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1 Abstract / Zusammenfassung 
 

1.1 Abstract 
 

Hematopoietic stem cells (HSCs) are the most widely studied adult stem cells in 

vertebrates. Despite this, little is known about the regulation of HSC maintenance in 

their specialized microenvironment. 

The aim of this thesis was to study the influence of osteogenic hormones on the 

regulation of HSCs. Thereby we could prove that, although estradiol increases 

osteoblastic cell numbers and bone mass, it does not have any advantageous effects 

on the endosteal HSC niche. Surprisingly, estradiol displayed alterations in the 

microenvironment of the vascular niche, by upregulating distinct adhesion molecules 

and thereby correlating with an increase of HSCs in the vascular niche. Therefore, 

we suggest an enhanced retention of HSCs in the vascular niche under the influence 

of estradiol, also proven by a decrease of HSCs in the peripheral blood. 

Furthermore, we investigated the effects of long-term growth hormone (GH) 

administration, which is known to increase bone mineral density and thereby 

influence the endosteal HSC microenvironment. We clearly showed increased HSC 

numbers in the vascular and the endosteal niche of wildtype mice after GH 

administration. Additionally, we proposed a Janus kinases/Signal Transducers and 

Activators of Transcription (Jak/STAT)-signaling-dependent mechanism of GH in the 

endosteal niche. To test this hypothesis, we investigated the influences of GH in a 

conditionally-mutated mouse model (STAT5OB), where Jak/STAT signaling is 

disrupted in osteoblasts by the loss of STAT5. Unexpectedly, these mice showed 

increased numbers of HSCs in the endosteal niche and displayed strikingly 

enhanced endosteal HSC numbers after GH treatment compared to wildtype 

controls. Loss of STAT5 in osteoblasts led to strong activation of STAT3 and, in 

particular, STAT1, suggesting a compensatory mechanism. We proved that 

Jak/STAT signaling has an important role in the endosteal HSC niche, particularly for 

the mediation of GH effects. The strong activation of STAT3 and STAT1 correlated 

with the increased numbers of HSCs in the endosteal niche. 
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1.2 Zusammenfassung 
 
Hämatopoetische Stammzellen (HSC) sind die am besten studierten adulten 

Stammzellen in Wirbeltieren, Trotz dessen ist nur wenig über die Interaktionen mit 

der Nische und die Mechanismen ihrer Regulierung bekannt. 

Ziel dieser Arbeit war es, den Einfluss von osteogenen Hormonen auf die 

Regulierung der HSCs zu untersuchen. Es konnte gezeigt werden, dass, obwohl 

Östradiol die Anzahl der Osteoblasten erhöht und damit auch die Knochenmasse, es 

keinerlei Effekte auf die endosteale HSC-Nische hat. Überraschenderweise zeigt 

Östradiol einen deutlichen Effekt auf die vaskuläre Nische, was zu einer verstärkten 

Expression von Adhäsionsmolekülen führt und mit einem Anstieg der HSCs in 

diesem Teil der Nische verbunden ist. Daher wird vermutet, dass Östradiol die 

vaskuläre Nische beeinflusst und dies zu einem verstärkten Rückhalt der HSCs in 

der Nische führt. Diese Schlußfolgerung zeigt sich auch in der geringeren Anzahl von 

HSCs im peripheren Blut. 

Darüber hinaus wurden die Langzeit-Effekte von Wachstumshormon (GH) 

untersucht. Es ist bereits bekannt, dass GH die Knochendichte erhöht und damit die 

endosteale HSC-Nische beeinflusst. In diesem Zusammenhang konnte gezeigt 

werden, dass GH zu einem Anstieg von HSCs in der vaskulären und der 

endostealen Nische des Knochenmarks führt. Zusätzlich wurde ein Jak/STAT-

Signalweg-abhängiger Mechanismus für den Effekt vermutet. Um diese Hypothese 

zu testen, wurden konditionell mutante Mäuse verwendet (STAT5OB), die durch das 

Fehlen von STAT5 in Osteoblasten eine Unterbrechung des GHR-Signalweges 

aufweisen. Unerwarteterweise zeigen diese Tiere eine erhöhte Anzahl von HSCs in 

der endostealen Nische und einen extrem starken Anstieg der endostealen HSCs 

unter GH-Einfluss im Vergleich zu Wildtyp-Tieren. Der Verlust von STAT5 in 

Osteoblasten führt zu einer verstärkten Aktivierung von STAT3 und vor allem STAT1, 

was auf einen Kompensations-Mechanismus hinweist. Es konnte damit bewiesen 

werden, dass der Jak/STAT-Signalweg eine wichtige Rolle in der endostealen 

Nische, und vor allem in der Vermittlung von GH-Effekten, spielt. Die starke 

Aktivierung von STAT3 und, noch deutlicher STAT1 korreliert mit dem Anstieg der 

HSCs in der endostealen Nische. 
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2  Introduction 
 

2.1  Adult stem cells in tissue homeostasis 
 
The embryonic stem cell is the only totipotent stem cell able to form a complete 

multicellular organism with all its different tissue types. However, the maintenance 

and regeneration of a completely developed organism demand a different 

mechanism due to the absence of embryonic stem cells. The death of cells, either 

caused by apoptosis during tissue regeneration or by injury, demands a 

replenishment of the dying cells. This function is assured by a variety of adult or 

somatic stem cells found in nearly every tissue. They represent multipotent 

progenitors able to maintain and to regenerate the tissues in multicellular organisms. 

These multipotent progenitors are lineage restricted, and therefore only able to give 

rise to distinct differentiated cells. For example, the microsatellite cells as progenitors 

of muscle tissue are only capable of forming muscle cells. The main pitfall of this 

regenerative system is the influence of ageing. DNA damage, and thereby the 

enhanced incidence of cancer, are consequences of ageing. The depletion of stem 

and progenitor pools also impairs the regeneration of many tissues in a variety of 

mouse models, e.g. the telomerase-knockout mouse (Terc-/-) loses hematopoietic 

stem cells (HSCs) with ageing (Fuchs et al. 2004; Ruzankina and Brown 2007). 

These ageing-related mechanisms have also been suggested to influence the 

development of cancer because increased tumor suppression in combination with 

decreased proliferation results in a lower capacity of tissue renewal (Ruzankina and 

Brown 2007). Therefore, the clarification of the complex regulation of somatic stem 

cells is necessary to understand molecular mechanisms underlying cancer 

development and primarily ageing. 

 

2.2  HSCs in hematopoiesis 
 
The multipotent HSC is the most widely studied system for somatic stem cells and for 

the regulation of their maintenance, particularly their differentiation in vertebrates 

(Ema et al. 2006). The HSC ensures the maintenance and the development of all 

cellular blood components, which include the daily formation of about 1011–1012 new 

blood cells in humans. The development from HSCs to differentiated blood cells is 

achieved via several progenitor stages, which are already lineage restricted including 
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multipotent progenitor, common lymphoid progenitor, common myeloid progenitor, 

granulocyte/macrophage lineage-restricted progenitor and 

megakaryocyte/erythrocyte lineage-restricted progenitor (Akashi et al. 2000). The 

emerging blood cells are subdivided into three major blood cell lineages, namely the 

erythroid/megacaryocyte, the lymphoid and the myeloid lineage. The erythroid cells 

are the oxygen transporters, the megacaryocytes give rise to platelets involved in the 

clotting response, whereas the lymphoid cells develop into T, B and natural killer 

cells which are essential in the innate and adaptive immune system. The myeloid 

lineage comprises mast cells, eosinophils, neutrophils and monocytes, which can 

develop into macrophages, osteoclasts (OCs) and dendritic cells (Akashi et al. 2000; 

Lodish et al. 2004, “Molecular Cell Biology”). 

Hematopoiesis during embryonic development occurs in different locations. The first 

blood cells are formed in the yolk sac (Moore and Metcalf 1970), then migrate to an 

area surrounding the dorsal aorta termed the aorta-gonad-mesonephros. During mid-

gestation, hematopoiesis occurs in the fetal liver and finally locates in the bone 

marrow (BM) (Tavian et al. 1996; Labastie et al. 1998; Tavian et al. 1999; Watt and 

Hogan 2000). 

The changeover from one hematopoietic site to another during development takes 

place due to migration and relocation of HSCs, which are supposed to be regulated 

by chemokines and adhesion molecules (Nagasawa et al. 1996; Frenette et al. 1998; 

Vermeulen et al. 1998; Zou et al. 1998; Wright et al. 2002; Yong et al. 2002; Ara et 

al. 2003; Christensen et al. 2004). 

 

2.2.1  Properties of the HSC 
 

HSCs are a very rare subpopulation of the hematopoietic cells in the BM. Only one 

cell in about 1×104–1.5×104 BM cells is a HSC, whereas in the blood stream one cell 

in about 1×105 blood cells is a HSC. HSCs can not be identified according to their 

morphology because in culture they behave like white blood cells. However, due to 

extensive studies over several decades, a variety of surface markers for the 

identification of this small subset of BM cells has been identified. HSCs are 

discriminated into long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs). The 

ST-HSC is described as already initiated for differentiation. Therefore, only the LT-

HSC is capable of several consecutive rounds of transplantation in reconstituting 

mice (Lerner and Harrison 1990; Ramalho-Santos et al. 2002; Akashi et al. 2003; 

Uchida et al. 2003; Venezia et al. 2004). In mice, LT-HSCs are characterized by 
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several surface markers: N-Cadherin+, Tie2+, Endoglin+, CD34low/-, Sca1+, Thy1+/low, 

CD38+, CD117 (cKit)+ and lin-. Lineage negative (lin-) describes all the cells negative 

for B, T and granulocyte markers and is, in combination with Sca1 and CD117 (cKit), 

the most prominent group of HSC markers in fluorescence-activated cell sorting 

(FACS) analysis (Spangrude et al. 1988; Baum et al. 1992; Morrison and Weissman 

1994; Osawa et al. 1996). Kiel et al. showed that the subpopulation of CD244-

negative, CD48-negative and CD150-positive cells also includes the competent 

fraction of HSCs in the BM (Kiel et al. 2005). 

Additionally, HSCs possess the P-glycoprotein coded by the multidrug resistance 1 

gene, which represents an ATP-binding cassette transmembrane transporter 

responsible for the detoxification of cells. This ATP-dependent transporter enables 

HSCs to transport the Hoechst 33342 dye out of the cells after staining. Therefore, 

Hoechst 33342 is often used as a criterion for the identification of HSCs (Goodell et 

al. 1996; Goodell et al. 1997; Zhou et al. 2001; Scharenberg et al. 2002; Uchida et al. 

2003; Matsuzaki et al. 2004; Takano et al. 2004). Due to the fact that this transporter 

is also an attribute of tumor cells (Hotta et al. 1999; Scharenberg et al. 2002), the 

identification of HSCs should always be accompanied by the application of adequate 

surface markers. 

 

2.2.2 HSC division 
 
The periodical process of differentiation via diverse stages of progenitors leads to the 

development of mature blood cells. However, HSCs also undergo self-renewal, that 

is, the capability to go through numerous cycles of cell division while maintaining the 

undifferentiated stem cell fate. How is the complex decision between the two 

processes made? The HSC displays unique features of cell division in that it divides 

symmetrically, resulting in two similar daughter cells, which can be either two 

committed cells or two completely undifferentiated HSCs. A committed progenitor cell 

has initiated the differentiation program and thereby loses multipotency. However, 

the HSC is also capable of performing asymmetric cell division, resulting in one 

undifferentiated HSC and a committed progenitor (Mayani et al. 1993; Brummendorf 

et al. 1998; Huang et al. 1999; Giebel et al. 2006). The underlying molecular 

mechanisms are still being debated. One theory is the equal distribution of specific 

cell fate determinants, e.g. transcription factors, mRNA or even non-coding RNAs, 

which would lead to a symmetric cell division. In turn, unequal distribution of these 

components would lead to asymmetric cell division. This theory has not been proven 
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for any vertebrate stem cell type, but several in vitro studies have indicated that 

HSCs can undergo asymmetric divisions (Suda et al. 1984; Takano et al. 2004; Ho 

2005). Another theory for asymmetric cell division is the influence of the specialized 

microenvironment. In this case, one daughter cell stays in the original surrounding of 

the dividing HSC, preserving the undifferentiated HSC type, whereas the other 

daughter cell leaves this environment and is prone to differentiation (Spradling et al. 

2001; Ohlstein et al. 2004). 

 

2.2.3 Intrinsic HSC regulation 
 
HSCs are regulated by cell-intrinsic molecular pathways, but also by extrinsic 

molecular interactions with environmental cells and the extracellular matrix. The 

extensive characterization of HSCs in the last few years uncovered a wide diversity 

of intrinsic factors involved in the maintenance and differentiation pathways. 

For instance, it has been proven that the inactivation of phosphatase and tensin 

homolog (PTEN), a negative regulator of the PI3K-Akt pathway, causes expansion of 

ST-HSCs. However, PTEN-/- enhances the level of HSC activation and leads to a 

decline in LT-HSCs. PTEN-/- HSCs engraft in recipient mice with normal efficiency, 

but can not sustain hematopoietic reconstitution due to a deregulation of the HSC 

cell cycle and the declining maintenance in the microenvironment (Zhang et al. 

2006). Thereby, PTEN-/- HSCs lead to myeloproliferative disease and to 

transplantable leukemia, since PTEN functions as a tumor suppressor mediated by 

the mammalian target of rapamycin (Yilmaz et al. 2006). 

The cellular oncogene Myc (c-Myc) possesses related functions to PTEN. In c-Myc-/- 

BM, LT-HSCs accumulate and are increased about 10-fold by an upregulation of 

adhesion molecules like N-Cadherin and several adhesion receptors. Conversely, 

overexpression of c-Myc leads to the opposite effect, a loss of HSCs due to 

premature differentiation along with a downregulation of adhesion molecules (Wilson 

et al. 2004). Therefore, c-Myc is an important player in regulating the fate decision 

between stem cell self-renewal and differentiation. 

Cyclin-dependent kinase inhibitors p18 and p21 have also been shown to be 

involved in the regulation of HSCs. Deletion of p18, an early G1 cyclin-dependent 

kinase inhibitor, leads to a higher competitive reconstitution potential compared to 

wildtype HSCs by increased self-renewing divisions in p18-/- HSCs and progenitors 

(Yuan et al. 2004). In contrast, p21-/- mice show increased HSC numbers under 

normal homeostatic conditions. However under stress conditions, released by 5-
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fluorouracil, HSCs are restricted to enter the cell cycle, resulting in the death of the 

mice (Cheng et al. 2000). p18-/- is able to compensate for the increased HSC 

exhaustion in p21-/- mice, permitting the conclusion that p18 acts via a counteracting 

pathway against cellular senescence of HSCs (Yu et al. 2006). 

Another important transcription factor, myeloid elf-1-like factor (MEF/ELF4), has been 

shown to be involved in the regulation of quiescence of HSCs. MEF or ELF4 belongs 

to the ETS (E26 transformation-specific) family of winged helix-turn-helix 

transcription factors (Miyazaki et al. 1996; Mao et al. 1999; Miyazaki et al. 2001; 

Lacorazza and Nimer 2003), and MEF-/- mice show a higher fraction of HSCs. MEF-/- 

HSCs have been suggested to be more quiescent, although their reconstitution 

potential is completely normal and they even protect mice against myelotoxic drugs 

and radiation (Lacorazza et al. 2006). 

Early growth response 1 (Egr1) belongs to the immediate early response 

transcription factor and zinc finger-protein family. In the hematopoietic system, Egr1 

is important in lymphoid and myeloid cells, particularly B lymphocytes and thymic 

precursors (Lee et al. 1996; Bettini et al. 2002; Schnell and Kersh 2005; Schnell et al. 

2006). Furthermore, Egr1 is expressed in LT-HSCs, but is strongly reduced after 

stimulation of proliferation or a pharmacological treatment for mobilization of HSCs. 

Egr1-/- mice show increased proliferation of HSCs, and thereby mobilization into the 

peripheral blood, suggesting Egr1 as a retention and quiescence factor of HSCs (Min 

et al. 2008). 

In summary, this list of molecular regulators involved in the fate decision of self-

renewal and differentiation of HSCs only represents a brief compendium of 

influencing molecules because the field of HSC research is constantly evolving. 
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2.3 The HSC niche 
 
The term ‘niche’ is not only important with respect to HSCs. The niche describes the 

specialized microenvironment consisting of distinct cell types embedding and 

regulating the stem cells. Such a complex three-dimensional microenvironment has 

already been described for several stem cell types including the germinal stem cell in 

drosophila or the intestinal stem cell, the neuronal stem cell, the stem cell of the skin 

and the HSC in vertebrates (Fuchs et al. 2004). A specialized niche has also been 

suggested to exist for tumor stem cells (Favaro et al. 2008). 

The niche regulates HSCs by extrinsic molecular mechanisms and is able to express 

membrane-bound and secreted soluble factors, and to exert influence on the 

maintenance and migration of HSCs (Schofield 1978; Kiel and Morrison 2008). In the 

BM, HSCs reside in two different locations. A part of the HSCs is located directly at 

the inner surface of the bone, named the endosteum, where HSCs are in close 

contact with bone-forming cells, the osteoblasts (OBs) and osteoclasts (OCs). The 

other part of the HSCs is located more to the center of the BM, where the 

microenvironment is formed by various cell types: endothelial, perivascular, reticular 

cells and sinusoidal blood vessels (Li and Xie 2005; Suda et al. 2005; Adams and 

Scadden 2006; Sugiyama et al. 2006; Kiel et al. 2007b; Sacchetti et al. 2007). 
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Figure 2.1: Overview of the endosteal and vascular HSC niche. Adapted from Kiel and Morrison 
(Kiel and Morrison 2006). 

 

2.3.1 The endosteal HSC niche 
 

The BM-facing surface of the endosteum is covered by a protective layer of bone-

lining cells. These cells are able to differentiate into mature OBs, representing the 

bone-building compartment. However, the whole compartment is quite 

heterogeneous in its differentiation state, and at any time-point, only a minority of the 

cells is actually mature OBs by definition. In addition, OCs, the bone-resorbing cells, 

are present at the endosteal surface. OBs and OCs form a unity in keeping the 

balance between bone formation and resorption under steady-state conditions. 

Furthermore, OBs and OCs are also able to react on external alterations, e.g. during 

the growth period of an organism, by forming and remodeling bone (Franz-Odendaal 

et al. 2006; Seeman and Delmas 2006). 

In 2003, a revolutionary study showed that HSCs are attached to special spindle-

shaped OBs (SNOs) by an asymmetrical distribution of the two adherens junction 

molecules, β-Catenin and N-Cadherin (Zhang et al. 2003). N-Cadherin is already 

known to be expressed throughout osteoblastogenesis (Hay et al. 2000), but it is also 

expressed on LT-HSCs. These data led to the first substantial proof that specialized 

OBs directly regulate HSCs (Zhang et al. 2003). N-Cadherin, as classic type I 

cadherin, is a single-chain transmembrane glycoprotein mediating homophilic, 

calcium-dependent cell-cell adhesion (Takeichi 1991). The newly postulated function 
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of N-Cadherin in HSC maintenance is highly debated. Kiel et al. were unable to 

detect the expression of N-Cadherin in isolated HSCs, and showed as proof of 

principle that N-Cadherin-negative HSCs fully reconstitute lethally-irradiated mice 

(Kiel et al. 2007b). In the same line of evidence, it was proven that the expression 

level of N-Cadherin is the critical point for quiescent or primed HSCs. Only the N-

Cadherin-/low subpopulation fulfills complete HSC features (Haug et al. 2008). 

Additionally, mice with reduced numbers of OBs show no defects in hematopoiesis, 

HSC numbers or functionality (Kiel et al. 2007b). 

β-Catenin is also an essential mediator in the Wnt signaling pathway. Although it has 

been shown that the activation of Wnt in HSCs leads to symmetrical self-renewal and 

the inhibition of differentiation, the necessity of the canonical Wnt pathway has been 

doubted due to the dispensability of β-Catenin in the functionality of HSCs. 

Therefore, one could conclude that Wnt-signaling is perhaps only essential for the 

expansion and differentiation of progenitor cells and not of LT-HSCs (Reya et al. 

2003; Willert et al. 2003; Cobas et al. 2004; Reya and Clevers 2005). 

Also important in the regulation of the endosteal HSC niche is angiopoietin-1/Tie2 

signaling. Tie2 is a receptor tyrosine kinase expressed on endothelial cells and BM-

derived LT-HSCs (Constien et al. 2001; Puri and Bernstein 2003; Arai et al. 2004). 

Angiopoietin-1 (Ang-1) is expressed by OBs and is able to maintain HSCs in vitro 

(Arai et al. 2002), leading to enhanced adhesion and maintenance of the immature 

phenotype of the Tie2-expressing HSCs. This adhesion prevents cell division, 

resulting in the regulation of quiescence and protects HSCs from myelosuppressive 

stress in the BM niche by the inhibition of apoptosis (Arai et al. 2004). 

Osteopontin (OPN) is a multidomain, phosphorylated glycoprotein involved in cell 

adhesion, tumor metastasis, angiogenesis, apoptosis, in the inflammatory response 

and in bone homeostasis (Reinholt et al. 1990; Asou et al. 2001; Denhardt et al. 

2001). In the BM, the expression of OPN is restricted to OBs. OPN-/- mice lack the 

localization of HSCs at the endosteum after transplantation. OPN has inhibitory 

functions in HSC proliferation (Nilsson et al. 2005), since OPN-/- mice display 

increased primitive hematopoietic cell number correlating with the upregulation of 

Jagged1 and Ang-1 in the BM stroma (Stier et al. 2005). 

With regard to the endosteal niche, the interactions of OBs and HSCs via the Notch 

signaling pathway have also been extensively discussed. Notch signaling has been 

suggested to be essential in the endosteal niche, promoting maintenance by the 

HSC-expressed Notch receptors. Notch and Jagged1 overexpression studies all 

resulted in enhanced self-renewal and inhibited differentiation of HSC (Varnum-

Finney et al. 1998; Carlesso et al. 1999; Varnum-Finney et al. 2000; Karanu et al. 



Introduction 

 - 18 -  

2001; Stier et al. 2002; Calvi et al. 2003; Kunisato et al. 2003; Burns et al. 2005; 

Suzuki et al. 2006). The combined inactivation of Jagged1 and Notch1 does not 

influence HSC function (Radtke et al. 1999; Mancini et al. 2005). Compensatory 

effects of other members of the Notch signaling pathway can not be excluded. The 

suppression of all canonical Notch signals in adult HSCs does not show any defects 

in vivo (Maillard et al. 2008). Therefore, the suggested essential role for Notch in 

HSC regulation has not been substantiated. 

In summary, due to this constantly expanding field of research, these data represent 

only an abstract of the signaling involved in the interaction of HSCs and their 

endosteal niche compartments. 

 

2.3.2 The vascular HSC niche 
 
Since the complex three-dimensional structure of the HSC environment has become 

clearer, the question arose whether there are relations between the regulation of the 

endosteal and the vascular niche. To date, there are only hints for such relations. For 

instance, the endosteum is intensively vascularized, suggesting a possible role for 

vascular cells in the regulation of HSCs at the endosteum (De Bruyn et al. 1970). It 

was recently shown that specialized reticular cells, expressing high levels of CXC 

chemokine ligand 12 (CXCL12), are important in both niche types. These CXCL12-

abundant reticular (CAR) cells have been found to be in direct contact with HSCs, 

and they either surround sinusoidal endothelial cells in the vascular niche or they are 

located quite close to the endosteum (Sugiyama et al. 2006). CXCL12 has been 

shown to be expressed by OBs regulating migration and localization of HSCs within 

the BM (Peled et al. 1999; Petit et al. 2002). The receptor CXCR4 is widely 

expressed throughout the immune and central nervous systems (Jazin et al. 1997; 

Moepps et al. 1997). CXCR4-/- mice show an important role for the G-protein-coupled 

chemokine receptor in both cerebellar development and hematopoiesis (Zou et al. 

1998). Furthermore, the ablation of the adrenergic neurotransmitter norepinephrine 

leads to granulocyte colony-stimulating factor (G-CSF)-mediated inhibition of OBs, 

resulting in the mobilization of progenitor cells and the downregulation of CXCL12. 

This suggests the involvement of the sympathetic nervous system in HSC 

mobilization (Katayama et al. 2006). In addition to cytokines, effects of other 

hormones have been discovered. Growth hormone (GH)-treated and bGH-transgenic 

mice have higher numbers of HSCs due to mobilization of the cells. Administration of 

GH leads to an upregulation of suppressor of cytokine signaling (SOCS) 1 and 3, 
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which in turn blocks the CXCL12/CXCR4 signaling, leading to a distribution of HSCs 

in the peripheral blood. Thus, the Janus kinases/Signal Transducers and Activators 

of Transcription (Jak/STAT) signaling pathway participates in HSC regulation (Pello 

et al. 2006). 

Ju et al. (2007) proved an influence of DNA damage signaling pathways on the 

function of the HSC niche. DNA damage is known to be closely related to stem cell 

exhaustion and ageing (Lieber and Karanjawala 2004). The activation of DNA 

damage signaling pathways can be caused by the loss of the capping functions of 

telomeres at the chromosome ends, resulting in widespread damages in cell and 

tissue function (Vaziri and Benchimol 1996; d'Adda di Fagagna et al. 2003). Stromal 

cells from telomerase-knockout mice (Terc-/-) have a decreased potential to maintain 

HSCs and their early progeny. A role for the stromal cells is further substantiated by 

the fact that the non-endothelial stromal cells, the vascular and endosteal cells of the 

BM, decrease in numbers with ageing. This indicates that both regulatory 

compartments, vascular and endosteal, are essential for the maintenance of HSCs 

(Ju et al. 2007). 

The variety of signaling pathways shown to be involved in the maintenance of HSCs 

and their distribution between the two niches raise the question what is the difference 

between the niches and is there a necessity for the existence of two niches? One 

current hypothesis argues for the need of two niches with a dormant HSC. Dormant 

HSCs are directly attached to the SNOs (specialized spindle-shaped N-Cadherin-

expressing OBs) at the endosteal surface. The SNOs are, in turn, in contact with the 

previously mentioned CAR cells, which are more frequently found at sinusoids in the 

vascular niche. It is suggested that in this surrounding, the CAR cells together with 

OBs, stromal fibroblasts and possibly other cell types, create a microenvironment 

with only low oxygen levels and a dense extracellular matrix. This environment keeps 

the HSCs dormant, and the activation of dormant HSCs leads to translocation to the 

CAR cells into the vascular niche next to sinusoids. For the maintenance of the 

dormant stem cell pool, the HSCs undergo asymmetric cell division forming one 

dormant HSC and a committed progenitor (Wilson et al. 2007). 

Several arguments against this hypothesis exist. One argument is that HSCs isolated 

from the vascular niche can also establish long-term reconstitution over several 

generations of mice (Liang et al. 2007). Secondly, subendothelial stromal cells on the 

sinusoidal wall have also been shown to express Ang-1, which was initially thought to 

be specifically important in the endosteal HSC niche (Sacchetti et al. 2007). 

