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Summary

The presented dissertation focuses on the computational analysis of the molec-

ular biological mechanism called Alternative Splicing and integrates the topics

”
Prediction and validation of alternative splice forms“,

”
Characterization and

functional impact of short 5′ splice site (ss) variations“ and
”

Petri Net modeling

of the spliceosomal assembly pathway“. In the first part different features were

analyzed in their potential to distinguish two classes of splice sites, alternative

and reference splice sites. These were computationally derived earlier from

transcript alignments of
”
Expressed Sequence Tags“ (ESTs) and mRNA and

stored in the Eased database.

A central question was to what extent different features contribute to dis-

crimination of both types of splice sites. In particular the features
”
splice site

score“,
”
transcript coverage“ and

”
splicing factor binding sites“ in vicinity of the

considered splice sites were investigated. The applied scoring system describes

the agreement of the considered splice site to an entropy model of human splice

sites and thus makes it possible to capture for example the complementarity of

the donor site to the recognizing motif within the small nuclear RNA (snRNA)

of the spliceosomal U1 complex. For comparison reference splice sites were

collected from transcripts that were not predictive of alternative splicing, and

subjected to the same analyses. The results showed that alternative splice (AS)

forms identified by the Eased pipeline were in two of three analyzed features

statistically separable.

Alternative splice sites could especially be discriminated from constitutive splice

sites by a lower splice site score and an increased presence of splicing factor

binding motifs in the vicinity of alternative splice sites. Additionally, a positive

correlation within the compared classes of alternative and reference splice forms

could be observed, in the dependency between transcript coverage and the splice

site score. This dependency shows that the confidence in the AS form predicting
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process raises with the number of available transcripts and similar as it can be

observed within the set of reference splice forms.

The results have been published in the book series
”

Modelling and Simulation in

Science, Engineering and Technology“ in Birkhäuser / Springer (1).

With the ongoing development of prediction and annotation techniques for

alternative splice forms, distinct splice patterns have been discovered and

analyzed in more detail. Most comprehensively the class of skipped exons

(SE) has been studied over the past decade, followed by alternative 5′ and 3′

splice site exons. Nevertheless only recently, the interesting concept termed

subtle alternative splicing has been introduced based on the findings of a special

pattern of human alternative acceptor splice forms of NAGNAG type (2). In

conjunction with this finding, the second part of the presented thesis focuses on

a subtle alternative splicing pattern with the motif GYNNGY at the donor

site, which occurs almost as frequently as splice sites with the NAGNAG motif.

In contrast, splicing at GYNNGY tandem donors implies an mRNA variation,

which is not a multiple of the codon length and hence indicates a more intricate

role in mRNA turnover. For example, changing the reading frame may result

in a premature stop codon in the matured transcript, potentially draining the

mRNA from the pool of expressed transcripts. The motif GYNNGY itself

also serves as recognition site for U1 and U5 snRNA motifs, hence the splicing

machinery has to distinguish between these two overlapping donor sites.

The analysis of such small splicing variations requires a dataset of higher reso-

lution and sensitivity near exon intron junctions. To this end the Hollywood

database provided a thoroughly prepared dataset of alternative splice patterns

(3). Among the alternative exons, overlapping donor splice sites constituted

more than 80% of the total set of predicted alternative 5′ splice sites. Among

these, 41% of the alternative donor sites showed the motif GYNNGY, thus

being the most frequently tandem donor variant. In silico and experimental

characterization of alternative splice variants of this GYNNGY type showed

distinct properties in splice site strength, sequence conservation, presence of

splicing enhancer motifs and functional consequences according to utilization

levels of the alternative overlapping donor splice sites. It turned out that those

AS forms which predominantly utilized the downstream (proximal) donor over

the rare upstream (distal) donor (type-I) were clearly distinguishable from

constitutive exons. In contrast, the group of AS forms predominantly utilizing
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the upstream donor over the alternative downstream donor (type-II), was more

similar to constitutive exons with respect to the analyzed features. Summarizing,

the results point to the existence of a biological mechanism, which involves frame

shifted alternative splice variants, continuously produced at low levels for the

cause of either a directed nonsense-mediated mRNA decay or truncated proteins.

The mere observation of this phenomenon questions the absolute effectiveness

of the NMD mechanism and connetcs to new theories about the processing of

primary transcripts beyond the purpose of coding for functional proteins.

This work is published in the journal BMC Genomics (4).

In the last part of this thesis, a computational basis for investigating the concur-

rent processes of spliceosome assembly was established. The spliceosome is the

catalytically active key component of the splicing process, whereupon a functional

macro complex is assembled from proteins and snRNA via a multitude of signal-

ing reactions within the nucleus of eukaryotic cells. Petri net theory was applied

to model the reactions and interactions of the spliceosome assembly pathway. Ini-

tially a high degree of biological knowledge has to be screened in order to draft a

Petri Net model but the resulting graph structure allows an easier validation and

exploitation of the accumulating experimental data. Calculation of semi positive

t-invariants serves as a means of validating existing - and uncover new signal flows

within the spliceosomal assembly process. The biologically and mathematically

validated model proves as being suitable for simulation and classification of signal-

ing pathways. A set of 71 invariant pathways could be delineated from a network

of reaction, and being subjected to further structural classification by means of

clustering and decomposition into partial pathways with high degree of shared

information flow. This approach serves well to integrate experimental data from

literature and structure molecular biological information. As consequence, Petri

nets help to uncover weaknesses of existing partial models, to uncover inconsis-

tent hypothesizing and finally to generate new insights into molecular biological

mechanism.
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Zusammenfassung

Die vorliegende Dissertation konzentriert sich auf bioinformatische Analy-

sen zum molekularbiologischen Mechanismus des Alternativen Spleißens und

verbindet die Themen
”

Vorhersage und Bewertung von alternativen Spleißfor-

men“,
”

Charakterisierung und funktionelle Auswirkungen von kleinen Variatio-

nen des 5′ Spleißsignals“ und
”

Modellierung der Bildung des spleißosomalen Pro-

teinkomplexes mittels Petri-Netzen“.

Im ersten Teil der Arbeit wurden verschiedene Merkmale auf ihr Potential hin

analysiert, zwei Typen von Spleißstellen, alternative und Referenzspleißstellen,

zu unterscheiden. Diese wurden zuvor in silcio aus Transkript Alignments von

”
Expressed Sequence Tags“ (ESTs) und mRNA abgeleitet und mit zusätzlichen

Informationen in der Eased-Datenbank gespeichert. Eine zentrale Frage

war, in welchem Maße verschiedene Merkmale zur Diskriminierung beider

Klassen von Spleißereignissen beitragen. Besonders die Merkmale
”
Spleißsig-

nalstärke“,
”
Transkripthäufigkeit“ und

”
Spleißfaktor-Bindstellen“ im Bereich

der betrachtetenSpleißstellen wurden analysiert. Das verwendete Scoringmaß für

die Spleißstellen beschreibt die Übereinstimmung der betrachteten Spleißstelle

zu einem Entropiemodell von humanen Spleißstellen und ermöglicht so z.B.

die Komplementarität des Donor-Motivs zur Erkennungssequenz innerhalb der

small nuclear RNA (snRNA) der spleißosomalen Untereinheit U1 zu bewerten.

Zum Vergleich wurden Referenzspleißstellen aus Transkripten zusammengestellt,

welche keine Spleißvariationen zeigten, und auf die gleichen Merkmale untersucht.

Die Ergebnisse belegten, dass durch den Eased Algorithmus generierte AS

Formen in zwei der drei untersuchten Merkmale von den Referenzspleißformen

unterschieden werden konnten. Alternative Spleißstellen liessen sich dabei von

konstitutiven Spleißstellen besonders durch einen niedrigeren Spleißstellen-Score

und vermehrtes Auftreten von Bindemotiven für SR Proteine in der näheren

Umgebung der Spleißstellen abgrenzen. Zusätzlich konnte eine positive Korre-
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lation in beiden Vergleichsklassen beobachtet werden, zwischen der Häufigkeit

von gespleißten Transkripten und dem Spleißstellen-Score. Diese Abhängigkeit

zeigt, dass das Vertrauen in die vorhergesagten alternativen Spleißformen mit

der Anzahl verfügbarer Transkripte steigt, und zwar in gleicher Weise, wie es bei

konstitutiven Transkripten beobachtet werden kann.

Die Ergebnisse dieser Studie wurden in der Buchserie
”

Modelling and Simulation

in Science, Engineering and Technology“ des Birkhäuser / Springer Verlags (1)

veröffentlicht.

Mit der voranschreitenden Entwicklung von Techniken zur Vorhersage und

Annotation von alternativen Spleißformen wurden diverse Spleißmuster entdeckt

und detaillierter untersucht. Am umfangreichsten wurde über die letzten Jahre

hinweg Spleißmuster untersucht, welche vollständige Exons in Transkripten

übergehen oder einfügen (
”
Kassettenexons“). Weitere gut untersuchte Beispiele

existieren für Spleißformen, welche Exons an der angrenzenden 5′ Spleißstelle

(Donor) oder 3′ Spleißstelle (Akzeptor) variieren. Erst kürzlich wurde das interes-

sante Konzept subtilen alternativen Spleißens vorgestellt. Dieses Konzept basiert

auf Beobachtungen von Spleißvorgängen an sogenannten Tandem-Akzeptor

Spleißsignalen mit dem Motiv NAGNAG, welche im Humanentrankriptom aber

auch in Transkripten anderer Eukaryoten gefunden wurde (2). In Anknüpfung

an diese Entdeckung befasst sich der zweite Teil der vorliegenden Arbeit mit

einem weiteren subtilen alternativen Spleißmuster, welches ähnlich häufig,

jedoch an Donor-Spleißsignalen auftritt. Im Unterschied zu der drei Nukleotide

umfassenden Variation am Akzeptor lässt die vier Nukleotide betreffende

Donorvariation auf eine komplexe Rolle im RNA-Reifungsprozess schließen.

Durch die Verschiebung des Leserasters kann z.B. ein deutlich häufigeres

Auftreten von vorzeitigen Stopcodons in reifen mRNAs beobachtet werden. Das

Spleißsignalmotiv GYNNGY selbst dient dabei als Erkennungssequenz für die

zwei wichtigen spleißosomalen Ribonukleoproteinkomplexe U1 und U5, deren

Bindung durch die zwei überlappenden Motive beeinflusst wird. Die Analyse

dieses speziellen Spleißmusters erforderte einen Datensatz mit einer nukleotid-

genauen Auflösung der alternativen Spleißstellen, um die kurzen Variationen

charakterisieren zu können. Ein entsprechender Datensatz wurde aus der Hol-

lywood-Datenbank (3) gewonnen, welche im Gegensatz zur Eased Datenbank

mehr Spleißmuster klassifiziert und auch Transkriptvariationen von weniger als

zehn 10 Nukleotiden berücksichtigt. Die Daten zeigten, dass kurze Variationen
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mit überlappenden Donormotiven mehr als 80% aller nachweisbaren alternativen

Donor Spleißereignisse ausmachen. Dabei tritt unter diesen überlappenden

Donoren mit 41% am häufigsten das Motiv GYNNGY auf. Mittels in silico

Analysen und experimenteller Validierung wurde die Plausibilität dieses sub-

tilen Spleißmusters bestätigt. Sequenzanalysen zeigten ausserdem ausgeprägte

Charakteristika bezüglich des Spleißstellen-Scores (Nukleotidzusammensetzung),

Konservierung, Vorliegen von potentiellen Bindemotiven für Spleißfaktoren

sowie funktionelle Auswirkungen in Abhängigkeit der Nachweishäufigkeit beider

überlappender Donoren in gespleißten Transkripten. Ein Ergebnis deutet darauf

hin, dass besonders die GYNNGY Spleißformen, welche seltener am ersten

(distalen) Donor gegenüber dem zweiten (proximalen) Donor gespleißt werden,

in allen oben genannten Merkmalen deutlich von konstitutiven Spleißformen

(mit ähnlichem Donor Motiv) unterschieden werden können. Gleiches konnte für

den umgekehrten Fall, bei dem die erste Spleißstelle häufiger gespleißt wird als

die zweite Spleißstelle, nur bedingt nachgewiesen werden.

Zusammenfassend deuten die Ergebnisse auf einen biologischen Mechanismus

hin, welcher alternative Spleißvarianten erzeugt, die das Leseraster verschieben

und kontinuierlich in geringen Mengen generiert werden, entweder zum gezielten

Auslösen des NMD Mechanismus oder zur Erzeugung verkürzter Proteine. Die

alleinige Beobachtung dieses Phänomens stellt die uneingeschränkte Wirksamkeit

des
”
Nonsense Mediated RNA Decay“ (NMD) Mechanismus in Frage und knüpft

an neue Theorien über die Verarbeitung von Primärtranskripten an, jenseits

ihrer klassischen Funktion funktionelle Proteine zu kodieren. Diese Arbeit wurde

im Journal BMC Genomics veröffentlicht (4).

