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On the fmax vs. ft Characteristics for Different

Types of Si-based RF Bipolar Transistors

Abstract

The cutoff frequency ft, the maximum frequency of oscillation fmax and the collector-emitter

breakdown voltage BVCEO are computed for various types of Si-based bipolar transistors with

different SIC profiles. In particular the influence of the SIC profiles on the ft vs. BVCEO

and fmax vs. BVCEO characteristics is investigated. Subsequently, the fmax vs. ft be-

haviour is discussed. It is shown that for slow transistors (BJTs) there is a trade-off be-

tween ft and fmax. However, in the case of the faster HBTs this trend can be reversed.

1 Introduction and Motivation

For RF bipolar transistors with optimised emitter-base designs, the overall performance

becomes increasingly sensitive to the influence of external parts of the device like the

polyemitter and the extrinsic base. Furthermore, the collector region is of particular

importance since it partially belongs to the inner transistor due to the collector-base

space charge region and accounts for a significant fraction of the parasitic collector

resistance RC . Therefore it directly affects the figures of merit (FoM) cutoff frequency

ft, maximum frequency of oscillation fmax, and the collector-emitter breakdown voltage

BVCEO. In modern RF BJTs and HBTs the collector is usually designed as selectively

implanted collector (SIC). Therefore in the present work we investigate the influence

of various SIC profiles on ft and fmax with respect to BVCEO for four basic types of

Si-based bipolar transistors: A SiGe HBT with a graded Ge content in the base(HBT1),

and second SiGe HBT having a much higher Ge content in the entire base (HBT2),

thus allowing a higher dopant concentration in the base than in the emitter. In addi-

tion, two conventional NPN BJTs with diffusion (BJT1) respectively drift (BJT2) as the

dominant mechanism for the electron transport through the base were investigated.

1.1 Definition of ft, fmax, and BVCEO

While applying a constant collector-emitter voltage VCE of 2.5V to the device, the base-

emitter voltage VBE was increased from 0.5V to 1V. At each operating point a small-

signal analysis has been performed at a fixed frequency f of 8GHz (BJTs) or 15GHz



(HBTs) and the hybrid (h) and conductance (y) parameters have been extracted. Af-

terwards, the cutoff frequency ft was calculated according to

ft = f · |h21|. (1)

Similary the maximum frequency of oscillation fmax has been obtained according to

fmax = f ·
√

U (2)

with the unilateral power gain

U =
|y21 − y12|2

4[<(y11)<(y22)−<(y12)<(y21)]
. (3)

1.2 Accuracy of the Simulated Results

The DC and RF characteristics of bipolar transistors have been simulated using

the 2-D device simulator ATLAS [1]. Most importantly, the hydrodynamic trans-

port model and the Katayama-Toyabe impact ionisation model [2] have been ap-

plied. To determine whether the selected set of models and model parameters is

appropriate, the characteristics of an experimental HBT and its simulated counter-

part have been compared. As shown in Fig. 1, we achieved very good agreements
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Figure 1: Comparsion of measured and simulated results:(a) open base characteristics
and (b) ft(IC) characteristics (emitter area AE = 0.5x1µm2)

for both the breakdown characteristics (a) as well as the dynamic behaviour (b).

1.3 Device Structures and Profiles

We considered symmetric device structures with an emitter length of 0.5µm and a

lateral separation between the emitter and base contacts of 0.75µm. The BJTs and

the HBT1 have similar vertical dimensions with base widths of about 75nm and base-

subcollector seperations of 1.5µm. HBT2 is a device with vertically scaled emitter and
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Figure 2: Structure of the simulated devices and emitter/base profiles of the transis-
tors: (a) BJT1: Due to the constant boron concentration in the base the diffusion of
the electrons is the dominant transport mechanism. (b) BJT2: A graded boron pro-
file results in an additional drift component to the electron transport. (c) HBT1: The
graded Ge content leads to an accelerated electron transport. (d) HBT2: A high boron
concentration allows a thin base and thus a short base transport time.

Figure 3: Basic types of SIC variations: (a) Constant, (b) graded, (c) steplike and, (d)
retrograde profiles.

base regions (base width ca. 20nm). For each of the four types of transistors, the

emitter and base profiles were kept unchanged, while the profile of the SIC (i.e., the

collector region underneath the emitter window) was varied according to the following

rules. For each transistor type four classes of variation were made:

(a) Constant SIC profiles between base and subcollector with doping levels between

ND = 5×1016 and 5×1017 (HBTs) respectively 8×1017cm−3 (BJTs), see Fig. 3(a).

Commonly with rising doping concentrations ft and fmax increase, while BVCEO

declines.

(b) Graded SIC profiles with a dopant concentration of ND = 5 × 1016cm−3 at the

base-collector junction and an exponential increase towards the collector up to

8×1017cm−3 for the BJTs and 5×1017cm−3 for the HBTs. The length of the graded

region has been varied between 100 and 500nm, see Fig. 3(b). When increas-

ing the length of this slope, BVCEO increases while the characteristic frequencies

decrease.



