
On Risks of Using a

High Performance Hashing Scheme

With Common Universal Classes

Dissertation zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von

Dipl.-Inform. Ulf Schellbach

Vorgelegt am: 27. März 2009

Verteidigt am: 3. Juli 2009

Gutachter:

1. Univ.-Prof. Dr. rer. nat. (USA) M. Dietzfelbinger, Technische

Universität Ilmenau

2. Associate Prof. Rasmus Pagh, IT University of Copenhagen

3. Assistant Prof. Philipp Woelfel, University of Calgary

urn:nbn:de:gbv:ilm1-2009000150

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224758979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dedicated to Life

i

Summary

The contribution of this thesis is a mathematical analysis a high performance

hashing scheme called cuckoo hashing when combined with two very simple

and efficient classes of functions that we refer to as the multiplicative class and

the linear class, respectively. We prove that cuckoo hashing tends to work badly

with these classes. In order to show this, we investigate how the inner structure

of such functions influences the behavior of the cuckoo scheme when a set S of

keys is inserted into initially empty tables.

Cuckoo Hashing uses two tables of size m each. It is known that the insertion of

an arbitrary set S of size n = (1− δ)m for an arbitrary constant δ ∈ (0, 1) (which

yields a load factor n/(2m) of up to 1/2) fails with probability O(1/n) if the hash

functions are chosen from an Ω(log n)-wise independent class. This leads to the

result of expected amortized constant time for a single insertion. In contrast to

this we prove lower bounds of the following kind: If S is a uniformly random

chosen set of size n = m/2 (leading to a load factor of only 1/4 (!)) then the

insertion of S fails with probability Ω(1), or even with probability 1− o(1), if

the hash functions are either chosen from the multiplicative or the linear class.

This answers an open question that was already raised by the inventors of

cuckoo hashing, Pagh and Rodler, who observed in experiments that cuckoo

hashing exhibits a bad behavior when combined with the multiplicative class.

Our results implicitly show that the quality of pairwise independence is not

sufficient for a hash class to work well with cuckoo hashing. Moreover, our

work exemplifies that a recent result of Mitzenmacher and Vadhan, who prove

that under certain constraints simple universal functions yield values that are

highly independent and very close to uniform random, has to be applied with

care: It may not hold if the constraints are not satisfied.

ii

Zusammenfassung

Der Beitrag dieser Dissertation ist die mathematische Analyse eines Hashing-

Verfahrens namens Cuckoo Hashing in Kombination mit einfachen, effizient aus-

wertbaren Funktionen zweier Hashklassen, die wir die multiplikative Klasse bzw.

die lineare Klasse nennen. Cuckoo Hashing hat die deutliche Tendenz, mit Funk-

tionen dieser beiden Klassen schlecht zu funktionieren. Um dies zu beweisen,

untersuchen wir den Einfluss der inneren Struktur solcher Funktionen auf das

Verhalten des Cuckoo-Verfahrens, wenn der Versuch unternommen wird, eine

Schlüsselmenge S in anfangs leere Tabellen einzufügen.

Cuckoo Hashing verwendet zwei Tabellen der jeweiligen Größe m. Man weiß,

dass die Einfügung einer beliebigen Menge S der Größe n = (1− δ)m für eine

beliebige Konstante δ ∈ (0, 1) (was einen Lastfaktor n/(2m) von bis zu 1/2

liefert) mit Wahrscheinlichkeit O(1/n) fehlschlägt, falls die Hashfunktionen

aus einer Ω(log n)-fach unabhängigen Klasse gewählt werden. Damit läßt sich

beweisen, dass die erwarteten amortisierten Kosten einer einzelnen Einfügung

konstant sind. Demgegenüber beweisen wir untere Schranken der folgenden

Art: Wenn S eine uniform zufällig gewählte Schlüsselmenge der Größe m/2 ist

(Lastfaktor 1/4 (!)), dann schlägt die Einfügung von S mit großer Wahrschein-

lichkeit Ω(1), oder sogar 1 − o(1), fehl, falls Funktionen der multiplikativen

bzw. der linearen Klasse gewählt werden.

Damit beantworten wir eine Frage, die bereits von Pagh und Rodler aufgewor-

fen wurde, als sie mit Hilfe von Experimenten feststellten, dass es riskant ist,

Cuckoo Hashing mit Funktionen der multiplikativen Klasse zu kombinieren.

Unsere Resultate zeigen, dass paarweise Unabhängigkeit und uniforme Vertei-

lung der Hashwerte keine Garantie dafür ist, dass Cuckoo Hashing gut funk-

tioniert. Zudem machen unsere Ergebnisse exemplarisch deutlich, dass bei der

Anwendung eines kürzlich veröffentlichten Resultates von Mitzenmacher und

iii

Vadhan, welches besagt, dass selbst Funktionen aus einfachen, schwach uni-

versellen Klassen unter gewissen Bedingungen zu hochgradig unabhängigen

und fast uniform zufälligen Werten führen können, Vorsicht geboten ist: Falls

dessen Bedingungen nicht erfüllt sind, gilt es unter Umständen nicht.

iv

Acknowledgements

According to my belief, this thesis is an achievement of life: Life has created this

thesis through my brain and hands. Life has influenced this process of coming

into existence through many people in my near and far surrounding. Therefore,

I would like to express my deepest gratitude to life at first.

As soon as I start to mention somebody by name I will surely miss the name

of a person who played an important role without that I was aware of it. To

all those people it may be a comfort to hear that I happend to forget many

things during the past few weeks as I was so focused on the completion of the

thesis. However, I am thankful to Martin Dietzfelbinger, my thesis advisor. He

guided me with patience, and he was a great source of inspiration for me with

respect to scientific work. I also thank all my present and past colleages who

amicably accompanied me during the past four years, and who shared their

knowledge with me: Manfred Kunde, Michael Brinkmeier, Elke Hübel, Karl-

Heinz Niggl, Henning Wunderlich, Folke Eisterlehner, Michael Rink (who bore

to share the office with me during the last few weeks of finishing the thesis. . .),

Sascha Grau, Lucia Penso, Petra Schüller, and our secretary Jana Kopp (who

ceaselessly reminds us of important dates, and does the work that we like the

least).

I surely will not forget to thank my parents Edeltraut and Klaus, and my brother

Philipp. They supported me in countless ways, with conditionless love.

Finally, I feel deepest gratefulness towards my beloved partner Ellen Stadie,

and her children Theresa and Anton. They help me to stand with both feet on

the ground.

Now, it just remains to be acknowledged that large parts of this thesis are based

on revised versions of [15] and [16].

v

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 The Dictionary Data Type 2

1.1.2 Hashing . 3

1.1.3 Hash Functions . 4

1.1.4 Universal Hashing . 5

1.1.5 Cuckoo Hashing and Its Relatives 6

1.2 Results of this Thesis . 11

1.2.1 Dense Key Sets . 11

1.2.2 Sparse Key Sets . 12

2 Preliminaries 13

2.1 Cuckoo Hashing . 14

2.2 The Cuckoo Graph . 14

2.2.1 Bad Edge Sets . 15

2.2.2 Failure probability pF under Full Randomness 17

2.3 Hash Function Families . 21

2.3.1 Independence versus Universality 22

2.3.2 Brief Discussion of a Recent Work 22

2.4 When Do Simple Hash Functions Work? 23

2.4.1 Some Notation . 24

vi

2.4.2 Some Definitions . 25

2.4.3 The Model . 25

2.4.4 Randomness Extraction . 26

2.4.5 Crucial Observation . 27

2.4.6 Theorem 2 and the Multiplicative Class 27

3 The Case of Dense Key Sets 29

3.1 The Special Case m
N ≥

1
2 . 29

3.2 High Failure Probability for the Multiplicative Class 30

3.3 High Failure Probability for the Linear Class 36

3.4 High Failure Probability for Two Distinct Linear Classes 40

3.5 Experiments . 45

4 The Case of Sparse Key Sets 48

4.1 Random Choice from a Grid . 48

4.2 Random Choice of a Grid . 49

4.3 Basic Structure of the Proof . 50

4.4 Almost Uniform Distribution . 51

4.5 pF(S) under Almost Uniform Distribution 59

4.6 Experiments . 64

5 Conclusion and Open Problems 66

Bibliography 68

vii

CHAPTER 1

Introduction

Sets are without doubt fundamental to mathematics. As for computer sci-

ence, data structures that represent sets and algorithms that manipulate set data

structures are of comparable importance.

Sets manipulated by algorithms can grow, shrink, or otherwise change over

time. We call such sets dynamic. A dynamic set whose elements are pairs (x, r)

of a unique identifier x associated with some satellite data r (such that its states

can be viewed as mappings) is called a dictionary.

A multitude of different ways to implement a dictionary is known. Among

the most efficient dictionary implementations are hashing schemes. Hashing

schemes can be characterized by using a hash table to store the elements of a

set, and making use of a hash function to find the location of elements in the

table. The performance of such a scheme strongly depends on the choice of the

hash function. One can, for example, choose the hash function randomly from

a given class of functions. This scenario is called universal hashing. It is attractive

from a practical point of view: There are classes of simple functions that can be

represented and evaluated very efficiently such that the combination of a given

hashing scheme with such a “universal” class performs well.

The contribution of this thesis is a mathematical analysis of a high performance

hashing scheme called cuckoo hashing when combined with two very simple

and efficient classes of functions that we refer to as the multiplicative class and

the linear class, respectively. We prove that cuckoo hashing tends to work badly

with these classes. In order to show this, we investigate how the inner structure

of such functions influences the behavior of the cuckoo scheme when a set S of

1

CHAPTER 1: INTRODUCTION

keys is inserted into initially empty tables.

Cuckoo Hashing uses two tables of size m each. It is known that the insertion

of an arbitrary set S of size n = (1− δ)m for an arbitrary constant δ ∈ (0, 1)

(which yields a load factor n/(2m) of up to 1/2) fails with probability O(1/m)

if the hash functions are chosen from an Ω(log n)-wise independent class. This

leads to the result of expected amortized constant time for a single insertion. In

contrast to this we prove lower bounds of the following kind: If S is a uniformly

random chosen set of size n = m/2 (leading to a load factor of only 1/4 (!)) then

the insertion of S fails with probability Ω(1), or even with probability 1− o(1),

if the hash functions are either chosen from the multiplicative or the linear class.

Our results answer an open question that was already raised by the inventors

of cuckoo hashing, Pagh and Rodler, who observed in experiments that cuckoo

hashing exhibits a bad behavior when combined with the multiplicative class.

Our results implicitly show that the quality of pairwise independence is not

sufficient for a hash class to work well with cuckoo hashing. Moreover, our

work exemplifies that a recent result of Mitzenmacher and Vadhan, who prove

that under certain constraints simple universal functions yield values that are

highly independent and very close to uniform random, has to be applied with

care: It may not hold if the constraints are not satisfied.

We hope that our work will in the long term enhance the practical use of cuckoo

hashing.

1.1 Background

Roughly following the line drawn above, we introduce the background that is

necessary to understand the significance of our results.

1.1.1 The Dictionary Data Type

From a mathematical point of view, the state of a dictionary can be modeled as a

mapping f : D → R that assigns satellite data in a set R to keys in a finite subset

D of some universe U. Recall that according to the mathematical definition of

f being a mapping from D to R we have f ⊆ D × R and for all x ∈ D there

2

CHAPTER 1: INTRODUCTION

exists a unique r ∈ R with (x, r) ∈ f . Furthermore, a dictionary supports the

following operations that change its state:

1. empty. Construction of an initially empty dictionary:

empty(()) = ∅

2. lookup. Given a dictionary f and a key x, return the data f (x) that is

assigned to x if x is in the domain D:

lookup(f , x) :=

{
f (x) if x ∈ D

undefined otherwise .

3. delete. Given a dictionary f and a key x, delete x and the corresponding

data f (x) if x ∈ D:

delete(f , x) :=

{
f if x 6∈ D

f − {(x, f (x))} otherwise .

4. insert. Given a dictionary f , a key x, and a data element r, insert (x, r)

into f if x /∈ D, otherwise replace f (x) with r:

insert(f , x, r) :=

{
f ∪ {(x, r)} if x 6∈ D

(f − {(x, f (x))}) ∪ {(x, r)} otherwise .

In this thesis we do not care about how the problem of assigning data r to a key

x is practically solved, as this will depend on the range R. We identify pairs

(x, r) with the corresponding key x, and assume that the assignment problem

is solved efficiently.

1.1.2 Hashing

This thesis analyzes a hashing scheme. Hashing is arguably one of the most

clever ways to implement a dictionary: Given a universe U of keys, |U| = N,

and a hash table T of size m, m ∈ N, keys are mapped to table positions in a

range M with |M| = m via a hash function h : U → M, and one would like

to store a key x in cell T[h(x)], i. e. in cell h(x) of T. Of course there may be

collisions, i. e. distinct keys x, y ∈ U with h(x) = h(y). Different ways to handle

3

CHAPTER 1: INTRODUCTION

collisions have led to many different hashing schemes over the past 50 years.

(For a basic introduction to hashing and its history see [28].) Arguably the most

natural scheme is chained hashing, where collisions are resolved by using a linear

list for each hash value such that keys with the same value are stored in the

same list. Almost as old as chained hashing and of great popularity is the linear

probing scheme, where keys are stored in the table itself, and not in linear lists.

Whenever a key x is inserted and another key y already resides in cell h(x), a

linear probe of table cells starting at h(x) is performed, i. e. sequentially the

cells h(x), h(x) + 1, h(x) + 2, . . . (modulo the table size) are inspected, and x is

inserted in the first cell that is not occupied by another key.

1.1.3 Hash Functions

The importance of choosing a suitable hash function h for a given hashing

scheme is obvious. It is, for example, always a bad idea to choose a constant

function—mapping all keys to the same table position. For chained hashing,

where the time for an unsuccessful search of a key x is merely bounded by the

length of the linear list belonging to h(x), one clearly sees the bad effect of a

constant function.

For a given set S ⊆ U of keys to be inserted in the hash table T it would of

course be perfect if h was 1-1 on S, i. e. for each set of two distinct keys x, y ∈ S

we have h(x) 6= h(y). This leads us to the realm of perfect hashing. We won’t go

deep into it here. Nevertheless we mention the following: the goal of a perfect

hash function can only be reached (in the most natural case |U| = N � m =

|M|) if S is known in advance, and it is the more difficult to reach the more we

are interested in a solution without much space overhead. To our knowledge,

the best known practical way to construct a perfect hash function (PHF) for

a set S of size n is due to Chazelle et al. [7], who implicitly explain it as a

modification of the “Bloomier Filter” data structure. An improved analysis of

this construction as well as a description of how to use such PHFs to construct

minimal PHFs (n = m) is due to Bothelo et al. [3]. The evaluation time for

these PHFs is constant and the amount of space needed to represent them is

around a factor 2 from the information theoretical minimum1. A scheme for the
1In the case n = m the information theoretical minimum is known to be approximately 1.44n

4

CHAPTER 1: INTRODUCTION

construction of a minimal PHF proposed by Hagerup and Tholey [25] has even

better properties from a theoretical point of view: constant evaluation time and

asymptotic optimal space usage. However, their scheme is not well-defined for

n < 2150 as in this case it yields buckets (table cells) of size less than 1. This has

the effect that their approach is not space efficient for reasonable values of n. A

good survey of this whole topic can be found in [10] and [12].

Many theoretical analyses of hashing schemes assume that the hash function h

be fully random, which means that the set {h(x) | x ∈ U} is a set of independent

and uniformly distributed random variables. (Basic terms of probability theory

and how they can be applied in design and analysis of algorithms can be found

in, e. g., [31].) Here too, we do not go deep into it, as this is not the approach

followed in the thesis. We just mention that in practice full randomness in a

mathematical sense can only be simulated. We get back to this in the context of

cuckoo hashing in Section 1.1.5.3.

1.1.4 Universal Hashing

In this thesis we are concerned with what seems to be a practical way out of the

dilemma of constructing a perfect hash function or simulating full randomness:

universal hashing. In this scheme the hash function h is sampled from a given

“universal” hash function class H, where sampling and evaluating a function

fromH should be possible in an efficient way.

Universal hashing was first proposed by Carter and Wegman in the late 1970s.

In their seminal paper [6] they, among other things, analyze chained hashing

in combination with classes H that satisfy the following universality property

(later on referred to as 1-universality, see Definition 1): For arbitrary distinct

keys x, y ∈ U and h chosen uniformly at random fromH we have

Pr(h(x) = h(y)) ≤ 1
m

. (1.1.1)

They show that if (1.1.1) holds then the expected length of a list is the same as

for a fully random function, namely α = n/m (known as the load factor, where n

refers to the number of keys currently stored in all lists). The proof of this result

is fairly easy. But very often analyzing a hashing scheme with universal classes

turns out to be difficult. The following may be evidence of this assertion: Carter

5

CHAPTER 1: INTRODUCTION

and Wegman in [6] already raised the question of extending their analysis to

linear probing. However, the behavior of linear probing with simple universal

classes eluded researchers until Anna Pagh, Rasmus Pagh and Milan Ružić [38]

recently presented an analysis that proves 5-wise independence2 of the hash

functions to be sufficient for this scheme to work well in the sense that the

expected cost of an operation is constant, whereas pairwise independence does

not suffice in that it may lead to expected logarithmic cost per operation.

In this thesis we analyze cuckoo hashing in combination with hash classes that

we refer to as the multiplicative class and the linear class: First, let 1 ≤ l ≤ k.

