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Abstract

What is the big difference between playing a game against a human being or against a computer

generated player? Why were “LAN parties” such a big success in the mid-1990s? And why do

many people believe that it is more challenging to play against human beings thanto play with an

artificial player? At the beginning of this new century “LAN parties” are in the middle of a slight

regression, but only because there is a constantly growing number of people which celebrates

playing massive multi-player games. Consequently, players have moved from staging games as

a local event, where it is possible to play against other human beings to the World Wide Web,

where it is possible to play with and against other people on a daily basis. All these developments

appear to be based upon human behavior. Based upon this evidence the current state of game AI

is unsatisfactory if compared to the performance of human players. The following work presents

the reader with a tool that was developed for analyzing basic computer games with incorporated

AI modules. These incorporated AI modules contain the strategies to perform the behavior of

artificial players.This sets the stage for a systematic evaluation and refinement of rule based

game AIs.
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1. Introduction

Imagine a computer game with a programmed adversary NPC1 that is represented as a rule

based agent. The NPC behaves so well that it passes an adapted TURING Test successfully.

Now imagine that you delete just one rule from the rule base and the resulting NPC fails the

TURING Test.

As a consequence, before removing this last rule the NPC was represented as a minimal

version of a rule base including the human factor.

By analyzing the differences between human behavior and intelligent rule-based behavior, I

am searching for a way to create an artificial human agent. In his paper onmachine learning

[16] ALAN TURING describes an approach to validate a system that imitates a human being.

Accordingly, there are different kinds of approaches. One of the most popular approaches was

WEIZENBAUM ’s ELIZA program [17].

I believe that computer games offer the most efficient way to gather a suitablenumber of test

persons, because they have the capability to reach a vast amount of volunteers. Consequently,

they present an ideal stage for the analysis of machine game strategies performed by NPCs

against human beings. However, commonly used game logics are mostly basedon fixed pro-

grammed rules. Through the evaluation and refinement of adaptable rule-based NPCs in digital

games it should be possible to see the differences between human and artificial behavior.

With this goal in mind, I created an environment to perform TURING Tests with NPCs and

human beings. This environment serves as a corner stone for running experiments which aim at

a systematic analysis and refinement of programmed game strategies performedby NPCs.

Human behavior shows a certain level of complexity. Therefore, straightforward strategies

(encoded in very few rules) will most likely be identified as non-human. Huge amounts of com-

1NPC is a commonly used term in the game community and stands for “non-player character”.
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1. Introduction 3

plicated rules on the other hand do not necessarily reflect the quintessence of human intelligence

when playing games. Therefore, I try to find a model of human behavior, which enjoys mini-

mality in terms of the rule base’s size and complexity, but models human behavior reasonably

well.

Since it is difficult to accomplish this goal for popular “state of the art” online computer games

such as WORLD OF WARCRAFT or EVE ONLINE, we decided to start with a digitalized version

of a board game called “JOSTLE 2007” [10], which I shall describe later.

One may ask: “Why is it difficult to create an NPC’s knowledge base for these mentioned

modern computer games?”

In my search for a suitable answer, I divided this question into several subtopics and found

the following reasons:

• Since a TURING Test requires the separation and identification of test persons, most games

preclude us to fully control the game environment and setting. Therefore,I am often

unable to separate one proband from an other.

• Since communication is such an important factor in online games, it would be too much at

this stage to combine both, communication and game strategies, into this first prototype.

For an existing online game I would have to combine the two mentioned aspects into a

first prototype. If not, the probands could easily identify the game strategyand this would

ruin the test scenario.

• We cannot influence the development of further upgrades or featuresin external software.

Therefore, I started with our own basic game which we can incrementally upgrade in well

defined steps. This enables the rule base to be adapted more easily to the current degree

of game complexity. It avoids anomalies, mostly redundancies, in the rule baseand keeps

it maintainable, while becoming more and more mature at the same time.

• In order to derive credible insights into human game behavior, many test persons are

required. This means that many game copies must be used. Using a commercialproduct

may exhaust the budget quickly in regards to the license fees or provokeillegal actions.
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1. Introduction 4

• By using a “state of the art game” my created game content would have to be onthe

same quality level in regards to graphical representation and maturity as a full grown

commercial product. Otherwise, its content could easily be identified.

After weighing pros and cons, I am able to provide an answer to the previous question.

“ It is too difficult for me to create a good NPC knowledge base for a modern computer game,

because it would require insights into the developers code base and change this code frequently

to support our needs. It would also require a tremendous effort on theartistic and design level to

support our created NPC.”

This is why I began with a new project, namely small self developed games and myown

analyzing interface.

With my client-server architecture, which is capable to communicate over the INTERNET,

and the first basic game integrated into it, it will be possible to collect all required data from a

proband even if he or she is on the opposite side of the world.

This gives me the opportunity to validate my theory with a reasonably high proband base and

it allows us to refine the NPC’s rule base according to the validation results.

The chapter on our GRINTU framework provides more information about the capabilities of

this tool.

Diploma Thesis| Swen Gaudl
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1.1. Artificial Intelligence

1.1.1. Definition

Artificial Intelligence, or short AI, can be understood as the attempt to create a machine or

program which acts intelligently. Features like problem solving or logical closure fall all under

the field of Artificial Intelligence.The science of Artificial Intelligence tries to transfer rational

and human-like thinking and behavior onto machines. For further informationon Artificial

Intelligence, please refer to [14, p. 17f]. In everyday language Artificial Intelligence stands for

both the Science of Artificial Intelligence and the attempt to create intelligent machines.

1.1.2. TURING Test

ALAN TURING drafted in his work on machine learning "‘Computing Machinery and Intelli-

gence"’ [16] a test which can be described as follows: the test is basedon an imitation game in

which a person communicates with two other people through text messages. TURING’s set-up

was the following:

The imitation game was played by three people namely a male or female interrogator (A), a

man (B), and a woman (C). The interrogator was placed in another room, separate from persons

(B) and (C). The goal of the imitation game is that the interrogator has to determine which of

the two persons is (B) and which is (C). (A) knows the two persons only byX and Y, and by the

end of the game (A) has to state:

“X is (B) and Y is (C) or X is (C) and Y is (B).”

In the course of the game, the interrogator may ask questions like the following:

“A: X, can you please tell me the color of your hair?”

If (B) is X, the man has to answer the question. It is the goal of players (B)and (C) to mislead

(A). (B)’s answer could be as follows:

“B: I have brown hair with bleached highlights and black bangs.”

TURING’s idea was now to replace (B) with a machine and watch how often (A) now mis-

judges (B), the machine for (C), and vice versa. What could this mean, if the interrogator (A)

misjudges equally often?

Diploma Thesis| Swen Gaudl



1.1. Artificial Intelligence 6

Today, people break the TURING Test down into the following scenario:

If the interrogating person cannot decide upon the asked questions andanswers wether the

respondent is a human or a machine, would this not suggest that the machinemust beconsidered

intelligent in some way? In fact, this should be the case, because human beings judge other

human beings by the same criteria.

For this work I chose an adapted version of the TURING Test which does not claim to be

a full-fledged TURING Test. In this adapted version, I want to determine if the behavior of an

artificial intelligence is judged as “human-intelligent” or not. Our working definition of “human-

intelligent” is that by not detecting an artificial intelligence, which means that the human player

cannot decide during a game if the artificial player is human or not, the artificial intelligence has

the “human factor”.

The human factor is a hypothetical construct which, if present, creates the impres-

sion of human behavior in a artificial intelligence.

During my adapted TURING Test, two probands will play together with a artificial intelligence.

After each game, the probands who do not know each other and who cannot communicate with

each other, have to judge the two other remaining players. Each proband has to decide between

the human or the artificial intelligence.

Overview The thesis is organized as follows. The subsequent chapter describesthe board

game “JOSTLE2007” [10], which is used in the first setting, using the GRINTU Framework. It

is followed by a chapter about Jostle play strategies, which are/will be employed by an NPC. It

provides a closer look at the implementation of these rules using the PROLOG language. Then,

I shall discuss the GRINTU framework and describe its value as a tool for game analysis. The

prototype will be capable of analyzing any board game with defined steps. Finally, I will take a

look at the evaluation and refinement possibilities of such a rule base includinga short summary

and outlook of what still needs to be done.
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2. JOSTLE 2007

The first game which will be integrated into the GRINTU framework is“JOSTLE 2007”. It

was selected, because JOSTLE is easy to learn and understand in terms of game rules and its

complexity to play. The board has a clear set-up, which allows even people without much

experience with digital games or children to play the game.

2.1. Board Design

Figure 2.1.:Jostle Board
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“JOSTLE 2007” is part of a board game family called JOSTLE, which focuses the aspect of

jostling stones on the board. JOSTLE 2007 was developed by Dr. Klaus P. Jantke in report [10].

In this version, the game is played by three players. Each player owns a total of three gaming

pieces. The board consists of 31 track fields, to which the gaming pieces can be moved, and a

stack field for each player.

By looking at the board, one can recognize four different sorts of special fields,

namely“START”, “SWITCH”, “MINUS THREE“, and “GOAL”.

Figure 2.2.:START tile

The “START” field is the first field any piece must visit when entering the game. On his or

her first turn the player has to select a piece from the stack, which is situatedto the left of the

track, and move his or her piece onto the track. By doing so, the play piece’s first field becomes

the “START” field.

Figure 2.3.:SWITCH tile

The next special field is called “SWITCH”, which is marked with a colored double arrow.

There are always two switch fields bidirectionally connected. Once a gamingpiece moves onto

a switch field, the actual piece is instantly transported to the connected switch field. A special

game rule takes place when jostling a piece onto a switch field. I shall describethis later in my

the game rule section.

Figure 2.4.:MINUS THREE tile
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If a piece stops on a “MINUS THREE” field, the piece is moved three fields backwards. If that

particular field is occupied already, then the piece that occupied the field is jostled backwards.

Figure 2.5.:GOAL tile

The last special field type is the “GOAL” field. There are five goal fields,which are all marked

with numbers, ranging from one to five.

2.2. Game Rules

The board is designed for three players with three play pieces each. Thefirst player, either

human or a NPC, begins by throwing a dice1. I modified JOSTLE2007 that whenever a six is

rolled, the player has the option to roll the dice once more, but only once each turn.

After rolling the dice (once or twice), the player selects one of his pieces and moves it along

the track towards the direction of the “GOAL” area in accordance with the number of points.

In the original version ofJOSTLE2007, the player has to select and move a piece after rolling

the dice once. If he rolled a six, he can roll the dice once more, but he must move the already

selected piece. This original part of the Game Rules allows the game to be a littlemore random,

because not all moves can be completely planned. My modification allows the players to plan

their actions better, which I preferred for this special setting.

If a six was rolled and the dice was rolled once more, the player must move onepiece for the

complete amount of points rolled. That means the player is not allowed to partitionthe rolled

points or to move two different pieces.

Is the destination field already occupied by another piece, then the piece that was situated on

the destination field before the move is jostled back in row. The result of this jostling is that the

1In this version of the game we only use a six sided dice.
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jostled piece is moved along the track towards the “START” field until it arrives at an unoccupied

field.

A field is considered as occupied if a piece is standing on top of it. Special fields are treated

a little differently. If one piece occupied a special field during its turn, then all special fields

are treated as occupied until the end of said turn. This game rule is necessary to avoid infinite

cycles.

An exception to this game rule are the “GOAL” fields and the “START” field. These fields

are handled like normal fields regarding jostling. If there is no unoccupiedfield during jostling

on the way towards the “START” field, the jostled piece is moved back onto its owner’s stack.

If a player was able to move a gaming piece and was successful, then his turnends. Then it is

the next player’s turn. If all players who were able to move a piece had their turn, a new round

starts, beginning with the first player.

The players’ cycles end, when all goal fields are occupied, becausethen the last round begins.

This means, that every capable player has one last turn. After this last round, each player counts

the points of his occupied goal fields. The player with the highest score wins the game.

Further information on JOSTLEcan be found in [10]. The following chapter describes various

game strategies for JOSTLE and shows the derived PROLOG models. The tremendous differ-

ences between a formalized language and an informal description of a playstrategy will also be

highlighted, because it shows how difficult it is to write the correct artificialagent for a complex

system such as a computer game.
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3. Play Strategies

Strategies are what makes a person either win or loose a game, but the best strategy

still requires a cunning mind to apply it.

