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Exponential stability of
time-varying linear systems

Adrian T. Hill∗ Achim Ilchmann†

May 9, 2009

Abstract

This paper considers the stability of both continuous and discrete time-varying lin-

ear systems. Stability estimates are obtained in either case in terms of the Lipschitz

constant for the governing matrices and the assumed uniform decay rate of the cor-

responding frozen time linear systems. The main techniques used in the analysis are

comparison methods, scaling, and the application of continuous stability estimates to

the discrete case. Counterexamples are presented to show the necessity of the stabil-

ity hypotheses. The discrete results are applied to derive sufficient conditions for the

stability of a Backward Euler approximation of a time-varying system, and a one-leg

linear multistep approximation of a scalar system.

Keywords: Exponential stability, discrete time-varying linear systems, continuous

time-varying linear systems, Backward Euler approximation, one-leg multistep approx-

imation

Notation

⌊x⌋ := max{n ∈ Z | n ≤ x}, x ∈ R,

sign[x] :=

{
x/|x|, x ∈ R \ {0},
0, x = 0,

R≥p := [p,∞), p ∈ R,

R>p := (p,∞), p ∈ R,
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D := {(t, s) ∈ R≥0 × R≥0| t ≥ s},
∆ := {(n, m) ∈ N0 × N0| n ≥ m},

MN := the set of all mappings from N to a set M ,

‖x‖ denotes a norm of x ∈ CN ,

‖x‖2 :=
√

x∗x, Euclidean norm of x ∈ CN ,

‖A‖ := max {‖Ax‖ | ‖x‖ = 1}, induced operator of A ∈ C
ℓ×q,

spec(A) := {λ ∈ C | det(λI −A) = 0}, the spectrum of A ∈ CN×N ,

µ(A) := max{|λ| | λ ∈ spec(A)}, spectral radius of A ∈ CN×N ,

C(J, Rℓ×q) is the vector space of continuous functions f : J → Rℓ×q,
J ⊂ R an interval, with sup norm,

‖f‖∞ := supt∈J ‖f(t)‖.

1 Introduction

We study exponential growth (stability) of time-varying linear systems in continuous time

u̇(t) = A(t) u(t), t ≥ 0, (1.1)

where A(·) : R≥0 → CN×N is a continuous function, and in discrete time

un+1 = An un, n ∈ N0, (1.2)

where (An)n∈N0
is a sequence of matrices with elements in CN×N . Recall, see for example

[18], that (1.1) is said to be (uniformly) exponentially stable if, and only if,

∃ (M, η) ∈ R≥1 × R>0 ∀ slns. u of (1.1) ∀ (t, s) ∈ D : ‖u(t)‖ ≤ Me−η(t−s)‖u(s)‖, (1.3)

and (1.2) is said to be (uniformly) exponentially stable if, and only if,

∃ (M, η) ∈ R≥1 × R>0 ∀ slns. u of (1.2) ∀ (n, m) ∈ ∆ : ‖un‖ ≤ Me−η(n−m)‖um‖. (1.4)

To derive sufficient conditions for bounds of M and η, we assume that the frozen systems
u̇(t) = A(τ) u(t) and un+1 = Am un are exponentially stable and A is globally Lipschitz.
More precisely, for (K, ω, L) ∈ R≥1 × R≥0 × R>0, we consider the classes of generators

SK,ω,L :=

{
A ∈ Cpw

(
R≥0, C

N×N
)
∣∣∣∣∣
∀ t, s ∈ R≥0 : ‖eA(t)s‖ ≤ Ke−ωs

∀ t, s ∈ R≥0 : ‖A(t) − A(s)‖ ≤ L |t − s|

}
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and

ΣK, ω, L :=

{
(An) ∈

(
C

N×N
)N

∣∣∣∣∣
∀ n, m ∈ N0 : ‖Am

n ‖ ≤ Ke−ω m

∀ n, m ∈ N0 : ‖An − Am‖ ≤ L |n − m|

}
.

It may be worth knowing that, although we consider time-varying systems, due to the
special system classes SK,ω,L and ΣK,ω,L, the decay rate η and the constant M prescribing
the exponential stability in (1.3) and (1.4), respectively, hold for every initial value if, and
only if, they hold for the initial value at time t = 0; to be more precise, see Lemma 5.1 and
Lemma 5.10, respectively.

A nice textbook on time-varying systems, continuous as well as discrete time, is [18], see
also the references therein. Bounds on the exponential growth of continuous/discrete time-
varying systems have been suggested by numerous authors: [4, 7, 12, 13, 14, 17, 19, 20]/[1, 8].

A good description of the stability analysis available for numerical methods is given in [10],
which summarises earlier work for linear multistep, Runge-Kutta and general linear methods
by [15, 5, 2, 3]. These results relate to the propagation of errors made in the approximation
of the problem u̇ = f(t, u), where f is assumed to satisfy a structural assumption ensuring
the stability of solutions u. More recently, articles [9] and [16] have investigated the stability
of linear multistep methods approximating time-varying systems of the form u̇(t) = A(t)u
in a Hilbert space setting.

In the continuous case, we use the variation of constants formula and the properties of the
set SK, ω, L to obtain an integral inequality for ‖u(t)‖. The main idea revived in this paper
is to use scaling to eliminate as many apparently independent parameters as possible in the
integral inequality. Once the inequality is simplified in this way, it is then relatively simple
to bound ‖u(t)‖ sharply in terms of the solution of a comparison equation.

In the continuous case, a natural time-scale
√

KL arises out of the scaling process. For the
discrete problem, a similar time-scale β :=

√
KLeω battles with the intrinsic unit time-scale

of the discrete process. When β is small, estimates from the continuous problem are also
sharp for the corresponding discrete case. For larger β, a direct discrete approach yields
better bounds.

The paper is organized as follows. In Section 2 the two main results give sufficient conditions
for the uniform decay of solutions of continuous and discrete time systems. Counterexamples
are also presented in cases where the hypotheses do not hold. The proof of the two theorems
are given in Section 5. Applications of the main discrete result are given in Sections 3 and
4: In Section 3 sufficient conditions are given for the exponential stability of a Backward
Euler approximation of a general continuous time-varying system of the type considered in
Section 2. In Section 4, the results of Section 2 are used to prove the stability of a one-leg
multistep approximation of a time-varying scalar differential equation.
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2 Exponential Stability

2.1 Continuous time systems

Theorem 2.1. Suppose that A ∈ SK,ω,L for some (K, ω, L) ∈ R≥1 ×R≥0 ×R>0. Then every
solution u of (1.1) satisfies

(i) ‖u(t)‖ ≤ K exp
{(

KL(t−s)
4

− ω
)

(t − s)
}
‖u(s)‖, ∀ (t, s) ∈ D,

(ii) ‖u(t)‖ ≤ K exp
{(√

KL log(min{2, K}) − ω
)

(t − s)
}
‖u(s)‖, ∀ (t, s) ∈ D.