The multiplicative class consists of functions ha that map keys x ∈ U = [2k] =

{0, 1, . . . , 2k − 1} via

ha(x) := (a · x mod 2k) div 2k−l

to table positions in the range [2l], where the parameter a is an odd number

modulo 2k. Second, let p be a prime number and m < p. Then the linear class

can be described as consisting of functions ha,b that map keys x ∈ [p] via

ha,b(x) := ((ax + b) mod p) mod m

to the range [m], using parameters a ∈ [p]− {0} and b ∈ [p]. Note how simple

the functions of these classes are, and that their evaluation can be done very ef-

ficiently (compare [19]). Moreover, they have powerful universality properties

(see Section 2.3).

1.1.5 Cuckoo Hashing and Its Relatives

Cuckoo hashing was invented by Pagh and Rodler in 2001 [40]. It is a multiple

choice hashing scheme, where in a multiple choice hashing scheme each key can

reside in one out of d possible cells of the hash table(s), for a fixed number d ≥ 2.

Furthermore it belongs to the special class of hashing schemes where collisions

between keys are resolved by moving keys in the table as needed (under the

constraints defined by the choices for each key). Precisely: The cuckoo hashing

2By k-wise independence, k ≥ 2, of a hash classHwe mean that for h ∈ H chosen uniformly

at random each set of k random variables from {h(x) | x ∈ U} is independent in the probability

theoretic sense. Moreover, we implicitly mean that the hash value distribution is uniform, or at

least “close” to uniform. See the brief discussion in Section ??.

6

CHAPTER 1: INTRODUCTION

data structure consists of two tables T1 and T2, each of size m, and two hash

functions h1 and h2 associated with T1 and T2, respectively. Each key x ∈ U has

two choices. It can either be stored in cell T1[h1(x)] or in cell T2[h2(x)]. This

obviously allows for lookups and deletions that run in constant time. As for

insertions, a key x is made behave like a cuckoo: It is stored in cell h1(x) of T1.

If this cell was empty before, the insertion of x is complete. Otherwise if the cell

was occupied by some key y then y is kicked out of the cell by x and becomes

“nestless”. Then y is stored in cell h2(y) of T2. If this cell was empty before,

we are done. Otherwise a key z previously stored in cell h2(y) of T2 becomes

nestless, and so forth. The procedure stops successfully, if for the first time

a nestless key is inserted into an empty cell. In order to avoid infinite loops,

Pagh and Rodler suggest to define a limit L for the maximum tolerated number

of nestless keys during an insertion, and to perform a rehash once this limit is

reached, i. e. the set S of all keys currently residing in the table is inserted from

scratch with new hash functions h1 and h2. They set L := α log m for a large

enough positive constant α, and use this setting for their performance analysis

of the insertion procedure.

If we step back for a moment and view the insertion procedure from a distance,

overlooking its standard analysis in [41], then we see that the probability of the

following event is an important parameter of its performance:

“For a given set S ⊆ U the hash functions h1 and h2 are not suitable,”

i. e. the probability that it is not possible to place all keys of S according to

the choices defined by h1 and h2. We call the probability for this bad event

which depends on possible randomness of S, h1, and h2 the failure probability

and abbreviate it with pF = pF(S, h1, h2) in the following. We focus on pF as a

measure of performance throughout the thesis and prove lower bounds for it.

1.1.5.1 Cuckoo Hashing Under High Degree of Independence

In the following we let m = (1 + ε)n for an arbitrary constant ε ∈ (0, 1), or

equivalently n = (1− δ)m for δ := ε/(1 + ε). (In the literature both versions for

bounding the number of keys stored in the tables occur.) If the hash functions

are chosen uniformly at random from an Ω(log n)-wise independent class H

7

CHAPTER 1: INTRODUCTION

then we know that for an arbitrary set S ⊆ U of size n the failure probability pF

is O(1/m). This is shown by Pagh in [39]. Based on this result Pagh and Rodler

prove in [40] O(n) expected time for the insertion of n keys under Ω(log n)-

wise independence, and hence amortized expected constant time for a single

insertion.

Another line of related work focuses on the case of full randomness, i. e. all hash

values are independent and uniformly distributed. Kutzelnigg and Drmota

show in [20, 29] that in this case we not only have pF = O(1/m) but pF =

Θ(1/m). (There is a quite simple and elegant proof of this fact, see Section

2.2.2.) In particular, they compute the exact constant of the Θ-notation as a

function of δ for the above constant δ ∈ (0, 1) with n = (1− δ)m. They also

consider the case n = m and show pF = 1−
√

2/3− o(1).

So, given a high degree of independence and randomness for all hash values,

the expected behavior of cuckoo hashing is extremely good. However, the load

factor n/(2m) of no more than 1/2 that is necessary to guarantee this good

performance is a bit unsatisfactory.

1.1.5.2 How to Get a Better Space Usage?

There are generalizations of cuckoo hashing that afford a better space usage

than the standard variant: d-ary and blocked cuckoo hashing. The former (which

is characterized by using one table, d > 2 hash functions and buckets of size

1) was invented by Fotakis, Pagh, Sanders and Spirakis [23]. The latter (also

being characterized by one table, but using only two hash functions and buckets

of constant size ≥ 2) was independently proposed by Panigrahy [42], and by

Dietzfelbinger and Weidling [17].

In the offline case, where a set S of keys is given and we just ask whether these

keys can be placed (regardless of a specific insertion procedure), both variants

achieve a space overhead of no more than an ε fraction together with an access

time of O(log(1/ε)) for an arbitrary constant ε ∈ (0, 1) under the assumption

of complete independence and uniform distribution of all hash values. In other

words, the threshold load factor βd such that, with high probability, a set S of

size n can be placed if n/m ≤ βd and cannot be placed if n/m > βd is 1− 2−Θ(d).

For blocked cuckoo hashing the above result is independently achieved by

8

CHAPTER 1: INTRODUCTION

Cain, Sanders, and Wormald in [4] and by Fernholz and Ramachandran in [21].

They make use of a natural graph theoretic interpretation of blocked cuckoo

hashing: Buckets correspond to vertices and the two hash values (vertices) of

a key correspond to an edge. Then a placement of keys into buckets of size

d translates into orienting the edges in such a way that the in-degree of each

vertex is at most d.

As for d-ary cuckoo hashing, lower bounds on the threshold load factor for

d = 2, 3, 4 are established by Batu, Berenbrink, and Cooper in [1]. They reduce

the problem of finding a key placement (for n keys with d choices each and m

buckets of size 1) to finding a bipartite matching in a graph with bipartition

(X, Y), where x ∈ X corresponds to a key and y ∈ Y corresponds to a bucket,

and each edge (x, y) corresponds to one of the d choices of a key (represented

by the vertex x). Lower bounds on the threshold load factor for each d > 2

are found by Dietzfelbinger and Pagh in [13]. They use a remarkably different

approach by Calkin [5] who computes the probability that a matrix with n rows

(corresponding to n keys) and m columns (corresponding to m buckets of size

1) has full row-rank if each of its rows is a random bit vector with exactly d ones

(corresponding to the d choices of a key).

1.1.5.3 Is a High Degree of Independence Feasible?

In [32], Mitzenmacher and Vadhan prove a result of the following kind: If the

data S ⊆ U exhibits a sufficient amount of entropy then even simple universal

hash functions—under certain constraints—lead to “almost fully random” hash

values. This is a good explanation for the fact that simple hash functions often

tend to work well in practice. However, as we will explain in Section 2.4 one

has to apply this result with care.

If no randomness can be assumed for S, |S| = n, then full randomness of the

hash values can still be simulated as shown in [14, 18, 35, 37, 44, 45]. However,

the price one has to pay for full randomness is quite high: For storing a fully

random function we need space of at least n log m, which is the information

theoretic minimum. Moreover, there is a time-space tradeoff. The best known

construction exhibits an asymptotically optimal space usage of (1 + ε)n log m

and an evaluation time of O(log(1/ε)) ([14]). So, at least if space efficiency is

9

CHAPTER 1: INTRODUCTION

an issue then all these approaches to simulate full randomness may not be an

option.

Fortunately, for cuckoo hashing to work well we do not necessarily need full

randomness. It is sufficient that the hash functions be log n-wise independent

([41]). This can, e. g., be achieved by Siegel’s construction [45] at a price of

space O(nζ) for a not too small positive constant ζ < 1 and a large constant

evaluation time. Arguably the simplest and most efficient approach to achieve

this goal is the one described in [14] (split-and-share, first mentioned in [23],

sketched in [17], and more thoroughly explained in [12]). Split-and-share can

be used for cuckoo hashing in a way that consumes only space O(nδ) for an

arbitrary small positive constant δ < 1 while having (relatively) small constant

evaluation time. (For details see [14].)

So, whether we consider a high degree of independence to be feasible or not

depends upon the price in terms of time and space that we are willing to pay

for it. All told, the approach of using simple universal functions remains very

attractive from a practical point of view as such functions tend to be highly effi-

cient with respect to evaluation time and space consumption—even compared

to the above-mentioned split-and-share approach.

1.1.5.4 Behavior of Cuckoo Hashing with Weaker Hash Classes

In experiments cuckoo hashing reveals a good behavior with weaker universal

classes like the class of square polynomials over a prime field (compare Section

3.5). However, in [41] Pagh and Rodler report on experiments where for the

multiplicative class, that almost has the universality property (1.1.1) a bad be-

havior was observed. Independently from [41], Andrea Ott in [36] also reports

on erratic behavior of this class. It is one of the main purposes of this thesis to

mathematically explain this phenomenon.

In Section 2.3.2 we will discuss a work of Cohen and Kane3 that has not yet been

published. There it is claimed that 2-, 3-, and 5-wise independence (and even

so-called Θ(log n)-wise-joint-independence) of the hash functions may not be

sufficient to guarantee a good behavior of cuckoo hashing. Furthermore, a

proof for good behavior of cuckoo hashing when h1 is chosen from a pairwise

3http://web.mit.edu/dankane/www/Independence%20Bounds.pdf

10

http://web.mit.edu/dankane/www/Independence%20Bounds.pdf

CHAPTER 1: INTRODUCTION

independent class and h2 is chosen from a O(log n)-wise independent class is

suggested. However, for the time being just note that all the hash classes under

consideration are nonstandard and quite unattractive for practical use.

All told, the best proven upper bound on the degree of independence sufficient

for cuckoo hashing is that of [40]: O(log n). In this thesis we give a further

example for the fact that pairwise independence is not sufficient to guarantee

a good behavior of cuckoo hashing. The class we consider is a standard hash

class with a space efficient representation.

1.2 Results of this Thesis

If we agree upon “expected amortized constant time for an insertion” being

“good behavior” then (with view to the results described in Section 1.1.5.1) it is

justified to say that cuckoo hashing behaves well if the failure probability pF is

O(m−c) for a constant c ≥ 1. However, according to Kirsch, Mitzenmacher, and

Wieder [27] already a failure probability of O(1/m3) leads to a failure frequency

that is arguably too high for production systems. If that is true then all the more

it holds for a constant failure probability, or even a failure probability of 1− o(1).

The following chapters are devoted to proofs of lower bounds on pF when

cuckoo hashing is combined with the multiplicative class and the linear class (see

Section 1.1.4). We distinguish between m/N ≥ Nγ−1 and m/N < Nγ′−1 for

suitable constants γ, γ′ ∈ (0, 1), corresponding to dense key sets (m/N “large”)

and sparse key sets (m/N “small”), respectively.

1.2.1 Dense Key Sets

(a) In Section 3.2 we show that if cuckoo hashing with 2l = m = 2n is employed

(compare Section 1.1.5.1: this table size is almost twice as large as the threshold

sufficient for the standard analysis), then all pairs of multiplicative functions

will work badly with high probability for fully random key sets of size n (if

m/N ≥ Nγ−1 for a suitable constant γ ∈ (0, 1)). In words according to [32],

although the entropy of the input data is as large as possible, for every pair of

multiplicative hash functions the failure probability for a key set S of relatively

11

CHAPTER 1: INTRODUCTION

small size in comparison to m is extremely high. This explains in part the exper-

imental results obtained in both [41] and [36], and justifies a warning against

using this simple class of hash functions in combination with cuckoo hashing.

Moreover, our result shows that the condition in [32] which translates into the

requirement that S must not be too dense in the universe (see Section 2.4) is

necessary, and that it is relevant even in very natural circumstances (standard

hash classes, fully random key sets).

(b) In Section 3.3 we show that cuckoo hashing with the standard pairwise in-

dependent linear class exhibits a similar behavior as the multiplicative class in

(a). This is true even when the two hash functions use different prime moduli,

as proven in Section 3.4.

The proofs of all results mentioned so far follow the same scheme: We study

the “complete cuckoo graph” created by all keys combined with arbitrary fixed

hash functions from the considered classes, where an edge represents the hash

values of a key, and identify certain “bad edge sets” with the property that the

insertion of the corresponding sets of keys must fail. We show that random

edge sets of relatively small size contain a bad edge set with high probability.

1.2.2 Sparse Key Sets

We show in Section 4.1 that the above result for the multiplicative class can be

“lifted” to larger universes U, i. e. sparse key sets, but then the key set S must be

chosen randomly from a special subset U′ ⊆ U, where again m/|U′| ≥ |U′|γ−1.

The rest of Chapter 4 is dedicated to a similar result. However, construction

and proof are totally different. We show that there are structured key sets S,

constructed as a mixture of regular patterns and randomly chosen keys, that

will make cuckoo hashing fail with probability Ω(1) (in place of the O(1/m),

resulting from [39]). Here again, both of our results for the case of sparse key

sets are no contradiction to [32], as we allow only very restricted randomness

in the data.

Finally, in the respective situations of the above-mentioned results for both

dense and for sparse key sets the existence of key sets without any random

elements for which cuckoo hashing behaves badly is a natural consequence.

12

CHAPTER 2

Preliminaries

This chapter summarizes notions and concepts necessary for understanding

our work. For the sake of completeness and the reader’s convenience, we start

in Section 2.1 with an additional description of cuckoo hashing, reduced to the

main facts.

In Section 2.2 we introduce the important concept of the cuckoo graph. It serves

as a mathematical abstraction of the cuckoo hashing scenario. As important as

the concept of the cuckoo graph is the notion of a bad edge set that we define

and explain in Section 2.2.1. A bad edge set corresponds to a set of keys that

cannot be inserted according to the cuckoo scheme. A first application of this

knowledge can be found in Section 2.2.2 where we present a simple and elegant

proof of the failure probability (compare Sections 1.1.5 and 1.1.5.1) in the case

of full randomness.

In Section 2.3 we define the hash function families that are in the focus of this

thesis. In order to describe the randomness properties of these families when

used in the universal hashing scenario we introduce the notion of universality.

A very common alternative way to describe such randomness properties is to

apply the term “independence”. The relation between the notions universality

and independence is discussed in Section 2.3.1. In the following Section 2.3.2 we

briefly comment on a related work of Cohen and Kane with results quite near

to ours but focussing on a special kind of hash families of which the members

cannot be represented efficiently.

The rest of Chapter 2, Section 2.4, is dedicated to a detailed description of an

important result of Mitzenmacher and Vadhan [32]: Under certain constraints,

13

CHAPTER 2: PRELIMINARIES

a sufficient amount of randomness in the keys combined with a weak universal

function can lead to values with randomness properties that are close to full

randomness. We carefully discuss the relation to our results in Sections 2.4.5

and 2.4.6.

2.1 Cuckoo Hashing

Given two hash tables T1, T2, each of size m, and hash functions h1, h2 mapping

a universe U of N keys to [m] = {0, 1, . . . , m− 1}, the two possible positions for

a key x are cell h1(x) of T1 and cell h2(x) of T2 (Fig. 2.1).

Figure 2.1: A key x is either stored in cell h1(x) of T1 or in cell h2(x) of T2.

For a given set S ⊆ U and hash functions h1, h2 we say that h1 and h2 are suitable

for S if it is possible to store the keys from S in T1, T2 according to h1, h2 in such a

way that distinct keys are stored in distinct table cells. For a detailed description

and the basic analysis of cuckoo hashing, see [41].

2.2 The Cuckoo Graph

The cuckoo graph (see [11, 18, 35]) represents the hash values on a set S of keys

in U for hash functions h1, h2 : U → [m]. Its vertices correspond to the cells in

tables T1 and T2, and an edge connects the two possible locations T1[h1(x)] and

T2[h2(x)] for a key x ∈ S. Formally, the cuckoo graph G(S, h1, h2) is defined

14

CHAPTER 2: PRELIMINARIES

as an undirected bipartite multigraph (V1, V2, E) with vertex sets V1 = [m] and

V2 = [m], and edge (multi)set E = {(h1(x), h2(x)) | x ∈ S} (Fig. 2.2). We refer

to G(U, h1, h2) as the complete cuckoo graph.

Figure 2.2: The cuckoo graph represents the hash values on a set S ⊆ U for

functions h1, h2. Here we have S = {u, v, w, x, y, z}.

2.2.1 Bad Edge Sets

If G(S, h1, h2) = (V1, V2, E), we call E′ ⊆ E a bad edge set if |E′| is larger than

the number of distinct vertices that are incident with edges in E′. The following

two lemmata characterize suitability in different ways. Both characterizations

will turn out to be useful for the proofs of our main theorems.

Lemma 1. The hash functions h1 and h2 are suitable for S if and only if G(S, h1, h2)

does not contain a bad edge set.