I shall start this chapter by introducing the basic terms and working definitionsused from now

on throughout this thesis to describe the AI, its implementation in PROLOG, and its behavior.

With these it will be possible to present a closer and more refined view at strategies for the

previously described game JOSTLE. These strategies are one focus of this paper.

All examples are tested and written using the ISOPROLOG implementationTUPROLOG [13].

The complete example code as well as the commonly shared rule base and a setof test data can

be found in the appendix.

“What can be said at all can be said clearly, and what we cannot talk about we must

pass over in silence.”Wittgenstein[18]

3.1. Game Play Notation

If somebody wants to discuss different play strategies, it is in most instances required to replay

games or to talk about certain states of a game. This is not possible if there is nouniform notation

of how a move is represented. For JOSTLEand most board games it is quite easy to create such a

notation. I will now introduce my basic notation, which allows to reconstruct any JOSTLE game

easily. The notation is similar to the notation of chess, but slightly easier.

Each move of a gaming piece is represented by an object consisting of threeitems. The first

item is representing the moving piece. It is a number representing the internallygiven pieceID

of the specific piece. For matters of convenience, all pieces in play have aunique number,
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controlled by the game and not by the player. The next item is a small letter identifying the

player. Since there are three players in JOSTLE who use red, green, and blue game pieces, the

letters are r, g, and b. The last item is the field on which the player will move his gaming piece

based on the outcome of the rolled dice. After each round, three dashes mark the end of a round

which is useful to determine individual rounds, in case a player cannot make a move. As one

might recognize, thepieceID is given at the start of each game and is depending on the color of

the player. The redundancy to keep the player identification in the notation is due to the fact that

it allows an easier understanding and reading of the notation for the case when human players

wish to analyze a game by parsing through a game play book.

Example:

The setting is as follows: theJOSTLE board is set-up as in figure 2.1 on page 7.

There are three players, red, green, and blue. Each player has his or her turn in

the given order. All players own three gaming pieces each. Since playerred is the

first player1, he or she controls the pieces with the pieceIDs0, 1, 2. Player green

controls the pieces with ids3, 4, 5, and player blue, finally, commands the gaming

pieces represented by the pieceIDs6, 7, 8.

Starting with player red, each player has his turn after the previous player has fin-

ished. Player red rolls the dice and moves piece zero to field number four.Then

player green begins his turn by rolling the dice and by moving piece four to field

six. Then, player blue moves gaming piece number six to field two. After all players

have finished their turn, player red starts a new round by rolling the dice. Player red

now moves piece zero to field eight. Player green moves his first piece, piece number

three, to the “START” field after having rolled a one. The last player in the round is

player blue, who moves piece number six to field four. . . .

The resulting representation of these previous moves is the following:

1If player blue had been the first player, he would control the pieces with the pieceIDs0, 1, 2.
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3.2. Implementation Issues 13

1 0 r4

2 4g6

3 6b2

4 −−−

5 0 r8

6 4g0

7 6b4

8 −−−

Example 3.1:Game Play Book

This so-called game play book represents a complete game and can be used to replay

all moves. In this notation the time needed by each player to make a move is not

recorded in the game play book.

3.2. Implementation Issues

Definitions:

• Variable Vs. Atom: PROLOG offers two ways to store information in so-called Terms.

Information can be statically stored in atoms, which means that the atom has a certain

value. Atoms can be numbers, letters, or strings.

Examples:a, 123, ’Time 1212’, " String "

The last two examples are simple Strings, not to misunderstand with variables such as

Time is 1212 and _12. For easier usage, atoms should always be marked by dashes and a

variable should always start with an upper-case letter or an underscore. Here, I will adjust

this convention a little. A variable will always start with an upper-case letter, or an under-

score and a letter. We shall never use an arrangement such as the above _12 for a variable,

because it is very hard to understand the meaning behind such a cryptic variable.

Variables are “placeholders” for atoms which do not have a value yet.

• Structured Terms are not used in this thesis and therefore omitted here.

• Interfacesdefine the predefined call for certain predicates. Since PROLOGdoes not spec-

ify algorithms but just relations in-between data, every predicate can be called by using
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every variable as in- or output. The usage of a predicate in regards to each parameter

that is an input or an output is called flow pattern. Generally, we call certainpredicates,

such as theworth predicate in the subsequent example with a predefined flow pattern. In

accordance with this convention, we are allowed to communicate slightly better between

PROLOG and JAVA .

• Clausesconsist of a conclusion part that heads a clause, for examplehaus( street ,number),

followed by an “implied by” operator:− and end with a condition part, for example

map( street ), side (number)., which is the clause body.

I define three different types of clauses:

– Rulesare constructed following a certain“if-condition-then do-this” logic. They

are always arranged in a top-down order, which means that, by copyinga rule and

arranging it under the original rule, the original version is executed first and the

copied version later on, if the original one failed. With this in mind, it is possible to

give certain rules a higher preference regarding other rules by arranging them higher

in the script.

– Factsare clauses with an empty clause body, which is interpreted as true.

– Questionsare hypotheses and subject to check whether or not they are a logic con-

clusion from the rules and facts in a knowledge base.

• Predicatesare defined by clauses with the same name attached to them and the number

of arguments. The following two clauses, for example, are combined underthe same

predicate.

student (A,B):− studies (A,Subject ).

student (Name,Age):−person(Name,Age),happy(Name).

The clausesprof (N,A):−person(N,A),busy(N)and prof (N,U,A):−person(N,A),busy(N)are not combined

under the same predicate.
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• Rule Setsare combinations of different predicates. In our case, they define explicitly the

strategy of one particular NPC. It is essential that a rule set is checked on correctness and

completeness to guarantee failure security.

• Matching in PROLOG refers to the unification of predicates. Prolog solves all questions

by unifying the clause’s head of a question with an atom by replacing variables with other

terms such as atoms, variables, or structured terms. This is done until all variables are

replaced by atoms.

• Strategies in this paper will be used to describe formal or informal definitions for the

complete behavior of a given rule set. They are more or less formal representation of a

rule set.

Having established the terminology to describe certain aspects of coded strategies, I shall start

discussing several of them. The terminology is necessary, because understanding AI rules that

are given informally by natural language does not necessarily mean thatan coded representation

of these rules correctly represents them. It often is a challenge and bears the risk to lose or

misinterpret information in the translation process.

The next example tries to highlight the above mentioned misinterpretation of a strategy. In

the following examples the predicateworth defines a simple strategy of an NPC which looks for

a piece that can be moved a maximum amount of fields.

For this and all of the following implementations of strategies, I usedTUPROLOG [13]. This

seemed to be the appropriate PROLOG engine, because of the following reasons:

• TUPROLOG is a feasible and stable PROLOG engine, which is still maintained.

• TUPROLOG is free to use even in commercial applications.

• TUPROLOG is a JAVA light-weight interference engine, which allows it to be used in In-

ternet applications.
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1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

8 g o a l T i l e ( Xa ) ,

9 worth1 (R , [ X,Y, Z ] , Bes t ) .

10 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

11 not ( g o a l T i l e (X) ) ,X > Xa , ! ,

12 worth1 (R , [ X,Y, Z ] , Bes t ) .

13 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

Example 3.2:ADVANCER

The worth predicate receives a list of all gaming pieces[S|L] and as a result returns the one

which was best according to the strategy by using an accumulator variable tohold the “best so

far”.

In 3.2, the core of the strategy can be seen starting from the eleventh line. There, theworth

predicate compares theX value of two gaming pieces. After comparing all pieces in pairs, it

selects the one most advanced that is not in the “GOAL” area (not( goalTile (X) )) yet.

A change ofX > Xa to X < Xa alters the complete behavior of the NPC. WithX < Xa, the NPC

always moves the most backward piece, which results in the fact that all pieces are moved

relatively close to each other in so called clusters.

With this knowledge in mind, the implementation of theworth predicate reveals that the imple-

mented predicate does not always move the correct piece. In the upper implementation (example

3.2) the “SWITCH” fields2were not comprised. With these fields it is possible to bypass long

distances.

Conclusivly, a smarter implementation would look as follows:

2“SWITCH” fields transport a gaming piece onto the connected field of the same type. These fields allow movement

in both directions towards the “START” field and towards the “GOAL” area.
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1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 (L , Stone , Stone ):−

8 d i e (D) ,

9 [A, _ , _ ]= Stone ,

10 B i s A+D,

11 minT i le (B , ’ switch@ ’ ) , ! .

12 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X,Y, Z ] , Bes t ) .

15 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

16 not ( b a c k T i l e (X) ) , not ( g o a l T i l e (X) ) ,X > Xa , ! ,

17 worth1 (R , [ X,Y, Z ] , Bes t ) .

18 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

19

20 minT i le (N, S t r i n g ):− board (N, B) ,

21 s t a r t s W i t h ( S t r i n g , B) ,

22 f i r s t T i l e O f (N, B ) .

23

24 f i r s t T i l e O f (N, S t r i n g ):−

25 board (N2 , S t r i ngB ) ,

26 s t a r t s W i t h ( S t r i n g , S t r i ngB ) ,

27 N2 < N, ! , f a i l .

28 f i r s t T i l e O f ( _ , S t r i ngB ) .

29

30 b a c k T i l e (X):−

31 d i e (D) , B i s X+D,

32 board (B , Na ) ,

33 s t a r t s W i t h ( ’back@ ’ ,Na ) .

Example 3.3:Observing ADVANCER

By analyzing example 3.3 and its predicateworth, one can see that theminTile(B,’switch@’) predi-

cate checks if the next possible position (B) is a “SWITCH” field, whereas thebackTile (X)predicate

checks if the next position (X) is a “BACK-3” field3. Using this knowledge to avoid the “BACK-

3” fields and preferring pieces which can move onto a “SWITCH” field allows to move a piece
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3.3. A I STRUCTURECOMPOSITION 18

more suited to the intended behavior of the strategy with its informal definition.

Obviously, coding rules that are given informally by natural language is achallenge and bears

the risk to lose information in the translation process.

In previous examples 3.2 and 3.3, the first implementation (example 3.2) does not fulfill its in-

formally given definition completely, because it does nothing more than moving the furthermost

piece.

The second implementation, example 3.3, which comes closer to the natural intention, is a

little more complex, because it is composed of three essential parts. The firstpart (lines four

to six) is to avoid selecting a piece from the “GOAL” area, which can no longer move. The

second part (lines seven to eleven) is to find a piece, owned by the NPC, which can move onto a

“SWITCH” field by using the rolled number of points. If such a gaming piece isnot available,

the third part (lines twelve to eighteen) of the predicateworth1 will be used. This part searches

the furthermost piece which will not move onto a back throwing field.

Part one and three of the second implementation (example 3.3) have been slightly adjusted in

regards to example 3.2. The only new part is the second one. So the difference between both

implementations could be understood as an enhancement of the strategy in example 3.2.

Knowingly combining and enhancing easy strategies leads to a new technique, which I will

call AI STRUCTURE COMPOSITION. This technique will be described in the next section by

giving different examples in code form to illustrate my theory.

3.3. A I STRUCTURECOMPOSITION

The concept behind the AI STRUCTURE COMPOSITION is, that all strategies can be grouped

into two categories. The first category contains unstructured strategies.These Strategies are

either poorly written, extremely complex, or evolved into an unstructured state.

It is my belief that most of the unstructured strategies can be converted into the second cate-

gory, structured strategies. This restructuring of category one strategies can be extremely com-

plex and will be part of some later work. For matters of convenience, I will from now on only

take a look at category two strategies.

3A “BACK-3” field transports a piece three fields towards the “START” field.
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AI Strategies:

• Category one: unstructured strategies

– simple (transformable)

– complex (transformation could be non polynomial)

– evolved (transformation could be non polynomial)

• Category two: structured strategies

– Type one:simple

∗ basic

∗ symbiont

– Type two:complex

Category two contains strategies which are structured. By definition, thereare again two types

of category two strategies, simple and complex ones. The simple ones consistof two subtypes,

basic strategies and symbiotic strategies.

Basic and symbiotic strategies follow a certain naming convention. The basic strategies are all

labeled with nouns and written completely in upper-case letters. It serves thepurpose to imply

that basic strategies are actors and can behave without the support of other strategies. In contrast

to them, symbiotic strategies still require a basic strategy to work properly.

