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Abstract3

For d, k ∈ N with k ≤ 2d, let g(d, k) denote the infimum density of binary4

sequences (xi)i∈Z ∈ {0, 1}Z which satisfy the minimum degree condition
d∑
j=1

(xi+j +5

xi−j) ≥ k for all i ∈ Z with xi = 1. We reduce the problem to determine g(d, k)6

to a combinatorial problem related to the generalized k-girth of a graph G which7

is defined as the minimum order of an induced subgraph of G of minimum degree8

at least k. Extending results of Kézdy and Markert, and of Bermond and Peyrat,9

we present a minimum mean cycle formulation which allows to determine g(d, k) for10

small values of d and k. For odd values of k with d + 1 ≤ k ≤ 2d, we conjecture11

g(d, k) = k2−1
2(dk−1) and show that this holds for k ≥ 2d− 3.12

Keywords: Minimum degree; density; binary sequence; girth; generalized girth;13

power of cycle14
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1 Introduction16

Let d ∈ N be fixed. For a two-way infinite binary sequence

X = (xi)i∈Z = (. . . , x−1, x0, x1, . . .) ∈ {0, 1}Z,

we define the minimum degree δ(X) of X as

δ(X) = min

{
d∑
j=1

(xi+j + xi−j) | i ∈ Z, xi = 1

}
.

If xi = 0 for all i ∈ Z, then we write X = 0 and call X trivial.17

For k ∈ N with k ≤ 2d, we consider the infimum density g(d, k) of non-trivial binary
sequences subject to a minimum degree condition defined as

g(d, k) = inf

{
lim inf
n→∞

1

2n+ 1

n∑
i=−n

xi | X = (xi)i∈Z ∈ {0, 1}Z, X 6= 0, δ(X) ≥ k

}
.

Considering the binary sequence (xi)i∈Z with xi = 1 if and only if 1 ≤ i ≤ k + 1, it follows18

that g(d, k) = 0 for k ≤ d. While for such values of k, the calculation of g(d, k) is trivial,19

for k ≥ d+ 1, the calculation of g(d, k) leads to an interesting combinatorial problem.20

We prove as our first result that we can restrict ourselves to periodic sequences whose21

period is bounded in terms of d. Note that g(d, 2d) = 1 for all d ∈ N.22

Theorem 1 Let d, k ∈ N with d ≥ 2 and d + 1 ≤ k ≤ 2d. There is a non-trivial periodic
binary sequence X = (xi)i∈Z whose period p is at most d22d+1 such that δ(X) ≥ k and

g(d, k) =
1

p

p∑
j=1

xj.

Proof: Let 0 < ε < 1
3
. Let X = (xi)i∈Z be a non-trivial binary sequence such that δ(X) ≥ k

and lim inf
n→∞

1
2n+1

n∑
j=−n

xj ≤ g(d, k) + ε. Since xi = 1 for infinitely many i ∈ Z, we have

lim inf
n→∞

1

2n+ 1

n∑
j=−n

xj ≥
1

2

(
lim inf
n→∞

1

n

n∑
j=1

xj + lim inf
n→∞

1

n

n∑
j=1

x−j

)
.

By symmetry, we may assume that lim inf
n→∞

1
n

n∑
j=1

xj ≤ g(d, k) + ε.23

Note that δ(X) ≥ k ≥ d+ 1 implies that X does not contain d consecutive 0-entries.24

We call some n ∈ N good if25

• 1
n

n∑
j=1

xj ≤ g(d, k) + 2ε and26
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• (xj1 , xj1+1, . . . , xj1+2d−1) = (xj2 , xj2+1, . . . , xj2+2d−1) for some 1 ≤ j1 ≤ bεnc − 2d + 127

and n− bεnc+ 1 ≤ j2 ≤ n− 2d+ 1.28

Claim There are infinitely many good n ∈ N.29

Proof of the claim: Let n1, n2, . . . , n22d ∈ N be such that 1
ni

ni∑
j=1

xj ≤ g(d, k) + 2ε for 1 ≤ i ≤30

22d, 2d ≤ bεn1c, and ni ≤ bεni+1c for 1 ≤ i ≤ 22d − 1. Clearly, it suffices to prove that one31

of the ni’s is good. For contradiction, we assume that all ni’s are bad. Inductively, this32

implies that for 1 ≤ i ≤ 22d, the sequence (xj)j∈{1,2,...,bεnic} contains i distinct subsequences33

of the form (xj, xj+1, . . . , xj+2d−1) with 1 ≤ j ≤ bεnic − 2d+ 1 which are different from all34

subsequences of the form (xj, xj+1, . . . , xj+2d−1) with ni−bεnic+1 ≤ j ≤ ni−2d+1. Since35

there are exactly 22d distinct binary sequences of length d, this is impossible for i = 22d,36

which completes the proof of the claim. 237

Let n ∈ N be good. Let (xj1 , xj1+1, . . . , xj1+2d−1) = (xj2 , xj2+1, . . . , xj2+2d−1) for 1 ≤ j1 ≤38

bεnc − 2d+ 1 and n− bεnc+ 1 ≤ j2 ≤ n− 2d+ 1.39

The non-trivial periodic binary sequence X ′ = (x′i)i∈Z with x′i = xi for j1 + 2d ≤ i ≤
j2 + 2d− 1 of period p′ = j2 − j1 satisfies δ(X ′) ≥ k and

1

p′

p′∑
j=1

x′j ≤
1

1− 2ε
(g(d, k) + 2ε) .

