluss: 07. Juli 2006

Technische Realisierung (CD-Rom-Ausgabe):
 Institut für Medientechnik an der TU Ilmenau
 Dipl.-Ing. Christian Weigel
 Dipl.-Ing. Marco Albrecht
 Dipl.-Ing. Helge Drumm

Technische Realisierung (Online-Ausgabe):
 Universitätsbibliothek Ilmenau

 Postfach 10 05 65
 98684 Ilmenau

Verlag:
 Verlag ISLE, Betriebsstätte des ISLE e.V.
 Werner-von-Siemens-Str. 16
 98693 llrnenau

© Technische Universität llmenau (Thür.) 2006

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind
urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist
eine Verwertung ohne Einwilligung der Redaktion strafbar.

ISBN (Druckausgabe): 3-938843-15-2
ISBN (CD-Rom-Ausgabe): 3-938843-16-0

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=12391

51st Internationales Wissenschaftliches Kolloquium
Technische Universität Ilmenau

 September 11 – 15, 2006

Detlev Marpe, Gunnar Marten, and Hans L. Cycon

A Fast Renormalization Technique for H.264/MPEG4-AVC

Arithmetic Coding

Abstract

We propose a fast, standard-compliant realization of the computationally expensive re-
normalization part of binary arithmetic coding in H.264/MPEG4-AVC. Our technique al-
lows to replace time-consuming, bitwise-operating input and output as well as bitwise
carry-over handling in a conventional implementation with corresponding routines oper-
ating in units of multiple bits. Experimental results demonstrate that our proposed
method enables a considerable speed-up of both arithmetic encoding and decoding in
the range of 24 to 53% average run time.

1 Introduction

In the course of the development of the H.264/MPEG4-AVC video coding standard [1], a

novel design of a family of table-based adaptive binary arithmetic coders has been

proposed [2]. This so-called M coder design [3] is a low-complexity approach to binary

arithmetic coding and it involves the innovative features of table-based interval

subdivision in conjunction with fast and accurate table-based probability estimation as

well as a fast probability-estimation bypass. The computationally critical operation of

interval subdivision is approximated by using a suitable pre-quantization of the range of

possible interval width values induced by renormalization. For each quantized interval

width and for each representative probability value, the corresponding product value is

pre-calculated and stored with suitable precision into a 2-D lookup table. Probability

estimation is performed by employing a finite-state machine with tabulated transition

rules. For approximately uniform distributed sub-sources, an optional bypass of the

probability estimator is employed, which results in an additional speed-up [3][4].

A particular member of the M-coder family has been adopted as normative element of

the H.264/MPEG4-AVC context-based adaptive binary arithmetic coding (CABAC)

scheme [4]. CABAC is one of two alternative entropy-coding methods in H.264/MPEG4-

AVC. Compared to VLC/CAVLC (variable length coding / context-adaptive VLC), which

is the low-complexity entropy-coding method in H.264/MPEG4-AVC [4], CABAC typically

provides considerable bit-rate reductions at a given quality. Equivalently, a significant

bit-rate overhead is involved when using VLC/CAVLC instead of CABAC, with all other

coding options being the same. As an illustration of that fact, Figure 1 shows

corresponding coding results for a representative set of 1080p high-definition (HD) video

test sequences which were encoded at five different target bit rates ranging from 5 to 40

Mbit/sec. Averaged over all tested sequences, we observed a bit-rate overhead for

VLC/CAVLC-based encoding in the range of 15–22% with the general trend of higher

overhead rates at lower average bit rates. Note that for a typical reconstruction quality

of a broadcast or packaged media application scenario corresponding to average bit

rates around 15 Mbit/sec, the average VLC/CAVLC rate overhead is around 18%.