The symbiotic strategies are labeled with adjectives to emphasize their dependence on other

strategies. The first letter of symbiotic strategies is in the upper-case, the rest in lower-case

letters to achieve a visible separation between basic and symbiotic strategies.
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3.3.1. Basic Strategies

All later basic strategies are implemented for the game JOSTLE2007 using PROLOG, but it is

easy to see that these basic strategies can be implemented for any other board game by using the

informal definition of the strategy and implementing it for a specific game.

Basic Strategies:

• RANDOMIZER

• ADVANCER

• PALS

• EQUALIZER

RANDOMIZER is the first strategy I shall discuss here. It is an interesting basic strategy,

because it acts unpredictably without being necessarily complex. The biggest advantage and,

at the same time, its downside is its randomness. Here for our purpose, I shall assume that

the given random function is adequate and generates usable results. Inexample 3.4, a PROLOG

implementation of RANDOMIZER is shown. Whenever the NPC can make a move, the strategy

picks a random gaming piece of the NPC and moves it. According to the so-called “Theory of

Mind” [3], any random player assumes that the strategy must have an intention to react in this

specific way. Since there is no such intention, it seems complex and unpredictable to the other

players. By using this knowledge, the probands might suspect a hidden motive for these moves

and assume that the artificial intelligence might be a human being. It is still not my goal to only

use a random strategy, but using unpredictable behavior at some point might come in handy.

Thus, combining RANDOMIZER with other strategies may produce valuable results.
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1 worth ( [ S | L ] , S tone ):−

2 l eng th ( [ S | L ] ,A) ,

3 r a n d _ i n t (A, B) ,

4 worth1 (L , S , B , Stone ) .

5

6 worth1 ( _ ,A, 0 ,A):−

7 [X, _ , _ ]=A,

8 not ( g o a l T i l e (X) ) .

9 worth1 ( [ [ X,Y, Z ] | R ] , S , Count , Bes t ):−

10 not ( g o a l T i l e (X) ) ,

11 C i s Count −1, ! ,

12 worth1 (R , [ X,Y, Z ] ,C , Bes t ) .

13 worth1 ( [A | R] ,B , C , Bes t ) :−

14 append (R , [ B ] , L ) ,

15 worth1 (L ,A, C , Bes t ) .

Example 3.4:RANDOMIZER

The Prolog implementation of RANDOMIZER (see example 3.4) starts with the call of the

worth predicate in line 1. The first thingworth([S|L],Stone)calculates is the number of gaming pieces

the player (in that case the rule based system) owns. This is done by calling the built in TUPRO-

LOG predicatelength([S|L],A) with the list [S|L] and the variableA. If A was already set to a specific

value, thenlength returnsTrue if the length of the list matches the value otherwise it returnsFalse.

If A was not set to a value, thenlength matchesA with the length of the list and returnsTrue.

rand_int (A,B) is the next built inTUPROLOG predicate which generates a random integer value

B between zero andA, under the precondition thatA represents an integer value. The generated

random number is used in the second clause ofworth1 to determine which gaming piece the NPC

selects. The last thingworth does is to callworth1with the tail of the list of gaming pieces, the first

element of the list, the random number, and the return valueStone.

Theworth1predicate for RANDOMIZER consists of three clauses, whereas the first two clauses

are straightforward. If the first element of the list is selected by the random number, then the

first clause is called. If random has a greater value than zero, then the second clause is called.

It selects the gaming piece from the provided list, using the random number asa counter. If the

counter reaches zero, the first clause is called using the current list element. The third clause has

the function to rotate the elements of the list if some elements are already in the “GOAL” area.
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It becomes clear that RANDOMIZER selects a random gaming piece and returns it.

(a) RANDOMIZER before move (b) RANDOMIZER after move

Figure 3.1.:RANDOMIZER play strategy

Figure 3.1 illustrates the previously mentioned interesting behavior of a random strategy. With

a setting of the board as in (a), RANDOMIZER chooses a random piece and moves it four fields.

Since the chances for one piece to be selected amounts one-third, it is possible for RANDOM-

IZER to make the best move in this situation by selecting the second most advanced piece. By

doing so, the gaming piece moves onto a “SWITCH” field that allows it to be transported to a

connected field. After completing the move RANDOMIZER moved the second piece a total of

twelve fields. Since a one-third chance is not impossible in this particular situation, RANDOM-

IZER creates the impression of observing the board and calculating the best possible move. I

do not want to stress this more than necessary, because chances of selecting the last or the first

piece were also each one-third each. The aspect which should be emphasized in this situation

is that the randomness can create all kinds of different impressions and itcould also be used to

hide an intended strategy by making a random move at times.
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ADVANCER our second strategy, was already introduced in example 3.2 on page 16 to illus-

trate the difficulty of translating an informal definition into a formal representation.

1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

8 g o a l T i l e ( Xa ) ,

9 worth1 (R , [ X,Y, Z ] , Bes t ) .

10 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

11 not ( g o a l T i l e (X) ) ,X > Xa , ! ,

12 worth1 (R , [ X,Y, Z ] , Bes t ) .

13 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

Example 3.5:ADVANCER

The goal of ADVANCER is to advance as much as possible. Therefore, ittries to move the

furthermost piece. In order to keep the strategy on a basic level and to allow easy modification,

it does not analyze the board structure. Therefore, it does not act according to the layout of the

board or the behavior of other players, except for the fact that it monitors the “GOAL” area for

reasons of convenience.

The import part of the ADVANCER implementation is the third clause ofworth1, where com-

parisons(X > Xa) in twos between the advancementX andXa of all gaming pieces are made and

the furthermost piece is chosen.

In figure 3.2a, a match of the game JOSTLE is presented, where ADVANCER controls the

red player. The player has currently two gaming pieces on the track and already rolled a dice,

thus winning the opportunity to move a piece four fields. Player blue has one gaming piece

on the track and player green none. As implemented, ADVANCER selects the most advanced

piece and moves it four fields towards the “GOAL” area as shown in figure 3.2b. By doing so,

ADVANCER disregards the possibility to move onto a “SWITCH” field, which would allow the

second piece to advance even further.
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(a) ADVANCER before move (b) ADVANCER after move

Figure 3.2.:ADVANCER play strategy

PALS emphasizes the aspect of fairness and closeness. In its basic form it selects the trailing

piece. By doing so, all pieces are moved relatively close to each other in a so-called cluster and

no piece is left behind. The name PALS originates from the visible behavior of the strategy.

Due to the clustered movement, it seems as if all gaming piece are chummy and move like a

flock. Since it is only a basic strategy, some aspects are not fully developed to allow a good

compatibility between different strategies. In other environments an advanced strategy based on

PALS might perform flock behavior of birds or other creatures.
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1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

8 g o a l T i l e ( Xa ) ,

9 worth1 (R , [ X,Y, Z ] , Bes t ) .

10 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

11 not ( g o a l T i l e (X) ) ,X < Xa , ! ,

12 worth1 (R , [ X,Y, Z ] , Bes t ) .

13 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

Example 3.6:PALS

The only difference between PALS and ADVANCER in regards to their code representation

appears in line 11, namelyX < Xa. This change of comparison operator results in PALS behavior

to select the least advanced piece. This is why the gaming pieces move in a cluster for the

most part. I believe that, clustered movement creates the impression that no piece is left behind.

Therefore, the strategy was named PALS, because friends do not abandon each other.

After understanding the implementation of PALS, I would like to illustrate PALS’s decision-

making process by providing a simple example. PALS starts its turn in figure 3.3aand AD-

VANCER in figure 3.2a by having rolled a dice showing four points. This allows PALS to move

one of its three gaming pieces four fields towards the “GOAL” area. Since PALS always moves

the last piece, it selects and moves the piece from the stack as shown in figure3.3b. This situation

also allows me to show a cluster of four, namely the three red pieces and one blue piece without

any space between them. Clusters appear more frequently in strategies like PALS, because this

and other related strategies move all pieces relatively close to each other.
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(a) PALS before move (b) PALS after move

Figure 3.3.:PALS play strategy

EQUALIZER is the last basic strategy I would like to discuss here. As one can see in example

3.7, the implementation has grown significantly in comparison to previous strategies such as

ADVANCER. This is due to the fact that EQUALIZER memorizes previous moves in history (X),

whereX is a sorted list of of gaming pieces that have yet to move. EQUALIZER is a strategy

which basically moves all pieces equally, without any attention to the covered distance. Equally

in this context means (1) equally often, i.e. the number of moves made by the NPCdiffer

only minimally and (2) in a specific order. This does not necessarily create clusters. But by

selecting all pieces equally, the distance normally between the first and the last piece is less than

the distance of the pieces when ADVANCER is used. By moving all pieces in such a fashion

the strategy overall is moving a little slower than ADVANCER, but still faster thanPALS. The

following example 3.7 shows the implementation of EQUALIZER, using a basic history that

remembers the order in which the pieces are moved.
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1 worth (L , S tone ):−

2 worth1 (L , Stone ) .

3

4

5 worth1 (L , Bes t ):−

6 h i s t o r y ( [H | T ] ) ,

7 l eng th ( [H | T ] ,A) ,

8 l eng th (L , B) ,

9 0 < A,

10 A =< B,

11 worth11 (L ,H, Bes t ) ,

12 s e t w o r t h H i s t o r y (T ) , ! .

13 worth1 (L , Bes t ):−

14 h i s t o r y (A) ,

15 l eng th (A, 0 ) ,

16 g e t w o r t h H i s t o r y (L , B) ,

17 s e t w o r t h H i s t o r y (B) , ! ,

18 worth1 (L , Bes t ) .

19 worth1 (L , Bes t ):−

20 not ( h i s t o r y (A) ) ,

21 g e t w o r t h H i s t o r y (L , B) ,

22 s e t w o r t h H i s t o r y (B) , ! ,

23 worth1 (L , Bes t ) .

24

25 worth11 ( [ [ X,Y, Z ] | L ] ,Y , [ X,Y, Z]) : −

26 not ( g o a l T i l e (X) ) .

27 worth11 ( [ [ X,Y, Z ] | L ] ,Y, Bes t ):−

28 g o a l T i l e (X) ,

29 worth12 (L , Bes t ) .

30 worth11 ( [K | R] ,H, Bes t ):−

31 append (R , [ K] , L ) ,

32 worth11 (L ,H, Bes t ) , ! .

33

34 worth12 ( [ [ X,Y, Z ] | T ] , [X,Y, Z]) : −

35 not ( g o a l T i l e (X) ) .

36 worth12 ( [ _ | L ] , Bes t ):−

37 worth12 (L , Bes t ) .

Example 3.7:EQUALIZER

Theworth predicate calls theworth1 predicate. This predicate is composed out of three different

clauses. The first clause is used if the history is working and in use. This means that the list

has elements for a minimum of one gaming piece and a maximum of elements that equalsthe

total of all gaming pieces of the NPC. If this is the case then the first element ofthe history (X)

list is checked. This is done by comparing the piece’s IDH with all elements of the given list

of owned pieces of the NPC inworth11([[X,Y,Z]|L],H,[X,Y,Z]) and by checking that the gaming piece

is not already in the goal areanot( goalTile (X)). If these conditions are not fulfilled, the second

clause is called for. This clause tests if the length of the element list is zero, which means that all

gaming piece were equally moved in previous play rounds. If this is the case,a newhistory (X) list

will be created bygetworthHistory (L,B), setworthHistory (B)that includes all gaming pieces of the NPC

that are utilizing this strategy. The last clause ofworth1 is used for the initial set-up of the history.
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(a) Initial Set-Up (b) Round one: EQUALIZER(c) Round one: Players Two and

Three

(d) Round two: EQUALIZER(e) Round two: Players Two and

Three

(f) Round three: EQUALIZER

Figure 3.4.:EQUALIZER play strategy part one

Through figure 3.4, I would like to illustrate the behavior of EQUALIZER by presenting a

sample of a replayed game. Using EQUALIZER to control player red and ADVANCER to

control players green and blue the gamer is initialized as shown in figure 3.4a. The game play

book can be found in the appendix, example A.3 on page 70.