Das Spleißosom ist die katalytisch aktive Schlüsselkomponente des Spleißens,

wobei durch eine Vielzahl von Signalreaktionen ein funktioneller Makrokomplex

aus Proteinen und kleinen nukleären RNAs an Primärtranskripten im Zellkern

von Eukaryoten aufgebaut wird. Die spleißosomalen Signalreaktionen wurden

aus experimenteller Fachliteratur zusammengestellt und mit Hilfe der Petri Netz

Theorie modelliert. Im Gegensatz zu bisherigen Anwendungen von Petri Netzen

zur Analyse metabolischer Netzwerke, wurde in diesem Ansatz, bedingt durch

das Fehlen stöchiometrischer Daten, ein binärer Entscheidungsbaum modelliert.

Dabei entsprechen Token auf den Knoten des Netzwerks einem Informationsge-

halt oder Zustand, der, wenn gegeben, eine Reaktion ermöglicht. Durch diese

Interpretation wird es möglich, Kanten im Netzwerk konstant mit einem Gewicht
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von eins zu modelieren. Im Gegensatz zu ungerichteten Protein-Protein Wech-

selwirkungsnetzwerken, erforderte dieser Ansatz die Einordnung von Protein-

Protein sowieo Protein-RNA Wechselwirkungen in eine Abfolge zeitlich geord-

neter Reaktionen.

Die Darstellung des spleißsomalen Signalwegs als Petri Netz eröffnet unter der

Annahme eines Steady State Systems die Berechnung von mimimalen, semipos-

tivien T-Invarianten, welche zur Validierung des Modells herangezogen werden

können. Die darauf aufbauenden Analysemöglichkeiten sowie die leichte Erweit-

erbarkeit des Modells rechtfertigen den Modellierungsansatz im Hinblick auf die

stetig wachsende Menge experimenteller Daten. Die T-Invarianten beschreiben

strukturelle Eigenschaften des spleißosomalen Signalnetzwerks und bilden eine

Grundlage für die Identifizierung neuer Signalwege. Insbesondere die Eigenschaft

nebenläufige Prozesse abbilden zu können ermöglichte es, mit Hilfe des Petrinet-

zes die verschiedenen Varianten der Initiierung des spleißsomalen Signalnetzwerks

darzustellen und zu vergleichen.

Das Modellnetzwerk eignet sich darüberhinaus sowohl für die animierte Simula-

tion der Reaktionen des Spleißosom-Aufbaus als auch für die Klassifizierung von

Signalwegen, um wichtige Knotenpunkte im Netzwerk zu identifizieren. Zusamen-

fassend eröffnet dieser Modellansatz die Möglichkeit, die großen Mengen an Pro-

teininteraktionsdaten aus öffentlichen Datenbanken und Publikationen sinnvoll

für die Erstellung neuer- und zur Analyse bestehender Hypothesen einzusetzen.
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Chapter 1

Validation of Alternative Splice

Forms Detected in silico

1.1 Introduction

1.1.1 Alternative Splicing

The central dogma of molecular biology postulates the directed flow of genomi-

cally encoded information in the nucleus via messenger RNA (mRNA) to the cy-

toplasm where the message is translated into proteins .In higher organisms, this

information flow becomes dynamically modulated by RNA maturation processes

among which splicing is a prominent example. Splicing describes the process by

which parts (introns) of the pre-cursor messenger RNA are catalytically excised

by a ribozyme complex while remaining pieces (exons) are ligated and constitute

the coding sequence. Furthermore, some parts of the spliced transcript remain

untranslated at the 5′ and 3′ end of the mRNA. The recognition of the donor

and acceptor splice sites at the exon-intron boundaries are sensitive steps in ini-

tializing the splicing reaction. Only a few years after discovery of the splicing

mechanism in 1977 (5), it was clear that mRNAs from the same genomic region

could differ in length and nucleotide composition. Successively, it was shown that

alternative splice reactions can take place when splicing signals are switched on

and off or occur in competing proximity to each other (6). Today, alternative

splicing (AS) has become a paradigm to explain the increasing morphological

complexity as compared to genome size, that is observable in eukaryotes from

protozoans via nematodes, arthropods to vertebrates (7, 8).

AS events are categorized in different patterns of splice site selection and one

1



2 Alternative Splicing

can distinguish the four basic types: exon-skipping (SE), in which mRNA iso-

forms differ by the inclusion/exclusion of an exon; alternative 5′ss exon (A5E)

or alternative 3′ss exon (A3E), in which isoforms differ in the usage of a 5′ss

or 3′ss, respectively; and retained-intron types (RI), in which isoforms differ by

the presence/absence of an un-spliced intron (9). These types are not necessarily

mutually exclusive and more complex types of AS events can be constructed from

such canonical types. In addition, AS holds the possibility to control gene ex-

pression at the post-transcriptional level via the non-sense mediated mRNA decay

(NMD) pathway. To prevent aberrantly or deliberately incorrectly spliced tran-

scripts that prematurely terminate translation, NMD ensures that only correctly

spliced mRNAs that contain the full (or nearly so) message are subsequently

utilized for protein synthesis. Therefore, NMD scans newly synthesized mRNA

for the presence of one or more premature-termination codons (PTCs), and, if

detected, can selectively degrade defective mRNAs (10). Furthermore, patholog-

ical complexity can be ascribed to misregulated splicing with cancer as one of

the most disastrous examples (11). The mechanism of alternative splicing has

attracted a wide range of scientific research addressing the problem with compu-

tational strategies and tools (12, 13, 14, 15, 16). A variety of databases have

been designed to collect alternative splice forms (17) along with accompanying

experimental conditions like source tissue, developmental stage or pathological

information (cf. Table 1.1).

Purification of spliceosomal components (see chapter 3.1.1) and in vitro splic-

ing assays showed that regulatory proteins are involved in initiating the splice

mechanism and maintaining spliceosomal activities (18, 19, 20). Most of the

known splice regulatory proteins are members of a protein family that share

serine-arginine domains, called SR proteins. Additionally, SR proteins can bind

via RNA recognition domains to specific sequence motifs to promote alternative

splice site usage and exon definition (7, 21). Considering the growing percent-

age of genes that are affected by alternative splicing transcripts there must be

a dense regulatory network, which receives and forward signals required to per-

form the surgical task of splicing. Consequently eukaryotic cells have a means to

react appropriately to different environmental conditions by triggering the splic-

ing of different isoforms. Over the last decade experimental studies have amply

provided examples of alternative splice events whose regulation depends on the

presence and distribution of cis-elements and the concentrations of their recog-

nizing trans-factors (6, 22). These preliminary works paved the way for a variety
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of computational studies, some of their covered topics briefly summarized in the

following list:

i. splice site modeling (23),

ii. splice site plasticity (2),

iii. exon/intron sequence composition (24)

iv. splicing pattern statistics (25) and

v. splicing enhancer and silencer prediction (26, 27).

1.1.2 History of Computational Analyses on Alternative

Splicing

The computational detection of alternative splice forms based on sequence

analysis is tightly connected to the identification of genes within genomes. That

is because mature transcripts still bear a strong resemblance to the genomic loci

from which they were transcribed. Hence, the comparison of processed (and

thus assumed to be matured) RNA transcripts to genomic sequence can serve to

identify intronic regions which were removed from the primary transcript during

the splicing process. One of the first approaches to find gene regions consisted of

aligning complete (full-length) RNA transcripts against genomic sequence and

thus pinpointing the location of genes. UniGene cluster for example successively

incorporate transcripts (mRNA and EST sequences) into initial alignments

forming gene centered clusters of spliced sequences (28). Since then, spliced

alignments have been included into several gene prediction pipelines (12, 29)

as for example the Transcript Assembly Program (12). They constitute

an extrinsic or indirect approach to gene prediction as contrasted by ab initio

methods which make directly use of statistical properties of the genomic sequence

such as the GC content (30). From the initial estimates of 30%-40% of the

human genes being alternatively spliced (31, 32), by improving experimental

and computational techniques this estimate has constantly increased over the

past years, ranging presently at more than 70% (33, 34, 35). Along with

the improvement of detecting alternative splice patterns, databases and web

application were developed for storing and analyzing the wealth of data. Two

main types of alternative splicing data repositories can be distinguished: i) AS
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databases created by text mining, storing manually curated or collected AS

events reported in the literature and ii) computationally detected and annotated

AS databases.(cf. Table 1.1).

The quality of EST sequences is often compromised by sequencing errors. Ad-

ditionally, ESTs can be overrepresented in the 5′ or 3′ region of gene, posing

an unbalanced transcript coverage. This encouraged scientists to explore also

other possibilities for corroborating the evidence on alternative splice patterns.

One strategy pursues the interspecies comparison of splice patterns to confirm

AS events by their sequence conservation in other species (36, 37). However,

this is often not feasible on a genome wide scale, due to the incomplete sequence

coverage in non-human species. Another approach is the artificial construction of

splice junction probes based on reference mRNA sequences and their hybridiza-

tion with RNA cell extracts (which can be from various tissues) on microarray

chips (35, 38). While producing a large amount of information confirming spe-

cific AS patterns and giving insights into their regulation, microarray and high

throughput sequencing approaches constitute a considerable financial effort. Be-

side genomic and mRNA sequence information, also the wealth of protein se-

quences has been used to predict and analyze AS forms (39, 40). A third

possibility, reported by Hiller et al. uses protein family domains (PFAM) to

reconstruct AS events (41). This approach classifies novel AS events by evaluat-

ing the PFAM score after computationally removing exons or retaining introns

in reference transcript structures and translating them into protein sequence.
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Table 1.1: Historical outline of alternative splicing databases. AFE=alternative first exon; ALE=alternative last exon; AP=alternative polyadeny-
lation. For further explanation of acronyms see references and glossary; na = no information available.

Year Database Data Description Collected Types of AS Pat-
terns

Number of AS Sequences Ref.

1999 Asdb Collection of protein and DNA sequence entries, labeled as
”VARSPLIC” (Swiss-Prot) and ”Alternative Spliced” (Gen-
Bank)

n/a 1,200 DNA Sequences (42, 43)

2000 ASFinder BLAST of EST against cDNA sequences Inserts, Deletions 2,747 AS cDNAs (1,797 AS genes) (44)

2001 SpliceDB Collection of (non)canonical splice site pairs from GenBank
sequences

n/a 28,468 ss pairs (45)

2002 SpliceNest Aligning ESTs from UniGene cluster alignment against ge-
nomic sequence (Sim4); filtering and delinieation of AS pat-
terns

SE, RI, A5E, A3E 14,900 AS UniGene clusters (46, 47)

2002 PalsDB Comparing UniGene cluster transcripts inserts, deletions 14,106 AS genes (48)

2003 ProSplicer Alignment EST and mRNA (Sim4) and protein (TBLASTN)
sequences to genomic sequence (Ensembl)

SE, A5E, A3E n/a (49)

2003 Asap Mapping UniGene sequences to genome (BLAST); analyzing
EST (mRNA) cluster with GeneMiner

SE, A5E, A3E 11,717 AS genes (34, 50,
51)

2004 Eased Aligning mRNAs to dbEST (BLAST); filtering and mapping
of AS mRNAs to Ensembl genes

Inserts, Deletions 18,308 AS transcripts (14,792 AS
genes)

(52)

2004 ASD Manually curated EST (mRNA) alignments (BLAST) against
genomic sequence

CE, A5E, A3E, SE, RI, MXE 2,581 AS Events (AltExtron);
8,314 AS genes (AltSplice)

(53, 54)

2005 FastDB EST (mRNA) alignments (Sim4) against protein coding gene
sequences (Ensembl)

CE, A5E, A3E, SE, RI 11,071 AS genes (55)

2005 SpliceInfo AS forms derived from ProSplicer and from mRNA-protein
sequence comparison to genomic sequence (Ensembl)

SE, A5E, A3E, RI 6,309 AS genes (56)

2005 Maase Semi-automated AS analysis of manually provided gene IDs
by BLAT and Sim4

A5E, A3E, SE, RI, MXE 1,007 AS genes (57)

2006 Astra Mapping of mRNAs (UniGene) to genome by Megablast and
Aln

AFE, ALE, A5E, A3E, SE, RI,
MXE

12,470 AS cDNAs (4,931 AS genes) (58)

2006 Hollywood Aligning mRNA vs genomic sequence (Ensembl); subsequent
alignments of EST against the mRNA hits (Sim4) within the
genome

CE, A5E, A3E, SE, RI, MXE 10,800 AS genesa (3)

2006 TassDB Aligning ESTs (BLAST) against RefSeq splice site junctions
which show specific splice cite patterns

A3E (NagNag), A5E (GynGyn) 10,995 GynGyn, 11,964 NagNag
patterns

(16)

2006 AltTrans Extending the AltSplice DB for alternative PolyA sites AP 2,053 AP genes (59)

2007 SpliceMiner Web Frontend to the ”Evidence Viewer” DB of non redundant
human splice variants with complete CDS

no classification na (60)

2007 BiPass Two-step alignments of EST (dbEST) and mRNA (GenBank)
to genomic sequence by BLAST and Sim4

AFE , ALE, SE, A5E, A3E na (61)

anumber referring to AS events of internal exons
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1.1.3 Splicing Factors and their Role in Regulating Alter-

native Splicing

Many proteins have been found to influence alternative splicing events. Espe-

cially SR proteins, a family of proteins that share serine-arginine rich conserved

domains, are frequently located near sites of active splicing. These proteins can

interact via their RS domains and thus provide bridging functions in spliceosome

assembly and splice site definition (62). Furthermore SR proteins possess RNA

recognition domains and have been shown to recognize a variety of cis-elements.