Proof. If G = G(S, h1, h2) = (V1, V2, E) contains a bad edge set E′ ⊆ E then the

corresponding set S′ ⊆ S of keys cannot be stored in T1, T2 according to h1, h2

in such a way that distinct keys are stored in distinct table cells because the

number of possible cells for the keys in S′ is at least by one smaller than |S′|. So,

h1 and h2 are not suitable for S′, and thus cannot be suitable for the whole set S

either.

Vice versa, let there be no bad edge set in the cuckoo graph G. Assume that,

during the sequential insertion of the keys in S according to the cuckoo scheme

without bound for the maximum tolerated number of nestless keys during an

insertion (or—compare Section 1.1.5—equivalently with L = ∞), the insertion

15

CHAPTER 2: PRELIMINARIES

procedure for a first key x ∈ S nevertheless gets into an infinite loop. Then

consider the corresponding walk W in G that starts in h1(x) ∈ V1 and traverses

the edges that belong to the keys which become nestless during the insertion.

As G is finite W visits some of the vertices in G infinitly often. Let u be the first

vertex that W visits for the second time. Furthermore, be aware of the following

crucial fact: According to the cuckoo scheme the direction of an edge’s traversal

by W alternates, and between two subsequent traversals of the same edge lies

at least one traversal of another edge. This, in combination with u being the first

vertex to be visited repeatedly, has two implications that turn out to be useful

for our purposes:

(1) The edges traversed by W from u to u form a simple cycle C.

(2) The first vertex v traversed by W after the traversal of C is not a vertex on

C.

Assume w. l. o. g. that u = h1(x) holds. (Otherwise we consider the walk W ′

that starts when W visits u for the first time.) The next vertex w that W visits

repeatedly after finding v is either on C or not. However, as v is not on C, the

second visit of w closes a cycle that is distinct from C. The edges traversed by W

so far form a subgraph with two distinct cycles. A subgraph with two distinct

cycles forms a bad edge set. Contradiction! Consequently, S can be inserted

successfully by means of the cuckoo scheme, which implies that h1 and h2 are

suitable for S.

The next lemma was proven by Devroye and Morin in [11] (implicit also in [39]

and [41]).

Lemma 2. The hash functions h1 and h2 are suitable for S if and only if each connected

component of G(S, h1, h2) is either a tree or unicyclic.

Proof. It suffices to show that each connected component of G(S, h1, h2) is either

a tree or unicyclic if and only if there exists no bad edge set in G(S, h1, h2). Then

we apply Lemma 1.

First assume that G(S, h1, h2) contains a connected component C with more

than one cycle. Obviously C contains more edges than vertices, and hence

its edges form a bad edge set. Second assume that E′ is a bad edge set in

16

CHAPTER 2: PRELIMINARIES

G(S, h1, h2). We can w. l. o. g. assume that the subgraph G′ corresponding to

E′ is connected. As E′ contains more edges than vertices, G′ contains more than

one cycle.

Observe that Lemmata 1 and 2 imply the following: G(S, h1, h2) contains a bad

edge set if and only if one of its connected components is neither a tree nor

unicyclic, and hence contains at least two cycles.

In all proofs of the theorems in Chapter 3, we will focus on minimal bad edge

sets (of constant size), where we call a bad edge set E′ ⊆ E minimal if each true

subset of E′ is no longer a bad edge set. If E′ is a minimal bad edge set then the

corresponding subgraph G′ of G(S, h1, h2) is connected, contains one edge more

than vertices, and has no leaves, i. e. vertices with degree 1. The abstract shape

of such a subgraph is depicted below (Fig. 2.3; lines represent simple paths of

length at least 1, and dots are selected vertices): Either one simple cycle together

with a simple path that connects exactly two distinct vertices of this cycle, or

two simple cycles with pairwise distinct edges and a simple path of length at

least 0 that connects these cycles.

Figure 2.3: abstract shape of minimal bad edge sets

2.2.2 Failure probability pF under Full Randomness

Let us assume full randomness, i. e. all hash values are independent and their

distribution is uniform. Lemmata 1 and 2 are a key that opens the door to a

simple and elegant computation of an asymptotic bound of pF for sets S of size

(1− δ)m.

Theorem 1 ([20, 29, 40]). Let S ⊆ U be of size n = (1− δ)m for an arbitrary constant

δ ∈ (0, 1). Then we have pF ∈ Θ(1/m) under the assumption of full randomness.

Proof. As for the lower bound, observe that a smallest possible bad edge set, or

equivalently a smallest possible bipartite multigraph (V1, V2, E′) with E′ 6= ∅

of which the induced subgraphs of the connected components of size > 1 are

17

CHAPTER 2: PRELIMINARIES

neither trees nor unicyclic, consists of no more than three edges with the same

endpoints v ∈ V1 and w ∈ V2 (Fig. 2.4).

Figure 2.4: a smallest possible bad edge set

Under the full randomness assumption we can view G(S, h1, h2) as the result of

a random experiment where n edges (in the following represented by 1, . . . , n)

are “thrown” independently and uniformly at random into m2 initially empty

bins (i, j) ∈ [m]× [m] = V1×V2. All told, the probability that there exist three of

the n “edge balls” which fall into the same bin is a lower bound for pF, because

three edge balls in the same bin represent a smallest possible bad edge set. If we

proceed and try to bound the probability of the named event from below then

the application of a union bound does not help, of course. We have to make use

of a tool like the following conditional expectation inequality instead (for a proof

see [31]).

Lemma 3. Let Y be the sum of arbitrary Bernoulli random variables Y1, . . . , Yt, t ∈N.

Then we have

Pr(Y > 0) ≥ ∑
1≤i≤t

Pr(Yi = 1)
E(Y | Yi = 1)

.

This lemma also plays a vital role in our proofs of the theorems in Chapter 3.

However, let XT, T ⊆ {1, . . . , n}, be a Bernoulli random variable that takes the

value 1 if and only if all balls in T fall into the same bin. Define

X := ∑
T⊆{1,...,n},|T|=3

XT

such that X measures the number of distinct subsets of three edge balls of which

the respective elements fall into the same bin. Then we have

pF ≥ Pr(∃ three balls that fall into the same bin)

= Pr(X > 0) .

We apply Lemma 3 for (Y1, . . . , Yt) = (XT1 , . . . , XT(n
3)
) and Y = X, where an

arbitrary enumeration T1, . . . , T(n
3)

of the sets of three balls from {1, . . . , n} is

assumed to be given. Fix Ti = {i1, i2, i3} arbitrarily, 1 ≤ i ≤ (n
3). The probability

18

CHAPTER 2: PRELIMINARIES

that balls i1, i2, and i3 fall into the same bin is equal to the probability that i2
and i3 fall into an arbitrarily fixed bin, i. e.

Pr(XTi = 1) =
1

m4 . (2.2.1)

Furthermore, we have

E(X | XTi = 1) = ∑
1≤j≤(n

3)
Pr(XTj = 1 | XTi = 1) . (2.2.2)

Obviously, Pr(XTj = 1 | XTi = 1) depends on |Tj ∩ Ti|. It is not hard to see that

for arbitrarily fixed Tj we have:

Pr(XTj = 1 | XTi = 1) =

1 if j = i ,

1
m2 if |Tj ∩ Ti| = 2 , and
1

m4 if |Tj ∩ Ti| ≤ 1 .

(2.2.3)

By counting the number of different sets Tj, 1 ≤ j ≤ (n
3), which have d elements

in common with Ti, d ∈ {0, 1, 2, 3}, respectively, we derive from (2.2.2) and

(2.2.3) that E(X | XTi = 1) is equal to

1 +
(

3
2

)
·
(

n− 3
1

)
· 1

m2 +
(

3
1

)
·
(

n− 3
2

)
· 1

m4 +
(

n− 3
3

)
· 1

m4 .

So, taking into account that n = (1− δ)m, we have

E(X | XTi = 1) ∈ O(1) . (2.2.4)

This finally leads to the desired result:

pF ≥ Pr(X > 0) (def. X)

≥ ∑
1≤i≤(n

3)

Pr(XTi = 1)
E(X | XTi = 1)

(Lemma 3)

∈ Ω
(

1
m

)
((2.2.1), (2.2.4), and n = (1− δ)m)

As for the upper bound, observe that a bad edge set E′ contains a minimal bad

edge set E′′ ⊆ E′. This can be proven by induction (over the structure of E’): If

E′ is minimal then we are done. Otherwise there exists a true subset B′ (E′

which is bad. By induction hypothesis E′ := B′ contains a minimal bad edge

set E′′—as claimed.

19

CHAPTER 2: PRELIMINARIES

Recall the characteristic shape (Fig. 2.3) of the subgraph corresponding to a

minimal bad edge set. It is not hard to see that every such subgraph consists of

one simple path along vertices v1, . . . , vk, with edges et connecting subsequent

vertices vt and vt+1, 1 ≤ t ≤ k − 1, plus two further edges e0, connecting v1

to some vertex vi in {v2, . . . , vk}, and ek, connecting vk to some vertex vj in

{v1, . . . , vk−1} (Fig. 2.5).

Figure 2.5: the subgraph corresponding to a minimal bad edge set; the cases

i > j, i = j, and i < j represent the three cases depicted in Fig. 2.3

The probability that such a “bad” subgraph occurs can be bounded as follows.

We sum over 2 ≤ k ≤ n− 1, because the length of the simple path is ≥ 1 and

≤ n− 2. Now consider a fixed k. Then there exist no more than 2 ·mk · k2 bad

subgraphs of the above shape: They consist of a simple path v1, . . . , vk starting

either in V1 or V2 (factor 2) with its k vertices alternatingly from V1 and V2 (factor

mk, as |V1| = |V2| = m) plus two further edges vi and vj (factor (k− 1)2 < k2).

Now fix a bad subgraph consisting of a path v′1, . . . , v′k and extra vertices v′i and

v′j. For bounding the probability that G(S, h1, h2) contains this bad subgraph

we again consider the random experiment of throwing n edge balls into m2

bins corresponding to V1 ×V2. There are fewer than nk+1 ways to fix the edges

(among the n edge balls) that are supposed to be part of the bad subgraph

(factor nk+1). Now fix these edge balls. The probability that each of these k + 1

balls falls into the correct bin is m−2(k+1). This finally yields

pF ≤ Pr(∃ (minimal) bad edge set)

≤ ∑
2≤k≤n−1

(2 ·mk · k2) · (nk+1 ·m−2(k+1))

=
2
m
· ∑

2≤k≤n−1

(n
m

)k+1
· k2

<
2
m
· ∑

2≤k≤∞
k2(1− δ)k+1 ∈ O

(
1
m

)
(for n = (1− δ)m) ,

since the k-series is bounded by a constant.

20

CHAPTER 2: PRELIMINARIES

2.3 Hash Function Families

We consider two different kinds of hash function families. First, let 1 ≤ l ≤ k.

Then let

Hmult
k,l := {ha : [2k]→ [2l] | a ∈ Ok} ,

where Ok := {1, 3, . . . , 2k − 1}, and for x ∈ [2k] we let

ha(x) := (a · x mod 2k) div 2k−l .

We refer to this family as the multiplicative class [19]. Second, let p be a prime

number, and m < p. Then let

Hlin∗
p,m := {ha,b : [p]→ [m] | a ∈ [p]− {0}, b ∈ [p]} ,

where, for all x ∈ [p], we define

ha,b(x) := ((ax + b) mod p) mod m .

We refer to this family as the linear class [6]. More generally, we consider the

hash family of polynomials of degree up to d− 1, i. e.,

Hd
p,m := {ha0,...,ad−1 : [p]→ [m] | a0, . . . , ad−1 ∈ [p]} ,

where

ha0,...,ad−1(x) = ((a0 + a1x + · · ·+ ad−1xd−1) mod p) mod m

for x ∈ [p], see [6]. Obviously, Hlin∗
p,m is practically the same as H2

p,m. We used

H3
p,m as a reference class in our experiments.

In order to classify families of hash functions, we use the following well known

generalizations of the original notion of universality, which is due to Carter and

Wegman [6].

Definition 1. A family H of hash functions h : U → [m] is called (c, k)-universal

if for arbitrary distinct keys x1, . . . , xk ∈ U, arbitrary values y1, . . . , yk ∈ [m], and a

function h ∈ H chosen uniformly at random, we have

Pr(h(x1) = y1, . . . , h(xk) = yk) ≤
c

mk .

It is called c-universal if for arbitrary keys x 6= y and h chosen uniformly at random,

we have

Pr(h(x) = h(y)) ≤ c
m

.

21

CHAPTER 2: PRELIMINARIES

So, if H is a (c, k)-universal class and h is chosen uniformly at random from

H then k is a measure for the degree of independence of the hash values of h,

whereas c bounds their deviation from the uniform distribution. Furthermore,

our notion of c-universality is just an abbreviation of (c, 1)-universality.

In [19], the multiplicative class is proved to be 2-universal. For any fixed d ≥ 2,

the class of polynomials of degree up to d− 1 is known to be (2, d)-universal.

The linear class is 1-universal and (1, 2)-universal.

2.3.1 Independence versus Universality

As already mentioned in Section 1.1.4, we refer to a classH of hash functions as

being k-wise independent, k ≥ 2, if for h ∈ H chosen uniformly at random each

set of k random variables from {h(x) | x ∈ U} is independent in the probability

theoretic sense and the hash value distribution is uniform, or at least “close” to

uniform. In order to describe the quality of the hash value distribution more

precisely we prefer to make use of our above defined notion of universality

(compare Definition 1). However, yet another way to classify the quality of the

hash value distribution can, e. g., be found in [38]: There a class H is called ε-

approximately uniform, ε > 0, if the hash values for a randomly chosen h ∈ H
have L∞ distance at most ε from the uniform distribution, i. e. for any x ∈ U and

any y ∈ M it holds that |Pr(h(x) = y)− 1/m| ≤ ε. Direct comparison of the

different notions yields the following. If h is chosen uniformly at random from a

(c, k)-universal classH, c ≥ 1, then it is k-wise independent and ((c1/k− 1)/m)-

approximately uniform. Accordingly, if h is chosen from a c-universal class

then it is ((c− 1)/m)-approximately uniform and we know nothing about the

degree of independence of its hash values.

2.3.2 Brief Discussion of a Recent Work

In Section 1.1.5.4 we mentioned a work of Cohen and Kane that has not yet

been published, but is closely related to the results of this thesis. There it is

claimed, e. g., that 2-, 3-, and even 5-wise independence of the hash functions

may not suffice to guarantee a good behavior of cuckoo hashing, where they

define k-wise independence in a way that directly corresponds to our notion of

22

CHAPTER 2: PRELIMINARIES

(O(1), k)-universality (Definition 1). So, we are not the first to suggest a proof

for the fact that cuckoo hashing works badly with certain weaker universal hash

classes. However, the main difference to the results of this thesis seems to be the

following. In contrast to the linear and the multiplicative class that we consider,

all the hash classes considered by Cohen and Kane are nonstandard and quite

unattractive for practical use because of their large space consumption: These

hash classes H without exception have the property to be value oblivious, i. e., if

h : U → [m] belongs to H then for each π ∈ Sm, i. e. each permutation π of

the range [m], π(h) (defined by π(h)(i) := π(h(i))) also belongs to H. Now,

observe that a nonempty value oblivious classH has a cardinality of at least m!,

and hence we need Ω(m log m) bits to represent a single function fromH. This

is a relatively large amount of space.

Two further things we feel free to criticise in a (hopefully) constructive way:

First of all, Cohen and Kane prove a little less than what they claim1. They

claim that something holds for a, say, k-wise independent class. But then they

prove it for a class that (for a randomly chosen h) does not have the necessary

property

Pr(h(x1) = a1, . . . , h(xk) = ak) =
O(1)
mk

but only the far weaker property

Pr(h(x1) = · · · = h(xk)) =
O(1)
mk−1

for arbitrary distinct keys x1, . . . , xk and arbitrary values a1, . . . , ak. Second, in

the proof (suggested by Cohen and Kane) of a good behavior of cuckoo hashing

when h1 is chosen from a pairwise independent class and h2 is chosen from a

O(log n)-wise independent class the named authors make the assumption that

m is a sufficiently large constant times n (where n denotes the size of the set S of

keys in the tables). Following their argumentation we get m ≥ 8 · n. Obviously,

this strongly relativizes the good behavior that they prove.

2.4 When Do Simple Hash Functions Work?

As we said, theoretical analyses of hashing schemes often make the assumption

of full randomness. But from a practical point of view full randomness can
1Thanks to Peter Bro Miltersen for pointing this out

23

CHAPTER 2: PRELIMINARIES

only be simulated, and the efficiency of the best known simulations is quite

unsatisfactory with respect to their space consumption, as explained in Section

1.1.5.3. However, in experiments one can observe the phenomenon that hashing

schemes combined with simple universal functions tend to work fairly well,

even though the performance guarantees that we can prove for this setting may

be noticeably weaker than those proven under the full randomness assumption.

Recently, Mitzenmacher and Vadhan [32] (an improved version can be found in

[9]) tried to explain this phenomenon, saying that if the data (the set S of keys

to be inserted) is “sufficiently” random then even a function that is randomly

chosen from a simple universal class may yield a hash value distribution that is

very “close” to full randomness, and thus will lead to essentially the same per-

formance as in the case of full randomness. The idea behind this is not entirely

new. A hash function class with the above-mentioned property is actually also

known as a randomness extractor [34]. Randomness extractors have many appli-

cations in theoretical computer science. They play a vital role in the realm of

pseudorandomness. (For surveys about the theory of constructing a random-

ness extractor see [33, 43].) However, Mitzenmacher and Vadhan seem to be the

first who apply this theory to universal hashing.