If p′ > 2d22d, then the pigeonhole principle implies the existence of indices 1 ≤ j1, j2 ≤ p′40

with (x′j1 , x
′
j1+1, . . . , x

′
j1+2d−1) = (x′j2 , x

′
j2+1, . . . , x

′
j2+2d−1) and j1 + 2d ≤ j2 ≤ j1 + p′ − 2d.41

Let X ′′ = (x′′i )i∈Z be the non-trivial p′′-periodic binary sequence with x′′i = x′i for j1 + 2d ≤42

i ≤ j2 +2d−1 with p′′ = j2−j1. Similarly, let X ′′′ = (x′′′i )i∈Z be the non-trivial p′′′-periodic43

binary sequence with x′′′i = x′i for j2+2d ≤ i ≤ j1+p′+2d−1 with p′′′ = j1+p′−j2. Clearly,44

p′′, p′′′ < p′, δ(X ′′), δ(X ′′′) ≥ k, and either 1
p′′

p′′∑
j=1

x′′j ≤ 1
1−2ε

(g(d, k) + 2ε) or 1
p′′′

p′′′∑
j=1

x′′′j ≤45

1
1−2ε

(g(d, k) + 2ε). This implies that for every 0 < ε < 1
3
, there is a non-trivial periodic46

binary sequence X = (xi)i∈Z whose period p is at most d22d+1 such that δ(X) ≥ k and47

1
p

p∑
j=1

xj ≤ 1
1−2ε

(g(d, k) + 2ε) . Since for every such sequence X, the quantity 1
p

p∑
j=1

xj is a48

rational number whose denominator is bounded by d22d+1, the desired result follows. 249

For the further investigations, it is more convenient to consider a cyclic binary sequence

X = (x0, x1, . . . , xp−1) = x0x1 . . . xp−1

of length p instead of a periodic binary sequence (xi)i∈Z with period p. As usual, we will
consider indices modulo the length p. We say that an entry xi of X sees another entry xj of
X if the cyclic distance of xi and xj is at least 1 and at most d. To avoid double-counting,
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we define the minimum degree δ(X) of X as the minimum number of distinct 1-entries of
X seen by a 1-entry of X. Furthermore, we define the density µ(X) of X as

µ(X) =
1

p

p∑
j=1

xj.

With these notions, Theorem 1 implies that g(d, k) equals the minimum density of a non-50

trivial cyclic binary sequence X of length at most d22d+1 and minimum degree δ(X) ≥ k.51

Our original motivation to study g(d, k) comes from graph theory: For a finite, simple and52

undirected graph G = (V,E) and k ∈ N, the k-girth gk(G) of G is the minimum order of an53

induced subgraph of G of minimum degree at least k. The notion of k-girth was proposed54

and studied by Erdős et al. [3–5] and Bollobás and Brightwell [2]. It generalizes the usual55

girth, the length of a shortest cycle, which coincides with the 2-girth.56

Kézdy and Markert studied bounds on this generalized girth [7, 8]. They conjectured57

that the d-th power of the cycle of length n ≥ 2d + 1, denoted by Cd
n, is the 2d-regular58

graph with largest (d + 1)-girth [8] (see also Chapter 5 of [7]). During the 1988 SIAM59

conference, Kézdy [6] posed the problem to determine the exact value of the (d+ 1)-girth60

of Cd
n. For odd values of d, this problem was solved by Bermond and Peyrat [1] who proved61

that for d+ 1 ≤ k ≤ 2d, the k-girth of Cd
n satisfies62

gk
(
Cd
n

)
n

≥ k

2d
. (1)

The bound (1) is best-possible whenever k is even in view of the induced subgraph of Cd
n63

where n is a multiple of d and which alternately contains k
2

consecutive vertices of Cd
n and64

does not contain the next d− k
2

consecutive vertices of Cd
n. For odd values of k, Bermond65

and Peyrat mentioned results for some small values of d and k, and proved the best-possible66

estimate g2d−1(Cd
n)

n
≥ 2d

2d+1
.67

An induced subgraph G of Cd
n can be conveniently identified with a cyclic binary se-

quence X = (x0, x1, . . . , xn−1) of length n where 1-entries correspond to vertices of Cd
n

which belong to G and 0-entries correspond to vertices of Cd
n which do not belong to G.