Furthermore, N-Cadherin, described as essential for HSCs, has been recently found 

as dispensable for LT-HSCs (Kiel et al. 2007b). This could also be the case for other 
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factors shown to be important due to their specialized expression by OBs, because 

to date none of these factors has been conditionally deleted only in OBs. Thus, OBs 

may not be the main source for these factors as already proven for Ang-1 (Li et al. 

2001; Sacchetti et al. 2007). Another argument for the dispensability of the endosteal 

microenvironment is that some vertebrate species do not have any hematopoiesis 

associated with the bone, e.g. the zebrafish (Murayama et al. 2006). In mammals, 

extramedullary hematopoiesis can be observed under different circumstances in liver 

and spleen, representing at least a partially redundant role for the endosteum (Wright 

et al. 2001). The occurrence of extramedullary hematopoiesis reflects the high 

motility of HSCs, where HSCs exit and re-enter the BM stem cell niche via the 

vascularization. The mobilization and homing of HSCs are facilitated by regulatory 

alterations of adhesive connections, formed by membrane-bound stem cell factor, 

vascular cell adhesion molecules and integrins (Lapidot and Petit 2002; 

Papayannopoulou 2003; Cancelas et al. 2005; Lapidot et al. 2005). 

In conclusion, the vascular and the endosteal HSC niche form a highly specialized 

microenvironment for HSCs. Although HSCs are the most widely studied adult stem 

cells, many questions remain open and further studies on the cell fate decisions in 

HSCs are required. 
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2.4 Osteogenic hormones presumably affecting the endosteal 
HSC niche 

 

2.4.1 Estrogen in bone metabolism 
 

17-β-Estradiol (17-β-E2) is a steroid hormone preferably involved in the development 

of primary and secondary sexual organs and the further development of the oocytes 

in females, whereas in males estrogen levels are rather low although not at all 

dispensable. An important phase when even males essentially need estrogens is the 

onset of bone formation, the skeletal growth throughout puberty and for the 

regulation of gonadotropin (Bhatnagar et al. 1992; Bulun 1996; Carani et al. 1997; 

Bilezikian et al. 1998; Rochira et al. 2000). 

Most of the effects of 17-β-E2 are mediated via the two known estrogen receptors, 

ERα and ERβ (Kuiper et al. 1996; Couse et al. 1997; Kuiper et al. 1997). Both 

receptors belong to the steroid/thyroid hormone superfamily of nuclear receptors, 

possessing similar structural characteristics (Evans 1988; Giguere et al. 1988; Tsai 

and O'Malley 1994; Gronemeyer and Laudet 1995; Mangelsdorf et al. 1995; 

Katzenellenbogen and Katzenellenbogen 1996). The receptors act as transcription 

factors, they consist of independent but interacting domains, named A/B, C, D, E, F. 

A/B at the N-terminus of the protein is the AF-1 domain, which exerts ligand-

independent activation function important for protein-protein interactions and 

transcriptional activation of target gene expression. The AF-1 domain is much more 

active in ERα than in ERβ, as tested with estrogen responsive element (ERE)-

reporter constructs (McDonnell et al. 1995; McInerney et al. 1998). 

C represents the DNA-binding domain, which is well conserved between ERα and 

ERβ. It contains two zinc-finger structures, which are essential for receptor 

dimerization and the binding to specific DNA sequences, the EREs. The P-box is 

necessary for the recognition and the specificity of the target DNA (Beato 1989; 

Umesono and Evans 1989; Hard et al. 1990; Schwabe et al. 1993; Eriksson et al. 

1995; Enmark et al. 1997; Vanacker et al. 1999). ERs can also affect gene 

expression without binding to the DNA. For instance, ERα is able to bind to NFΚB, 

thereby inhibiting the induction of IL-6 by NFΚB. ERα is able to physically interact 

with Sp1. The DNA-Sp1 binding is hormone independent. Both ERs are also able to 

interact with the fos/jun transcription factor complex at AP1 sites. This leads to gene 

expression, but only in the presence of estrogens (Klein-Hitpass et al. 1986; Ray et 
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al. 1994; Webb et al. 1995; Batistuzzo de Medeiros et al. 1997; Galien and Garcia 

1997; Paech et al. 1997; Sun et al. 1998; Duan et al. 1999; Qin et al. 1999; Webb et 

al. 1999; Zou et al. 1999). 

The domains D, E and F together are folded into 12 helices. They represent the 

ligand-binding domain located at the C-terminus. Helices 3 to 12 are directly involved 

in ligand binding. The ligand-binding domain harbors the so-called AF-2 domain 

overtaking an activation function under ligand binding. AF-2 is formed by amino acids 

of the helices 3, 4, 5 and 12. Helix 12 undergoes a positional change upon ligand 

binding. Helix 12 is essential and therefore often described as cap for the ligand-

binding pocket, changing its position depending on the ligand (Danielian et al. 1992; 

Denton et al. 1992; Wurtz et al. 1996; Brzozowski et al. 1997; Henttu et al. 1997; 

Feng et al. 1998; Shiau et al. 1998; Mak et al. 1999). 

All steps in the activation of gene expression, ligand binding, dimerization of the 

receptor, binding to the DNA and the interaction with co-factors, are phosphorylation 

dependent (Migliaccio et al. 1989; Denton et al. 1992; Arnold et al. 1994; Chen et al. 

1999; Endoh et al. 1999). Also, ligand-independent effects of ERs require 

phosphorylation of the receptors. Phosphorylation sites have been extensively 

studied in ERα. These sites are distributed in all domains of the protein. All serine 

residue phosphorylation sites are conserved between the two receptors. ERα can be 

phosphorylated in the absence of estrogens, but phosphorylation is enhanced under 

physiological levels of 17-β-E2 (Denton et al. 1992; Ali et al. 1993; Aronica and 

Katzenellenbogen 1993; Arnold et al. 1994; Lahooti et al. 1994; Le Goff et al. 1994; 

Weigel 1996; Weigel and Zhang 1998; Shao and Lazar 1999). 

In bone architecture, a lack of estrogen leads to a destabilization of the bones due to 

osteoporosis. The high turnover of the trabecular bone in post-menopausal women 

leads to a loss of volume, density, strength and structural integrity. These symptoms 

culminate in the elevated risk of bone fractures (Eriksen et al. 1990; Hernandez et al. 

2006; Genant et al. 2007; Sornay-Rendu et al. 2007; Tsangari et al. 2007; Bigley et 

al. 2008). Conversely, it has been shown that long-term 17-β-E2 administration leads 

to an increase of bone mass by increased activity of OBs and induced apoptosis of 

OCs (Liu and Howard 1991; Zecchi-Orlandini et al. 1999; Ramalho et al. 2002; 

Seeman and Delmas 2006). A variety of factors is involved in the underlying 

regulatory mechanisms. In OBs, 17-β-E2 stimulates the synthesis and secretion of 

insulin-like growth factor (IGF)-1, and in turn inhibits cytokines involved in bone 

resorption. Also, osteoprotegrin (OPG), which is responsible for the functional 

inhibition of OCs, is activated by 17-β-E2 (Ernst and Rodan 1991; Ishii et al. 1993; 
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Roodman 1996; Hofbauer et al. 1999). Receptor activator for nuclear factor kappa B 

ligand (RANKL) is expressed on the surface of OBs and stromal cells, leading to the 

differentiation and activation of OCs upon receptor-ligand interaction. In this context, 

OPG functions as a decoy receptor, binding to RANKL and thereby inhibiting the 

completion of the OC development (Simonet et al. 1997; Bucay et al. 1998). Both 

ERs can be detected in OBs and osteocytes in situ and in chondrocytes of the 

epiphyseal growth plate, whereas only few reports exist on the expression of ERs in 

OCs. The effects on OCs are thought to be rather indirect via regulatory molecules, 

e.g. OPG (Komm et al. 1988; Pensler et al. 1990; Hoyland et al. 1997; Onoe et al. 

1997; Huang et al. 1998; Nilsson et al. 1999; Oreffo et al. 1999). To study the 

putative roles for either ERα or ERβ, knockout mice have been created. Both ERKO 

(ERα knockout) and BERKO (ERβ knockout) do not show any bone phenotype 

before puberty. However, in the adult mouse, both receptors are important for the 

maintenance of normal bone. ERKO mice show decreased longitudinal and radial 

limb growth and cortical osteopenia in both sexes. In contrast, BERKO mice show a 

mild phenotype: the females have increased limb length and increased bone mineral 

density, but do not show any signs of osteopenia (Vidal et al. 1999; Windahl et al. 

1999; Windahl et al. 2000). The ERα and ERβ double-knockout mice (DERKO) 

display a similar phenotype to the ERKO mice, resulting in decreased longitudinal 

and radial skeletal growth associated with lower IGF-1 serum levels (Vidal et al. 

2000). In conclusion, ERα is obviously the main mediator of the growth-promoting 

effects of 17-β-E2 and the maintenance of the trabecular bone. 

Several studies in the last five years have proved that OBs are able to regulate the 

endosteal HSCs (Calvi et al. 2003; Zhang et al. 2003; Sacchetti et al. 2007; Wilson et 

al. 2007). Currently, there are no data available regarding whether 17-β-E2 can also 

play a role in the regulation of HSCs in their specialized microenvironment. In 

summary, although the roles of estrogens are well defined in the reproductive tract, 

sexual development and the formation and maintenance of bone, the role of 

estrogens in the HSC niche still has to be defined. 

 

2.4.2 GH in bone metabolism 
 
Although GH has been shown to have a wide range of indirect effects mediated via 

IGF-1, there is also evidence for a variety of direct effects (Denko and Bergenstal 

1955; Murphy et al. 1956; Salmon and Daughaday 1957; Daughaday and Reeder 

1966; Garland et al. 1972). Direct actions of GH on longitudinal bone growth in rats, 
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in particular on cartilage tissue (Isaksson et al. 1982), have been further 

substantiated by increased growth of the epiphyseal plate in the hindlimb of rats 

under GH treatment (Russell and Spencer 1985; Schlechter et al. 1986). These 

bipartite effects are termed ‘dual effector theory’. For the effects on bone, it could be 

proven that GH acts directly on growth plate germinal zone cells, leading to 

increased proliferation. The growth plate germinal zones are clearly expanded in 

mice lacking IGF-1, due to elevated endogenous GH levels (Ohlsson et al. 1992; 

Hunziker et al. 1994; Wang et al. 1999). Whether IGF-2 can play a role in this system 

remains unclear. Despite the direct effects of GH on the bone, IGF-1 has essential 

roles in bone development and maintenance. The absence of IGF-1 leads to 

dwarfism in mice and short stature in humans. The possible mechanism is that IGF-1 

regulates chondrocytes. However, in the absence of IGF-1, the zone of hypertrophic 

chondrocytes is enlarged (Liu et al. 1993; Powell-Braxton et al. 1993; Woods et al. 

1996). Thereby, IGF-1 is an important regulator for chondrocytes, culminating in 

increased hypertrophic chondrocytes in the absence of IGF-1 (Wang et al. 1999). 

IGF-1 and IGF-2 are part of a system which includes several components: six 

binding proteins (IGFBP-1 to -6) and the essential cell surface receptors, IGF-1 

receptor, insulin receptor, plus the IGF-2 mannose-6-phosphate receptor (Nissley 

and Lopaczynski 1991; Jones and Clemmons 1995; LeRoith et al. 1995). Both 

receptors consist of α- and β-subunits; the α-subunit is extracellularly localized and 

the β-subunit spans throughout the membrane and is partially localized intracellularly 

(Steele-Perkins et al. 1988). The α-subunit mediates the ligand binding and forms the 

binding pocket. The intracellular part of the β-subunit carriers the tyrosine kinase, 

which acts on tyrosine residues upon receptor activation (Sasaki et al. 1985). 

Phosphorylation leads to the recruitment of various endogenous substrates, which 

can activate several signaling pathways including the PI3-kinase pathway and the 

MAP-kinase pathway (Sasaoka et al. 1994; Ricketts et al. 1996; D'Mello et al. 1997). 

The anterior pituitary, more precisely the somatotroph cells, produces and stores GH, 

which is a cytokine peptide and mediates its effect via the GH receptor (GHR). The 

GHR is a ubiquitously expressed transmembrane receptor, which can be modified at 

post-transcriptional and post-translational levels. The most important modification 

results in the soluble GH binding protein, consisting of the extracellular ligand-binding 

domain and serving as stabilization factor for GH in plasma. The mechanisms for the 

production of GH binding protein vary among species from alternative splicing to 

proteolytic cleavage (Leung et al. 1987; Spencer et al. 1988; Baumbach et al. 1989; 

Baumann 1995b; Baumann 1995a; Barnard and Waters 1997; Ross 1999). The GHR 
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uses Jak/STAT signaling as its main signaling pathway. Dimerization of the receptor, 

upon ligand binding, results in the activation of the Jak2. Jak2 are tyrosine kinases 

able to cross-phosphorylate each other after activation by the GHR. The kinases 

phosphorylate then the mediators, STAT, which translocate to the nucleus and 

activate the target genes at special DNA sequences (γ-interferon-activation sites) 

(Leonard and O'Shea 1998; Davey et al. 1999; Takeda and Akira 2000). One 

important mediator in the Jak/STAT signaling pathway involved in hematopoiesis is 

STAT5. This has been shown by the creation of STAT5-knockout mice (STAT5-/-), 

which die after birth due to hematopoietic failure (Cui et al. 2004). 

In addition to the direct GH effects on bone, GH has been shown to increase the 

number of HSCs in transgenic mice (bGH transgenic), as well as in GH-treated 

wildtype mice. Furthermore, CD34+ cell numbers in humans are elevated upon GH 

injection, suggesting a mobilization effect. This effect is mediated by upregulated 

SOCS1 and SOCS3, which inhibit the important CXCL12/CXCR4 axis between 

HSCs and their microenvironment (Dorshkind and Horseman 2000; Pello et al. 2006; 

van der Klaauw et al. 2008). 

These data raise the question as to whether STAT5 in the GH/GHR signaling 

pathway is important for the regulation of the HSC niche? STAT5 could play a role, 

especially in the endosteal niche, due to the known effects of GH on OBs. 
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2.5 Aims of this study 
 
17-β-E2 and GH are osteogenic hormones. Both hormones influence OBs and are 

therefore an important part of the endosteal HSC niche. This study should clarify 

whether 17-β-E2 and GH also affect the HSCs in their microenvironment. 

To address the effects of 17-β-E2, HSCs were investigated in the vascular and 

endosteal niche by FACS analysis. To estimate the ability to reconstitute lethally-

irradiated mice, HSCs from 17-β-E2-treated mice were isolated and analyzed in 

competitive repopulation assays. This study should also address whether 17-β-E2 

influences HSCs directly or rather the specialized microenvironment. Therefore, we 

tested the maintenance of wildtype HSCs in a 17-β-E2-treated surrounding in vitro and 

in vivo. The molecular mechanisms that mediate the effects of 17-β-E2 were 

investigated with different knockout models and by microarray analysis. 

To investigate whether long-term GH treatment increases the numbers of HSCs from 

the vascular and endosteal niche, we again used FACS analysis. Western blot analysis 

was used to test which pathway mediates the effects of GH in OBs. Furthermore, a 

conditional knockout for STAT5 in OBs should clarify whether this molecule is essential 

for the mediation of GH-effects on HSCs. 
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3  Results  
 

3.1 Effects of estrogens on the HSC niche 
 

3.1.1 Long-term treatment of mice with 17-β-E2 increases the bone mass 
but not the bone-adhered HSCs 

 
Interactions between HSCs and special spindle-shaped OBs of the endosteum (Calvi 

et al. 2003; Zhang et al. 2003) have been demonstrated to be enhanced upon 

treatment with the osteogenic hormone parathyroid hormone. Estrogens increase bone 

mass and might therefore also affect the endosteal niche of HSCs, which should result 

in increased HSC numbers. To investigate if the ERα in OBs is the essential mediator 

of the effects of 17-β-E2 on the bone mass, we analyzed ERαRunx2cre mice under 17-β-

E2 treatment. The ERαRunx2cre mice lack the ERα only in their OBs. This mouse was 

created using the Cre/loxP system by crossing ERαloxP mice with mice expressing the 

Cre recombinase under the control of the OB-specific Runx2 promoter. Thereby the 

Cre recombinase, only active in OBs, is able to recognize the loxP sites, special short 

DNA sequences, flanking the ERα in the ERαloxP mice. The offspring are deleted for 

the ERα only in OBs (Wintermantel et al. unpublished). These mice showed no 

increase in bone mass under the influence of 17-β-E2 compared to ERαloxP mice, which 

reacted to 17-β-E2 treatment with a clear increase in bone mass similar to wildtype 

animals. These results are represented by Fig. 3.1 showing a van Kossa staining, 

indicating the calcium content of the bone (black areas), of the vertebrae and tibia of 

ERαloxP and ERαRunx2cre mice. 
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Figure 3.1: 17-β-E2 treatment increases bone mass in wildtype but not in ERαRunx2cre mice. Van 
Kossa staining for the calcium content of bones (black areas) of vertebrae and tibia from ERαloxP mice and 
ERαRunx2cre mice (conditional ERα knockout in OBs) treated with (E2) and without (Co) 17-β-E2 . 

 

These data clearly showed that the ERα in OBs is the essential molecular mediator of 

the effects of 17-β-E2 on the bone mass. Furthermore, mainly the OBs were affected. 

The increase of the number of OBs under 17-β-E2 treatment resembled that by 

parathyroid hormone. Therefore, we asked if 17-β-E2 also influences the HSCs in the 

endosteal niche. To address the effects of 17-β-E2 on HSCs, wildtype mice received in 

all in vitro experiments a slow-release pellet under the skin for 30 days releasing 17-β-

E2 (6 µg 17-β-E2 per day per mouse). To isolate the hematopoietic cells of the 

endosteal niche, the upper arms and the legs were prepared and all muscles were 

removed. The BM was flushed with a medium-filled syringe. The harvested cell 

suspension represented the vascular niche. The empty bones were crushed and the 

bone pieces digested with a collagenase/dispase mix. The cells from the digestion 

represented the hematopoietic fraction of the endosteal niche. 

Addressing first of all the progenitor cells in the endosteal niche, we analyzed by flow 

cytometry the fraction of undifferentiated lineage-negative (lin-) cells in the endosteal 

niche of control and 17-β-E2-treated mice. No differences in this cell population could 

be detected (Fig. 3.2). 
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Figure 3.2: Undifferentiated, lineage- cells in the BM of the endosteal niche are not altered by 17-β-
E2 treatment. FACS analysis of hematopoietic cells from the endosteal niche for undifferentiated cells 
(B220-, CD3-, Gr-1-, CD11b-, Ter-119-), (n=5). 

 

To determine the influence of 17-β-E2 on the frequency of HSCs, we determined the 

fraction of cells expressing the surface marker CD150 but being negative for CD48 

(Kiel et al. 2005) (Fig. 3.3). The percentage of CD150+/CD48- cells was not altered in 

17-β-E2-treated and control animals. 

 

 

Figure 3.3: The percentage of CD150+/CD48- cells, representing HSCs, in the endosteal niche of the 
BM is not altered by 17-β-E2 treatment. FACS analysis of HSCs from the endosteal niche, analyzed 
with SLAM markers (n=5). 

 
To confirm the data obtained by flow cytometry, we determined the HSC fraction 

functionally in vitro by a co-culture assay, the cobblestone area-forming cell (CAFC) 

assay. The assay was performed using a BM-derived feeder cell line, the fat bone 

marrow derived 1 (FBMD1) cells. BM was seeded in limited dilutions on confluent cell 

layers of the stromal cell line FBMD1. After five weeks of co-culture, the occurrence of 

‘cobblestone colonies’ strongly correlated with the fraction of most primitive HSCs in 

the tested BM (Ploemacher 1994, “Hematopoietic Stem Cell Protocols”). 
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Figure 3.4: Overview of the CAFC assay. FBMD1 cells were used as confluent feeders. The BM was 
seeded in six dilutions (the following dilution was three-fold apart), and cobblestone colonies were 
counted after five weeks of culture. 

 
In accordance with the flow cytometry analysis, the frequency of functional HSCs in the 

endosteal niche was not changed under the influence of 17-β-E2 (Fig. 3.5). 

Thus, although bone mass was dramatically changed after estrogen treatment, the 

frequency of HSCs was not influenced. 

 

 

Figure 3.5: The frequency of HSCs of the BM of the endosteal niche is not altered by 17-β-E2 
treatment. CAFC assay of the endosteal hematopoietic cells after 17-β-E2 treatment of mice (n=3). 
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3.1.2 Long-term treatment of mice with 17-β-E2 leads to an increase in 
vascular HSCs 

 
Since the endosteal niche is not the only location for HSCs in the BM, we also tested 

the effects of 17-β-E2 on HSC frequency located at the vascular niche (Kiel and 

Morrison 2006). The hematopoietic cells of the vascular niche were analyzed by 

flushing the prepared bones with a medium-filled syringe. First, we analyzed, via 

FACS, the population of progenitor cells in the flushed BM. This subpopulation was 

clearly increased by 17-β-E2 treatment. The frequency of lin-, Sca1+, cKit+ (LSK) 

(Spangrude et al. 1988; Morrison and Weissman 1994; Osawa et al. 1996) cells, a 

fraction in which HSCs are enriched, in the vascular niche of control and 17-β-E2-

treated mice was also highly increased in 17-β-E2-treated mice (Fig. 3.6b and c). Also, 

the absolute number of LSK cells was increased (Fig. 3.6d) upon 17-β-E2 treatment. 
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Figure 3.6: The percentage of the Sca1+ and cKit+ fraction of lin- BM cells is increased in the 
vascular niche of 17-β-E2-treated mice. a) Percentage of lin- cells in the vascular niche of the BM of 
control and 17-β-E2-treated mice analyzed by flow cytometry (B220-, CD3-, Gr-1-, CD11b-, Ter-119-), (n=5, 
p<0.05). b) Representative dot plots of LSK cells in the vascular niche of control and 17-β-E2-treated mice 
analyzed by flow cytometry. c) Summarized data of LSK cells in the vascular niche of control and 17-β-E2-
treated mice analyzed by flow cytometry (n=5, p<0.01). d) Absolute numbers of LSK cells per hindlimb in 
the vascular niche from control and 17-β-E2-treated mice analyzed by flow cytometry (n=5, p<0.05). 

 
Taken together, long-term 17-β-E2 treatment increased the number of LSK cells in the 

vascular niche of the BM. 

To confirm an increase of HSCs indicated by the elevated LSK cell numbers, we 

determined the fraction of CD150+/CD48- cells (Fig. 3.7) as another set of surface 

markers. Like LSK cells, the CD150+/CD48- subpopulation was increased under long-

term 17-β-E2 treatment. 
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Figure 3.7: CD150+/CD48- cells, also representing HSCs, of the BM from the vascular niche are 
increased by 17-β-E2 treatment. Flow cytometry analysis of BM of the vascular niche for SLAM markers 
(n=5, p<0.05). 

 

Next, we wondered if 17-β-E2 treatment also changes the numbers of cells that are 

able to form cobblestone areas in long-term co-cultures, indicative of primitive 

stemness of hematopoietic cells. As described above, we seeded BM cells of the 

vascular niche from control and 17-β-E2-treated mice in limited dilutions on top of 

FBMD1 cells, and analyzed colony formation after five weeks. Fig. 3.8 shows the 

calculated frequencies of HSCs in the BM of control and 17-β-E2-treated mice. 17-β-E2 

treatment led to an increased frequency of HSCs in the BM based on the capacity for 

cobblestone area formation. Therefore, we concluded that 17-β-E2 increased HSC 

numbers, as shown by FACS analysis and the capacity to form cobblestone colonies. 

 

 

Figure 3.8: Frequency of HSCs from the vascular niche is increased by 17-β-E2 treatment. The 
frequency of HSCs from control and 17-β-E2-treated mice was determined by the CAFC assay in long-
term culture conditions for five weeks (n=3). 

 

3.1.3 17-β-E2 increases the multipotent long-term repopulating HSCs 
 



Results 

 - 34 -  

One characteristic of HSCs is their quiescent state, mainly retaining them in G0/G1 

phase of the cell cycle, which is in contrast to the rapidly amplifying progenitors. Since 

we observed an increase of the number of LSK cells and CD150+/CD48- cells, cell 

populations enriched for HSCs, we would expect an increase of slow-cycling cells in 

the BM of 17-β-E2-treated mice. Therefore, we decided to perform a label-retention 

assay (Zhang et al. 2003; Arai et al. 2004). Wildtype mice were treated with 17-β-E2 for 

30 days as previously described. Eighteen days after the beginning of estradiol 

treatment, we started to supply bromodeoxyuridine (BrdU) in the drinking water for 10 

days. In a latent phase without BrdU application, the rapid amplifying cells lost the 

BrdU label of their DNA. Therefore, we analyzed the BM of the vascular niche for label-

retaining cells by FACS analysis 70 days later (Fig. 3.9). In agreement with the 

previous data, slow-amplifying cells were also increased in their number by 17-β-E2 

treatment. 

 

 

Figure 3.9: The percentage of BrdU+ cells in the BM of the vascular niche is increased under 17-β-
E2 treatment. Flow cytometry analysis for BrdU+ cells in the vascular niche of 17-β-E2-treated mice after 
BrdU application (n=5, p<0.01). 

 

So far we could show that 17-β-E2 treatment elevated the HSC fraction, based on 

surface marker expression (i.e. LSK cells and CD150+/CD48- cells), their capacity for 

cobblestone area formation and the determination of label retention in slow-cycling 

cells. However, the gold standard for the characterization of the frequencies of HSCs in 

the BM is the determination of their capacity for long-term repopulation in vivo. We 

therefore performed a limiting dilution analysis (LDA) of BM cells competitively 

transplanted into lethally-irradiated mice (competitive repopulation assay) (Szilvassy et 

al. 1990). We transplanted 5.4×105, 1.8×105, 6.0×104 and 2.0×104 BM cells derived 

from control and 17-β-E2-treated mice into untreated lethally-irradiated CD45.1 mice. 

After 16 weeks, blood cells of donor-derived origin (CD45.2 staining) were analyzed by 

flow cytometry (Fig. 3.10a). The mice receiving BM of the vascular niche from 17-β-E2-
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treated mice displayed more donor-derived HSCs than the mice transplanted with BM 

from control mice (Fig. 3.10b). The regression analysis using the maximal likelihood 

from the transplantation efficiency values of the different dilutions led to a calculation of 

the frequency of long-term repopulating cells in the donor BM. This analysis also 

revealed a strong increase of long-term repopulating HSCs in BM of 17-β-E2-treated 

mice. 
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Figure 3.10: The frequency of donor-derived HSCs in CD45.1 mice four months post-
transplantation is increased after reconstitution with BM from 17-β-E2-treated mice. a) 
Reconstitution analysis of lethally-irradiated mice after transplantation with BM from control or 17-β-E2-
treated mice. Controls and E2 represent the four dilutions of transplanted BM cells (5.4×105, 1.8×105, 
6.0×104, 2.0×104 BM cells, cell numbers are decreasing from left to right) in relation to the percentage of 
donor-derived blood cells in the recipient. Each data point represents one mouse. b) Calculated frequency 
of donor-derived HSCs in CD45.1 mice four months post-transplantation with BM from control or 17-β-E2-
treated mice (n=20). 