The above theorem is proved in Subsection 5.1.

Remark 2.2. Theorem 2.1 (ii) implies that u̇(t) = A(t)u(t) is exponentially stable if

KL log(min{2, K}) < ω2. (2.1)

2.2 Discrete time systems

Theorem 2.3. Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0. Then, for
β :=

√
KLeω, every solution u : N0 → CN of un+1 = An un satisfies

(i) ‖un‖ ≤ Kn−me−ω(n−m)‖um‖, ∀ (n, m) ∈ ∆,

(ii) ‖un‖ ≤ K exp {β2(n − m)2/4 − ω(n − m)} ‖um‖, ∀ (n, m) ∈ ∆,

(iii) ‖un‖ ≤ K exp
{
(β
√

log 2 − ω)(n − m)
}
‖um‖, ∀ (n, m) ∈ ∆,

(iv) ‖un‖ ≤ 1
2
{(1 + β)n−m + (1 − β)n−m}Ke−ω(n−m)‖um‖, ∀ (n, m) ∈ ∆.

The above theorem is proved in Subsection 5.2.

Remark 2.4. (Bound comparison and time–scales)
Bounds (ii) and (iii) are the respective small and long time analogs of the corresponding
continuous results. Such bounds are particularly useful if β ≪ 1, when it is harder to obtain
sharp discrete bounds directly.
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A direct discrete approach works better if β ≥ 1. Comparing the growth rate of (iii) and (iv)
for large n−m, we see that the direct discrete bound (iv) is sharper than (iii) if

β > β0 ≈ 0.43 such that exp(β0

√
log 2) = 1 + β0.

For some problems, the trivial bound (i) is best, particularly for small n−m if a special norm
is chosen so that K is close to, or equal to, 1.

Remark 2.5. (Exponential stability criteria)
By inequalities (i), (iii) and (iv), a system A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 ×R≥0 ×R>0

is exponentially stable if

ω > min
{

log(1 + β), β
√

log 2, log K
}

. (2.2)

2.3 Continuous and discrete generalisations of a counterexample
of Hoppenstaedt

The following examples generalise a well known example of [11].

Example 2.6. Description of system: Define A(·) : R≥0 → C2×2 for a > θ > 0 by

A(t) := Q(t)A0Q
T (t); Q(t) :=

[
cos θt sin θt

− sin θt cos θt

]
, A0 :=

[
0 a
0 0

]
. (2.3)

Properties of the frozen systems: Since Q(τ) is orthogonal,

‖eA(τ)t‖2 = ‖Q(τ)eA0tQT (τ)‖2 = ‖eA0t‖2 =

∥∥∥∥
[

1 at
0 1

]∥∥∥∥
2

≤ 1 + at, ∀ τ, t ≥ 0. (2.4)

Lipschitzian properties of A(·): We observe that, for all t, s ≥ 0,

‖A(t) − A(s)‖2 = ‖QT (t)A0Q(t) − QT (s)A0Q(s)‖2 = ‖QT (t − s)A0Q(t − s) − A0‖2,

and also

‖QT (t)A0Q(t) − A0‖2 = a

∥∥∥∥
[

sin θt cos θt − sin2 θt
− sin2 θt sin θt cos θt

]∥∥∥∥
2

= a| sin θt|, ∀ t ≥ 0.

Hence,
‖A(t) − A(s)‖2 = a| sin(θ(t − s))| ≤ aθ|t − s|, ∀ t, s ≥ 0.

Properties of the time–varying system: If u : R≥0 → C2 is a solution of (1.1), define

x : R≥0 → C
2, t 7→ x(t) := QT (t)u(t) and B :=

[
0 a − θ
θ 0

]
.
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Since Q̇(t)T Q(t) =

[
0 −θ
θ 0

]
for all t ≥ 0, we obtain

ẋ(t) = Q̇(t)T u(t) + QT (t)u̇(t) = (Q̇(t)T Q(t) + A0)x(t) = Bx(t).

Since B2 = θ(a − θ)I,

eBt =

∞∑

m=0

B2m t2m

(2m)!

(
I + B

t

2m + 1

)
=

∞∑

m=0

[θ(a − θ)]mt2m

(2m)!

[
1 (a−θ)t

2m+1
θt

2m+1
1

]

=


 cosh[θ(a − θ)]1/2t

√
a−θ

θ
sinh[θ(a − θ)]1/2t√

θ
a−θ

sinh[θ(a − θ)]1/2t cosh[θ(a − θ)]1/2t


 .

For all t ∈ R≥0, ‖u(t)‖2 = ‖Q(t)x(t)‖2 = ‖x(t)‖2 = ‖eBtx(0)‖2 and x(0) = u(0). Hence,

max
u(0)∈C2\{0}

‖u(t)‖2

‖u(0)‖2

= max
x(0)∈C2\{0}

‖eBtx(0)‖2

‖x(0)‖2

= ‖eBt‖2 ≥ exp
(
[θ(a − θ)]1/2t

)
. (2.5)

Comments: We observe that whilst solutions of the frozen time systems only grow at most
linearly with time, those of the time–varying system may grow exponentially. Choosing
ǫ ∈ (0,

√
θ(a − θ)) and replacing A(t) by Aǫ(t) := A(t)− ǫI has the effect of multiplying the

RHS of (2.4) and (2.5) by e−ǫt. This makes the frozen time systems exponentially stable, but
leaves the time–varying system exponentially unstable, and does not affect the Lipschitzian
properties of A(·).

Example 2.7. The Euler method for Example 2.6
The Euler method for (2.3) is

un+1 = (I + hA(nh))un =: Tn(h)un, n ∈ N0, (2.6)

where h > 0 is a time-step. Thus, for Q as in Example 2.6,

Tn(h) = Q(nh)T0(h)Q(−nh), T0(h) =

[
1 ah
0 1

]
.

Properties of the frozen system: The approximation is exact here, so (2.4) implies that

‖Tm
n (h)‖2 = ‖eA(nh)mh‖2 ≤ 1 + amh, ∀ (n, m) ∈ N

2
0. (2.7)

Lipschitzian properties: We observe that

‖Tn(h) − Tm(h)‖2 = ‖Q(nh)T0(h)Q(−nh) − Q(mh)T0(h)Q(−mh)‖2

= ‖Q((n − m)h)T0(h)Q(−(n − m)h) − T0(h)‖2, ∀ (n, m) ∈ N
2
0.
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Also,

‖Q(nh)T0(h)Q(−nh) − T0(h)‖2 = ah

∥∥∥∥
[

sin θnh cos θnh − sin2 θnh
− sin2 θnh sin θnh cos θnh

]∥∥∥∥
2

= ah| sin θnh|, ∀n ∈ N0.