According to location and effect on the splicing process, these cis-elements are

classified as exonic or intronic splicing enhancer (ESE, ISE) or -silencer (ESS,

ISS) elements. Understanding the role of SR proteins in AS regulation is compli-

cated by the fact that the recognized sequence motif alone is often insufficient to

determine their function as positive or negative splicing regulator. Studies have

shown that more than one copy of a high affinity SR protein binding site can

efficiently activate splicing as was shown for three sequential SRp binding motifs

binding ASF/SF2 and SRp40 (63, 64). This finding was explained by the action

of cooperative binding of several splicing factors of the same type resulting in a

higher specificity that helps in outcompeting other trans-factors with lower RNA

binding affinity in this specific region. Contrary to the single type factor binding

model other studies have shown that also combinations of different SR proteins

can enhance splicing by recognizing and binding to similar adjacent enhancer

motifs (65). A variation of this model is shown by another example where exon 5

and 6 of the human caldesmon gene showed multiple purine rich repeats, sharing

at least 32nt, which promoted alternative splicing of an internal 5′ss within exon

5 (66). Since most of the reported ESEs show lengths between 5-19 nucleotides

(62), longer motifs may consist of several overlapping sub motifs that increase

the binding affinity of its recognizing trans-factors (67). Even the possibility of a

composite splice regulatory element has been demonstrated, consisting of differ-

ent motifs within exon 5 of an transcript of the CD44 gene. These motifs were

required in a directly adjacent location to activate a functional splice complex,

also suggesting interactions of the respective binding proteins (68).
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1.2 Methods

1.2.1 The EASED Database

All analyses in this chapter are based on the
”
Extended Alternative Spliced EST

Database“ (Eased)1, which was developed as a repository of annotated puta-

tive alternative splice forms (52). The database uses mRNA and gene sequence

material of the Ensembl database2 version 19.34a and ESTs from the dbEST

database3 (December 2003) (69) and is currently restricted to the species Homo

sapiens. The information is organized in a top-down order from genes via tran-

scripts to individual alternative splice events and their associated features. In

general the identification of alternative splice forms (asf) is based on an mRNA

- EST alignments with a stringent set of parameters (see 1.2.2). The Eased

project constitutes one of the earliest efforts to combine an algorithm for locating

alternative splice forms with annotation of a variety of secondary, but medically

relevant information such as associated diseases (for example cancer), prevalence

for a specific tissue or developmental state(52). An overview on the performed

analyses is given in Figure 1.1.

1.2.2 Locating Alternative Splice Forms

Spliced transcripts, present as ESTs or fully sequenced mRNAs, are composed

of exons after excision of introns from a transcribed precursor transcript. Hence,

an alignment of mRNAs against the genomic sequence reveals intronic regions as

gaps within the spliced (mature) mRNA (Figure 1.2). Compared to full-length

mRNAs, much ore ESTs are available, providing snapshots of the outcome of

different splicing processes. Since a direct alignment of ESTs against genomic

sequence is in many ways impractical, because of the large search space and

possibility of unspecific hits, the available Ensembl transcripts (∼31.500 as of

Ensembl version 19.34a) were used to restrict the analysis to genomic regions

of known genes. Thus, full length transcripts were aligned against all available

human ESTs from dbEST (∼5.5 Million as of December 2003), using the WU-

BLAST program4. In order to prevent unspecific hits and to reduce the compu-

1http://eased.bioinf.mdc-berlin.de
2http://www.ensembl.org
3http://www.ncbi.nlm.nih.gov/dbEST
4http://blast.wustl.edu/
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Hs

Preprocessing:
-filtering GT..AG

-sequence extraction

Genes.pm
Transcripts.pm
Asfs.pm
Store.pm
extraction of genomic 
sequence around ass and 
rss  up to window size N

Pre-Analysis:
-data classification: 

ass vs. rss
total splice site score, 

total transcript evidence

Transcript Evidence

Analyses

Splice Site Score
Enhancer Motif 

Occurrence

subclasses:
E5, E3, I5, I3

EASED

AS_Projekt1 24.03.2008

Figure 1.1: Workflow of data preparation and analyses performed with Eased dataset.
The grey box to the right indicates the Perl modules programmed for pre-processing the
Eased data. Donor and acceptor splice site context were partitioned into E3=exon 3′ end,
I3=intron 5′ end, I3=intron 3′ end and E5=exon 5′ end.

tational load, known repetitive sequences as collected in RepBase5) were masked

in all mRNA transcripts prior to the alignments. The longest available Ensembl

transcript of each gene locus provided an initial exon intron annotation, denot-

ing a set of
”
constitutive“ or reference donors and acceptors. Taking the longest

mRNA as a reference holds the chance to observe a maximal number of alignment

gaps against the available EST sequences and hence, to increase the number of

identified alternative splice junctions. Each mRNA-EST alignment was filtered

against a stringent set of quality criteria. The aligning blocks (hsps) had to show

at least 98% identity over a length of 100 nt to qualify as exons of further use

(see details in (52)). Differences between exon structures of ESTs and the exon

locations of the reference transcripts were used as indicators of alternative splice

5http://www.girinst.org/repbase
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Figure 1.2: Modeling alternative splice patterns by transcript alignments: (A) a full-
length reference transcript (T ) with known exon-intron structure serves as anchoring region
within the genome (G); (B) ESTs (E) are aligned against T to annotate alternative splicing
patterns. Two main types of alternative splice events are distinguished in the Eased
database which are SKIP and INSERT events (defined relative to the reference transcript).
SKIP events are further distinguished into the AS pattern a-d resulting in deleted exonic
sequence relative to T . INSERT events fall into categories e-h showing different pattern
of inserted exonic sequence. Each AS type creates relative to T one ore more alternative
splice sites (ass); splice sites in T and E mapping to the same position in G are considered
as reference splice sites (rss); exonic regions in the genome are labeled E1-E4; alternative
parts as indicated by the transcript alignments are shown in pink and red color if they are
missing or inserted relative to T , respectively

sites. According to the alignments, exon boundaries differing between ESTs and

the reference transcripts were treated as alternative splice sites while the remain-

ing exon boundaries being conform with the reference transcript where classified

as reference splice sites. Hence, all EST boundaries matching a reference splice

site were counted as evidence for the set of reference donor and acceptor sites.

These splice sites are often labelled
”
constitutive“. However, present lack of evi-

dence of AS near a constitutive splice site does not preclude that an alternative

splice site becomes activated in this region under specific conditions. Being aware

of this uncertainty, in the following I will refer to these splice sites as
”
reference“

instead of
”
constitutive“.
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1.2.3 Data Preparation and Refinement

For creating the initial dataset, the database was queried with a threshold of at

least 5 asf (EST) per gene to increase the chance of capturing a true alternative

splice event. Next, all genes whose supporting EST did not indicate alternative

splice events utilizing the canonical splice site dinucleotides GT..AG, were dis-

carded. After refinement the dataset consisted of 2624 genes with an average

number of 8 alternative splice sites per gene and an average support of 3 EST per

alternative splice site. In contrast, ∼26 ESTs per gene were indicative of refer-

ence splice sites. Due to the filtering steps the number of initially available ESTs

and annotated splice events decreased considerably as documented in Box 1.2.1.

Box 1.2.1 EASED figures
Filtering steps and discarded sequences from the initial

towards the final dataset; (*) number of asf satisfying pre-
diction criteria (**) number of asf strictly meeting the cri-
terion of canonical GT..AG splice sites

Processing Step Number Source

blasted ESTs 5,427,257 dbEST Database

Ensembl Genes (ENSG) 23,531 Ensembl Database

(19.34a)

Ensembl Transcripts

(ENST)

31,609

Ensembl Exons (ENSE) 225,897

EST, matching ≥ 1 ENST 3,947,548

asf predicting EST* 428,474

predicted as sites 102,104 Eased Database

ENST matching ≥ 1 asf 21,044

ENSG matching ≥ 1 asf 15,426

ENSG matching ≥ 5 asf 2624

assAcceptors** 3862

assDonors** 3705 Perl scripts

rssAcceptors** 25526

rssDonors** 25103

As a further parameter,

the genomic sequence

window around each

donor and acceptor site

was set to 50 nt up

and downstream of the

splice site (Figure 1.3).

The window size was

chosen for locating known

splice regulatory motifs

and restricted to 50 nt

after inspecting the exon

length distribution of

transcripts present in

the Eased database.

More than 70% (90%)

of the represented exons

(introns) are longer than

100 nt (1.2), allowing

to span a window of 50

nt into 5′ and 3′ direction) around each splice site which for the majority of

exons and introns does not overlap between the donor and acceptor site. These

clearly separable regions were used for the enhancer motif analysis. Finally

each splice site was stored as alternative- (ass) or reference (rss) splice site

together with a number of supporting transcripts (mRNA and/or EST). The

main relationship one gene → n complete transcripts (mRNA) → m partial
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transcripts (ESTs) → x alternative splice events is reflected in the Eased table

structure (Figure A.1, Table A.1). Supporting tables contain additional data

as for example corresponding protein information on mRNAs or tissue and

developmental information on ESTs. The analyses were restricted to Homo

sapiens as this species provides the most abundant sequence information. Data

for subsequent analyses was arranged and complemented via Perl scripts and the

Eased database tables (Table A.1)

Table 1.2: Number and lengths (L) of Eased cDNA exons and introns

Counts Exons Introns

total 219,388 189,145
L < 100 nt 64,062 15,760
L ≥ 100 nt 155,326 (71%) 173,385 (92%)
mean (L) 262 5564

GT..AG - 169,732
(97.9%)

GC..AG - 422 (0.24%)

1.2.4 Splice Site Scoring

In order to compare different splice sites, it is reasonable to apply a measure

of information. The information content can be expressed as entropy, which is

equivalent to the uncertainty to observe a specific event, for example, a specific

nucleotide within a sequence motif. The entropy is calculated via probabilities,

reflecting an increasing certainty to observe a specific event. The more probable

the event, the lower the uncertainty or entropy. Thus the entropy becomes close

to zero if there is a high certainty about the event. For example, position +1

and +2 in eukaryotic splice sites are to >98% conserved to the bases guanine

and thymine (33), lowering the uncertainty about this dinucleotide at human

donor positions to ∼0.14. According to the maximum entropy principle, of all

possible distributions in the hypothesis space, the distribution that is the best

approximation of the true distribution given what is known, is the one with the

largest Shannon entropy (Equation 1.1, (23)):

H = −
∑

p · logb(p) (1.1)

where p is the probability to observe an event. For example, the four bases

A,C,G, T that are possible at each splice site position represent k observable

events and the absolute entropy of a splice site motif of length k corresponds to
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an information content I (Equation 1.2). Consequently, splice site information

scores are expressed in units of bits.

I = −
k∑
i=1

pi · log2(pi) [Bit] (1.2)

Often one does know only little about the true nature of a given set of sequences

and has to compare the splice sites of different sets in order to capture mean-

ingful and interpretable differences. In this case it is more practical to calculate

the relative entropy, also termed transinformation or Kullback-Leibler divergence

(70), which estimates the
”
distance“ between an observed (p) to an expected (q)

frequency distribution (Equation 1.3). The background distribution was taken as

(q1, q2, q3, q4) = {A,G,C, T} = (0.3, 0.2, 0.2, 0.3), owing to a GC content of 41%

on average observed in the human genome (33).

KL =
k∑
i=1

pi · log2(
pi
qi

) (1.3)

Finally, the information content of a splice site or sequence motif is the sum of

KL over all considered sequence positions (Equation 1.4) which for the donor

site comprises n=9 nucleotides (position -3 to +6 in exon-intron orientation) and

n=23 nucleotides (position -20 to +3) for acceptor sites.

S =
n∑
j=1

KLj (1.4)

Measuring the splice site information content can be further improved by includ-

ing marginal constraints. These can be imposed through neighborhood relations

between nucleotide positions and their observed frequencies estimated from ex-

perimental data (23). This scoring scheme is implemented in the program Max-

EntScan6 and was used to calculate the splice site scores in all analyses. Alter-

native splice sites were treated as a joint dataset, that is not further separated

into up- and downstream site per acceptor and donor. The score distribution

of alternative donor and acceptor sites was compared to the respective set of

reference splice sites, using the Wilcoxon rank-sum test.