 

In summary, we could demonstrate that 17-β-E2 treatment increased the frequency of 

HSCs by several lines of evidence: i) on the basis of surface marker expression (LSK 

and CD150+/CD48- cells); ii) the presence of label-retention cells in the BM; iii) the 

capacity for cobblestone area formation and iv) by the increase of the fraction of cells 

able to repopulate long-term in vivo. 

 

3.1.4 The role of ERα  is dispensable for the 17-β-E2-induced increase of 
HSC numbers 

 

Having established that long-term treatment of mice with 17-β-E2 increases the 

immature undifferentiated fraction of HSCs in the BM, we asked whether this effect is 

mediated by the estrogen receptors. 

To analyze whether the ERα contributes to the effect of 17-β-E2 on HSCs, we treated 

ERα-knockout mice with 17-β-E2 and analyzed them for the frequency of functional 

long-term repopulating stem cells in the BM. For this purpose, we used the competitive 

repopulation assay again, where lethally-irradiated CD45.1 mice were transplanted 

with BM from 17-β-E2-treated wildtype or ERα-knockout mice (Fig. 3.11). 
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Figure 3.11: The frequency of donor-derived HSCs in CD45.1 mice four months post-
transplantation is increased after reconstitution with BM from 17-β-E2-treated wildtype and ERα-
knockout mice. Competitive repopulation analysis for the frequency of HSCs in the vascular BM from 17-
β-E2-treated wildtype or ERα-knockout mice (n=20).  

 
The percentage of donor-derived blood cells was analyzed four months post-

transplantation. As expected, lethally-irradiated mice were better reconstituted after 

transplantation with BM from 17-β-E2-treated wildtype animals compared to mice 

receiving BM from control wildtype animals (Fig. 3.11). Therefore, they showed a 

higher frequency of donor-derived HSCs. However, the effect of 17-β-E2 on HSC 

number was still maintained in ERα-knockout mice, since lethally-irradiated mice 

reconstituted with BM from 17-β-E2-treated ERα-knockout mice were more efficiently 

reconstituted compared to a reconstitution with BM from sham-operated ERα-knockout 

mice. 

In summary, also in the absence of ERα, 17-β-E2 treatment led to an increase of the 

number of HSCs. This could also be confirmed by the measurement of overall BM cells 

under 17-β-E2 treatment (Fig. 3.12). The increase of bone mass by 17-β-E2 treatment 

led to decreased space in the BM cavity, resulting in fewer hematopoietic cells in the 

vascular niche. Hence, one could suggest a shift in BM populations if the 

hematopoietic cells are reduced but HSC numbers are stable. However, the data from 

the ERα-knockout mice refuted this hypothesis. HSCs were increased in the ERα-

knockout mice, but the cell numbers from the vascular niche were not changed by 17-

β-E2 treatment. We concluded that the increase of HSCs by 17-β-E2 treatment was not 

due to a shift of hematopoietic populations in the BM after the strong increase of bone 

mass. 
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Figure 3.12: The absolute numbers of cells per hindlimb in the vascular HSC niche are not 
influenced by 17-β-E2 in ERα-knockout mice. Absolute cell numbers per hindlimb from the vascular BM 
niche were measured with the Casy Cell Counter (n=5, p<0.01). 

 

3.1.5 The role of ERβ  is dispensable for the 17-β-E2-induced increase of 
HSC numbers  

 

To answer the question whether the ERβ could be the possible mediator for the effect 

of 17-β-E2 on HSC numbers, we tested the numbers of HSCs in ERβ-knockout mice 

with long-term 17-β-E2 treatment. Fig. 3.13 shows the absolute percentage of LSK cells 

in the BM of ERβ-knockout mice. In the absence of ERβ, LSK cells were increased 

after four weeks of 17-β-E2 treatment. The repetition in wildtype mice (shown in Fig. 

3.13) could thereby confirm the previously obtained results. 
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Figure 3.13: The percentages of lin-/Sca1+/cKit+ cells in the BM of the vascular niche are increased 
with 17-β-E2 treatment in wildtype and ERβ-knockout mice. LSK cells in 17-β-E2-treated wildtype and 
ERβ-knockout mice were measured by flow cytometry (n=5, *p<0.05, **p<0.01).  

 

Furthermore, we investigated for the ERβ-knockout mice the increase of bone mass, 

which correlated with a decrease of hematopoietic cells in the vascular niche due to 

limited space. ERβ-knockout mice behaved like wildtype mice under 17-β-E2 treatment, 

as measured by counting the numbers of cells in the flushed BM (Fig. 3.14). Although 

wildtype and ERβ-knockout mice showed constricted space in the BM cavity, we are 

confident, due to the data of the ERα-knockout mice, that this effect did not lead to a 

shift of BM populations and thereby to an apparent increase of HSCs only. 

 

 

Figure 3.14: The absolute numbers of cells per hindlimb in the vascular HSC niche are decreased 
by application of 17-β-E2 in wildtype and ERβ-knockout mice. Absolute numbers of hematopoietic 
cells from the vascular BM niche were counted by the Casy Cell Counter (n=5, p<0.01). 

 

3.1.6 17-β-E2 treatment affects the niche cells and not the HSCs directly 
 

The effects of estradiol on the HSC numbers in the vascular niche were not affected by 

the absence of ERα nor ERβ. Therefore, the use of the single ER-knockout mice was 

counterproductive in determining the effects of 17-β-E2 in the HSC niche. 

To circumvent this drawback, we simulated the HSC niche in vitro by modifying the 

CAFC assay. We used the FBMD1-feeder cell line as a model for the surrounding cells 

of the HSC niche, and pre-treated these feeders with 17-β-E2 for two weeks. 

Afterwards, we removed the 17-β-E2 and seeded wildtype BM cells onto the pre-treated 

feeders. Five weeks later we analyzed the assay for cobblestone-forming areas (Fig. 

3.15). 
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Figure 3.15: The frequency of HSCs in wildtype BM after pre-treatment of FBMD1 feeder cells with 
10-6M 17-β-E2 is increased. Frequency of HSCs in wildtype BM under support of 17-β-E2-treated FBMD1 
cells measured by the CAFC assay (n=3, p<0.05). 
 

17-β-E2-pre-treated feeders were more efficient in the support of undifferentiated HSC 

numbers as reflected by the calculation of the frequency of HSCs. 

To answer the question whether 17-β-E2 treatment improves the HSC niche and 

thereby the environment for HSCs in vivo, we performed a ‘stem cell homing assay’. 

Therefore, we treated mice with 17-β-E2 for four weeks, sublethally irradiated these 

mice with 8 Gy, and four days post-irradiation we injected 1×106 carboxyfluorescein 

succinimidyl ester (CFSE)-labeled lin- BM cells from untreated mice into the tail vein. 

Twelve hours after injection we analyzed the mice for CFSE+ cells in the vascular niche 

of the BM. Fig. 3.16 illustrates one representative histogram plot for CFSE+ cells in the 

flushed BM of either 17-β-E2-treated (blue) or control (red) mice. More labeled cells 

were found in 17-β-E2-treated animals. Four of these experiments were evaluated and 

compiled in Fig. 3.16b. 

 

 

Figure 3.16: CFSE+ cells in the vascular HSC niche are increased upon pre-treatment of recipients 
with 17-β-E2. a) Representative histogram plot of CFSE+ cells in the vascular HSC niche of control (red 
line) and 17-β-E2-treated (blue line) mice. b) Summarized analysis of CFSE+ cells in the vascular HSC 
niche 12 hours after injection in control and 17-β-E2-treated mice, analyzed by flow cytometry (n=5, p<0.05). 
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The content of CFSE+ cells in the BM of 17-β-E2-treated mice was greatly increased, 

indicating that long-term effects of estrogens affect the environment of HSCs, enabling 

efficient homing of these cells to the BM cavity. Thus, estradiol affected at least in part 

the environment of HSCs, such that it enhanced HSC abundance in the vascular niche 

of the BM (Fig. 3.16). 

 

3.1.7 17-β-E2 leads to lower numbers of HSCs in the peripheral blood 
 
We have observed higher numbers of progenitors and HSCs in the BM of the vascular 

niche, determined by investigation of surface markers, the potential to form 

cobblestone areas, the label retention in slow-cycling BM cells and the reconstitution of 

lethally-irradiated mice. Furthermore, in vivo and in vitro data indicated that the 

microenvironmental cells of the vascular niche are influenced by 17-β-E2. To 

investigate a possible mobilization effect in the vascular niche by 17-β-E2, we tested via 

surface markers the numbers of progenitors (lin- cells) and HSCs (LSK cells) in the 

peripheral blood. 

 

 

Figure 3.17: Percentages of lin- and LSK cells in the blood. a) Percentage of lin- cells (B220-, CD3-, 
Gr-1-, CD11b-, Ter-119-) in the blood of control and 17-β-E2-treated mice analyzed by flow cytometry 
(n=5). b) Percentage of LSK cells, representing the HSC fraction, in the blood of control and 17-β-E2-
treated mice analyzed by flow cytometry (n=5, p<0.05). 

 

The FACS analysis revealed that lin- cells were not significantly altered after 17-β-E2 

treatment. Surprisingly, the numbers of LSK cells in the peripheral blood were clearly 

decreased (Fig. 3.17). These results suggested an enhanced retainment of HSCs in 

the BM mediated by the surrounding niche cells. 
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3.1.8 17-β-E2 regulates the mRNA levels of different adhesion molecules 
in HSC-supporting FBMD1 cells 

 

Next we asked which 17-β-E2-regulated genes expressed in cells of the niche might be 

involved in the HSC retainment. 

Since we demonstrated that treatment of FBMD1 cells with 17-β-E2 led to a more 

efficient support of HSCs, reflected by a higher number of cobblestone areas, we 

decided to analyze in these cells the alteration of gene expression due to 17-β-E2 

treatment. Total RNA of control and 10 day-17-β-E2-treated FBMD1 cells were isolated 

and reverse transcribed to cDNA with an inserted oligo-dT-T7 primer. Via the T7 

primer, the cDNA could then be transcribed to labeled cRNA, then hybridized on an 

Affymetrix ‘A430’ microarray chip to determine genome-wide mRNA expression. 

Bioinformatical processing and statistical analysis of the raw data using Affymetrix 

software led to the identification of upregulated and downregulated mRNAs in 17-β-E2-

treated FBMD1 cells (Table 3.1) Interestingly, several candidate genes were found 

which could be involved in the interaction of HSCs and their surrounding. 

 

 

Table 3.1: Selected regulated genes from the microarray of 17-β-E2-treated FBMD1 cells. Genes were 
selected for their fold-regulation and function, which could be conceivable in the interaction of HSCs and 
their special microenvironment. 
 

17-β-E2 induced expression of two of these six genes, CD34 and F-Spondin 1, as 

confirmed by real-time PCR analysis of cDNA from control and 17-β-E2-treated FBMD1 

cells (Fig. 3.18). 
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Figure 3.18: CD34 and F-Spondin 1 transcription levels in FBMD1 cells under 17-β-E2 treatment. 
Relative gene expression levels of F-Spondin 1 and CD34 under 17-β-E2 treatment determined by real-
time PCR (n=3). 
 
Both genes are involved in cell-cell adhesion, and F-Spondin 1 is also involved in the 

adhesion of cells to the extracellular matrix. CD34 is known as a HSC marker, 

preferably in humans, but it is also expressed on murine mesenchymal stem cells and 

their progeny (Copland et al. 2008). In conclusion, the upregulation of F-Spondin 1 and 

CD34 correlated with the increase of HSCs and also the efficient homing of HSCs 

under 17-β-E2 treatment. 

The higher expression of adhesion molecule F-Spondin 1 and CD34, involved in cell 

adhesion, would also implicate an increased retention of HSCs in the BM and a 

decreased release of HSCs into the blood. To test this hypothesis, we determined the 

presence of progenitor cells (lin- cells) in the blood and LSK cells into the blood after 

17-β-E2 treatment. As shown in Fig. 3.17, lin- cells were not changed, whereas HSCs, 

measured with LSK markers, were decreased in the blood. These results may indicate 

a stronger retention of HSCs in their niches provoked by 17-β-E2 treatment, which is in 

agreement with efficient homing of HSCs of estrogen-treated mice and an increased 

expression of adhesion molecules by estradiol in HSC-supporting FBMD1 cells. 

 

Taken together, our data clearly reflect an increase of progenitor cells and HSCs by a 

long-term treatment of 17-β-E2 in the vascular niche. This effect is independent of the 

increase in bone mass, also resulting from 17-β-E2 treatment. Beyond that, we proved 

that the higher numbers of HSCs are competent in reconstituting mice, and these cells 

perform even better in repopulating mice as analyzed by competitive reconstitution 

analysis. 17-β-E2 increases the expression of distinct adhesion molecules, correlating 

with the increased HSCs. This upregulation of the adhesion molecules in combination 
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with the decreased numbers of HSCs in the peripheral blood suggests a stronger 

retention of HSCs in the vascular niche. 
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3.2 GH signaling in OBs increases HSC numbers and is modulated 
by STAT5 

 

3.2.1 GH increases the number of HSCs in the vascular and endosteal 
niche of wildtype mice 

 
GH influences bone mineral density via the OBs (de Boer et al. 1995). Furthermore, 

GH is a hematopoietic growth and differentiation factor, and it has been reported that 

mice overexpressing bovine transgenic GH and wildtype mice treated with human 

recombinant GH have larger numbers of LSK cells (Dorshkind and Horseman 2000; 

Carlo-Stella et al. 2004b; Pello et al. 2006). This effect is thought to be caused by 

increased HSC mobilization in the BM (Carlo-Stella et al. 2004b). To date, the 

underlying mechanism remains unsolved. We wondered if GH signaling in OBs 

contributes to an increase of HSC numbers by GH. One signal transduction pathway of 

GH action is the Jak/STAT signaling via STAT5a and STAT5b (Carter-Su and Smit 

1998). Our aim was to investigate whether STAT5a/b in OBs contributes to the 

mediation of the GH effect on HSCs. 

First, we tested the effects of GH on HSC numbers in wildtype mice. Therefore, we 

treated mice according to established protocols of the literature for five weeks by a 

daily injection of 55 µg recombinant human GH. We isolated the BM cells of the 

endosteal and vascular niche, and determined the fraction of CD150+/CD48- cells by 

flow cytometry (Fig. 3.19).  
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Figure 3.19: The percentage of CD150+/CD48- cells, representing HSCs, in the vascular niche is 
increased in wildtype mice after GH treatment. HSC numbers were determined by the analysis of 
surface markers (SLAM markers) with flow cytometry (n=5, p<0.01). 

 
As expected, we confirmed that HSCs surrounded by stromal cells in the vascular 

niche are increased in number in wildtype mice under GH treatment. In addition, we 

showed for the first time that bone-adhered HSCs in the endosteal niche were 

increased in number by GH in wildtype animals (Fig. 3.20). 

 

 

Figure 3.20: The percentage of CD150+/CD48- cells, representing HSCs, in the endosteal niche is 
increased in GH-treated wildtype mice. HSC numbers in the endosteal niche were investigated for 
surface markers (SLAM markers) by flow cytometry (n=5, p<0.01). 

 
 

Therefore, we concluded that GH increased the number of HSCs in the vascular and 

endosteal niche. 
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3.2.2 STAT5 plays an important role in OBs and their interaction with 
HSCs 

 
To address if STAT5 in the endosteal niche plays a role in GH effects on HSC 

numbers, we generated OB-specific STAT5-knockout mice. We used STAT5flox mice, 

where STAT5a and STAT5b genes are flanked by loxP sites (Cui et al. 2004). These 

mice were crossed with a transgenic mouse line carrying an inserted Cre recombinase 

under the control of the promoter Runx2 (Cbfa1), a transcription factor specifically 

expressed in OBs (Ducy et al. 1997). Genomic analysis of the offspring of these mice 

showed an efficient deletion of STAT5a and STAT5b in the bone and isolated OBs 

(data not shown). Therefore, these STAT5OB mice were suitable for the investigation of 

the contribution of STAT5 to GH signaling in OBs. We analyzed the STAT5OB mice, as 

shown in Fig. 3.21, and observed an increase in HSC numbers under GH treatment in 

the vascular niche, since this part of the niche is not affected in these knockout mice. 

 

 

Figure 3.21: The percentage of CD150+/CD48-  cells, representing HSCs, in the vascular niche is 
increased in GH-treated STAT5OB mice. HSC numbers in the vascular niche were determined for 
surface markers (SLAM markers) by FACS analysis (n=5, p<0.01). 

 

The analysis of the endosteal HSC niche revealed unexpected results. There were 

more bone-adhered HSCs in STAT5OB mice on a basal level compared to wildtype 

mice. Additionally, STAT5OB mice showed an even stronger increase (about four-fold in 

STAT5OB and two-fold in wildtype mice) of HSC numbers after GH administration in 

comparison to wildtype mice. 
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Figure 3.22: The percentage of CD150+/CD48- cells, representing HSCs, in the endosteal niche is 
increased in GH-treated wildtype and STAT5OB mice. HSC numbers in the endosteal niche were 
determined for surface markers (SLAM markers) by flow cytometry (n=5, p<0.001). 

 
We expected that removal of STAT5 in OBs would abrogate the mediation of GH 

signaling on bone-adhered HSCs. In contrast, we found a striking enhancement of this 

effect. Thus, the lack of STAT5 in OBs led to an increase in the number of HSCs in the 

endosteal HSC niche. 

 

3.2.3 STAT5-knockout OBs increase the capacity of HSCs to form 
cobblestone colonies 

 
We showed a clear increase of HSC numbers in the endosteal niche in wildtype and an 

even more striking increase in STAT5OB mice under GH treatment (Fig. 3.22). In 

addition, we observed a basal enhancement of HSC numbers in the endosteal niche of 

STAT5OB mice in the absence of GH treatment.  

To test whether this effect is also mediated in vitro, we performed a CAFC assay using 

STAT5-deficient primary OBs as feeder cells, and determined the frequency of HSCs 

and thereby the support of HSCs.  

Primary OBs from STAT5-knockout embryos at stage 18.5 were isolated and seeded 

as feeder cells in 96-well plates, and BM cells of untreated wildtype mice were seeded 

on top. After five weeks, cobblestone areas were counted and the frequency of HSC 

numbers calculated. STAT5-knockout OBs exhibited a strikingly higher frequency of 

long-term primitive HSCs than STAT5 heterozygous and wildtype OBs (Fig. 3.23). 

Thus, also in vitro, the deficiency of STAT5 in OBs augmented the maintenance of 

HSC numbers.  
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Figure 3.23: The frequency of HSCs in wildtype BM is increased when STAT5-/- OBs are used as 
feeder cells. The frequency of HSCs in wildtype BM supported by primary osteoblastic feeder cells was 
determined by the CAFC assay (n=3, p<0.01). 

 
 

These results suggested that the lack of STAT5 in the OBs induced environmental 

alterations in the endosteal HSC niche, culminating in the increase of bone-adhered 

HSCs. 

 

3.2.4 Activated STAT1 and STAT3 can compensate for the lack of STAT5 
in OBs 

 
HSC numbers were increased in the presence and absence of GH in mice lacking 

STAT5 in OBs. Furthermore, the cobblestone-formation capacity of HSCs was 

mediated by STAT5-knockout OBs in vitro. These data suggested a compensatory 

mechanism of other STAT proteins in the absence of STAT5. In the liver, it has been 

demonstrated that STAT1 and STAT3 are strongly activated and thereby compensate 

the loss of STAT5 (Clodfelter et al. 2006; Cui et al. 2007). To test whether this also 

occurs in OBs, we treated calvarial STAT5-knockout OBs with GH and analyzed the 

expression of the phosphorylated forms of STAT1 and STAT3. Western blot analysis of 

primary OBs treated with GH for 2 hours showed that wildtype OBs strongly increased 

STAT5 phosphorylation at residue tyrosine 694 (Fig. 3.24). 
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Figure 3.24: GH treatment activates STAT5 in wildtype OBs and STAT3 is strongly upregulated in 
the absence of STAT5. Western blot analysis of primary wildtype and STAT5-knockout OBs for 
expression levels of STAT5, STAT3 and their activated, phosphorylated forms. Actin was chosen as 
loading control. 

 

As expected, STAT5 protein levels were not detectable in STAT5-deficient OBs. Levels 

of STAT3 protein were increased in wildtype OBs under GH treatment, whereas GH 

did not lead to an increase in STAT3 in STAT5-/- OBs. The activated, phosphorylated 

form of STAT3 (P-STAT3, phosphorylation at residue tyrosine 705) was increased 

under GH influence in wildtype cells and the increase was even more pronounced in 

STAT5-/- OBs. 
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Figure 3.25: GH strongly activates STAT1 in the absence of STAT5. Western blot analysis of primary 
wildtype and STAT5-knockout OBs for expression levels of STAT1 and its activated, phosphorylated form. 
Actin was chosen as loading control. 

 

STAT1 levels were not altered under GH influence in neither wildtype cells nor the 

STAT5-/- OBs (Fig. 3.25). However, the phosphorylated and thereby activated form of 

STAT1 (P-STAT1, phosphorylation at residue tyrosine 701) was not detectable in 

wildtype OBs in the presence or absence of GH. However, a strong expression of 

phosphorylated STAT1 was observed under GH treatment in the STAT5-deficient OBs. 

These results strongly suggested an elevated activation of STAT3 and preferably 

STAT1 in the absence of STAT5 and under stimulation by GH, which strongly 

correlated with the increased support of HSCs.  

 

In summary, our data illustrate that GH increases the number of HSCs in the vascular 

and the endosteal HSC niche. We showed that OBs and the transcriptional activator 

STAT5 in the OBs play an important role in the mediation of the GH effect in the 

endosteal HSC niche. In wildtype mice, STAT5 is suggested to regulate the number of 

HSCs in the endosteal niche. If STAT5 is absent in OBs, this results in a compensatory 

activation of STAT3 and particularly STAT1, correlating with the increase of HSC 

numbers in the endosteal niche. 
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4 Discussion 
 

4.1 Effects of 17-β-E2 on the HSC niche 
 

4.1.1 Long-term treatment of wildtype mice with 17-β-E2 leads to an 
increase of bone mass but not to an increase of bone-adhered 
HSCs 

 

It has been well established that long-term treatment with a pharmacological dose of 

17-β-E2 increases the bone mass, by increased activity of OBs and induced 

apoptosis in preosteoclasts (Liu and Howard 1991; Zecchi-Orlandini et al. 1999; 

Clodfelter et al. 2006). In 2003, Calvi et al. showed that genetically-altered 

osteoblastic cells, overexpressing activated parathyroid hormone/parathyroid 

hormone-related protein (PTH/PTHrP), are capable of regulating the HSC niche and 

increasing the HSC pool, mainly mediated via the upregulation of the 

Jagged1/Notch1 signaling pathway. Taking this into consideration, we suggested a 

possible regulatory role of increased levels of OBs on HSCs under 17-β-E2 

treatment. Due to direct interactions of specialized spindle-shaped OBs with HSCs, 

we assumed a regulation of bone-adhered HSCs by 17-β-E2 (Zhang et al. 2003). Not 

only could the properties of osteoblastic cells to support HSCs be altered, but also an 

increased number of OBs and a larger endosteal surface after estradiol treatment 

could generate quantitatively more endosteal HSC niches, and thereby an increase 

of bone-adhered HSCs. We showed, however, by FACS analysis and CAFC assay 

(Figs. 3.2, 3.3 and 3.5) that there were no alterations in bone-adhered HSCs under 

17-β-E2 treatment. This leads to the conclusion that 17-β-E2 treatment causes distinct 

changes in bone-forming cells, but not in the endosteal HSC niche. The supportive 

activity for HSCs is not altered by 17-β-E2. Hence, the observed effects are not 

comparable to the effects of PTH treatment (Zhang et al. 2003). 

Calvi et al. (2003) suggested an important role for the Notch signaling pathway in OB 

and HSC interaction, which is supposed to be altered under PTH treatment. 

However, we could not detect any changes in Jagged1 expression via real-time PCR 

analysis of 17-β-E2-treated OBs (data not shown). Hence, we suggest that 17-β-E2 

influences OBs and OCs via molecular mechanisms which are completely 

independent of the Jagged1/Notch1 pathway. In line with this conclusion, we showed 
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that on the one hand the ERα in OBs was essential for the increase of bone mass by 

17-β-E2, but on the other hand did not lead to elevation of HSC numbers. 

 

4.1.2 Long-term treatment of mice with 17-β-E2 leads to an increase in 
competent HSCs in the vascular niche of the BM 

 
In contrast to the results for the endosteal stem cell niche, we observed a striking 

increase in HSC numbers in the BM of the vascular niche harvested by flushing the 

BM as described previously (Sugiyama et al. 2006). The surface marker analysis for 

LSK and SLAM markers, the label-retention assay, the cobblestone colony-formation 

assay and the competitive repopulation analysis proved that fully-functional HSCs in 

the vascular niche were increased in numbers. 

The enhanced number of BrdU+ label-retaining cells under 17-β-E2 treatment 

indicated higher numbers of quiescent cells located in the BM. The BrdU+ slow-

cycling cells in the BM that maintain the BrdU label for 70 days are believed to be 

mainly HSCs, because only stem cells are most of the time maintained in the G0/G1 

phase of the cell cycle. However, it has recently been shown that BrdU label-

retaining cells do not exclusively represent the most primitive HSCs (Kiel et al. 

2007a). Therefore, it was essential to obtain further evidence of the increase of HSC 

numbers by 17-β-E2 treatment. Therefore, we performed the gold standard test of 

primitive HSCs, the capacity of long-term engraftment in a limiting dilution assay and 

confirmed that 17-β-E2 did indeed increase HSC numbers in the vascular niche (Figs. 

3.13 and 3.14). In summary, we confirmed by four assays that 17-β-E2 treatment 

induces a change in the vascular compartment of the HSC niche, resulting in 

elevated numbers of HSCs by a so far unknown mechanism. We assume that this 

effect is not mediated directly via the increased numbers of OBs, otherwise the bone-

adhered HSCs would also be increased. However, we can not rule out a secondary 

effect exerted by osteoblastic cells on the vascular environmental cells, e.g. by 

secretion of cytokines or growth factors affecting the stromal cells. 

 

4.1.3 Is the ERα  or the ERβ  the mediating molecule for the HSC number 

increase under 17-β-E2 treatment? 

 

Since most of the known effects of 17-β-E2 are mediated by one or both of the known 

estrogen receptors, ERα and ERβ (Katzenellenbogen and Korach 1997; Enmark and 
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Gustafsson 1999; Nilsson et al. 2001a; Pettersson and Gustafsson 2001; Lindberg et 

al. 2002), we decided to investigate first of all if the mechanism for this phenomenon 

is estrogen receptor dependent. To date, there are only a few data regarding the role 

of ERα in the hematopoietic system. The only study investigating 17-β-E2 treatment 

and HSCs showed that HSCs in ERα-knockout mice are not affected, by neither the 

mutation nor the pharmacological treatment (Thurmond et al. 2000). In this study, 

mice were treated with 5 mg 17-β-E2/kg body weight for 10 days, and the impact of 

17-β-E2 on mice was only confirmed by the degeneration of the thymus. Additionally, 

we could not detect any changes in HSC numbers at this time-point (data not 

shown), but showed that at later time-points (up to four weeks) the HSC numbers 

were increased. To define the role of ERα in the effect of 17-β-E2 on HSCs, we 

analyzed the ERα-knockout mice for the regulation of HSCs in the vascular niche 

under 17-β-E2 treatment. The LDA of lethally-irradiated mice reconstituted with BM 

from treated or untreated wildtype mice and ERα-knockout mice (Fig. 3.11) indicated 

that the ERα is not the mediating molecule in this alteration of HSCs under 17-β-E2 

treatment. 

