
 

 

PROCEEDINGS 11-15 September 2006 
 
 
 
 
 
FACULTY OF ELECTRICAL ENGINEERING 
AND INFORMATION SCIENCE 
 

 
 
INFORMATION TECHNOLOGY AND 
ELECTRICAL ENGINEERING - 
DEVICES AND SYSTEMS, 
MATERIALS AND TECHNOLOGIES 
FOR THE FUTURE 
 
 
 
 
 
Startseite / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=12391 

51. IWK 
Internationales Wissenschaftliches Kolloquium 

International Scientific Colloquium 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224759248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Impressum 
 
Herausgeber: Der Rektor der Technischen Universität llmenau 
 Univ.-Prof. Dr. rer. nat. habil. Peter Scharff 
 
Redaktion: Referat Marketing und Studentische 

Angelegenheiten 
 Andrea Schneider 
 
 Fakultät für Elektrotechnik und Informationstechnik 
 Susanne Jakob 
 Dipl.-Ing. Helge Drumm 
 
Redaktionsschluss: 07. Juli 2006 
 
Technische Realisierung (CD-Rom-Ausgabe): 
 Institut für Medientechnik an der TU Ilmenau 
 Dipl.-Ing. Christian Weigel 
 Dipl.-Ing. Marco Albrecht 
 Dipl.-Ing. Helge Drumm 
 
Technische Realisierung (Online-Ausgabe): 
 Universitätsbibliothek Ilmenau 
  
 Postfach 10 05 65 
 98684 Ilmenau 
 

Verlag:  
 Verlag ISLE, Betriebsstätte des ISLE e.V. 
 Werner-von-Siemens-Str. 16 
 98693 llrnenau 
 
 
© Technische Universität llmenau (Thür.) 2006 
 
Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind 
urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist 
eine Verwertung ohne Einwilligung der Redaktion strafbar. 
 
 
ISBN (Druckausgabe): 3-938843-15-2 
ISBN (CD-Rom-Ausgabe): 3-938843-16-0 
 
Startseite / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=12391 
 



51st Internationales Wissenschaftliches Kolloquium 
Technische Universität Ilmenau 

 September 11 – 15, 2006 
 
 
 
Thermoelectric Microgenerators with Nanometric Films 
 

1Gh.V.Cimpoca, 1I.Bancuta, 2Gh.Brezeanu, 3Ileana Cernica, 3Maria Cimpoca 
 

1Valahia University of Targoviste, e-mail: valcimpoca@yahoo.com 
2Politehnica University of Bucharest 

3National Institute for R&D Microtechnology, Bucharest 

 
 

 
Abstract 
 

A thermoelectric in-plane micro-generator with nanometric films has been 

fabricated using compatible standard semiconductor technologies (MEMS). The active 

material is a nanolayer polycrystalline silicon material laid on a dielectric membrane 

sustained by a silicon frame. Thermal properties of semiconductor nanostructures have 

recently attracted a lot of attention. This is primarily due to two major factors. The first 

one is a continuous scaling down of the feature sizes in microelectronic devices and 

circuits, which leads to an increase in power dissipation per unit area of semiconductor 

chip. Under such conditions, the influence of size effects on thermal conductivity 

becomes extremely important for device design and reliability. 

 

Introduction 

 Hicks and Dresselhouse predicted a huge increase of figure of merit ZT if the 

dimensionality of the electron system in thermoelectric materials is reduced from 3D 

behavior in bulk materials to 2D behavior via nanoscal layers. Reduced dimensionality 

offers one strategy for increasing ZT relative to bulk values [1-2]. The use of low-

dimensional systems for thermoelectric applications is of interest because low 

dimensionality provides: (1) a method for enhancing the density of states near EF, 

leading to an enhancement of the Seebeck coefficient, (2) opportunities to take 

advantage of the anisotropic Fermi surfaces in multi-valley cubic semiconductors, (3) 

opportunities to increase the boundary scattering of phonons at the barrier-well 

interfaces, without as large an increase in electron scattering at the interface, (4) 



opportunities for increased carrier mobilities at a given carrier concentration when 

quantum confinement conditions are satisfied [3].  