This correspondence implies that g(d, k) equals the minimum k-girth of the d-th power of
cycles, i.e.

g(d, k) = min

{
gk(C

d
n)

n
| n ≥ 3

}
.

The above-mentioned results of Bermond and Peyrat imply that g(d, k) = k
2d

for d+1 ≤ k ≤
2d with even k and that g(d, 2d− 1) = 2d

2d+1
. Kézdy and Markert determined g(4, 5) = 12

19

and g(6, 7) = 24
41

with the help of a computer. Bermond and Peyrat [1] claimed that
g(5, 7) = 5

7
which is not correct (see Section 2). Furthermore, they conjectured that

g(d, k) =
d(2d+ 3− k)

2(d2 − (k − d− 2)d− (k − d))
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for d + 1 ≤ k ≤ 2d with k odd. Since this expression is less than k
2d

if and only if68 ∣∣k − 3d
2

∣∣ < d
2

√
1− 4

d+1
, this conjecture is obviously not correct in view of (1).69

Our results are as follows. In Section 2, we explain how for fixed values of d and k, the70

problem to determine g(d, k) can be reduced to a minimum mean cycle problem on a71

suitably defined directed graph with arc costs. This allows to determine g(d, k) and also72

the structure of optimal subgraphs of Cd
n for many small values of d and k and motivates a73

corresponding conjecture explained in Section 3. Moreover, in Section 4, we prove as our74

main result that our conjecture is true for k = 2d− 3, i.e. we determine g(d, 2d− 3).75

2 Minimum Mean Cycle Formulation76

Given a directed graph D = (V,A) and a cost function c : A→ R, a minimum mean cycle
is a directed cycle

C : v1v2 . . . vnv1

in D for which

c(A(C)) =
1

n

∑
a∈A(C)

c(a)

is minimum. Karp [9] observed that a minimum mean cycle can be found efficiently using77

shortest path methods.78

For d ∈ N and d + 1 ≤ k ≤ 2d, let D = (V,A) be the directed graph whose vertex set
V consists of all binary sequences

(x−d, . . . , x−1, x0, x1, . . . , xd)

of length 2d+ 1 with x0 = 1 and
d∑
i=1

(xi + x−i) ≥ k and which contains a directed arc (x, y)

of cost c((x, y)) = −i∗ from a vertex x = (x−d, . . . , xd) to a vertex y = (y−d, . . . , yd) exactly
if

(xi∗−d, . . . , x0, . . . , xi∗ , . . . , xd) = (y−d, . . . , y−i∗ , . . . , y0, . . . , yd−i∗)

for i∗ = min{i | 1 ≤ i ≤ d, xi = 1}. Note that i∗ is well-defined and that the last condition79

implies that x and y can be suitably overlayed, i.e. there is a binary sequence z of length80

2d+ 1 + i∗ such that x corresponds to the first 2d+ 1 entries of z and y corresponds to the81

last 2d+ 1 entries of z. See Figure 1 for an illustration.82

Theorem 2 If D and c are as above and C is a minimum mean cycle of D, then

g(d, k) = − 1

c(A(C))
.
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1100
∣∣1∣∣1011

1001
∣∣1∣∣0111

0110
∣∣1∣∣1101

1101
∣∣1∣∣1010

1011
∣∣1∣∣0101

1110
∣∣1∣∣0101

1010
∣∣1∣∣0111

1010
∣∣1∣∣1101

0101
∣∣1∣∣1011

1011
∣∣1∣∣0110

1110
∣∣1∣∣1001

1101
∣∣1∣∣0011

1101
∣∣1∣∣1011

−1

−2

−1

−1

−2

−2 −2

−1

−1

−2

−1

−3

−1

−1

Figure 1: Induced subgraph of the directed graph D for d = 4 and k = 5.

Proof: Clearly, for every directed cycle C : v1v2 . . . vnv1 in D, suitably overlaying the83

sequences v1, v2, . . . , vn — as x and y above — results in a cyclic binary sequence X with84

δ(X) ≥ k. Since the number of 1-entries of X equals n and the length of X equals85

−
∑

a∈A(C)

c(a), we obtain µ(X) = − 1
c(A(C))

.86

Conversely, if X is a cyclic binary sequence with δ(X) ≥ k, the sequences of length87

2d + 1 centered at the consecutive 1-entries of X define a directed closed walk W in D.88

By Euler’s theorem, W contains a directed cycle C with c(A(C)) ≤ c(A(W )). Since the89

length of W equals the number of 1-entries of X and the length of X is −
∑

a∈A(C)

c(a), we90

obtain c(A(C)) ≤ c(A(W )) = − 1
µ(X)