6http://genes.mit.edu/burgelab/maxent/
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1.2.5 Scanning for Splice-Enhancing Motifs

To estimate the frequency of high scoring exon splicing enhancer (ESE) motifs

within a defined context around the investigated splice sites, scoring matrices

implemented in the software EseFinder (27) were used . The matrices contain

nucleotide frequencies of short motifs that were shown to bind the SR proteins

SF2/ASF (7mer), SC35 (8mer), SRp40 (7mer) and SRp55 (6mer). Experiments

have demonstrated the applicability of ESE consensus motifs in explaining splice

events as exon skipping and mis-splicing due to point mutations within those

motifs (71). Nevertheless, due to the degenerated nature of SRp binding motifs,

the frequency of ESE motif hits was not considered alone but their occurrence in

the context of additional characteristic information (splice site score, transcript

support) evaluated. Binding motifs for these four SR proteins were scanned in a

window of 100 nucleotides, composed of a two 50 nt regions up- and downstream

of the predicted ass and rss (Figure 1.3). Especially when parts of introns are

NNN [N]GT
4

5´ss motif 3´ss motif

IntronExon Exon

E3 E5I5 I3

50 nt 50 nt 50 nt 50 nt

[N] NNN
20

AG

Figure 1.3: Sequence windows used for determining the ESE frequencies around the
scored splice sites. The four validation classes are defined as I5, I3, E5 and E3 with the
following convention: E = exon, I = intron, 3 = downstream region (3´), 5 = upstream
region(5´). Each sequence region spanned 50 nt; intron-exon borders are defined by the
donor- and acceptor splice site motifs which are also used for the splice site scoring.

spliced into the mature transcript, one can expect to find ESE motifs at both

sides (up- and downstream) of splice sites. However, the scan window was kept

with 100 nucleotides in a size that covers a distance to the splice site in which

experimental data have shown the location of ESEs (72, 73). Reducing the

window size may certainly cause the loss of regulatory motifs for the analyses

but enables to include more and especially shorter introns into the analyses (cf.

Table 1.2) while maintaining non-overlapping scan windows. There exists cases

where regulatory motifs are located more than 100 nucleotides downstream of a

donor site (74) and it is known that proximity of motifs to its target splice sites

is governed by the RNA structure (75). However, looking in the close sequence

proximity of splice sites should increase the chance to find splice enhancer motifs

regulating exactly the alternative splice site under scrutiny.
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1.2.6 Data Partitioning for Statistical Analysis

As shown in Figure 1.3, four classes (data subsets or partitions) were created from

the Eased data. These comprise the sets of donor (acceptor) splice sites of ass

and rss splice forms. Due to the up- and downstream distinction of the splice site

environment, the data subsets can also be analyzed with respect to differences

between exon and intron specific features as for example the frequency of SR

protein binding motifs.
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1.3 Results

1.3.1 Analysis of EASED Splice Forms

Up to now no perfect ab initio prediction algorithm for alternative splice events

exists and an observed sequence feature if taken isolated may not be strong enough

to validate a splice site to certainty. Based on the Eased database (52) different

attributes were compared between putative alternative and constitutive splice

forms. Genomic sequence features that are characteristic for spliced transcripts

were used to evaluate the available set of annotated alternative splice sites. A

central question was, whether multiple ESEs or enhancer repeats may contribute

to the discrimination of these ass. The combination of several classes of informa-

tion such as splice site score (Sss), frequency of (splice enhancing) SRp binding

motifs (fese), transcript support (ft), showed to be a strong ensemble for differen-

tiating between the processes of both constitutive and alternative splicing. Given

the fact that a higher transcript coverage (EST, mRNA) exists for the set of ref-

erence splice sites, their attributes are a reliable and informative source for the

comparative description of putative alternative splice forms. Additionally, anno-

tations inherent to EST records such as tissue type, disease and developmental

state have previously been shown to discriminate reference from alternative splic-

ing (13) and thus can be considered as supportive criterions for
”
multiple-feature“

analysis strategies.

1.3.2 General Characterization of Splice Site Attributes

Splice Site Score

Comparison of the main attributes splice site score, transcript support and ESE

frequency was done first for the complete distribution of both splice site types

(donors/acceptors) independent from partitioning into reference (rss) and alter-

native (ass) splice sites. The results indicate that the Sss between the whole un-

partitioned distributions of donor and acceptor site vary significantly (p < 10−3,

Wilcoxon-, t- and f -test) in their means and variances. The median of both dis-

tributions resides at Sss of ∼ 8.5 bit but donor splice sites tend to lower scores

above the median compared to acceptor sites (Table 1.3a).
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Table 1.3: Distributional characteristics of splice site score (Sss) (a) and transcript sup-
port (ft) (b) compared between donor and acceptor splice sites

(a) Splice site score

5′ss 3′ss

Minimum -44,399 -46,658
1st Quantile 6,640 6,483
Median 8,456 8,450
Mean 6,976 7,671
3rd Quantile 9,652 10,141
Maximum 11,807 15,589

(b) Transcript support

5′ss 3′ss

Minimum 1 1
1st Quantile 1 1
Median 16 16
Mean 41 37
3rd Quantile 68 63
Maximum 466 326

Transcript Support

The number of transcripts that support donor and acceptor splice sites (ft = fre-

quency of transcripts, that utilize a specific splice site) show different distributions

in particular at higher transcript numbers per splice site (Figure 1.4b). Means

and variances of the splice site type dependent ft distributions vary significantly

(p < 10−3) with a tendency to more transcripts at donor splice sites. The mode

of both donor and acceptor ft distributions reside between 1 and 20 transcripts.

The tendency of higher transcript support of donor sites means that more ESTs

(mRNAs) show a clean donor site without a downstream acceptor site (transcript

containing the first exon) than vice versa a clean acceptor without an upstream

donor site (transcripts containing the last exon) when mapped to the genomic

sequence. This is indicative of partial transcripts which more often locate in the

upstream than in the downstream region of a gene.
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Figure 1.4: Histograms of (a) donor splice site scores (Sss) and (b) acceptor splice site
scores; (c) histogram of transcript frequencies (ft) confirming the analysed acceptor sites.
Each bin shows how many splice sites are confirmed by the given number of observed
transcripts.
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Frequency of SRp Binding Motifs

In investigating the repeated occurrence of SRp binding motifs (fese), at first the

total number of detected motifs were considered. Comparison of this combined

ESE frequencies showed no significant difference (p > 0.1, t-test) between the

distributions in the exonic donor (E3)- and acceptor (E5) region but a significant

difference between the intronic donor (I5)- and acceptor (I3) region (p < 10−4).

Also the occurrence of ESE motifs between adjacent exonic (E5) and intronic

(I3) splice site flanks differed significantly at acceptor sites (p < 10−3). Looking

at the motifs of the specific SR protein ASF/SF2 one observes similar fese

distributions in the exonic part of 5´- and 3´ splice sites but though they

show significant difference in their variances (p < 10−4), their means are not

different (p > 0.1, Wilcoxon test). In contrast, the number of ASF/SF2 motifs

in the intron flanks of the splice sites vary significantly in their variances and

means (p < 10−4) and the same effect was found between adjacent exonic and

intronic splice site environments. A summary of variances and means, char-

acterizing the fese distributions of all four tested SR proteins is listed in Table 1.4.

Table 1.4: Summary of ESE motif frequency (fese) characteristics considering the whole
set of splice site while distinguishing the intronic and exonic parts of donor and acceptor
splice sites; p(µ;σ) denotes p-values in comparing means and variances between the motif
frequencies at the specified exonic/intronic region; p-values of significantly (p ≤0.0001)
different motif frequencies between the compared splice site regions are marked with (*)

SRp Splice Site Median Mean Variance E3 I3

Region p(µ;σ2) p(µ;σ2)

ASF/SF2 E3 4 3,934 5,285 – –

E5 4 3,933 5,016 < 1; < 10−4∗ < 10−4∗; < 10−4∗

I3 2 2,502 4,229 – –

I5 3 3,359 6,298 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗

SC35 E3 4 3,901 3,989 – –

E5 4 3,873 3,949 < 10−1; < 1 < 10−4∗; < 10−4∗

I3 3 2,928 3,467 – –

I5 3 3,622 4,560 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗

SRp40 E3 4 3,796 3,145 – –

E5 4 3,794 3,095 < 1; < 1 < 10−4∗; < 10−4∗

I3 3 2,823 2,522 – –

I5 3 3,452 3,183 < 10−4∗; < 1 < 10−4∗; < 10−4∗

SRp55 E3 2 2,344 2,277 – –

E5 2 2,334 2,236 < 1; < 1 < 10−4∗; < 10−4∗

I3 1 1,626 1,612 – –

I5 2 1,947 1,965 < 10−4∗; < 10−4∗ < 10−4∗; < 10−4∗
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Occurrence of SRp Binding Motifs at Low and High Scoring Splice

Sites

Additionally, and in order to validate fese independently from our definition of

ass and rss, all splice sites were separated by their Sss distributions (Figure

1.4). Furthermore, only the tails of the score distribution (< 0 and > 10) were

selected. Beside the question whether the fese distribution vary significantly

between the low and high scoring sets, this served also to measure the enrichment

of predicted asf in both score dependent data subsets (discussed in the section

of ass and rss specific analyses). The total donor/acceptor splice sites partition

in 6%/4% with Sss < 0 contrasted by 19%/25% with a score above 10 and thus

almost consensus quality. Between these two sets of extreme-scoring splice sites

significant differences in the means of their total (exonic) fese distributions were

found . In particular, at both donor- and acceptor sites the motif distribution of

the protein SC35 tends on average to at least one motif more at low scoring than

at high scoring splice sites. For two other SR proteins this effect was found only

either at donor splice sites (SRp55) or at acceptor splice sites (ASF/SF2).

1.3.3 Characterizing Specific Attributes of Alternative

and Reference Splice Sites

Splice Site Score and Transcript Support

Comparing Sss between reference and alternative donors shows a significant dif-

ference in the mean values (p < 10−4, Wilcoxon test), although the mode of

the distribution still resides at scores between 5 and 10. The same observa-

tion applies for the acceptor sites. Interestingly, the difference of the means

between donor- and acceptor score distributions is higher in ass than in rss

(underlined in Table 1.5). Considering the number of transcripts that sup-

port the splice sites, the defined rss are in generally better covered with tran-

scripts than the predicted ass (at both donor and acceptor sites). The mode

of both distributions can be found on a class level of 1-20 transcripts though

the overall number of transcripts is approximately six times higher in the re-

spective class level of the reference dataset. Between score and transcript sup-

port a strong dependency in both ass and rss (p < 10−4, χ2-test) were found

whereupon better scoring splice sites clearly show a better transcript support.
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Table 1.5: Splice site score characteristics in the ass and rss datasets. Underlined values
emphasize the significant difference between mean values of ass- and rss score distributions

Splice Site Type #Total Counts Median Mean SD Variance

all donors 28808 8.456 6.976 5.475 29.971

ass donors 3705 5.263 0.862 10.219 104.438

rss donors 25103 8.626 7.878 3.557 12.652

all acceptors 29388 8.450 7.671 4.446 19.765

ass acceptors 3862 5.997 3.356 8.035 64.562

rss acceptors 25526 8.678 8.324 3.122 9.747

Table 1.6: Analysis of variances (f -test) and means (Wilcoxon test) between ESE motif
frequencies (fese) distributions at ass and rss splice sites in different pre-mRNA contexts
(cf. Figure 1.3); µ = sample mean, m = sample median, σ2 = sample variance; p-values
significant at α ≤0.05 are marked with (*)

SRp Region ass rss ass↔ rss ass↔ rss

µ/m/σ2 µ/m/σ2 p(µ) p(σ2)

ASF/SF2 E3 4.148 / 4 / 5.862 3.903 / 4 / 5.192 < 10−4∗ < 10−4∗

E5 4.187 / 4 / 5.382 3.894 / 4 / 5.950 < 10−4∗ < 10−3∗

I3 2.910 / 3 / 4.268 2.440 / 2 / 4.194 < 10−4∗ > 10−1

I5 3.864 / 4 / 6.580 3.285 / 3 / 6.213 < 10−4∗ < 5 · 10−2∗

SC35 E3 4.026 / 4 / 4.068 3.883 / 4 / 3.975 < 10−4∗ > 10−1

E5 4.076 / 4 / 3.949 3.842 / 4 / 3.941 < 10−4∗ > 10−1

I3 3.254 / 3 / 3.434 2.878 / 3 / 3.454 < 10−4∗ > 10−1

I5 3.914 / 4 / 4.477 3.578 / 3 / 4.558 < 10−4∗ > 10−1

SRp40 E3 3.769 / 4 / 3.299 3.800 / 4 / 3.122 > 10−1 < 5 · 10−2∗

E5 3.893 / 4 / 3.191 3.779 / 4 / 3.079 < 10−3∗ > 10−1

I3 3.081 / 3 / 2.583 2.784 / 3 / 2.501 < 10−4∗ > 10−1

I5 3.629 / 3 / 3.232 3.426 / 3 / 3.170 < 10−4∗ > 10−1

SRp55 E3 2.334 / 2 / 2.253 2.346 / 2 / 2.281 > 10−1 > 10−1

E5 2.347 / 2 / 2.327 2.332 / 2 / 2.222 > 10−1 < 10−2∗

I3 1.695 / 2 / 1.719 1.616 / 1 / 1.595 < 10−3∗ < 10−2∗

I5 2.098 / 2 / 2.101 1.924 / 2 / 1.941 < 10−4∗ < 10−2∗

SRp Binding Motifs in ass and rss Splice Site Environments

Considering fese at exonic and intronic flanks of splice sites, one observes only

subtle differences between ass and rss. In case of the ASF/SF2 motif fese at the

exonic 5′ and 3′ region has its mode at a frequency of three motifs (except for the

exonic 5′ end of ass). Nevertheless, there is a significant difference in means and

variances between the number of ASF/SF2 motif at the exonic part of ass and

rss (Table 1.6). In contrast, the intronic regions of ass and rss show generally

a higher ASF/SF2 motif abundance which is unexpected since this motif – as
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exonic splicing enhancer – should occur more frequently in exonic regions. There

is no significant difference in the variances of the fese distributions between

intronic ass and rss acceptor sites but also here the means vary significantly.