Hence,

‖Tn(h) − Tm(h)‖2 = ah| sin(θ(n − m)h)| ≤ aθh2|n − m|, ∀ (n, m) ∈ N
2
0. (2.8)

Properties of time–varying system: If un : N0 → C2 is a solution of (2.6), define

x : N0 → C
2, n 7→ xn := Q(−nh)un.

Hence,

xn+1 = Q(−(n + 1)h)un+1 = Q(−(n + 1)h)Q(nh)T0(h)Q(−nh)un

= Q(−h)T0(h)xn =

[
cos θh − sin θh + ah cos θh
sin θh cos θh + ah sin θh

]
xn =: B(h)xn, ∀n ∈ N0.

Since x0 = u0, and Q(·) is orthogonal,

max
u0∈C2\{0}

‖un‖2

‖u0‖2

= max
x0∈C2\{0}

‖xn‖2

‖x0‖2

= ‖Bn(h)‖2 ≥ µn(B(h)), n ∈ N0. (2.9)

As a > θ > 0, there is a unique h0 ∈ (0, π/θ) such that ah0 = 2 tan(θh0/2) and ah >
2 tan(θh/2), for all h ∈ (0, h0). Elementary trigonometry now implies that

µ(B(h)) = σ(h)+
√

σ2(h) − 1 > 1, σ(h) := cos θh+(ah/2) sin θh > 1, ∀h ∈ (0, h0).

Comments: We observe that whilst solutions of the frozen systems only grow at most linearly
with time, those of the time–varying system may grow exponentially. Replacing A(t) by
Aǫ(t) = A(t) − ǫI for ǫ ∈ (0,

√
θ(a − θ)) multiplies the RHS of (2.7) by (1 − ǫh)m, for all

sufficiently small h > 0, rendering the discrete frozen systems exponentially stable. This
change has no effect on the Lipschitzian properties of the discrete system. A similar analysis
to the above shows that µ(Bǫ(h)) > 1 for all sufficiently small h > 0, implying that the
discrete time-varying system is exponentially unstable in that parameter range.

Remark 2.8. The fact that the Euler method in Example 2.7 inherits both the stability
of the frozen time systems and the instability of the time-varying system for all sufficiently
small h is an expected consequence of consistency. This would be true for any consistent
one-step method — even a very stable one, such as Backward Euler. Thus, to establish the
stability of a discrete time-varying system for any consistent method, more is required than
the stability of the frozen time systems combined with a Lipschitz condition of the form
(2.8). In general, one also requires additional information about the underlying system, such
as (2.1), or a corresponding bound on the discretisation, such as (2.2).
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3 The stability of a Backward Euler approximation

Here, we consider the approximation of (1.1) by the Backward Euler method. For a time-step
h > 0, the equation of the method is

un+1 = un + hA((n + 1)h)un+1, n ∈ N0. (3.1)

Under suitable assumptions on A(·), Lemma 3.1 below shows that the sequence (Tn(h))n∈:N0

of matrices in CN×N given by

Tn(h) := (I − hA((n + 1)h))−1, n ∈ N0, (3.2)

is well defined. This allows us to rewrite (3.1) as the discrete time-varying system

un+1 = Tn(h)un, n ∈ N0, (3.3)

and to attempt to establish the stability properties of the Backward Euler method using
Theorem 2.3.

Lemma 3.1. Suppose that h > 0 and that A(·) ∈ SK,ω, L for (K, ω, L) ∈ R≥1 × R≥0 × R>0.
Then, for each n ∈ N0, Tn(h) given by (3.2) is well defined, and

‖Tm
n (h)‖ ≤ K(1 + hω)−m, m ∈ N0. (3.4)

Proof: For every m ∈ N,

‖(I − hA(nh))−m‖ =

∥∥∥∥
∫ ∞

0

tm−1

(m − 1)!
e−(I−hA(nh))t dt

∥∥∥∥

≤
∫ ∞

0

tm−1

(m − 1)!
Ke−(1+ωh)t dt = K(1 + ωh)−m,

where the boundedness of the RHS ensures the well–definedness of the LHS. The case m = 0
is clear, as K ≥ 1. 2

Lemma 3.2. Suppose that h > 0 and that A(·) ∈ SK,ω, L for (K, ω, L) ∈ R≥1 × R≥0 × R>0.
Then,

‖Tn(h) − Tm(h)‖ ≤ LK2(1 + ωh)−2h2|n − m|, ∀ (n, m) ∈ N
2
0. (3.5)

Proof: As in the second resolvent identity,

(I − hA(nh))−1 − (I − hA(mh))−1 = h(I − hA(nh))−1[A(nh) − A(mh)](I − hA(mh))−1.

Thus, by (3.4) and the Lipschitzian properties of A(·),

‖Tn(h) − Tm(h)‖ ≤ ‖(I − hA(nh))−1‖‖(I − hA(mh))−1‖h‖A(nh) − A(mh)‖
≤ K2(1 + ωh)−2hL|nh − mh| ≤ LK2(1 + ωh)−2h2|n − m|.

2
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Lemma 3.3. Suppose that h > 0 and that A(·) ∈ SK,ω, L for (K, ω, L) ∈ R≥1 × R≥0 × R>0.

Then, for δ :=
√

K3L, every solution u : N0 → C
N of un+1 = Tn(h) un satisfies

(i) ‖un‖ ≤ Kn−m(1 + ωh)−(n−m)‖um‖, ∀ (n, m) ∈ ∆,

(ii) ‖un‖ ≤ K(1 + ωh)−(n−m) exp {δ2(n − m)2h2/4} ‖um‖, ∀ (n, m) ∈ ∆,

(iii) ‖un‖ ≤ K(1 + ωh)−(n−m) exp
{
(δ
√

log 2)(n − m)h
}
‖um‖, ∀ (n, m) ∈ ∆,

(iv) ‖un‖ ≤ 1
2
{(1 + δh)n−m + (1 − δh)n−m}K(1 + ωh)−(n−m)‖um‖, ∀ (n, m) ∈ ∆.