As one important building block of the CABAC entropy coding scheme, the specific M-

coder incarnation in H.264/MPEG4-AVC contributes in a significant way to the overall

effectiveness of CABAC. Actually, the M-coder provides virtually the same coding

Rate overhead with VLC/CAVLC

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 5000 10000 15000 20000 25000 30000 35000 40000

CABAC bit rate [kbit/s]

V
L
C
/C
A
V
L
C
 r
a
te
 o
v
e
rh
e
a
d
 [
%
]

as_good_as_it_gets
book
budweiser

car_through_landscape
men_in_black
Average

Figure 1: Comparison of compression performance achievable with VLC/CAVLC and CABAC. The bit-rate over-

head for encoding 5 different 1080p (1920 x 1080, 24 Hz) test sequences using VLC/CAVLC is plotted against the

average bit-rate obtained for CABAC encoding (solid lines). The dashed line indicates the VLC/CAVLC bit-rate

overhead averaged over all 5 test sequences at the corresponding target rate points. Note that the VLC/CAVLC bit-

streams have been generated by transcoding the corresponding CABAC streams which, in turn, have been produced

by using the High profile related coding tools of H.264/MPEG4-AVC.

efficiency as a conventional multiplication- and division-based implementation of binary

arithmetic coding at significantly higher throughput rates, corresponding to speed-up

factors in the range of 1.5–2.0 [2]. Compared to other well-established low-complexity

binary arithmetic coding techniques like that of the Q coder [5] and its derivatives of QM

and MQ coder [6] as used in JPEG and JPEG2000, respectively, the M coder achieves

an increase in throughput of up to 18%, depending on the implementation platform. At

the same time, average bit rate savings of 2–4% can be obtained by the M coder

relative to the MQ coder, when measured in the native H.264/MPEG4-AVC CABAC

environment [3].

Despite these remarkable properties, arithmetic coding in H.264/MPEG4-AVC still poses

some severe problems for real-time applications. Due to its sequential nature of

processing, the computational requirements for real-time software-based parsing and

arithmetic decoding of HD video at, e.g., bit rates of 5–20 Mbits/sec, may yet exceed the

capabilities of today’s generic CPUs. In the view of these challenges, it is obvious that

any progress in substantially reducing the implementation costs of the binary coding

engine of H.264/MPEG4-AVC will be extremely beneficial.

One of the major bottlenecks in any arithmetic encoding and decoding process is given

by the renormalization procedure. Renormalization in the M coder is required whenever

the new interval range R after interval subdivision does no longer stay within its legal

range. Each time a renormalization operation must be carried out one or more bits can

be output at the encoder or, equivalently, have to be read by the decoder. This process,

as it is currently specified in the standard [1], is performed bit-by-bit, and it is controlled

by some conditional branches to check each time if further renormalization loops are

required. Both conditional branching and bitwise processing, however, constitute con-

siderable obstacles to a sufficiently high throughput.

As a solution to this problem, we propose a fast renormalization policy for the M coder

with the following main characteristics:

• The loop in the renormalization part is completely removed and conditional branching

is omitted as far as possible.

• The internal register representing the code interval base L in the encoder, or alterna-

tively, the register for the offset V in the decoder is implemented with a higher accu-

racy in order to allow writing/reading of multiple code bits at a time.

• The carry-over handling in the encoder is substantially simplified in a way that the

demand for storage and computational resources can be greatly reduced.

• A virtual floating point is maintained for the registers L and V to always guarantee the

required precision of the corresponding variables relative to the code interval width R.

• All proposed changes as applied to the H.264/MPEG4-AVC version of the M coder

are fully standard compliant.

The organization of this paper is as follows. In the following section, we briefly review

the basic principles of binary arithmetic coding as well as the generic design principles

of the M-coder family. We further discuss the renormalization problem as it is given in a

conventional M-coder implementation. Section 3 contains the presentation of our

proposed fast renormalization method including a discussion of the corresponding

specific design features developed for both the encoder and decoder. Experimental

results for a validation of our approach are presented in Section 4 and concluding

remarks can be found in Section 5.