EQUALIZER’s behavior in figure 3.4 illustrates very well how all pieces are moved in this

strategy. The first move, figure 3.4b, is interesting, because all pieces are equally far away from

the “GOAL”. So EQUALIZER first defines an order of how all pieces willbe moved during the
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next rounds by creating a list that contains all gaming pieces owned by the player. The next

figure, figure 3.4c, shows the board after player green and player blue have moved their gaming

pieces. Both players are in this setting controlled by ADVANCER as a matter of convenience.

Player green rolled two points and player blue four, and both moved a piececontrolled by them

according to their inherited strategy. In figure 3.4d, EQUALIZER moves its second piece from

the stack instead of moving the piece already on field four. By doing so, EQUALIZER misses the

opportunity to use a “SWITCH” field. This demonstrates that EQUALIZER chose the second

element of the list of yet-to-move pieces. The following moves of green and blue as presented

in figure 3.4e show that green has jostled EQUALIZER’s second piece from field two to field

one, and the blue player’s piece advanced two fields towards the “GOAL”area. In the last figure,

figure 3.4f, EQUALIZER draws its last piece from the stack onto the board. Up to this point,

the behavior of EQUALIZER and PALS would be identical, because PALS would also try to

move all pieces from the stack onto the board. The main difference here is that EQUALIZER

will continue to keep the order of moving pieces in the same way as it is, demonstrated in figures

3.4g and 3.4h, whereas PALS tries to move only the least advanced piece, ifit can.

(g) Round three: Players Two

and Three

(h) Round four: EQUALIZER

Figure 3.4.:EQUALIZER play strategy part two

EQUALIZER could thus be called a medium speed strategy, in comparison to ADVANCER

and PALS. ADVANCER would then be a full speed strategy, and PALS moves with the lowest
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advancement, by getting equally good dice rolls. RANDOMIZER, on the otherhand, is not clas-

sifiable in terms of movement speed and advancement of its pieces, becausedue to its random

behavior.

The next section is about the second subtype of Type One strategies, thesymbiotic strategies.

3.3.2. Symbiotic Strategies

Over the long term, symbiosis is more useful than parasitism. More fun, too.Ask

any mitochondria. [Larry Wall]

Symbiotic strategies or short symbionts are strategies that are not able to exist, or, more ac-

curately, to be used alone. Their name was chosen because of their special nature. Symbionts

require another strategy as a host, just as a symbiont cannot live withoutan host animal or plant

in nature. Symbionts can be understood as positive and negative enhancement strategies. I ex-

plicitly use the term negative enhancing symbiont instead of parasite, because the main goal

remains still the same, namely that both sides are still benefiting from the effectof the enhance-

ment. In fact, I belief that a parasitic strategy gains a positive effect without a positive effect for

the host.

Positive and negative features are present in nature as well to allow fora greater variety of

possible actions/ reactions. A penguin, for example, is quite clumsy and slowwhen it comes to

walking on land, but it moves fast and elegantly when in its element, the water. By having such

negative features in games, the recognized behavior varies enormouslyand this allows more

possibilities for creating believable AI. In the virtual world, it would be possible to create an

almost perfect strategy. Perfection, however, is not desired in this case on the games domain

nor any other domain where believable AI agents are used to model human behavior because

human beings strife for perfection, but are never perfect themselves.Strategies inheriting the

human factor represent a certain kind of behavior. This behavior also shows faults and flaws.
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Therefore, even negative symbionts are needed to create this particularimpression.

Symbiotic Strategies:

• Observing

• Aggressive

• Lingering

I shall discuss different strategies wand their pros and cons by first giving their informal def-

inition. Then I will explain more details by providing examples. In contrast to basic strategies,

symbionts are conjoined with their hosts. In some later process it will be important to extract

these essential representations of the symbionts and create clear interfaces between the different

building blocks of a strategy. This allows us to use automatic tools to combine different strate-

gies. But like in nature, host and symbiont are very closely connected, and it is hard to separate

both without destroying some part. In my examples, I try to highlight the different parts and

show the bridges between host and symbiont.

Observing is a the first symbiont which I want to portray here. It is a true symbiont, because

it does not make any sense to use Observing during a game as stand-alonestrategy. The main

idea ob observing is, as its name suggests, to observe the game environment.In my setting,

Observing is capable of finding a better solution for a move by reordering the preference list of

possible moves. By doing so, Observing changes the order in that way that pieces which can

move onto a special field will be treated special. So, when the base strategy aims at a certain goal

like ADVANCER to advance the most, it will prefer a piece that can move onto a “SWITCH”

field over pieces which could move onto a “BACK-3” field.
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Observing ADVANCER

1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 (L , Stone , Stone ):−

8 d i e (D) ,

9 [A, _ , _ ]= Stone ,

10 B i s A+D,

11 minT i le (B , ’ switch@ ’ ) , ! .

12 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X,Y, Z ] , Bes t ) .

15 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

16 not ( b a c k T i l e (X) ) , not ( g o a l T i l e (X) ) ,X > Xa , ! ,

17 worth1 (R , [ X,Y, Z ] , Bes t ) .

18 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

19

20 minT i le (N, S t r i n g ):− board (N, B) ,

21 s t a r t s W i t h ( S t r i n g , B) ,

22 f i r s t T i l e O f (N, B ) .

23

24 f i r s t T i l e O f (N, S t r i n g ):−

25 board (N2 , S t r i ngB ) ,

26 s t a r t s W i t h ( S t r i n g , S t r i ngB ) ,

27 N2 < N, ! , f a i l .

28 f i r s t T i l e O f ( _ , S t r i ngB ) .

29

30 b a c k T i l e (X):−

31 d i e (D) , B i s X+D,

32 board (B , Na ) ,

33 s t a r t s W i t h ( ’back@ ’ ,Na ) .

Example 3.8:Observing ADVANCER

An implementation of Observing is visible in Observing ADVANCER in 3.8. This strategy

was already introduced at the beginning of this chapter as a more advanced version of AD-

VANCER. This is due to the fact that the difference between ADVANCER and Observing AD-

VANCER is the symbiotic strategy Observing. Observing is used to extract essential information

Diploma Thesis| Swen Gaudl



3.3. A I STRUCTURECOMPOSITION 33

about the layout of the board and then use this knowledge to gain additionalbenefit for it. The

current version of Observing used in this context does not feature ananalysis of the movement

of other players, because OBSERVING focuses on the environment and especially on the layout

and advantages gained by using the terrain.

(a) Observing ADVANCER be-

fore move

(b) ADVANCER after move (c) Observing ADVANCER af-

ter move

Figure 3.5.:Observing ADVANCER play strategy

By analyzing figure 3.5 one can see the different result between ADVANCER’s and Observing

ADVANCER’s move decision. In the first figure (figure 3.5a) the situation before the move is

shown. Both strategies use the same setting and dice value, but make a different decision due

to the extra information Observing delivers. Since ADVANCER does not recognize any board
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features, it chooses the most advanced gaming piece as shown in figure 3.5b by analyzing the

given limited information. Observing allows now to gain additional knowledge and broaden the

horizon of ADVANCER towards Observing ADVANCER. Thus, Observing ADVANCER can

select another gaming piece knowing that this selected piece will advance themost in the current

turn, see figure 3.5c.

So by knowingly enhancing ADVANCER using Observing as enhancementcreated a more

efficient strategy. This new strategy Observing ADVANCER still allows us tounderstand the

indented basic strategies behind it.

Observing PALS utilizes Observing in a different way than Observing ADVANCER. AD-

VANCER uses Observing to gain additional advancement of fields that would otherwise have

been ignored. PALS, on the other hand, is not intended to advance at allcost. Instead of winning

a match, the main goal of PALS is to keep all gaming pieces as close together as possible. Ob-

serving then is employed to minimize the risk of breaking a cluster of its own pieces. By doing

so, it alters the selection of gaming pieces from always selecting the last piece to selecting the

pseudo-optimal piece for minimizing the distance between the first and the last piece. Yet, the

goal of Observing PALS is still to reach the “GOAL” area. Thus, the distance between all pieces

of this strategy will sometimes not be minimal. Otherwise, the NPC’s, controlled by Observing

PALS, would try not to move towards the “GOAL” area.
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1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

8 d i e (D) ,

9 B i s Xa+D,

10 minT i le (B , ’ switch@ ’ ) ,

11 worth1 (R , [ X,Y, Z ] , Bes t ) .

12 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X,Y, Z ] , Bes t ) .

15 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

16 not ( b a c k T i l e (X) ) , not ( g o a l T i l e (X) ) ,X < Xa , ! ,

17 worth1 (R , [ X,Y, Z ] , Bes t ) .

18 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

19

20 minT i le (N, S t r i n g ):− board (N, B) ,

21 s t a r t s W i t h ( S t r i n g , B) ,

22 f i r s t T i l e O f (N, B ) .

23

24 f i r s t T i l e O f (N, S t r i n g ):−

25 board (N2 , S t r i ngB ) ,

26 s t a r t s W i t h ( S t r i n g , S t r i ngB ) ,

27 N2 < N, ! , f a i l .

28 f i r s t T i l e O f ( _ , S t r i ngB ) .

29

30 b a c k T i l e (X):−

31 d i e (D) , B i s X+D,

32 board (B , Na ) ,

33 s t a r t s W i t h ( ’back@ ’ ,Na ) .

Example 3.9:Observing PALS

Comparing Oberserving ADVANCER (example 3.8) and Observing PALS, which is shown

in example 3.9, allows me to demonstrate the similarities of both Observing implementations.

As mentioned before, symbiotic strategies are really strong interweaved with basic strategies.

This complicates the extraction of the symbionts and makes a comparison difficult.Therefore,

I used ADVANCER and PALS, which are, judging from their code representation, quite similar
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but from their intended behavior somewhat different.

1 worth ( [ S | L ] , S tone ):−

2 worth1 ( L , S , S tone ) .

3

4 worth1 ( [ ] , A , A):−

5 [X , _ , _]=A ,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( [ [ X , Y , Z ] | R ] , [Xa,Ya,Za], Best):−

8 d i e (D) ,

9 B is Xa+D,

10 minTile(B,’switch@’),

11 worth1(R,[X,Y,Z],Best).

12 worth1 ( [ [ X , Y , Z ] | R ] , [Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X , Y , Z ] , Bes t ) .

15 worth1 ( [ [ X , Y , Z ] | R ] , [Xa , Ya , Za ] , Bes t ):−

16 not ( b a c k T i l e (X ) ) ,

17 not ( g o a l T i l e (X) ) ,X < Xa , ! ,

18 worth1 (R , [ X , Y , Z ] , Bes t ) .

19 worth1 ( [ _ | R ] ,A , Bes t ) :− worth1 (R , A , Bes t ) .

a) Observing PALS

1 worth ( [ S | L ] , S tone ):−

2 worth1 ( L , S , S tone ) .

3

4 worth1 ( [ ] , A , A):−

5 [X , _ , _]=A ,

6 not ( g o a l T i l e (X) ) .

7 worth1 ( L ,Stone,Stone):−

8 d i e (D) ,

9 [A, _, _] =Stone, B is A+D,

10 minTile(B,’switch@’),!.

11

12 worth1 ( [ [ X , Y , Z ] | R ] , [Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X , Y , Z ] , Bes t ) .

15 worth1 ( [ [ X , Y , Z ] | R ] , [Xa , Ya , Za ] , Bes t ):−

16 not ( b a c k T i l e (X ) ) ,

17 not ( g o a l T i l e (X ) ) ,X > Xa , ! ,

18 worth1 (R , [ X , Y , Z ] , Bes t ) .

19 worth1 ( [ _ | R ] ,A , Bes t ) :− worth1 (R , A , Bes t ) .

b) Observing ADVANCER

Example 3.10:Observing

In example 3.10, the most important parts of Observing ADVANCER and Observing PALS

are contrasted. The common parts of both rule bases have been toned down, whereas the dif-

ferences of both implementations are in bold. The difference between ADVANCER and PALS

is visible in line seventeen. All other differences between both strategies are based upon Ob-

serving’s different behavior. It is due to Observing’s support of PALS that the solutions differ

from ADVANCER’s. To be more exact, Observing PALS does recognize“SWITCH” fields as

does Observing ADVANCER, but treats them in a different way. In 3.10a, the third clause of the

predicateworth1(L,S1,S2)keeps track of the “SWITCH” fields. This clause allows Observing PALS

to choose a gaming piece which will not move onto such a field, because using“SWITCH” fields

would destroy a cluster.

