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Introduction 
 

In the case of nonlinear dynamic electromagnetic eddy current problems with a 
sinusoidal excitation, time stepping methods usually need many periods to be stepped 
through until steady state is reached. Therefore, time stepping methods need a large 
computational effort. Since, for many applications, the steady state only is of interest, 
methods have to be developed to avoid calulating transient processes. In [2] a method is 
presented which uses the fixed point method (see [1])  to linearize the equation system 
of eddy current problems. This leads to an equation systems where the equations are 
decoupled for each time instant within a period. But this method suffers by 
approximating the differential quotient and the solution depends on the number of time 
steps within a period. Another way to determine the steady state only is to approximate 
the time dependent quantities by Fourier series. In [3] and [5], Fourier series are used to 
approximate the introduced potentials and the excitation as well as the reluctivity. The 
disadvantage here is that the equation for a certain harmonic is coupled with all 
harmonic components of the previous iteration step. 
In this paper the fixed point method is used to linearize the equation, and the time 
dependent quatities are represented by Fourier series. This approach leads to a number 
of equations which are decoupled for each frequency. Several iterations have to be 
made to take the nonlinear behaviour into account. Using this method, only the right 
hand side of the equation is affected by the nonlinearity and must be updated in each 
step. The method has been applied to two 2D nonlinear eddy current problems which 
are compared with a time stepping method. 

 
 

Method 
 
The equation for nonlinear eddy current problems has the following form if Galerkin’s 
method is applied : 
 

 ( ) ( ) ( ) ( )( ) ( )dt t
dt

⋅ ⋅S x x M x x f+ t= . (1) 

 
The matrices S and M depend on x and so they must be updated at each iteration step. 
The vector f(t) on the right hand side indicates the sinusoidal excitation and the time 
dependent vector x(t) is the solution of the equation. If the formulation leading to (1) is 
based on the flux density B, the nonlinear relationship between H and B can be 
separated into a linear and a nonlinear term : 
 
 ( ) ( )FP FP= = ν −H H B B M B . (2) 
 



Here MFP is a magnetization-like quantity, which includes the nonlinear behaviour of the 
material and νFP is a fixed value that influences the convergence of the method. If the 
magnetic vector potential A and the time integrated electric scalar potential v are 
introduced and relation (2) is taken into account, Ampere’s law and the law of 
conservation can be written as : 
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where the potentials A and v satisfy the equations : 
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The relation between the current density J and the electric field intesity E is given by      
J = σ E. If Galerkin’s method is applied to (3), an algebraic equation system can be 
obtained : 
 
 ( ) ( ) ( ),t t⋅ ⋅ =S x M x f x�+ .t  (5) 
 
In (5) the matrices S and M are constant and the vector x(t) represents the unknown 
time dependent potentials A and v. The term f(x,t) consists of the excitation and a term 
which corresponds to MFP. Since MFP depends on B (see (2)), the vector f(x,t) depends 
on the solution x. The vector x at the right hand side can be substituted by the previous 
solution and so f(x,t) becames a function of time only and (5) can be written as: 
 
 ( ) ( ) ( ) .t t⋅ ⋅ =S x M x g�+ t  (6) 
 
The time dependent vectors x(t) and g(t) are now represented as complex Fourier 
series, where only harmonics up to a certain number are taken into account : 
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In (7), Xk and Gk are the complex amplitudes at the angular frequency kω0 and ω0 is the 
angular frequency of the excitation. The approximations of x(t) and g(t) together with (6) 
lead to N+1 linear equations, which are decoupled from each other : 
 

  (8) ( )0

0, , .
kj k

k N
+ ω ⋅ =

=

S M X
…

kG

 
With this harmonic approach, the time derivative in (6) can be replaced by a 
multiplication with jkω0 and so the problems of approximating ( )tx�  can be avoided. 



The Algorithm 
 
Starting from an arbitrary value for MFP (usually zero), the time dependent vector g(t) in 
(6) and therefore also Gk can be determined. From the solution Xk of (8) the vector x can 
be evaluated as a function of time. Since x corresponds to the flux density B, a new MFP 
can be obtained by relation (2). This leads to an equation system (8) with new Gk’s 
which is solved again. The procedure will be repeated, until a certain error criterion is 
smaller than a prescribed value. The flow chart of the proposed method is shown in 
Fig.1. 