It has been suggested that the thermoelectric figure of merit ZT=S2σ/ (kph + ke) 

can be significantly enhanced in quantum wells and quantum wires because of strong 

carrier confinement (where S is the Seebeck coefficient, σ is the electric conductivity, kph 

is the lattice thermal conductivity, and ke is the electronic thermal conductivity). An 

increase to the thermoelectric figure of merit may also come from the drop of the lattice 

thermal conductivity in low-dimensional structures due to the increased phonon-

boundary scattering. Experimental evidence of the thermal conductivity drop in thin Si 

films has also been demonstrated [4]. Recently, Balandin and Wang and Khitun   have 

shown that an additional increase to ZT can be brought by the spatial confinement of 

acoustic phonons in thin films (quantum wells) and quantum wire structures embedded 

within material of distinctively different elastic properties [5]. Thus, low-dimensional 

confinement of both carriers and phonons allows for more degrees of freedom in 

maximizing ZT. 

 

Design of microgenerators 

 

Simplified one-dimensional model of the microgenerator is showed in figure 1. 

 
 

Fig.1. Cross-sectional view of a thermoelectric microgenerator 

 

The optimal geometry of the micro-generator depends on the thermal properties 

and emissivity of the materials as well as on its working environment i.e. air or vacuum 

and on its operational mode. These investigations have been extended to a more 

realistic geometry of micro-generators and to more efficient thermoelectric materials, 



using a numerical model. The performance of such micro-generators is predicted for 

various materials and geometry combinations. The origin of this optimum arises from a 

competition between the temperature difference along the thermoelectric legs that will be 

higher with thinner legs and the electrical resistance of the device that increases when 

the thermoelement thickness decreases. If we assume the heating power to be 

proportional to the area covered by the heater, the optimum leg length calculated is the 

result of a competition between the heating power that increases when the heater 

surface increases, the increase of the thermal conductance (i.e. the decrease of the 

temperature rise along the thermoelectric legs) and the decrease of the electrical 

resistance when the thermoelectric leg length decreases.  

The measurements have shown that the lateral thermal conductivity of a Si3N4 (150 nm) 

/ monocrystalline Si (150 nm) / SiO2 (300 nm) structure was about 1.5% of the 

conductivity of the bulk Si and was almost a constant in the temperature range from 

T=293 K to T=413 K. The total error for the measurements was estimated to be less 

than 20 %. Although the model presented here assumed a freestanding quantum well, 

the results can be extended to quantum wells with rigid boundaries. The lowest confined 

phonon modes in quantum well with clamped-surface boundary conditions are higher in 

energy than those in a free-standing quantum well, but the overall behavior and the 

decrease of the group velocities are very similar in both cases. Applied to a 150 nm wide 

Si well, this model gives kph=66.7 W/mK. For comparison, experimentally measured 

thermal conductivity of bulk Si is 148 W/m K. This is a significant drop although much 

less then that observed in the experiment. The temperature dependence of the 

calculated kph is very close to the measured one. In the figure 2 we show the 

dependence of lattice thermal conductivity with temperature for bulk silicon (300 mm) 

and thin film silicon (100 nm). 



 
Figure 2 Lattice conductivity of silicon for bulk materials and thin film materials 

 

Modes of working 

 Two modes of working are anticipated for the in-plane thermoelectric micro-

generator. The first mode of working (i.e. mRTG) is when the heat source is on the 

membrane (Fig. 3a).The silicon frame that sustains the membrane is the cold side. A 

large temperature difference along the thermoelectric legs should be created with small 

heat sources because the thickness of the area covered by the thermoelectric leg is thin 

(1250 nm) and its thermal conductivity is low (3.9 W.m-1.K-1). This large temperature 

difference is interesting to get high efficiency. The second mode of working (i.e. BHPW) 

takes advantage of the large surface-to-volume ratio of the membrane to use it as a 

radiator, the hot side being the silicon frame (Fig. 2b). The heat source may be the heat 

generated by a living creature while the coolant could be simply air. 
 