A very important difference noticable to an observer appears in lines ten and eleven. In

line ten, thecut operator! is omitted. This allows backtracking, in case line eleven does not
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provide a sufficient solution. Line eleven is important, because it implements thepreviously

mentioned intended behavior of Observing PALS, which is, not to use a “SWITCH” field if it

can be avoided. If thecut operator in line ten was still be present in Observing PALS, situations

could occur in which Observing PALS could not return a solution, because it would not select a

piece which must go onto a “SWITCH” field.

(a) before move (b) PALS after move

(c) Observing PALS after move(d) Observing PALS dead end

Figure 3.6.:Observing PALS play strategy

Previously, a dead end situation was mentioned in which Observing PALS cannot return a

result. This situation could occur if in example 3.10a in line ten the cut operator was still

present. One of these situations is illustrated in figure 3.6d. Because two pieces are already

in the “GOAL” area, they cannot move. The last available gaming piece wouldhave to move
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onto a “SWITCH” field which Observing PALS normally tries to avoid. If thecut operator was

present, then the strategy using this implementation would be stuck in a dead end,without the

cut operator alternative solutions are still possible. This example again revealsthat translating

the informally given definition of a strategy into a formal language can be tricky and bears the

risk of including or omitting behavior.

Keeping in mind that even small changes to the implementation can have a tremendous impact

on the resulting behavior, I want to show the result of enhancing PALS withObserving, creating

Observing PALS. Figure 3.6a shows a situation before a move was made. The dice has already

been rolled and the NPC can select which of its pieces will be moved three fields. The intended

behavior of PALS is to move all pieces relatively close together and move all gaming pieces in a

cluster, if possible. Having a board which does not allow pieces to stand longer on certain fields,

such as the “BACK-3” fields breaks a cluster. But it is still possible to move all pieces close

together.

Having altered two JOSTLE matches to fit the setting of figure 3.6a allows us to see the dif-

ferent behavior of PALS and Observing Pals. Because PALS is not capable of analyzing or

understanding the layout of the board it will always move the last gaming pieceto achieve its

goal. By doing so, it is easy to see that some moves will lead to a separation of the gaming

pieces, although it could have been avoided. In figure 3.6b the result is shown when using PALS

with the setting from figure 3.6a. The presented move separated the gaming pieces,thus breaking

the cluster, and created a maximum distance of nine fields between the first and the last gaming

piece. This move would have made sense for ADVANCER, but not for PALS. Utilizing Ob-

serving in figure 3.6c, Observing PALS is in the situation of avoiding this long distance of its

controlled pieces and creating a maximum distance of six fields between the first and the last

gaming piece. This move still breaks the cluster, but keeps all owned piecescloser together as

the move of PALS did.

Aggressive is an enhancement strategy focusing on jostling. Its main “GOAL” is to use

given opportunities to jostle the gaming pieces of other players. Observing had focused on

a more fitting solution for the basic strategies it enhances, but Aggressivealters the intended

behavior of the basic strategy a lot. In contrast to a constructed strategy based on Observing the
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resulting strategy using Aggressive does not directly benefit from using Aggressive.

One might now say that Aggressive is not a symbiotic, but a parasitic strategy. Yet, I would

have to disagree with this assessment. The main goal of all strategies discussed here is to create

the impression of a human player. This is the most important goal of all strategies. Aggressive

does contradict its host strategy in a way, but still fulfills the intended “super” goal to create this

impression. It then adapts the behavior of its host still in a beneficial way.

Aggressive ADVANCER is an ideal example for an adapted strategy that opposes the in-

tended behavior of its host. ADVANCER is designed to select and move a piece which, by using

the constrained view on the environment, can advance the most. Aggressive alters this behavior

and would rather move a piece that can jostle a piece of an opponent player. The resulting Ag-

gressive ADVANCER is implemented in example 3.11 and selects pieces which can jostle other

players pieces. If this is not possible than it will select a piece which can advance the most.

1 worth ( [ S | L ] , S tone ):−

2 worth1 (L , S , Stone ) .

3

4 worth1 ( [ ] , A,A):−

5 [X, _ , _ ]=A,

6 not ( g o a l T i l e (X) ) .

7 worth1 (L , Stone , Stone ):−

8 d i e (D) ,

9 [X, _ , Z]= Stone ,

10 B i s X+D,

11 f i ndOpponen tP iece (B , Z , Za ) , ! .

12 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

13 g o a l T i l e ( Xa ) ,

14 worth1 (R , [ X,Y, Z ] , Bes t ) .

15 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

16 not ( g o a l T i l e (X) ) ,X > Xa , ! ,

17 worth1 (R , [ X,Y, Z ] , Bes t ) .

18 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

19

20 f i ndOpponen tP iece (X, Z , Za):−

21 s t a t e S e a r c h (X, _ , Za ) ,

22 Z \= Za .

Example 3.11:Aggressive ADVANCER
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The symbiont Aggressive is embedded in the second clause of theworth1 predicate. The in-

tended behavior is created by comparing the possible next positions of all owned pieces and then

checking if these positions are occupied by pieces of other players usingthefindOpponentPiece(B,Z,Za)

predicate. If this is the case thenfindOpponentPiece(B,Z,Za)not only acknowledges this move but also

identifies the player whose piece Aggressive ADVANCER is going to jostle.

In a second, enhanced version of Aggressive we shall call itRevenging it would be possible

to differentiate between opponents. Therefore, only those pieces couldbe jostled which were

hostile against the NPC, controlled by this enhanced version. From it, it is easy to see that by

clearly defining strategies it is possible to enhance special parts, which can be extracted and

evaluated separately.

Lingering is the last symbiotic strategy I want to describe in this context, because the already

presented selection of strategies should be sufficient to demonstrate their enormous diversity.

Due to the fact that this will be the last strategy described here, I decided tochoose Lingering.

This is a more than interesting strategy, because it observes not the completeboard, but only the

“GOAL” area and depending on the situation switches between PALS and ADVANCER. This

shift of behavior is instantly visible.

1 worth ( [ [ _ , _ , Z ] | L ] , S tone ):−

2 s c h i z o i d (Z , ’ goal@ ’ ) , ! ,

3 worth1 (L , S , Stone ) .

4 worth ( [ [ _ , _ , Z ] | L ] , S tone ):−

5 worth2 (L , S , Stone ) .

6

7 worth1 ( [ ] , A,A):−

8 [X, _ , _ ]=A,

9 not ( g o a l T i l e (X) ) .

10 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

11 g o a l T i l e ( Xa ) ,

12 worth1 (R , [ X,Y, Z ] , Bes t ) .

13 worth1 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

14 not ( g o a l T i l e (X) ) ,X > Xa , ! ,

15 worth1 (R , [ X,Y, Z ] , Bes t ) .

16 worth1 ( [ _ | R] ,A, Bes t ) :− worth1 (R ,A, Bes t ) .

17

18 worth2 ( [ ] , A,A):−

19 [X, _ , _ ]=A,

20 not ( g o a l T i l e (X) ) .

21 worth2 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

22 g o a l T i l e ( Xa ) ,

23 worth2 (R , [ X,Y, Z ] , Bes t ) .

24 worth2 ( [ [ X,Y, Z ] | R ] , [ Xa , Ya , Za ] , Bes t ):−

25 not ( g o a l T i l e (X) ) ,X < Xa , ! ,

26 worth2 (R , [ X,Y, Z ] , Bes t ) .

27 worth2 ( [ _ | R] ,A, Bes t ) :− worth2 (R ,A, Bes t ) .

28

29 f i ndOpponen tP iece (X, Z , Za):−

30 s t a t e S e a r c h (X, _ , Za ) ,

31 Z \= Za .

32

33 s c h i z o i d (Z ,Name):−

34 f i ndOpponen tP iece (X, Z , Za ) ,

35 board (X, Name1 ) ,

36 s t a r t s W i t h (Name, Name1 ) .
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Example 3.12:Lingering

In example 3.12, a version of Lingering is shown in which Lingering switchesbetween PALS

and ADVANCER when a certain field or field type is in use by other players. This switch is

visible in line two, where theschizoid (Z,’goal@’)predicate is called. This call ofschizoid can be

interpreted as:

“ When any other player has one of his/her gaming pieces in the “GOAL” area,

schizoid switches from PALS to ADVANCER to speed up the advancement because

the game will end soon.”

(a) Setting One:before move (b) Setting One: after move

Figure 3.7.:Lingering play strategy Part One
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(c) Setting Two: before move (d) Setting Two: after move

Figure 3.7.:Lingering play strategy Part Two

In order to make this behavior visible, I chose two different settings of JOSTLEthat differ only

in one piece that is situated in the “GOAL” area.

In this small example, the power of such enhanced strategies becomes clear. By writing

strategies which react on a certain event or behavior of other players,I think that these players

will recognize a behavioral reaction. Thus, they might create a “Theoryof Mind”, as this is

called in Cognitive Science [3], for the NPC strategy.

For easy and consistent creation of rule-based NPC behavior, it is important to validate

changes in existing systems or evaluate new rule sets, which should aim at theintent of the

NPC’s designer.

The term designer was used on purpose, because in modern computer games most of the

people take an artistic perspective when they create the content of games.This approach only

tries to utilize science, but without the correct tools there is no utilization.

The behavior of various combinations of a basic and a symbiotic strategy is summarized in

figure 3.8. In this table, Lingering uses ADVANCER as a second strategy towhich it switches

after a certain event trigger.
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Observing Aggressive
Lingering

feat. ADVANCER

RANDOMIZER not meaningful random jostling
straightened behavior

after switch

ADVANCER better advancement
advances slower but

hinders others players
not meaningful

PALS higher cluster rate

advances faster, hinders

other players but breaks

clusters

breaks clusters while in

eleventh hour panic

EQUALIZER not meaningful

breaks order in which

stones are moved but

hinders other players

breaks order while in

eleventh hour panic

Figure 3.8.:Combination Table of Simple Strategies

3.4. Summary

By summarizing this chapter, I want to emphasize certain points mentioned earlier. The chapter

started with a notation that allows the system and even a human to analyze different matches.

This introduction was necessary to allow the reader to understand the examples provided later on.

Because I think that all of the strategies used in digital games can be structured and subdivided,

I first provided examples of elemental strategies and, later on, presenteda way to combine them.

By using basic elements, such as basic strategies, and enhancement strategies, such as the

symbionts, I hope it is possible to create a better understanding of artificial intelligence in digital

games and improve NPC AI in digital games. In order to achieve this, the AI STRUCTURE

COMPOSITIONmight prove to be a useful theory for constructing NPC behavior. I also think that

the AI STRUCTURE COMPOSITION is not suited for the creation of certain game AI, focusing

on path-finding or language processing because for these categoriesof AI, efficiency is the main

focus, not human behavior. An NPC created through AI STRUCTURECOMPOSITION is capable

of selecting a path that a human being would choose, but not capable to create such a path.

The next chapter introduces and discusses the GRINTU framework.
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4. GRINTU-Framework

Figure 4.1.:Mindmap of GRINTU

The GRINTU framework was designed to meet various requirements. Due to its main require-

ment to emphasize the aspect of performing TURING Tests with different game strategies, the

framework was given the name GRINTU, which is an anagram for TURING. The platform is

strictly separated into different parts (Figure 4.1), namely the network, thegame library, and the
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analysis package.

In order to meet the requirement of handling many users, we choose a client server archi-

tecture, which gives us the possibility to store the data the user creates in ourdata base. A

different option would have been to create different deliverables anddistribute them, relying on

the probands to send us the data that is generated while using the software.Since this option is

more risky and the return rate would probably be low, we decided against it.

Figure 4.2.:GRINTU Overview

An object view of the resulting software appears in figure 4.2. The figureshows that there

are different clients and only one server. All games and nearly all calculation takes place on

the client side so that the server is able to manage a lot of connections and stillcan coordinate

the communications between different clients. If one starts a game, the server receives a request

from a specific user and sends all required data to start a session. Theserver will use the database

to determine which NPC should play against which proband. After a successful game the server

collects the results of those games.