Proof: By Lemmas 3.1 and 3.2,

(Tn(h))n∈N0
∈ ΣK̂, ω̂, L̂, for K̂ := K, L̂ := K2Lh2(1 + ωh)−1, ω̂ := log(1 + ωh),

(where L̂ has been increased by a factor of (1+ωh) for convenience). Applying the conclusions
of Theorem 2.3 with

β̂ :=
√

K̂L̂eω̂ =
√

K3Lh2 = δh and e−ω̂ = (1 + ωh)−1,

we obtain (i)–(iv). 2

The following is clear from bounds (iii) and (iv) in Lemma (3.3):

Theorem 3.4. Suppose that A(·) ∈ SK, ω, L for (K, ω, L) ∈ R≥1 × R≥0 × R>0. Then, (3.1)
is exponentially stable if

ω > min

{
√

K3L,
exp(h

√
K3L log 2) − 1

h

}
. (3.6)

Remark 3.5. (Stability criteria)
Bounds (i) and (ii) in Lemma 3.3 may be the sharpest for small n−m. Inequalities (ii)–(iv)
all give rise to bounds of the form

∀ τ > 0 ∀ (h, n) ∈ R>0 × N0 such that nh ∈ [0, τ ] : ‖un‖ ≤ M‖u0‖.

The condition for exponential stability of the method, given by (3.6), is good in the sense
that it is essentially h–independent, (with a mild improvement as h → 0+). However, ω is
required to be approximately a factor of K larger than in (2.1). This factor arises in the
Lipschitz analysis of Tn(h). In the non-stiff case, where h‖A(·)‖∞ ≪ 1, approximation could
be used to bound solutions of the method indirectly.
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4 Stability for a one–leg multistep approximation of a

scalar problem

Here, we show how the general observations made above apply to the approximation of a
simple time–varying problem.

We consider the approximation of the time–varying scalar equations of the form

u̇(t) = λ(t)u(t), t ≥ 0, (4.1)

where λ : R≥0 → C is assumed to be Lipschitz continuous; i.e.

∃Lλ > 0 ∀ t, s ≥ 0 : |λ(t) − λ(s)| ≤ Lλ |t − s|. (4.2)

A q–step one–leg method approximating (4.1) can be taken to be of the form

q∑

j=0

αjyn+j = hλ(nh)

q∑

j=0

βjyn+j, n ∈ N0, (4.3)

where h > 0 is the time–step, and the coefficients α0, β0 . . . , αq, βq ∈ R are chosen so that
the corresponding linear multistep method is irreducible and has order p ∈ N. It is assumed
that numerical initial data y0, y1, . . . , yq−1 is generated by some other method. It is known,
see e.g. [10, Ch. V], that the stability properties of the linear multistep method may be
studied in terms of those of the one–leg method.

Let C denote C ∪ {∞}. We define the companion matrix C : C → C
q×q

by

C(z) :=




0 1
...

. . .

0 1
c0(z) c1(z) · · · cq−1(z)


 , cj(z) := −αj − zβj

αq − zβq
, 0 ≤ j ≤ q − 1, (4.4)

where we follow the convention that cj(∞) = limz→∞ cj(z), 0 ≤ j ≤ q − 1.

Setting zn := hλ(nh) for n ∈ N0, we define

An := C(zn), un := [yn, . . . , yn+q−1]
T ∈ C

q, n ∈ N0, (4.5)

for a solution (yn) to (4.3). We now observe that (un) satisfies the system

un+1 = Anun, n ∈ N0, (4.6)

which is of the form (1.2).
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A matrix B ∈ CN×N is called power–bounded if, and only if,

∃K > 0 ∀n ∈ N0 : ‖Bn‖ ≤ K.

The linear stability region for the linear multistep method corresponding to (4.3) is

S := {z ∈ C | C(z) is power–bounded }. (4.7)

Example 4.1. (Numerical instability for rapidly varying λ) Consider (4.1) for

λ : R≥0 → C, t 7→ λ(t) = −81 + 79 cos(πt)

8
. (4.8)

Suppose that the scalar system (4.1) is approximated by the BDF4 one–leg method. In this
case, the method is given by (4.3) for q = 4, and coefficients

[α0, α1, α2, α3, α4] =

[
1

4
, −4

3
, 3, −4,

25

12

]
, [β0, β1, β2, β3, β4] = [0, 0, 0, 0, 1] .

The companion matrix corresponding to BDF4: C : C → C
4×4

, is defined by (4.4) with
q = 4. If the time–step is h = 1, then

zn = hλ(nh) =

{
−20, n even,
−1/4, n odd.

As in (4.5), let An := C(zn), n ∈ N0. Hence, for n ∈ N0,

A2n = C(−20) =




0 1 0 0
0 0 1 0
0 0 0 1

− 3
265

16
265

− 36
265

48
265


 , A2n+1 = C(−1/4) =




0 1 0 0
0 0 1 0
0 0 0 1

− 3
28

16
28

−36
28

48
28


 .

Straightforward calculations show that {−1/4, −20} ⊂ S:

µ(A2n) = µ(C(−20)) = 0.42, (2 d.p.), µ(A2n+1) = µ(C(−1/4)) = 0.78, (2 d.p.)

Now u2n = A2n−1A2n−2 . . . A1A0u0, where the product

A2n−1 . . . A1A0 = (A1A0)
n = (C(−1/4)C(−20))n, n ∈ N0.

The stability of the system is therefore determined by

µ(C(−1/4)C(−20)) = 1.02, (2 d.p.)

Since µ(C(−1/4)C(−20)) > 1, we deduce that there are initial conditions u0 ∈ R such that
‖un‖ grows exponentially with n; i.e. the BDF4 method with h = 1 is unstable for this
differential equation.
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Theorem 4.2. Consider the scalar time–varying equation (4.1), such that λ : R≥0 → C sat-
isfies (4.2). Suppose that (4.1) is approximated by a one–leg method (4.3) with corresponding
linear stability region S ⊂ C, as in (4.7). Assume also that D ⊆ S is closed and that

∀h > 0 ∀n ∈ N0 : hλ(nh) ∈ D. (4.9)

Then, there exist (K, ω, L̂) ∈ R≥1 × R≥0 × R>0 such that, for all h > 0 and β̂ :=
√

KL̂eω,
any solution u of (4.6) satisfies

(a) ‖un‖ ≤ K exp
{

[(log 2)1/2β̂h − ω]n
}
‖u0‖, ∀ n ∈ N0,

(b) ‖un‖ ≤ 1
2

{
(1 + β̂h)n + (1 − β̂h)n

}
Ke−ωn‖u0‖, ∀ n ∈ N0.

Remark 4.3. Under slightly stronger conditions than the hypotheses of Theorem 4.2, the
conclusion of Prop 4.4 below may be strengthened to

∃K, ω̃, h0 > 0 ∀n ∈ N0 ∀hλ(nh) ∈ D : ‖Cn(hλ(nh))‖ ≤ Ke−nω̃h.