In addition, we showed that ERα-knockout mice did not build up bone mass and did 

not limit the space in the BM for hematopoietic cells (Fig. 3.12). Flushing the BM from 

ERα-knockout mice under 17-β-E2 treatment led to the same overall cell numbers as 

in untreated knockouts, whereas in wildtype mice we observed a decrease of BM 

cells. Since both wildtype and ERα-knockout mice had elevated HSC numbers upon 

17-β-E2 exposure, these data clearly indicated that the increased numbers of HSCs 

in wildtype mice do not result from the limited space in the BM cavity. Therefore, this 

increase is not caused by shifted hematopoietic populations, because HSCs were 

also increased when the BM cavity was unaffected. 

The increase of HSC numbers, in mice lacking ERα, could also be mediated by ERβ. 

However surprisingly, the investigation of HSC surface markers from ERβ-knockout 

mice under 17-β-E2 treatment showed comparable results to the wildtype mice. LSK 

cells were increased by 17-β-E2 treatment in ERβ-knockout mice (Fig. 3.19). This 

experiment indicated that ERβ is also not responsible for the enhanced HSCs under 

estrogen influence. However, we can not exclude that in the absence of either ERα 

or ERβ, the presence of the other receptor mediates the estradiol effects. One 

possible way of investigating this would be the simultaneous treatment of mice with 

17-β-E2 and ICI 182,780, which is an antagonist for both ERs (Dauvois et al. 1993; 
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Parker 1993; Pink and Jordan 1996). Alternatively, the effects of 17-β-E2 in mice 

lacking both receptors (ERα and ERβ double-knockout, DERKO) could be analyzed. 

If nuclear receptors for estrogen are not involved, the recently discovered G-protein-

coupled receptor GPR30 could exert the estradiol effects. GPR30 activates the 

epidermal growth factor receptor signaling pathway and is thereby able to switch on 

extracellular signal-regulated kinase, culminating in c-fos expression, which is 

estrogen receptor-responsive element independent (Maggiolini et al. 2004; Revankar 

et al. 2005; Vivacqua et al. 2006). To clearly define the role of this ‘membrane-bound 

estrogen receptor’ GPR30, it would be necessary to analyze the GPR30-knockout 

mouse (Wang et al. 2008) for the reaction of 17-β-E2 treatment related to the HSCs 

in the vascular niche. 

 

4.1.4 17-β-E2 treatment of mice affects the environmental niche cells 
 
The literature shows that various substances like hormones, e.g. PTH (Calvi et al. 

2003), alter HSC numbers by influencing the HSC niches. Although a direct cell-

autonomous effect of 17-β-E2 on HSCs could not be ruled out, we have evidence that 

17-β-E2 treatment affected the stromal cells in the vascular HSC niche. We mimicked 

the vascular HSC niche in vitro and showed that pre-treatment of the stromal FBMD1 

feeder cells for 14 days with 17-β-E2 increased the support for HSCs, displayed by 

higher numbers of cobblestone-forming areas. A critical question in this regard is 

could we have observed a better support of HSCs because of a proliferative effect in 

the FBMD1 cells under the influence of 17-β-E2. However, the protein content of a 

control and 17-β-E2-treated FBMD1 culture was not altered (data not shown). 

The modified CAFC assay was the first hint that 17-β-E2 influences the environment 

of HSCs in vitro. To test whether this hypothesis is also appropriate in vivo, we 

performed the so-called ‘homing assay’, where CFSE-labeled lineage-negative 

sorted BM cells from wildtype mice were injected into sublethally irradiated control or 

17-β-E2-treated mice. Twelve hours post-transplantation, cells were traced by FACS 

analysis. Pre-treated wildtype mice showed that 17-β-E2 is indeed influencing the 

surrounding cells of the HSC niche. Under 17-β-E2 treatment, more CFSE+ lineage- 

cells were detected in the vascular niche compared to control mice (Fig. 3.16). 

Although only a small population of BM cells was CFSE-positive, we saw a clear 

increase in this population in the 17-β-E2-pre-treated recipients. First of all, 1×106 

CFSE-labeled cells were injected per mouse. Twelve hours later, the whole BM from 
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the vascular niche was isolated including about 40×106 cells. It has been shown that 

approximately 60% of the injected cells locate first of all to the endosteal niche 

(Nilsson et al. 2001b). Therefore, the CFSE+ fraction isolated from the vascular niche 

is rather small. Obviously, 17-β-E2 treatment has advantageous effects on the 

vascular HSC niche, which lead to a more comfortable environment for HSCs and 

makes homing much more efficient. A possible explanation for this advantageous 

alteration in the niche could be a modification of vasculature. Increased 

vascularization would lead to a higher oxygen and nutrient supply in the vascular 

niche, positively affecting HSCs. Due to more vessels, the surface for homing in the 

vascular niche would increase as well. An enhanced vascularization will be detected 

by a trichrome staining of bone sections and the staining with the endothelial marker 

MECA32 (a pan-endothelial cell antigen), which also represents vascularization. 

In addition, the CAR cells could be responsible for the observed effects. CAR cells 

strongly express CXCL12 and they have been shown to be indispensable in the HSC 

niche (Sugiyama et al. 2006). If CAR cells are the target of 17-β-E2 in the vascular 

HSC niche, it could explain why the niche delivers an altered environment resulting in 

increased homing of stem and progenitor cells. 

The effect in the vascular niche obviously leads to long-term changes in the stromal 

compartment of the niche, which is thereby better at supporting HSCs under the 

influence of 17-β-E2. Further suggestions for this effect could be changes in gene 

expression levels, particularly in adhesion and cell-cell interaction molecules, e.g. 

Tie2/Ang-1 (Arai et al. 2004), N-Cadherin/β-Catenin (Zhang et al. 2003), 

CXCL12/CXCR4 (Sugiyama et al. 2006) or Jagged1/Notch1 Stier et al. 2002; Calvi et 

al. 2003). Furthermore, secreted molecules like G-CSF (Ju et al. 2007), Flt3 (Sitnicka 

et al. 2002), stem cell factor and IL11 (Brandt et al. 1992; Miller and Eaves 1997) 

have been shown to be involved in the HSC number increase and HSC/stromal cell 

interactions. Surprisingly, none of the mentioned adhesion molecules, Ang-1, N-

Cadherin/β-Catenin, CXCL12/CXCR4 or Jagged1/Notch1, was regulated by 17-β-E2 

in FBMD1 cells detected by real-time PCR analysis (data not shown). Therefore, we 

concluded that these signaling pathways are not involved in increased HSC niche 

interactions under the influence of 17-β-E2. 

To investigate whether one of the ERs is involved in the mediation of 17-β-E2 effects 

in the vascular HSC niche, we suggest a BM transplantation of wildtype BM in either 

ERα- or ERβ-knockout mice. This model could clarify if the receptors in the niche are 

essential for mediating 17-β-E2 effects. However, the previous results showed that 
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both receptors, at least in their single action, are dispensable for the increase of HSC 

numbers in the vascular niche. 

 

4.1.5 17-β-E2 regulates the mRNA levels of different adhesion 
molecules in FBMD1 cells 

 

Due to the fact that 17-β-E2 did not alter the expression of typical candidate genes 

involved in HSC maintenance, we decided to investigate the gene expression in 

FBMD1 cells under 17-β-E2 treatment by a microarray analysis. To circumvent 

unpredictable factors of influence like different cell types, which could show variable 

regulation for certain molecules, we decided to use the FBMD1 cells as the RNA 

source for the microarray. These cells increased the cobblestone colony formation 

under the influence of 17-β-E2, and thereby the phenotype could be correlated to 

changes in gene expression. Table 3.1 represents the strongest regulated 

molecules, which were classified for a possible participation in HSC function. These 

six molecules were chosen for further investigation of their regulation via real-time 

PCR; only two of them could be confirmed. 

The first gene, the stem cell antigen CD34, is often used for the identification of 

HSCs, preferably in human BM since hHSCs, in contrast to mHSCs, are CD34-

positive, and it has previously been shown that this molecule can act as a regulator 

of hematopoietic cell adhesion in mice (Healy et al. 1995; Okuno et al. 2002). 

Surprisingly, CD34-knockout mice do not show any impairment of self renewal, but 

CD34 plays a role in the differentiation of HSCs (Cheng et al. 1996). Furthermore, it 

is clear that CD34 expression on mHSCs is highly dependent of the developmental 

stage of mice (Ito et al. 2000; Matsuoka et al. 2001). Apart from its function on 

hematopoietic cells, it has been shown to be expressed on murine mesenchymal 

stromal cells (Copland et al. 2008). Therefore, CD34 could be involved in the 

interaction of HSCs and stromal cells in response to 17-β-E2, which in turn would 

lead to a stronger attachment of HSCs in the niche and the retention of more 

undifferentiated HSCs in the niche. 

F-Spondin 1 is partly functionally similar to CD34. This adhesion molecule is highly 

expressed in the rat floor plate of vertebrates, a small population of epithelial cells 

localized at the ventral mid-line of the neural tube (Schoenwolf and Smith 1990; Klar 

et al. 1992). The secreted molecule is necessary for the guidance of commissural 

axons at the floor plate and for the regulation of migration of neural crest cells 

(Burstyn-Cohen et al. 1999; Debby-Brafman et al. 1999). Furthermore, F-Spondin is 
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able to inhibit the outgrowth of embryonic motor axons and has a dual role in this 

system by inhibiting motor neurons and promoting the outgrowth of commissural 

neurons (Tzarfati-Majar et al. 2001). Although there are no data about a possible role 

for F-Spondin 1 in hematopoiesis or the interaction of HSCs and their 

microenvironment, this molecule could be involved in cell migration and growth in the 

BM. 

Real-time PCR analysis showed that both genes were enhanced under 17-β-E2 

treatment in FBMD1 cells. 

In summary, we discovered a new effect of 17-β-E2 in the HSC niche. We strongly 

suggest that this effect is mediated via the microenvironmental cells of the vascular 

niche. We observed a clear upregulation of fully functional HSC numbers, shown by 

reconstitution of lethally-irradiated mice and the capacity to form cobblestone 

colonies. As possible mediators of this effect, we addressed two promising molecules 

which could be involved in the interaction of HSCs and their surrounding cells. To 

ascertain these possible mechanisms, we would perform a downregulation of these 

two distinct molecules by siRNA in FBMD1 cells. Due to the fact that siRNA only 

transiently alters the translation of a distinct mRNA into a protein, it would eventually 

be more reliable to use lentiviral stable transfections for this approach. The 

manipulated FBMD1 cells would be co-cultured with wildtype BM, and thereby 

investigated for their support of HSCs in the CAFC assay. 

Furthermore, we showed that LSK cells were decreased in the peripheral blood of 

17-β-E2-treated mice. These data correlated with the upregulation of CD34 and F-

Spondin 1. The upregulation of cell adhesion-involved molecules suggests a stronger 

retention of HSCs in the BM of the vascular niche. 

In summary, our data contribute to shedding a little more light on the regulation of the 

HSC niche. Apart from this, we have to change our thinking about the role of 

estrogens in mammals. Estrogens are mostly related to the female reproductive tract 

and to bone physiology. However in addition to their familiar functions, we have to 

now consider their role in the regulation of HSCs. Therefore, we have to consider 

possible side-effects on the HSC niche under 17-β-E2 therapy. Alternatively, one 

could also think of an adjusted 17-β-E2 therapy in the distant future against HSC 

exhaustion during ageing. Our data contribute to an ongoing clarification of the 

regulation of HSCs and the interaction with their special microenvironment, which in 

turn leads to further elucidations in the questions about HSC exhaustion with ageing 

or even diseases like hematopoietic failure and cancer. 
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4.2 GH elevates HSC numbers in the endosteal niche via a STAT5-
dependent mechanism 

 

4.2.1 GH increases HSC numbers in the vascular and endosteal niche 
of wildtype mice 

 
GH stimulates chondrocyte proliferation (Isaksson et al. 1982; Isaksson et al. 1985; 

Russell and Spencer 1985; Schlechter et al. 1986; Ohlsson et al. 1992), and the 

collagen production and proliferation of OBs (Morel et al. 1993; Kassem et al. 1994) 

by direct IGF-1-independent effects. Apart from its effects on bone-forming cells, the 

GHR is expressed in distinct leukocyte subpopulations, showing that GH is a 

hematopoietic growth and differentiation factor (Dorshkind and Horseman 2000). In 

addition, GH as well as overexpression of GH in bGH-transgenic mice lead to an 

increased number of HSCs measured as LSK cells. The same study also showed 

that the Jak/STAT signaling pathway is involved in this effect (Pello et al. 2006). 

These effects led to the speculation that GH mediates its effect, at least in part, via 

the endosteal HSC niche. 

First of all, we confirmed the results obtained in wildtype mice (Carlo-Stella et al. 

2004a) under the influence of GH (Fig. 3.19). The subpopulation of CD150-

positive/CD48-negative cells, representing the HSC fraction, was indeed increased 

after five weeks of GH treatment. We showed that the increase of HSC numbers 

affected both parts of the HSC niche. The effects on the vascular niche have 

previously been described (Pello et al. 2006). We showed for the first time that GH 

increased the number of HSCs located at the endosteal niche (Figs. 3.19 and 3.20). 

It is suggested that GH acts via the CXCL12/CXCR4 axis through an upregulation of 

SOCS. SOCS blocks CXCR4 and results in HSC mobilization and release of HSCs 

in the peripheral blood (Pello et al. 2006). Therefore, the Jak/STAT signaling 

pathway is involved in this effect, based on the enhanced expression of the STAT 

target genes SOCS 1 and SOCS 3 (Yoshimura 1998; Krebs and Hilton 2000; 

Schluter et al. 2000). Furthermore, CXCR4 in combination with CXCL12 is able to 

activate Jak/STAT signaling independent of SOCS proteins. Whether this hypothesis 

holds true for the GH-mediated increase of HSC numbers we observed remains to 

be elucidated. In our experiments, mice were treated for five weeks with GH, in 

contrast to a 10 day-treatment in the earlier study. However, we showed a direct 

involvement of STAT5 in OBs for elevated HSC numbers, suggesting indeed a 

similar mechanism by Jak/STAT signaling. 
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4.2.2 STAT5 is important in OBs and their interaction with HSCs 
 

To test whether STAT5 is essential in OBs for the GH effect on HSCs, we decided to 

disrupt the GHR signaling in OBs by deleting STAT5a/b in these cells, since 

conditional GHR-knockout mice are currently not available. We generated these 

STAT5OB mice for the first time, by specific deletion of STAT5 in OBs via the Cre 

recombinase under the control of the OB-specific Runx2 promoter (Rauch et al. 

2009, submitted). The recombination was efficient in calvarial bone and long bone 

(data not shown); however, bone architecture was not altered (data not shown). 

Thus, under basal conditions STAT5 seems not to contribute to bone mass, which is 

in line with findings of earlier STAT5-knockout mice, which still express a hypomorph 

STAT5 protein (Sims et al. 2000). 

STAT5OB mice had a normal response to GH regarding HSC numbers in the vascular 

niche. Since the vascular niche of STAT5OB mice is most likely not affected, these 

results are consistent with our expectation. All environmental cells as well as HSCs 

themselves should have normal STAT5 protein expression, except the OBs which 

are absent in this part of the niche. To test whether STAT5 is important in the 

vascular niche, further investigations of conditional knockout mouse models are 

required. These mice should lack STAT5 either in endothelial cells or mesenchymal 

cells. 

Interestingly and unexpectedly, the disruption of STAT5 in OBs caused a stronger 

increase of HSC numbers after GH administration. In addition, HSC numbers of 

untreated STAT5OB mice were even increased. 

We could confirm that the basal increase of HSC numbers in the endosteal niche of 

STAT5OB mice was caused by the lack of STAT5 in OBs by performing a CAFC 

assay with STAT5-deficient OBs and wildtype BM cells to investigate the 

cobblestone formation capacity (Fig. 3.23). In this assay, we showed that OBs 

isolated from STAT5-knockout embryos were better at supporting wildtype HSCs 

than heterozygous or wildtype OBs after five weeks of co-culture, represented by a 

higher frequency of HSCs. 

Therefore, STAT5 deficiency did not lead to a decreased response to GH, rather to 

an enhanced reaction resulting in increased HSCs. Our data strongly suggest an 

action of GH via the environmental cells which support HSCs. To prove this 

hypothesis unequivocally, an OB-specific GHR-knockout mouse should be analyzed. 

However, such a mouse line has not yet been generated. To overcome this obstacle, 
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we intend to analyze GHR-knockout mice that have received wildtype BM in the near 

future (Zhou et al. 1997). In these mice, GH signaling is disrupted in the entire 

environment, but is intact in HSCs. We would expect an impaired response to GH 

reflected by unimpaired HSC numbers. 

The increased HSC numbers in the endosteal niche of STAT5OB mice without GH 

treatment could have advantageous effects like resistance to myeloablative stress or 

HSC exhaustion with ageing (Ruzankina and Brown 2007). Both processes lead to 

decreased HSC numbers, which could result in hematopoietic failure. This 

conclusion is based on the hypothesis of the ‘primordial HSC’. The primordial HSC is 

located in the endosteal niche under low oxygen conditions. When the HSC starts to 

differentiate, it leaves this part of the niche and migrates to the vascular niche, 

leading to further differentiation and a distinct lineage fate (Wilson et al. 2007). Our 

conditional mutants have more HSC at the endosteum, under basal conditions and 

the influence of GH. If these were primordial HSCs, it would protect them from HSC 

exhaustion with ageing or myeloablative stress. To address this, aged mice could be 

investigated via competitive repopulation assay to analyze if their HSCs in the 

endosteal niche are more competent in reconstituting lethally-irradiated mice. 

Furthermore, 5-fluorouracil treatment could show whether the STAT5OB mice are 

resistant to myeloablative stress. 

One can also speculate about possible interactions of both niche parts. In our 

system, it would also be possible that the complete functional vascular niche, which 

is unaffected by the STAT5OB mutation, secretes secondary cytokines or growth 

factors under GH treatment. GH could even manipulate the named CXCL12/CXCR4 

axis (Sugiyama et al. 2006, Pello et al. 2006) which in turn affects the endosteal 

niche, although there is an important part, STAT5, of the signaling pathway missing. 

However, we showed a vigorous increase of HSCs in the endosteal niche, which 

greatly exceeded the situation in wildtype mice, therefore this hypothesis can be 

refuted. Rather, the increased basal levels of HSCs in untreated STAT5OB mice 

suggest a vascular niche-independent effect, triggered by the manipulated Jak/STAT 

signaling pathway in the endosteal HSC niche. 
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4.2.3 Activated STAT1 and STAT3 can compensate for the lack of 
STAT5 in OBs 

 

The unexpected enhanced HSC numbers by GH in the absence of STAT5 could be 

due to compensatory upregulation of other STAT factors mediating GH signaling. 

Indeed, STAT5-knockout OBs showed enhanced phosphorylation of STAT3 and 

STAT1 by GH (Figs. 3.24 and 3.25). In contrast, wildtype OBs showed only moderate 

activation of STAT3 and no measurable induction of STAT1 phosphorylation. 

Furthermore, STAT5 was efficiently phosphorylated in wildtype OBs after GH 

treatment, indicating that under normal conditions STAT5 is an important mediator of 

GH signaling in OBs. Cui et al. (2007) recently showed that STAT3 and STAT1 also 

mediate GH effects in the liver of STAT5-deficient mice. It was shown that the 

compensatory mechanism is disrupted when liver-specific STAT5-mutant mice are 

crossed with STAT1-knockout mice. Compensatory upregulation has also been 

observed in human fibroblasts derived from patients with Laron syndrome, caused by 

mutations in the STAT5b gene, which display elevated STAT1 levels (Kofoed et al. 

2003). To determine whether or not increased STAT1 activation is the cause of 

elevated HSC numbers in the endosteal niche of STAT5OB mice, we intend to cross 

STAT5OB mice with STAT1-knockout mice. These mice will show whether or not HSC 

numbers in the absence of STAT5 in OBs are corrected to normal levels when 

STAT1 is also abrogated. 

A possible explanation for this effect is that in wildtype mice STAT5 is able to inhibit 

STAT3 and STAT1, whereas its absence leads to activation of STAT3 and STAT1, 

and thereby to an increase in HSC numbers. To date, there are no data available 

regarding a direct inhibitory effect of STAT5 on other STAT proteins. However, the 

STAT5-dependent expression of inhibitors of STAT signaling is a likely explanation. 

The STAT5 target genes SOCS 1 and SOCS 3 (Monni et al. 2001; Morales et al. 

2002) are known to inhibit STAT1 phosphorylation and also STAT3 phosphorylation 

(Park et al. 2000; Vlotides et al. 2004). Whether SOCS 1 and SOCS 3 expression is 

reduced in STAT5-deficient OBs requires investigation. Also requiring investigation is 

whether overexpression of these factors diminishes elevated STAT1 and STAT3 

activation in these cells. 

In conclusion, the second part of this thesis contributes to the clarification of the 

HSCs and their interactions in the niche microenvironment. Furthermore, we have 

gained new insights into the molecular mediation of the GH effect on HSCs, as we 

now know that STAT5 in the OBs has an inhibitory effect on HSCs in the endosteal 
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stem cell niche. GH is used as standard therapy in individuals with GH deficiency 

(Dall et al. 2000; Drake et al. 2001) and it is also used for HSC mobilization (Arbona 

et al. 1998; Kroger et al. 2000; Carlo-Stella et al. 2004a). If one could prove that 

these HSCs are completely competent in reconstituting individuals with BM 

deficiency, GH would be an alternative for G-CSF-resistant BM donors (Lapidot and 

Petit 2002; Heim et al. 2003). Furthermore, GH actions on HSCs should be 

supervised when administered to GH-deficient patients. In conclusion, in the future 

GH could offer the possibility for a therapeutic approach against HSC exhaustion 

during ageing. 

Finally, although this thesis addresses two different osteogenic hormones, acting via 

distinct signaling pathways, there are interactions between the two pathways. It has 

previously been shown that particularly in adolescent children during puberty there is 

a strong relationship between sex steroids and GH (Veldhuis 1996; Veldhuis et al. 

2000; Coutant et al. 2004). We investigated the impact of two hormones both 

involved in bone metabolism and HSC maintenance. GH as well as 17-β-E2 upgrade 

bone quality, which is the main component of the endosteal HSC niche. The loss of 

estrogen or GH results in impaired bone growth or even osteoporosis and could 

affect the endosteal HSC niche. This study critically investigated the independent 

effects of GH and 17-β-E2 on HSCs and their specialized microenvironment. In 

summary, we showed that both hormones show striking effects in the HSC niche. 

Furthermore, we have contributed to the clarification of the molecular mechanisms 

behind these effects. Ultimately, we can not exclude a related effect of the 

investigated osteogenic hormones, which identifies new possibilities for the ongoing 

clarification of the HSC niche. 
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5 Materials and methods 
 

5.1 Materials 
 

5.1.1 Materials 
 

Cell culture flasks Greiner Bio-One 
Cell culture products, except cell culture 
flasks 

Becton Dickinson 

Cell strainers (40 µm) Becton Dickinson (BD) 
Cryovials for cell culture Sarstedt 
FACS tubes Becton Dickinson 
Mice strains C57/Bl6 

Ly 5.1 (in C57/Bl6 background) 
129 SvEV 
129 SvEv/Ola 

Micro-glass syringe for loading SDS-PAGE 
gels 

Hamilton 

Needles (27/26/24/23 gauge) Roth 
Optical tapes for covering real-time PCR 
plates 

Biorad 

Reaction tubes (0.5/1.5/2.0 ml) Roth 
Sterile filters for blue-cap flasks Millipore 
Sterile filters for syringes Millipore 
Syringes, single use (1/2/5/10 ml) Roth 
Thermo fast 96-well plates for real-time 
PCR 

Peqlab 

Table 5.1: List of materials used for experiments. 

5.1.2 Chemicals 
 

α-MEM Gibco-Invitrogen 
β-Mercaptoethanol for cell culture Gibco-Invitrogen 
17-β-Estradiol pellets Innovative Research of America 
17-β-Estradiol water soluble (cyclodextrin 
encapsulated) 

Sigma 

Agarose Biomol 
Agilent RNA 6000 nano reagents part I Agilent 
Ammonium persulfate Merck 
Biotaq Bioline 
BrdU-Flow kit Becton Dickinson 
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5(6)-Carboxyfluorescein-diacetate-N-
succinimidyl-ester (CFSE) 

Sigma 

Collagenase A Roche 
Dispase II Roche 
1,4-Dithiothreitol (DTT) Roth 
DMEM Gibco 
dNTPs used at a concentration of 2.5mM, 
unless otherwise stated 

Bioline 

ECL Pierce 
ECL-Plus GE Healthcare 
Ethanol p.A. and denatured Roth 
Ethylenediaminetetraacetic acid (EDTA) Roth 
Fetal calf serum (FCS) Gibco 
First strand buffer (with additional DTT) Qiagen 
Formaldehyde (37%, acid free) Roth 
Growth hormone (human) Merck-Serono 
Horse serum PAA 
Hydrocortisone Sigma 
IMDM Gibco 
Immobuffer for immolase Bioline 
Immolase Bioline 
Isopropanol Roth 
Lineage-cell depletion kit (# 130090858) Myltenyi Biotec 
Lysis buffer for proteins (Ras assay kit) Pierce 
Lysis buffer from EZ-DetectTM Ras 
activation kit 

Pierce 

Magnesium chloride for rt-PCR Bioline 
NH4 buffer for biotaq Bioline 
Non-essential amino acids (NEAA) PAA 
Nonidet P40 Roth 
Penicillin/streptomycin PAA 
Phosphate-buffered saline (PBS) PAA 
Platinum SYBR Green qPCR Super-Mix-
UDG 

Invitrogen 

Probidium iodide (1 mg/ml) BD Pharmingen 
Protease-Inhibitor complete mini  Roche 
Proteinase K Gerbu 
Reverse Transcriptase Qiagen 
RNAse A (100 KU/mg) Invitrogen 
RNeasy mini kit Qiagen 
RNAse Out Qiagen 
Rotiphorese 10xSDS-PAGE mix Roth 
SeeBlue Plus2 pre-stained standard 
(protein standard) 

Invitrogen 

Sensi mix for real-time PCR Quantace 
Sodium dodecyl sulfate (SDS) Roth 
SYBR-Green I Quantace 
Tetramethylethylenediamine (TEMED) Roth 
Trypsin/EDTA  PAA 
Tween 20 Roth 

Table 5.2: List of chemicals used for experiments. 
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5.1.3 Buffers and solutions 
 
All buffers were made with deionized distilled water, unless otherwise stated. 