Figure 4.3.:GRINTU Client

In figure 4.3 on page 45, the constellation of a client is illustrated. A game object consists of

the user interface, which isvquite obvious, the game mechanics, and a localversion of the adver-
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sary NPC. Running the NPCs by the clients reduces the server load exponentially, because in the

current setting of our experiments, each client should play against two NPCs. This means that if

40 probands are playing at a time, the server has to calculate 40 to 80 NPCs simultaneously.

Figure 4.4.:GRINTU NPC

Figure 4.4 illustrates the implementation of the current PROLOGNPC module. With this mod-

ule it is possible to run native ISOPROLOG scripts, which comes seems quite useful, because

with PROLOG it is easier to analyze rule based NPC strategies than to write the strategies in

JAVA or C. After getting feedback from the probands, we can easily modifythe rule base and

rerun the TURING Test for further refinement.

The data mining module (see 4.3) is still under development, but due to the construction

of the client, it is possible to read nearly all users interactions with the game, such as mouse

movements, pauses, and key inputs. We are also able to log the course of gaming for a later

analysis. Another part of the data mining module is the questionnaire, which is shown after each

game and is used for a survey regarding the behavior of the other players. The data collected by

the data mining module is send to the server and stored in the database, using cross references

for all participating players, both human players and NPCs.

In the following chapter, we shall discuss the advantages of this tool and show ways to use

the GRINTU framework for the aforementioned purpose.
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5. Evaluation & Refinement

In chapter 3 I introduced rule-based strategies which are used to control the behavior of NPC’s.

These first strategies are at an elemental level and do not carry the human factor. The human

factor was defined at the beginning of this work as an hypothetical construct allowing me to

determine the essence of human play behavior. By definition every strategywhich successfully

passes my adapted TURING Test (p. 5) contains the human factor. The creation of such a con-

struct as the human factor was necessary because the true nature of human play behavior is

unknown. The crucial question now is whether a strategy passes the TURING Test or not. To

answer this question, an test is necessary which needs to be viewed as a process of evaluating if

a strategy is human believable or not. These answers are in nature non deterministic or proba-

bilistic. To validate the results of the TURING Test, I will set up an evaluation carried out by the

GRINTU framework. The GRINTU framework represents the system I used for the creation of

the games and of the match-making, as well as the data-mining utilized during the evaluation.

This evaluation is essential, because, without it, the credibility of the TURING Test cannot be

guaranteed. However, the results of the evaluation and the data is not onlyused to validate the

TURING Test and certify the existence of the human factor in certain strategies, butit is also used

later on to refine the rule bases and thus increase their quality in terms of humanbelievability.
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5.1. Evaluation

In contrast to verification, which is usually understood as thoroughly formal, evaluation is not

possible without expert knowledge. Since our research field is in the games sector, each player

is considered an expert for us.

There is no play without action; there is no game without interaction.

Interaction can take place between a player and some opponent, which canbe either an NPC

or another player. Therefore, most players have an intuitive understanding of what to expect

from an opponent.

5.1.1. Preparatory Work

This understanding of games or, in other words, this specific domain knowledge is refined the

more often a person plays games. For our purpose I am limiting this domain to board games,

and since I want to research digital games for which the GRINTU framework is specialized, I

want to use digital board games.

As mentioned above, the more often games are consumed in a healthy way1, the better the

domain knowledge. We use this special domain knowledge to evaluate our strategies and then

use this gained expert base to refine the rule based system.

In chapter 3 different strategies were presented as well as a way to create completely new

strategies. This new theory of constructing complex rule based strategies was called AI STRUC-

TURE COMPOSITION. By creating a versatile pool of basic and enhancement strategies it should

be possible to create nearly all kinds of strategies. What is the big advantage if, after having ac-

cumulated these masses of strategies, they cannot be ranked by some useful metric. My ranking

scale is the believability, or in other words, the quality of a strategy in comparison to a human

player. By using a way of validating the construction process and the corresponding strategies, I

hope it will be possible to:

1I would like to give a short definition of a healthy way by defining its counter part. Here an “unhealthy way”, is

defined as the extreme consumption of games. Due to matters of time and space, I cannot take other aspects into

account. It is my belief that extreme consume of media in our case digital games leads to discrepancies in social

behavior, which represent error sources for this research. Also,the question of how the consumption of games

changes the perception of behavioral values has to be included into someother research.
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1. create a better understanding of AI

2. create more believable AI

3. extract the human factor mentioned in the introduction

“Who is an expert?”, one might ask. Even our parents and grand parents have or had most

likely expertise in the games domain, because it comes to us naturally in some way.

Figure 5.1.:Ludo boardphotographed by M.L. Rieser, 2007

Imagine following setting:

One hundred years ago a grandmother is sitting with her two grandchildrenaround a table and

all three participate in a game of “Ludo” [12], see Figure 5.1 for the boardlayout2.

Both children, even when still young, expect their grandmother to behave in a certain way after

some games, because they correlate the grandmothers real-life behavior with her “in-game”

behavior. Like playing non aggressively and letting the children make mistakes and patiently

play on. It would be obvious for both children, if their grandmother would start playing in a

totally different way, that something is not how it used to be. But if the grandmother would only

make little changes in her behavior over time, like adapting to the increasing skill of the

children, the children would probably not recognize it.

2A version of Ludo is mostly called “Mensch ärgere dich nicht” in Germany or “Trouble” [11] in the USA, after a

little redesign during the 1960’s.
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Evaluation Approach

To achieve the previously mentioned goal of creating a believable rule-based game AI, the pool

of strategies has to be continuously evaluated. To achieve this, human judgment on these pools

is used as quality measurement for the evaluation. If one does not evaluatethese strategies and

their process, the system would become unable to judge whether a certain strategy is better or

not, and create strategies which are unable to fulfill their intended purpose. To do this, I use a

tool called “the Questionnaire”, which is integrated into the GRINTU-framework to evaluate the

quality and believability of all used rule based strategies.

To achieve this, the Questionnaire has to guarantee certain quality standards. Therefore I

used [8] as my guideline. To collect the data properly, the evaluation process of all used rule

based game AI has to offer some of the following features:

• Utility is meant to identify and represent the interests of the indented users. During the

design of the evaluation, the intentions and wishes must be clarified and takeninto con-

sideration. The evaluation report should be comprehensible and clear.

• Feasibility is another important feature, because the evaluation should be diplomatic,

thought through, and cost efficient. It is import to keep the intrusion and burden on the re-

spondent to a minimum when gathering the information. Is is also important to minimize

conflicts of interest under the different user groups. Thus, when designing a questionnaire

for different scientific problems, the blending should be minimal.

• Propriety standards are required because every evaluation has to take the responsibility

upon ethical or legal questions. Because of the data collected from the user groups, it

is important to protect and respect the dignity and welfare of all involved persons. All

participants have to be informed what kind of information about them is gathered and, if

possible, should be allowed to view the findings.

• Accuracy is the fast standard that needs to be fulfilled. The evaluation purpose hasto be

declared as clear and exact as possible. All information sources have tobe documented as

well as error sources and evaluation procedures. In the end, a justified summary and all

collected data has to be archived.
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When an evaluation is performed, all previously mentioned feature standards cannot be ap-

plied. But according to “Forschungsmethoden und Evaluation” [4] it is advisable to fulfill as

many standards as possible. By following these standards, the quality of anevaluation and the

number of findings increase greatly. I also believe that an evaluation planned and carried out

according to these principles attracts more volunteers, because of the professionalism and seri-

ousness of such an evaluation.

To evaluate the recognition of the the behavior of an NPC controlled by a rulebased strategy,

it is necessary to set up a test that keeps the all controllable possible errors to a minimum.

Naturally, this is an obvious statement, but it is quite difficult to succeed in the creation and

execution of such a test. As mentioned before, I aim at an evaluation of rulebased strategies

and their behavior. This is required for a refinement of those strategies tocreate more believable

NPCs. By doing so, our main goal is to extract the human factor3.

Creating a test for this setting would be really easy if human interaction was notrequired.

For a rating of efficient strategies or the comparison of path finding algorithms tests can be

automated and at the end the result is returned by a clear result. The difficulty of comparing rule

based systems with human behavior is that one has to involve actual people asjudges.

As noted earlier, in the chosen domain of digital games, every human who plays games is

an expert. So to get the required information, I have to design an error robust test evaluating

system, utilizing the human player’s judgment.

5.1.2. Test Construction

If one focuses on the domain of classic test theory than on repeating the test with the same

individual, the error margin in the results should minimize gradually. If so, the reliability of the

answers given is proven and the results can be expected to be true. Normally, when repeating a

test in accordance with my setting, the answers will differ because of measurement errors. The

respondent could be under stress, is distracted, or cannot concentrate. Perhaps the respondent is

even providing wrong answers on purpose. By taking this into account, the domain of classic

test theory might not be the right domain for this approach. To eliminate these measurement

3See page 6 for the definition of the human factor.
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errors or to be more exact to reduce them, I am adopting techniques from the social sciences to

create more trustworthy results.

Test Items

As for the test itself, it is a composition of questions the respondent can answer in different ways.

From now on for matters of convinience, I will call the questions of the test “items”. It is useful

to view a question as an “item”, because a question is an item of the set of questions which form

the test. The goal of such a composition of items is:

a) to get answers to the implicitly formulated problem

b) to keep the respondents from guessing the answers and thus falsifying the answer to a

minimum

To achieve this goal, the first thing one has to do is to look at the items themselves.To do so,

I will introduce four kinds of items:

• Open Answer: Questions from this type allow the respondent to answer freely without

any restrictions. Thus, the answer can be given in a playful or artistic way, meaning a

picture or longer text passages. These items are very useful as materialbasis for later tests

because they offer a lot of insights to the respondent and his/her opinionon the subject of

the question. Open answers are not very good for automated analysis and require a lot of

subsequent human input.

• Half-Open Answer: As it is the case with open items, half-open items allow free answers,

but with a certain restriction. Open items do not necessarily have right or wrong answers,

and allow thus more creativity. Half-open answers, on the other hand, can only be correct

or not. The problem then is that the evaluator has to decide afterwards what answer is

right. This sometimes depends on fine nuances in the evaluators interpretation. Another

big disadvantage of half-open items is that they are not analyzable throughautomation.

These items are very popular with respondents, because they offer muchliberty. On the

other hand, they are not very suited for large or automated evaluations.
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• Multiple Choice: Multiple Choice questions are very good for a computer enhanced

evaluation, because the respondent has to pick an answer out of a given pool of answers.

The problem with multiple choice is that the questions and answers must be compiled in a

way that the right answer is not obvious. Another disadvantage of multiple choice is that

it only requires recognition of answers instead of reproduction when it comes to open and

half-open items. The biggest disadvantage is the risk of guessing answers. The impact

of guessing for the reliability denotes [4] three factors, namely duration oftest, success

probability, and number of persons which were instructed to guess.

• Correlation: This type of item is similar to Multiple Choice items, but yields additional

information. There are mostly two sets of elements and the respondent has to correlate

elements of both sets. The elements mentioned can be statements, pictures, or sounds.

The result can be evaluated equally well as it is the case with multiple choice items.

As it is possible to see, the two items best suited for an questionnaire offer thepossibility to

easily guess the correct answer. Another aspect that has not been addessed, yet, is if somebody

intentionally provides a false answer or is randomly picking answers to speed up the answering

process. In [4], they propose a “guessing adjustment” by giving negative points for each wrong

item and positive points for each right item. However, in my case, this would not be feasible,

because the respondent does not receive a score or a grade afterpassing my questionnaire. An

interesting statement concerning multiple choice items is given in [4]. Items allowingthe re-

spondent to have a neutral answer are very hard to analyze, because of their meaning. If such

elements are present, it should be made clear to the respondent if this neutral element stands for:

a) The respondent does not know the answer.

b) The respondent is not sure what to select.

c) The respondent does not want to answer this question.

d) The respondent cannot decide between two answers.

This demonstrates the difficulty of having to deal with neutral answers. Their use should thus be

carefully evaluated.
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Above I stated that every gamer is an expert. This was not entirely correct. There are some

people who are able to expose some strategies as artificial player and some who cannot expose

said same strategies. These so-called super experts who are able to identify strategies reliably,

are not there to expose all strategies, but are needed as upper limit and fix points during the

refinement. To extract these super experts, I want to use a theory calledItem-Response-Theory,

abbreviated as IRT [9], which allows me to group people according to their abilities. A model

for this theory is the Rasch Model [7], which allows easy extraction of abilities. After obtaining

these, it is possible to group them by abilities, extract the super experts, and analyze the newly

constructed user space.