In this case, the results of Theorem 4.2 can be improved to

(a′) ‖un‖ ≤ K exp
{

[(log 2)1/2β̂ − ω̃]nh
}
‖u0‖, ∀ n ∈ N0,

(b′) ‖un‖ ≤ 1
2

{
(1 + β̂h)n + (1 − β̂h)n

}
Ke−ω̃nh‖u0‖, ∀ n ∈ N0,

where β̂ :=
√

KL̂eω̃h0. These bounds are similar to those already encountered in Sections
2 and 3. Considering (a′), for example, the condition for the exponent (log 2)1/2β̂ − ω̃ to
be negative is qualitatively similar to conditions found in Theorem 2.1 for the continuous
problem to be exponentially stable: we observe that L̂ depends linearly on the Lipschitz
constant for λ(·), (see the proof of Theorem 4.2 below,) and ω̃ is closely related to the
exponential decay rate for the frozen time continuous systems.

Quantitatively, as observed for the Backward Euler method in Remark 3.5, the exponent
(log 2)1/2β̂−ω̃ also depends on the method. For (a′), L̂ also depends on the Lipschitz constant
for the companion matrix, (see the proof of Theorem 4.2). As for Backward Euler, bounds
(a′) and (b′) may be sharpened in the non–stiff régime, h‖λ(·)‖∞ ≪ 1, by first bounding the
continuous problem, and then bounding the method using an approximation argument.

In the remainder of this section we prove Theorem 4.2. To this end we quote some results
from the literature and prove two lemmas.
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Proposition 4.4. [6, Theorem 3], [10, Lemmas V.7.3, V.7.4]
Consider C(·) as defined in (4.4). If D ⊆ S is closed in C, then

∃K > 0 ∀n ∈ N0 ∀ z ∈ D : ‖Cn(z)‖ ≤ K. (4.10)

If D ⊂ int[S] is closed in C, then

∃K, ω > 0 ∀n ∈ N0 ∀ z ∈ D : ‖Cn(z)‖ ≤ Ke−ωn. (4.11)

Remark 4.5. Without loss of generality it may be assumed that K ≥ 1 in (4.10) and (4.11).

Lemma 4.6. (A uniformly bounded companion matrix is uniformly Lipschitz)
Consider C as defined in (4.4). Suppose that D is closed in C, and that

∃K > 0 ∀ z ∈ D : ‖C(z)‖ ≤ K. (4.12)

Then,
∃LC > 0 ∀ z, w ∈ D : ‖C(z) − C(w)‖ ≤ LC |z − w|. (4.13)

Proof: From (4.12), we deduce that

∃K0 > 0 ∀ z ∈ D ∀ j ∈ {0, . . . , q − 1} : |cj(z)| ≤ K0. (4.14)

Since the method is irreducible, there is no z ∈ C such that αj = βjz for all j ∈ {0, 1, . . . , q}.
Consequently, (4.14) implies that

∃K1 > 0 ∀ z ∈ D :
1

|αq − zβq|
≤ K1.

Hence,

∃K2 > 0 ∀ z ∈ D ∀ j ∈ {0, . . . , q − 1} : |c′j(z)| =
|αqβj − βqαj |
|αq − zβq|2

≤ K2.

Thus, we obtain (4.13). 2

Lemma 4.7. Consider (4.3) and suppose that λ : R≥0 → C satisfies (4.2), D ⊆ S is closed
and (4.9) is satisfied. Then, in the notation (4.4), (4.5),

∃ L̂ > 0 ∀h > 0 ∀ (n, m) ∈ D : ‖An − Am‖ ≤ L̂h2|n − m|. (4.15)

Proof: By (4.9), (4.13) and (4.2),

‖An − Am‖ = ‖C(hλ(nh)) − C(hλ(mh))‖ ≤ LCh|λ(nh) − λ(mh)| ≤ LCLλh
2|n − m|. 2

Proof of Theorem 4.2:
The hypotheses of Theorem 2.3 are implied, firstly by the assumption on D and Proposi-
tion 4.4, and secondly by the assumption on (4.9) together with Lemma 4.7. Noting that

L = L̂h2 and β = β̂h, we obtain (a) and (b) from parts (iii) and (iv) of Theorem 2.3. 2
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5 Proofs

5.1 Continuous time systems

Lemma 5.1. For (K, ω, L) ∈ R≥1×R≥0×R>0 and f : R≥0 → R≥0, the following statements
are equivalent:

(i) ∀A ∈ SK,ω,L ∀ slns. u of (1.1) ∀ (t, s) ∈ D : ‖u(t)‖ ≤ f(t − s)‖u(s)‖,

(ii) ∀A ∈ SK,ω,L ∀ slns. u of (1.1) ∀ t ≥ 0 : ‖u(t)‖ ≤ f(t) ‖u(0)‖.

Proof: It suffices to prove “(ii) ⇒ (i)”.
Let u of be a solution of u̇(t) = A(t)u(t) satisfying (ii). For arbitrary but fixed s ≥ 0 we
have

d
dt

u(t + s) = A(t + s)u(t + s), and A(· + s) ∈ SK,ω,L.

Thus, (ii) yields
∀ t ≥ 0 : ‖u(t + s)‖ ≤ f(t) ‖u(0 + s)‖.

Setting τ := t + s impies that

∀ τ ≥ s : ‖u(τ)‖ ≤ f(τ − s) ‖u(s)‖,

and (i) follows since s is arbitrary. 2

In the context of exponential stability, the above lemma is of particular interest for

f(t) := Me−ηt, for some (M, η) ∈ R≥1 × R≥0.

Lemma 5.2. (Primary integral inequality)
Suppose that A ∈ SK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0.

Then every solution u of (1.1) satisfies

∀ t ≥ 0 ∀ ρ ≥ 0 : ‖u(t)‖ ≤ Ke−ωt‖u(0)‖ + KL

∫ t

0

|s − ρ|e−ω(t−s)‖u(s)‖ ds. (5.1)

Proof: Given ρ ≥ 0, then every solution u of (1.1) satisfies

u̇(t) = A(ρ)u(t) + [A(t) − A(ρ)]u(t), t ≥ 0.

By the variation of constants formula,

u(t) = eA(ρ)tu(0) +

∫ t

0

eA(ρ)(t−s)[A(s) − A(ρ)]u(s) ds, t ≥ 0.
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Taking norms, and invoking the properties of class SK,ω,L,

‖u(t)‖ ≤ Ke−ωt‖u(0)‖ +

∫ t

0

Ke−ω(t−s)L|s − ρ|‖u(s)‖ ds, t ≥ 0,

we obtain (5.1). 2

The number of independent parameters is reduced by the following scaling lemma.