Considering the size of the data set, the results clearly indicate a tendency to

more ASF/SF2 motifs in the flanking regions of predicted ass than in the set of

rss. Table 1.6 summarizes the SRp specific fese distributions found for ass and

rss, being compared also between the splice site flanking pre-mRNA regions.

The ASF/SF2 and SC35 motif frequencies show in the exonic flanks of 5′- and

3′ss a tendency to more motifs in neighborhood of the ass than at rss splice sites.

The same result was found for SRp40 motif frequencies with exception of the

exon 3′ flanks. SRp55 motifs appeared significantly more frequent downstream of

alternative 5′ss (I5) than downstream of rss. The means of the fese distribution

of SRp SC35 show a significant difference between ass and rss, although the

variances do not convey this information. Based on these tests one can conclude

that fese is different between mRNA regions around splice sites of ass and rss.

While these motif modules might be individually subtle (e.g. between two splice

sites) they appear to be significant on the whole dataset.
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1.4 Discussion

For a dataset of computationally predicted alternative splice sites (ass) it was

shown how inherent information can be utilized to validate the predictions by

applying statistics on different features typical for splice sites. These features

were compared between a set of predicted ass and splice sites arising from a set

of mRNAs not predictive of ass by current experimental knowledge (rss). The

results suggests that in spite of not predicting ass, the reference transcripts and

their splice sites share similar characteristics to the alternative ones as for exam-

ple the overlapping region in the splice site score (Sss) distributions (ranging from

+5 to -10 bit) demonstrate. However, in the low scoring region both ass and rss

separate clearly with the ass exhibiting more frequently scores below zero at both

donor and acceptor sites. Thus, a significant part of the predicted ass possess

motifs incongruent to the splice site motifs found for human GT..AG reference

splice sites. In fact, this observation could still be due to pseudo splice sites but

as the test of Sss against the transcript support (ft) indicates, there exists a clear

dependency between the number of transcripts that utilize these splice sites and

the pertinent score in both the ass and rss.

As a promising splice site feature, the binding motif frequency (fese) of splice-

enhancing SR proteins (SRp) was investigated in context of exonic and intronic

splice site flanks and compared between ass and rss. Firstly, the donor/acceptor

site specific occurrence of SRp motifs was analyzed independent from the classifi-

cation into ass and rss. For both the exonic and intronic flanks a higher variance

for fese of the SR protein ASF/SF2 was found at donor and acceptor sites but

only in comparison between the intronic splice site flanks on average 1-2 motifs

more were found at the donor site. For the other SR proteins a similar trend

towards more binding motifs at intronic donor compared to acceptor regions can

be observed. This suggests a higher presence of these motifs at the intronic flank

of donor sites, a surprising effect since the motifs were initially determined by

consensus sequences made as
”
exon“ splicing enhancer (27). Nevertheless, since

the rss make up the major fraction in these donor/acceptor - intronic /exonic

datasets, this observation needed to be further investigated to derive conclusions

on an effect that is present also in predicted ass.

Hence, in the next step the differences in fese of exonic donor and -acceptor sites

between ass and rss were analyzed. The ASF/SF2 motif was found to occur

in a significant fraction of predicted alternative splice sites (exonic flanks) more
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frequently than in the set of reference splice sites. The median of both frequency

distributions indicates as much as four ASF/SF2 motifs at both alternative and

reference splice site flanks. However, the mean and variance indicate that at both

5′ and 3′ splice sites the pattern of ESE occurrence deviates between ass and rss

with the tendency to at least one additional motif in the flanking region of al-

ternative splice sites. For example, one observes that ASF/SF2 binding motifs

occur in average more frequently in the intron flanks of ass compared to rss, with

about the same variance around the mean of four and three motifs respectively.

Diverging characteristics (similar variances around different means) in the ass

and rss specific motif frequencies of the three other types of SR proteins suggests

that both datasets exhibit little variation around significantly different pattern of

ESE distribution. It will be interesting to follow up investigations on modules of

SR protein binding motifs between predicted ass and rss to test computational

predictions on multimerizing enhancer (or silencer) protein complexes which may

bind to specific combination classes of cis-elements.



Chapter 2

Analysis of Overlapping Donor

Splice Sites

2.1 Introduction

2.1.1 Subtle Splice Variants

Compared with skipped exons as the most prevalent type of AS in human and

mammalian cells, A3Es and A5Es are thought to create more subtle changes,

by affecting the choice of the 3′ss or 5′ss, respectively. Here, splice site usage

gives rise to two types of exon segments – the ’core’ common to both splice forms

and the ’extension’ that is present in only the longer isoform. Both types of AS

events have been shown to play decisive roles during development, e.g., sex deter-

mination and differentiation in Drosophila melanogaster (76) or developmental

stage-related changes in the human CFTR gene (77), but also in human disease,

e.g. 5′ss mutations in the tau gene (78). A3Es and A5Es are thought to be

regulated by splicing-regulatory elements in exons and nearby exon flanking re-

gions, as well as trans-acting antagonistic splicing factors, which bind them and

affect the choice of splice sites in a concentration dependent manner (79, 80).

Interestingly, computational studies showed that for both A3Es and A5Es the

distribution of extensions, f(E), is markedly skewed toward short-range splice

forms (81). In particular, alternative splice sites that are separated by the three-

nucleotide long motif Nag/Nag/ (where ’/’ marks an inferred splice site) make

up a predominant proportion of A3E events in a mammals, extending to inver-

tebrates and plants (82, 2). The frequent occurrence of the NAGNAG acceptor

motif in the human genome, which can be observed at intron-exon borders of

23
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∼30% of human reference transcripts when mapped to the genome, introduced

the concept of subtle alternative splice events emerging from tandem splice sites

and raised a series of questions. How can two splicing signals in such an ex-

treme proximity be differentiated by the splicing machinery? Which function can

alternative mRNAs provide, being only different in a triplet? In contrast, the

triplet variation GYNGYN at the donor site of exons is much less frequently

found (83). The fraction of transcripts confirming this tandem donor is with

1.4% a multiple lower compared to the fraction of transcripts confirming alter-

native splicing at NAGNAG acceptors (17.6%)(84). However, there is a subtle

variation at the donor site which occurs strikingly frequent. The repertoire of

donor splice site variations is severely dominated by a four nucleotide variation

(81), which occurs more frequently than alternative splicing at the GYNGYN

or at the NAGNAG motif. The donor splice site itself forms a consensus mo-

tif, which in higher eukaryotes contains two splice signals forming the core motif

GYNNGY. As the 5′ss is the first signal that is recognized by U1 snRNP during

spliceosome assembly it is conceivable that this donor motif is under selection

pressure to maintain the crucial complementarity to U1 snRNA. However, the

question arises whether this complementarity alone can explain the shift from

splicing at the distal (upstream) to splicing at the proximal (downstream) GY

within this motif. Support from experimental studies regarding alternative splice

forms that emerge from tandem splice sites is still very sparse. Hence, similarities

and differences between overlapping, non-overlapping and constitutive splice sites

remain to be delineated and have been addressed by the work in this chapter.
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2.1.2 Proposed Mechanisms for Regulating the Donor

Splice Site

In addition to the general models of splice site selection which make a basic dis-

tinction between the pairing of splice sites across the exon (
”
exon-definition“)

or the intron (
”
intron-definition“) (85), several other models have been re-

ported. One model considers the concentration of the antagonistic splicing factors

SF2/ASF and hnRNP A1, such that higher doses of SF2/ASF enhance simulta-

neously U1 snRNP binding to two competing splice sites (leading to use of the

downstream ss) whereas higher doses of hnRNP A1 decrease U1snRNP affinity

at both donor sites (86, 87). Also normal concentrations of SF2/ASF were shown

to be sufficient in binding of U1-snRNP to both splice sites if the 5′ss are close to

consensus. In case of high hnRNP occupation U1-snRNP can still bind a splice

site (because of higher affinity) but is shifted to that 5′ss that is closer to the near-

est high-affinity enhancer binding site. This model cannot be applied directly to

splicing at overlapping donor splice sites, since sterical hindrance would prevent

any case of double occupancy. However, it is conceivable, that high affinity en-

hancer binding sites exist exclusively in proximal polarity (near to the weaker

downstream donor of two overlapping donor sites), pulling U1-snRNP to this end

of the tandem donor motif. This pull could even be increased if exon silencer

locate in distal location to the weak donor, impairing U1-snRNP binding to the

stronger splice site. Similar observations were made by Bai et al. at the 3′ss

where ASF/SF2 promoted use of a proximal 3′ss and hnRNP A1 the distal 3′ss

in a CGRP transcript in vivo (88).

Another model of 5′ss selection was suggested based on a competition assay be-

tween 5´ss subclasses of strong, intermediate and weak strengths of 5´ss and

taking into account the free binding energy of U1 snRNA as well as exon- and

intron binding splice factors (89). They demonstrated that splicing efficiencies

and 5′ss selection are dependent on whether the competing donor sites belong

to different subclasses and upon their ability to form G·ψ base pairs. However,

their analysis also implied decreased splice efficiency for 5´ss that are less than

40 nt apart due to the effect of sterical hindrance of U1 snRNP binding. Finally

a mechanism of oriented scanning has been proposed as a model for 5´ss selec-

tion (90) where within intron 7 of the human F7 gene several monomeric repeats

duplicate an authentic donor site, yet the most upstream donor remains the only

selected 5′ss. The distance between these donor sites comprised 37 nucleotides
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and thus appearing rather as non-overlapping than overlapping donor sites. The

authors showed that after mutating the wild type donor the next available and

most upstream located pseudo splice site became activated. This example states

an interesting contrast to the above mentioned models and suggest a model of re-

constituting or sustained competition between alternative donor sites, both with

high complementarity to the U1 snRNA recognition site.
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2.2 Methods

2.2.1 Data Set of Alternative Exons

Exons of human and mouse genes were extracted from the Hollywood database

(3). For two different transcripts aligned to a genomic locus, alternative 5′ss

exons (A5Es) matched at their 3′ss, but exhibited exactly one short and one long

splice form resulting from variation at the 5′ss. Alternative 3′ss exons (A3Es)

matched at their 5′ss, but exhibited exactly one short and one long splice form

resulting from variation at the 3′ss. Constitutive exons (CEs) were defined as

exons of multi-exon genes that have as of date no transcript-supported evidence

for undergoing any type of AS. In all AS events, A5Es, A3Es and CEs are internal

exons, i.e., all exons of a transcript except the first and last one, because these are

flanked only by one splice site and may contain additional regulatory sequences of

splicing initiation and termination. Each exon had to be flanked by /Gt or /Gc

type splice sites at the donor site and Ag/ type splice sites at the acceptor site.

U12-type introns were excluded from this analysis, because of their low fraction

(less than 1% of the human introns). Figure 2.1 gives an overview of the data

preparation and applied methodology of this chapter.

2.2.2 Spliced-Alignments

Manual inspection of A5Es with short extensions (E ≤ 6 nucleotides), originally

excluded in Hollywood, revealed a substantial amount of putative alignment

artifacts due to misaligned nucleotides close to exon-intron junctions (see Ap-

pendix B.1). Alignments were derived for ESTs by the Sim4 program (91),

and were corroborated in a recent performance study of spliced-alignment al-

gorithms (92). In particular, examples were found, where Sim4 introduced

shifts of EST nucleotides between genomic donor and acceptor sites at ge-

nomic loci that encode short varying alternative exon (cf. Figure 2.2). To

decrease the number of spurious alignments in the dataset of A5Es and A3Es,

the original ESTs were used and created new transcript-to-genomic alignments,

by utilizing two different algorithms: i) Blat (93), as stored in the UCSC

database (http://genome.ucsc.edu); and ii) Exalin (92), with the parameter

set (m,n, q, r, x) = (25, 25,−25,−25, and − 25). Manual inspection of control

samples in the alignment results confirmed a clearly improved quality in the

correct exon-intron boundary recognition. In all, about 35% of all initial A5E
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Figure 2.1: Overview of methodology applied for analysis of subtle donor splice sites

predictions ( 9%) of A5E∆4 splicing exons could be confirmed with very similar

numbers by both Blat and Exalin alignments (Table 2.1), showing at least one

qualitative aligning transcript. Increasing the stringency to require at least two

transcripts confirming each donor variant, reduced the number of Exalin refined

A5E further to 27% (504/1,868) with a fraction of 7.7% (39/504) of A5E∆4 splic-

ing exons. Subsequent analyses were performed using the subset confirmed by all

three alignment methods, with at least one transcript for the minor variant, to

keep the dataset in a reasonable size.