In the following we will present one specific result of [32] which we consider to

be the most important one among all results in [32] with respect to the results

of this thesis. Only a very close look at this result enables to see that there is no

contradiction to our results.

2.4.1 Some Notation

For a discrete random variable X, the support of X is

Supp(X) = {x | Pr(X = x) > 0} .

For a finite set F, UF denotes a random variable that is uniformly distributed

on F.

24

CHAPTER 2: PRELIMINARIES

2.4.2 Some Definitions

LetH be a class of hash functions that map a finite set U of size N to a range M,

|M| = m. For a random variable X taking values in U, the max probability is

mp(X) = max
x∈U

Pr(X = x) ,

i. e. an upper bound for the probability that X takes an arbitrarily fixed value

x ∈ U. The collision probability is

cp(X) = ∑
x∈U

Pr(X = x)2 ,

and thus can be viewed as the expected probability that equally distributed and

independent random variables X and X′ collide, i. e. they take the same value.

If Y is another random variable with values in U, then the statistical difference of

X and Y is

∆(X, Y) = max
S⊆U
|Pr(X ∈ S)− Pr(Y ∈ S)| ,

which is an upper bound for the absolute value of the difference between the

probability that an arbitrary event S ⊆ U occurs for X and the probability that

it occurs for Y. X and Y are called ε-close if ∆(X, Y) ≤ ε. Furthermore we say

that a sequence of random variables (X1, . . . , XT) taking values in UT is a block

source with collision probability pb per block (respectively, max probability pb per

block) if for every i, 1 ≤ i ≤ T, and every (x1, . . . , xT) ∈ Supp(X1, . . . , XT), we

have

cp(Xi | X1 = x1, . . . , Xi−1 = xi−1) ≤ pb

(respectively, mp(Xi | X1 = x1, . . . , Xi−1 = xi−1) ≤ pb). So, if we assume for a

block source with collision probability pb that its random variables take values

sequentially (first X1, then X2, and so forth) then we know something about

the effect of dependencies between the random variables on the probabilities of

values in this sequence.

2.4.3 The Model

In [32] the keys to be inserted in a table are viewed as being random variables

X distributed over the finite set U of size N. As a measure of the amount of

randomness in a key they use the above maximum probability mp(X) as well

25

CHAPTER 2: PRELIMINARIES

as the collision probability cp(X). Measuring these quantities is equivalent to

measuring the so-called min-entropy

H∞ = min
x∈U

log
(

1
Pr(X = x)

)
= log

(
1

mp(X)

)
and the Rényi entropy

H2 = log
(

1
∑x∈U Pr(X = x)2

)
= log

(
1

cp(X)

)
,

respectively. If |Supp(X)| ≤ K, then

mp(X) ≥ cp(X) ≥ 1
K

(i. e. H∞(X) ≤ H2(X) ≤ log K), with equality if and only if X is uniform on its

support. Moreover, min-entropy and Rényi entropy can be used interchange-

ably because it also holds that

mp(X) ≤ cp(X)
1
2 ,

and hence these two measures are always within a factor two of each other.

Now Mitzenmacher and Vadhan model a sequence of T keys as a block source,

i. e. a sequence of arbitrarily correlated random variables, yet where each item

is guaranteed to have some entropy conditioned on the previous items.

2.4.4 Randomness Extraction

Mitzenmacher and Vadhan conclude from the so-called Leftover Hash Lemma

[26] (a similar lemma was also used in [2]) that each 1-universal hash class is

a “strong” randomness extractor. Now the classic approach to extracting ran-

domness from a block source is to apply a (strong) randomness extractor to

each block of the source. An application of this approach leads to the following

theorem.

Theorem 2 ([8, 46]). Let h : U → M be chosen uniformly at random from a 1-

universal class H. For every block source (X1, . . . , XT) with collision probability

1/K per block, the random variable (h, h(X1), . . . , h(XT)) is (T/2) ·
√

m/K-close

to (h, UM).

26

CHAPTER 2: PRELIMINARIES

So if we have T keys coming from a block source (X1, . . . , XT), and we want

the hash values (h(X1), . . . , h(XT)) resulting from uniformly random choosing

h from a 1-universal class to be ε-close to the uniform distribution on MT then

each key is required to have (Rényi) entropy at least log K ≥ log(mT2/4ε2) =

log m + 2 log(T/2ε). (In [9] it is shown that the factor 2 can be omitted. The

amount of entropy required is only ≈ log m + log T. However, the following

observation remains true.)

2.4.5 Crucial Observation

Obviously we have K ≤ N. In this thesis we consider a situation where T ≥
m/2. If in this setting we would like to derive ε-closeness of (h(X1), . . . , h(XT))

to UMT then it directly follows from the above considerations that N must be

at least m3/(16ε2) or, equivalently, m ≤ (4ε)2/3N1/3, where (4ε)2/3 ≤ 1 for all

reasonable values of ε. Another observation of great importance is that a Rényi

entropy of at least log K per block essentially means that each new key must be

uniformly distributed on its support (even conditioned on the hash values of

the previous keys). Therefore, if either

(1) a nonnegligibly sized part of the sequence of keys is determined or

(2) the key set is arbitrarily, say fully, random but m� N1/3

then we cannot expect the hash values (h(X1), . . . , h(XT)) resulting from uni-

formly random choosing h from a 1-universal class to be close to the uniform

distribution on MT, and hence we cannot apply any of the nice results for the

case of full randomness. For each of our Theorems 3, 4, 5, and 6, as well as for

our Corollaries 1, 2, 3, 4, 5, and 6, either (1) or (2) holds.

2.4.6 Theorem 2 and the Multiplicative Class

In [15] and [16] the authors suggested that a theorem of comparable strength

as Theorem 2 holds for 2-universal classes like Hmult
k,l , too, but in fact they do

not know whether this is true or not. However, they do know that if we apply

the proof of Theorem 2 to h chosen uniformly at random from a c-universal

class H, c ≥ 1, instead of a 1-univeral class then this leads to ε(c) := ((T/2) ·

27

CHAPTER 2: PRELIMINARIES

√
m/K + (c− 1))-closeness of (h(X1), . . . , h(XT)) to the uniform distribution

on MT. (In order to see this one has to apply the proof of the Leftover-Hash-

Lemma (compare, e. g., [30]) to a c-universal class instead of a just 1-universal,

or even pairwise independent, class at first.) The crux is that for every ε > 0 we

can choose K large enough compared to m such that ε(1) ≤ ε whereas ε(c) >

T/2 for all m, K ∈N and c ≥ 2.

28

CHAPTER 3

The Case of Dense Key Sets

In this chapter we consider the case where n/N resp. m/N is at least Nγ−1 for

a suitable constant γ ∈ (0, 1), i. e. key sets of size n are relatively dense in U. In

Section 3.2 we prove a lower bound on the failure probability when a uniformly

random chosen set S ⊆ U of size no more than m/2 is inserted with arbitrarly

fixed multiplicative functions. This implies the existence of a “bad set” S of

size m/2 such that the same lower bound on the failure probability holds if

S is inserted with uniformly random chosen multiplicative functions. Similar

results for the linear class are established in Section 3.3. Even in case the two

linear functions use different prime moduli there is no significant improvement

of the performance, as shown in Section 3.4. Section 3.1 deals with a technical

condition of the main theorems.

3.1 The Special Case m
N ≥

1
2

This brief section deals with the special case of very dense key sets, in order

to explain a technical condition of the following theorems. It turns out that the

performance of cuckoo hashing combined with the multiplicative or linear class

is best possible if m/N is at least 1/2. Note that throughout we focus on m/N

(rather than n/N), because it is this ratio that determines the structure of the

hash functions.

Proposition 1. If m/N ≥ 1/2, then all functions h1, h2 ∈ Hmult
k,l are suitable for all

sets S ⊆ U. The same holds forHlin∗
p,m .

29

CHAPTER 3: THE CASE OF DENSE KEY SETS

Proof. It suffices to show that in these cases the complete cuckoo graph G =

G(U, h1, h2) has maximum degree of 2, i. e., its components are simple paths

and simple cycles. It is clear that in this situation the keys can be arranged as

required.

As for Hmult
k,l , note that Ok = {1, 3, . . . , 2k − 1} is an Abelian group with respect

to multiplication modulo 2k. So, for each a ∈ Ok the mapping

x 7→ ax mod 2k

is a permutation of U = [2k], and its restriction to Ok is a permutation of Ok.

The assumption m/N = 2l−k ≥ 1/2 implies k− l ∈ {0, 1}, and hence

x 7→ (ax mod 2k) div 2k−l

is 1-1 on Ok, and 1-1 on U −Ok. Consequently, for all j ∈ [m] there are at most

2 keys x with ha(x) = j, and hence G has maximum degree 2.

The argumentation for Hlin∗
p,m is similar: As [p] is a field w.r.t. addition and

multiplication modulo p the mapping

x 7→ (ax + b) mod p

is a permutation of U = [p]. The assumption m/N ≥ 2 can be read as m ≥ N/2,

and hence for all j ∈ [m] there are at most 2 keys x with

ha,b(x) = (ax + b) mod p mod m = j .

3.2 High Failure Probability for the Multiplicative

Class

We consider the multiplicative class. Recall that, for fixed hash functions h1, h2,

and S ⊆ U chosen randomly, we denote the probability that h1 and h2 are not

suitable for S as failure probability pF. The purpose of this section is to establish

the following theorem.

Theorem 3. Let ha1 , ha2 ∈ Hmult
k,l be arbitrary, and let a set S ⊆ U = [2k] of size

m/2 = 2l−1 be chosen uniformly at random. If l ≤ k − 2 and l/k > 11/12, then

pF = 1− o(1), for l → ∞.

30

CHAPTER 3: THE CASE OF DENSE KEY SETS

Note that the number m/2 of keys in S is way below the threshold for cuckoo

hashing with random sets in the case of Ω(log n)-wise independent functions,

which permits sizes up to (1− δ)m for an arbitrary constant δ > 0. The case

l > k− 2 was considered in Proposition 1.

Once we have proved Theorem 3 we directly obtain the existence of a bad set S

in the following sense.

Corollary 1. Let l ≤ k− 2 and l/k > 11/12. Then there exists a set S ⊆ U = [2k] of

size m/2 such that pF is 1− o(1), for l → ∞, if ha1 , ha2 ∈ Hmult
k,l are chosen uniformly

at random.

This is a direct implication of the following lemma, where a universe U and a

family of hash functionsH are fixed arbitrarily.

Lemma 4. If for arbitrary hash functions h1, h2 ∈ H and a set S ⊆ U, |S| = n,

chosen uniformly at random, and an arbitrarily fixed probability ρ ∈ (0, 1) we have

pF(S, h1, h2) ≥ ρ, then there exists a set S′ ⊆ U, |S′| = n, such that for hash functions

h′1, h′2 ∈ H chosen uniformly at random we have pF(S′, h′1, h′2) ≥ ρ.

Proof (of Lemma 4). Consider a matrix MF with components in {0, 1}where each

row corresponds to a unique choice of a hash function pair (h1, h2), and each

column corresponds to a unique choice of a set S ⊆ U. Let the component

in row (h1, h2) and column S be 1 iff the insertion of S by means of the hash

functions (h1, h2) fails. Then, pF = ρ is equivalent to a ratio of at least ρ 1s in

MF. This implies, there must be a column such that the ratio of 1s in it is at least

ρ. In other words, there exists a set S′ such that for uniformly random chosen

hash functions inH the failure probability is at least ρ.

Proof (of Theorem 3). The general idea is to show that the complete cuckoo graph

G(U, ha1 , ha2), referred to as G in the following, contains many bad edge sets of

constant size, of which any two do not overlap too much, and to conclude that

the subgraph of G that corresponds to a randomly chosen set S ⊆ U is very

likely to contain one of these bad edge sets.

Lemma 5. The complete cuckoo graph G(U, ha1 , ha2) contains a set {Ki | i ∈ [m]} of

m distinct bad edge sets of size ≤ 10 such that for all i ∈ [m] we have

|{j ∈ [m] | Kj ∩ Ki 6= ∅}| ≤ 13 .

31

CHAPTER 3: THE CASE OF DENSE KEY SETS

Proof. For analyzing the structure of G we may assume that a1 = 1, as the

following lemma shows.

Lemma 6. The set {G(U, ha1 , ha2) | a2 ∈ Ok} of complete cuckoo graphs for fixed a1

and variable a2 does not depend on a1. The same holds for {G(Ok, ha1 , ha2) | a2 ∈ Ok}.

Proof. Let r denote the mapping

x 7→ a1x mod 2k .

As a1 is odd, we have for the edge set E of G(D, ha1 , ha2), D ∈ {U, Ok}:

E = {(ha1(x), ha2(x)) | x ∈ D}

= {(h1(r(x)), ha2a−1
1

(r(x))) | x ∈ D} ,

where the mapping

a2 7→ a2a−1
1 mod 2k

is a permutation of Ok. It remains to observe that r is a permutation of U, and

its restriction to Ok is a permutation of Ok.

So, for the proof of Lemma 5 we assume a1 = 1, and consider G = G(U, h1, ha2).

We partition U into “grid sets” Gm(c), c ∈ [2k−l], that are defined as follows:

Gm(c) := {xi(c) | i ∈ [m]} , (3.2.1)

where xi(c) := (c + i · 2k−l) mod 2k. A straightforward calculation proves the

following.

Lemma 7. For each ha ∈ Hmult
k,l and for all i ∈ [m] we have

ha(xi(c)) = (ha(c) + i · a) mod 2l .

Proof. The calculation makes use of the following three equations, which hold

for arbitrary natural numbers x and y, and whose correctness is immediate

when the numbers are represented in binary:

(x · 2k−l) mod 2k = (x mod 2l) · 2k−l , (3.2.2)

(x mod 2k) div 2k−l = (x div 2k−l) mod 2l , (3.2.3)

x div 2k−l + (y · 2k−l) div 2k−l = (x + y · 2k−l) div 2k−l . (3.2.4)

32

CHAPTER 3: THE CASE OF DENSE KEY SETS

Now, the calculation is as follows, where the fourth equation makes use of

(3.2.2) and (3.2.3), and the fifth equation applies (3.2.4).

ha(xi(c)) = (a · xi(c)) mod 2k div 2k−l

= (a · (c + i · 2k−l)) mod 2k div 2k−l

= (ac mod 2k + (ai · 2k−l) mod 2k) mod 2k div 2k−l

= (ac mod 2k + (ai mod 2l) · 2k−l) div 2k−l mod 2l

= (ha(c) + ai mod 2l) mod 2l

= (ha(c) + i · a) mod 2l .

In other words, the image of Gm(c) under ha is also a grid set and the increment

is the same for all c. Moreover, we shall see that the edge set corresponding

to Gm(c) in G = (V1, V2, E) is a perfect matching with a structure that makes

it possible to find many bad edge sets. If we denote the edge that corresponds

to key xi(c) by ei(c), then ei(c) is incident with i ∈ V1, as shown by the follow-

ing calculation which uses Lemma 7, (3.2.3) and the fact that c < 2k−l implies

h1(c) = 0:

ei(c) = (h1(xi(c)), ha2(xi(c)))

= ((h1(c) + i) mod 2l, (ha2(c) + i · a2) mod 2l)

= (i, (a2c div 2k−l + i · a2) mod 2l) .

For notational convenience, we consider a graph G̃ = (V1, V2, Ẽ) derived from

G by permuting V2. Precisely,

Ẽ = {(h1(x), (ha2(x) · a−1
2) mod 2l) | x ∈ U} ,

where a−1
2 denotes the multiplicative inverse of a2 modulo 2k (and hence in

particular we have a2a−1
2 mod 2l = 1 for l < k). Obviously, G̃ is isomorphic to

G, and hence bad edge sets in G̃ correspond to bad edge sets in G. In G̃, edge

ẽi(c) of key xi(c) is incident with i ∈ V1 and with i + oc ∈ V2 for a constant

oc := (a2c div 2k−l · a−1
2) mod 2l ,

i ∈ [m]. So, the edge set corresponding to Gm(c) forms a perfect matching in G̃,

and hence also in G, which in G̃ can be considered as a wheel (cyclic modulo

m) of parallel line segments with slope oc (Fig. 3.1).

33

CHAPTER 3: THE CASE OF DENSE KEY SETS

Figure 3.1: The edges corresponding to Gm(c) form a perfect matching in G̃

which can be considered as a wheel of parallel line segments.

For any two distinct keys c, c′ < 2k−l, consider the edge set Ci(c, c′) defined as

{ẽi(c), ẽoc+i(0), ẽoc+i(c′), ẽoc′+i(c), ẽoc′+i(0), ẽi(c′)} ,

of size at most 6, where arithmetic modulo m has to be applied to all indices

(Fig. 3.2).

Figure 3.2: A cycle Ci(c, c′) in G̃

Now fix any three distinct elements c, c′, c′′ ∈ [2k−l]. This is possible since k− l

is at least 2. If two of the offsets oc, oc′ , oc′′ are equal, say oc = oc′ , then Ci(c, c′)

is a bad edge set K̃i of size 5, i ∈ [m], since ẽoc+i(0) = ẽoc′+i(0) (Fig. 3.3(a)).

Otherwise, Ci(c, c′) and Ci(c, c′′) are cycles of size 6 that overlap in two edges,

and their union is a bad edge set K̃i of size 10, i ∈ [m] (Fig. 3.3(b)).