2 Background and Problem Statement

In the following, we first present a brief review of the basic principles of binary arithmetic

coding (BAC) with a particular focus on implementation-related aspects. In binary

arithmetic coding, it is convenient to discriminate between the two symbols of the binary

alphabet not by using their actual symbol values “0” and “1” but rather by referring to

their estimated probability values. By distinguishing between the least probable symbol

(LPS) and the most probable symbol (MPS) and by keeping track of the symbol value of

the MPS (valMPS) as well as the probability pLPS of the LPS, a simple parameterization

of the underlying probability model of a given binary alphabet is achieved.

Based on those settings, BAC is performed by subdividing an initially given interval

represented by its lower bound (base) L and its width (range) R into two disjoint

subintervals: one interval of width LPSLPS pRR ⋅= , which is associated with the LPS, and

the dual interval of width
LPSMPS RRR −= , which is assigned to the MPS. Depending on

the binary value to encode, either identified as LPS or MPS, the corresponding

subinterval is then chosen as the new coding interval. By recursively applying this

interval-subdivision scheme to each element aj of a given sequence ()Naaa ,,, 21 K=a of

binary symbols to encode, BAC finally determines a value ca in the subinterval

),[)()()(NNN RLL + that results after the N-th interval subdivision process. The (minimum)

binary representation of ca is the arithmetic codeword of the input sequence a.

To ensure that registers with a precision of b bits are sufficient to represent the variables

)(jR and)(jL for all j, a renormalization operation is required, whenever)(jR

falls below a

certain limit after one or more interval subdivision process(es). Furthermore, by

renormalizing)(jR and)(jL accordingly, leading bits of the arithmetic codeword ca can

be output as soon as they are unambiguously identified.

Figure 2 (a) shows pseudocode of a BAC implementation including the renormalization

part (lines no. 8−19). This implementation is based on [7], which serves as the common

technical ground for all the variants discussed in the rest of the paper. As can be seen

from Figure 2 (a), this BAC scheme uses the convention to place the LPS-related

subinterval on top of the subinterval assigned to the MPS by modifying the interval base

according to
MPS

)1()(RLL jj += − . Renormalization is triggered whenever the constraint

22 −≥ bR is violated. As shown in Figure 2 (a), the corresponding renormalization part

contains a loop with a stepwise doubling of the register values R and L, whereby in each

step a single bit is emitted. However, in cases where a future carry bit may affect the

value of the current bit, a counter (Figure 2 (a): BitsOutstanding) is incremented and the

Figure 2: (a): Conventional binary arithmetic encoding of a symbol value (for a fixed probability pLPS). (b): Imple-

mentation of an H.264/MPEG4-AVC compliant M decoder w/o probability estimation (using a fixed probability state

m).

// interval subdivision
1: R

LPS
 = RTAB[m][(R >> 6) & 3]

2: R
MPS

 = R - R
LPS

3: if (V < R

MPS
)

4: R = R
MPS

, value = valMPS
5: else
6: V = V - R

MPS
, value = ! valMPS

7: R = R
LPS

// renormalization
8: while (R < 2 8)
9: R = R << 1
10: V = V << 1
11: V = V | read_one_bit()

(b)

// interval subdivision
1: R

LPS
 = R × p

LPS

2: R
MPS

 = R - R
LPS

3: if (value == valMPS)
4: R = R

MPS

5: else
6: L = L + R

MPS

7: R = R
LPS

// renormalization
8: while (R < 2 b-2)
9: if (L >= 2 b-1)
10: put_one_bit_plus_outstanding(1)
11: L = L - 2 b-1
12: else
13: if (L < 2 b-2)
14: put_one_bit_plus_outstanding(0)
15: else
16: L = L - 2 b-2
17: BitsOutstanding++
18: R = R << 1
19: L = L << 1

(a)

actual output of that bit is delayed until the carry can be resolved.

