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7 - ELECTRO-PROCESSING TECHNOLOGIES 
 

 
Abstract 

In terms of electromagnetic processing of materials the interactions of high magnetic 

fields ( >> 1 T) with solidified structures of metals, alloys and ceramics are well known 

and applied for crystal orientation and phase transformation, e. g. [1], [2] and [3]. In 

contrast the influence of an inhomogeneous low magnetic field on melts with a high 

content of paramagnetic ions is rarely investigated. 

In this study an inhomogeneous AC magnetic field with a low flux density (up to 55 mT) 

was imposed on a melt containing 33.84 wt% iron oxide. The changes in the material 

properties of the solidified melts were investigated due to the interaction with the 

magnetic field gradient. The outcome of this is the effect of the magnetic gradient force 

acting on the ions in such melts. It enables the feasibility to influence the phase 

segregation and the valence of the iron ions in the melt as well as the following 

crystallization – without any mechanical contact and independent on other process 

parameters. That creates new innovative possibilities of electromagnetic processing of 

magnetic materials in order to adjust their properties. 

 

1 Introduction 

Melts with a high content of iron oxide are qualified for the synthesis of ferrites, 

particularly for the fabrication of single crystalline ferrite powders by the glass 

crystallization technique, [4-6]. The optimization of the production process and the 

modification of such powders requires the realisation of additional parameters which 

must be independent of the conventional process control. In order to realise this we use 

an inhomogeneous magnetic field during the melting [7]. The application of an 

inhomogeneous magnetic field to the melt results in a gradient force acting on the iron 



ions (also known as magnetic interfacial force).  

The magnetic gradient force ∇F
r

 is determined by Eq. (1) 
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where mχ is the magnetic susceptibility of the electromagnetic modifiable regions in the 

material, 0μ  the absolute permeability, B the magnetic flux density and C the 

concentration of paramagnetic ions. 

For the estimation of the magnetic 

gradient force we assume only one 

paramagnetic ion with the volume VI 

and the magnetic moments n*µB 

located in the melt, with the 

permeability of its vicinity µ0 and a 

magnetic field which is  

inhomogeneous only in the z-direction 

(see Fig. 1). We get Eq. (2)  
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It is readily identified that the magnetic 

gradient force density ∇f
r

 is generally 

dependent on the density of the magnetic moments of the ions in the melt (n. µB/VI) as 

well as on the value of the magnetic field gradient B∇ . The direction of ∇f
r

 is determined 

by the direction of B∇ .  

From calculations using Eq. (2) we have obtained, that in fluids which contains Fe3+-ions 

(n = 5) and are penetrated with an inhomogeneous magnetic field the gradient 

=dzdB +0.1 T/m creates an approximately five times larger gradient force compared to 

the gravitational force [7].  

Until now the possible effects of such force ratios on the local chemical composition in 

the melt and the following crystallization are unknown. For the determination of these 

effects we performed comparative melt experiments without and with a defined 

Fig. 1: Magnetic gradient force ∇F
r

 and gravita-

tional force gF
r

 in a glass melt acting on one 
paramagnetic ion with the ion radius ri and mag-
netic moments n*µB, which is located in an in-
homogeneous magnetic field with the field gra-
dient B∇ [7].  

µB =9,27.10-24 Am2 (Bohr Magneton) 
µ0 = 4π.10-7 Vs/Am (absolute permeability) 



inhomogeneous magnetic field and measured the changes of the chemical and physical 

properties of the solidified melts. 

The used experimental set-up as well as the experimental procedure will be described in 

detail (section 2). In Section 3 we illustrate and discuss the results by means of in-situ 

measured temperature distributions obtained with a protected thermocouple and ex-situ 

(drilled samples from the solidified melts) by using X-Ray diffraction, chemical analysis 

and vibrating sample magnetometer measurements. 

 

2 Experimental set-up 
The equipment of the experimental 

investigations is shown in Fig. 2. The 

set-up consists of an electrically heated 

furnace with a maximum temperature 

of 1500°C provided by six heating 

elements (SiC-bifilar-rods) and an 

alternating current magnet system.  

In order to prevent melt flows as a 

result of buoyancy, the heating system 

generates a very homogeneous 

temperature field in the area of the 

furnace where the crucible is 

positioned. The crucible is cylindrical 

(inner diameter: 80 mm, height: 100 

mm), and consists of oxide dispersion 

strengthened platinum (ODS-Pt) to 

attain a sufficiently high temperature 

stability and to minimize its corrosion.  

The Pt-crucible contains the molten material of 48.14% BaO + 18.02% B2O3 + 33.84% 

Fe2O3 (wt%) up to a height of 80 mm.  