Note that each of the bad edge sets K̃i, i ∈ [m], contains at most four distinct

vertices in V1, and K̃j, j ∈ [m], is a copy of K̃i, shifted modulo m. Therefore,

the number of distinct bad edge sets K̃j, j ∈ [m], (where j = i is included)

overlapping with K̃i is at most 13, because a necessary condition for K̃j ∩ K̃i 6= ∅

34

CHAPTER 3: THE CASE OF DENSE KEY SETS

(a) oc = oc′ (b) oc, oc′ , oc′′ distinct

Figure 3.3: Bad edge sets for the multiplicative class

is a common vertex in V1. Now, letting Ki denote the bad edge set in G that

corresponds to K̃i, respectively, completes the proof of Lemma 5.

By Lemma 5, we may fix a set {Ki | i ∈ [m]} of m distinct bad edge sets of size

at most 10 such that for all i ∈ [m] we have |{j ∈ [m] | Kj ∩ Ki 6= ∅}| ≤ 13.

Let S ⊆ U, |S| = m/2, be chosen uniformly at random. Choosing S directly

corresponds to choosing n edges in G at random. Let the random variable Xi,

i ∈ [m], take the value 1 if all edges of Ki have been chosen, 0 otherwise, and

define X := ∑i∈[m] Xi. Then

pF ≥ Pr(X > 0) .

Note that the Xi are not independent.

In order to establish a lower bound on Pr(X > 0), we invoke Lemma 3 and

apply it for (Y1, . . . , Yt) = (X0, . . . , Xm−1) and Y = X. As Pr(Xi = 1) only

depends on |Ki|, we obtain under the given conditions l ≤ k − 2 and l/k >

11/12:

Pr(Xi = 1) ≥
(

2k − 10
2l−1 − 10

) / (2k

2l−1

)
> 2−10(k−l+2) .

Furthermore, distinguishing between bad edge sets Kj that overlap with Ki and

those which do not yields E(X) + 13 as an upper bound for E(X | Xi = 1).

Putting it all together, we get

pF >
(

1 + 24+10(k−l+2)−l
)−1

.

For l/k > 11/12, the latter term is at least
(

1 + 2−(1/12)·k+24
)−1

, and hence

pF = 1− o(1) for k, l → ∞. This concludes the proof of Theorem 3.

35

CHAPTER 3: THE CASE OF DENSE KEY SETS

3.3 High Failure Probability for the Linear Class

In this section, we prove a theorem for the linear class, in analogy to Theorem

3. Note that the linear class is very standard.

Theorem 4. Let ha1,b1 , ha2,b2 ∈ Hlin∗
p,m be arbitrary, and let a set S ⊆ U = [p] of

size dm/2e be chosen uniformly at random. If m/p ∈ [p−(1/7−ε), 1/7] for a constant

ε ∈ (0, 1/7) then pF = 1− o(1), for m→ ∞.

Together with Lemma 4, Theorem 4 implies the existence of a bad set.

Corollary 2. Let m/p ∈ [p−(1/7−ε), 1/7] for a constant ε ∈ (0, 1/7). Then there

exists a set S ⊆ U = [p] of size dm/2e such that pF = 1− o(1), for m → ∞, if

ha1,b1 , ha2,b2 ∈ Hlin∗
p,m are chosen uniformly at random.

Proof (of Theorem 4). The general approach is the same as in the proof of Theo-

rem 3, but the details differ considerably. Fix ha1,b1 , ha2,b2 ∈ Hlin∗
p,m and consider

the complete cuckoo graph G = G(U, ha1,b1 , ha2,b2).

Lemma 8. Let m′ = dm/3e. If m/p ≤ 1/7, then G contains a set {Ki | i ∈ [m′]} of

m′ distinct bad edge sets of size 6 such that for all i ∈ [m′] we have

|{j ∈ [m′] | Kj ∩ Ki 6= ∅}| ≤ 5 .

Proof. By a lemma and proof that is similar to Lemma 6 and its proof we may

assume w. l. o. g. that ha1,b1 = h1,0, where h1,0(x) = x mod m:

Lemma 9. The set {G(U, ha1,b1 , ha2,b2) | a2 ∈ [p]−{0}, b2 ∈ [p]} of complete cuckoo

graphs for fixed a1, b1 and variable a2, b2 does not depend on a1, b1.

Proof. Let r denote the mapping

x 7→ (a1x + b1) mod p .

As a1 > 0, we have for the edge set E of G(U, ha1,b1 , ha2,b2):

E = {(ha1,b1(x), ha2,b2(x)) | x ∈ U}

= {(h1,0(r(x)), ha2a−1
1 ,b2−a2a−1

1 b1
(r(x))) | x ∈ U} ,

where the mapping

a2 7→ a2a−1
1 mod p

36

CHAPTER 3: THE CASE OF DENSE KEY SETS

is a permutation of [p]− {0}, and

b2 7→ b2 − a2a−1
1 b1 mod p

is a permutation of [p]. It remains to observe that r is a permutation of U.

Thus, consider G = G(U, h1,0, ha,b) = (V1, V2, E) for an arbitrary ha,b ∈ Hlin∗
p,m .

We study the neighborhood Γj = ha,b(h−1
1,0(j)) ⊆ V2 of an arbitrary vertex j ∈ V1.

Every key x whose corresponding edge ex is incident with j ∈ V1 is in h−1
1,0(j),

and hence has the form x = im + j for some i ∈ N. Note that i ≤ t := dp/me,
and the degree of any vertex in G is either t or t− 1. We refer to a key im + j as

xi(j), call the corresponding edge the i-edge of j, and refer to its endpoint in V2

as the i-neighbor of j, or as ni(j) (Fig. 3.4). The following lemma will help us to

understand the structure of Γj.

Figure 3.4: the i-edge and the i-neighbor of j ∈ V1

Lemma 10 (leap effect). Let r1 and r2 be fixed positive integers, and define ∆ :=

(−r1) mod r2. Then for all x ∈N we have:

(x mod r1) mod r2 = (x + bx/r1c · ∆) mod r2 .

Proof. Straightforward induction on x ∈N:

x = 0: Clear. x → x + 1: We distinguish two cases. If r1 divides x + 1, then

b(x + 1)/r1c = bx/r1c+ 1 and r1 = x mod r1 + 1 .

Together with the induction hypothesis, this yields

(x + 1) mod r1 mod r2 = 0 mod r2

= (r1 − r1) mod r2

= ((x mod r1 + 1) + ∆) mod r2

= ((x + bx/r1c · ∆) + 1 + ∆) mod r2

= ((x + 1) + b(x + 1)/r1c · ∆) mod r2 .

37

CHAPTER 3: THE CASE OF DENSE KEY SETS

Otherwise, if r1 does not divide x + 1, then

b(x + 1)/r1c = bx/r1c and (x + 1) mod r1 = (x mod r1) + 1 ,

and an application of the induction hypothesis yields

(x + 1) mod r1 mod r2 = (x mod r1 + 1) mod r2

= ((x + bx/r1c · ∆) + 1) mod r2

= ((x + 1) + b(x + 1)/r1c · ∆) mod r2 .

Figure 3.5: Application of the leap effect, where we have ni(j) = ha,b(xi(j)) =

(yi(j) mod p) mod m for yi(j) = i · (am mod p) + (aj + b) mod p.

We want to simplify the term ni(j) = ha,b(xi(j)). Applying Lemma 10 for r1 = p

and r2 = m as depicted in Fig. 3.5 leads to the basic observation that Γj is nearly

a grid, more precisely: For each i ∈ [t− 2] we have

ni+1(j) ∈ {(ni(j) + s′) mod m, (ni(j) + s′′) mod m} ,

where s′ = s mod m, s′′ = (s + ∆) mod m, s = am mod p, and ∆ = (−p) mod

m.

For each i-edge of j with i ∈ [t − 2], there is still an (i + 1)-edge of j. So, call

the former a predecessor edge, and the latter its successor edge. Furthermore, call a

vertex in V2 obstructive if it is incident with at least five predecessor edges. Let l

be an obstructive vertex and fix any five of its incident predecessor edges. Their

respective successor edges are incident with (l + s′) mod m or (l + s′′) mod m

in V2, and therefore at least three of these successor edges must have the same

endpoint k ∈ V2. Fix three of the successor edges with endpoint k. Together

with their predecessor edges, they form a bad edge set K(l) of size 6 (Fig. 3.6).

38

CHAPTER 3: THE CASE OF DENSE KEY SETS

Figure 3.6: Bad edge sets for the linear class

If l and l′ are distinct obstructive vertices, then their respective bad edge sets

K(l) and K(l′) must also be distinct, because otherwise there would be a prede-

cessor edge which is its own successor edge, which is impossible. Moreover, if

we fix K(l) for every obstructive vertex l, then for each obstructive vertex l, we

have

|{l′∈V2 | l′ obstructive vertex, K(l) ∩ K(l′) 6= ∅}| ≤ 5 ,

as a necessary condition for K(l) ∩ K(l′) 6= ∅ is a common vertex in V2.

It remains to show that there are m′ = dm/3e obstructive vertices. The number

of predecessor edges in G is (t− 2)m, where the assumption m/p ≤ 1/7 implies

t− 2 ≥ 5. With respect to maximizing the number of obstructive vertices, the

worst case is t− 2 = 5. Now it suffices to use the fact that the degree of each

vertex of G is at most t.

We complete the proof of Theorem 4 in a way similar to the proof of Theorem

3: Lemma 8 guarantees the existence of a set {Ki | i ∈ [m′]} of bad edge sets

in G. We fix such a set. Choose dm/2e edges from G uniformly at random.

Define 0-1 random variables X0, . . . , Xm′−1 as follows: Xi = 1 if and only if

all edges of Ki are chosen, and let X = ∑i∈[m′] Xi. Clearly, pF ≥ Pr(X > 0).

Under the given condition m/p ≥ p−(1/7−ε), ε ∈ (0, 1/7), an application of the

conditional expectation inequality (Lemma 3) yields the following lower bound

for Pr(X > 0):(
1 + 26 · 3 · 5 ·

(
1− 10

p6/7+ε

)−6

·p−7ε

)−1

= 1− o(1) ,

for p, m→ ∞.

39

CHAPTER 3: THE CASE OF DENSE KEY SETS

3.4 High Failure Probability for Two Distinct Linear

Classes

Again, we consider the linear class. It might seem plausible that the perfor-

mance strongly improves if h1 and h2 are chosen from linear classes over fields

given by distinct prime numbers p1 and p2, respectively. It is the purpose of

this section to show that this is not the case.

Theorem 5. Let ha1,b1 and ha2,b2 in Hlin∗
p1,m and Hlin∗

p2,m, resp., where p1 ≤ p2 ≤ αp1

holds for an arbitrary constant α ≥ 1, and let a set S ⊆ U = [p1] of size dm/2e be

chosen uniformly at random. If m/p1 ∈ [p−(1/8−ε)
1 , 1/73] for a constant ε ∈ (0, 1/8),

then pF = 1− o(1), for m→ ∞.

An application of Lemma 4 leads to the following.

Corollary 3. Let p1 ≤ p2 ≤ αp1 and m/p1 ∈ [p−(1/8−ε)
1 , 1/73] for arbitrarily fixed

constants ε ∈ (0, 1/8) and α ≥ 1. Then there exists a set S ⊆ U = [p1] of size

dm/2e such that pF = 1− o(1), for m → ∞, if ha1,b1 and ha2,b2 in Hlin∗
p1,m and Hlin∗

p2,m,

respectively, are chosen uniformly at random.

Proof (of Theorem 5). The basic approach is the same as before. Fix arbitrary

hash functions ha1,b1 and ha2,b2 inHlin∗
p1,m andHlin∗

p2,m, respectively. Then there exist

many bad edge sets of constant size, of which very few pairs have a common

edge.

Lemma 11. Let m′ := dm/(α(t + 1))e for t := dp1/me − 1. If m/p1 ≤ 1/73, then

G(U, ha1,b1 , ha2,b2) contains a set {Ki | i ∈ [m′]} of m′ distinct bad edge sets of size 6

such that for each i ∈ [m′] we have |{j ∈ [m′] | Kj ∩ Ki 6= ∅}| ≤ 5.

Proof. In contrast to the proof of Lemma 8, we cannot assume that ha1,b1 = h1,0,

because of the distinct moduli of ha1,b1 and ha2,b2 . However, we may get rid of

one modulus with the help of the following lemma, which says that a grid set

modulo p contains a long arithmetic sequence in N.

Lemma 12. Assume p is a prime and L, s̃ ∈ [p] are arbitrary, where L > 2 and s̃ > 0.

Then there exists an ŝ ∈ [p], 0 < ŝ ≤ p/
√

L/2, such that for all c ∈ [p] the grid set

B := {xi | i ∈ [L]}, where xi := (i · s̃ + c) mod p, of size L contains an arithmetic

40

CHAPTER 3: THE CASE OF DENSE KEY SETS

sequence (x̂k)k∈[l] with step size ŝ and length l = b
√

L/2c, i. e., for k = 0, 1, . . . , l− 2

we have x̂k+1 = x̂k + ŝ = x̂0 + (k + 1) · ŝ.

Proof. For each pair of distinct keys xi, xj ∈ B, define

Ai,j := {xi+z·d ∈ B | d = |j− i|, z ∈ Z, i + z · d ∈ [L]}

and si,j := min{|xj − xi|, p− |xj − xi|} .

The subset Ai,j can be viewed as a sequence (yk)k∈[l′] of length l′ ≥ bL/dc,
which increases by si,j in one step cyclically modulo p. Moreover, si,j does not

depend on the offset c of B. Now assume for the time being l′ ≥ b
√

2Lc, i. e.,

l′ ≥ 2b
√

L/2c = 2l, and si,j ≤ p/
√

L/2. Then (yk)k∈[l′] contains the desired

arithmetic sequence (x̂k)k∈[l] with step size ŝ := si,j ≤ p/
√

L/2: Let w′ be the

smallest index w ∈ [l′]− {0} such that yw−1 > yw. If no such w exists, we are

done. Otherwise, for each k ∈ [l], set

x̂k :=

{
yk if w′ ≥ l

yw′+k otherwise .

Regard B as a point set B2 := {(i, xi) | i ∈ [L]} in the half-open rectangle

Q := [0, L) × [0, p) ⊆ R2 (Fig. 3.7). Let J × K ⊆ Q for cyclic intervals J :=

[l1, r1) and K := [l2, r2), i. e., J and K may be wrapped around the boundaries

of [0, L) and [0, p), respectively, and hence we have |J| := (r1 − l1) mod L and

|K| := (r2 − l2) mod p for the lengths of J and K (Fig. 3.8).

Observe the following. If |J| ≤
√

L/2, |K| ≤ p/
√

L/2, and J × K contains

(i, xi), (j, xj) ∈ B2, i 6= j, then Ai,j yields the desired sequence (yk)k∈[l′] of length

l′ ≥ bL/|J|c ≥ b
√

2Lc with a step size si,j ≤ |K| ≤ p/
√

L/2 (compare Fig. 3.8).

It remains to show that a rectangle J × K with the above-mentioned properties

exists, i. e., |J| ≤
√

L/2, |K| ≤ p/
√

L/2, and J × K contains (i, xi), (j, xj) ∈ B2,

i 6= j. Assume this is not the case. Then define half-open rectangles

Qi := [i, (i +
√

L/2) mod L)× [xi, (xi + p/
√

L/2) mod p)

for i ∈ [L]. By our assumption, the rectangles Q0, . . . , QL−1 are pairwise dis-

joint. This implies that the area of
⋃

i∈[L] Qi is equal to the area of Q, and

hence Q =
⋃

i∈[L] Qi. Consider Q0. Its bottom left corner is (0, x0) ∈ N2.

41

CHAPTER 3: THE CASE OF DENSE KEY SETS

Figure 3.7: B2

Figure 3.8: Suitable rectangle J × K ⊆ Q yields sufficiently long sequence (yk)

42

CHAPTER 3: THE CASE OF DENSE KEY SETS

Our observation implies that, cyclically modulo L and p, there must be neigh-

boring rectangles all around Q0 that on the one hand do not overlap with

Q0 and on the other hand touch its borders. That is, there must be a rectan-

gle with bottom left corner (
√

L/2, ·) and another one with bottom left corner

(·, (x0 + p/
√

L/2) mod p), which in particular implies that
√

L/2 and p/
√

L/2

are in N. For L > 2 and a prime number p, this is impossible. This completes

the proof of Lemma 12.

As for the proof of Lemma 11, Lemma 12 makes it possible to show for the com-

plete cuckoo graph G := (V1, V2, E) := G(U, ha1,b1 , ha2,b2) that the neighborhood

Γj ⊆ V2 of a vertex j ∈ V1 contains a subset Γ̂j of size b
√

t/2c, t = dp1/me − 1,

which has the same crucial property as the corresponding set in the proof of

Lemma 8: Γ̂j can be viewed as a sequence (ni(j))i∈[b
√

t/2c] that increases modulo

m with a step size s′ and s′′ for fixed values s′ and s′′. From here, we complete

the argumentation in direct analogy to the proof of Lemma 8. The details are as

follows.

Consider the complete cuckoo graph G := G(U, ha1,b1 , ha2,b2) with vertex sets

V1 and V2, and with edge set E. Observe (for later use) that each vertex in V1

has a degree of either t or t + 1. We analyze the neighborhood of an arbitrary

vertex j ∈ V1. For the set Bj := h−1
a1,b1

(j) of keys whose corresponding edges are

incident with j ∈ V1, we have

Bj = {x ∈ U | (a1x + b1) mod p1 mod m = j}

= {x ∈ U | (a1x + b1) mod p1 ∈ {im + j ∈ U | i ∈N}} .