The most critical drawback in terms of computational complexity, when using a

straightforward BAC implementation like that shown in Figure 2 (a), is given by the

multiplication operation in line no. 1 of the BAC routine. Actually, if the probability

estimation involves a simple estimator based on scaled cumulative frequency counts of

symbols, this operation may even involve an integer division [7]. As a consequence,

most of the research on fast binary arithmetic coding has been devoted to the problem

of employing a suitable low-complexity operation as an approximation of the

operation(s) required to perform the interval subdivision. The most prominent

representatives of that kind of BAC schemes are given by the QM and MQ coder as part

of JPEG, JBIG, JPEG-LS, and JPEG2000 image coding standards [5][6].

Recently, a new design of a family of multiplication-free binary arithmetic coders has

been proposed [2][3]. Its main innovative features are given by a table-based interval

subdivision coupled with probability estimation based on a finite-state machine (FSM) as

well as a fast bypass coding mode. This so-called modulo (M) coder family of BAC

schemes offers a parameterizable trade-off between coding efficiency and memory

requirements for the underlying lookup tables. Actually, the M-coder design can be

considered as a generalization of the Q-coder family
1
, since the latter can be derived

from a specific M-coder incarnation belonging to the simplest choice of parameter (see

below).

Another, more elaborate choice of a member of the M-coder family has been adopted

by the ITU-T and ISO/IEC as a normative part of the H.264/MPEG4-AVC video coding

standard [1]. It offers a good trade-off between complexity (in terms of throughput) and

compression performance, as experimentally verified in [3]. In the following section, we

briefly summarize some basic facts of the M coder.

2.1 Brief review of the M-coder design principles

The basic idea of the low-complexity M-coder approach of interval subdivision is to

quantize the admissible domain)2 ,2[12 −−= bb
D for the range register R induced by

renormalization into a small number of K different cells. To further simplify matters, we

assume a uniform quantization of D to be applied, resulting in a set of representative

1
 This is strictly true only with regard to the way the interval subdivision is approximated.

equispaced range values },,,{ 110 −= KQQQ KQ , where K is further constrained to be a

power of 2, i.e., κ2=K for a given integer 0≥κ . By a suitable discretisation of the

range of LPS-related probability values]5.0,0(LPS ∈p , a representative set

},,,{ 110 −= Mppp KP of probabilities can be constructed together with a set of

corresponding transition rules for FSM-based probability estimation. Both discrete sets

P and Q together enable an approximation of the multiplication operation Rp ×LPS
 for

interval subdivision by means of a 2-D table RTAB that contains all M × K pre-calculated

product values }0 ;0|{ KkMmQp km <≤<≤× in a suitably chosen integer precision. The

entries of the RTAB table can be easily addressed by using the (probability) state index

m and the quantization cell index k related to the given value of R. Computation of k is

easily carried out by a concatenation of a bit-shift and a bit-masking operation applied to

R, where the latter can be interpreted as a modulo operation using the operand κ2=K ,

hence the naming of the proposed family of coders:

).1(2 &))2((−−−>>= κκbRk (1)

Please note that for a specific realization of the M coder, κ and b are fixed, and therefore

both operands on the right hand side of (1) are given as fixed values. By choosing a

value of κ = 0, the 2-D table RTAB degenerates to a linear table, where for all possible

values of R only one single representative value is used for the approximation of Rp ×m
.

This case is equivalent to the subinterval division operation performed in the Q coder

and its corresponding derivatives.

However, for clarity of presentation and without loss of generality, we will restrict

ourselves in the following to the specific case of an H.264/MPEG4-AVC compliant M

coder corresponding to the choice of κ = 2 and the specification of a lookup table RTAB

with 64 × 4 entries [1]. As a further simplification, we will neglect the table lookup

operations required to adapt the probability state m during each encoding/decoding

cycle. For more details, especially on the latter aspect, please refer to [3][4].