2.2.3 Classification of Major and Minor Tandem Donors

The number of transcripts that aligned either to the distal N(d) or proximal N(p)

donor was used to classify A5Es. To this end, i) the ratio R (0 < R < 1) of the

lower over the higher transcript coverage was calculated as



Methods 29

R =
N(d)

N(p)
if N(d) < N(p) (2.1)

or

R =
N(p)

N(d)
if N(p) < N(d) (2.2)

where cases of R = 1 if N(d) = N(p) were discarded, because accounting for only

2.3% ii) each donor was defined as
”
major“ if it was oberved to be spliced in at

least twice as much transcripts as the adjacent alternative splice site, which then

became the
”
minor“ splice site per definition. Hence, in equation 2.1 all donors

reaching a treshold of RT ≤ 0.5, defined the proximal donor as major splice site,

while the same treshold in equation 2.2 defined the distal donor as major splice

site. Further, in this analysis a minimal coverage of at least one transcript was

required.

2.2.4 Statistical Analysis of Splice Sites

The deviation of splice sites from the consensus is quantified by a maximum-

entropy scoring model, implemented in MaxEntScan and publicly available

(94) (see also chapter 1.2.4). The 5′ss model incorporates the last three (first

six) nucleotides of the exon (intron), and the 3′ss model incorporates the last

20 (first three) nucleotides of the intron (exon). Sequence logos and pictograms

were computed and displayed using the Weblogo tool with finite-sample size

correction (95).

P -values of splice site frequencies where calculated as follows: 1) frequencies of

occurrences at the considered at P∆4 and PΨ4 splicing exons, as well as D∆4

and DΨ4 splicing exons, where compared by a 4x2 contingency table and χ2-test;

2) statistically significant positions were selected at P < 0.05; 3) at the same

position, the nucleotide (maximally two nucleotides) with the largest difference

of the frequency of occurrence between two types (e.g., P∆4 and PΨ4) was sub-

sequently tested against the remaining nucleotides by 2x2 contingency table and

χ2-test, where P < 0.05 was considered as statistically significant.

The information along a sequence was calculated as the relative entropy, as de-

scribed in Equation 1.3 (Chapter 1.2.4).
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2.2.5 Identification of Non-Sense Codons

For each A5E∆4 splicing exon, the longest cDNA that mapped to the correspond-

ing gene with annotated CDS start and end position was taken as a reference se-

quence. In most cases such a reference was only available for either the proximal

or distal alternative splice form. Identification of mRNAs with the potential to

trigger NMD was performed, by comparing the reading-frame after splicing at

each tandem donor. Tandem events led to a new reading-fame, the first down-

stream non-sense codon of which was detected and analyzed for PTCs occurring

more than 50 nucleotides upstream of the last exon-exon junction to elicit NMD

(10, 96).

2.2.6 Detection of Sequence Conservation

The core of A5E∆4 splicing exons was matched against mouse genomic DNA (ver-

sion mm03), using Blast with parameter values -a2 -gT -W10 -q-2 -r3 -e0.001.

Significant matches of similarity were filtered for canonical splice sites and the

exon flanking regions of 200 nucleotides were extracted from the genomic se-

quence. Subsequently, orthologous human and mouse intron regions were aligned

using the Dna Block Aligner (97), with -nomatchn -gap 0.02 -blockopen 0.2

-umatch 0.05 -pff, which detects block of conserved sequences located at possible

different positions relative to splice junction. The sequence position of detected

blocks of conservation was parsed and recorded with the script Dba-Parser

(Holste, unpublished data) and plotted in a region of 100 nucleotides, with a

moving-average of ten nucleotides. Exon conservation was determined by the

score (Sort) from Clustalw alignments, self-alignment of the larger exons to

yield the score Sid, and calculation of the normalized score Stot = Sort/Sid.

2.2.7 Experimental Assay

Experimental confirmation of tandem splice forms was performed at the Fritz-

Lipmann-Institute (FLI) Jena by Stefanie Schindler and Karol Szafranski, ac-

cording to the following protocol (4):

i. RT-PCR amplification: For validation of splice variants, nested PCR was

performed using 100 ng cDNA templates from the Human Multiple Tissue

cDNA Panels I and II (BD Biosciences). Splice variants were enriched for

EST originating from different cDNA libraries and, for a given gene, suitable
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tissues were chosen according to the origin of ESTs for the minor splice

variant or the expression profile found in the Stanford Source data base

(98). Primers were obtained from Metabion. Nested RT-PCR reactions

were set up with ReadyToGo PCR beads (Amersham) and 10 pmol primer

in 25 µl total volume, according to the manufacturer’s instructions. The

thermocycle protocol was 1 min 30 sec initial denaturation at 93◦C, followed

by 25 cycles of 40 sec denaturation at 93◦C, 40 sec annealing at 55◦C, 1

min extension at 72◦C, and a final 4 min extension step at 72◦C. In the

second round of nested PCR, 2 µl first-round product was amplified for 30

cycles. Ethanol-precipitated PCR products were directly sequenced using

target-specific forward and reverse primers;

ii. Sanger sequencing: Reactions were set up with 200 ng template DNA, 10

pmol primer, and BigDye v3.1 (Applied Biosystems) in 10 µl final volume,

according to the supplier’s instructions. The thermocycle protocol was 5

min initial denaturation at 95◦C, followed by 29 cycles of 30 s denaturation

at 95◦C, 10 s annealing at 55◦C, 4 min extension at 60◦C. After ethanol

precipitation, automated sequence separation and detection was done on

an ABI 3730XL sequencer. Electropherograms were processed by Phred

(99). After automated assembly (Staden package, (100)), sequence varia-

tions were verified by manual inspection using GAP4 (Staden package).

2.2.8 Presence of Predicted Splicing-Regulatory Elements

Searching for splicing regulatory elements in exon flanking regions was performed

by using the following data sets: 176 predicted exonic splicing silencers identified

in Wang et al. (101), 753 predicted intronic enhancers and/or silcencers identified

in Yeo et al. (102), and 1,013 putative exonic splicing silencers identified in Zhang

et al. (103). All elements were searched for in a region of 100 nucleotides flanking

proximal tandem donors, and exact matches were counted in non-overlapping

sequence windows of 20 nucleotides.

2.2.9 Gene Ontology (GO) Annotations

GO-terms for genes with A5E∆4 splicing exons (358 GO terms), A5Es (1,414),

and CEs (3,655) were obtained from the Ensembl database (www.emsembl.org),

corresponding to 129 and 1,283 genes with A5E∆4 splicing exons or A5Es, respec-
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tively, and 8,664 genes of a control set. GO annotations for A5E∆4 splicing exons

of 129 of 166 genes (representing the total set of 171 A5E∆4 splicing exons) were

mapped, and the most frequent category annotations
”
molecular function“ and

”
biological process“ were selected; in decreasing order:

”
ATP binding“,

”
Zinc ion

binding“,
”
Regulation of transcription, DNA-dependent“ ,

”
Transferase activity“,

”
Signal transduction“,

”
Hydrolase activity“,

”
RNA binding“,

”
Protein binding“,

”
Transcription factor activity“ and

”
DNA binding“. In order to compare the GO

annotations of A5E∆4 genes against a control, 10,000 genes with at least one

pseudo splice site, dΨ4 or pΨ4 splicing exons (each comprising 129 genes) were

sampled and the frequency of occurrence of a certain GO term was computed.

The statistical significance (P -value) was calculated analogous to (102), by as-

sessing the frequency of occurrence that a certain GO-term was present in the

control more frequently than in the A5E∆4 gene set, divided by 10,000. The

outcome showed the following categories as significant at the 0.05 percent level:

”
Signal transduction“ (P∆4/d∆4 vs 5´ss/dΨ4, 0.07; D∆4/p∆4 vs 5´ss/pΨ4,

0.15),
”
RNA binding“ (0.0004; 0.003),

”
GTP binding“ (0.02; 0.04),

”
Electron

transport“ (0.02; 0.03),
”
Protein biosynthesis“ (0.01; 0.03),

”
Signal transducer

activity“ (0.04; 0.08). To correct for multiple testing, a (conservative) Bonferroni

correction (104) were applied, the P -value chosen was divided by the number

of performed tests, and GO-terms occurring with Pc < 0.05/10 = 0.005 were

considered as significant.
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2.3 Results

2.3.1 Biased Extensions of Alternative 5′ss and 3′ss Exons

Exon-skipping is the most prevalent AS type produced by the human spliceo-

some, as well as by all other mammals investigated to date, when averaged

across different organ systems and cell types that can exhibit tissue-enriched

splice forms (13, 105). Internal alternative exons that involve exclusively either

the 3′ss (A3Es) or the 5′ss (A5Es) are also abundantly produced, while the

simultaneous alteration of 3′ss and 5′ss (producing exons that overlap but match

neither splice site) are markedly less frequent. For A5Es the most distal splice

site defines the exon core, while proximal sites (if more than one alternative

choice is possible) are exon extensions only included in selected mRNAs.

Out of a collection of ∼ 37, 400 transcript-inferred human alternative exons

maintained in the Hollywood database (3), AS events of about 10,300 A5Es

and 9,200 A3Es were filtered for short/long exon splice variants of solely one

proximal/one distal 5′ss, while being constitutively spliced at the opposite site,

and resulted to 5,275 A5Es and 4,497 A3Es. Stringent alignment criteria were

imposed on all transcripts: 1) ESTs were required to overlap at least one the

co-aligned cDNAs; 2) the first and last aligned segments of ESTs were required

to be at least 30 nucleotides in length with 90% sequence identity; 3) the entire

EST sequence alignment was required to extend over at least 90% of the length of

the EST with at least 90% sequence identity; and 4) realignments of ESTs with

two other algorithms were required to agree in three out of all three independent

alignments (see below, as well as Methods). The resulting dataset of identical

computational inferences of three methods contained 1,868 (∼ 18%) A5Es and

3,301 (∼ 36%) A3Es.

Alternative exons were subdivided into their core and extension parts, where the

latter is the sequence between the distal and proximal splice sites. The extension

(E) included lengths up to about 250 nucleotides, with quickly decreasing

transcript coverage/utilization as E increases. Larger extensions existed, albeit

with barely more than a few transcripts. For the sake of simplicity, the boundary

between A5E (A3E) overlapping and non-overlapping splices was defined at

E > 6 (E > 18) nucleotides and the distribution f(E) for E = 1, 2, ..., 18

nucleotides was displayed in a window across the boundary region. Noticeably,

the obtained distribution f(E) for both A5Es and A3Es was highly biased for

extensions with overlapping splice sites. Figure 2.2 shows (in the upper-left
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panel) that for extensions at the 5′ss the bias is caused predominantly by a peak

at E = 4 nucleotides. It further shows for A5Es that short extensions exhibit

a small but persistent pattern periodically occurring at E = 6, 9, 12, 15, and 18

nucleotides, all multiples of three, and thus, preserving the reading-frame. These

patterns of AS for short extensions were in accord, both qualitatively and in

good approximation quantitatively, in an independent, comparative analysis for

the mouse Mus musculus (Figure 2.2, lower-left panel). Overall, the median

sizes of inferred alternative exons showed that SEs and A5Es tend to be shorter

than CEs and A3Es, while overlapping and skewed to larger sizes (Figure 2.3).

Somewhat unexpectedly, Figure 2.2 was also indicative that different splice-

alignment algorithms gave rise to strikingly different outcomes, particularly when

faced with alignments involving short extensions. The fraction of short extensions

(E ≤ 6) ranges between 17-38% among several standard algorithms, with. Sim4

predicting most liberally almost 40% of A5Es as such donor variations. This

alignment algorithm also suggests a strong tendency toward E = 4 nucleotides

(27% cf. Table 2.1). A conservative approach was taken to substantiate the

identified A5E events, by realigning all corresponding transcripts to the same

genomic sequence with two other algorithms, Exalin and Blat (the latter lacks

an explicit splice site model). The results showed that for E = 4 the proportion

of A5E events derived from Sim4 (∼28%) was markedly higher than alignments

derived from Exalin or Blat - yet the bias for extensions was consistently

shown at E = 4 nucleotides, though with a lower proportion of ∼9% (Table

2.1). Manual inspection of selected Sim4 alignments showed apparent sequence

inconsistencies, when compared to the secondary alignments (see Figure B.1). In

all, 1,868 of 5,275 A5Es were taken for further analysis, where ∼9% (171/1,868)

accounted for E = 4 nucleotides extensions.
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Figure 2.2: Occurrence of extensions (E = 1, 2, ..., 18 nucleotides) for A5Es (A,C) and
A3Es (B,D), with human and mouse exons in the top and bottom panels, respectively.
Extensions were inferred from three different alignment algorithms (colored as blue, Sim4;
red, Blat; and green, Exalin) of cDNAs/ESTs to genomic DNA. The distribution f(E)
for A5Es was markedly biased for extensions (E) with overlapping splice sites, with a
peak at E = 4 nucleotides. Exon extensions exhibited relatively smaller but persistent
periodic peaks at E = 6, 9, 12, 15, and 18 nucleotides. f(E) for A3Es also displayed a
bias for overlapping splice sites, with a peak at E = 3 nucleotides and smaller peaks
at 4-6 nucleotides. The program Sim4 predicted significantly more extensions at E =
4 nucleotides as compared to Blat and Exalin predictions of the same initial set of
cDNAs/ESTs, which was indicative of spurious alignments. A comparative analysis of
alternative exons in M. musculus corroborated the above patterns.
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Figure 2.3: Length distribution of human exons. (A) box-plots of constitutive and
alternative exon lengths (median and interquartile range, ”whiskers“ denote the 1.5-fold
interquartile range). Major-proximal (P∆4) and major-distal (D∆4) splicing exons, con-
stitutive 5′ss with distal pseudo (dΨ4) and proximal pseudo (pΨ4) splicing exons, and
skipped exons (SEs). (B) quantile-quantile-plots of exon lengths (x-axes, quantiles of
normal distribution; y-axes, empirical data).