 

10x Running buffer for SDS-PAGE pH 
8.3 

For 5 l: 
151.4 g Tris base 
721 g Glycine 
50 g SDS 
pH 8.3 

10x Transfer buffer for Western blotting For 5 l: 
151.4 g Tris base 
750.7 g Glycine 

1x Transfer buffer for Western blotting For 5 l: 
500 ml 10x Buffer 
500 ml Ethanol 
4 l ddH2O 

2x Sample buffer For 40 ml: 
16 ml 10% SDS 
5 ml 1M Tris pH 6.8 
4 ml Glycerol (86%) 
12.6 ml ddH2O 
Bromphenol blue (~25 mg) 

50x TAE 2M Tris base 
1M Acetic acid  
50mM EDTA pH 8.0 

Erythrocyte lysis buffer 10x stock 
solution 
(prepare 1x solution fresh each time) 

89.9 g NH4Cl 
10.0 g KHCO3 
370.0 mg EDTA (pH 8.0) 
Dissolve in 1 l H2O 
Adjust pH to 7.3, store at 4°C (tightly 
closed) 

FACS buffer PBS  
2% FCS 

MACS buffer PBS 
2% BSA 
50mM EDTA 
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Stripped serum (covered with dextran-
treated charcoal (DCC) for the removal 
of steroids) 

FCS or HS was heat inactivated for 30 
min at 56°C. Afterwards, serum was 
mixed with a pellet of an equivalent 
amount of DCC slurry (0.05% dextran, 
0.5% charcoal in 50mM Tris buffer pH 
7.4, stirred at 4°C overnight). The mixture 
was incubated for 45 min at 45°C, 
followed by centrifugation (20 min, 4500 
g, 4°C). The supernatant was transferred 
to a fresh DCC pellet and the procedure 
was repeated. After sterile filtration, the 
DCC-stripped serum was stored at -
20°C. 

Stripping buffer for removing antibodies 
from proteins on nitrocellulose 
membranes 

2% SDS 
62mM Tris HCl pH 6.8 
100mM β-Mercaptoethanol 

Tail buffer 50mM Tris HCl pH 8.0 
100mM EDTA pH 8.0 
100mM NaCl 
20% SDS 

TBS-T 20mM Tris HCl pH 7.5 
137mM NaCl 
0.1% Tween 20 

TE buffer pH 7.5 10mM Tris HCl 
0.5M EDTA 

Table 5.3: List of laboratory-prepared buffers and solutions used for experiments. 

5.1.4 Media for cell culture 
 
FBMD1 cells IMDM 

10% FCS 
5% HS 
1% NEAA 
1% Pen/Strep 
10-5M Hydrocortisone 
50µM β-Mercaptoethanol 

Primary OBs α-MEM 
10% FCS 
1% NEAA 
1% Pen/Strep 

CAFC assay IMDM 
10% FCS 
5% HS 
1% NEAA 
1% Pen/Strep 
10-5M Hydrocortisone 
50µM β-Mercaptoethanol 
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Medium for E2 treatment of FBMD1 cells IMDM 

10% DCC-FCS 
5% DCC-HS 
1% NEAA 
1% Pen/Strep 
10-5M Hydrocortisone 
50µM β-Mercaptoethanol 

Table 5.4: List of media used for experiments. 

5.1.5 Primers for genotyping 
 

Cbfa1-Cre Primer 2.5 5´-TGG-CTT-GCA-GGT-ACA-GGA-G-3´ 
Cbfa1-Cre Primer 24 5´-CCA-GGA-AGA-CTG-CCA-GAA-GG-3´ 
Cbfa1-Cre Primer 30 5´-GGA-GCT-GCC-GAG-TCA-ATA-AC-3´ 
ERα-Primer 539 5´-TAG-GCT-TTG-TCT-CGC-TTT-CC-3´ 
ERα-Primer 540 5´-CCC-TGG-CAA-GAT-AAG-ACA-GC-3´ 
ERα-Primer 541 5´-AGG-AGA-ATG-AGG-TGG-CAC-AG-3´ 
GHR In3+1  5´-CCT-CCC-AGA-GAG-ACT-GGC-TT-3´ 
GHR In4-1 5´-CCC-TGA-GAC-CTC-CTC-AGT-TC-3´ 
GHR Neo-3 5´-GCT-CGA-CAT-TGG-GTG-GAA-ACA-T-3´ 
STAT1 P1 5´-CAG-ATA-ATT-CAC-AAA-ATC-AGA-GAG-3´ 
STAT1 P2 5´-CTG-ATC-CAG-GCA-GGC-GTT-G-3´ 
STAT1 P3 5´-TAA-TGT-TTC-ATA-GTT-GGA-TAT-CAT-3´ 
STAT5-Primer 1685 5´-GAA-AGC-ATG-AAA-GGG-TTG-GAG-3´ 
STAT5-Primer 1686 5´-AGC-AGC-AAC-CAG-AGG-ACT-AC-3´ 
STAT5-Primer 1709 5´-CCC-ATT-ATC-ACC-TTC-TTT-ACA-G-3´ 
STAT5-Primer 1842 5´-AAG-TTA-TCT-CGA-GTT-AGT-CAG-G-3´ 
Tie2Cre I 5´-CGG-TCG-ATG-CAA-CGA-GTG-ATG-AGG-3´ 
Tie2Cre II 5´-CCA-GAG-ACG-GAA-ATC-CAT-CGC-TCG-3´ 

Table 5.5: List of primers used for genotyping. 
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5.1.6 Primers for real-time PCR 
 

Actin fwd 5´-AGA-GGG-AAA-TCG-TGC-GTG-AC-3´ 
Actin rev 5´-CAA-TAG-TGA-TGA-CCT-GGC-CGT-3´ 
CD34 fwd 5´-GCA-GGA-AAG-TGG-CAT-CTC-TT-3´ 
CD34 rev 5´-ACC-ACA-ACT-TGA-CCC-AAA-GG-3´ 
Decorin fwd 5´-TCA-GTC-CAG-AGG-CAT-TCA-AA-3´ 
Decorin rev 5´-TTG-GTG-ATC-TTG-TTG-CCA-TC-3´ 
ERα fwd 5´-TGA-ACA-CAG-TGG-GCT-TGC-T-3´ 
ERβ fwd 5´-TCG-TTT-CGC-ATT-CCT-ACC-TC-3´ 
ERα rev 5´-CCA-TGA-CCA-TGA-CCC-TTC-AC-3´ 
ERβ rev 5´-ATG-AAG-GCC-TGA-AGC-TGT-GT-3´ 
F-Spondin fwd 5´-GGT-CCC-AGT-GGT-CTG-AAT-GT-3´ 
F-Spondin rev 5´-CTG-CTC-ACT-CCT-CCT-GCT-CT-3´ 
Gelsolin fwd 5´-GAC-TGT-GCA-GCT-GAG-GAA-TG-3´ 
Gelsolin rev 5´-TGA-AGT-AGC-CGG-AGA-AGG-TG-3´ 
Peroxiredoxin 4 fwd 5´-CCC-ACT-GGA-TTT-CAC-CTT-TG-3´ 
Peroxiredoxin 4 rev 5´-CCC-CAG-TCC-TCC-TTG-TCT-T-3´ 

Table 5.6: List of real-time PCR primers. 

 

5.1.7 Western blot antibodies 
 

Antibody Source Company Specificity Product 
size 

β-Actin (I-19): sc-
1616 

goat Santa Cruz mouse, rat, human 42 kDa 

P-STAT1 rabbit Cell 
Signaling 

mouse, rat, human 84, 91 kDa 

P-STAT3 rabbit Cell 
Signaling 

mouse, rat, human 79, 86 kDa 

P-STAT5 rabbit Cell 
Signaling 

mouse, human 90 kDa 

STAT1 rabbit Cell 
Signaling 

mouse, rat, human 91, 84 kDa 

STAT3 rabbit Cell 
Signaling 

mouse, rat, human 79, 86 kDa 

STAT5 (C17): sc-
835 

rabbit Santa Cruz mouse, rat, human 92 kDa 

Table 5.7: List of Western blot antibodies. 
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5.1.8 FACS antibodies 
 

Antibody Source Company Specificity Conjugate 
B220 rat eBioscience mouse, 

human 
PE, FITC 

CD117 (c-Kit) rat eBioscience mouse APC 
CD11b rat eBioscience mouse, 

human 
APC, FITC, PE 

CD11c hamster eBioscience mouse APC 
CD150 rat eBioscience mouse PE 
CD19 mouse eBioscience mouse APC 
CD244 (2B4) rat eBioscience mouse FITC 
CD3 hamster eBioscience mouse PE, APC, FITC 
CD4 rat eBioscience mouse PE, FITC, APC 
CD48 hamster eBioscience mouse APC 
CD8a rat eBioscience mouse FITC, PE, APC 
FC-Block 
(CD16/CD32) 

rat eBioscience mouse pure 
 

GR-1 rat eBioscience mouse PE, FITC 
MHCII  rat eBioscience mouse PE 
Sca1 (Ly6A-E) rat eBioscience mouse PE, biotinylated 
Secondary 
Streptavidin 
conjugated APC-
Cy7 

- eBioscience biotin APC-Cy7 

Ter-119 rat eBioscience mouse FITC, PE 
Table 5.8: List of FACS antibodies. 

5.1.9 Investigated knockout mice 
 

The STAT5-loxP mice and the STAT5-knockout mice were kindly provided by Lothar 

Hennighausen at the National Health Institute in Bethesda, USA (Cui et al. 2004). 

The GHR-knockout mice were kindly provided by John J. Kopchick at the Edison 

Biotechnology Institute and Department of Biomedical Sciences, College of 

Osteopathic Medicine, Ohio University in Athens, Ohio, USA (Zhou et al. 1997). 

The STAT1-knockout mice were kindly provided by the Department of Veterinary 

Molecular Genetics and Biotechnology, Head: Mathias Müller, at the Institute of 

Animal Breeding and Genetics, Vienna, Austria (Durbin et al. 1996). 

The Tie2Cre-transgenic animals were kindly provided by the laboratory of Bernd 

Arnold from the DKFZ in Heidelberg, Germany (Constien et al. 2001). 

The ERα- and ERβ-knockout mice were kindly provided by the laboratory of Pierre 

Chambon at the Institute for Genetics and Cellular and Molecular Biology in 

Strasbourg, France (Lubahn et al. 1993; Krege et al. 1998). 
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The ER-loxP animals were kindly provided by the laboratory of Günther Schütz at the 

DKFZ in Heidelberg, Germany (Wintermantel et al. unpublished). 

All transgenic animals were bred either in C57/Bl6 (STAT5OB, STAT5 knockout, 

STAT1 knockout, Tie2Cre, ERαRunx2cre), 129 SvEv (ERα knockout and ERβ knockout) 

or 129 SvEv/Ola (GHR knockout) background. 

 

 

5.2 Methods 
 

5.2.1 Isolation of DNA from mouse tail biopsy for genotyping 
 

The tip of a mouse tail was digested with 600 µl tail buffer and 20 µl proteinase K for 

2 h at 56°C and 2,000 rpm, until the tissue was completely pyrolyzed. Two hundred 

and fifty µl of a 6M NaCl solution was added, mixed thoroughly and centrifuged at 

16100 g for 7 min at RT. The supernatant was transferred into a new 1.5 ml reaction 

tube, and 500 µl isopropanol was added to precipitate the DNA. The tube was 

shaken thoroughly (to optimize the precipitation, the tube can be incubated for at 

least 30 min at -20°C), and centrifuged again for 10 min at 16100 g and RT. The 

supernatant was removed carefully, and the pellet washed with 70% ethanol for 30 

min at RT. Following centrifugation for 10 min at 16100 g (RT), the supernatant was 

removed, and the pellet dried for 15 min under the fume hood. The pellet was diluted 

according to its size in 20–100 µl TE buffer for 2 h at 37°C. The DNA solution was 

stored at -20°C. 

 

5.2.2 PCRs for genotyping 
 

PCR is a method to amplify DNA from individual gene loci. All PCR-mastermixes 

were prepared on ice. Genomic DNA (isolated from tail biopsy) was added. The 

mixture was incubated according to the specialized prototcol for each PCR.  

 

ERα  PCR 

 
Mastermix: 

PCR buffer (NH4 buffer) 2.5 µl 
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MgCl2 0.75 µl 
dNTPs 2.0 µl 
Primer mix (0.6 pmol) 1.0 µl 
Taq (biotaq) 0.2 µl 
H2O 17.55 µl 
 24 µl (0.5 µl template) 

Table 5.9: Mastermix for ERα genotyping. 

 
Program and expected fragments: 

94°C (3´) 

94°C (20´´) 
58°C (20´´) 
72°C (1´) 

 
35 cycles 

72°C (7´) 
10°C forever 

Results: 
WT: 360 bp 
Floxed: 497 bp 
Deletion: 431 bp 

Table 5.10: Program and expected results for ERα genotyping. 

 

Runx2Cre PCR 
 
Mastermix: 

PCR buffer (immobuffer) 2.5 µl 
MgCl2  2.0 µl 
dNTPs 2.0 µl 
Primer 24  0.75 µl 
Primer 30  0.75 µl 
Primer 2.5 0.1 µl 
Taq (immolase) 0.4 µl 
H2O 15.5 µl 
 24 µl (0.5 µl template) 

Table 5.11: Mastermix for Runx2Cre genotyping. 
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Program and expected fragments: 

94°C (2´) 

94°C (20´´) 
59°C (30´´) 
65°C (40´´) 

 
40 cycles 

65°C (10´) 
10°C forever 

Results: 
WT: 780 bp 
Transgene: 600 bp 

Table 5.12: Program and expected results for Runx2Cre genotyping. 

 

STAT5-loxP PCR 
 
Mastermix: 

PCR buffer (NH4 buffer) 2.5 µl 
MgCl2 1.0 µl 
dNTPs 2.0 µl 
Primer 1685 0.5 µl 
Primer 1686 0.5 µl 
Primer 1842 0.5 µl 
Taq (biotaq) 0.2 µl 
H2O 16.8 µl 
 24 µl (1 µl template) 

Table 5.13: Mastermix for STAT5-loxP genotyping. 

 

Program and expected fragments: 

94°C (3´) 

55°C (30´´) 
72°C (2´+30´´) 
94°C (20´´) 

 
35 cycles 

72°C (10´) 
10°C forever 

Results: 
WT: 450 bp 
Deletion: 350 bp 
Floxed: 200 bp 

Table 5.14: Program and expected results for STAT5-loxP genotyping. 
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STAT5-null PCR 
 
Mastermix: 

PCR buffer (NH4 buffer) 2.5 µl 
MgCl2 1.0 µl 
dNTPs 1.0 µl 
Primer 1686 0.5 µl 
Primer 1709 0.5 µl 
Taq (biotaq) 0.1 µl 
H2O 18.4 µl 
 24 µl (1 µl template) 

Table 5.15: Mastermix for STAT5-null genotyping. 

 
Program and expected fragments: 

94°C (3´) 

55°C (30´´) 
72°C (2´+30´´) 
94°C (20´´) 

 
35 cycles 

72°C (10´) 
10°C forever 

Results: 
WT: no product 
Deletion: 570 bp 

Table 5.16: Program and expected results for STAT5-null genotyping. 

 

STAT1 PCR 
 

Mastermix: 

PCR buffer (NH4 buffer) 2.0 µl 
MgCl2 1.2 µl 
dNTPs 2.0 µl 
Primer 1 0.75 µl 
Primer 2 0.1 µl 
Primer 3 0.75 µl 
Taq (biotaq) 0.1 µl 
H2O 12.5 µl 
 18 µl (0.5 µl template) 

Table 5.17: Mastermix for STAT1 genotyping. 
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Program and expected fragments: 

95°C (5´) 

95°C (30´´) 
55°C (40´´) 
72°C (40´´) 

 
40 cycles 

72°C (5´) 
10°C forever 

Results: 
WT: 140 bp 
Mutant: 340 bp 
Heterozygous: both 
fragments 

Table 5.18: Program and expected results for STAT1 genotyping. 

 
GHR PCR 

 
Mastermix: 

PCR buffer (immobuffer) 2.5 µl 
MgCl2 2.0 µl 
dNTPs 2.0 µl 
In3+1 0.5 µl 
In4-1 0.5 µl 
Neo-3 0.5 µl 
DMSO 1.0 µl 
Taq (immolase) 0.4 µl 
H2O 14.6 µl 
 24 µl (0.5 µl template) 

Table 5.19: Mastermix for GHR genotyping. 

 
Program and expected fragments: 

95°C (2´) 

95°C (15´´) 
58°C (20´´) 
72°C (30´´) 

 
40 cycles 

72°C (10´) 
10°C forever 

Results: 
WT: 390 bp 
Mutant: 220 + 290 bp 
Heterozygous: all three 

bands 

Table 5.20: Program and expected results for GHR genotyping. 
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Tie2Cre PCR 
 
Mastermix: 

PCR buffer (immobuffer) 2.5 µl 
MgCl2 2.0 µl 
dNTPs 2.0 µl 
Primer Cre I 0.5 µl 
Primer Cre II 0.5 µl 
Taq (immolase) 0.4 µl 
H2O 16.1 µl 
 24 µl (0.5 µl template) 

Table 5.21: Mastermix for Tie2Cre genotyping. 

 
Program and expected fragments: 

94°C (3´) 

55°C (30´´) 
72°C (2´+30´´) 
94°C (20´´) 

 
39 cycles 

72°C (10´) 
10°C forever 

Results: 
WT: no product 
Transgene: 600 bp 

Table 5.22: Program and expected results for Tie2Cre genotyping. 

 

5.2.3 RNA isolation from primary cells and cell lines 
 
The isolation of RNA was performed with the RNeasy Mini Elute Cleanup Kit from 

Qiagen. The protocol is included in the kit or ready for download at 

http://www1.qiagen.com/literature/handbooks/literature.aspx?id=1000290&r=1833. 

 

5.2.4 Digestion of DNA in RNA samples 
 
DNA potentially remaining after RNA isolation was digested with RNase-Free DNase 

according to protocols from Qiagen 

(http://www1.qiagen.com/literature/Default.aspx?Term=DNAse&Language=EN&Liter

atureType=4%3b8%3b9%3b10&ProductCategory=0). 

5.2.5  Determining the quantity and quality of isolated RNA 
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For the estimation of the quantity and quality of isolated RNA, the Agilent RNA 6000 

nano labchip kit was used, followed by measurement of the sample chips in the 

Agilent 2100 bioanalyzer (Agilent). 

 

5.2.6 cDNA synthesis from RNA samples using reverse transcription 
 

Reverse transcriptions started with the incubation of 1 µg RNA (in up to 10 µl 

volume) with 1 µl oligo-dT primers for 5 min at 70°C. This mix was kept on ice until 

the mastermix was added. 

 

Mastermix Amount in µ l per 9 µ l test sample 
5x First strand buffer 4.0 
100mM DTT 2.0 
10mM dNTP 1.0 
RNaseOUT 0.4 
SuperScript II reverse transcriptase 1.0 
DEPC-water 0.6 

Table 5.23: Mastermix for reverse transcription of RNA to cDNA. 

 

Per sample, 9 µl of mastermix was added and incubated at 50°C for 1 h under mixing 

of the samples every 20 min. The reaction was inactivated by heating the reaction to 

65°C for 15 min. Eighty µl RNase-free water was added to the synthesized cDNA. 
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5.2.7  cDNA check using β-actin PCR 
 

Chemicals Amount in µ l per 25 µ l test sample 
PCR buffer 2.5 
MgCl2 1.0 
dNTP 1.0 
β-Actin fwd 1.0 
β-Actin rev 1.0 
Taq  0.1 
H2O 17.4 
cDNA 1.0 

Table 5.24: Mastermix for β-actin PCR for checking correct reverse transcription of RNA to 
cDNA. 

 
Program and expected fragments: 

95°C (3´) 

95°C (15´´) 
57°C (20´´) 
72°C (30´´) 

 
27 cycles 

72°C (7´) 
10°C forever 

Results: 
One band at 150 bp 

Table 5.25: Program and expected results for actin PCR. 

 

5.2.8 Selection of primers for real-time PCR 
 

All primers for real-time PCR were picked with the Primer 3 program 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). The sequences of the 

chosen genes were found in the Ensembl Genome Browser 

(http://www.ensembl.org/index.html). To make sure that the primers would only align 

on the chosen gene, the primer sequences were tested with the BLAST program for 

nucleotide-nucleotide interactions from NCBI 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn

&MEGABLAST=on&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&

SHOW_DEFAULTS=on). 
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5.2.9 Real-time PCR 
 

Chemicals Amount in µ l per 15 µ l test sample 
Sensi mix 10.0 
SYBR-Green 0.2 
Forward primer 0.4 
Reverse primer 0.4 
H2O 4.0 
DNA 5.0 (1:12 diluted) 

Table 5.26: Mastermix for real-time PCR using chemicals from Quantace. 

 
Chemicals Amount in µ l per 15 µ l test sample 
Platinum SYBR Green qPCR Super-Mix-
UDG 

9.3 

Forward primer 0.4 
Reverse primer 0.4 
H2O 4.9 
DNA 5.0 (1:12 diluted) 

Table 5.27: Mastermix for real-time PCR using chemicals from Invitrogen. 

 

Every sample was investigated in triplet. In the analysis of every gene, a standard 

curve (single test) was included. Therefore, a cDNA (from the pool of the investigated 

samples) was diluted in seven steps, each with 1:5. Starting with the undiluted cDNA, 

the dilution factor at the 7th step was 0.0064. 

 

The analysis of real-time PCR was performed with the software Bio-Rad iQ 5.0. The 

threshold cycles (Tc) were automatically calculated by the software and were then 

included in the calculation of the relative gene expression as follows: 

Ratio = (EGOI)ΔCP(control-sample) / (EHKG)ΔCP(control-sample) 

 

This formula referred to the efficiency of the PCR, which was calculated from the 

slope by the following term: 

 

E = 10(-1/slope) 

 

The slope was again automatically calculated by the software via the specific 

threshold cycles of the standard curve. 

5.2.10 Microarray analysis of FBMD1 cells after 17-β-E2 treatment 
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Microarray analysis was performed by Markus Hildner from the Institute of Vascular 

Medicine (Head: Andreas Habenicht, FSU Jena) on an Affymetrix chip ‘430 A’ for a 

Mus musculus genome-wide screen representing approximately 14,000 well-

characterized genes. Therefore, total RNA of control and 10 day-17-β-E2-treated 

FBMD1 cells were isolated and cRNA was hybridized on an Affymetrix ‘A430’ 

microarray chip to determine genome-wide mRNA expression. Bioinformatical 

processing and statistical analysis of the raw data using Affymetrix software led to 

the identification of upregulated and downregulated mRNAs. Further information and 

a detailed description of the system is available at http://www.med.uni-jena.de/ivm/. 

 

5.2.11 Magnetic sort of cell populations with the autoMACS 
 

This method is one possible method to sort cells due to the expression of specific cell 

surface molecules. Thereby, the cells were incubated with magnetic (ferric 

conjugates) antibodies and sorted as positive (magnetic) or negative (non-magnetic) 

selection. A magnetic column in the autoMACS device was then able to perform the 

selection. Protocols for handling and staining were included with the specific 

antibodies from Myltenyi Biotec. 

 

5.2.12 FACS due to cell surface molecules 
 

FACS is a method for analyzing and sorting cell populations due to the expression of 

specific cell surface molecules. The whole experiment was performed on ice. A 

single cell suspension was prepared by pushing the investigated tissue samples 

through a 40 µm cell strainer. After centrifuging the cells for 5 min at 583 g and RT, 

10 µl FC block (CD16/32 in dilution 1:16 in FACS buffer) was added for 15 min at RT 

to every sample, to avoid non-specific binding of the antibodies. Afterwards, 50 µl of 

the fluorescent conjugated antibody was added to the pellet for 25 min. Unless 

otherwise stated, all antibodies were diluted 1:100 in FACS buffer. The cells were 

washed twice after staining and diluted in FACS buffer. The measurement of the 

samples was performed with the FACSCalibur or the FACSCanto II. Data analysis 

was performed with FlowJo 8.0. 

 

5.2.13 SDS-PAGE and Western blot analysis 
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To analyze the proteome of cells, proteins can be isolated by lyzing the cells and 

detecting the proteins with specific antibodies. Unless otherwise stated, in all 

experiments for each sample, the cells of one 10 cm (diameter) cell culture dish were 

used to isolate proteins. The confluent cells were washed twice with cold PBS on ice, 

and 500 µl lysis buffer (including protease inhibitors) was added. The cells were 

scraped with a silicon scraper, and this suspension was pipetted into a 1.5 ml 

reaction tube. Samples were incubated for at least 5 min on ice and centrifuged for 

10 min at 4°C and maximum speed 16100 g. The supernatant was separated into a 

new tube, and pellet and supernatant were stored at -20°C. 

For separation of proteins, SDS-PAGE followed by Western blot analysis was used 

as a standard procedure (Laemmli 1970). For loading the samples, 50 µl of protein 

lysate, 50 µl 2x sample buffer and 10 µl DTT were mixed, heated at 94°C for 3 min, 

and centrifuged for 10 min at 16100 g and RT. Approximately 80 µl of the 

supernatant was loaded on the collecting gel. 

The size of the investigated protein determines the percentage of the separating gel; 

in principle, the smaller the protein the higher the concentration of the separating gel. 

 

Acrylamide concentration 
(%) 

6 8 10 12 15 

Separation range (kD) 50–200 30–95 20–80 12–60 10–43 

Table 5.28: Separation range of SDS gels. 

 

Separation of proteins was performed at 40 mA for approximately 3.5 h. Afterwards, 

proteins were transferred to a nitrocellulose membrane for 3 h at 85 V (or 20 V o.n.) 

via Western blotting. After blotting, the nitrocellulose membrane was washed in TBS-

T and was cut if necessary to detect several proteins of different size in one 

experiment. Due to the specificities of the antibodies, the membrane was blocked 

with either milk powder or BSA to avoid non-specific binding. Blocking of the 

membrane was followed by incubation with the first antibody according to its specific 

protocol (datasheet of specific antibody). After washing 3 x 15 min, the secondary 

antibody conjugated with HRP was added onto the membrane for 1 h at RT. For 

detection, ECL or ECL-Plus was used. The membrane was incubated with the 

reagent for 5 min, then the chemiluminescence was detected with an x-ray film. 

 

5.2.14 Isolation of primary OBs 
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For the isolation of OBs, calvariae of wildtype mouse embryos were isolated from 

mice not older than PND5. For STAT5-/- OBs, embryos were taken at E18.5. The 

whole preparation was conducted in sterile conditions under the laminar air-flow box. 

With a pair of fine scissors, the skin around the upper head of the embryo was 

removed and the calvaria was cut out with a cut around the head above the ears, 

eyes and nose. The calvariae were washed in PBS and the outer parts of neck or 

nose tissue were removed. Calvariae were digested in 1 ml 0.1% collagenase/0.1% 

dispase mix in α-MEM for 10 min at 37°C and 900 rpm shaking. After this first 10 min 

of digestion, the supernatant was discarded and 1 ml new digestion mix was added. 