.91

These two observations clearly imply the desired result. 292

Table 1 summarizes some explicit values of g(d, k) obtained by this approach together with
realizing cyclic binary sequences. In fact, we determined optimal sequences for all values of
d and d+ 1 ≤ k ≤ 2d with d ≤ 13, k ≥ 2d− 7, and k odd. For (d, k) = (5, 7) for example,
we obtained g(5, 7) = 24

34
, and a realizing cyclic binary sequence is

(1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0),

which we write shortly as 13014010120140120101401302.93
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2d-k (d, k) g(d, k) Optimal cyclic sequences, candidates for u highlighted

3

(4, 5) 12/19 1201 1201 0 1012 1012 02

(5, 7) 24/34 1301 1301 0 12012 12012 0 1013 1013 02

(6, 9) 40/53 1401 1401 0 13012 13012 0 12013 12013 0 1014 1014 02

(7, 11) 60/76 1501 1501 0 14012 14012 0 13013 13013 0 12014 12014 0 1015 1015 02

5

(6, 7) 24/41
10213 10213 03 13021 13021 0 120212 120212 0
101201 101201 02 120101 120101 0 101012 101012 02

(7, 9)
40/62

14021 14021 0 130212 130212 0 120213 120213 0 10214 10214 03

130101 130101 0 12010121201012 0 101013 101013 02 101301 101301 02

20/31 1012012 1012012 02 1201201 1201201 0

7 (8, 9) 40/71

14031 14031 0 130312 130312 0 120313 120313 0 10314 10314 04

12021201 12021201 0 10212012 10212012 03 12012021 12012021 0 . . .

1013021 1013021 02 1302101 1302101 0 12021012 12021012 0 . . .

10120101 10120101 02 12010101 12010101 0 10101012 10101012 02 . . .

94

Table 195

3 A Conjecture for g(d, k)96

We have observed that all optimal sequences that we have computed can be obtained by97

applying a uniform construction rule.98

Let U be the set of finite binary sequences starting and ending with a 1. For u ∈ U
with u = 10av for some v ∈ U , the shift operation s applied to u results in s(u) = v0a1,
i.e. it removes all entries of u before the second 1 and appends them at the end in reverse
order. For u = 11101, for example, we obtain

s(u) = 11011, s2(u) = s(s(u)) = 10111, and s3(u) = 11101 = u.

For d, k ∈ N with d + 1 ≤ k ≤ 2d and k odd, let Ud
k be the set of those sequences in U99

with length d and exactly l = k+1
2

many 1-entries.100

Note that for u ∈ Ud
k , we have sl−1(u) = u.101

The shifted sequence for u is the concatenation

X(u) = uu0a1+1s(u)s(u)0a2+1 . . . 0al−2+1sl−2(u)sl−2(u)0al−1+1,

where ai is the number of 0s between the i-th and (i + 1)-st 1-entry of u, i.e. u =
10a110a21 . . . 10al−11. For u = 11011 ∈ U5

7 , we have

X(u) = 11011 11011 0 10111 10111 00 11101 11101 0

which is a cyclic shift of the sequence for (5, 7) in Table 1.102

A subsequence of consecutive entries of a cyclic binary sequence is called an interval.103

Lemma 3 Let d, k ∈ N be such that d+ 1 ≤ k ≤ 2d and k is odd. Let u ∈ Ud
k .104

(i) X(u) has length dk − 1,105
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(ii) µ(X(u)) = k2−1
2(dk−1)

,106

(iii) δ(X(u)) = k, and107

(iv) g(d, k) ≤ µ(X(u)).108

Proof: Let u = 10a110a21 . . . 10al−11. The length of X(u) equals

(l − 1)2d+
l−1∑
i=1

(ai + 1) = (k − 1)d+ (d− 1) = dk − 1.

Furthermore, X(u) contains (l − 1)2l = k2−1
2

many 1-entries. This implies (i) and (ii).109

Note that the shifted sequences for u and for s(u) are cyclic translates of each other.110

Furthermore, note that the reverse of a shifted sequence is also the cyclic translate of a111

shifted sequence. Therefore, in order to prove (iii), it suffices to consider the 1-entries112

within the first copy of s(u) in X(u).113

By definition, the interval of X(u) of length 2d+ 1 centered at the first 1-entry of the
first copy of s(u) within X(u) equals (the central entry is highlighted)

10a21 . . . 10al−210al−110a1+110a210a31 . . . 10al−110a111.

Hence this 1-entry sees (l − 1) 1-entries to the left and l 1-entries to the right, i.e. it sees114

2l − 1 = k 1-entries.115

For 2 ≤ i ≤ l − 2, the interval of X(u) of length 2d+ 1 centered at the i-th 1-entry of
the first copy of s(u) within X(u) equals

10ai+11 . . . 10al−110a1+110a21 . . . 10ai10ai+11 . . . 10al−110a1110a21 . . . 10ai1.