2.2 Discussion of renormalization

In terms of implementation costs, the renormalization part of the M coder still suffers

from bit-by-bit input/output and – as far as the encoder side concerns – also from bitwise

carry-over handling. The related computationally critical parts in an encoder

implementation can be mainly attributed to the bitwise operating renormalization loop

and the conditional branching inside this loop as shown in Figure 2 (a).

Although from a decoder perspective, the problem appears to be slightly alleviated when

comparing the renormalization parts of Figure 2, there is still a considerable

computational overhead involved in a conventional M-decoder implementation due to its

sequential reading of bits from the bitstream (as exemplified in line no. 11 of Figure 2

(b)).

The following section presents an alternative but still standard-compliant realization of

renormalization by enabling the processing of multiple bits at a time both for the output

at the encoder and the input at the decoder.

3 Fast Standard-Compliant Renormalization

3.1 Determination of renormalization cycles

The first natural step toward a simplification of renormalization consists in unrolling the

while loop (line no. 8 of both Figure 2 (a) and ((b)). It is quite obvious that for avoiding

multiple checks of the while condition, it is sufficient to determine in advance the bit

index of the most significant bit (MSB) in the R register relative to the loop guard with its

MSB placed at bit index equal to 8 (for the specific M coder under consideration). Since

the value of R is doubled or left-shifted for each loop cycle, the numerical difference

between 8 and the current bit index of the MSB of R is equal to the number of cycles the

renormalization loop has to be executed.

Many hardware architectures allow to determine the MSB bit index within a single

instruction like, e.g., the Bit Scan Reverse (BSR) instruction on Intel’s x86 architecture

[8]. However, in cases where the implementation of the M coder has to be more generic

or platform-independent, the use of such low-level machine dependent instructions may

be prohibited. For those use cases or simply for cases where no specific instructions for

MSB index detection are available, we propose an alternative way of determining the

number of renormalization cycles.

To this end, we first discriminate between the MPS and LPS case. In case of

encoding/decoding an MPS event, the value of LPSMPS RRR −= can be bounded from

below as follows. Let us assume that according to equation (1), a specific value of k

with 0 ≤ k < 4 is derived from R. Then, the estimation 62)4(×+≥ kR holds and from the

specification of the RTAB table in[1], we can deduce the following upper bounds for
LPSR ,

depending on the value of k:

×−+
=

≤=
else,2)1(176

0 if ,128
]][[

5LPS
k

k
kmRTABR (2)

for all m with 0 ≤ m < 64. Combining both estimations, we can conclude that 128MPS ≥R

always holds and therefore, at most one renormalization cycle is required for the MPS.

This is equivalent to what one would expect from an exact implementation of subinterval

division as outlined in Sec. 2 because from the definition we have
LPSMPS 5.0 pp ≥≥ .

2

Thus, for the MPS, a simple bit test is sufficient to compute the number of

renormalization cycles, denoted by Rnorm:

,1 XOR)8(MPS >>= RRnorm

where XOR denotes the logical exclusive-or operation.

In the LPS case, we can directly deduce Rnorm from the tabulated
LPSR values of RTAB.

A straightforward method, for instance, would be to put the corresponding Rnorm values

in a complementary 2D-table with 64 × 4 entries. However, by observing that the entries

of RTAB imply a strict lower bound for
LPSR , a much smaller and hence more practical

lookup table can be derived as follows.