The incubation time for digestion was always 10 min at 37°C and 900 rpm. After the 

second digestion, the supernatant was collected on ice and this procedure was 

repeated until the fifth digestion. The supernatants from the same calvaria were 

pooled, and after five digestions, centrifuged at 583 g for 5 min (RT). The 

supernatant was removed and the pellet was plated for each calvaria onto a 5 cm 

cell culture dish at 37°C, 5% CO2 in α-MEM with 10% FCS, 1% pen/strep, 1% NEAA. 

Cells were split at confluency, but not more than twice. To achieve typical 

osteoblastic phenotype, cells were differentiated at confluency by adding 10mM β-

glycerophosphate and 50 µg/ml ascorbic acid to the medium. 

 

5.2.15 Treatment of primary OBs with GH 
 

Unless otherwise stated, the cells were treated with 200 µg of GH for 2 h. 

 

5.2.16 Culture of stromal cell line FBMD1 
 

The FBMD1 cell line was established from primary BM and can be differentiated into 

adipocytes. Cells were cultured in IMDM with 10% FCS, 5% HS, 1% pen/strep, 10-5M 

hydrocortisone and 10-5M β-mercaptoethanol at 37°C and 5% CO2. 

5.2.17 The CAFC assay 
 

This co-culture assay allows the numbers of HSCs in the BM of an organism to be 

estimated. FBMD1 cells were cultured in the inner 60 wells of a 96-well plate until 

they were confluent. The outer wells were filled with sterile water for optimal 

humidification. The BM was seeded onto the feeder layer in six different dilutions. 

Starting with the dilution of 4.05×105 cells/ml, this suspension was diluted five times 
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each 1:2, and thereby ending in dilution six with 1,667 cells/ml. To obtain a 

statistically reliable result, 20 wells were filled with BM cells from the same dilution. 

The feeder cells for the CAFC assay can be varied, primary OBs or primary BM 

stromal cells can also be used. To ensure that the feeder cells survived during the 

duration of the assay (5–7 weeks), the 96-well plates were pre-coated with 0.5% 

gelatine before seeding the feeders. 

After 35 days with a weekly medium change, every well was observed for 

cobblestone area-forming cells. Formation of these special colonies in a feeder cell-

submitted surrounding is a unique feature of HSCs. The investigated wells were 

scored as ‘positive’ if there were cobblestone-forming areas or ‘negative’ if there 

were no cobblestone-forming areas. Due to the number of negative wells in a certain 

dilution and the distinctive cell number of the dilution, a frequency of HSC was 

calculated using Poisson statistics. 

 

5.2.18 Isolation of vascular and endosteal HSCs 
 

After killing mice with either CO2 or cervical dislocation, the hindlimbs and the upper 

arms were prepared and all muscles were removed. HSCs from the vascular niche 

were harvested by flushing the BM with a 1 ml syringe, filled with IMDM medium 

containing 2% FCS and 1% pen/strep. To harvest the tightly attached HSCs of the 

endosteal HSC niche, the BM was first flushed out with medium, as described above. 

The empty bones were cut into very small pieces and these pieces were digested 

with a 0.1% collagenase/0.1% dispase mix in IMDM without supplements for 2 h at 

37°C at 900 rpm shaking. After digestion, the mix was filtered over a cell strainer, 

centrifuged at 583 g for 10 min (RT), and the cell pellet was diluted in CAFC medium. 

The cell suspension was then used in the CAFC assay or FACS analysis. 

 

5.2.19 LDA – in vivo analysis via BM transplantation into lethally-
irradiated mice 

 

This method allows the determination of whether or not a HSC is able to repopulate a 

lethally-irradiated mouse. To distinguish between the investigated cells and the 

innate cells of the irradiated mouse, two specific mouse strains were used, which 

differ only in the isoform of a cell surface alloantigen named CD45. All recipient mice 

had the isoform CD45.1, all mice serving as donors for transplantation had the 

isoform CD45.2. Mice were lethally irradiated with two times 5.5 Gy with time lag of 
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at least 2 h to keep the destruction of the intestine low. For transplantation, the mice 

were injected i.v. with the mixture of compromised BM cells and the test cells. 

Thereby, the test cells were applied in three different dilutions to estimate the number 

of HSCs among the test cell population, whereby the amount of compromised cells 

was constant for every transplanted mouse. The compromised cells guaranteed on 

the one hand the survival of the lethally-irradiated mice and performed selective 

pressure on the tested cells on the other hand. 

 

 

Figure 5.1: Performance of the LDA in CD45.1 (Ly 5.1) mice. Figure from Klug and Jordan 2004, 
“Hematopoietic Stem Cell Protocols”. 

 

Fifteen weeks post-transplantation, the transplanted mice underwent a blood 

analysis. After lyzing the erythrocytes with NH4Cl solution according to standard 

protocols, leukocytes were stained for B cells (B220), T cells (CD3e), granulocytes 

(GR1, CD11b) and CD45.2 with fluorescent conjugated FACS antibodies, also 

according to standard protocols. Only if in every cell population (T cells, B cells and 

granulocytes) at least 5% CD45.2-positive cells were detected, the mouse was 

successfully transplanted and thereby scored as ‘positive’. According to Poisson 

statistics, the number of ‘negative’ (not successfully transplanted) mice and the 

number of transplanted test cells led to a frequency of HSCs after statistical analysis. 

 

5.2.20 Establishment of compromised BM cells for in vivo LDA 
 

Compromised BM cells are essential for the survival of mice in transplantation 

experiments after lethal irradiation, and they simultaneously perform selective 
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pressure on the test BM cells. For the establishment of CCs (Compromised BM 

cells), a small group of CD45.2 mice (six to eight animals) were lethally irradiated 

with 2 x 5.5 Gy. Following each of these, mice received intravenously 5×106 freshly 

isolated BM cells from a healthy CD45.2 mouse. Four to six weeks post-

transplantation, these mice were killed and their BM was isolated. The isolated BM 

was then in turn injected intravenously into the tail veins of a new group (10–12 

CD45.2 mice) of lethally-irradiated animals, with 5×106 cells per mouse. Six to 12 

weeks after the second transplantation, the BM of the transplanted CD45.2 mice was 

applied as compromised cells in the LDA. Unless otherwise stated, every mouse 

always received 2×105 compromised cells together with its individual number of 

CD45.1-positive test cells. 

 

5.2.21  ‘Homing assay’ with CFSE-labeled BM cells 
 

HSCs directly interact with their environment. To investigate if and how efficient this 

special surrounding is in supporting the HSCs, the homing assay with CFSE-labeled 

cells was applied. A cohort of mice (four to 10) was sublethally irradiated with 8 Gy. 

The mice were left for four days to ensure myeloablation, and thereby to clear space 

for the labeled transplanted cells in the BM. BM cells were isolated from wildtype 

mice, lineage depleted (lineage cell depletion kit from Myltenyi Biotec), and labeled 

for 10 min with 10µM CFSE in PBS with 0.5% FCS at 37°C. The staining was 

stopped with PBS including 20% FCS. After centrifugation for 7 min at 350 g (RT), 

cells were washed with IMDM containing 1% pen/strep and 2% FCS. The sorted and 

labeled cells were injected intravenously into the irradiated mice with 1×106 cells per 

mouse. Twelve hours after transplantation, the BM was analyzed by FACS analysis 

with the FACSCanto II for CFSE-positive (CFSE+) cells in the BM. 

 

5.2.22 Von Kossa - staining 
 
Lumbar vertebral bodies (L3–L5) and one tibia of each mouse were dehydrated in 

ascending alcohol concentrations and embedded in methylmethacrylate as described 

previously (Amling et al. 1999). Sections of 5 µm were cut in the sagittal plane on a 

Microtec rotation microtome (Techno-Med, Munich, Germany). These sections were 

stained by toluidine blue and by the van Gieson/von Kossa procedure as described 

(Amling et al. 1999). 
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5.2.23 Animal breeding and husbandry 
 

Animal husbandry was performed by the animal care of the Leibniz Institute for Age 

Research, the IVTK of the FSU Jena and the IVTK at the clinical center of the FSU 

Jena, according to current guidelines of the German Animal Protection Law. 

Wildtype animals (C57/Bl6) and Ly5.1 mice were delivered from Jackson 

Laboratories. 

 

5.2.24 Applications on mice 
 

GH was injected into the peritoneum (i.p.) with a daily dose of 2.5 mg/kg for five 

weeks (five days a week). 

Transplantations with BM were injected intravenously (i.v.). 

Long-term applications of 17-β-E2 were achieved with 17-β-E2 pellets (0.36 mg/60 

day-release). The pellets were implanted under the skin of the back of anesthetized 

mice, and the wound was closed with a metal clamp (9 mm). 

 



References 

 - 87 -  

6 References 
 
Adams, G.B. and Scadden, D.T. 2006. The hematopoietic stem cell in its place. Nat Immunol 

7(4): 333-337. 
Akashi, K., He, X., Chen, J., Iwasaki, H., Niu, C., Steenhard, B., Zhang, J., Haug, J., and Li, 

L. 2003. Transcriptional accessibility for genes of multiple tissues and hematopoietic 
lineages is hierarchically controlled during early hematopoiesis. Blood 101(2): 383-
389. 

Akashi, K., Traver, D., Miyamoto, T., and Weissman, I.L. 2000. A clonogenic common 
myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774): 193-197. 

Ali, S., Metzger, D., Bornert, J.M., and Chambon, P. 1993. Modulation of transcriptional 
activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B 
region. Embo J 12(3): 1153-1160. 

Amling, M., Priemel, M., Holzmann, T., Chapin, K., Rueger, J.M., Baron, R., and Demay, M.B. 
1999. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the 
setting of normal mineral ion homeostasis: formal histomorphometric and 
biomechanical analyses. Endocrinology 140(11): 4982-4987. 

Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., and Nagasawa, T. 2003. 
Long-term hematopoietic stem cells require stromal cell-derived factor-1 for 
colonizing bone marrow during ontogeny. Immunity 19(2): 257-267. 

Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., and 
Suda, T. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell 
quiescence in the bone marrow niche. Cell 118(2): 149-161. 

Arai, F., Ohneda, O., Miyamoto, T., Zhang, X.Q., and Suda, T. 2002. Mesenchymal stem cells 
in perichondrium express activated leukocyte cell adhesion molecule and participate 
in bone marrow formation. J Exp Med 195(12): 1549-1563. 

Arbona, C., Prosper, F., Benet, I., Mena, F., Solano, C., and Garcia-Conde, J. 1998. 
Comparison between once a day vs twice a day G-CSF for mobilization of peripheral 
blood progenitor cells (PBPC) in normal donors for allogeneic PBPC transplantation. 
Bone Marrow Transplant 22(1): 39-45. 

Arnold, S.F., Obourn, J.D., Jaffe, H., and Notides, A.C. 1994. Serine 167 is the major 
estradiol-induced phosphorylation site on the human estrogen receptor. Mol 
Endocrinol 8(9): 1208-1214. 

Aronica, S.M. and Katzenellenbogen, B.S. 1993. Stimulation of estrogen receptor-mediated 
transcription and alteration in the phosphorylation state of the rat uterine estrogen 
receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth 
factor-I. Mol Endocrinol 7(6): 743-752. 

Asou, Y., Rittling, S.R., Yoshitake, H., Tsuji, K., Shinomiya, K., Nifuji, A., Denhardt, D.T., and 
Noda, M. 2001. Osteopontin facilitates angiogenesis, accumulation of osteoclasts, 
and resorption in ectopic bone. Endocrinology 142(3): 1325-1332. 

Barnard, R. and Waters, M.J. 1997. The serum growth hormone binding protein: pregnant 
with possibilities. J Endocrinol 153(1): 1-14. 

Batistuzzo de Medeiros, S.R., Krey, G., Hihi, A.K., and Wahli, W. 1997. Functional 
interactions between the estrogen receptor and the transcription activator Sp1 
regulate the estrogen-dependent transcriptional activity of the vitellogenin A1 io 
promoter. J Biol Chem 272(29): 18250-18260. 

Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., and Peault, B. 1992. Isolation of 
a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A 
89(7): 2804-2808. 

Baumann, G. 1995a. Growth hormone binding protein--errant receptor or active player? 
Endocrinology 136(2): 377-378. 

-. 1995b. Growth hormone binding to a circulating receptor fragment--the concept of receptor 
shedding and receptor splicing. Exp Clin Endocrinol Diabetes 103(1): 2-6. 

Baumbach, W.R., Horner, D.L., and Logan, J.S. 1989. The growth hormone-binding protein in 
rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes 
Dev 3(8): 1199-1205. 

Beato, M. 1989. Gene regulation by steroid hormones. Cell 56(3): 335-344. 
Bettini, M., Xi, H., Milbrandt, J., and Kersh, G.J. 2002. Thymocyte development in early 

growth response gene 1-deficient mice. J Immunol 169(4): 1713-1720. 



References 

 - 88 -  

Bhatnagar, A.S., Muller, P., Schenkel, L., Trunet, P.F., Beh, I., and Schieweck, K. 1992. 
Inhibition of estrogen biosynthesis and its consequences on gonadotrophin secretion 
in the male. J Steroid Biochem Mol Biol 41(3-8): 437-443. 

Bigley, R.F., Singh, M., Hernandez, C.J., Kazakia, G.J., Martin, R.B., and Keaveny, T.M. 
2008. Validity of serial milling-based imaging system for microdamage quantification. 
Bone 42(1): 212-215. 

Bilezikian, J.P., Morishima, A., Bell, J., and Grumbach, M.M. 1998. Increased bone mass as a 
result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 339(9): 
599-603. 

Brandt, J., Briddell, R.A., Srour, E.F., Leemhuis, T.B., and Hoffman, R. 1992. Role of c-kit 
ligand in the expansion of human hematopoietic progenitor cells. Blood 79(3): 634-
641. 

Brummendorf, T.H., Dragowska, W., Zijlmans, J., Thornbury, G., and Lansdorp, P.M. 1998. 
Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human 
fetal liver cells. J Exp Med 188(6): 1117-1124. 

Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom, O., Ohman, L., 
Greene, G.L., Gustafsson, J.A., and Carlquist, M. 1997. Molecular basis of agonism 
and antagonism in the oestrogen receptor. Nature 389(6652): 753-758. 

Bucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, 
H.L., Xu, W., Lacey, D.L., Boyle, W.J., and Simonet, W.S. 1998. osteoprotegerin-
deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 
12(9): 1260-1268. 

Bulun, S.E. 1996. Clinical review 78: Aromatase deficiency in women and men: would you 
have predicted the phenotypes? J Clin Endocrinol Metab 81(3): 867-871. 

Burns, C.E., Traver, D., Mayhall, E., Shepard, J.L., and Zon, L.I. 2005. Hematopoietic stem 
cell fate is established by the Notch-Runx pathway. Genes Dev 19(19): 2331-2342. 

Burstyn-Cohen, T., Tzarfaty, V., Frumkin, A., Feinstein, Y., Stoeckli, E., and Klar, A. 1999. F-
Spondin is required for accurate pathfinding of commissural axons at the floor plate. 
Neuron 23(2): 233-246. 

Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, 
R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M., and 
Scadden, D.T. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. 
Nature 425(6960): 841-846. 

Cancelas, J.A., Lee, A.W., Prabhakar, R., Stringer, K.F., Zheng, Y., and Williams, D.A. 2005. 
Rac GTPases differentially integrate signals regulating hematopoietic stem cell 
localization. Nat Med 11(8): 886-891. 

Carani, C., Qin, K., Simoni, M., Faustini-Fustini, M., Serpente, S., Boyd, J., Korach, K.S., and 
Simpson, E.R. 1997. Effect of testosterone and estradiol in a man with aromatase 
deficiency. N Engl J Med 337(2): 91-95. 

Carlesso, N., Aster, J.C., Sklar, J., and Scadden, D.T. 1999. Notch1-induced delay of human 
hematopoietic progenitor cell differentiation is associated with altered cell cycle 
kinetics. Blood 93(3): 838-848. 

Carlo-Stella, C., Di Nicola, M., Milani, R., Guidetti, A., Magni, M., Milanesi, M., Longoni, P., 
Matteucci, P., Formelli, F., Ravagnani, F., Corradini, P., and Gianni, A.M. 2004a. Use 
of recombinant human growth hormone (rhGH) plus recombinant human granulocyte 
colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+ cells 
in poor mobilizers. Blood 103(9): 3287-3295. 

Carlo-Stella, C., Di Nicola, M., Milani, R., Longoni, P., Milanesi, M., Bifulco, C., Stucchi, C., 
Guidetti, A., Cleris, L., Formelli, F., Garotta, G., and Gianni, A.M. 2004b. Age- and 
irradiation-associated loss of bone marrow hematopoietic function in mice is reversed 
by recombinant human growth hormone. Exp Hematol 32(2): 171-178. 

Carter-Su, C. and Smit, L.S. 1998. Signaling via JAK tyrosine kinases: growth hormone 
receptor as a model system. Recent Prog Horm Res 53: 61-82; discussion 82-63. 

Chen, D., Pace, P.E., Coombes, R.C., and Ali, S. 1999. Phosphorylation of human estrogen 
receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol 19(2): 1002-
1015. 

Cheng, J., Baumhueter, S., Cacalano, G., Carver-Moore, K., Thibodeaux, H., Thomas, R., 
Broxmeyer, H.E., Cooper, S., Hague, N., Moore, M., and Lasky, L.A. 1996. 
Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87(2): 479-490. 



References 

 - 89 -  

Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, 
D.T. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 
287(5459): 1804-1808. 

Christensen, J.L., Wright, D.E., Wagers, A.J., and Weissman, I.L. 2004. Circulation and 
chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2(3): E75. 

Clodfelter, K.H., Holloway, M.G., Hodor, P., Park, S.H., Ray, W.J., and Waxman, D.J. 2006. 
Sex-dependent liver gene expression is extensive and largely dependent upon signal 
transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation 
of male genes and repression of female genes revealed by microarray analysis. Mol 
Endocrinol 20(6): 1333-1351. 

Cobas, M., Wilson, A., Ernst, B., Mancini, S.J., MacDonald, H.R., Kemler, R., and Radtke, F. 
2004. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 
199(2): 221-229. 

Constien, R., Forde, A., Liliensiek, B., Grone, H.J., Nawroth, P., Hammerling, G., and Arnold, 
B. 2001. Characterization of a novel EGFP reporter mouse to monitor Cre 
recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30(1): 36-44. 

Copland, I., Sharma, K., Lejeune, L., Eliopoulos, N., Stewart, D., Liu, P., Lachapelle, K., and 
Galipeau, J. 2008. CD34 expression on murine marrow-derived mesenchymal 
stromal cells: impact on neovascularization. Exp Hematol 36(1): 93-103. 

Couse, J.F., Lindzey, J., Grandien, K., Gustafsson, J.A., and Korach, K.S. 1997. Tissue 
distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and 
estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and 
ERalpha-knockout mouse. Endocrinology 138(11): 4613-4621. 

Coutant, R., de Casson, F.B., Rouleau, S., Douay, O., Mathieu, E., Gatelais, F., Bouhours-
Nouet, N., Voinot, C., Audran, M., and Limal, J.M. 2004. Divergent effect of 
endogenous and exogenous sex steroids on the insulin-like growth factor I response 
to growth hormone in short normal adolescents. J Clin Endocrinol Metab 89(12): 
6185-6192. 

Cui, Y., Hosui, A., Sun, R., Shen, K., Gavrilova, O., Chen, W., Cam, M.C., Gao, B., Robinson, 
G.W., and Hennighausen, L. 2007. Loss of signal transducer and activator of 
transcription 5 leads to hepatosteatosis and impaired liver regeneration. Hepatology 
46(2): 504-513. 

Cui, Y., Riedlinger, G., Miyoshi, K., Tang, W., Li, C., Deng, C.X., Robinson, G.W., and 
Hennighausen, L. 2004. Inactivation of Stat5 in mouse mammary epithelium during 
pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. 
Mol Cell Biol 24(18): 8037-8047. 

d'Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., 
Saretzki, G., Carter, N.P., and Jackson, S.P. 2003. A DNA damage checkpoint 
response in telomere-initiated senescence. Nature 426(6963): 194-198. 

D'Mello, S.R., Borodezt, K., and Soltoff, S.P. 1997. Insulin-like growth factor and potassium 
depolarization maintain neuronal survival by distinct pathways: possible involvement 
of PI 3-kinase in IGF-1 signaling. J Neurosci 17(5): 1548-1560. 

Dall, R., Longobardi, S., Ehrnborg, C., Keay, N., Rosen, T., Jorgensen, J.O., Cuneo, R.C., 
Boroujerdi, M.A., Cittadini, A., Napoli, R., Christiansen, J.S., Bengtsson, B.A., Sacca, 
L., Baxter, R.C., Basset, E.E., and Sonksen, P.H. 2000. The effect of four weeks of 
supraphysiological growth hormone administration on the insulin-like growth factor 
axis in women and men. GH-2000 Study Group. J Clin Endocrinol Metab 85(11): 
4193-4200. 

Danielian, P.S., White, R., Lees, J.A., and Parker, M.G. 1992. Identification of a conserved 
region required for hormone dependent transcriptional activation by steroid hormone 
receptors. Embo J 11(3): 1025-1033. 

Daughaday, W.H. and Reeder, C. 1966. Synchronous activation of DNA synthesis in 
hypophysectomized rat cartilage by growth hormone. J Lab Clin Med 68(3): 357-368. 

Dauvois, S., White, R., and Parker, M.G. 1993. The antiestrogen ICI 182780 disrupts 
estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 106 (Pt 4): 1377-1388. 

Davey, H.W., Park, S.H., Grattan, D.R., McLachlan, M.J., and Waxman, D.J. 1999. STAT5b-
deficient mice are growth hormone pulse-resistant. Role of STAT5b in sex-specific 
liver p450 expression. J Biol Chem 274(50): 35331-35336. 

de Boer, H., Blok, G.J., and Van der Veen, E.A. 1995. Clinical aspects of growth hormone 
deficiency in adults. Endocr Rev 16(1): 63-86. 



References 

 - 90 -  

De Bruyn, P.P., Breen, P.C., and Thomas, T.B. 1970. The microcirculation of the bone 
marrow. Anat Rec 168(1): 55-68. 

Debby-Brafman, A., Burstyn-Cohen, T., Klar, A., and Kalcheim, C. 1999. F-Spondin, 
expressed in somite regions avoided by neural crest cells, mediates inhibition of 
distinct somite domains to neural crest migration. Neuron 22(3): 475-488. 

Denhardt, D.T., Noda, M., O'Regan, A.W., Pavlin, D., and Berman, J.S. 2001. Osteopontin as 
a means to cope with environmental insults: regulation of inflammation, tissue 
remodeling, and cell survival. J Clin Invest 107(9): 1055-1061. 

Denko, C.W. and Bergenstal, D.M. 1955. The effect of hypophysectomy and growth hormone 
on S35 fixation in cartilage. Endocrinology 57(1): 76-86. 

Denton, R.R., Koszewski, N.J., and Notides, A.C. 1992. Estrogen receptor phosphorylation. 
Hormonal dependence and consequence on specific DNA binding. J Biol Chem 
267(11): 7263-7268. 

Dorshkind, K. and Horseman, N.D. 2000. The roles of prolactin, growth hormone, insulin-like 
growth factor-I, and thyroid hormones in lymphocyte development and function: 
insights from genetic models of hormone and hormone receptor deficiency. Endocr 
Rev 21(3): 292-312. 

Drake, W.M., Howell, S.J., Monson, J.P., and Shalet, S.M. 2001. Optimizing gh therapy in 
adults and children. Endocr Rev 22(4): 425-450. 

Duan, R., Porter, W., Samudio, I., Vyhlidal, C., Kladde, M., and Safe, S. 1999. Transcriptional 
activation of c-fos protooncogene by 17beta-estradiol: mechanism of aryl 
hydrocarbon receptor-mediated inhibition. Mol Endocrinol 13(9): 1511-1521. 

Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. 1997. Osf2/Cbfa1: a 
transcriptional activator of osteoblast differentiation. Cell 89(5): 747-754. 

Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. 1996. Targeted disruption of the 
mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 
84(3): 443-450. 

Ema, H., Morita, Y., Yamazaki, S., Matsubara, A., Seita, J., Tadokoro, Y., Kondo, H., Takano, 
H., and Nakauchi, H. 2006. Adult mouse hematopoietic stem cells: purification and 
single-cell assays. Nat Protoc 1(6): 2979-2987. 

Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa, J., 
Metzger, D., Hashimoto, S., and Kato, S. 1999. Purification and identification of p68 
RNA helicase acting as a transcriptional coactivator specific for the activation function 
1 of human estrogen receptor alpha. Mol Cell Biol 19(8): 5363-5372. 

Enmark, E. and Gustafsson, J.A. 1999. Oestrogen receptors - an overview. J Intern Med 
246(2): 133-138. 

Enmark, E., Pelto-Huikko, M., Grandien, K., Lagercrantz, S., Lagercrantz, J., Fried, G., 
Nordenskjold, M., and Gustafsson, J.A. 1997. Human estrogen receptor beta-gene 
structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 
82(12): 4258-4265. 

Eriksen, E.F., Hodgson, S.F., Eastell, R., Cedel, S.L., O'Fallon, W.M., and Riggs, B.L. 1990. 
Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative 
assessment of rates of formation, resorption, and bone loss at tissue and cellular 
levels. J Bone Miner Res 5(4): 311-319. 

Eriksson, M.A., Hard, T., and Nilsson, L. 1995. Molecular dynamics simulations of the 
glucocorticoid receptor DNA-binding domain in complex with DNA and free in 
solution. Biophys J 68(2): 402-426. 

Ernst, M. and Rodan, G.A. 1991. Estradiol regulation of insulin-like growth factor-I expression 
in osteoblastic cells: evidence for transcriptional control. Mol Endocrinol 5(8): 1081-
1089. 

Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science 
240(4854): 889-895. 

Favaro, E., Amadori, A., and Indraccolo, S. 2008. Cellular interactions in the vascular niche: 
implications in the regulation of tumor dormancy. Apmis 116(7-8): 648-659. 

Feng, W., Ribeiro, R.C., Wagner, R.L., Nguyen, H., Apriletti, J.W., Fletterick, R.J., Baxter, 
J.D., Kushner, P.J., and West, B.L. 1998. Hormone-dependent coactivator binding to 
a hydrophobic cleft on nuclear receptors. Science 280(5370): 1747-1749. 

Franz-Odendaal, T.A., Hall, B.K., and Witten, P.E. 2006. Buried alive: how osteoblasts 
become osteocytes. Dev Dyn 235(1): 176-190. 



References 

 - 91 -  

Frenette, P.S., Subbarao, S., Mazo, I.B., von Andrian, U.H., and Wagner, D.D. 1998. 
Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic 
progenitor homing to bone marrow. Proc Natl Acad Sci U S A 95(24): 14423-14428. 

Fuchs, E., Tumbar, T., and Guasch, G. 2004. Socializing with the neighbors: stem cells and 
their niche. Cell 116(6): 769-778. 

Galien, R. and Garcia, T. 1997. Estrogen receptor impairs interleukin-6 expression by 
preventing protein binding on the NF-kappaB site. Nucleic Acids Res 25(12): 2424-
2429. 