Again this 1-entry sees 2l − 1 = k 1-entries.116

The interval of X(u) of length 2d+ 1 centered at the (l− 1)-th 1-entry of the first copy117

of s(u) within X(u) equals 10a1+110a21 . . . 10al−110a1110a21 . . . 10al−11. Again this 1-entry118

sees 2l − 1 = k 1-entries.119

The interval of X(u) of length 2d + 1 centered at the l-th 1-entry of the first copy120

of s(u) within X(u) equals 010a21 . . . 10al−110a11s(u). Again this 1-entry sees 2l − 1 = k121

1-entries.122

(iv) follows immediately from (ii) and (iii). 2123

We pose the following conjecture.124

Conjecture 4 If d ∈ N and d+ 1 ≤ k ≤ 2d are such that k is odd, then

g(d, k) =
k2 − 1

2(dk − 1)
.

Furthermore, a cyclic binary sequence X with δ(X) ≥ k has density g(d, k) if and only if125

X is the concatenation of copies of a shifted sequence X(u) for some u ∈ Ud
k .126

9



The case k = 2d− 1 of Conjecture 4 follows from the results and arguments in [1]. In this127

case Ud
2d−1 contains only the element u = 1d and X(u) = 12d012d0 . . . 12d0.128

Since we will prove Conjecture 4 for k = 2d− 3, it is useful to consider the structure of129

X(u) for u ∈ Ud
2d−3. In this case, u is a sequence of length d containing (d− 1) 1-entries.130

If u∗ = 10a110a21 . . . 10al−11 with a1 = . . . = al−2 = 0 and al−1 = 1, then u∗ = 1d−201 and131

X(u∗) = 1d−201 1d−201 0 1d−3012 1d−3012 0 . . . 101d−2 101d−2 02

= 1d−201d−10101d−301d−101201d−401d−10130 . . . 101d−101d−202

Since for every u ∈ Ud
2d−3, there is some i with si(u∗) = u, every shifted sequence X(u)132

for u ∈ Ud
2d−3 arises from X(u∗) by a cyclic shift. In this sense, the conjectured extremal133

sequences are unique.134

4 The Value of g(d, 2d− 3)135

Throughout this section let d ≥ 4 and let X be the set of cyclic binary sequences X with136

δ(X) ≥ 2d− 3. This section is devoted to the proof of Conjecture 4 for k = 2d− 3, i.e. we137

will prove the following result.138

Theorem 5 Every X ∈ X satisfies µ(X) ≥ (2d−3)2−1
2((2d−3)d−1)

. Equality holds if and only if X139

is the concatenation of shifted sequences X(u∗) with u∗ = 1d−201.140

Before proving Theorem 5, we investigate structural properties of sequences in X . Let

X = (x0, x1, . . . , xn−1) = x0x1 . . . xn−1 ∈ X with n ≥ 2d+ 1.

Recall that an entry xi of X sees another entry xj of X, if xj is in one of the intervals141

xi−dxi−d+1 . . . xi−1 or xi+1xi+2 . . . xi+d. We call xi regular if it sees exactly (2d−3) 1-entries142

and hence exactly three 0-entries. We first show that all irregular entries see more than143

(2d− 3) 1-entries and describe the local structure around regular 0-entries.144

Lemma 6145

(i) All entries of X see at most three 0-entries.146

(ii) For every regular 0-entry xi, either xi+1 = xi+d = 0, or xi−1 = xi−d = 0, or xi−d =147

xi+d = 0.148

Proof: (i): By assumption, all 1-entries of X see at most three 0-entries. For contradiction,149

we assume that some 0-entry of X sees more than three 0-entries. This implies that X150

has an interval X ′ = 10a1 such that some 0-entry of X ′ sees at least four 0-entries. Since151

d ≥ 4 and each of the two 1-entries of X ′ see at most three 0-entries, we obtain a ≤ 3.152

Moreover, the two 1-entries of X ′ together see at most (6− a) distinct 0-entries. If a ≥ 2,153

then every 0-entry of X ′ sees at most three 0-entries, a contradiction. Hence a = 1. If xi154
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is the 0-entry in X ′, then each 1-entry of X ′ sees all but one entry seen by xi. Thus it sees155

at least three 0-entries seen by xi and the 0-entry xi which is the final contradiction.156

(ii): Again, the interval X ′ of the form 10a1 of X containing the regular 0-entry xi satisfies157

a ≤ 3. If a = 3, then one of the two 1-entries of X ′ sees xi and all three 0-entries seen by158

xi which is a contradiction. If a = 2, then, by symmetry, we may assume that xi is the159

first 0-entry of X ′. Since the 1-entry xi−1 does not see one of the 0-entries seen by xi, we160

have xi+1 = xi+d = 0. Finally, if a = 1, then each of the 1-entries xi−1 and xi+1 does not161

see one of the 0-entries seen by xi which implies xi+d = xi−d = 0 and completes the proof162

of (ii). 2163

Let n1 denote the number of 1-entries of X. Moreover, let n+ denote the number of164

irregular entries of X.165

We can relate the density of X to the number of irregular entries of X.166

Lemma 7

µ(X) =
n1

n
≥ 2d− 3

2d
+

n+

2dn
.