Due to the location of the furnace in the air gap of the magnet system and the low 

frequency (50 Hz) the generated magnetic field penetrates the crucible and the melt 

completely. In order to obtain a larger field gradient in the z-direction, the air gap is 

asymmetrically deformed in z-direction with an additional pole shoe made of MnZn ferrite 

(see Fig. 2). The generated distribution of the flux density Bx in the air gap about z is 

Fig 2: Top view on the arrangement of the 
electrically heated furnace with the AC magnet 
system [7].  
1 - mullite tube, 2 - heating rods, 3 - heat insulation, 
 4 - Pt crucible, 5 - additional pole shoe (MnZn-
ferrite)



shown in Fig. 3.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The magnetic field gradient ΔBx/Δz amounts approximately +0.1 T/m in the position of 

the melt. 

The melting procedures with and without such an inhomogeneous AC magnetic field 

were identical. The raw materials were primarily melted in an electrically heated furnace 

and cast into a coquille for solidification. Afterwards the material was transferred into the 

described special equipment and heated up to 1300°C with a heating rate of 1.5 K/min. 

The residence time amounted to 420 min without magnetic field or 330 min without plus 

90 min with magnetic field.  

In order to quantify the influence of the magnetic field gradient we measured the 

temperature ϑM in-situ at different positions z in the melts using a protected 

thermocouple (diameter: 1 mm, PtRh-Pt type B, Electrotherm GmbH, Germany). 

Afterwards the melts were cooled down to room temperature with a defined cooling rate 

of 5 K/min. The magnetic field was switched off at 1050 °C, so the field gradient was 

acting on the melt, but not on the crystallized and solidified material. The viscosity of the 

tested melt amounted 10 dPas at 1050°C. 

We drilled out several samples of the solidified melts (volume: 1 cm3) for material 

investigations (ex-situ). The positions of the samples are shown in Fig. 4. 

The drilled cores were split into three parts. Thus we obtained a bottom, middle and top 

Fig. 3: Distribution of the flux density Bx(z) measured by a hall probe. 
z-position of the Pt-crucible and the melt are plotted schematically 



sample (in the z-direction) at each position. 

The densities of all top and bottom samples 

were determined by using a gas pycnometer 

(Typ ACCUPYC 1330, Micromeritics). After 

that the selected samples were filled in a 

vessel containing diluted acetic acid (2h / 

10% CH3COOH / 100°C). The acetic acid 

dissolved the soluble phases (borates), but 

the ferrite crystals remained. These crystals 

were analysed by X-ray diffraction (Bruker 

AXS D8 advance), by a vibrating sample 

magnetometer (VSM 7300 Lake Shore) and 

by wet chemical methods (total iron: 

complexometry with 0.01 M ZnSO4 -solution, Fe2+: potentiometry with 0.01M Ce(SO4)2 -

solution, [8]).  

The comparison of all analyses of the samples from the melt procedures with and 

without the application of the magnetic field shows the influence of the low 

inhomogeneous AC magnetic field on the glass melt containing iron ions. 

 

3 Results and discussion 

Fig. 5 presents the temperature distributions ϑ(z) in the melts which were measured at 

equal positions x = y = 0.  

 

The distributions are nearly constant about the melt height. Thus melt flows as a result of 

 
 
 
 
 
 
 
 
Fig. 5: Temperature distribution 
ϑM(z) in the melt - with and 
without the impact of the 
inhomogeneous magnetic field 
at a furnace temperature of 
1300°C 

Fig. 4: Top view of the Pt crucible with the 
solidified melt and the position of the 
drilled cores. 



the buoyancy are negligible.   

Futher the interaction of the AC magnetic field shows no effect on the temperature 

distribution ϑM(z). The additional heat production in the melt resulting from the induction 

of eddy currents can also be disregarded. The electrical conductivity of the melts (at 

1300 °C: 46 S/m, at 1050 °C: 13 S/m) and the frequency of the magnetic field (50 Hz) 

are too low.  

In contrast to that influences on the density differences and on the magnetic properties 

(difference of the saturation magnetization: ΔMS, coercivity difference: ΔJHc) comparing 

the top and bottom samples are identifiable (see Tab. 1).  

 
Tab. 1: Average differences of the densities (top – bottom) of the drilled cores (unsolved and 
solved samples) resulting from experiments carried out with and without the impact of the 
inhomogeneous magnetic field [8]. 
 

differences  
of the densities 

[10-3 g/cm3] 
Melt 

experiment 

positions 
of the 

samples 
unsolved solved 

(28,0,z) -19,3 10,2 
(0,0,z) -12,7 40,5 

without 
magnetic 

field (-28,0,z) -14 87,3 
(28,0,z) 44,8 13,8 
(0,0,z) 58,4 38,9 

with 
magnetic 

field (-28,0,z) 38 21,7 
 

From these analyses we obtain that the density differences (top – bottom) of the 

unsolved samples at all positions are: 

+ positiv in the case of the experiments with the magnetic field, i.e. the sample 

densities are larger at the top and increase, 

+ negativ in the case of the experiments without the magnetic field, i.e. the sample 

densities are larger at the bottom, and are approximataly equal. 