The equation (a1x + b1) mod p1 = im + j has the unique solution

x = (i · a−1
1 m + a−1

1 (j− b1)) mod p1 .

That is, Bj is a grid set

{x(j)
i | i ∈N, im + j ∈ U} , x(j)

i := (i · s1 + c(j)) mod p1 ,

with step size s1 := (a−1
1 m) mod p1 and offset c(j) := (a−1

1 (j − b1)) mod p1.

Note that {x(j)
i | i ∈ [t]} is a subset of Bj, and that the step size s1 is independent

of j.

If we try to compute the neighborhood Γj := ha2,b2(Bj) of j, then we have to

deal with arithmetic w. r. t. three distinct moduli. However, for each j ∈ V1,

43

CHAPTER 3: THE CASE OF DENSE KEY SETS

we apply Lemma 12 with L = t and B = {x(j)
i | i ∈ [t]}: There exists a step

size ŝ ∈ [p1]− {0} such that each set {x(j)
i | i ∈ [t]} ⊆ Bj, j ∈ V1, contains an

arithmetic sequence (x̂(j)
k)k∈[l] of length l ≥ b

√
t/2c with step size ŝ. Now, if

we restrict ourselves to considering the neighbors Γ̂j of j that are given by the

subset

B̂j := {x̂(j)
k | k ∈ [b

√
t/2c]}

of Bj, then arithmetic modulo p1 simply drops out.

Call the edge that corresponds to a key x̂(j)
i ∈ B̂j the i-edge of j and call its

endpoint in V2 the i-neighbor of j, or ni(j). Then we have

ni(j) = ha2,b2(x̂(j)
i)

= (a2x̂(j)
i + b2) mod p2 mod m

= (a2(i · ŝ + x̂(j)
0) + b2) mod p2 mod m

= (i · a2ŝ + (a2x̂(j)
0 + b2)) mod p2 mod m .

Define s as (a2ŝ) mod p2, o(j) as (a2x̂(j)
0 + b2) mod p2, and y(j)

i as i · s + o(j). Then,

by Lemma 10 (“leap effect”) applied for r1 = p2 and r2 = m, we have

ni(j) = y(j)
i mod p2 mod m

= (y(j)
i + by(j)

i /p2c · ∆) mod m ,

where ∆ is (−p2) mod m. So, the subsequence (ni(j))i∈[b
√

t/2c] of Γj increases

modulo m with steps of size s′ := s mod m and s′′ := (s + ∆) mod m.

Call an i-edge of j a predecessor edge if i ≤ b
√

t/2c − 2, and call a vertex l ∈
V2 obstructive if it is incident with at least five predecessor edges. Then the

existence of a set {Ki | i ∈ [m′]} of m′ = dm/(α(t + 1))e distinct bad edge sets

of size 6 such that for all i ∈ [m′] the number of bad edge sets Kj, j ∈ [m′],

overlapping with Ki is at most 5, follows in complete analogy to the proof of

Lemma 8:

(i) Each obstructive vertex l ∈ V2 belongs to a bad edge set K(l) of size 6 (Fig.

3.6), and for any other obstructive vertex l′ ∈ V2, a corresponding bad

edge set K(l′) is distinct from K(l).

(ii) The graph G contains at least m′ = dm/(α(t + 1))e obstructive vertices.

Here we use that m/p1 ≤ 1/73 implies b
√

t/2c− 1 ≥ 5, and that p2 ≤ αp1

implies a vertex degree of at most α(t + 1) in V2.

44

CHAPTER 3: THE CASE OF DENSE KEY SETS

(iii) We use (i) and (ii) to define the desired set {Ki | i ∈ [m′]}.

Using the condition m/p1 ≥ p−(1/8−ε)
1 for an arbitrary constant ε ∈ (0, 1/8), an

application of Lemma 11 that is analogous to the application of Lemma 8 in the

proof of Theorem 4, leads to the desired result:

pF ≥

1 + 27 · 5 · α ·
(

1− 10

p7/8+ε
1

)−6

· p−8ε
1

−1

= 1− o(1)

for m, p1 → ∞. This completes the proof of Theorem 5.

3.5 Experiments

We implemented cuckoo hashing in JavaTM in a straightforward way, where

generation of pseudo-random numbers was done via the Mersenne Twister

from the colt distribution1. We carried out some experiments in order to ob-

tain estimates of the failure probability by counting average failure frequencies

among 5 independently and uniformly random chosen sets S of size (1− δ)m,

each set being inserted 10 times with independently and uniformly random

chosen hash functions. This was repeated several times for different settings

of the parameters k, l and p, m, respectively, where δ was fixed, as well as for

different settings of δ, where k and l were fixed.

Fig. 3.9 depicts the results for the multiplicative class as well as for the reference

class H3
p,m, i. e., the class of quadratic polynomials, where we fixed k = 22,

p = 8388593 ≈ 223 and δ = 0.1, and repeated the experiment for table size

m = 2l, l = 1, . . . , 22. Fig. 3.10 shows two results for the linear class, for fixed

p = 2097143 ≈ 221 and δ = 0.1, as well as changing table size m = dp/te,
t = 2, 3, . . . , 129: First, only the linear class given by p was used, and second,

we used the linear class given by p1 = p for h1 and the linear class given by

p2 = 4194301 ≈ 222 for h2.

1http://acs.lbl.gov/~hoschek/colt/

45

CHAPTER 3: THE CASE OF DENSE KEY SETS

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20

fa
ilu

re
s

am
on

g
10

at
te

m
pt

s

l (m = 2l)

Hmult
k,l
H3

p,m

Figure 3.9: Results for the multiplicative class with fixed k = 22 and δ = 0.1

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100 120

fa
ilu

re
s

am
on

g
10

at
te

m
pt

s

t (where m = bp/tc+ 1, p = p1 ≈ p2
2 , p2 prime)

Hlin∗
p1,m,Hlin∗

p2,m

Hlin∗
p,m

Figure 3.10: Results for the linear class with fixed p = 2097143 ≈ 221, δ = 0.1

46

CHAPTER 3: THE CASE OF DENSE KEY SETS

0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fa
ilu

re
s

am
on

g
10

at
te

m
pt

s

δ (|S| = (1− δ) ·m)

Hmult
k,l
H3

p,m

Figure 3.11: Further results for the multiplicative class with fixed k = 24 and

l = 21. (The error bars show the maximum and the minimum

number of failures among the five sets chosen for each value of δ.)

Observe the good behavior when square polynomials are used.

In case of the hash family being the same for both hash functions, one observes:

For the multiplicative class (Fig. 3.9) and the linear class (Fig. 3.10), the failure

probability close to 1 for large ratio m/N < 1/2 nicely reflects the assertions

of Theorems 3 and 4, respectively. In the case of distinct linear classes for h1

and h2 (Fig. 3.10) we do not see a significant performance improvement. This

corresponds to Theorem 5. Note the good performance when quadratic poly-

nomials are used (Fig. 3.9). (Note that the failure rate is indeed zero for the

multiplicative class and the linear class if m/N ≥ 1/2, as proven in Section

3.1. Astonishingly, quadratic polynomials exhibit an increased failure rate for

m/N ≥ 1/2. We do not have a reasonable explanation for this phenomenon.)

Experiments were carried out also for the multiplicative class with fixed k = 24,

l = 21, and changing δ ∈ {0.1, 0.2, . . . , 0.9}. The result is depicted in Fig. 3.11.

It can be seen that random key sets of relatively small size 0.4m still seem to be

very unlikely to be inserted successfully, if the key set is dense in the universe.

47

CHAPTER 4

The Case of Sparse Key Sets

We consider the multiplicative class in the remaining case m/N < Nγ′−1 for

some constant γ′ ∈ (0, 1). We give two examples of relatively small, structured

random sets for which the failure probability is high if the hash functions are

chosen arbitrarily (Corollary 4) resp. uniformly at random (Theorem 6) from

the multiplicative class. These random sets with high failure probability imply

the existence of “bad sets.” Of course we would have liked to find completely

deterministic bad sets. At least the set in Theorem 6 is the result of our search

for such a set. However, it seems that the closer one gets to determinism the

higher becomes the complexity of bounding the failure probability, as can be

seen from the complexity of the following proof.

4.1 Random Choice from a Grid

Here we show that Theorem 3 can be lifted to larger universes U by restricting

the choice of S to a small subuniverse U′ that has the structure of a grid. Define

U′ ⊆ U = [2k] as the grid set

{y · 2k−l−2 | y ∈ [2l+2]} .

Observe that for an odd number a ∈ Ok, the mapping x 7→ ax mod 2k is a

permutation of U, and that this mapping preserves the lowest order 1 bit of x.

Therefore the mapping is also a permutation of U′. This implies in particular

that for the hash value

ha(x) = (ax mod 2k) div 2k−l

48

CHAPTER 4: THE CASE OF SPARSE KEY SETS

of an element x ∈ U′ only the l + 2 lowest order bits of the parameter a are

relevant, where uniform random choice of a ∈ Ok yields a uniform random

choice of l + 2 lowest order bits of which the lowest one is 1. So if S is chosen

randomly from U′ then we are in the case l = k− 2 of Theorem 3. This leads to

the following.

Corollary 4. Let ha1 , ha2 ∈ Hmult
k,l be arbitrary and let a set S ⊆ U′ of size m/2 =

2l−1 be chosen uniformly at random. If l ≤ k − 2 and l/(l + 2) > 11/12, then

pF = 1− o(1), for l → ∞.

The existence of a bad set now follows as in case of all theorems in Chapter 3

from Lemma 4.

Corollary 5. Let l ≤ k− 2 and l/(l + 2) > 11/12. Then there exists a set S ⊆ U′ of

size m/2 such that pF = 1− o(1), for l → ∞, if ha1 , ha2 ∈ Hmult
k,l are chosen uniformly

at random.

4.2 Random Choice of a Grid

For the second kind of “bad” random key set we use arithmetic progressions

in U with step size 2k−l (“grid sets”) as building blocks that did already play

an important role in the proof of Theorem 3 (see (3.2.1)). Let δ = 1/8 and

d := d(1− δ)m/3e. Define xi(c) := (c + i · 2k−l) mod 2k, for c ∈ [2k] and i ∈ [2l],

and the grid sets

Gc := {xi(c) | i ∈ [d]} , for c ∈ [2k] .

To get S, we perform the following random experiment: choose c at random

from Ok, and choose a random subset Rc of U − (G0 ∪ Gc) of size d. Then

S = S(c, Rc) = G0 ∪ Gc ∪ Rc . (4.2.1)

The main purpose of this chapter is to establish the following theorem. Recall

that the failure probability pF = pF(S, ha1 , ha2) may not only depend on the

random choice of S, but also on the random choice of the hash functions ha1

and ha2 .

Theorem 6. If l ≥ 14 and k− log k ≥ 3l + 5, then for the set S = G0 ∪ Gc ∪ Rc of

size 3d ≤ (7/8) · m + 2 formed by the random experiment as just described and for

ha1 , ha2 chosen fromHmult
k,l uniformly at random we have pF = Ω(1).

49

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Our next corollary, derived from Lemma 4, that states the existence of a bad set

might seem not much stronger than what we know already from Corollary 5.

However, in some sense it has a new quality that is worth mentioning: Corol-

lary 6 holds for l ≥ 14 and is not an asymptotic result (although we make use

of the Ω-notation), whereas Corollary 5 can only be applied for l ≥ 23 (which

is derived from the condition l/(l + 2) > 11/12), and in addition contains an

asymptotic bound on the failure probability.

Corollary 6. Let l ≥ 14 and k− log k ≥ 3l + 5. Then there exists a set S ⊆ U = [2k]

of size ≤ (7/8) ·m + 2 such that pF = Ω(1) if ha1 , ha2 ∈ Hmult
k,l are chosen uniformly

at random.

The following Sections 4.3, 4.4, and 4.5 are devoted to the proof of Theorem 6,

where we assume

l ≥ 14 and k− log k ≥ 3l + 5 (4.2.2)

throughout, particularly in Lemmas 13, 14, 15, 16, 18, and 22. The constant

lower bound we establish for pF is 2−24. Experiments indicate that the failure

probability for the sets S constructed here is much larger.

4.3 Basic Structure of the Proof

Apart from the grid structure of the set S, a certain property of hash function

pairs is vital in our proof: we say that a pair (ha1 , ha2) of hash functions from

Hmult
k,l has an almost uniform distribution of values for the domain D ∈ {U, Ok},

if for x chosen uniformly at random from D we have

∀(i, j) ∈ [2l]2 :
1
4
· 2−2l ≤ Pr((ha1(x), ha2(x)) = (i, j)) ≤ 4 · 2−2l . (4.3.1)

In Sections 4.4 and 4.5 we prove the following two lemmas, respectively.

Lemma 13. If (4.2.2) holds, then a fraction of more than 1/7 of all hash function

pairs (ha1 , ha2) ∈ (Hmult
k,l)2 has an almost uniform distribution as in (4.3.1) for D ∈

{U, Ok}.

Lemma 14. Let (ha1 , ha2) ∈ (Hmult
k,l)2 be a pair with almost uniform distribution for

D ∈ {U, Ok}, assume (4.2.2), and let S = S(c, Rc) be chosen randomly as in (4.2.1).

Then pF(S) > 2−21.

50

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Once these lemmas are proved, we have proved Theorem 6, because

2−24 <
1
7
· 2−21 < pF = pF(S(c, Rc), ha1 , ha2) .

4.4 Proof of Lemma 13: Many Hash Function Pairs

Have an Almost Uniform Distribution

The distribution of hash value pairs for D ∈ {U, Ok} is represented by the

cuckoo graph G(D, ha1 , ha2). Applying Lemma 6, we can assume w. l. o. g. that

a1 = 1, and it remains to identify a suitable set A2 ⊆ Ok of parameters a2. We

define A2 as the set{
a ∈ Ok | ∃ x ∈ O(k−l)−(l+2) : ax mod 2k ∈

{
2k−l

4
, . . . ,

2k−l

2
− 1

}}
. (4.4.1)

We will show (Lemma 15) that each pair (h1, ha2), a2 ∈ A2, has an almost uni-

form distribution for D ∈ {U, Ok}, and that |A2|/|Ok| > 1/7 (Lemma 16),

which concludes the proof of Lemma 13.

Lemma 15. Each pair (h1, ha2), a2 ∈ A2, has an almost uniform distribution for

D ∈ {U, Ok}.

Proof. We define minD and maxD as the minimum cardinality and the maximum

cardinality of a preimage with respect to (h1, ha2) for the domain D, respectively, i. e.

minD := min{|{x ∈ D | (h1(x), ha2(x)) = (i, j)}| : i, j ∈ [m]}

and maxD accordingly. If x is chosen uniformly at random from D, then for all

i, j ∈ [m] we have

minD

|D| ≤ Pr((h1(x), ha2(x)) = (i, j)) ≤ maxD

|D| . (4.4.2)

The cardinality of the preimage of (i, j) with respect to a uniformly distributing

hash function pair is avgD := |D|/22l, as m = 2l. Assume that

maxD

minD
≤ 4 . (4.4.3)

Then we have
minD

|D| ≥
maxD

4|D| ≥
avgD
4|D| =

1
4
· 2−2l ,

51

CHAPTER 4: THE CASE OF SPARSE KEY SETS

and similarly
maxD

|D| ≤ 4 · 2−2l ,

and together with (4.4.2) this yields (4.3.1). So, it remains to prove (4.4.3). We

consider the matrix B := (bx,y)x,y∈U that is given by

bx,y :=

{
1 if y = a2x mod 2k,

0 otherwise .

Let Ui := {i2k−l, . . . , (i + 1)2k−l − 1} for i ∈ [2l]. Observe that the number of 1s

in the submatrix Bi,j := (bx,y)x∈Ui,y∈Uj is |(h1, ha2)
−1(i, j)| for D = U (Fig. 4.1),

as well as for D = Ok if every second row is counted. This follows from the fact

that z div 2k−l = i for all z ∈ Ui. Furthermore, observe that the pattern of 1s in

all submatrices Bi := (bx,y)x∈Ui,y∈U is equal in the sense that Bi′ is just a shifted

version of Bi for arbitrary i, i′ ∈ [2l]. This in turn follows from the fact that each

row contains exactly one 1, and from the obvious equivalence

bx,y = 1⇔ b(x+1) mod 2k,(y+a2) mod 2k = 1 ,

which holds for all x, y ∈ U.

Thus, for estimating the values of maxD and minD, we can restrict ourselves to

considering B0. We have to show that the number of 1s in arbitrary blocks B0,j

and B0,j′ , j, j′ ∈ [2l], differs by no more than a factor four.

Fix a2 ∈ A2 and, according to (4.4.1), x ∈ O(k−l)−(l+2) with a2x mod 2k ∈
{2k−l/4, . . . , 2k−l/2− 1} arbitrarily. For each t ∈ [x], consider the row sequence

(x(t)
s)0≤s≤dt , where x(t)

s := (s · x + t), and

dt =

⌊
2k−l − (t + 1)

x

⌋
(4.4.4)

is the maximum natural number with (s · x + t) ∈ U0. The 1 in row x(t)
s re-

sides in column y(t)
s := a2x(t)

s mod 2k, and we refer to the sequence of ma-

trix positions (x(t)
s , y(t)

s)0≤s≤dt which represent the 1s in rows (x(t)
s) as (ones(t)

s).