Lemma 5.3. (Scaling and the function r)
Suppose that A ∈ SK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0, and r : R≥0 → R≥0 is a
bounded piecewise continuous function. For a solution u of (1.1) such that u(0) 6= 0, the
function

U : R≥0 → R≥0, U(t) := eωt/α‖u(t/α)‖
K‖u(0)‖ , where α :=

√
KL, (5.2)

satisfies the integral inequality

U(t) ≤ 1 +

∫ t

0

|s − r(t)|U(s) ds, ∀ t ≥ 0. (5.3)

Proof: For the given function r, we may take ρ = r(t)/α in (5.1) to obtain

eωt‖u(t)‖ ≤ K‖u(0)‖ + α2

∫ t

0

|s − r(t)/α|eωs‖u(s)‖ ds, ∀ t ≥ 0.

Dividing by ‖u(0)‖ > 0 and scaling time by 1/α, we obtain (5.3). 2

Lemma 5.4. (A comparison inequality)
Suppose that for some t0 > 0, r : [0, t0] → R≥0 and w : [0, t0] → R are bounded piecewise
continuous functions satisfying

w(t) ≤
∫ t

0

|s − r(t)|w(s) ds, ∀ t ∈ [0, t0]. (5.4)

Then,
w(t) ≤ 0, ∀ t ∈ [0, t0]. (5.5)

Proof: From (5.4),

w(t) ≤
∫ t

0

|s − r(t)|w(s) ds ≤
∫ t

0

|s − r(t)|w+(s) ds, ∀ t ∈ [0, t0],

where w+ := max{w, 0}. Since the RHS is non–negative, and

∀ t ∈ [0, t0] ∀ s ∈ [0, t] : |s − r(t)| ≤ max{s, r(t)} ≤ max{t, r(t)} =: R(t),
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we conclude that

w+(t) ≤ R(t)

∫ t

0

w+(s) ds, ∀ t ∈ [0, t0]. (5.6)

Let {0 = τ0, τ1, . . . , τn = t0} be a partition of [0, t0], such that the restrictions of R and w+ to

each subinterval (τm, τm+1) are continuous. Then, (5.6) implies that, for I(t) :=

∫ t

0

w+(s) ds,

∀m ∈ {0, 1, . . . , n − 1} ∀ t ∈ (τm, τm+1) :
d

dt
I(t) ≤ R(t) I(t).

The fundamental theorem of calculus now implies that

∀m ∈ {0, 1, . . . , n − 1} ∀ t ∈ [τm, τm+1] : I(t) exp

(
−

∫ t

τm

R(s) ds

)
≤ I(τm). (5.7)

Taking t = τm+1 in (5.7), and observing that I(0) = 0, it follows that I(τm) ≤ 0, for
m = 0, 1, . . . , n, by induction. Inequality (5.7) then implies that I(t) ≤ 0, t ∈ [0, t0].
Inequality (5.5) now follows from (5.6). 2

Lemma 5.5. (Integral supersolutions yield upper bounds)
Suppose that A ∈ SK,ω,L for some (K, ω, L) ∈ R≥1×R≥0×R>0. Suppose also that v : R≥0 →
R≥0 and r : R≥0 → R≥0 are bounded piecewise continuous functions satisfying

v(t) ≥ 1 +

∫ t

0

|s − r(t)|v(s) ds, ∀ t ∈ [0, t0], (5.8)

for some t0 > 0. Then, the function U defined by (5.2) satisfies

U(t) ≤ v(t), ∀ t ∈ [0, t0]. (5.9)

Proof: By (5.3),

U(t) ≤ 1 +

∫ t

0

|s − r(t)|U(s) ds, ∀ t ∈ [0, t0]. (5.10)

The function w : [0, t0] → R, defined by w(t) := U(t)−v(t), is bounded piecewise continuous.
Furthermore, subtracting (5.10) from (5.3), we deduce that

w(t) ≤
∫ t

0

|s − r(t)|w(s) ds, ∀ t ∈ [0, t0].

Inequality (5.9) now follows from Lemma 5.4. 2
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Lemma 5.6. (Sufficient conditions for a supersolution)
Suppose that, for some t0 > 0, v : [0, t0] → R≥0 and r : [0, t0] → R≥0 are continuous
functions, with r differentiable on [0, t0] except at a finite number of points. Suppose that
v(0) ≥ 1, and that the following inequalities are satisfied for almost all t ∈ [0, t0] :

t ≥ r(t), (5.11)

ṙ(t) ≥ 0, (5.12)

v(t) ≥ 2ṙ(t)v(r(t)). (5.13)

v̇(t) ≥ (t − r(t))v(t), (5.14)

Then, v and r satisfy (5.8).

Proof: Integrating (5.13), we obtain

∫ t

0

v(s) ds ≥ 2

∫ t

0

ṙ(s)v(r(s)) ds = 2

∫ r(t)

0

v(s) ds, ∀ t ∈ [0, t0].

Hence, applying (5.11),

0 ≥
∫ r(t)

0

v(s) ds −
∫ t

r(t)

v(s) ds =

∫ t

0

sign[r(t) − s]v(s) ds, ∀ t ∈ [0, t0]. (5.15)

For all but a finite number of t ∈ [0, t0], elementary calculus implies

d

dt

∫ t

0

|r(t) − s| v(s) ds = (t − r(t))v(t) + ṙ(t)

∫ t

0

sign[r(t) − s]v(s) ds.

Hence, applying (5.12) and (5.14), we conclude that

v̇(t) ≥ (t − r(t))v(t) + ṙ(t)

∫ t

0

sign[r(t) − s]v(s) ds =
d

dt

∫ t

0

|r(t) − s| v(s) ds,

for all but a finite set of t ∈ [0, t0]. Integration and the inequality v(0) ≥ 1 imply that v
satisfies (5.8). 2

Lemma 5.7. (Supersolution suitable for small t)
The functions v1, r1 : R≥0 → R≥0, defined by

v1(t) := et2/4, r1(t) := t/2, ∀ t ≥ 0, (5.16)

satisfy

v1(t) ≥ 1 +

∫ t

0

|s − r1(t)|v1(s) ds, ∀ t ≥ 0. (5.17)
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Proof: Verifying the hypotheses of Lemma 5.6, we observe that the conditions (5.11), (5.12)
are satisfied by r1(t) for all t ≥ 0, whilst v1(0) = 1,

v̇1(t) =
t

2
et2/4 = (t − r1(t))v1(t), v1(t) ≥ v1(t/2) = 2ṙ1(t)v1(r1(t)), t ≥ 0.