Proof: By Lemma 6 (i), double-counting the pairs (xi, xj) where xi = 1 and xi sees xj167

yields (2d− 3)(n− n+) + (2d− 2)n+ ≤ 2dn1 which implies µ(X) = n1

n
≥ 2d−3

2d
+ n+

2d
. 2168

1 0 0 0 0 1

+d +d +d +d +d

end end

interior entries
chain entries

Figure 2: A chain of length 4 for d = 5.

A chain of X is a maximal subsequence

C = (xi, xi+d, . . . , xi+kd)

of distinct 0-entries ofX such that k ≥ 1. A chain may be cyclic in which case i ≡ i+(k+1)d169

(mod n). Otherwise C has two distinct ends xi and xi+kd where xi−d = 1 = xi+(k+1)d.170

Associated with the chain C are the interior entries of C, which are those entries that belong171

to one of the intervals xi+jd+1xi+jd+2 . . . xi+jd+d−1, 0 ≤ j ≤ k−1, between consecutive chain172

entries xi+jd and xi+(j+1)d of C. We say that two chains overlap, if a chain entry of one173

chain is an interior entry of the second chain. Clearly, in this case, also a chain entry of the174

second chain is an interior entry of the first chain. Note that a chain may overlap itself.175
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11101
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1
1
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1
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1
0

1
1
1
0

u∗

u∗

s(u∗)

s(u∗)

s2(u∗)

s2(u∗)

Figure 3: The example X ′(u∗) for d = 5, i.e. with u∗ = 11101.

For example, the sequence X ′(u∗) = x′0x
′
1 . . . x

′
n−1 which arises from the shifted sequence176

X(u∗) for u∗ = 1d−201 by moving the final 0-entry to the beginning177

X ′(u∗) = x′0x
′
1 . . . x

′
n−1

= 01d−201d−10101d−301d−101201d−401d−10130 . . . 101d−101d−20 (2)

has the single chain C = (x′n−1, x
′
d−1, x

′
2d−1, . . . , x

′
n−d, x

′
0) whose ends x′n−1 and x′0 are both178

interior entries as well as chain entries of C. See Figures 2 and 3 for an illustration.179

We will show that chains may overlap only in their respective ends. More precisely, in180

Lemma 8 (ii) below we show that if xi is a chain entry of C which is an interior entry of181

chain C ′ and xi−d is another chain entry of C, then xi is an end of C and xi−1 is an end of182

C ′ = (xi−1, xi+d−1, . . .). If this occurs, we call the interval xi−1xi = 02 a pair of overlapping183

chain ends.184

Lemma 8185

(i) Every regular 0-entry of X belongs to some chain of X.186

(ii) If a chain entry of C is an interior entry of the (not necessarily distinct) chain C ′,187

then it belongs to a pair of overlapping chain ends.188

(iii) Let xi−1xi be a pair of overlapping chain ends. The intervals of length 2d ending and189

starting in xi−1xi = 02 have the form 1d−101d−202 and 021d−201d−1, respectively.190

(iv) An end of a chain is regular in X if and only if it belongs to a pair of overlapping191

chain ends.192
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Proof: (i): This follows immediately from Lemma 6 (ii).193

(ii): Let xi be a chain entry of C which is an interior entry of C ′. Then there must be194

chain entries xj, xj+d with i− d < j < i of C ′. By symmetry, we may assume that xi−d is195

another chain entry of C. If j < i−1, then xi−1 sees at least four 0-entries, a contradiction.196

So j = i− 1. Moreover, xj−d = 1 = xi+d, otherwise xi−2 or xi+1 sees four 0-entries. So xi197

is an end of C and xi−1 is an end of C ′.198

(iii): Since both xi−1 and xi already see three of the four 0-entries xi−d, xi−1, xi, xi+d−1, we199

obtain that xi−d+1 = 1 = xi+d−2. Since each of these two entries sees three of the four200

0-entries, too, all other entries seen by them must be 1, and the two intervals of X ending201

and starting in xi−1xi have the required form.202

(iv): It follows from (iii) that overlapping ends of chains are regular. Conversely, we assume203

that xi is an end of a chain which is not an interior entry of any chain. By symmetry, we204

may assume that xi−d = 0 and xi+d = 1. If xi is regular, then xi−1 = 0, otherwise xi−1205

sees xi and all the three 0-entries seen by xi, a contradiction to Lemma 6 (i). But since206

xi−1 does not belong to a chain, it must be irregular by (i) and thus xi−1 sees only the two207