Observe that the set of the 1 positions in B0 is the disjoint union of the sets

{ones(t)
s | s ∈ {0, . . . , dt}} over all t ∈ [x]. Now consider a sequence (ones(t)

s)

for a fixed t ∈ [x]. (If for all j, j′ ∈ [2l] the number of 1s in B0,j and B0,j′ given by

(ones(t)
s) differs by no more than a factor four, then the same is true if we sum

over all t ∈ [x].)

52

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Figure 4.1: The number of 1s in Bi,j is |(h1, ha2)
−1(i, j)| for D = U, because the

single 1 in row x is in row block i = x div 2k−l = h1(x) and in

column block j = ha2(x).

53

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Whenever the sequence (ones(t)
s) passes a block B0,j, it hits this block with at

least two and at most four successive elements, because by the definition of A2

the step size y of the column sequence (y(t)
s) is

y = a2x mod 2k ∈
{

2k−l

4
, . . . ,

2k−l

2
− 1

}
. (4.4.5)

Furthermore, the sequence (ones(t)
s) passes each block B0,j, j ∈ [2l], at least

once, because the sum of dt steps of size y is greater than 2k − 2k−l/2, by (4.4.4)

and (4.4.5).

We obtain an upper bound on maxD / minD as follows. Consider an arbitrary

block B0,j. This block is passed by the sequence (ones(t)
s) at least once and when-

ever it is passed it is hit with at least two and at most four elements. Now as-

sume that there exist blocks B0,j and B0,j′ , j, j′ ∈ [2l], such that (ones(t)
s) passes

B0,j′ once and hits it with only two elements, whereas B0,j is passed twice and

each time hit with four elements. In this worst case, the number of 1s, given by

(ones(t)
s), differs in the two blocks by a factor four, and hence (4.4.3) is proved

for D = U (see Fig. 4.2).

Figure 4.2: (ones(0)
s) in the worst case with respect to maxD / minD

For D = Ok, the argument is similar, noticing that every second element of

(x(t)
s) is odd: if t is odd, then x(t)

s is odd for every even s, and vice versa. Thus,

the corresponding sequence of matrix positions which contain the 1s passes

every block B0,j at least once, and hits it with one or two elements whenever it

is passed, and so on.

Lemma 16. |A2|/|Ok| > 1/7.

54

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Proof. Consider A2 as in (4.4.1). For all x ∈ O(k−l)−(l+2) and i ∈ [x] we define

Qx,i :=

[
1
x

(
i · 2k +

2k−l

4

)
,

1
x

(
i · 2k +

2k−l

2

))
, (4.4.6)

Qx :=
⋃

i∈[x]

Qx,i , and (4.4.7)

Q :=
⋃

x∈O(k−l)−(l+2)

Qx . (4.4.8)

Then

A2 = Q ∩Ok ,

where for our purposes the obvious subset relation Q ∩Ok ⊆ A2 is sufficient.

Observe that there exist disjoint half-open intervals I1, . . . , It of the form [a′, b′)

and of length ≥ 2l such that Q =
⋃

1≤j≤t Ij. This in particular implies that

t < |Q|/2l. As |Q| = |I1|+ · · ·+ |It| and each interval Ij contains at least b|Ij|c
natural numbers, of which at least b|Ij|/2c are odd, we have

|A2| ≥ |Q ∩Ok| > ∑
1≤j≤t

(|Ij|
2
− 1
)

=
|Q|
2
− t > (1− 2−l+1) · |Q|

2
,

and hence
|A2|
|Ok|

> (1− 2−l+1) · |Q|
2k .

We show that |Q|/2k > 5/25. Then (1− 2−l+1) · |Q|/2k > 1/7 for l ≥ 14—as

desired.

A simple inclusion-exclusion bound, Boole’s inequalities, turns out to be help-

ful to establish a lower bound for |Q|/2k.

Lemma 17 (Boole’s inequalities). Let D1, . . . , Dr, r ∈N, be arbitrary events. Then

r

∑
i=1

Pr(Di)− ∑
1≤i<j≤r

Pr(Di ∩ Dj) ≤ Pr

(
r⋃

i=1

Di

)
≤

r

∑
i=1

Pr(Di) .

In order to apply it, we normalize all values by shrinking the interval [0, 2k) to

[0, 1) and working in the measure space that is given by [0, 1) with the usual

Lebesgue measure λ.

55

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Now, in direct correspondence to (4.4.6), (4.4.7), and (4.4.8), we define the sets

Ex,i :=
[

1
x
(i + 2−(l+2)),

1
x
(i + 2−(l+1))

)
, (4.4.9)

Ex :=
⋃

i∈[x]

Ex,i , and (4.4.10)

E :=
⋃

x∈O(k−l)−(l+2)

Ex . (4.4.11)

Then
|Q|
2k = λ(E) .

The following lemma allows us to apply Boole’s lower bound inequality.

Lemma 18. Let x, x′ ∈ [2(k−l)−(l+2)]− [2(k−l)−(l+3)], x < x′, be coprime. Then

λ(Ex ∩ Ex′) <
3
16
· 2−2l .

Proof. Consider Ex (see (4.4.10)). The lower interval limits lx,i of the intervals

Ex,i, i ∈ [x], cyclically divide [0, 1) into x sections of the same size 1/x, each of

which starts with an x-interval Ex,i (Fig. 4.3).

Figure 4.3: event Ex =
⋃

i∈[x]
Ex,i

In addition consider Ex′ , which forms a similar pattern, but with a period of

1/x′. We show that, for the allowed x and x′, λ(Ex ∩ Ex′) is O(λ(Ex) · λ(Ex′)),

and hence approximately the same as in the case of independence between Ex

and Ex′ . For this, we overlay the sections [lx,0, lx,1), [lx,1, lx,2), . . . , [lx,x−1, 1) ∪
[0, lx,0). Then we get a single half-open interval Ix of length 1/x, w. l. o. g. Ix =

[0, 1/x), such that the lower interval limits of the intervals Ex′,i, i ∈ [x′], form a

sequence (li)i∈[x′] which begins at some position l0 ∈ Ix, and proceeds cyclically

modulo 1/x with steps of size 1/x′. That is, li = (l0 + i · 1/x′) mod 1/x for

i ∈ [x′] (Fig. 4.4).

For coprime numbers x and x′, x < x′, it is easy to see that the sets {x, 2x mod

x′, . . . , (x′ − 1)x mod x′} and {1, . . . , x′ − 1} are equal. Adding zero, and nor-

56

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Figure 4.4: lower interval limits lx′,i of event Ex′ and overlay Ix

Figure 4.5: lower interval limits of Ex′ form a cyclic grid {li | i ∈ [x′]} in Ix

malizing all numbers by multiplication with (x · x′)−1 yields{
i
x′

mod
1
x
| i ∈ [x′]

}
=
{

i
x · x′ | i ∈ [x′]

}
,

and hence{(
l0 +

i
x′

)
mod

1
x
| i ∈ [x′]

}
=
{(

l0 +
i

x · x′

)
mod

1
x
| i ∈ [x′]

}
.

That means {li | i ∈ [x′]} forms a cyclic grid in Ix, where neighboring elements

have a difference of exactly 1/(x · x′) (Fig. 4.5).

Obviously, an interval Ex′,i can only have a nonempty intersection with Ex, if its

left interval limit lx′,i is either within or shortly before an x-interval, or equiva-

lently if the number li ∈ Ix which corresponds to lx′,i lies in

Φ :=
[

0,
1

x · 2l+2

)
∪
[

1
x
− 1

x′ · 2l+2 ,
1
x

)
⊆ Ix .

Let HΦ := {i ∈ [x′] | li ∈ Φ}. Our knowledge about the regular shape of

{li | i ∈ [x′]} within Ix allows us to easily bound the size of HΦ:

|HΦ| ≤
⌈

λ(Φ)
(x · x′)−1

⌉
(shape of {li | i ∈ [x′]})

≤ (x · x′)
(
(x · 2l+2)−1 + (x′ · 2l+2)−1

)
+ 1 (def. λ, Φ)

< (2x′ · 2−(l+2)) + 1 (as x < x′)

57

CHAPTER 4: THE CASE OF SPARSE KEY SETS

This finally yields the claimed bound on λ(Ex ∩ Ex′):

λ(Ex ∩ Ex′) = λ

 ⋃
i∈[x′]

(Ex ∩ Ex′,i)

= ∑

i∈[x′]
λ(Ex ∩ Ex′,i) (pairwise disjoint events)

≤ ∑
li∈HΦ

λ(Ex′,i) (def. HΦ)

<

(
2x′

2l+2 + 1
)
· 1

x′ · 2l+2 (see above)

=
1

22l+3 +
1

x′ · 2l+2

<
1

22l+3 +
1

2k−l−1 (as x′ > 2(k−l)−(l+3))

≤ 3
16
· 2−2l (for k ≥ 3l + 5)

The intuitive meaning of Lemma 18 is as follows: for the admitted x and x′,

the probability λ(Ex ∩ Ex′) of Ex ∩ Ex′ is not much larger than λ(Ex) · λ(Ex′) =

(2−(l+2))2 = (1/16) · 2−2l, and hence approximately the same as in the case of

independence between Ex and Ex′ .

Consider the following fact that was proved by Finsler [22].

Lemma 19 (Finsler’s inequalities [22]). Let n ∈ N, n > 1, and define π(n) as the

number of distinct prime numbers less than or equal to n. Then

n
3 ln(2n)

< π(2n)− π(n) <
7n

5 ln(n)
.

By Finsler’s inequalities we know that the set

[2(k−l)−(l+2)]− [2(k−l)−(l+3)]

contains at least 2k−2l−3/(3 ln(2k−2l−2)) distinct prime numbers. Of course

these prime numbers are odd and pairwise coprime. For k− log k ≥ 3l + 5 we

have 2k−2l−3/(3 ln(2k−2l−2)) ≥ 2l. So, let PR be a set of exactly 2l distinct prime

numbers in [2(k−l)−(l+2)]− [2(k−l)−(l+3)]. We complete the proof of Lemma 16

58

CHAPTER 4: THE CASE OF SPARSE KEY SETS

as follows:

|Q|
2k = λ(E) = λ

 ⋃
x∈O(k−l)−(l+2)

Ex

 (see (4.4.11))

≥ λ

(⋃
x∈PR

Ex

)
(PR ⊆ O(k−l)−(l+2))

> ∑
x∈PR

λ(Ex)− ∑
x,x′∈PR,
x 6=x′

λ(Ex ∩ Ex′) (Lemma 17)

> 2l · 2−(l+2) −
(

2l

2

)
· 3

16
· 2−2l (Lemma 18)

>
5
25 .

4.5 Proof of Lemma 14: pF(S) under the Condition

of an Almost Uniform Distribution

For the proof of Lemma 14 we consider the cuckoo graph G = (V1, V2, E) =

G(S, ha1 , ha2) of the set S = S(c, Rc). We show that if c is suitably chosen then a

large subset of the edges corresponding to G0 and Gc in G form a set of simple

paths with disjoint vertex sets. The number of these paths is a random variable

∆. Then we prove a lower bound for the probability that we chose a suitable c

and that under the condition of a suitable c choosing Rc yields ≥ ∆ + 1 edges

with endpoints on the ∆ paths, and hence yields a bad edge set. This will con-

clude the proof of Lemma 14.

In the following we refer to the edge that corresponds to a key xi(c′) ∈ Gc′ as

ei(c′) for arbitrary c′ ∈ U, and we say that the keys x 6= y collide under the hash

function h if h(x) = h(y).

Lemma 20. Each hash function ha ∈ Hmult
k,l maps Gc′ one-to-one into [m] for arbitrary

c′ ∈ U.

Proof. Let x, y ∈ Gc′ , x 6= y, be arbitrary. We have to show that ha(x) 6= ha(y).

Let i and j be the unique numbers in [d] with x = (c′ + i · 2k−l) mod 2k and

y = (c′ + j · 2k−l) mod 2k, and assume w. l. o. g. that i < j. Then we have

59

CHAPTER 4: THE CASE OF SPARSE KEY SETS

y = (x + t · 2k−l) mod 2k for the positive integer t := j− i < 2l/3. Now, on the

one hand we have

ha(x) = (ax mod 2k) div 2k−l ,

and on the other hand we derive

ha(y) = ((ax mod 2k + at mod 2k · 2k−l) mod 2k) div 2k−l .

As 0 < t < 2l and a is odd, t′ := at mod 2k is neither zero nor a multiple of 2l.

This implies that t′ · 2k−l mod 2k ≥ 2k−l, and hence ha(x) 6= ha(y).

Lemma 20 applied for c′ = 0 and c′ = c, respectively, yields that the edges

corresponding to G0 and the edges corresponding to Gc each form a matching

of size d. Imagine each of them as a set of d parallel lines in increasing order

w. r. t. the indices i ∈ [d] of the edges ei(0) and ei(c), respectively (Fig. 4.6).

Figure 4.6: The two matchings corresponding to G0 and Gc

Consider e0(c) = (ha1(x0(c)), ha2(x0(c))) and assume that xi1(0) and x0(c) col-

lide under ha1 , and that xi2(0) and x0(c) collide under ha2 , respectively, for

i1 6= i2, w. l. o. g. i1 < i2. The following Lemma, applied for ha = ha1 , α = 0,

β = c, i = i1, and i′ = 0 as well as for ha = ha2 , α = 0, β = c, i = i2, and i′ = 0

says that under this assumption there is a sequence of collisions between keys

in G0 and Gc both with respect to ha1 and ha2 .

Lemma 21. Let ha ∈ Hmult
k,l , as well as offsets α, β ∈ U, and indices i, i′ ∈ [2l] be

arbitrary. If xi(α) and xi′(β) collide under ha then xj(α) and xj′(β) collide under ha

for all j, j′ ∈ [2l] with j− j′ = i− i′.

60

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Proof. Assume that xi(α) and xi′(β) collide under ha, and let j, j′ ∈ [2l] with

j− j′ = i − i′ be arbitrary. Then there exists a unique integer z with j = i + z

and j′ = i′ + z. An elementary calculation proves that xj(α) and xj′(β) collide

under ha:

ha(xj(α)) = (a(α + j2k−l)) mod 2k div 2k−l (by def.)

= (a(α + (i + z)2k−l)) mod 2k div 2k−l (j = i + z)

= (axi(α) + az2k−l) mod 2k div 2k−l

= (axi′(β) + az2k−l) mod 2k div 2k−l

...

= ha(xj′(β))

The second to last equation is proved as follows: as we assumed that xi(α) and

xi′(β) collide under ha, the bits at positions k − 1 down to k − l of axi(α) and

axi′(β) must be equal. Furthermore, as the k− l lowest order bits of az2k−l are

zero, the carry from position k − l − 1, when we perform a binary addition of

az2k−l with axi(α) and axi′(β), respectively, is zero, too. Summing up, (axi(α) +

az2k−l) and (axi′(β) + az2k−l) have the same bits at positions k − 1 down to

k− l.

So we have

hat(xj(c)) = hat(xit+j(0)) for 0 ≤ j ≤ d− it − 1 , t ∈ {1, 2} ,

and hence the two matchings given by the edges of G0 and Gc can be merged

as depicted in Fig. 4.7. This reveals the existence of ∆ := i2 − i1 simple paths

P0, . . . , P∆−1 in G with disjoint vertex sets. Furthermore, the total number |V′1|
and |V′2| of vertices in V1 and in V2 covered by these paths is at least d − i1,

respectively.

Let d′ := dd/27e+ 1, and

Z := {(ha1(xi1(0)), ha2(xi2(0))) | i1, i2 ∈ [d′], i1 6= i2} . (4.5.1)

For e0(c) ∈ Z we have just proven the existence of ∆ ≤ dd/27e simple paths

P0, . . . , P∆−1 in G with disjoint vertex sets, which in total cover the vertex set

V′1 ⊆ V1 and V′2 ⊆ V2 of size ≥ d− dd/27e, respectively. We assume w. l. o. g.

61

CHAPTER 4: THE CASE OF SPARSE KEY SETS

Figure 4.7: The ∆ paths in G for e0(c) = (ha1(xi1(0)), ha2(xi2(0)))

that S is the result of a random experiment where first c ∈ Ok, and then Rc ⊆
U − (G0 ∪ Gc) is chosen uniformly at random. So,

Pr(e0(c) ∈ Z) = ∑
(i,j)∈Z

Pr((ha1 , ha2)(c) = (i, j))

≥ |Z| · 1
4
· 2−2l (Lemma 13)

≥
(

d
27

)2

· 2−2l−2 , ((4.5.1), Lemma 20)

and thus, as d = d(1− δ)2l/3e, we have

Pr(e0(c) ∈ Z) ≥ (1− δ)2

9 · 216 . (4.5.2)

If e0(c) ∈ Z and if the uniform random choice of Rc ⊆ U − (G0 ∪ Gc) yields ≥
∆ + 1 edges in V′1 ×V′2, then these edges together with the edges of P0, . . . , P∆−1

obviously form a bad edge set. We refer to the event that choosing Rc yields

≥ ∆ + 1 edges in V′1 ×V′2 as F.

Lemma 22. Pr(F | e0(c) ∈ Z) ≥ 1− exp
(
−
(

(1−δ)
3

)3
2l−9

)
.

Proof. The proof is a straightforward application of a Chernoff bound. We as-

sume w. l. o. g. that the keys in Rc are chosen one by one from U − (G0 ∪ Gc)

without repetition. Define the 0-1-random variables Xi, 1 ≤ i ≤ d, as 1, if the ith

62

CHAPTER 4: THE CASE OF SPARSE KEY SETS

chosen key yields an edge in V′1 × V′2, 0 otherwise. Then the random variable

X := ∑d
i=1 Xi counts the number of keys in Rc which yield edges in V′1 × V′2,

and

Pr(F | e0(c) ∈ Z) = Pr(X > ∆) .