The reason for the large changes of the density distribution with the direction of z is the 

change of the phase content of borates and ferrites. By systematic X-ray diffraction 

measurements it has been found out that barium borate (β-BaB2O4), M-type barium 

hexaferrite (BaFe12O19) and W- type barium hexaferrite (BaFe18O27) exist in all unsolved 

samples.  

In the Tab. 2 the densities of these phases are schown. 

 



Tab. 2: Densities of the pure phases [8]. 
 

phase density 
g/cm3 

M-type: BaFe12O19 5,351 
W-type: BaFe18O27 5,318 
β-BaB2O4 3,849 

 

From the experiments without the magnet field we conclude that the barium borate 

content must be larger at the bottom and the amount of the ferrites larger at the top at 

the melt. These states are inverted if the inhomogeneous magnetic field penetrate the 

melt. Thus, the magnetic gradient forces influence the phase segregation in the melt.  

Furthermore, the density differences (top – bottom) of the solved samples (= ferrite 

powder) at all positions are 

+ positiv in the cases with and without the magnetic field, i.e. the sample densities are 

larger at the top and  

+ approximately uniform in the case of experiments with the magnetic field. 

If we control the absolute values of the magnetic properties, the saturation 

magnetizations of the ferrite powders increase in the top position and the coercivities 

decrease in the middle and bottom positions by applying the inhomogeneous magnetic 

field, see Fig. 6 and 7. 
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Fig. 6: Changes of the saturation magnetizations MS in the solidified melt by applying 
an inhomogeneous magnetic field  



 

Furthermore, the bottom saturation magnetizations are higher, whereas the bottom 

coercivities are lower compared to the melt experiment without the magnetic field.  

Higher values of saturation magnetizations and lower coercivities result from decreasing 

amounts of hard magnetic phases and increasing amounts of the soft magnetic phases 

in the obtained ferrite powder. M-type barium hexaferrites are magnetically hard and W-

type hexaferrite are magnetically soft. 

In Tab. 3 the measured fraction of the M-type barium hexaferrite and W- type barium 

hexaferrite as well as the determited Fe2+ rates are shown in all ferrite powders. 

 

Tab. 3: Average rates of the ferrite phases and Fe2+ in the ferrite powders resulting from 
experiments carried out with and without the impact of the inhomogeneous magnetic field [8]. 
 

M-type 
[%] 

W-type 
[%] 

 Fe2+ 

[%] melt 
experiment 

positions 
of the 

samples top bottom top bottom top bottom
(28,0,z) 80,6 49,7 19,4 50,3 2,4 3,0 
(0,0,z) 77,8 64,4 22,2 35,6 2,3 2,6 

without 
magnetic 

field (-28,0,z) 86,8 58,3 13,2 41,7 1,4 2,8 
(28,0,z) 73,2 45,9 26,8 54,1 1,8 3,1 
(0,0,z) 64,8 46,1 35,2 53,9 2,3 3,0 

with 
magnetic 

field (-28,0,z) 67,6 48,1 32,4 51,9 2,2 3,0 
 

According to these phase compositions and their magnetic properties we conclude that 

the portion of the W-type hexaferrite increases and the rate of the M-type hexaferrite 
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Fig. 7: Changes of the coercivities JHC in the solidified melt by applying an inhomo-
geneous magnetic field  



decreases in the bottom range of the melt when the inhomogeneous magnetic field 

penetrates the melt. These changes are further associated with an increase of the Fe2+-

content in the bottom samples. The total amount of iron remains approximately 

unmodified.  

The reason for the modification of the Fe2+ – content is the change of the redox ratio as 

result of the variation of the local composition in the melt.  

 

4 Summary 

The present paper demonstrates experimental results of an inhomogeneous alternating 

magnetic field acting on melts from the BaO-B2O3-Fe2O3 system using a frequency of 50 

Hz and a field gradient ΔBx/Δz of +0.1 T/m at a maximum flux density of 44 mT. 

The investigations show that the temperature distribution ϑM(z) in the melt is not 

influenced by the low AC magnetic field. But the material properties like the density 

distribution and the valence of the iron ions about the melt height are substantially 

changed in the solidified material. These effects arise from the magnetic gradient force 

which is generated by the gradient of the inhomogeneous AC magnetic field.  

Many questions are still open and will be investigated in the following research activities. 

Numerical simulations to calculate and design the gradient BB
rr

)( ∇⋅ as well as the 

calculation of the the magnetic gradient force distribution under consideration of real 

concentrations and arrangements of ions in melts are planned in near future.  

Based on an improved knowledge of the associated change in the material properties 

the magnetic gradient forces facilitate a new application of electromagnetic processing 

and process control for bottom-up synthesis of special modified ferrite powders starting 

from fluids and melts [7]. 
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