Hence, (5.8) is satisfied for all t0 > 0, and so we obtain (5.17) by Lemma 5.6. 2

Lemma 5.8. (Long time supersolution)
Let v2, r2 : R≥0 → R be defined by

r2(t) = max{t − c, 0},
v2(t) = exp(ct),

}
t ≥ 0; c :=

√
log 2. (5.18)

Then,

v2(t) ≥ 1 +

∫ t

0

|s − r2(t)|v2(s) ds, ∀ t ≥ 0. (5.19)

Proof: Verifying the hypotheses of Lemma 5.6, we see that conditions (5.11), (5.12) on r2

are satisfied, except at t = c. Also, v2(0) = 1 and

v̇2(t) = cect = (t − (t − c))ect ≥ (t − max{t − c, 0})ect = (t − r2(t))v2(t), ∀ t ≥ 0.

Since ṙ2(t) = 0 for t ∈ [0, c), (5.13) also holds for t ∈ [0, c). Since ṙ2(t) = 1 for t > c,

2ṙ2(t)v2(r2(t)) = 2ec(t−c) = ect = v2(t), ∀ t ≥ c,

and so (5.13) holds for all t ∈ R≥0 \ {c}. Applying Lemma 5.6, we deduce that (5.8) is
satisfied for all t0 > 0. Hence, (5.19) follows from Lemma 5.6. 2

Lemma 5.9. (Short time bound implies a long time bound)
Suppose that for (K, ω, γ) ∈ R≥1 × R≥0 × R>0, û : R≥0 → R≥0 satisfies

û(t) ≤ K exp
{
γ2(t − s)2/4 − ω(t− s)

}
û(s), ∀ (t, s) ∈ D. (5.20)

Then,

û(t) ≤ K exp
{

(γ
√

log K − ω)t
}

û(0), ∀ t ≥ 0. (5.21)

Proof: Set t1 := 2γ−1
√

log K. Then, (5.20) implies that

û((n + 1)t1) ≤ exp
((

γ
√

log K − ω
)

t1

)
û(nt1), ∀n ∈ N0.

Hence,

û(nt1) ≤ exp
((

γ
√

log K − ω
)

nt1

)
û(0), ∀n ∈ N0. (5.22)
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For n ∈ N0 and τ ∈ [0, t1), taking t = nt1 + τ and s = nt1 in (5.20) implies that

û(t) ≤ K exp
(
γ2τ 2/4 − ωτ

)
û(nt1) ≤ K exp

((
γ
√

log K/2 − ω
)

τ
)

û(nt1).

Combining with (5.22), we obtain (5.21). 2

Proof of Theorem 2.1:
If u(0) = 0, then both (i) and (ii) are clear. Assume now that u(0) 6= 0.
Proof of (i): The functions r1 : R≥0 → R≥0 and v1 : R≥0 → R≥0 defined in Lemma 5.7 satisfy
(5.8) and the other conditions of Lemma 5.5 for all t0 > 0. Consequently, by (5.2),

eωt/α ‖u(t/α)‖
K‖u(0)‖ ≤ v1(t) = et2/4, ∀ t ≥ 0,

where α :=
√

KL. Taking the scaling t̂ = αt and multiplying by K‖u(0)‖e−ωt̂, we obtain

‖u(t)‖ ≤ K exp(α2t2/4 − ωt)‖u(0)‖, ∀ t ≥ 0, (5.23)

which is inequality (i) in the statement of Theorem 2.1 for s = 0. By Lemma 5.1, we deduce
the general case for (t, s) ∈ D.

Proof of (ii) when K ∈ [1, 2]: We observe that bound (i) implies that the hypotheses of
Lemma 5.9 are satisfied for û = ‖u(·)‖ and γ = α. Hence, we obtain bound (ii) for s = 0.
The general case (t, s) ∈ D now follows from Lemma 5.1.

Proof of (ii) when K > 2: The functions r2 : R≥0 → R≥0 and v2 : R≥0 → R≥0 given by
Lemma 5.8 satisfy (5.8) and the other conditions of Lemma 5.5 for all t0 > 0. Consequently,
by (5.2),

eωt/α ‖u(t/α)‖
K‖u(0)‖ ≤ v2(t) = ect, ∀ t ≥ 0,

where c :=
√

log 2. Taking the scaling t̂ = αt and multiplying by K‖u(0)‖e−ωt̂, we obtain

‖u(t)‖ ≤ K‖u0‖ exp
((√

KL log 2 − ω
)

t
)

, ∀ t ≥ 0.

Applying Lemma 5.1, we obtain statement (ii) of Theorem 2.1 for K > 2. 2

5.2 Discrete time systems

Lemma 5.10. For (K, ω, L) ∈ R≥1 ×R≥0 ×R>0 and f : N0 → R≥0 the following statements
are equivalent:

(i) ∀A ∈ ∆K,ω,L ∀ slns. u of (1.2) ∀ (n, m) ∈ ∆ : ‖un‖ ≤ f(n − m)‖um‖,

(ii) ∀A ∈ ∆K,ω,L ∀ slns. u of (1.2) ∀ n ∈ N0 : ‖un‖ ≤ f(n)‖u0‖.
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We omit the proof, since it is analogous to the proof of Lemma 5.1.

Lemma 5.11. (Primary summation inequality)
Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0. Then every solution u of
(1.2) satisfies

‖un‖ ≤ Ke−ωn‖u0‖ +
n−1∑

i=0

Ke−ω(n−1−i)L|i − ρ| ‖ui‖, ∀n ∈ N ∀ ρ ≥ 0. (5.24)

Proof: Let u : N0 → C
N be a solution of (1.2). Consider first the special case of ρ ∈ N0.

Then,
un+1 = Aρun + (An − Aρ)un, ∀n ∈ N0.

By the discrete variation of constants formula,

un = An
ρu0 +

n−1∑

i=0

An−1−i
ρ (Ai − Aρ)ui ds, ∀n ∈ N0.

Taking norms, and invoking the properties of class ∆K,ω,L, (5.24) follows.

Suppose now that ρ = θk + (1 − θ)(k + 1) for k ∈ N0 and θ ∈ (0, 1). Since no integer i
satisfies k < i < k + 1,

∀ i ∈ N0 : θ|i − k| + (1 − θ)|i − (k + 1)| = |θ(i − k) + (1 − θ)(i − (k + 1))| = |i − ρ|.

Hence, (5.24) follows for ρ by taking a weighted average θ and (1 − θ) of (5.24) for ρ = k
and ρ = k + 1, respectively. Thus, we obtain (5.24). 2

5.2.1 Connection to the continuous case

Lemma 5.12. (The summation inequality implies a scaled integral inequality)
Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0, and that r : R≥0 → R≥0 is
a bounded piecewise continuous function. For u : N0 → C

N a solution of (1.2) with u0 6= 0,
the bounded piecewise continuous function

Û : R≥0 → R≥0, t 7→ Û(t) :=
eωn‖un‖
K‖u0‖

, n = ⌊t/β⌋ , t ≥ 0, β =
√

KLeω, (5.25)

satisfies the integral inequality (5.3),

Û(t) ≤ 1 +

∫ t

0

|s − r(t)|Û(s) ds, ∀ t ≥ 0.
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Proof: We first observe that

m+1∫

m

|s − ρ| ds =





|m − (ρ − 1/2)| , ρ ∈ R≥0 \ (m, m + 1),

(m−ρ)2

2
+ (m+1−ρ)2

2
≥ |m − (ρ − 1/2)| , ρ ∈ (m, m + 1).