         
                    a)                                                                   b) 

Figure 3 Termogenerators with silicon nanometric films  



 

The fabrication methods 

Low stress-silicon nitride (Si3N4) and silicon dioxide (SiO2) sandwich layers were 

deposited on a <100> oriented silicon wafer by low pressure chemical vapor deposition 

(LPCVD). I open a window that crosses multilayer Si3N4 /SiO2 /Si3N4 with plasma-

chemical attack (RIE) corrode with reactive ions CF4/O2 with crosses a photo sensible 

lake mask. A polycrystalline silicon layer was deposited by LPCVD at 600°C and 

patterned by wet etching, to define the position of the thermoelectric legs on the front 

side of the wafer. Selected legs were implanted with boron (p-type) at 40 keV energy 

and with a flux  4, 5 x 1015 cm-2 while other legs were implanted with phosphorus         

(n-type)  at 80 keV and with a flux 1016 cm-2. 

The polycrystalline film was annealed at 900°C. The micro-heaters and the 

interconnections were made by patterning a Cr/Au/Cr sandwich layer by lift-off. A silicon 

nitride passivation layer was deposited by plasma-enhanced chemical vapor deposition 

(PECVD) and the electrical contacts were opened by plasma etching. The membrane 

was released by bulk etching using KOH. The film deposition procedures, film properties 

and measurement methods are described more precisely elsewhere.3-4 a top view of 

the micro-generator is shown in figure 1. It consists of a metallic micro-heater placed in 

the center of the membrane to simulate a heat source. The thermoelectric legs and the 

interconnections can be seen around the spiraled heater. A narrow metal strip is also 

made between the spiraled heater and the thermoelectric leg area. It is used to measure 

the temperature drop along the thermoelectric legs through the change of its electrical 

resistance. 

 

Results 

In the numerical simulation, the electrical current flowing in the thermo elements 

decreases the temperature drop along the thermoelectric legs. It is therefore 

advantageous to decrease the thermoelectric leg thickness to get a higher temperature 

rise along the thermo elements. 
In the table 1 we show the results of silicon thermoelectric microgenerators with 

nanometric films. These results depend of many parameters such as: numbers of 

couples, thickness of films, gradient of temperature and dissipation (vacuum or air).  

 

 



Table 1 

Polisilicon ε 
KT 

[mW/K] 

dT  

[nm] 
ZTm

∆T 

 [K] 

∆V  

[V] 

W  

[mW] 

vacuum 180 150 0,014 8,0 0,13 0,090 L =1,6 x 1,6 

mm 

50 couples 

P = 1 mW 

air 150 190 0,016 5,1 0,084 0,058 

vacuum 270 140 0,014 9,9 1,6 0,58 L =1,6 x 1,6 

mm 

500 couples 

P = 5 mW 

air 200 240 0,018 4,2 0,70 0,24 

vacuum 270 140 0,014 20 3,3 2,3 L =1,6 x 1,6 

mm 

500 couples 

P = 10 mW 

air 200 240 0,018 8,4 1,4 0,98 

 

Conclusions 

Decrease of the lattice thermal conductivity is important for further development of 

nanostructure-based thermoelectric devices. The decrease may also complicate the 

heat management problem for future deep-submicron silicon-based devices and circuits. 

The theoretical results presented in this paper favorably agree with the recent 

experimental investigation of the lateral thermal conductivity of quantum wells (thin 

films). It was shown that modification of the lattice thermal conductivity by confined 

phonon modes opens up a novel tuning capability of thermoelectric properties of 

heterostructures, and may lead to a strong increase of the thermoelectric figure of merit,  

in specially designed semiconductor nanostructures. 

A compact silicon thermoelectric device may be able to produce as much as 100 

mW with an output voltage of about 1.5 Volt, necessary for biasing a CMOS chip with 

different applications. Nevertheless, the electrical contact resistances have to be 

lowered to a satisfactory level, good thermoelectric materials have to be used and 

thermoelectric thick-film technology needs to be improved or developed to get films with 

good thermoelectric properties at an acceptable economical cost. 
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