First, from the definition of the underlying FSM of the M coder [1][3][4], it is clear that the

values of P∈mp are given in decreasing order with increasing value of the probability

state m. This, in turn, implies that the minimum value of RTAB[m][k] is given for the

maximum value of m. The probability state with m = 63, however, corresponds to an

autonomous, non-adaptive state within the H.264/MPEG4-AVC-based M-coder

realization, and it is only used for encoding/decoding of terminating syntax elements, for

which often a separate encoding/decoding routine is utilized [1][4]. Since

RTAB[63][k] = 2 for all values of k, the corresponding Rnorm value can be determined to

be equal to 7. For all regular states of the FSM corresponding to m < 63, we have

6]][[LPS ≥= kmRTABR . Based on this lower bound for all states with m < 63, we can

aggregate the Rnorm values that correspond to
LPSR values strictly less than 8, because

for those values exactly 6 renormalization cycles have to be performed. Consequently,

we can discard the 3 least significant bits of
LPSR and use the remaining 5 MSBs for

indexing a table RnormTAB which is constructed to indicate the unique number of

renormalization cycles for each value of
LPSR (with the exception of those related to

m = 63):

.]3[LPS >>= RRnormTABRnorm

Note that RnormTAB is a table that requires not more than 31 entries, each with a

precision of 3 bits only. This follows from the upper bound on the Rnorm value (equal

to 6 for the table index equal to 0) as well as from the overall upper bound on
LPSR given

by a value of 240 according to (2). As a result, we can detect the MSB of
LPSR and

hence the corresponding Rnorm value with a comparably low cost of one bit shift and

one table lookup operation, where the table size is smaller than 1/8 the size of the table

needed for the naive approach, as mentioned above.

Having predetermined values of renormalization cycles Rnorm available allows to in-

/output Rnorm bits at once. However, instead of forcing the encoder/decoder to carry out

the corresponding in-/output operation each time Rnorm has a non-vanishing value, we

propose to bring forward/postpone the actual in-/output until a fixed amount M_BITS of

multiple bits have been exhausted/accumulated. M_BITS can take any positive value,

though in a practical scenario we may choose it to represent a multiple of 8. In the

following, we first demonstrate a realization of this rather simple idea in the context of an

H.264/MPEG4-AVC-compliant M decoder. After that, we will sketch a corresponding M

encoder implementation.

2
 Note, however, that due to the approximations involved, it is not always guaranteed that LPSMPS RR ≥ for the M coder.

1: R
LPS

 = RTAB[m][(R >> 6) & 3]
2: R

MPS
 = R - R

LPS

3: if (V < (R
MPS

 << BitsLeft))
4: R = R

MPS
, value = valMPS

5: Rnorm = (R
MPS

 >> 8) XOR 1
6: else
7: V = V – (R

MPS
 << BitsLeft)

8: R = R
LPS

, value = ! valMPS
9: Rnorm = RnormTAB[R

LPS
 >> 3]

10: R = R << Rnorm
11: BitsLeft = BitsLeft - Rnorm
12: if (BitsLeft <= 0)
13: V = (V << M_BITS) | read_bits(M_BITS)
14: BitsLeft = BitsLeft + M_BITS

Figure 3: Proposed fast renormalization in an H.264/MPEG4-AVC compliant M decoder (w/o probability esti-

mation).

3.2 Multiple-bit input at the decoder

As already pointed out above, the main idea is to decouple the in-/output of bits from the

actual renormalization operation. In the decoder, this is accomplished by inputting

M_BITS bits in advance into the V register. Since the V (and R) register in an ordinary M

decoder requires a minimum precision of 9 bits, we have to first enlarge the V register to

maintain a precision of 9 + M_BITS. In addition, we have to introduce an auxiliary

register BitsLeft which serves two purposes. First, it indicates the number of available

bits in the V register and, secondly, it keeps track of a virtual floating point for balancing

the precision of R and V, i.e., it indicates the amount of bit shifts to the left that have to

be applied to R before combining or comparing it with V.

Figure 3 shows the pseudocode of an M decoder that includes the aforementioned

ideas. Note that the actual renormalization of R (line no. 10 of Figure 3) is performed

after each decoding cycle. However, any input of bits is performed in chunks of M_BITS

and only after the cumulative amount of Rnorm values exceeds the value of M_BITS.