Table 2.1: Characterization of alternative donor splice events, involving exactly two
different exon isoforms. Column one describs the initial dataset from the Hollywood
database (aligned with Sim4, column two and three the same dataset after refinement
by i) realigning the transcript isoform with a more recent spliced alignment algorithm
(Exalin) and ii) by computing the overlap of exon isoforms with those stored in the
UCSC repository (computed as Blat alignments), respectively. tx = transcript; E =
extension = nucleotide difference between two A5E isoforms.

HOLLYWOOD UCSC FSU

(Sim4) (Blat) (Exalin)

min. 1 tx > 1 tx min. 1 tx > 1 tx min. 1 tx > 1 tx

total 5,275 1,284 1,926 NA 1,868 504

E ≤ 6 2,011 (38.1%) 555 (43.2%) 333 (17.3%) NA 324 (17.3%) 92 (18.2%)

E = 4 1,493 (28.3%) 406 (31.6%) 179 ( 9.3%) NA 171 ( 9.2%) 39 ( 7.7%)

E = 3 76 ( 1.4%) 18 ( 1.4%) 40 ( 2.1%) NA 40 ( 2.1%) 14 ( 2.7%)

In order to compare these findings with A3E events, the distribution of short

extensions was obtained and a similar, albeit distinctively different patterns iden-

tified (Figure 2.2, upper-right panel). Figure 2.2 shows that f(E) exhibits clear

peak at E = 3 nucleotides, with successively smaller peaks at E = 4, 5, and 6

nucleotides. Again, these AS patterns were corroborated in a comparative anal-

ysis for M. musculus (Figure 2.2, lower-right panel). The extension preference

of alternative 5′ss and 3′ss exons is in accord with previous studies, where in

particular E = 3 nucleotides for A3Es had been examined and found to obey the

splicing pattern at the Nag/Nag/ motif.
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2.3.2 Tandem Donors and Acceptors

Patterns of A5Es and A3E extensions with overlapping splice sites are inter-

esting in their own context, because they are 1) possibly differently regulated

than non-overlapping alternative donor or acceptor splice site exons (89, 106);

and 2) predictive of different downstream effects of AS, resulting in differentially

preferred modes of alternative splicing at the 5′ss (predominantly out-of-frame

splicing) and the 3′ss (predominantly in-frame splicing). For overlapping 5′ss and

3′ss are mainly represented by extensions of four and three nucleotides, respec-

tively, hereafter they are denoted by
”
A5E∆4“ tandem donors with E = 4 and

similarly by
”
A3E∆3“ tandem acceptors with E = 3 nucleotides. This study

focuses on tandem donors with respect to sequence features that are known to

be involved in the recognition of 5′ss, and compares them to 3′ss of alternative

exons as well as constitutive exons including potential pseudo splice sites.

Generally, the basic recognition and binding to 5′ss incorporates intronic (involv-

ing positions from 1 to 6) and exonic nucleotides (positions from -3 to -1). The

consensus motif for 5′ss of mammalian genes is known as CAG/GTRAGT (at

positions P−3P−2P−1/P1P2P3P4P5P6) with R standing for purine bases. This

nine nucleotide-long motif is highly degenerated and, in fact, in the present

data set of human exons only proportions of ∼0.9% (966/113,386) and ∼1.3%

(1,431/113,386) of inferred constitutive exons exhibited exact matches to the mo-

tifs CAG/GTAAGT or CAG/GTGAGT, respectively. Figure 2.4 illustrates splice

sites and utilization of tandem donors for three selected human genes:

A. The gene RAD9A (Ensembl gene-identifier ENSG00000172613) is a ho-

molog conserved from yeast (S.pombe) to human, which encodes a cell cycle-

check point control protein that is required for cell-cycle arrest and DNA

damage repair. The primary transcript sequence of RAD9A exhibited two

alternative, overlapping 5′ss at exon E8, identified as CAG/GCAG/GT

at the distal 5′ss and CAG/GTAGTT at the proximal 5′ss that extends E8

(non-consensus nucleotides are underlined; exon extension bolded). The dis-

tal and proximal 5′ss gave rise to three and 17 mRNAs, respectively, which

aligned to the primary transcript structure of RAD9A. In addition to the

tandem donor pattern, Figure 2.4 shows the splice site strength, quanti-

fied by the MaxEntScan score (see Methods 2.2.4), and the conservation

profile across exons and intron, quantified by the Phastcon score (107)

computed across several genomes (from P. troglodytes to T. rubripes). Lo-
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Figure 2.4: Illustrative examples of inferred tandem donors. White boxes denote exon
and lines intron nucleotides; exon numbers (E#) corresponded to 5′-to-3′ enumerated Ref-
Seq annotations, the splice site score as measured by MaxEntScan, and the transcript
coverage of the proximal and distal donor site corresponded to the number of aligned se-
quences. In (a), E8 of the RAD9A gene shows a tandem donor with extension /GCAG/;
in (b) E9 of the ACAD9 gene shows a tandem donor with extension /GTAG/; in (c), E15
of the SFRS16 gene shows a tandem donor with extension /GTCA/. Tandem donors in
(a) and (c) were preferentially included in transcripts. The conservation plot (Phastcon
scores, not in scale with the stated exon and intron nucleotides) covers A5E∆4 splicing
exons, as well as adjacent introns and downstream exons, and shows alternating patterns
of high/low levels across all three examples.
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cal regions of high levels of sequence conservation for exons compared with

the intron are apparent.

B. A tandem donor was detected for E9 (TTG/GTAG/GT and

TAG/GTAAGT) of the ACAD9 gene (ENSG00000177646), which encodes

a member of the acyl-CoA dehydrogenase gene family and plays a role in

lipid catabolism. The distal and proximal 5′ss gave rise to 13 and eight

mRNAs, respectively. Figure 2.4 shows for E9 consistently elevated levels

of sequence conservation.

C. The arginine/serine-rich splicing factor 16 (ENSG00000104859) showed a

tandem donor at E15 (AAA/GTCA/GT and TCA/GTAAGA). Distal

and proximal 5′ss choice gave rise to nine and six mRNAs of SFRS16,

respectively. Figure 2.4 shows that the level of sequence conservation of E15

steadily rises toward the 3′-terminus and extends well across the exon-intron

junction to I16, before it rapidly decays, which is indicative of conservation

with splicing-regulatory function (102).

2.3.3 Experimental Validation of Tandem Donors

Having obtained sufficient evidence from stringent transcript alignments, validat-

ing the functional utilization of tandem splice sites from independent lines of evi-

dence was pursued. To this end, first publicly available literature12 was searched

for AS events involving short 5′ss extensions. Yet only a very limited number

of reported cases of splice variants with short extensions that could be traced

back to tandem donors was found. The human Clasp gene (known synonyms are

SFRS16, SWAP2 ), for instance, encodes the Clk4-associating arginine/serine-rich

(SR)-related protein that binds to the family of CDC2-like kinases (108, 109).

The 5′ss of E15 of the Clasp/SFSR16 is an alternative tandem donor, which

gives rise to the splice forms ClaspS (with the extension GTCA) and ClaspL

(without). Both isoforms differ by 246 nucleotides, where ClaspS carries a PTC

due to out-of-frame splicing and thereby omits a third RS-domain encoded by

Clasp/SFSR16. Both isoforms were tissue-enriched in the mice brain and testis,

and displayed different intra-nuclear locations, possibly controlled by the third

RS-domain (108). Another AS event involving tandem splice sites has been de-

tected in the human growth hormone (GH) gene cluster, whose expression is

1http://www.pubmed.org
2http://apps.isiknowledge.com/
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developmentally controlled. The gene GH-V differentially expressed three iso-

forms in the placenta and testis, one of which is due to a tandem donor splice site

(/GTGG/GT) of exon E4; the tandem site was not sequence-conserved in the

remaining four family members (GGGG/GT). The use of the distal out-of-frame

splice site caused a reading-frame shift of E5 downstream, which, in turn, over-

read the original termination codon and utilized a new (
”
delayed“) termination

codon further downstream. Overall, the original splice variant and GH-V/∆4

shared 124/219 and differed by 95/219 amino acids.

Clearly, the detection of alternative tandem splice site exons is hampered due to

the high similarity of isoforms and often only detectable by direct sequencing and

protein sequence analysis. Consequently, an experimental assay was performed

by cooperation partner at the FLI Jena to explore directly the splicing patterns

of computationally identified alternative tandem donors. Table 2.2 list the names

of a set of 14 genes with tandem acceptors ( 8% of total), which were manu-

ally selected from known genes exhibiting a varying degree of transcript coverage

(ranging from one to 35 transcripts for tandem splice site usage) and tested in a

battery of human organ systems and cell types by RT-PCR primers targeted to

the flanking exons; panels of ten normal tissue samples (from the testis, brain,

colon, heart, kidney, small intestine, spleen, thymus, ovary, and leukocytes) were

assayed. The products of these 45 RT-PCRs were used to verify the identity of

these PCR products by sequencing (see Figure 2.4, as well as Methods 2.2.7). For

instance, Figure 2.5 shows for E15 of SFRS16 schematically the gene structure,

proximal and distal sites of the tandem donor, and the sequence electropherogram

interrogated in samples derived from the human spleen and blood. Upstream of

the E15 tandem donor, both transcript sequences identically overlap and thus,

cannot be distinguished in the electropherogram; downstream, two nucleotide

signals appear above the base line, indicating the presence of two isoforms.
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Table 2.2: Summary of the experimental assay for validating computationally inferred
human tandem donors. A5E∆4 splicing exons were selected according to both transcript
coverage, concordance of tissues inferred from cDNA-libraries of A5E∆4 genes, and com-
mercially available samples. RT-PCR primers were targeted to flanking exons, assayed,
and sequenced. In the last column, ”+“ indicates that the tested A5E∆4 splicing exon was
detected to be present in both splice variants of the corresponding samples, separately for
each tested tissue (a bolded ”+“ indicates the major form). In all, 7/14 A5E∆4 splicing
exons were verified in panels of nine normal tissues. In the fourth column (PTC), ”+“
indicates the presence of a premature termination codon.

Ensembl

gene

Gene name Region PTC Transcript

coverage

Analyzed

tissues

Confirmed

donors

(ENSG00000#) (distal/ prox-

imal)

(distal/ prox-

imal)

172613 RAD9A; RAD9 ho-

molog

CDS + 3/17 Kidney;

Leukocytes

(+/:);

(+/:)

175605 ZNF32, zinc finger pro-

tein 32

CDS + 14/2 Heart;

Leukocytes

(:/+);

(:/+)

104859 SFRS16, arginine/

serine-rich splicing

factor 16

CDS + 9/7 Leukocytes;

Spleen

(+/:);

(+/:)

161574 CCL15, small in-

ducible cytokine A15

precursor

CDS + 35/6 Colon (:/+)

177646 ACAD-9, Acyl-CoA

Dehydrogenase Fam-

ily, mitochondrial

Precursor

CDS + 13/8 Brain;

Heart

(:/+); (+/-)

148459 PDSS1, Trans-

Prenyltransferase

CDS + 6/2 Small intes-

tine

(+/+);

(:/+)

180198 RCC1, regulator of

chromosome condensa-

tion

5´UTR + 4/2 Small intes-

tine; Testis

(:/+); (-/+)

170581 STAT2, signal trans-

ducer and activator of

transcription 2

CDS + 8/1 Brain; Thy-

mus

(+/-); (+/-)

102878 HSF4, heat shock tran-

scription factor 4

CDS + 6/1 Colona,

Braina

(-/+); (-/+)

090061 CCNK, cyclin K CDS + 17/1 Leukocytes (+/-)

137502 RAB30, Ras-related

Protein RAB-30

CDS + 1/7 Leukocytes (-/+)

134987 WDR36, WD-Repeat

Prtoeine 36

CDS + 1/4 Leukocytes (-/+)

157911 PEX10, peroxisome as-

sembly protein 10

CDS + 3/18 Brain (-/+)

049656 CLPTM1L, cisplatin

resistance related

protein CRR9p

CDS + 2/32 Ovary;

Small Intes-

tine

(-/+); (-/+)

Table 2.2 lists the outcome for all 14 genes. In all, 50% (7 of 14 total) of selected

A5E∆4 splicing exons showed PCR-products displaying E = 4 nucleotides for

the sets of interrogated alternative exons, and the experimentally observed splice
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Figure 2.5: Experimental validation of a tandem donor activated in E15 of the SFRS16
gene using RT-PCR and direct sequencing. The top shows the gene structure of SFRS16 ;
in the middle and bottom, E14-16 are schematically extracted and the 3′-end core and full
extension sequence of E15 for proximal (TCA/gtaaga) and distal (AAA/gtcagt) splicing
are shown. Prior to reaching the 5′ss of E15, both mRNA isoforms cannot be distinguished
and consequently the electropherogram displays, for each position, one nucleotide signal
peak above the base line. After the tandem donor site, two nucleotide signals above the
base line become visible, indicating the presence of two isoforms.

ratio between minor and major form was in agreement with the ratio suggested

by EST data. Six of seven A5E∆4 splicing exons could be mapped to protein

coding gene sequences and all six CDS affecting alternative exons create a PTC.