Garland, J.T., Lottes, M.E., Kozak, S., and Daughaday, W.H. 1972. Stimulation of DNA 
synthesis in isolated chondrocytes by sulfation factor. Endocrinology 90(4): 1086-
1090. 

Genant, H.K., Delmas, P.D., Chen, P., Jiang, Y., Eriksen, E.F., Dalsky, G.P., Marcus, R., and 
San Martin, J. 2007. Severity of vertebral fracture reflects deterioration of bone 
microarchitecture. Osteoporos Int 18(1): 69-76. 

Giebel, B., Zhang, T., Beckmann, J., Spanholtz, J., Wernet, P., Ho, A.D., and Punzel, M. 
2006. Primitive human hematopoietic cells give rise to differentially specified 
daughter cells upon their initial cell division. Blood 107(5): 2146-2152. 

Giguere, V., Yang, N., Segui, P., and Evans, R.M. 1988. Identification of a new class of 
steroid hormone receptors. Nature 331(6151): 91-94. 

Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. 1996. Isolation and 
functional properties of murine hematopoietic stem cells that are replicating in vivo. J 
Exp Med 183(4): 1797-1806. 

Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., DeMaria, M., Paradis, G., Grupp, S.A., 
Sieff, C.A., Mulligan, R.C., and Johnson, R.P. 1997. Dye efflux studies suggest that 
hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist 
in multiple species. Nat Med 3(12): 1337-1345. 

Gronemeyer, H. and Laudet, V. 1995. Transcription factors 3: nuclear receptors. Protein 
Profile 2(11): 1173-1308. 

Hard, T., Kellenbach, E., Boelens, R., Kaptein, R., Dahlman, K., Carlstedt-Duke, J., 
Freedman, L.P., Maler, B.A., Hyde, E.I., Gustafsson, J.A., and et al. 1990. 1H NMR 
studies of the glucocorticoid receptor DNA-binding domain: sequential assignments 
and identification of secondary structure elements. Biochemistry 29(38): 9015-9023. 

Haug, J.S., He, X.C., Grindley, J.C., Wunderlich, J.P., Gaudenz, K., Ross, J.T., Paulson, A., 
Wagner, K.P., Xie, Y., Zhu, R., Yin, T., Perry, J.M., Hembree, M.J., Redenbaugh, 
E.P., Radice, G.L., Seidel, C., and Li, L. 2008. N-cadherin expression level 
distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem 
Cell 2(4): 367-379. 

Hay, E., Lemonnier, J., Modrowski, D., Lomri, A., Lasmoles, F., and Marie, P.J. 2000. N- and 
E-cadherin mediate early human calvaria osteoblast differentiation promoted by bone 
morphogenetic protein-2. J Cell Physiol 183(1): 117-128. 

Healy, L., May, G., Gale, K., Grosveld, F., Greaves, M., and Enver, T. 1995. The stem cell 
antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc Natl Acad 
Sci U S A 92(26): 12240-12244. 

Heim, D., Ebnother, M., Meyer-Monard, S., Tsakiris, D., Linn, M., Tichelli, A., and Gratwohl, 
A. 2003. G-CSF for imatinib-induced neutropenia. Leukemia 17(4): 805-807. 

Henttu, P.M., Kalkhoven, E., and Parker, M.G. 1997. AF-2 activity and recruitment of steroid 
receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved 
in nuclear receptors. Mol Cell Biol 17(4): 1832-1839. 

Hernandez, C.J., Gupta, A., and Keaveny, T.M. 2006. A biomechanical analysis of the effects 
of resorption cavities on cancellous bone strength. J Bone Miner Res 21(8): 1248-
1255. 

Ho, A.D. 2005. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 
33(1): 1-8. 

Hofbauer, L.C., Khosla, S., Dunstan, C.R., Lacey, D.L., Spelsberg, T.C., and Riggs, B.L. 
1999. Estrogen stimulates gene expression and protein production of osteoprotegerin 
in human osteoblastic cells. Endocrinology 140(9): 4367-4370. 

Hotta, T., Tanimura, H., Iwahashi, M., Tani, M., Tsunoda, T., Noguchi, K., Mizobata, S., Arii, 
K., Terasawa, H., Nakamori, M., and Yamaue, H. 1999. P-glycoprotein-expressing 
tumor cells are resistant to anticancer drugs in human gastrointestinal cancer. Surg 
Today 29(7): 591-596. 



References 

 - 92 -  

Hoyland, J.A., Mee, A.P., Baird, P., Braidman, I.P., Mawer, E.B., and Freemont, A.J. 1997. 
Demonstration of estrogen receptor mRNA in bone using in situ reverse-transcriptase 
polymerase chain reaction. Bone 20(2): 87-92. 

Huang, S., Law, P., Francis, K., Palsson, B.O., and Ho, A.D. 1999. Symmetry of initial cell 
divisions among primitive hematopoietic progenitors is independent of ontogenic age 
and regulatory molecules. Blood 94(8): 2595-2604. 

Huang, W.H., Lau, A.T., Daniels, L.L., Fujii, H., Seydel, U., Wood, D.J., Papadimitriou, J.M., 
and Zheng, M.H. 1998. Detection of estrogen receptor alpha, carbonic anhydrase II 
and tartrate-resistant acid phosphatase mRNAs in putative mononuclear osteoclast 
precursor cells of neonatal rats by fluorescence in situ hybridization. J Mol Endocrinol 
20(2): 211-219. 

Hunziker, E.B., Wagner, J., and Zapf, J. 1994. Differential effects of insulin-like growth factor I 
and growth hormone on developmental stages of rat growth plate chondrocytes in 
vivo. J Clin Invest 93(3): 1078-1086. 

Isaksson, O.G., Eden, S., and Jansson, J.O. 1985. Mode of action of pituitary growth 
hormone on target cells. Annu Rev Physiol 47: 483-499. 

Isaksson, O.G., Jansson, J.O., and Gause, I.A. 1982. Growth hormone stimulates longitudinal 
bone growth directly. Science 216(4551): 1237-1239. 

Ishii, T., Saito, T., Morimoto, K., Takeuchi, Y., Asano, S., Kumegawa, M., Ogata, E., and 
Matsumoto, T. 1993. Estrogen stimulates the elaboration of cell/matrix surface-
associated inhibitory factor of osteoclastic bone resorption from osteoblastic cells. 
Biochem Biophys Res Commun 191(2): 495-502. 

Ito, T., Tajima, F., and Ogawa, M. 2000. Developmental changes of CD34 expression by 
murine hematopoietic stem cells. Exp Hematol 28(11): 1269-1273. 

Jazin, E.E., Soderstrom, S., Ebendal, T., and Larhammar, D. 1997. Embryonic expression of 
the mRNA for the rat homologue of the fusin/CXCR-4 HIV-1 co-receptor. J 
Neuroimmunol 79(2): 148-154. 

Jones, J.I. and Clemmons, D.R. 1995. Insulin-like growth factors and their binding proteins: 
biological actions. Endocr Rev 16(1): 3-34. 

Ju, Z., Jiang, H., Jaworski, M., Rathinam, C., Gompf, A., Klein, C., Trumpp, A., and Rudolph, 
K.L. 2007. Telomere dysfunction induces environmental alterations limiting 
hematopoietic stem cell function and engraftment. Nat Med 13(6): 742-747. 

Karanu, F.N., Murdoch, B., Miyabayashi, T., Ohno, M., Koremoto, M., Gallacher, L., Wu, D., 
Itoh, A., Sakano, S., and Bhatia, M. 2001. Human homologues of Delta-1 and Delta-4 
function as mitogenic regulators of primitive human hematopoietic cells. Blood 97(7): 
1960-1967. 

Kassem, M., Mosekilde, L., and Eriksen, E.F. 1994. Growth hormone stimulates proliferation 
of normal human bone marrow stromal osteoblast precursor cells in vitro. Growth 
Regul 4(3): 131-135. 

Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., and Frenette, 
P.S. 2006. Signals from the sympathetic nervous system regulate hematopoietic 
stem cell egress from bone marrow. Cell 124(2): 407-421. 

Katzenellenbogen, B.S. and Korach, K.S. 1997. A new actor in the estrogen receptor drama--
enter ER-beta. Endocrinology 138(3): 861-862. 

Katzenellenbogen, J.A. and Katzenellenbogen, B.S. 1996. Nuclear hormone receptors: 
ligand-activated regulators of transcription and diverse cell responses. Chem Biol 
3(7): 529-536. 

Kiel, M.J., He, S., Ashkenazi, R., Gentry, S.N., Teta, M., Kushner, J.A., Jackson, T.L., and 
Morrison, S.J. 2007a. Haematopoietic stem cells do not asymmetrically segregate 
chromosomes or retain BrdU. Nature 449(7159): 238-242. 

Kiel, M.J. and Morrison, S.J. 2006. Maintaining hematopoietic stem cells in the vascular 
niche. Immunity 25(6): 862-864. 

-. 2008. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 
8(4): 290-301. 

Kiel, M.J., Radice, G.L., and Morrison, S.J. 2007b. Lack of evidence that hematopoietic stem 
cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. 
Cell Stem Cell 1(2): 204-217. 

Kiel, M.J., Yilmaz, O.H., Iwashita, T., Yilmaz, O.H., Terhorst, C., and Morrison, S.J. 2005. 
SLAM family receptors distinguish hematopoietic stem and progenitor cells and 
reveal endothelial niches for stem cells. Cell 121(7): 1109-1121. 



References 

 - 93 -  

Klar, A., Baldassare, M., and Jessell, T.M. 1992. F-spondin: a gene expressed at high levels 
in the floor plate encodes a secreted protein that promotes neural cell adhesion and 
neurite extension. Cell 69(1): 95-110. 

Klein-Hitpass, L., Schorpp, M., Wagner, U., and Ryffel, G.U. 1986. An estrogen-responsive 
element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene 
functions in transfected human cells. Cell 46(7): 1053-1061. 

Kofoed, E.M., Hwa, V., Little, B., Woods, K.A., Buckway, C.K., Tsubaki, J., Pratt, K.L., 
Bezrodnik, L., Jasper, H., Tepper, A., Heinrich, J.J., and Rosenfeld, R.G. 2003. 
Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 
349(12): 1139-1147. 

Komm, B.S., Terpening, C.M., Benz, D.J., Graeme, K.A., Gallegos, A., Korc, M., Greene, 
G.L., O'Malley, B.W., and Haussler, M.R. 1988. Estrogen binding, receptor mRNA, 
and biologic response in osteoblast-like osteosarcoma cells. Science 241(4861): 81-
84. 

Krebs, D.L. and Hilton, D.J. 2000. SOCS: physiological suppressors of cytokine signaling. J 
Cell Sci 113 (Pt 16): 2813-2819. 

Krege, J.H., Hodgin, J.B., Couse, J.F., Enmark, E., Warner, M., Mahler, J.F., Sar, M., Korach, 
K.S., Gustafsson, J.A., and Smithies, O. 1998. Generation and reproductive 
phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95(26): 
15677-15682. 

Kroger, N., Renges, H., Kruger, W., Gutensohn, K., Loliger, C., Carrero, I., Cortes, L., and 
Zander, A.R. 2000. A randomized comparison of once versus twice daily recombinant 
human granulocyte colony-stimulating factor (filgrastim) for stem cell mobilization in 
healthy donors for allogeneic transplantation. Br J Haematol 111(3): 761-765. 

Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and 
Gustafsson, J.A. 1997. Comparison of the ligand binding specificity and transcript 
tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3): 863-
870. 

Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J.A. 1996. Cloning 
of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 
93(12): 5925-5930. 

Kunisato, A., Chiba, S., Nakagami-Yamaguchi, E., Kumano, K., Saito, T., Masuda, S., 
Yamaguchi, T., Osawa, M., Kageyama, R., Nakauchi, H., Nishikawa, M., and Hirai, H. 
2003. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates 
side population cells in vivo. Blood 101(5): 1777-1783. 

Labastie, M.C., Cortes, F., Romeo, P.H., Dulac, C., and Peault, B. 1998. Molecular identity of 
hematopoietic precursor cells emerging in the human embryo. Blood 92(10): 3624-
3635. 

Lacorazza, H.D. and Nimer, S.D. 2003. The emerging role of the myeloid Elf-1 like 
transcription factor in hematopoiesis. Blood Cells Mol Dis 31(3): 342-350. 

Lacorazza, H.D., Yamada, T., Liu, Y., Miyata, Y., Sivina, M., Nunes, J., and Nimer, S.D. 2006. 
The transcription factor MEF/ELF4 regulates the quiescence of primitive 
hematopoietic cells. Cancer Cell 9(3): 175-187. 

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature 227(5259): 680-685. 

Lahooti, H., White, R., Danielian, P.S., and Parker, M.G. 1994. Characterization of ligand-
dependent phosphorylation of the estrogen receptor. Mol Endocrinol 8(2): 182-188. 

Lapidot, T., Dar, A., and Kollet, O. 2005. How do stem cells find their way home? Blood 
106(6): 1901-1910. 

Lapidot, T. and Petit, I. 2002. Current understanding of stem cell mobilization: the roles of 
chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. 
Exp Hematol 30(9): 973-981. 

Le Goff, P., Montano, M.M., Schodin, D.J., and Katzenellenbogen, B.S. 1994. 
Phosphorylation of the human estrogen receptor. Identification of hormone-regulated 
sites and examination of their influence on transcriptional activity. J Biol Chem 
269(6): 4458-4466. 

Lee, S.L., Wang, Y., and Milbrandt, J. 1996. Unimpaired macrophage differentiation and 
activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol 
Cell Biol 16(8): 4566-4572. 



References 

 - 94 -  

Leonard, W.J. and O'Shea, J.J. 1998. Jaks and STATs: biological implications. Annu Rev 
Immunol 16: 293-322. 

Lerner, C. and Harrison, D.E. 1990. 5-Fluorouracil spares hemopoietic stem cells responsible 
for long-term repopulation. Exp Hematol 18(2): 114-118. 

LeRoith, D., Werner, H., Beitner-Johnson, D., and Roberts, C.T., Jr. 1995. Molecular and 
cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16(2): 143-
163. 

Leung, D.W., Spencer, S.A., Cachianes, G., Hammonds, R.G., Collins, C., Henzel, W.J., 
Barnard, R., Waters, M.J., and Wood, W.I. 1987. Growth hormone receptor and 
serum binding protein: purification, cloning and expression. Nature 330(6148): 537-
543. 

Li, J.J., Huang, Y.Q., Basch, R., and Karpatkin, S. 2001. Thrombin induces the release of 
angiopoietin-1 from platelets. Thromb Haemost 85(2): 204-206. 

Li, L. and Xie, T. 2005. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 
605-631. 

Liang, Y., Jansen, M., Aronow, B., Geiger, H., and Van Zant, G. 2007. The quantitative trait 
gene latexin influences the size of the hematopoietic stem cell population in mice. Nat 
Genet 39(2): 178-188. 

Lieber, M.R. and Karanjawala, Z.E. 2004. Ageing, repetitive genomes and DNA damage. Nat 
Rev Mol Cell Biol 5(1): 69-75. 

Lindberg, M.K., Weihua, Z., Andersson, N., Moverare, S., Gao, H., Vidal, O., Erlandsson, M., 
Windahl, S., Andersson, G., Lubahn, D.B., Carlsten, H., Dahlman-Wright, K., 
Gustafsson, J.A., and Ohlsson, C. 2002. Estrogen receptor specificity for the effects 
of estrogen in ovariectomized mice. J Endocrinol 174(2): 167-178. 

Liu, C.C. and Howard, G.A. 1991. Bone-cell changes in estrogen-induced bone-mass 
increase in mice: dissociation of osteoclasts from bone surfaces. Anat Rec 229(2): 
240-250. 

Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J., and Efstratiadis, A. 1993. Mice carrying 
null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF 
receptor (Igf1r). Cell 75(1): 59-72. 

Lubahn, D.B., Moyer, J.S., Golding, T.S., Couse, J.F., Korach, K.S., and Smithies, O. 1993. 
Alteration of reproductive function but not prenatal sexual development after 
insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 
90(23): 11162-11166. 

Maggiolini, M., Vivacqua, A., Fasanella, G., Recchia, A.G., Sisci, D., Pezzi, V., Montanaro, D., 
Musti, A.M., Picard, D., and Ando, S. 2004. The G protein-coupled receptor GPR30 
mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer 
cells. J Biol Chem 279(26): 27008-27016. 

Maillard, I., Koch, U., Dumortier, A., Shestova, O., Xu, L., Sai, H., Pross, S.E., Aster, J.C., 
Bhandoola, A., Radtke, F., and Pear, W.S. 2008. Canonical notch signaling is 
dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 
2(4): 356-366. 

Mak, H.Y., Hoare, S., Henttu, P.M., and Parker, M.G. 1999. Molecular determinants of the 
estrogen receptor-coactivator interface. Mol Cell Biol 19(5): 3895-3903. 

Mancini, S.J., Mantei, N., Dumortier, A., Suter, U., MacDonald, H.R., and Radtke, F. 2005. 
Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-
renewal and differentiation. Blood 105(6): 2340-2342. 

Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, 
B., Kastner, P., Mark, M., Chambon, P., and Evans, R.M. 1995. The nuclear receptor 
superfamily: the second decade. Cell 83(6): 835-839. 

Mao, S., Frank, R.C., Zhang, J., Miyazaki, Y., and Nimer, S.D. 1999. Functional and physical 
interactions between AML1 proteins and an ETS protein, MEF: implications for the 
pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 19(5): 3635-3644. 

Matsuoka, S., Ebihara, Y., Xu, M., Ishii, T., Sugiyama, D., Yoshino, H., Ueda, T., Manabe, A., 
Tanaka, R., Ikeda, Y., Nakahata, T., and Tsuji, K. 2001. CD34 expression on long-
term repopulating hematopoietic stem cells changes during developmental stages. 
Blood 97(2): 419-425. 

Matsuzaki, Y., Kinjo, K., Mulligan, R.C., and Okano, H. 2004. Unexpectedly efficient homing 
capacity of purified murine hematopoietic stem cells. Immunity 20(1): 87-93. 



References 

 - 95 -  

Mayani, H., Dragowska, W., and Lansdorp, P.M. 1993. Lineage commitment in human 
hemopoiesis involves asymmetric cell division of multipotent progenitors and does 
not appear to be influenced by cytokines. J Cell Physiol 157(3): 579-586. 

McDonnell, D.P., Clemm, D.L., Hermann, T., Goldman, M.E., and Pike, J.W. 1995. Analysis 
of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. 
Mol Endocrinol 9(6): 659-669. 

McInerney, E.M., Weis, K.E., Sun, J., Mosselman, S., and Katzenellenbogen, B.S. 1998. 
Transcription activation by the human estrogen receptor subtype beta (ER beta) 
studied with ER beta and ER alpha receptor chimeras. Endocrinology 139(11): 4513-
4522. 

Migliaccio, A., Di Domenico, M., Green, S., de Falco, A., Kajtaniak, E.L., Blasi, F., Chambon, 
P., and Auricchio, F. 1989. Phosphorylation on tyrosine of in vitro synthesized human 
estrogen receptor activates its hormone binding. Mol Endocrinol 3(7): 1061-1069. 

Miller, C.L. and Eaves, C.J. 1997. Expansion in vitro of adult murine hematopoietic stem cells 
with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci U S A 
94(25): 13648-13653. 

Min, I.M., Pietramaggiori, G., Kim, F.S., Passegue, E., Stevenson, K.E., and Wagers, A.J. 
2008. The transcription factor EGR1 controls both the proliferation and localization of 
hematopoietic stem cells. Cell Stem Cell 2(4): 380-391. 

Miyazaki, Y., Boccuni, P., Mao, S., Zhang, J., Erdjument-Bromage, H., Tempst, P., Kiyokawa, 
H., and Nimer, S.D. 2001. Cyclin A-dependent phosphorylation of the ETS-related 
protein, MEF, restricts its activity to the G1 phase of the cell cycle. J Biol Chem 
276(44): 40528-40536. 

Miyazaki, Y., Sun, X., Uchida, H., Zhang, J., and Nimer, S. 1996. MEF, a novel transcription 
factor with an Elf-1 like DNA binding domain but distinct transcriptional activating 
properties. Oncogene 13(8): 1721-1729. 

Moepps, B., Frodl, R., Rodewald, H.R., Baggiolini, M., and Gierschik, P. 1997. Two murine 
homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived 
factor 1alpha activation of Gi2 are differentially expressed in vivo. Eur J Immunol 
27(8): 2102-2112. 

Monni, R., Santos, S.C., Mauchauffe, M., Berger, R., Ghysdael, J., Gouilleux, F., 
Gisselbrecht, S., Bernard, O., and Penard-Lacronique, V. 2001. The TEL-Jak2 
oncoprotein induces Socs1 expression and altered cytokine response in Ba/F3 cells. 
Oncogene 20(7): 849-858. 

Moore, M.A. and Metcalf, D. 1970. Ontogeny of the haemopoietic system: yolk sac origin of in 
vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 
18(3): 279-296. 

Morales, O., Faulds, M.H., Lindgren, U.J., and Haldosen, L.A. 2002. 1Alpha,25-
dihydroxyvitamin D3 inhibits GH-induced expression of SOCS-3 and CIS and 
prolongs growth hormone signaling via the Janus kinase (JAK2)/signal transducers 
and activators of transcription (STAT5) system in osteoblast-like cells. J Biol Chem 
277(38): 34879-34884. 

Morel, G., Chavassieux, P., Barenton, B., Dubois, P.M., Meunier, P.J., and Boivin, G. 1993. 
Evidence for a direct effect of growth hormone on osteoblasts. Cell Tissue Res 
273(2): 279-286. 

Morrison, S.J. and Weissman, I.L. 1994. The long-term repopulating subset of hematopoietic 
stem cells is deterministic and isolatable by phenotype. Immunity 1(8): 661-673. 

Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H.F., Handin, R.I., and 
Herbomel, P. 2006. Tracing hematopoietic precursor migration to successive 
hematopoietic organs during zebrafish development. Immunity 25(6): 963-975. 

Murphy, W.R., Daughaday, W.H., and Hartnett, C. 1956. The effect of hypophysectomy and 
growth hormone on the incorporation of labeled sulfate into tibial epiphyseal and 
nasal cartilage of the rat. J Lab Clin Med 47(5): 715-722. 

Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, 
N., Kikutani, H., and Kishimoto, T. 1996. Defects of B-cell lymphopoiesis and bone-
marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 
382(6592): 635-638. 

Nilsson, L.O., Boman, A., Savendahl, L., Grigelioniene, G., Ohlsson, C., Ritzen, E.M., and 
Wroblewski, J. 1999. Demonstration of estrogen receptor-beta immunoreactivity in 
human growth plate cartilage. J Clin Endocrinol Metab 84(1): 370-373. 



References 

 - 96 -  

Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., 
Pettersson, K., Warner, M., and Gustafsson, J.A. 2001a. Mechanisms of estrogen 
action. Physiol Rev 81(4): 1535-1565. 

Nilsson, S.K., Johnston, H.M., and Coverdale, J.A. 2001b. Spatial localization of transplanted 
hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 
97(8): 2293-2299. 

Nilsson, S.K., Johnston, H.M., Whitty, G.A., Williams, B., Webb, R.J., Denhardt, D.T., 
Bertoncello, I., Bendall, L.J., Simmons, P.J., and Haylock, D.N. 2005. Osteopontin, a 
key component of the hematopoietic stem cell niche and regulator of primitive 
hematopoietic progenitor cells. Blood 106(4): 1232-1239. 

Nissley, P. and Lopaczynski, W. 1991. Insulin-like growth factor receptors. Growth Factors 
5(1): 29-43. 

Ohlsson, C., Nilsson, A., Isaksson, O., and Lindahl, A. 1992. Growth hormone induces 
multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc 
Natl Acad Sci U S A 89(20): 9826-9830. 

Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. 2004. The stem cell niche: theme and 
variations. Curr Opin Cell Biol 16(6): 693-699. 

Okuno, Y., Iwasaki, H., Huettner, C.S., Radomska, H.S., Gonzalez, D.A., Tenen, D.G., and 
Akashi, K. 2002. Differential regulation of the human and murine CD34 genes in 
hematopoietic stem cells. Proc Natl Acad Sci U S A 99(9): 6246-6251. 

Onoe, Y., Miyaura, C., Ohta, H., Nozawa, S., and Suda, T. 1997. Expression of estrogen 
receptor beta in rat bone. Endocrinology 138(10): 4509-4512. 

Oreffo, R.O., Kusec, V., Virdi, A.S., Flanagan, A.M., Grano, M., Zambonin-Zallone, A., and 
Triffitt, J.T. 1999. Expression of estrogen receptor-alpha in cells of the osteoclastic 
lineage. Histochem Cell Biol 111(2): 125-133. 

Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. 1996. Long-term 
lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic 
stem cell. Science 273(5272): 242-245. 

Paech, K., Webb, P., Kuiper, G.G., Nilsson, S., Gustafsson, J., Kushner, P.J., and Scanlan, 
T.S. 1997. Differential ligand activation of estrogen receptors ERalpha and ERbeta at 
AP1 sites. Science 277(5331): 1508-1510. 

Papayannopoulou, T. 2003. Bone marrow homing: the players, the playfield, and their 
evolving roles. Curr Opin Hematol 10(3): 214-219. 

Park, E.S., Kim, H., Suh, J.M., Park, S.J., Kwon, O.Y., Kim, Y.K., Ro, H.K., Cho, B.Y., Chung, 
J., and Shong, M. 2000. Thyrotropin induces SOCS-1 (suppressor of cytokine 
signaling-1) and SOCS-3 in FRTL-5 thyroid cells. Mol Endocrinol 14(3): 440-448. 

Parker, M.G. 1993. Action of "pure" antiestrogens in inhibiting estrogen receptor action. 
Breast Cancer Res Treat 26(2): 131-137. 

Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., 
Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., and Lapidot, T. 1999. Dependence 
of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. 
Science 283(5403): 845-848. 

Pello, O.M., Moreno-Ortiz Mdel, C., Rodriguez-Frade, J.M., Martinez-Munoz, L., Lucas, D., 
Gomez, L., Lucas, P., Samper, E., Aracil, M., Martinez, C., Bernad, A., and Mellado, 
M. 2006. SOCS up-regulation mobilizes autologous stem cells through CXCR4 
blockade. Blood 108(12): 3928-3937. 

Pensler, J.M., Radosevich, J.A., Higbee, R., and Langman, C.B. 1990. Osteoclasts isolated 
from membranous bone in children exhibit nuclear estrogen and progesterone 
receptors. J Bone Miner Res 5(8): 797-802. 

Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., 
Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., Sandbank, J., Zipori, D., and 
Lapidot, T. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow 
SDF-1 and up-regulating CXCR4. Nat Immunol 3(7): 687-694. 

Pettersson, K. and Gustafsson, J.A. 2001. Role of estrogen receptor beta in estrogen action. 
Annu Rev Physiol 63: 165-192. 

Pink, J.J. and Jordan, V.C. 1996. Models of estrogen receptor regulation by estrogens and 
antiestrogens in breast cancer cell lines. Cancer Res 56(10): 2321-2330. 

Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., 
Gillett, N., and Stewart, T.A. 1993. IGF-I is required for normal embryonic growth in 
mice. Genes Dev 7(12B): 2609-2617. 