That implies in particular that the corresponding lines no. 12-14 of Figure 3 are executed

only for each chunk of M_BITS input bits.

3.3 Multiple-bit output and carry over at the encoder

The same ideas as described in the previous section, can be applied to the encoder as

well in a rather straightforward manner. Since the interval subdivision is performed in a

way that encoder and decoder are perfectly synchronized, the corresponding changes

(in terms of code instructions) between Figure 2 (b) and Figure 3 can be transferred in

an analogue fashion to Figure 2 (a).

However, one substantial difference in the renormalization part of the encoder (as

compared to the decoder) is given by the handling of potential carry-over events, as

already pointed out in Sec. 2. Since the output of leading bits (MSBs) from the L

register is performed in chunks of M_BITS as well, we need to monitor only the case

where all M_BITS output bits have a value of “1” by incrementing a corresponding

“outstanding” event counter. This fact together with a buffering of the previous M_BITS

output bits before actually writing them to the bitstream enables a significantly simplified

carry-over processing. Figure 4 shows an encoder implementation equipped with the

proposed multiple-bit output and carry-over handling.

4 Experimental Results

For an experimental evaluation of our proposed fast renormalization scheme, we first

implemented the decoder related changes into our own run-time optimized

H.264/MPEG4-AVC High profile (HP) decoder. In addition to what has been discussed

in the previous section, we also adapted the initialization, the termination as well as the

bypass part of the M decoder according to the modified renormalization strategy. For

that implementation, a value of 16 was chosen for M_BITS. We generated

H.264/MPEG4-AVC HP bit-streams for four 1080p test sequences (each with 50

frames) by using intra-only coding with fixed quantization paramaters of 20 and 24.

These settings were chosen because for a typical HDTV broadcast scenario, those

generated bit rates can be regarded as a kind of upper bound for HP@Level 4 [1].

For the purpose of reliable run-time measurements, we disabled the actual decoding

process (in our H.264/MPEG4-AVC HP decoder) and measured the run-time of the

parsing process only. The actual run-time measurements for parsing the standard-

compliant test bit-streams were performed by comparing two versions of our

H.264/MPEG4-AVC HP decoder – one version based on a conventional M decoder

implementation (as presented in Sec. 2) and another version equipped with our

proposed fast renormalization scheme. The corresponding experiments were

performed on a Pentium 4, 3.6 GHz machine with Linux OS, where the machine code

was generated using gcc, version 4.03.

Figure 4: Left: M encoder implementation including the proposed fast renormalization part. Right: Auxiliary rou-

tines for output of chunks of M_BITS bits and for carry propagation. Note that the minimum precision of the register

L is 11 + M_BITS, whereas that for R is still 10 bits.

1: encode() 1: output()
2: R

LPS
 = RTAB[m][(R >> 6) & 3] 2: out = (L >> 10) & (2 M_BITS - 1)

3: R
MPS

 = R - R
LPS

3: if (out == (2 M_BITS – 1))
4: if (value == valMPS) 4: ChunksOutstanding++
5: R = R

MPS
5: else

6: Rnorm = (R
MPS

 >> 8) XOR 1 6: put_chunk_bits_plus_outstanding(out)
7: else 7: L = L << M_BITS
8: L = L + (R

MPS
 << BitsLeft) 8: BitsLeft = BitsLeft + M_BITS

9: if (L >= 2 10 + M_BITS)
10: L = L - 2 10 + M_BITS 1: propagate_carry()
11: propagate_carry() 2: Buffer = Buffer + 1
12: R = R

LPS
3 while (ChunksOutstanding > 0)

13: Rnorm = RnormTAB[R
LPS

 >> 3] 4: put_chunk_bits(0)
14: R = R << Rnorm 5: ChunksOutstanding--
15: BitsLeft = BitsLeft – Rnorm
16: if (BitsLeft <= 0)
17: output()

As a result of those experiments, we obtained a reduction in measured run time of

arithmetic decoding in favor of our proposed fast renormalization-based variant in the

range of 23.5–26.9%. Note that the proportion of the actual arithmetic decoding

process (excluding the run time for the bypass decoding routine) relative to the whole

parsing process was about 35%.