0-entries xi and xi−d. So xi must be irregular as well. 2208

Lemma 9 Let I = xj−dxj−d+1 . . . xj+d be an interval of 2d+ 1 entries of X.209

(i) If I contains no irregular entry, then I contains a regular end of a chain.210

(ii) If I does not contain a regular chain end but contains an irregular chain end, then it211

contains at least two irregular entries.212

Proof: (i): Since the center xj of I is regular, it sees exactly three 0-entries, all of which213

are regular. By the length of I, only two of them can belong to the same chain. So, by214

Lemma 8 (iv), the third must be a regular chain end belonging to a pair of overlapping215

chain ends.216

(ii): For contradiction, we assume that I contains exactly one irregular entry, an irregular217

chain end. If the center xj is not the irregular chain end itself, then it is regular. So218

it sees two further 0-entries apart from the irregular chain end. Since these are regular,219

they all belong to chains. Hence, by Lemma 8 (ii), one of them is a regular chain end,220

a contradiction. So let xj be the irregular chain end. We may assume that xj−d = 0. If221

xj sees another 0-entry apart from xj−d, then, by Lemma 8 (i) and (iv), this 0-entry is222

irregular. Otherwise, xj+1 is irregular, a contradiction. 2223

Lemma 10 If X has a single chain whose ends overlap, then X has at least d−3 irregular224

entries.225

Proof: Let (x0, xd, x2d, . . . , xn−d+1, x1) be the chain and let 2 ≤ r ≤ d − 2. We prove that226

there is some irregular entry xj with 2 ≤ j ≤ n− 2 and j ≡ r mod d.227

13



If an entry at such a position satisfies xj = 0, then, by Lemma 8 (i) and (ii), xj is228

irregular. Hence, we may assume that xj = 1 for all 2 ≤ j ≤ n − 2 with j ≡ r mod d.229

We choose a largest s < r such that X has an entry xk = 0 with k ≡ s mod d. Note230

that x1 = 0 implies that s is well-defined and that 1 ≤ s < r. We claim that xk−s+d+r is231

irregular.232

Note that every 1-entry in the interval xk−sxk−s+1 . . . xk−s+d sees the three 0-entries233

xk−s, xk, xk−s+d. Hence xk−s+d−1 = 1 and k − s + d + r < n − d. Moreover, all further234

entries seen by xk−s+d−1 satisfy xk−s+d+1 = xk−s+d+2 = . . . = xk−s+2d−1 = 1. Furthermore,235

since xk+d sees three 0 entries, xk−s+2d+1 = . . . = xk+2d = 1. By the definition of s,236

xk+2d+1 = . . . = xk+2d+r−s−1 = 1. So, indeed, xk−s+d+r sees only the two 0-entries xk−s+d237

and xk−s+2d and is irregular. 2238

We are now prepared to prove Theorem 5.239

Proof of Theorem 5:240

Let X∗ = X ′(u∗) be as in (2). For contradiction, we assume that X = (x0, x1, . . . , xn−1)241

is a cyclic binary sequence in X of smallest order n having minimum density µ(X) =242

g(d, 2d − 3), and that X is not the concatenation of copies of X∗. Clearly, µ(X) ≤243

µ(X∗) = (2d−3)2−1
2((2d−3)d−1)

. Since a 1-entry of X must see at least 2d− 3 other 1-entries, we get244

for n ≤ 2d that µ(X) = n1

n
≥ 2d−2

n
≥ 1 − 1

d
> µ(X∗), a contradiction. So we may assume245

that n ≥ 2d+ 1.246

If X contains no pair of overlapping chain ends, then, by Lemma 9 (i), every interval I247

of length 2d + 1 of X contains an irregular entry. Since every irregular entry contributes248

to 2d+ 1 such intervals, we get by double-counting249

n ≤ (2d+ 1)n+, (3)

thus, by Lemma 7, µ(X) ≥ 2d−3
2d

+ 1
2d(2d+1)

> µ(X∗) which is a contradiction.250

Hence we may assume that X contains a pair of overlapping ends of chains.251

First we assume that X contains more than one such pair. By cyclicity, we may assume
that xn−1x0 and xk−1xk are pairs of overlapping chain ends of X. Let

X ′ = x0x1 . . . xk−1

and
X ′′ = xkxk+1xk+2 . . . xn−1.