 

Update MFP with the new solution x and relation (2)

Set νFP and N

Compute the matrices S and M in (6)

Initialize MFP

Determine g(t) in (6) from the excitation and MFP

Compute Gk (k = 0,…,N) from g(t)

Solve (8) for all frequencies kω0

STOP

Change of νmean and 
νmax small enough ? 

Fig. 1: Flow chart of the proposed method 
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Numerical Examples 
 
The first example comprises an aluminum conductor with a given sinusoidal voltage of 
0.66V per unit length. A conducting ferromagnetic wall shields the conductor              
(see Fig. 2).  The nonlinear B-H curve of the wall is shown in Fig.3. On the symmetry 
plane, the normal component of the flux density B is zero. 
The computation with the presented method has been carried out with several 
harmonics and the value for the relative permeability corresponding to νFP was chosen to 
300 for all computations. The stopping criterion for the nonlinear iterations was chosen 
to be 0.1% and 1% for the mean and maximum relative variation of the reluctivity. 
The present method has been compared with a time stepping method, where each 
period has been discretized in 40 time steps. For the nonlinear iterations, the same 
stopping criterions are used as before. For this example the time stepping method needs 
6 periods to practically arrive at steady state. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4 shows the spectrum of the current in the ferromagnetic wall. The numbers above 
the bars indicates the number of harmonics taken into account and the asterisk indicates 
the spectrum of the 6th period obtained by the step-by-step method. Only odd harmonics 
occur in the spectrum, and it can be seen, that the amplitude for a certain harmonic 
converge to a fix value as the number of harmonics is increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table I: Number of equation systems to be solved 

method number of harmonics number of equations 
time stepping  2178 

1 32 
3 111 
5 185 
7 245 

present method 

9 324 

Fig. 2: Aluminum conductor (σ=3.5·107 S/m) 
unit length o

Fig. 3: B-H curve of the ferromagnetic steel wall. 
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Fig. 4: Spectrum of the current in the ferromagnetic wall. 



In Table I, the number of equations to be solved as well as the number of harmonics 
taken into account is shown. It can be seen, that the number of equations are much 
higher for the time stepping method as for the present method. Also the number of 
equation systems increase with increasing number of harmonics. 
 
 
The second 2D example consists of a copper conductor with a given sinusoidal voltage 
within a conducting ferromagnetic screen (Fig.5). The B-H curve of the screen is the 
same as in the previous example. With the time stepping method, 60 periods are 
required to arrive the steady state. One period has been discretized in 40 time steps and 
the mean and maximum relative variation of the reluctivity has been set to 0.1% and 
1.0% respectively. In the present method, the relative permeability corresponding to νFP 
is set to 300 and the calculations have been done with several harmonics. The number 
of equation systems to be solved are given in Table II both for the time stepping method 
and for the present method. 
 
 

Fig.5: Copper conductor (σ=5.7·107 S/m) surrounded by a ferromagnetic screen (σ=5.7·107 S/m). 
The conductor is driven by a sinusoidal voltage with 50 Hz and 1.4V per unit length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table II: Number of equation systems to be solved 

method number of harmonics number of equations 
time stepping  31967 

1 72 
3 210 
5 265 
7 364 

present method 

9 459 
 
The spectrum of the current in the copper conductor for the different calculations is given 
in Fig. 6. Again, the number above the bars gives the number of harmonics taken into 
account for the present method and the asterisk indicates the spectrum of the 60th period 
obtained by the step-by-step method. As in the example before, the amplitude of a 
certain harmonic component converges to a fix value. In the spectrum of the current only 
odd harmonics occur like in the example before, and only the first and the third 
harmonics are relevant. 
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Fig. 6: Spectrum of the current in the copper conductor. 

 
 

Conclusion 
 
The presented method leads to a number of decoupled equation systems. The matrices 
S and M are constant in each iteration step and only the right hand side has to be 
updated in each step. Since the equations are decoupled, they can be solved 
separately, which reduces the amount of memory. For weak nonlinearities just a few 
harmonics are necessary to be taken into account. If it is further known a priori that 
certain harmonics cannot occur, the number of equation systems to be solved can be 
reduced. 
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