After gathering all of this information about how an evaluation test should bedone, I will

present the first evaluation test setting.

5.1.3. Alpha Test

The first setting will involve all previously mentioned strategies starting from RANDOMIZER

(p. 21) to Lingering (p. 41). They will be used as a basis for further refinement and are used

for comparing the advancement of future strategies. The user base forthis evaluation should

be around 100 persons. I hope that at least 25 percent of all participants will be available and

willing to participate in more than one game, because every absolved game minimizesthe error

value of wrong answers and allows me to extract the requirements for super experts.

After every finished game, the questionnaire will pop up and ask questionsregarding the

following topics:

• human or artificial behavior of a player

• enjoyment of the game

• visibility of other players strategy or goal

• level of challenge regarding certain players
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The items regarding the enjoyment of the game will be Multiple Choice, including a neutral

position. The items regarding the decision between human or artificial player will also be mul-

tiple choice, including an option that the respondent can pick if he cannot differentiate between

them. The items regarding the visibility of the strategy will be Open Answers. In this case I

decided against Multiple Choice, because I want to gather the insights of theplayers’ decision.

The items for the challenge will be a Multiple Choice with four options:

a) not challenging

b) somewhat challenging

c) overstraining

d) unsure

whereas there is no real neutral position. Some challenge items will also be Half-Open answers

allowing the user to state his decision.

The test will be repeated after every game, and it will offer the player to skip the questionnaire

after the second time. Although this might reduce the respondents filling out thequestionnaire,

this approach will minimize the error margin of the respondents who are intentionally providing

wrong answers. I hope to gather a small group of people who will play the games frequently in

order to enhance the results of the evaluation.

I believe that I can accomplish this by communicating the goal of the evaluation and by in-

forming the users regularly on the progress of this project on its website. The users will be given

an account with a password when they join the website. The only information Irequire is a valid

email address. Then, the users can answer a small questionnaire aboutthemselves. This is done

to create the dimensions for the IRT.

In contrast to other approaches, I will not force them to enter this information and allow

them to fill out what they are comfortable with reminding them that wrong information might

jeopardize the outcome of the evaluation. Changes regarding their personal settings will be

monitored to guarantee error safety. For example, if a person changes his/ her gender information

more than twice, the person will be marked as possible falsifier. Removing attributes will not set
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such a mark, but the exact moment will be recorded because it might be a point where people

start to loose trust or interest in the project.

In addition to the data from the questionnaire, the progress of each game willalso be logged in

the game notation which was introduced earlier in this thesis. This notation allows toreplay the

game, but it will also allow me to validate some information from the questionnaire regarding

the challenge level. In some future setting I hope to use more of that additionaldata to gain

more insights into the play behavior of the users as well as validation informationregarding the

enjoyment of the game by analyzing, for example, the reaction time and mouse movements.

After obtaining all information from the questionnaire and the additional data from the game,

I will be able to group the users according to their answers and their behavior during the matches.

These groups will allow me to select the super experts and groups which are receptive for certain

strategies. Super experts may be good at identifying artificial players, but may not be the most

interesting group when it comes to recognizing and reacting on different generated behavior.

All users will also be given a weight in correspondence with their accuracy, when it comes

to detecting strategies. This weight will be provided after it is clear which person reacts to

which strategies. The super experts are an exception. They have an equal weight regarding all

strategies. This weight is analyzed over time to view the progress of detectingthe strategies as

well as detecting falsifiers. All users start with a zero weight at the beginning, and over time the

weight is adjusted according to their detection rate.

The validity of the collected data depends more or less on the expertise of the respondents. By

increasing the positive weight, the super experts can be validated or normal users can be added

into this group because of their high identification rate.

An approach to adjust weights may be Exponential Smoothing [5]. I think thatthis approach

is quite natural, because it ranks more recent data higher than old data in theevaluation process

and therefore, it models the humans’ ability to learn by gaining experience, too.

So basically, after every match, the questionnaire collects data which is analyzed by the IRT

and weighted by an approach utilizing Exponential Smoothing.
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Selection Criteria I have already mentioned that some respondents are better at detecting

certain strategies and good at detecting all strategies. The only issue I have not addressed, yet, is

how the matches are organized. Before the refinement takes place for thefirst time all matches

are set up in a certain way so that every user will play at least once against every strategy. After a

user has finished the game against the last strategy, a new list is created including those strategies

he/she misjudged and a selection of strategies other people in his/her group misjudged as well.

This satisfies two functions (1) validating right decisions of the user by re-judging the strategies

and (2) validating the group affiliation. When the refinement takes place, thislist of strategies

which all users have is adjusted according to the refinement process defined below.

Strategy Weighting The strategies themselves are also weighed according to the detection

rate of their identity and the fun and challenge they generate for all players. This generates a

three dimensional space in which all strategies can be placed.

After placing the strategies into the three dimensional space and validating theirposition over

several iterations of the evaluation, it is possible to minimize nearly all error values created

through the questionnaire or the personal disposition of the respondents. On the other hand, the

test users are learning step-by-step to identify the artificial players. If Istopped at this point, the

gathered information would be useless.

The next step is then to use this knowledge to refine the rule based system which controls the

NPC to make it harder to detect them.
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5.2. Refinement

Having the results of the evaluation and the different weighted strategies, itis possible to start

the refinement. In this part of the process, the respondents do not needto be involved, because

all work is either done by human analysts or is automated.

Refinement has two principle directions. The first direction is to create strategies which pass

the TURING Test and are therefore credible human in nature. This means increasing the level

of complexity of strategies. The second direction is to take these complex strategies which pass

the TURING Test successfully and minimize them to a level where they still pass the test. This

creates minimal rule bases which carry the human factor.

5.2.1. Phase One

The first phase of the refinement is done after a certain amount of iterations of the evaluation

to minimize errors such as answers that have been guessed in the questionnaire or misjudged

strategies. Most importantly the amount of iterations needed depends on the fact that all strate-

gies should have been ranked by at least one super expert. To achieve this the basic settings in

the evaluation include that every user receives a set of all strategies. After all strategies have

been rated, the first refinement will be triggered.

Now there are two scenarios that can take place:

Scenario a) All strategies have been rated nearly equally often in the questionnaire. Ifa

strategy is at that point in time not rated by at least one super expert scenario b) will be used.

Otherwise the second phase of the refinement can begin.

Scenario b) If not all strategies have been rated due to the exclusion of users4or other factors,

the lists of all users will be adjusted. This also involves new users or usersjoining later. The

remaining unrated strategies will be rearranged in the set of strategies as the next strategies the

users will be confronted with. This method guarantees that all strategies willbe rated in the
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evaluation, thereby achieving an equal use of strategies during the firstphase.

Using the rating produced by the Exponential Smoothing allows now to select agroup of

strategies which were least likely estimated as artificial. These strategies havealso the highest

potential to evolve into a state containing the human factor. This highly rated group of strategies

will most likely still contain strategies which were detected as non-human due to the early phase

of refinement.

5.2.2. Phase Two

After obtaining enough information about the strategies for their rating and establishing that

rating, it is possible to adjust the newly found group of more believable strategies. As mentioned

in chapter 3, on implementing the informal definition of strategies, the combination of different

strategies has to be done by hand. I still hope to develop an automated combination, but this has

to be done in some future setting because of its complexity.

Initialization The now presented concept is based on the Darwinian approach on evolution

[6], adapted to rule based strategies and in particular on game strategies. Iwill follow the style

of evolutionary strategies (see [2, pp 48]) for a while until a set of strategies is fully undetectable

as artificial. By taking each presented strategy from chapter 3.3 into the evaluation, I create an

initial populationP (t = 0), with a size ofµ elements. As proposed in [1, p.83], the default

diversionsσk for all strategiesk are initialized with an integer value of three. The meaning of

this diversionσk will be described later on.

The resultρk which a fitness-function would return is directly given through the implicit

target function as the rating done by the respondents of the evaluation. This indicates that my

evolutionary strategy does not have a directly implemented fitness-function due to the nature of

human behavior which is not computable. If I knew in advance, how a humanbeing behaved

and reacted, then it would be obvious that I already have extracted the human factor.

4If the users do not stop evaluating the strategies there would be a point in timeat which the first super user finishes

his/her set of strategies. Thus, all strategies have been rated at least once. But taking into account that even super

users will drop out due to various reasons is important. Otherwise it couldoccur that entering later phases of the

refinement process would become impossible or to erroneous.
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Creation of Offspring The next step creates a set of offspring (the size of the set will beλ)

by randomly selecting partners, whereas every strategy has an equal chance of1
µ

to be selected

as a partner.

In this step it is possible to mate a strategy with itself, allowing it to stay unchanged,if it is fit

enough, in the process.

Traditionally it was advised ( [15]) to have a ratio forµ
λ

of 1
7 at the end of the selection. After

selecting all partners in pairs (partners can be selected multiple times), the recombination and

replication of new strategies takes place.

Normally, this process recombines numerical values. But for my purpose,it will select the

basic and symbiotic strategies present in the parents which were selected. This process is nor-

mally called discrete recombination, because it takes either an elemental strategy from the first

or from the second parent. The section of parts of the parent is possible, because every par-

ent is constructed of at least one elemental (basic or symbiont) strategy. In the current setting,

the recombination will be done manually. Thus, during the replication, a set ofstrings is re-

turned specifying the basic or enhancement strategies and their order in which they should be

implemented in the child strategy.

Mutation Next, the mutation of the newly created strategies takes place. For my scenario, I

decided to choose a mutation which takes the midpoint of both parent diversions. To this value

a random number between zero and one is added to symbolize light changesover time between

parents and children. The new diversion for the childk′ of both parentsk1 andk2 is:

σk′ = 1
2 ∗ (σk1 + σk2) ∗N(0, 1)

This slight change, represented as the random value generated byN(0, 1), is added to the

diversion ofk′, symbolizing a drift of the mutation over time. The functionN(0, 1) returns an

normally distributed random value between zero and one including both border values.

As mentioned before, each strategyk consists of a diversionσk, a fitness valueρk, and an

ordered set ofl elemental strategiesαk. Eachar, arǫαk is either represented as a basic strategy

b or symbiotic strategys.

αk = [a1, . . . , al]; arǫb, s, 1 ≤ r ≤ l

The elemental strategiesax, xǫN (N represents the set of all natural numbers) are true subsets
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of Ω whereΩ is the pool of all elemental strategies.

αk ( Ω

The newαk′ is calculated by usingσk′ to add elemental strategies to this set. This is done by

the mutationπk′ whereπk′ is represented as an integer which determines how many elemental

strategies will be added.

πk′ = ⌈N(0, σk′)⌉

Whenπk′ > 0 thenπk′ strategies will be added. Ifπk′ = 0 then no strategies will be added

toαk′ , meaning no mutation takes place. The elemental strategies are randomly pickedfrom the

pool of available elemental strategiesΩ for adding them toαk′ at an random position insideαk.

Selection After having an intermediate pool of strategiesP ′(t = 0), the selection process

starts. The most successful strategies fromP (t) will be directly transfered toP (t + 1). This

selection of successful strategies from the previous time stept is done by selecting the top rated
1
7 percent fromP (t). As of the initial phase the population size ofP (t = 0) wasµ0 all following

populations will have an fixed size ofλ = 2 ∗ µ0 this is required to guarantee the evaluation of

all strategies. In some future setting it might be a good idea to evaluate the upper limit of λ′ and

allow the populations to grow bigger.

The rest of the remaining space inP (t + 1) is filled with strategies fromP ′(t) according to

their fitness valueρ′k. This is done by calculating an preliminaryρ′k for all strategieskǫP ′(t).

ρ′k = 1
2 ∗ (ρk1 + ρk2) wherek1 andk2 are the parent strategies ofk.