By Lemma 8 (iii), X ′ and X ′′, considered as cyclic sequences, are both in X , because each252

entry sees the same entries as in X. Since X has minimum density µ(X) and µ(X) is a253

weighted average of the densities µ(X ′) and µ(X ′′), we obtain µ(X ′) = µ(X ′′) = µ(X).254

Since X ′ and X ′′ have smaller lengths than X, by our initial assumption, each of X ′ and255

X ′′ are the concatenation of copies of X∗. Hence X is the concatenation of copies of X∗256

which is a contradiction.257

Therefore, X has exactly one pair of overlapping chain ends, say xn−1x0. Let J be
the set of intervals of length 2d + 1 of X. Let J0 ⊆ J denote the set of those intervals
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containing a regular chain end and let J2 ⊆ J denote the set of those intervals containing
an irregular chain end. By Lemma 9, each interval in J2 \J0 contains at least two irregular
entries, while only the intervals in J0\J2 can contain no irregular entry. If X contains more
than one chain, then X contains two different irregular chain ends, hence |J2| ≥ 2d + 2
while |J0| ≤ 2d+ 2. Double-counting the incidences interval/irregular entry we obtain

n ≤ n+ |J2| − |J0| = n+ |J2 \ J0| − |J0 \ J2| ≤ (2d+ 1)n+,

as in (3), which again contradicts µ(X) ≤ µ(X∗).258

So X has a single chain both ends of which overlap. By Lemma 10, X contains at least
d − 3 irregular entries. Hence, by Lemma 7, µ(X) ≥ 2d−3

2d
+ d−3

2dn
. Since µ(X) ≤ µ(X∗) =

(2d−3)2−1
2(d(2d−3)−1)

, this implies that

n ≥ d(2d− 3)− 1,

i.e. the length of X is at least the length of X∗. By Lemma 8 (iv), each of the n− (2d+ 2)259

intervals of length 2d+1 in J \J0 contains at least one irregular entry. Hence n+ ≥ n−(2d+2)
2d+1

260

and, by Lemma 7,261

µ(X) ≥ 2d− 3

2d
+
n− (2d+ 2)

2d(2d+ 1)n
=

2d− 3

2d
+

1

2d(2d+ 1)
− 2d+ 2

2d(2d+ 1)n

≥ (2d− 3)2 − 1

2(d(2d− 3)− 1)
= µ(X∗).

Since µ(X) ≤ µ(X∗), we obtain µ(X) = µ(X∗). Therefore, n = d(2d−3)−1, each irregular262

entry sees exactly (2d − 2) 1-entries, and each of the 2d + 2 intervals in J0 contains no263

irregular entry while all intervals in J \ J0 contain exactly one irregular entry. Hence the264

irregular entries must be exactly x2d+1, x4d+2, . . . , x(2d+1)(d−3).265

So the irregular entries of X and X∗, with the notation of (2), are located at the266

same positions and, by Lemma 8 (iii), the intervals xn−2d+1 . . . xn−1x0 . . . x2d−2 of X and267

x′n−2d+1 . . . x
′
n−1x

′
0 . . . x

′
2d−2 of X∗ are equal.268

We assume that for some i ≥ 2d− 2, the intervals xi−2d+1 . . . xi of X and x′i−2d+1 . . . x
′
i269

of X∗ are equal. Now we show that xi+1 = x′i+1. Indeed, since xi−d+1 = x′i−d+1 has270

the same regularity status within X and X∗ and sees the same entries in X and X∗,271

respectively, except possibly at position i + 1, it follows that xi+1 = x′i+1. Therefore,272

X = X∗ contradicting the assumption that X is a counterexample. This completes the273

proof. 2274

If we define the quantity δ̃(X) for a cyclic binary sequence X = (x0, x1, . . . , xn−1) as

δ̃(X) = min

{
d∑
j=1

(xi+j + xi−j) | 0 ≤ i ≤ n− 1

}

and g̃(d, k) for d, k ∈ N with k ≤ 2d as the infimum density of a cyclic binary sequence X275

with δ̃(X) ≥ k, then g(d, k) ≤ g̃(d, k). A simple double-counting implies g̃(d, k) ≤ k
2d

.276
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The example described after (1) implies g(d, k) = g̃(d, k) for k ≥ d + 1 with k even.277

Furthermore, the comment after Conjecture 4 concerning k = 2d − 1 and Lemma 6 (i)278

imply g(d, 2d− 1) = g̃(d, 2d− 1) and g(d, 2d− 3) = g̃(d, 2d− 3), respectively. Finally, it is279

easy to check that δ̃(X(u)) ≥ k for every shifted sequence X(u) for every u ∈ Ud
k which280

does not contain two consecutive 0-entries.281

Therefore, Conjecture 4 would - if true - imply that g(d, k) = g̃(d, k) for all d + 1 ≤282

k ≤ 2d.283
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[5] P. Erdős, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Edge conditions for the293

existence of minimal degree subgraphs, Alavi, Yousef (ed.) et al., Graph theory, com-294

binatorics, and applications, Vol. 1. Proceedings of the sixth quadrennial international295

conference on the theory and applications of graphs held at Western Michigan Univer-296

sity, Kalamazoo, Michigan, May 30-June 3, 1988. New York: John Wiley & Sons Ltd.297

Wiley-Interscience Publication. 419-434 (1991). ISBN 0-471-60917-X298
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