(5.26)

We define the bounded piecewise continuous function,

Ũ : R≥0 → R≥0, t 7→ Ũ(t) :=
eωn‖un‖
K‖u0‖

, n = ⌊t⌋ , t ≥ 0.

Given t ≥ 1, let n = ⌊t⌋. Then, (5.26) with ρ = r(βt)/β and Lemma 5.11 imply that

Ũ(t) :=
eωn‖un‖
K‖u0‖

≤ 1 + KLeω

n−1∑

m=0

|m − (r(βt)/β − 1/2)|eωm ‖um‖
K‖u0‖

≤ 1 + β2

n−1∑

m=0

∫ m+1

m

|s − r(βt)/β|Ũ(s) ds

≤ 1 + β2

∫ t

0

|s − r(βt)/β|Ũ(s) ds, ∀ t ≥ 1.

Given t ∈ [0, 1), 0 ≤ Ũ(t) = 1/K ≤ 1.

Combining these two estimates, we deduce that

Ũ(t) ≤ 1 + β2

∫ t

0

|s − r(βt)/β|Ũ(s) ds, ∀ t ≥ 0.

Noting that Û(t) = Ũ(t/β), t ≥ 0, we deduce that Û satisfies (5.3). 2

Lemma 5.13. (Comparison result for a continuous supersolution)
Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0, and that v : R≥0 → R≥0

and r : R≥0 → R≥0 are bounded piecewise continuous functions satisfying

v(t) ≥ 1 +

∫ t

0

|s − r(t)|v(s) ds, ∀ t ≥ 0.

Then, for u : N0 → CN a solution of (1.2),

‖un‖ ≤ Ke−ωnv(βn)‖u0‖, n ∈ N0, β =
√

KLeω. (5.27)

Proof: If u0 = 0, the result is trivial. Else, u0 6= 0, and by Lemma 5.12, the function Û
defined by (5.25) satisfies (5.3). So, by Lemma 5.5,

eωn‖un‖
K‖u0‖

= Û(βn) ≤ v(βn), n ∈ N0.

Hence, we obtain (5.27). 2
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5.2.2 A direct discrete approach

Lemma 5.14. (A scaled summation inequality)
Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 ×R≥0 ×R>0, that u is a solution of (1.2)
with u0 6= 0, and that r : N → R≥0. Then, the function

Û : N0 → R≥0, n 7→ Ûn :=
eωn‖un‖
K‖u0‖

, (5.28)

satisfies the inequality

Ûn ≤ 1 + β2
n−1∑

m=0

|m − r(n)|Ûm, n ∈ N, β =
√

KLeω. (5.29)

Proof: For n ∈ N, we observe that we may choose ρ = r(n) in Lemma 5.11 to obtain

‖un‖ ≤ Ke−ωn‖u0‖ + KLeω

n−1∑

m=0

e−ω(n−m)|m − r(n)|‖um‖, n ∈ N.

Dividing both sides by Ke−ωn‖u0‖, we obtain (5.29). 2

Remark 5.15. Unlike the continuous case, the factor β is not scaled out in (5.29).

Lemma 5.16. (Discrete supersolution and comparison result)
Suppose that A ∈ ΣK,ω,L for some (K, ω, L) ∈ R≥1 × R≥0 × R>0. Suppose also that the
sequence (vn)n∈N0

with real elements satisfies v0 ≥ 1/K and

vn ≥ 1 + β2
n−1∑

m=0

|m − r(n)|vm, n ∈ N, β =
√

KLeω, (5.30)

for some function r : N → R≥0. Then every solution u of (1.2) satisfies

‖un‖ ≤ Ke−ωnvn‖u0‖, n ∈ N0. (5.31)

Proof: If u0 = 0 the result is trivial. If u0 6= 0, consider the function w : N0 → R≥0,

n 7→ wn := Ûn − vn, where the sequence (Ûn) is as in (5.28). Subtracting (5.30) from (5.29),
we obtain

wn ≤ β2
n−1∑

m=0

|m − r(n)|wm, n ∈ N.

Since w0 = Û0 − v0 = 1/K − v0 ≤ 0, the inequality wn ≤ 0 for n ∈ N0 follows by induction.
Hence, we deduce (5.31). 2
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Lemma 5.17. (Discrete supersolution suitable for large n)
Suppose that β > 0, and let the real sequence (vn)n∈N0

be defined by

vn :=
1

2

{
(1 + β)n + (1 − β)n

}
, n ∈ N0. (5.32)

Let r : N0 → R≥0 be defined by

r(n) := n − 1, n ∈ N. (5.33)

Then, v0 = 1 and

vn = 1 + β2

n−1∑

m=0

|m − r(n)|vm, n ∈ N. (5.34)

Proof: Assume that γ ∈ R \ {1}, and define Sn(γ) :=
∑n−1

m=0(n − 1 − m)γm, n ∈ N. Then,

Sn+1(γ) − Sn(γ) =

n−1∑

m=0

γm =
γn − 1

γ − 1
, n ∈ N.

Since S1(γ) = 0,

Sn(γ) =
n−1∑

m=1

[Sm+1(γ) − Sm(γ)] =
n−1∑

m=1

γm − 1

γ − 1
=

γn − 1 − n(γ − 1)

(γ − 1)2
, n ∈ N.

Thus, for (vn) and r as in (5.32) and (5.33), respectively,

1 + β2
n−1∑

m=0

|m − r(n)|vm = 1 + β2
n−1∑

m=0

(n − 1 − m)vm

= 1 +
β2

2

{
Sn(1 + β) + Sn(1 − β)

}

= 1 +
1

2

{
[(1 + β)n − 1 − nβ] + [(1 − β)n − 1 + nβ]

}
= vn, n ∈ N,

and v0 = 1. 2

Proof of Theorem 2.3: Bound (i) follows from the inequality,

‖un+1‖ = ‖Anun‖ ≤ ‖An‖‖un‖ ≤ Ke−ωn‖un‖, n ∈ N0.

Bounds (ii) (iii) follow from the comparison result, Lemma 5.13, and the properties of the
continuous supersolutions v1 and v2 shown in Lemmas 5.7 and 5.8, respectively.

Bound (iv) follows from the discrete comparison result, Lemma 5.16, and the properties of
the supersolution (5.32) shown in Lemma 5.17. 2
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