In another set of experiments, we compared run time for two different encoder versions

– one conventional implementation and another version using the proposed fast

renormalization. These experiments were carried out by using a JPEG still image

coding implementation [9], where the corresponding QM coder was replaced by the two

aforementioned versions of the M coder. Here, the reason for using JPEG instead of

H.264/MPEG-AVC is given by the fact that in a typical H.264/MPEG-AVC encoder, the

proportion of run time of the arithmetic coding part is usually too small to deliver

statistically reliable results. As a result of our JPEG-based encoding experiments that

were conducted by using a variety of different test still images, overall run-time

improvements of 47.3–52.7% have been obtained for our proposed variant of an

H.264/MPEG-AVC-compliant M encoder including fast renormalization and carry-over

handling. Constitutive parts of these relatively large gains can be attributed to the

fundamentally improved treatment of carry-over events.

5 Conclusions

We have introduced an alternative, standard-compliant, fast renormalization method for

the binary arithmetic encoder and decoder in H.264/MPEG4-AVC. By replacing the

conventionally bitwise performed operations with byte-wise or word-wise processing, a

considerably increased throughput can be achieved. We presented experimental

results for demonstrating the benefits of the novel renormalization technique, especially

for the purpose of software-based decoding of HD video.

References:

[1] ITU-T and ISO/IEC JTC 1, "Advanced Video Coding for Generic Audiovisual Services", ITU-T Rec-
ommendation H.264 & ISO/IEC 14496-10 (MPEG4-AVC), Version 1, May, 2003; Version 2, January
2004; Version 3 (with FRExt), Sept. 2004; Version 4, July, 2005.

[2] D. Marpe, G. Heising, G. Blättermann, and T. Wiegand, “Fast arithmetic coding for CABAC,” Joint
Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6, Doc. JVT-C061, Fairfax, USA, March
2002.

[3] D. Marpe and T. Wiegand, “A highly efficient multiplication-free binary arithmetic coder and its applica-
tion in video coding,” Proc. IEEE Int. Conf. Image Proc. (ICIP) 2003, Barcelona, Spain, Sept. 2003.

[4] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding in the
H.264/AVC video compression standard,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, pp. 620-636, July 2003.

[5] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps, “An overview of the basic principles
of the Q-Coder adaptive binary arithmetic coder”, IBM J. Res. Dev., vol. 32, pp. 717-726, 1988.

[6] D. Taubman and M. W. Marcellin, JPEG2000 Image Compression: Fundamentals, Standards and Prac-
tice, Kluwer Academic Publishers, 2002.

[7] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited”, ACM Trans. on Information Sys-
tems, 16(3), pp. 256-294, July 1998.

[8] IA-32 Intel Architecture Software Developers’s Manual, Vol. 2: Instruction Set Reference, 2002.
[9] Independent JPEG Group online: http://www.ijg.org.

Authors:
Dr. Detlev Marpe and Dipl.-Ing. Gunnar Marten
Fraunhofer Institute HHI
Einsteinufer 37
10587 Berlin
Phone: +49 30 31002-619
Fax: +49 30 392 72 00
Email: [marpe|marten]@hhi.fraunhofer.de

Prof. Dr. Hans L. Cycon
Fachhochschule für Technik und Wirtschaft (FHTW) Berlin
Treskowallee 8
10318 Berlin
Phone: +49 30 5019-3363
Fax: +49 30 5019-3329
Email: hcycon@fhtw-berlin.de

	iwk_51_2006_Titelei_090506.pdf
	IWK_51_2006_Titelseite.pdf
	IWK_51_2006_Impressum_090325.pdf