Now thatP (t+ 1) is completely filled with strategies, a new evaluation cycle can begin until

the point is reached when a group of strategies is recognized as human players by all super

experts reaching a minimum percentage of all strategies. In our setting, twenty percent seems to

be a reasonable percentage but it needs to be evaluated empirically. If thishappens, phase three

of the refinement can begin.
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5.2.3. Phase Three

At this particular point, a group of strategies inP (t) has gained enough complexity and be-

havioral substance5. This implies that these strategies have reached a point in evolution where

they have developed the human factor sufficiently. The next step is to stop the evolution of the

strategies and adjust the complete process into a nearly reverse setting.

As mentioned in the introduction, my goal is to extract the human factor. To achieve this, I first

started to create a pool of strategiesP (0). Then I evolve this pool of strategies over iterations

into a pool of strategies which were able to mimic human behavior quite well. This pool of new

strategies is the selected subsetPopt(t) ⊆ P (t), wheret is the time of the iteration which is

accomplished, when phase three is initialized.Popt(t) includes all strategies which were able

to mimic a human behavior on a level where no super expert could find a difference between a

human player and these strategies. For later experiments it could be usefulto accept a detection

rate of strategies higher than zero percent to eliminate the noise which might stillbe present due

to user created errors.

Decomposition Using this subsetPopt(t), a new refinement cycle starts by recursively re-

moving elemental strategies in each iteration.

By applying this new function to the refinement process, the complexity of the strategies will

slowly decrease over the iterations. This process seems at first a bit senseless, because it seems

to destroy the over iterations of evolution created believability. But this is not the case. Only by

doing this, the goal to find a minimal rule set which yet carries the human factoris reachable.

In each iterationt, the fitness which is representing the believability of each strategyk is

checked. If the believability drops, which means that the fitness decreases rapidly, the strategy

k is removed fromPopt(t) and thus from each future generation. The predecessorkpre of this

specific strategy fulfilled the believability inPopt(t− 1), otherwise it would have been removed

earlier. This means that the essence of the human factor must have been destroyed ink. By

knowing thatkpre still had the human factor, we addkpre to Pfinal which represents a set of

most minimalistic strategies including the human factor.

5With behavioral substance I mean behavioral patterns which create a trustworthy impression of human behavior.
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Because now there is a new free slot inPopt(t+1), a random strategy ofPopt(t) is picked and

gains the possibility to create two clones each with another removed elemental strategy. This is

done for every free slot inPopt(t+ 1). This means that inPopt(t+ 1) there are strategiesk1 and

k2 which share the same predecessor. Thus, whenk1 andk2 do not fulfill the fitness criteria

anymore, the predecessor will only be added once for both strategies.

The refinement stops whenPopt(t+ 1) is empty which means that inPopt(t) there must have

been at least one strategyk, which was believable. Thus,k is added toPfinal andPfinal is

ordered by the degree of complexity of the strategiesk, wherekǫPfinal. Complexity in this

context may be estimated by the number of elemental strategies.

Now the refinement process can be stopped and the strategy withthe lowest complexity

is returned as optimal solution.

5.3. Summary

In this chapter, I have illustrated two parts of a circular process. The first part was the evaluation

of strategies and TURING-testing them. By doing so, we created a ranking of these strategies,

which is used in the second part, the Refinement. During the refinement, the strategies were

modified and even new strategies were created by using the old strategies asa basis. These

newly created strategies were then used in a new evaluation, creating a cycle of evaluation and

refinement of strategies to enhance the resulting behavior of these used strategies. The process

is stopped at a point when a reasonable number of strategies inherits the human factor, defined

in the introduction (p. 6).

The complete process of Evaluation and Refinement is also illustrated in figure5.2 to allow

for a better understanding.
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Figure 5.2.:Evaluation & Refinement process
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6. Perspective

At the beginning of this thesis, I presented the idea of the human factor, a construct which allows

us to determine human behavior in digital environments. This so-called human factor represents

the technical essence of human behavior, which means that a person cannot differentiate between

a human being or an NPC, controlled by a strategy which has adopted the human factor. The

main idea behind the creation of a construct such as the human factors was that for a game

in this example the board game JOSTLE a minimal rule set can be found, which inherits the

ability to mimic human behavior reasonably well. In chapter 3 a basic pool of strategies was

presented, which was created as a base system for developing more complex strategies based on

the AI STRUCTURE COMPOSITION theory presented in the same chapter. In the last chapter,

I constructed an iterative process of evaluation and refinement, utilizing techniques from the

social or human sciences and from evolutionary research to create a system able to find such a

minimal believable strategy. This is done by evolving the given strategies into a state where they

inherit the human factor.

Throughout the presented thesis, new interesting research fields opened up allowing (a) a

deepening of the presented research or (b) a solidification and validationof presented processes

and theories.

The next possible step derives from the field of social and human sciences and is an executing

of a first evaluation and refinement process. An inclusion of an complete evaluation in this work

was impossible because a sophisticated and implemented evaluation is equal in space and time

to the present work.

Another important step is the enhancement of computational techniques by creating modules

for automated combination of and decomposition towards basic strategies, which were presented

in chapter 5.
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A future project will also be the inclusion of different games into the GRINTU framework to

check and validate the transfer of knowledge from game AI to different environments. If this

transfer of knowledge is detectable, a step-by-step program is required to increase the complexity

of the used games to achieve the creation of modern game AI which inherits the human factor.
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A. Additional Information & Source Code

Repository

A.1. Additional Information

Handling Inactive Users If a user does not log in after a period of time, the account is set

inactive and some time later removed. Copying time guidelines from actual online games such

as WORLD OF WARCRAFT or PUZZLE PIRATES allows me to specify these time restrictions. A

user will be marked inactive after not having logged in for about four weeks. After six month the

user data will be marked to be deleted. In this purging process only user related information will

be deleted, not his/her ratings and answers as long as they do not concern private information.
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A.2. Prolog Sources

1 %X = f i e l d number

2 %Y= Piece ID

3 %Z = Owner ID

4 s t a t e S e a r c h (X,Y, Z ) :−

5 s t a t e (X, L i s t ) ,

6 member ( [ Z ,Y] , L i s t ) .

7

8 newSta te ( f (X,Y) , Z):− s t a t e S e a r c h (X,Y, Z ) .

9

10 a l l S t a t e s (L , Z):−

11 f i n d a l l ( S , newSta te ( S , Z ) , L1 ) ,

12 r e f o r m a t ( L1 , Z , L ) .

13

14 r e f o r m a t ( [ ] , _ , [ ] ) .

15 r e f o r m a t ( [ f (X,Y ) | R] , Z , [ [ X,Y, Z ] | R1]) :−

16 r e f o r m a t (R , Z , R1 ) .

17

18 b o a r d s i z e (N) :− board (N, _ ) ,

19 l a r g e s t (N ) .

20

21 l a r g e s t (N1) :− board (N2 , _ ) ,

22 N2 > N1 , ! , f a i l .

23 l a r g e s t ( _ ) .

24

25 b a c k T i l e (X):−

26 d i e (D) ,

27 B i s X+D,

28 board (B ,Name) ,

29 s t a r t s W i t h ( ’back@ ’ ,Name) .

30

31 g o a l T i l e (X):−

32 board (X,Name) ,

33 s t a r t s W i t h ( ’ goal@ ’ ,Name) .

34

35

36 g o a l s i z e ( S ) :− b o a r d s i z e (Max ) ,

37 board (N, ’ goal@1 ’ ) ,

38 S i s Max − N.

39

40 minT i le (N, S t r i n g ):− board (N, B) ,

41 s t a r t s W i t h ( S t r i n g , B) ,
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42 f i r s t T i l e O f (N, B ) .

43

44 f i r s t T i l e O f (N, S t r i n g ):−

45 board (N2 , S t r i ngB ) ,

46 s t a r t s W i t h ( S t r i n g , S t r i ngB ) ,

47 N2 < N, ! , f a i l .

48 f i r s t T i l e O f ( _ , S t r i ngB ) .

49

50 s t a r t s W i t h (A, B):−

51 a tom_chars (A,X) , a tom_chars (B ,Y) ,

52 s t a r t s W i t h 1 (X,Y ) .

53

54 s t a r t s W i t h 1 ( [ ] , L ) .

55 s t a r t s W i t h 1 ( [A | T a i l 1 ] , [A | T a i l 2 ] ) :−

56 s t a r t s W i t h 1 ( Ta i l1 , T a i l 2 ) .

57

58

59

60

61 % t h e e x t e r n a l c a l l f u n c t i o n s which r e q u i r e s t h e u s e r s ID

62 % and r e t u r n s t h e p i e c e which shou ld be moved

63 s e t D i e (X) :−

64 r e t r a c t a l l ( d i e ( _ ) ) ,

65 a s s e r t( d i e (X ) ) .

66

67 addDie (X) :−

68 d i e (Y) ,

69 Z i s Y + X,

70 s e t D i e (Z ) .

71

72 move ( ID , Stone ):− a l l S t a t e s (L , ID ) ,

73 worth (L , S tone ) .

74

75 r o l l D i e A g a i n ( ID):− a l l S t a t e s (L , ID ) ,

76 worth (L , [ X,Y, ID ] ) ,

77 b o a r d s i z e (Max ) ,

78 X < Max − 12 .

Example A.1:Shared AI Rule Base
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EQUALIZER used this following additional rule base on page 27.

1 s e t w o r t h H i s t o r y (X) :−

2 r e t r a c t a l l ( h i s t o r y ( _ ) ) ,

3 a s s e r t( h i s t o r y (X ) ) .

4

5 g e t w o r t h H i s t o r y (L ,A):−

6 g e t w o r t h H i s t o r y 1 (L , [ ] , A ) .

7

8 g e t w o r t h H i s t o r y 1 ( [ ] , A,A ) .

9 g e t w o r t h H i s t o r y 1 ( [ [ _ ,Y, _ ] | L ] ,A, B):−

10 g e t w o r t h H i s t o r y 1 (L , [ Y | A] ,B ) .

Example A.2:Additional Rule Base EQUALIZER

The following gameplay book was used in figure 3.4 on page 28.

1 0 r4

2 3g1

3 6b3

4 −−−

5 1 r1

6 3g1

7 6b5

8 −−−

9 2 r1

10 3g4

11 6b9

12 −−−

13 0 r8

14 . . .

Example A.3:EQUALIZER gameplay book

1 % d i e r o l l e d once w i th an t o t a l o f f i v e p o i n t s

2 d i e ( 5 ) .

3

4 % Layout o f t h e J o s t l e board

5 board (−1 ,n ) .

6 board ( 0 , s t a r t ) .

7 board ( 1 , n ) .

8 board ( 2 , n ) .

9 board ( 3 , n ) .

10 board ( 4 , n ) .

11
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12 board ( 5 , n ) .

13 board ( 6 , ’ switch@1 ’ ) .

14 board ( 7 , n ) .

15 board ( 8 , n ) .

16 board ( 9 , n ) .

17 board (10 , ’ back@3 ’ ) .

18

19 board (11 , n ) .

20 board (12 , n ) .

21 board (13 , ’ switch@2 ’ ) .

22 board (14 , ’ switch@1 ’ ) .

23 board (15 , n ) .

24 board (16 , n ) .

25

26 board (17 , n ) .

27 board (18 , ’ switch@2 ’ ) .

28 board (19 , n ) .

29 board (20 , n ) .

30 board (21 , n ) .

31 board (22 , ’ back@3 ’ ) .

32

33 board (23 , ’ back@3 ’ ) .

34 board (24 , n ) .

35 board (25 , n ) .

36 board (26 , ’ goal@1 ’ ) .

37 board (27 , ’ goal@2 ’ ) .

38 board (28 , ’ goal@3 ’ ) .

39

40 board (29 , ’ goal@4 ’ ) .

41 board (30 , ’ goal@5 ’ ) .

42 board (31 , ’ goal@6 ’ ) .

43

44 % a c t u a l s t a t e o f a l l gaming p i e c e s f o r t h e t h r e e p l a y e r s

45 s t a t e (− 1 , [ [ 2 , 7 ] , [ 1 , 4 ] , [ 1 , 6 ] , [ 2 , 8 ] , [ 2 , 9 ] ] ) .

46 s t a t e ( 0 , [ [ 1 , 5 ] ] ) .

47 s t a t e ( 2 5 , [ [ 0 , 1 ] ] ) .

48 s t a t e ( 2 6 , [ [ 0 , 2 ] , [ 0 , 3 ] ] ) .

Example A.4:Test Data
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