(c) Step-like SIC profiles, see Fig. 3(c) with a doping level of ND = 5 × 1016cm−3 at

the base side and ND = 5 × 1017cm−3 (HBTs) or ND = 8 × 1017cm−3 (BJTs) at

the collector side. The lengths of the low-doped region varies between 10nm and

0.5µm. Obviously, wide low-doped regions lead to higher BVCEO and lower ft and

fmax and vice versa.

(d) Retrograde profiles with a slope starting at ND = 5 × 1017cm−3 (HBTs) or 8 ×
1017cm−3 (BJTs) and decreasing exponentially down to ND = 5 × 1016cm−3 over

distances between 50nm and 0.5µm, see Fig. 3(d).

2 Results

From the simulated results the values of ft, fmax and BVCEO have been extracted and

the ft vs. BVCEO (see Fig. 4) and fmax vs. BVCEO (Fig. 5) characteristics have been

compiled. In general, for a given BVCEO the highest ft can be achieved with steplike
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Figure 4: ft(BVCEO) characteristics of the four investigated classes of bipolar transis-
tors: (a) BJT1, (b) BJT2, (c) HBT1, (d) HBT2.

profiles, followed by graded and constant ones. Retrograde dopant distributions per-

form at worst. However, the degrees of these trends depend on the actual transistor

type. So, for diffusion BJTs these differencies are negligible, and 10% at most for drift

BJTs. Contrary, for the HBTs improvements of more than 10% are common. The ef-



fects of the various SIC profiles on fmax are more diversified. For the slow BJTs the
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Figure 5: fmax(BVCEO) characteristics of the four investigated classes of bipolar tran-
sistors: (a)BJT1, (b) BJT2, (c) HBT1, (d) HBT2.

differences in fmax are more pronounced than in ft. Additionally there is a trade-off

between ft and fmax for these devices, i.e., transistors with higher ft values show a

lower fmax and vice versa. In contrast, within wide ranges of BVCEO the HBTs with a
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Figure 6: fmax vs. ft characteristics. A
note to the data of HBT2a: It features
the same emitter/base design as HBT2.
However, the base-subcollector sepera-
tion is reduced to 100nm and the values
for fmax and ft are extracted at BVCEO =
2V .

higher ft show a higher fmax as well. In Fig. 6 these trends are displayed in the fmax

vs. ft characteristics for the four types of transistors for fixed collector-emitter break-

down voltages (3.5V for BJTs, 2.5V for HBTs), which have been obtained by linear

interpolation from the fmax vs. BVCEO resp. ft vs. BVCEO characteristics. It shows that



the magnitude as well as the direction of SIC profiles’ influence on the FoM depend on

the actual type of RF transistor.

Regarding Fig. 6 note the following: While the general design of the BJTs

and the HBT1 is derived from either commercially or experimentally manufac-

tured transistors, the structure of HBT2 is highly unusual and disadvantageous.

Bipolar transistors with such thin bases feature short base-subcollector sepa-

rations as well. Therefore an additional HBT-design (HBT2a) has been in-

troduced, whose vertical structure is similar to common experimental devices.

3 Discussion

The results achieved cover several aspects of the collector design of bipolar transistors.

First, in the case of slow devices, the collector profile has only a small effect on the ft

vs. BVCEO characteristics. In these transistors the electron transport through the base

dominates the performance of the devices. Therefore the influence of the optimisation

of adjacent device regions, such as the collector, is limited. In other words, the product

of collector-emitter breakdown voltage and cutoff frequency, ft×BVCEO, is roughly con-

stant. This is a well known property of BJTs and closely related to the Johnson limit [4].

On the other side, the ft vs. BVCEO characteristics of the investigated HBTs depend

significantly on the selected doping distribution in the collector. Here, the base transit

time τB is much shorter and therefore less important to the emitter-collector transit time

τEC which determines ft. So, the transit times of the collector τC and the base-collector

space charge region τBC gain influence. Since both are determined by the collector, its

doping profile becomes important. Thus, with a properly designed (step-like or graded)

SIC profile noticeable gains in ft can be achieved without sacrifices in BVCEO. A more

detailed treatment of these HBT properties is given in [3]. Regarding the maximum

frequency of oscillation, the correlation between fmax and ft is given by

fmax =

√
ft

8πRBCCB

(4)

where RB is the base resistance and CCB is the collector-base capacitance.

This shows the dependency of fmax on ft and CCB. Since the results indicate

that devices with high fts tend to have a high CCB as well, CCB dominates

and fmax decreases despite the small rise of ft. For faster HBTs the signifi-

cant increase in ft outweighs the effects of CCB, and fmax increases with ft.

4 Conclusion

Regarding the design of SIC profiles there is a trade-off between the ft and

fmax for (slow) BJTs. It has been shown, however, that at least for certain

ranges of BVCEO the SIC of fast HBTs can be designed in a way that both ft



and fmax benefit from an optimised design without a deterioration of BVCEO.
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