References 

 - 97 -  

Puri, M.C. and Bernstein, A. 2003. Requirement for the TIE family of receptor tyrosine 
kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci U S A 100(22): 
12753-12758. 

Qin, C., Singh, P., and Safe, S. 1999. Transcriptional activation of insulin-like growth factor-
binding protein-4 by 17beta-estradiol in MCF-7 cells: role of estrogen receptor-Sp1 
complexes. Endocrinology 140(6): 2501-2508. 

Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H.R., and Aguet, 
M. 1999. Deficient T cell fate specification in mice with an induced inactivation of 
Notch1. Immunity 10(5): 547-558. 

Ramalho, A.C., Couttet, P., Baudoin, C., Morieux, C., Graulet, A.M., de Vernejoul, M.C., and 
Cohen-Solal, M.E. 2002. Estradiol and raloxifene decrease the formation of 
multinucleate cells in human bone marrow cultures. Eur Cytokine Netw 13(1): 39-45. 

Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C., and Melton, D.A. 2002. 
"Stemness": transcriptional profiling of embryonic and adult stem cells. Science 
298(5593): 597-600. 

Ray, A., Prefontaine, K.E., and Ray, P. 1994. Down-modulation of interleukin-6 gene 
expression by 17 beta-estradiol in the absence of high affinity DNA binding by the 
estrogen receptor. J Biol Chem 269(17): 12940-12946. 

Reinholt, F.P., Hultenby, K., Oldberg, A., and Heinegard, D. 1990. Osteopontin--a possible 
anchor of osteoclasts to bone. Proc Natl Acad Sci U S A 87(12): 4473-4475. 

Revankar, C.M., Cimino, D.F., Sklar, L.A., Arterburn, J.B., and Prossnitz, E.R. 2005. A 
transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 
307(5715): 1625-1630. 

Reya, T. and Clevers, H. 2005. Wnt signalling in stem cells and cancer. Nature 434(7035): 
843-850. 

Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., 
and Weissman, I.L. 2003. A role for Wnt signalling in self-renewal of haematopoietic 
stem cells. Nature 423(6938): 409-414. 

Ricketts, W.A., Rose, D.W., Shoelson, S., and Olefsky, J.M. 1996. Functional roles of the Shc 
phosphotyrosine binding and Src homology 2 domains in insulin and epidermal 
growth factor signaling. J Biol Chem 271(42): 26165-26169. 

Rochira, V., Faustini-Fustini, M., Balestrieri, A., and Carani, C. 2000. Estrogen replacement 
therapy in a man with congenital aromatase deficiency: effects of different doses of 
transdermal estradiol on bone mineral density and hormonal parameters. J Clin 
Endocrinol Metab 85(5): 1841-1845. 

Roodman, G.D. 1996. Advances in bone biology: the osteoclast. Endocr Rev 17(4): 308-332. 
Ross, R.J. 1999. Truncated growth hormone receptor isoforms. Acta Paediatr Suppl 88(428): 

164-166; discussion 167. 
Russell, S.M. and Spencer, E.M. 1985. Local injections of human or rat growth hormone or of 

purified human somatomedin-C stimulate unilateral tibial epiphyseal growth in 
hypophysectomized rats. Endocrinology 116(6): 2563-2567. 

Ruzankina, Y. and Brown, E.J. 2007. Relationships between stem cell exhaustion, tumour 
suppression and ageing. Br J Cancer 97(9): 1189-1193. 

Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., 
Ferrari, S., Robey, P.G., Riminucci, M., and Bianco, P. 2007. Self-renewing 
osteoprogenitors in bone marrow sinusoids can organize a hematopoietic 
microenvironment. Cell 131(2): 324-336. 

Salmon, W.D., Jr. and Daughaday, W.H. 1957. A hormonally controlled serum factor which 
stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49(6): 825-836. 

Sasaki, N., Rees-Jones, R.W., Zick, Y., Nissley, S.P., and Rechler, M.M. 1985. 
Characterization of insulin-like growth factor I-stimulated tyrosine kinase activity 
associated with the beta-subunit of type I insulin-like growth factor receptors of rat 
liver cells. J Biol Chem 260(17): 9793-9804. 

Sasaoka, T., Rose, D.W., Jhun, B.H., Saltiel, A.R., Draznin, B., and Olefsky, J.M. 1994. 
Evidence for a functional role of Shc proteins in mitogenic signaling induced by 
insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 
269(18): 13689-13694. 

Scharenberg, C.W., Harkey, M.A., and Torok-Storb, B. 2002. The ABCG2 transporter is an 
efficient Hoechst 33342 efflux pump and is preferentially expressed by immature 
human hematopoietic progenitors. Blood 99(2): 507-512. 



References 

 - 98 -  

Schlechter, N.L., Russell, S.M., Spencer, E.M., and Nicoll, C.S. 1986. Evidence suggesting 
that the direct growth-promoting effect of growth hormone on cartilage in vivo is 
mediated by local production of somatomedin. Proc Natl Acad Sci U S A 83(20): 
7932-7934. 

Schluter, G., Boinska, D., and Nieman-Seyde, S.C. 2000. Evidence for translational 
repression of the SOCS-1 major open reading frame by an upstream open reading 
frame. Biochem Biophys Res Commun 268(2): 255-261. 

Schnell, F.J. and Kersh, G.J. 2005. Control of recent thymic emigrant survival by positive 
selection signals and early growth response gene 1. J Immunol 175(4): 2270-2277. 

Schnell, F.J., Zoller, A.L., Patel, S.R., Williams, I.R., and Kersh, G.J. 2006. Early growth 
response gene 1 provides negative feedback to inhibit entry of progenitor cells into 
the thymus. J Immunol 176(8): 4740-4747. 

Schoenwolf, G.C. and Smith, J.L. 1990. Mechanisms of neurulation: traditional viewpoint and 
recent advances. Development 109(2): 243-270. 

Schofield, R. 1978. The relationship between the spleen colony-forming cell and the 
haemopoietic stem cell. Blood Cells 4(1-2): 7-25. 

Schwabe, J.W., Chapman, L., Finch, J.T., and Rhodes, D. 1993. The crystal structure of the 
estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate 
between their response elements. Cell 75(3): 567-578. 

Seeman, E. and Delmas, P.D. 2006. Bone quality--the material and structural basis of bone 
strength and fragility. N Engl J Med 354(21): 2250-2261. 

Shao, D. and Lazar, M.A. 1999. Modulating nuclear receptor function: may the phos be with 
you. J Clin Invest 103(12): 1617-1618. 

Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A., and Greene, G.L. 
1998. The structural basis of estrogen receptor/coactivator recognition and the 
antagonism of this interaction by tamoxifen. Cell 95(7): 927-937. 

Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.S., Luthy, R., Nguyen, H.Q., 
Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., 
Colombero, A., Tan, H.L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, 
L., Hughes, T.M., Hill, D., Pattison, W., Campbell, P., Sander, S., Van, G., Tarpley, J., 
Derby, P., Lee, R., and Boyle, W.J. 1997. Osteoprotegerin: a novel secreted protein 
involved in the regulation of bone density. Cell 89(2): 309-319. 

Sims, N.A., Clement-Lacroix, P., Da Ponte, F., Bouali, Y., Binart, N., Moriggl, R., Goffin, V., 
Coschigano, K., Gaillard-Kelly, M., Kopchick, J., Baron, R., and Kelly, P.A. 2000. 
Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but 
independent of Stat5. J Clin Invest 106(9): 1095-1103. 

Sitnicka, E., Bryder, D., Theilgaard-Monch, K., Buza-Vidas, N., Adolfsson, J., and Jacobsen, 
S.E. 2002. Key role of flt3 ligand in regulation of the common lymphoid progenitor but 
not in maintenance of the hematopoietic stem cell pool. Immunity 17(4): 463-472. 

Sornay-Rendu, E., Boutroy, S., Munoz, F., and Delmas, P.D. 2007. Alterations of cortical and 
trabecular architecture are associated with fractures in postmenopausal women, 
partially independent of decreased BMD measured by DXA: the OFELY study. J 
Bone Miner Res 22(3): 425-433. 

Spangrude, G.J., Heimfeld, S., and Weissman, I.L. 1988. Purification and characterization of 
mouse hematopoietic stem cells. Science 241(4861): 58-62. 

Spencer, S.A., Hammonds, R.G., Henzel, W.J., Rodriguez, H., Waters, M.J., and Wood, W.I. 
1988. Rabbit liver growth hormone receptor and serum binding protein. Purification, 
characterization, and sequence. J Biol Chem 263(16): 7862-7867. 

Spradling, A., Drummond-Barbosa, D., and Kai, T. 2001. Stem cells find their niche. Nature 
414(6859): 98-104. 

Steele-Perkins, G., Turner, J., Edman, J.C., Hari, J., Pierce, S.B., Stover, C., Rutter, W.J., 
and Roth, R.A. 1988. Expression and characterization of a functional human insulin-
like growth factor I receptor. J Biol Chem 263(23): 11486-11492. 

Stier, S., Cheng, T., Dombkowski, D., Carlesso, N., and Scadden, D.T. 2002. Notch1 
activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid 
over myeloid lineage outcome. Blood 99(7): 2369-2378. 

Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, 
D., Calvi, L.M., Rittling, S.R., and Scadden, D.T. 2005. Osteopontin is a 
hematopoietic stem cell niche component that negatively regulates stem cell pool 
size. J Exp Med 201(11): 1781-1791. 



References 

 - 99 -  

Suda, J., Suda, T., and Ogawa, M. 1984. Analysis of differentiation of mouse hemopoietic 
stem cells in culture by sequential replating of paired progenitors. Blood 64(2): 393-
399. 

Suda, T., Arai, F., and Hirao, A. 2005. Hematopoietic stem cells and their niche. Trends 
Immunol 26(8): 426-433. 

Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. 2006. Maintenance of the 
hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone 
marrow stromal cell niches. Immunity 25(6): 977-988. 

Sun, G., Porter, W., and Safe, S. 1998. Estrogen-induced retinoic acid receptor alpha 1 gene 
expression: role of estrogen receptor-Sp1 complex. Mol Endocrinol 12(6): 882-890. 

Suzuki, T., Yokoyama, Y., Kumano, K., Takanashi, M., Kozuma, S., Takato, T., Nakahata, T., 
Nishikawa, M., Sakano, S., Kurokawa, M., Ogawa, S., and Chiba, S. 2006. Highly 
efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc 
chimeric protein. Stem Cells 24(11): 2456-2465. 

Szilvassy, S.J., Humphries, R.K., Lansdorp, P.M., Eaves, A.C., and Eaves, C.J. 1990. 
Quantitative assay for totipotent reconstituting hematopoietic stem cells by a 
competitive repopulation strategy. Proc Natl Acad Sci U S A 87(22): 8736-8740. 

Takano, H., Ema, H., Sudo, K., and Nakauchi, H. 2004. Asymmetric division and lineage 
commitment at the level of hematopoietic stem cells: inference from differentiation in 
daughter cell and granddaughter cell pairs. J Exp Med 199(3): 295-302. 

Takeda, K. and Akira, S. 2000. STAT family of transcription factors in cytokine-mediated 
biological responses. Cytokine Growth Factor Rev 11(3): 199-207. 

Takeichi, M. 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 
251(5000): 1451-1455. 

Tavian, M., Coulombel, L., Luton, D., Clemente, H.S., Dieterlen-Lievre, F., and Peault, B. 
1996. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 
87(1): 67-72. 

Tavian, M., Hallais, M.F., and Peault, B. 1999. Emergence of intraembryonic hematopoietic 
precursors in the pre-liver human embryo. Development 126(4): 793-803. 

Thurmond, T.S., Murante, F.G., Staples, J.E., Silverstone, A.E., Korach, K.S., and Gasiewicz, 
T.A. 2000. Role of estrogen receptor alpha in hematopoietic stem cell development 
and B lymphocyte maturation in the male mouse. Endocrinology 141(7): 2309-2318. 

Tsai, M.J. and O'Malley, B.W. 1994. Molecular mechanisms of action of steroid/thyroid 
receptor superfamily members. Annu Rev Biochem 63: 451-486. 

Tsangari, H., Findlay, D.M., and Fazzalari, N.L. 2007. Structural and remodeling indices in the 
cancellous bone of the proximal femur across adulthood. Bone 40(1): 211-217. 

Tzarfati-Majar, V., Burstyn-Cohen, T., and Klar, A. 2001. F-spondin is a contact-repellent 
molecule for embryonic motor neurons. Proc Natl Acad Sci U S A 98(8): 4722-4727. 

Uchida, N., Dykstra, B., Lyons, K.J., Leung, F.Y., and Eaves, C.J. 2003. Different in vivo 
repopulating activities of purified hematopoietic stem cells before and after being 
stimulated to divide in vitro with the same kinetics. Exp Hematol 31(12): 1338-1347. 

Umesono, K. and Evans, R.M. 1989. Determinants of target gene specificity for 
steroid/thyroid hormone receptors. Cell 57(7): 1139-1146. 

van der Klaauw, A.A., Pereira, A.M., Rabelink, T.J., Corssmit, E.P., Zonneveld, A.J., Pijl, H., 
de Boer, H.C., Smit, J.W., Romijn, J.A., and de Koning, E.J. 2008. Recombinant 
human GH replacement increases CD34+ cells and improves endothelial function in 
adults with GH deficiency. Eur J Endocrinol 159(2): 105-111. 

Vanacker, J.M., Pettersson, K., Gustafsson, J.A., and Laudet, V. 1999. Transcriptional targets 
shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) 
alpha, but not by ERbeta. Embo J 18(15): 4270-4279. 

Varnum-Finney, B., Purton, L.E., Yu, M., Brashem-Stein, C., Flowers, D., Staats, S., Moore, 
K.A., Le Roux, I., Mann, R., Gray, G., Artavanis-Tsakonas, S., and Bernstein, I.D. 
1998. The Notch ligand, Jagged-1, influences the development of primitive 
hematopoietic precursor cells. Blood 91(11): 4084-4091. 

Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, 
W.S., and Bernstein, I.D. 2000. Pluripotent, cytokine-dependent, hematopoietic stem 
cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11): 1278-1281. 

Vaziri, H. and Benchimol, S. 1996. From telomere loss to p53 induction and activation of a 
DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell 
aging. Exp Gerontol 31(1-2): 295-301. 



References 

 - 100 -  

Veldhuis, J.D. 1996. Gender differences in secretory activity of the human somatotropic 
(growth hormone) axis. Eur J Endocrinol 134(3): 287-295. 

Veldhuis, J.D., Roemmich, J.N., and Rogol, A.D. 2000. Gender and sexual maturation-
dependent contrasts in the neuroregulation of growth hormone secretion in 
prepubertal and late adolescent males and females--a general clinical research 
center-based study. J Clin Endocrinol Metab 85(7): 2385-2394. 

Venezia, T.A., Merchant, A.A., Ramos, C.A., Whitehouse, N.L., Young, A.S., Shaw, C.A., and 
Goodell, M.A. 2004. Molecular signatures of proliferation and quiescence in 
hematopoietic stem cells. PLoS Biol 2(10): e301. 

Vermeulen, M., Le Pesteur, F., Gagnerault, M.C., Mary, J.Y., Sainteny, F., and Lepault, F. 
1998. Role of adhesion molecules in the homing and mobilization of murine 
hematopoietic stem and progenitor cells. Blood 92(3): 894-900. 

Vidal, O., Lindberg, M., Savendahl, L., Lubahn, D.B., Ritzen, E.M., Gustafsson, J.A., and 
Ohlsson, C. 1999. Disproportional body growth in female estrogen receptor-alpha-
inactivated mice. Biochem Biophys Res Commun 265(2): 569-571. 

Vidal, O., Lindberg, M.K., Hollberg, K., Baylink, D.J., Andersson, G., Lubahn, D.B., Mohan, 
S., Gustafsson, J.A., and Ohlsson, C. 2000. Estrogen receptor specificity in the 
regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci U S A 
97(10): 5474-5479. 

Vivacqua, A., Bonofiglio, D., Recchia, A.G., Musti, A.M., Picard, D., Ando, S., and Maggiolini, 
M. 2006. The G protein-coupled receptor GPR30 mediates the proliferative effects 
induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol 
Endocrinol 20(3): 631-646. 

Vlotides, G., Sorensen, A.S., Kopp, F., Zitzmann, K., Cengic, N., Brand, S., Zachoval, R., and 
Auernhammer, C.J. 2004. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced 
expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res 
Commun 320(3): 1007-1014. 

Wang, C., Dehghani, B., Magrisso, I.J., Rick, E.A., Bonhomme, E., Cody, D.B., Elenich, L.A., 
Subramanian, S., Murphy, S.J., Kelly, M.J., Rosenbaum, J.S., Vandenbark, A.A., and 
Offner, H. 2008. GPR30 contributes to estrogen-induced thymic atrophy. Mol 
Endocrinol 22(3): 636-648. 

Wang, J., Zhou, J., and Bondy, C.A. 1999. Igf1 promotes longitudinal bone growth by insulin-
like actions augmenting chondrocyte hypertrophy. Faseb J 13(14): 1985-1990. 

Watt, F.M. and Hogan, B.L. 2000. Out of Eden: stem cells and their niches. Science 
287(5457): 1427-1430. 

Webb, P., Lopez, G.N., Uht, R.M., and Kushner, P.J. 1995. Tamoxifen activation of the 
estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like 
effects of antiestrogens. Mol Endocrinol 9(4): 443-456. 

Webb, P., Nguyen, P., Valentine, C., Lopez, G.N., Kwok, G.R., McInerney, E., 
Katzenellenbogen, B.S., Enmark, E., Gustafsson, J.A., Nilsson, S., and Kushner, P.J. 
1999. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with 
different requirements for receptor transactivation functions. Mol Endocrinol 13(10): 
1672-1685. 

Weigel, N.L. 1996. Steroid hormone receptors and their regulation by phosphorylation. 
Biochem J 319 (Pt 3): 657-667. 

Weigel, N.L. and Zhang, Y. 1998. Ligand-independent activation of steroid hormone 
receptors. J Mol Med 76(7): 469-479. 

Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 
3rd, and Nusse, R. 2003. Wnt proteins are lipid-modified and can act as stem cell 
growth factors. Nature 423(6938): 448-452. 

Wilson, A., Murphy, M.J., Oskarsson, T., Kaloulis, K., Bettess, M.D., Oser, G.M., Pasche, 
A.C., Knabenhans, C., Macdonald, H.R., and Trumpp, A. 2004. c-Myc controls the 
balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 
18(22): 2747-2763. 

Wilson, A., Oser, G.M., Jaworski, M., Blanco-Bose, W.E., Laurenti, E., Adolphe, C., Essers, 
M.A., Macdonald, H.R., and Trumpp, A. 2007. Dormant and self-renewing 
hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106: 64-75. 

Windahl, S.H., Norgard, M., Kuiper, G.G., Gustafsson, J.A., and Andersson, G. 2000. Cellular 
distribution of estrogen receptor beta in neonatal rat bone. Bone 26(2): 117-121. 



References 

 - 101 -  

Windahl, S.H., Vidal, O., Andersson, G., Gustafsson, J.A., and Ohlsson, C. 1999. Increased 
cortical bone mineral content but unchanged trabecular bone mineral density in 
female ERbeta(-/-) mice. J Clin Invest 104(7): 895-901. 

Woods, K.A., Camacho-Hubner, C., Savage, M.O., and Clark, A.J. 1996. Intrauterine growth 
retardation and postnatal growth failure associated with deletion of the insulin-like 
growth factor I gene. N Engl J Med 335(18): 1363-1367. 

Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C., and Weissman, I.L. 2002. 
Hematopoietic stem cells are uniquely selective in their migratory response to 
chemokines. J Exp Med 195(9): 1145-1154. 

Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L., and Weissman, I.L. 2001. 
Physiological migration of hematopoietic stem and progenitor cells. Science 
294(5548): 1933-1936. 

Wurtz, J.M., Bourguet, W., Renaud, J.P., Vivat, V., Chambon, P., Moras, D., and 
Gronemeyer, H. 1996. A canonical structure for the ligand-binding domain of nuclear 
receptors. Nat Struct Biol 3(2): 206. 

Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H., and Morrison, S.J. 
2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-
initiating cells. Nature 441(7092): 475-482. 

Yong, K.L., Fahey, A., Pahal, G., Linch, D.C., Pizzey, A., Thomas, N.S., Jauniaux, E., Kinnon, 
C., and Thrasher, A.J. 2002. Fetal haemopoietic cells display enhanced migration 
across endothelium. Br J Haematol 116(2): 392-400. 

Yoshimura, A. 1998. The CIS/JAB family: novel negative regulators of JAK signaling 
pathways. Leukemia 12(12): 1851-1857. 

Yu, H., Yuan, Y., Shen, H., and Cheng, T. 2006. Hematopoietic stem cell exhaustion 
impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107(3): 
1200-1206. 

Yuan, Y., Shen, H., Franklin, D.S., Scadden, D.T., and Cheng, T. 2004. In vivo self-renewing 
divisions of haematopoietic stem cells are increased in the absence of the early G1-
phase inhibitor, p18INK4C. Nat Cell Biol 6(5): 436-442. 

Zecchi-Orlandini, S., Formigli, L., Tani, A., Benvenuti, S., Fiorelli, G., Papucci, L., Capaccioli, 
S., Orlandini, G.E., and Brandi, M.L. 1999. 17beta-estradiol induces apoptosis in the 
preosteoclastic FLG 29.1 cell line. Biochem Biophys Res Commun 255(3): 680-685. 

Zhang, J., Grindley, J.C., Yin, T., Jayasinghe, S., He, X.C., Ross, J.T., Haug, J.S., Rupp, D., 
Porter-Westpfahl, K.S., Wiedemann, L.M., Wu, H., and Li, L. 2006. PTEN maintains 
haematopoietic stem cells and acts in lineage choice and leukaemia prevention. 
Nature 441(7092): 518-522. 

Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., 
Feng, J.Q., Harris, S., Wiedemann, L.M., Mishina, Y., and Li, L. 2003. Identification of 
the haematopoietic stem cell niche and control of the niche size. Nature 425(6960): 
836-841. 

Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, 
I., Grosveld, G.C., Osawa, M., Nakauchi, H., and Sorrentino, B.P. 2001. The ABC 
transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a 
molecular determinant of the side-population phenotype. Nat Med 7(9): 1028-1034. 

Zhou, Y., Xu, B.C., Maheshwari, H.G., He, L., Reed, M., Lozykowski, M., Okada, S., Cataldo, 
L., Coschigamo, K., Wagner, T.E., Baumann, G., and Kopchick, J.J. 1997. A 
mammalian model for Laron syndrome produced by targeted disruption of the mouse 
growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci 
U S A 94(24): 13215-13220. 

Zou, A., Marschke, K.B., Arnold, K.E., Berger, E.M., Fitzgerald, P., Mais, D.E., and Allegretto, 
E.A. 1999. Estrogen receptor beta activates the human retinoic acid receptor alpha-1 
promoter in response to tamoxifen and other estrogen receptor antagonists, but not in 
response to estrogen. Mol Endocrinol 13(3): 418-430. 

Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., and Littman, D.R. 1998. Function of the 
chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. 
Nature 393(6685): 595-599. 

 



Supplements 

 - 102 -  

aa 
7 Abbreviations 
 
α-ERKO Estrogen Receptor α - knockout 
α-MEM Minimal essential media with α-modification 
5-FU 5-Fluorouracil 
17-β-E2 17-β-estradiol 
AlP Alkaline Phosphatase 
APC Allophycocyanin 
APC-Cy7 Allophycocyanin - anti-cyanine 7 
APS Ammonium persulfate 
BM Bone Marrow 
BMD Bone Mineral Density 
BrdU Bromdesoxyuridin 
BSA Bovine serum albumin 
°C degree celsius 
CA Cobblestone Area 
CAFC Cobbblestone-Area-Forming-Cell assay 
CFSE 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester 
C-terminal Carboxy-terminal 
DCC Dextran-treated charcoal 
DCC-HS Dextran-treated charcoal horse serum 
DCC-FCS Dextran-treated charcoal fetal calf serum 
DKFZ Deutsches Krebsforschungs Zentrum, Heidelberg 
DNA Deoxyribonucleic acid 
dNTPs Deoxynucleotide triphosphates 
DTT Dithiothreitol 
E Embryonic day 
ECM Estracellular Matrix 
ECL Enhanced chemiluminescence 
EDTA Ethylen-diamin-tetra-acetate 
e.g. example given 
ERE  Estrogen Responsive Element, 
ERK Extracellular-Signal Regulated Kinase 
et al. And others 
f.k.a. Formerly known as 
FACS Flourescence Activated Cell Sorting 
FCS Fetal calf serum 
FITC Fluorescein isothyocyanate 
FLI Fritz-Lipmann-Institute 
FLI Fritz-Lipmann-Institute, Leibniz-Institute for Age Research 
Flt 3 fms-like Tyrosine Kinase 3, also flk 2 
FSU Friedrich-Schiller-University Jena 
GH Growth hormone 
GHD Growth Hormone Deficiency 
GPR 30 G-coupled protein Receptor 30 
hHSC human Hematopoietic Stem Cells 
HS Horse serum 
HSC Hematopoietic Stem Cells 
HSC Hematopoietic Stem Cell 
IGF1 Insulin-like growth factor 1 
IL Interleukin 
IMDM Iscove´s modified Dulbecco media 
IVTK Institut für Versuchstierkunde (Institute for experimental animals Jena, 

belonging to the FSU) 
kb Kilobase 
kD Kilodalton 
ko Knockout 
LDA Limiting-Dilution-Analysis 
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LSK Lineage-negative, Sca1-positive, cKit-(CD117)positive cells 
LT Long-term 
LT-HSC Long- term Hematopoietic stem cells 
mA Milli-Ampere 
mHSC Murine Hematopoietic Stem Cells 
NEAA Non-essential amino acid 
NFκB Nuclear factor κ B 
N-terminal Amino-terminal 
OPG Osteoprotegrin 
OPN Osteopontin 
PAGE Polyacrylamideelectrophorese 
PBS Phosphate-buffered saline 
PCR Polymerase chain reaction 
PE Phycoerythrin 
Pen/Strep Penicillin / Streptomycin 
PI3K Phophatidylinositol 3-kinase 
PND Post-natal day 
PY Pyronin Y 
RNA Ribonucleic acid 
RT Room Temperature 
rt-PCR Real-time polymerase chain reaction 
Runx2 Also known as cbfa1, essential TF in osteoblasts and chondrocytes 
SDS Sodiumdodecylsulfate 
siRNA Small interfering ribonucleic acid 
SLAM Signaling lymphocyte activation molecule 
SOCS Suppressor of cytoline signaling 
ß-ERKO Estrogen Receptor ß - knockout 
STAT Signal transcucer and activator of transcription 
STAT5End Conditional knockout mouse for STAT5 only in endothelial cells 
STAT5OB Conditional knockout mouse for STAT5 only in osteoblasts 
TBS-T Tris-buffered saline with Tween 20 (polysorbate detergent) as detergent 
TF Transcription Factor 
TF Transcription Factor 
TNF Tumor necrosis factor 
V Volt 
WT Wild type 
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