For the number N′ of keys in U that are mapped on V′1 ×V′2 with respect to an

almost uniformly distributing hash function pair (ha1 , ha2) we have

N′ ≥ |V′1 ×V′2| ·
1
4
· 2−2l · |U| ,

where the condition e0(c) ∈ Z yields

|V′1 ×V′2| ≥ (d− i1)2

≥
(

d−
⌈

d
27

⌉)2

≥
(

d− d
26

)2

(l ≥ 14, δ = 1/8)

>

(
5

16
(1− δ)

)2

22l ,

and hence,

N′ ≥
(

5
16

(1− δ)
)2

2k−2 .

This implies under the given constraints l ≥ 14 and k− log k ≥ 3l + 5 that

Pr(Xi = 1) ≥ N′ − 3d
|U| >

(1− δ)2

26 .

We underestimate Pr(X > ∆) by assuming that the Xi are independent and

identically distributed with Pr(Xi = 1) = q := (1− δ)2/26. Then E[X] = dq,

and we may apply the following Chernoff bound [24] for t = d and (Y0, . . . , Yd−1)

= (X1, . . . , Xd).

Lemma 23 (Chernoff bound). Let Y0, . . . , Yt−1 be independent 0-1-random variables

such that Pr(Yi = 1) = qi. Let Y := ∑t−1
i=0 Yi and µ := E[Y]. Then, for 0 < ε < 1, we

have

Pr(Y ≤ (1− ε)µ) ≤ e−
µε2

2 .

63

CHAPTER 4: THE CASE OF SPARSE KEY SETS

This yields

Pr(F | e0(c) ∈ Z) ≥ Pr(X > ∆)

= 1− Pr(X ≤ ∆)

≥ 1− Pr
(

X ≤
⌈

d
27

⌉) (
∆ < d′ =

⌈
d
27

⌉)
≥ 1− Pr

(
X ≤

(
1− 1

6

)
E[X]

) (
l ≥ 14, δ =

1
8

)

≥ 1− exp

−E[X]
(

1
6

)2

2

 (Lemma 23)

= 1− exp
(
−dq

72

)
≥ 1− exp

(
−
(

(1− δ)
3

)3

2l−9

)
,

which completes the proof of Lemma 22.

Applying Lemma 22, we complete the proof of Lemma 14 as follows.

pF(S) ≥ Pr(e0(c) ∈ Z) · Pr(F | e0(c) ∈ Z)

≥ (1− δ)2

9 · 216 ·
(

1− exp

(
−
(

(1− δ)
3

)3

2l−9

))
((4.5.2), Lemma 22)

≥
(

7
3

)2

2−22

(
1− exp

(
−
(

7
3

)3

2l−18

))
(δ = 1/8)

> 2−21 . (l ≥ 14)

4.6 Experiments

Using the same implementation of cuckoo hashing as in the case of dense key

sets (see Chapter 3, Section 3.5) we carried out experiments that were meant

to obtain estimates of the failure probability pF by counting the average failure

frequency among 100 independently and uniformly random chosen grid based

sets S(c, Rc), as considered in the proof of Theorem 6, of size (1− δ)m, each set

inserted 1000 times with independently and uniformly random chosen hash

functions. This was repeated several times for fixed k = 126 and δ = 0.1, and

64

CHAPTER 4: THE CASE OF SPARSE KEY SETS

0

0.01

0.02

2−5

0.04

0.06

6 8 10 12 14 16 18 20 22

fa
ilu

re
ra

te
am

on
g

10
00

at
te

m
pt

s

l (k = 126 and δ = 0.1 fixed)

Multiplicative class with k = 126 and δ = 0.1

among 100 random grids S(c, Rc) per l

h(x) = (ax mod 2k) div 2k−l; avg +/- std dev

Figure 4.8: Constant failure probability of about 2−5 for the multiplicative class

for each l ∈ {6, . . . , 22}. The result is depicted in Fig. 4.8, where a dot represents

the average failure rate, and an error bar is given by addition and subtraction

of the “normalized” sample standard deviation from the average. (There is a

bit confusion in the literature about the notion “sample standard deviation.”

Some just call it “standard deviation.”) The sample standard deviation s with

respect to failure frequencies for a given value of l is computed according to the

following well known formula:

s =

√√√√ 1
t− 1

t

∑
i=1

(xi − x̄)2 ,

where in our case t = 100 denotes the number of randomly chosen sets S(c, Rc)

for a given table size 2l, xi is the number of failures among 1000 independent

attempts to insert the i-th chosen set, and x̄ is the average failure frequency

among the t sets.

It can be seen from Fig. 4.8 that for a randomly chosen grid based set S and

hash functions h1, h2 chosen uniformly at random from the multiplicative class

pF appears to be much larger than the constant from Theorem 6: the bound of

Theorem 6 is 2−24, whereas we see a failure rate of about 2−5.

65

CHAPTER 5

Conclusion and Open Problems

In the case m/N ≥ Nγ−1 for a suitable constant γ ∈ (0, 1), i. e. for relatively

dense key sets, we have answered the question of why cuckoo hashing does

not work well with the multiplicative class. We have proved that even for a

moderate load factor of 1/4 the failure probability for highly random key sets

is 1 − o(1) if arbitrary multiplicative functions are used. This implies, for a

load factor of no more than 1/4, the existence of a ”bad set” S such that the

failure probability is 1− o(1) if S is inserted with multiplicative functions that

are chosen uniformly at random. We further showed that in the same sense

cuckoo hashing performs badly when combined with the common linear class,

even if h1 and h2 are chosen from distinct linear classes. Cuckoo hashing should

not be used with these classes if U is not sufficiently large compared to m.

In the remaining case of sparse key sets we have shown that cuckoo hashing

combined with the multiplicative class has a failure probability of Ω(1), or even

1− o(1), if relatively small random key sets that exhibit a certain structure are

inserted. Therefore, summing up the results for the multiplicative class, we

generally recommend to avoid using cuckoo hashing with the multiplicative

class.

Our results point out that care must be taken when interpreting the result by

Mitzenmacher and Vadhan [32]—one has to check carefully that the hypotheses

of the theorems are satisfied: Not only “sufficient randomness of the data” is

required, but also has the universe U to be large compared to the table size m.

Recently Mitzenmacher, Kirsch, and Wieder [27] proposed a simple method

to reduce the failure probability. Under the full randomness assumption they

66

CHAPTER 5: CONCLUSION AND OPEN PROBLEMS

prove: If during the sequential insertion of n items, given m = (1 + ε)n, each

item that would cause the insertion to fail is put into a stash, i. e. into an extra

storage apart from T1 and T2, then the size σ of the stash after all items have

been inserted satisfies

Pr(σ ≥ s) = O(n−s)

for all s ≥ 1. So, using a small stash of constant size leads to a drastic decrease

of the failure probability. It is an intriguing open question how much the failure

probability drops in the situation that we investigated in this thesis, i. e. if h1

and h2 are chosen from a simple universal class in a case where the result of [32]

cannot be applied. Maybe this simple trick is a way out of the dilemma of a high

failure probability. However, we suppose that a small stash of constant size will

not help in the situation where N is a (small) constant times m, because then it

seems to be inevitable that one of the Ω(m) bad edge sets is “switched on”

during the random choice of m/2 edges (compare the proofs of our Theorems

3, 4, and 5).

Another open question of great interest is the behavior of d-ary and blocked

cuckoo hashing for d > 2 ([23] and [17, 42], respectively, see Section 1.1.5.2) in

combination with simple universal hash classes. We suppose that they will do

better than standard cuckoo hashing, as a growing number of choices for each

key should reduce the failure probability.

We have implicitly proved that pairwise independence of the hash functions

does not suffice to guarantee a good behavior of cuckoo hashing. All is not

lost however. In our experiments cuckoo hashing seemed to work very well

with the (2, 3)-universal classH3
p,m of quadratic polynomials over a prime field.

You may agree upon these polynomials being fairly simple and efficient. A

mathematical proof of this good behavior remains an open problem. This seems

to be a difficult problem.

Finally, one may argue that our results appear to be negative. However, as

every cloud has a silver lining, we strongly believe that our work will enhance

the practical use of hashing in the long term. A deeper understanding of a high

performance hashing scheme like cuckoo hashing combined with simple and

efficient universal hash functions surely is a step towards this goal.

67

References

[1] Tuğkan Batu, Petra Berenbrink, and Colin Cooper. Balanced allocations:

Balls-into-bins revisited and chains-into-bins. In CDAM Research Report

LSE-CDAM-2007-34. London School of Economics, 2007.

[2] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy ampli-

fication by public discussion. SIAM J. Comput., 17(2):210–229, 1988.

[3] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-

efficient minimal perfect hash functions. In Workshop on Algorithms and

Data Structures (WADS ’07), pages 139–150. Springer LNCS, 2007.

[4] Julie A. Cain, Peter Sanders, and Nicholas C. Wormald. The random graph

threshold for k-orientiability and a fast algorithm for optimal multiple-

choice allocation. In Proc. 18th Annual ACM-SIAM Symp. on Discrete Al-

gorithms (SODA ’07), pages 469–476, 2007.

[5] Neil J. Calkin. Dependent sets of constant weight binary vectors. Comb.

Probab. Comput., 6(3):263–271, 1997.

[6] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.

Comput. Syst. Sci., 18(2):143–154, 1979.

[7] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The

bloomier filter: an efficient data structure for static support lookup tables.

In Proc. 15th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’04),

pages 30–39. SIAM, 2004.

[8] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-

domness and probabilistic communication complexity. SIAM J. Comput.,

17(2):230–261, 1988.

68

REFERENCES

[9] Kai-Min Chung and Salil P. Vadhan. Tight bounds for hashing block

sources. In APPROX-RANDOM, pages 357–370, 2008.

[10] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Perfect hash-

ing. Theoretical Computer Science, 182(1–2):1–143, 1997.

[11] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Informa-

tion Processing Letters, 86:215–219, 2003.

[12] Martin Dietzfelbinger. Design strategies for minimal perfect hash func-

tions. In Proc. 4th Int. Symp. on Stochastic Algorithms: Foundations and Ap-

plications (SAGA ’07), volume 4665, 2007.

[13] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for re-

trieval and approximate membership (extended abstract). In ICALP (1),

pages 385–396, 2008.

[14] Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick.

In Proc. 36th Int. Colloquium on Automata, Languages and Programming

(ICALP ’09), pages 354–365. Springer-Verlag, 2009.

[15] Martin Dietzfelbinger and Ulf Schellbach. On risks of using cuckoo hash-

ing with simple universal hash classes. In Proc. 19th Annual ACM -SIAM

Symp. on Discrete Algorithms (SODA ’09), pages 795–804, 2009.

[16] Martin Dietzfelbinger and Ulf Schellbach. Weaknesses of cuckoo hashing

with a simple universal hash class: The case of large universes. In Proc.

35th Conf. on Current Trends in Theory and Practice of Computer Science (SOF-

SEM ’09), pages 217–228, 2009.

[17] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and

dictionaries with tightly packed constant size bins. Theor. Comput. Sci., 380

(1-2):47–68, 2007.

[18] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with

simple hash functions. In Proc. 35th Annual ACM Symp. on Theory of Com-

puting (STOC ’03), pages 629–638, 2003.

69

REFERENCES

[19] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pent-

tonen. A reliable randomized algorithm for the closest-pair problem. J.

Algorithms, 25(1):19–51, 1997.

[20] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of cuckoo

hashing. In preprint, 2008.

[21] Daniel Fernholz and Vijaya Ramachandran. The k-orientability thresholds

for gn, p. In Proc. 18th Annual ACM-SIAM Symp. on Discrete Algorithms

(SODA ’07), pages 459–468. SIAM, 2007.

[22] P. Finsler. Über die Primzahlen zwischen n und 2n. In Festschrift zum 60.

Geburtstag von Prof. Dr. Andreas Speiser, pages 118–122. Füssli, 1945.

[23] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space

efficient hash tables with worst case constant access time. In Proc. 20th

Annual Symp. on Theoretical Aspects of Computer Science (STACS ’03), pages

271–282. Springer-Verlag, 2003.

[24] Torben Hagerup and C. Rüb. A guided tour of chernoff bounds. Inf. Pro-

cess. Lett., 33(6):305–308, 1990.

[25] Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in

nearly minimal space. In Proc. 18th Annual Symp. on Theoretical Aspects of

Computer Science (STACS ’01), pages 317–326. Springer-Verlag, 2001.

[26] Russell Impagliazzo, Leonid A. Levin, and Michael G. Luby. Pseudo-

random generation from one-way functions. In Proc. 21st Annual ACM

Symp. on Theory of Computing (STOC ’89), pages 12–24, 1989.

[27] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hash-

ing: Cuckoo hashing with a stash. In Proc. 16th Annual European Symp. on

Algorithms (ESA ’08), pages 611–622. Springer-Verlag, 2008.

[28] Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting and

Searching. Addison-Wesley, 2 edition, 1982.

[29] Reinhard Kutzelnigg. Bipartite random graphs and cuckoo hashing. In

Proc. 4th Colloquium on Mathematics and Computer Science, pages 403–406,

2006.

70

REFERENCES

[30] Michael Luby and Avi Wigderson. Pairwise independence and derandom-

ization. Found. Trends Theor. Comput. Sci., 1(4):237–301, 2006.

[31] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cam-

bridge University Press, 2005.

[32] Michael Mitzenmacher and Salil Vadhan. Why simple hash functions

work: exploiting the entropy in a data stream. In Proc. 19th Annual ACM-

SIAM Symp. on Discrete Algorithms (SODA ’08), pages 746–755, 2008.

[33] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and

new constructions. J. Comput. Syst. Sci., 58(1):148–173, 1999.

[34] Noam Nisan and David Zuckerman. Randomness is linear in space. J.

Comput. Syst. Sci., 52(1):43–52, 1996.

[35] Anna Östlin and Rasmus Pagh. Uniform hashing in constant time and

linear space. In Proc. 35th Annual ACM Symp. on Theory of Computing (STOC

’03), pages 622–628, 2003.

[36] Andrea Ott. Studienarbeit: Experimenteller Vergleich einiger neuer Ver-

fahren zur Konstruktion von dynamischen Wörterbüchern mit fixer Zu-

griffszeit. 2004.

[37] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and op-

timal space. SIAM J. Comput., 38(1):85–96, 2008.

[38] Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear probing with constant

independence. In Proc. 39th Annual ACM Symp. on Theory of Computing

(STOC ’07), pages 318–327, 2007.

[39] Rasmus Pagh. On the cell probe complexity of membership and perfect

hashing. In Proc. 33rd Annual ACM Symp. on Theory of Computing (STOC

’01), pages 425–432, 2001.

[40] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Springer

LNCS, 2161:121–133, 2001.

[41] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms,

51(2):122–144, 2004.

71

REFERENCES

[42] Rina Panigrahy. Efficient hashing with lookups in two memory accesses.

In Proc. 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’05),

pages 830–839, 2005.

[43] Ronen Shaltiel. Recent developements in explicit constructions of extrac-

tors. EATCS Bulletin, 77:67–95, 2002.

[44] Alan Siegel. On universal classes of fast high performance hash functions,

their time-space tradeoff, and their applications. In Proc. 30th Annual Symp.

on Foundations of Computer Science (SFCS ’89), pages 20–25. IEEE, 1989.

[45] Alan Siegel. On universal classes of extremely random constant-time hash

functions. SIAM J. Comput., 33(3):505–543, 2004.

[46] David Zuckerman. Simulating BPP Using a General Weak Random

Source. Algorithmica, 16(4/5):367–391, 1996.

72

	Titlepage
	Dedication
	Summary
	Zusammenfassung
	Acknowledgements
	1 Introduction
	1.1 Background
	1.1.1 The Dictionary Data Type
	1.1.2 Hashing
	1.1.3 Hash Functions
	1.1.4 Universal Hashing
	1.1.5 Cuckoo Hashing and Its Relatives

	1.2 Results of this Thesis
	1.2.1 Dense Key Sets
	1.2.2 Sparse Key Sets

	2 Preliminaries
	2.1 Cuckoo Hashing
	2.2 The Cuckoo Graph
	2.2.1 Bad Edge Sets
	2.2.2 Failure probability pF under Full Randomness

	2.3 Hash Function Families
	2.3.1 Independence versus Universality
	2.3.2 Brief Discussion of a Recent Work

	2.4 When Do Simple Hash Functions Work?
	2.4.1 Some Notation
	2.4.2 Some Definitions
	2.4.3 The Model
	2.4.4 Randomness Extraction
	2.4.5 Crucial Observation
	2.4.6 Theorem 2 and the Multiplicative Class

	3 The Case of Dense Key Sets
	3.1 The Special Case mN 12
	3.2 High Failure Probability for the Multiplicative Class
	3.3 High Failure Probability for the Linear Class
	3.4 High Failure Probability for Two Distinct Linear Classes
	3.5 Experiments

	4 The Case of Sparse Key Sets
	4.1 Random Choice from a Grid
	4.2 Random Choice of a Grid
	4.3 Basic Structure of the Proof
	4.4 Almost Uniform Distribution
	4.5 pF(S) under Almost Uniform Distribution
	4.6 Experiments

	5 Conclusion and Open Problems
	Bibliography