For human tissues samples were tried to match EST-associated cDNA libraries,

using a larger battery of different organ systems and cell types might validate ad-

ditional A5E∆4 splicing exons and, therefore, this approach is rather delivering

a lower boundary of the presence of AS events involving tandem donors.

2.3.4 Two Distinct Levels of A5E Proximal and Distal

Splicing

Studies of the inclusion and exclusion of skipped exons of the human and mouse

genomes have shown that SEs can be broadly subdivided into two types: SEs

that are included in the majority of transcripts (termed
”
major-form“), and

those that are predominantly excluded (
”
minor-form“). Interestingly, such

SEs posses different splicing and phylogenetic properties (110). Here, it was

examined whether this property is more generally related to alternative exons,

by analyzing the transcript coverage of 1,816 A5Es with one proximal/one

distal 5′ss. Figure 2.6 A shows a scatter plot of the distal against proximal 5′ss
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transcript coverage for both tandem and non-overlapping donors; the individual

transcript coverage of the distal (proximal) splice site is placed above (on the

right-hand side). The scatter plot shows that the number of aligned transcripts

ranges from a single transcripts up to more than one hundred, with the average

centering on ∼13, and is biased toward lower coverage (median value of 2). The

ratio of alternative 5′ss usage was defined as R and computed for human, as

well as mouse, A5Es. The inset of Figure 2.6 A shows that the histogram of

the log(R) displays a bimodal distribution, which is indicative of the presence

of two types (or subpopulations) of alternative 5′ss exons - one, which is

characterized by the utilization of the proximal over the distal 5′ss (type-I),

and another by the utilization of the distal over the proximal 5′ss (type-II).

This is reminiscent of the
”
major/minor form“ definition of SEs, albeit here it

applies to both A5E proximal and distal splice sites. A threshold of Rc = 2

was used to group all A5Es into type I and II, or a remaining type, based on

the behavior of R (indicated by lines in the scatter plot of Figure 2.6 A, see

also Methods). Having two subpopulations of tandem donors, the major site

within a tandem is denoted as
”
P∆4“ (proximal) or

”
D∆4“ (distal), whereas

the notation
”
p∆4“ (proximal) or

”
d∆4“ (distal) adresses the minor donor.

Similarly, for non-overlapping alternative 5′ss, the major donor is denoted as

”
P∆“ or

”
D∆“ and the minor donor as

”
p∆“ or

”
d∆“, respectively (cf. Table 2.3).

Figure 2.6 B shows the scatter plot of the distal against proximal 3′ss transcript

coverage. Here, the points are comparatively larger scattered than in Figure 2.6

A and display an
”
arrow head“ like structure. Using the same threshold as above,

no clear distinction between splice sites for A3Es is found. Rather, the data are

consistent with a single population of A3Es, and the inset shows the histogram

of R as an approximately unimodal shape with values of R in a similar range as

observed for A5Es.

In all, tandem and non-overlapping A5Es comprise a set of 1,641 out of 1,868

(∼88%) exons, remaining ∼12% that either exceeded the threshold or were cov-

ered by a single transcript. The density of P∆ and D∆ splicing exons was ∼59%

(type-I) and ∼41% (type-II), which was in some contrast to P∆4 and D∆4 of

type-I with ∼26% (44/171) and type-II with ∼69% (118/171) exons, respectively

(P < 0.0001; Fisher’s exact test). Scatter plots, populations, and histograms

were corroborated in a comparative analysis of the transcript coverage for A5Es

in M. musculus (data not shown).
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Figure 2.6: Scatter plot of the transcript coverage of non-overlapping and ∆4 tandem
donors (A) and acceptors (B). Vertical and horizontal axes refer to the coverage of distal
and proximal splice sites; solid and dotted lines mark the transcript means; A5E∆4 and
A3E∆3 splicing exons are bolded, green and blue mark the ∆P and ∆D (major) splicing
exons, respectively. The inset shows the histogram of the log-ratio (R) of the coverage
of the distal over the proximal 5′ss (3′ss); curves marked in black show the smoothed
distribution (splines, R package). In (A) the coverage scatters mainly along the vertical
or horizontal axis, which is indicative of preferentially including or excluding the exon
extension from the core sequence. The coverage pattern was used to partition all A5Es
into two main types, I and II, and a remaining type. The inset shows for the histogram of
R a bimodal shape, which is indicative of two subpopulations of A5Es with predominant
proximal or distal splice site usage. In (B) the overlap between distal and proximal tandem
acceptor coverage is comparatively broader, and consequently the histogram of R exhibits
a unimodal shape consistent with a single population of A3Es.
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Table 2.3: Summary of selected features analyzed for A5Es with non-overlapping donors
(a) and A5E∆4 splicing exons with tandem donors (b), separated into major (P∆4, D∆4)
and minor (d∆4, p∆4) splice forms. Transcript coverage denotes the number of transcripts
(full length cDNAs or ESTs) that support either the minor or the major form donor.

(a)

Features of A5Es P∆ d∆ D∆ p∆
(major-form) (minor-form) (major-form) (minor-form)

Number of occurrences 872 598
in-frame 410 (47%) 257 (43%)
out-of-frame 462 (53%) 341 (57%)

Mean core length (nucleotides) 107 126
Mean extension length (nucleotides) 82 119

Trancript coverage (mRNA/EST) 3,603 / 19,709 324 / 924 2,186 / 13,126 330 / 556
Average Maxent score 7.5 -0.5 6.8 4.6

(b)

Features of A5E∆4 exoms P∆4 d∆4 D∆4 p∆4
(major-form) (minor-form) (major-form) (minor-form)

Number of occurrences 44 118
Mean core length (nucleotides) 122 119
Mean extension length (nucleotides) 4 4

Trancript coverage (mRNA/EST) 159 / 619 20 / 46 531 / 7,000 15 / 144
Average Maxent score 7.5 2.8 7.9 -3.9

2.3.5 Splice Sites of A5Es Score Differently between Type

I and II

The relationship between different types of transcript coverage and sequence-

complementarity of base pairing to U1 snRNA was analysed by computing the

5′ss score distribution. To this end, a maximum-entropy or Markov-random field,

based model was applied, which has been shown to capture additional statistical

significant dependencies of splicing signals than standard position-weight matrix

representations (111, 94), to score the 5′ss of all A5Es (see also Methods 2.2.4).

Figure 2.7A shows for all P∆ and P∆4 splicing exons of type-I the score distri-

bution, f(S), of the distal against proximal 5′ss. The score is large (S > 0) when

the splice site is ‘close’ to the consensus sequence, and small (S < 0) when the

splice site shows marked deviations from the consensus. For type-I, the scores

of most P∆ and P∆4 splicing exons were positive, ranged up to S = 12 (unit

of bits), and clustered narrowly around a mean value of SP∆ ≈ SP∆4 where

SP∆4 = 7.5 bits (marked by horizontal lines in Figure 2.7A). In contrast, scores

of the corresponding d∆ and d∆4 (the minor-forms) fluctuated more broadly, and

mean values were between ∆S = 4.5 and 8 bits weaker than the corresponding
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major-form splice site. Interestingly, this trend was reversed for exons of type-II

(D∆, D∆4), where the score clustered for SD∆ and SD∆4 between 7 to 8, yet for

minor-forms was again broadly distributed and clustered around Sp∆ = 4.6 and

Sp∆4 = −3.9, respectively. The different patterns of narrow/broad scattering of

A5E∆4 splice site strengths in dependence of their type was corroborated in a

comparative analysis of f(S) in M. musculus (see Figure B.1).

Observed motifs (/GTNN/GT) of proximal (P∆4) and distal (D∆4) tandem

splice sites occurred with markedly different proportions (see Table 2.4). To what

extent were the observed P∆4 and D∆4 splicing exons different from constitutive

splicing exons (CEs) with pseudo donors having a
”
genomic predisposition“ for

tandem splicing (but not observed)? This was examined by looking for consti-

tutive 5′ss (/GT) that were flanked by another GT dinucleotide at a distance

of four nucleotides either upstream of the authentic 5′ss (denoted as
”
dΨ4“) or

downstream of the authentic 5′ss (
”
pΨ4“). A set of 63,008 constitutive splic-

ing exons (out of 113,386) were searched, that exhibited proximal and/or distal

pseudo tandem donors. Assuming position-independent nucleotide concentra-

tions, the expected proportions would be ∼10% (dΨ4) and ∼48% (pΨ4), where

the latter reflects the GT motif at positions P5 and P6 of the 5′ss consensus.

It was found that the frequency of dΨ4 was lower than its expected occurrence

and was present only in ∼4% of CEs (P < 0.001; z-test), whereas pΨ4 was

similar, albeit still significantly different, to the expected occurrence and present

in ∼47% of CEs (P < 0.001; z-test); a substantial proportion of ∼5% (5,211)

was comprised by GYNN/GYNNGY, but was excluded from further analysis

to avoid any ambiguity. The distribution f(S) for the above sets showed related

differences. The mean scores of P∆4 and constitutive 5′ss (downstream of dΨ4),

SP∆4 = 7.5 and S5′ss = 7.9, were about equally large (P < 0.13, Mann-Whitney

test), yet SdΨ4 = −3.6 was significantly lower as compared with Sd∆4 = 2.8

(P < 2.2e − 16). Similarly, the mean scores of D∆4 and constitutive 5′ss (up-

stream of pΨ4),SD∆4 = 7.9 and S5′ss = 8.7, were found to be similar, but still

significantly different (P < 0.003), whereas SpΨ4 = −10.2 was significantly lower

than Sp∆4 = −3.9 (P < 1.9e − 13). In words, minor splice variants of tandem

donors (p∆4, d∆4) scored larger than pseudo tandem donors (pΨ4, dΨ4), while

lower than 5′ss of constitutive splicing exons, and were consequently sufficiently

different from pseudo splice sites, despite the same genomic motif.



Results 47

P
r
o

x
im

a
l

5
´s

s

(c) (d)

Distal 5´ss

Score

D
is

tr
ib

u
ti

o
n

D

p

�A5E

d

P

�A5E

-40 -30 -20 -10 0 10

-30

-20

-10

0

10

(a) (b)

-30

-20

-10

0

10

-40 -30 -20 -10 0 10

Distal 5´ss

Score

1.0

1

0.2

0.4

0.6

0.8

-20 151050-5-10-15

1.0

1

0.2

0.4

0.6

0.8

-20 151050-5-10-15

(e) P∆4

29 6 35

38 15 53

67 21 88

(f) dΨ4

4,637 121 4,758

4,789 273 5,062

9,426 394 9,920

(g) D∆4

96 10 106

108 22 130

204 32 236

(h) pΨ4

50,939 1,256 52,195

51,503 1,915 53,418

102,422 3,171 105,613

Figure 2.7: (a,b) Scatter plots of 5′ss scores of non-overlapping and ∆4 tandem donors
(cf. notation of Figure 2.6). Shown are the individual and mean scores for (a) type-I and
(b) type-II donors respectively, marked by solid/dashed lines for non-overlapping/tandem
donors; (c,d) Cumulative score distributions. Shown are comparisons of (c) P∆4 and d∆4
splice sites with constitutive 5′ss and dΨ4 (pseudo distal 5′ss, in black) and (d) p∆4 and
D∆4 splice variants with pΨ4 and 5′ss (pseudo proximal 5′ss, in black). The threshold at
which the curves intersect (S∗) marks the accuracy at which sets can be distinguished with
equal classification errors on major and minor splice variants. S∗ ≈ 78% for P∆4 versus
d∆4 (P∆4/d∆4) and S∗ ≈ 92% for p∆4/D∆4, and S∗ ≈ 95% for dΨ4/5′ss and S∗ ≈ 99%
for 5′ss/pΨ4. (e-h) Tables of exon counts for each splice type above and below S∗; 1st row
from left right: TP, FP, TP+FP; 2nd row: TN, FN, TN+FN; 3rd row: TP+TN, FP+FN,
P+N (T=True, F=False, P=Positive, N=Negative)
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Table 2.4: Summary of the transcript coverage for all possible different motifs of A5E∆4
splicing exons. The coverage is shown for major-form distal (D∆4) and proximal (P∆4)
tandem donors. Genes with inferred D∆4 splicing exons outnumber genes with P∆4 splic-
ing exons about 2.5-fold, which is reflected in their overall cDNA (about three-fold) and
EST (about ten-fold) coverage. In addition to /GT, the /GY motif is shown, if the
presence /GC was statistically significant.

Splice site
motif

Distal 5′-splice site (D∆4) Distal 5′-splice site (D∆4)

Occurrence EST mRNA Occurrence EST mRNA

/GYGA/GT 36 2,555 170 3 16 8

/GYAA/GT 32 2,603 140 4 23 19

/GYAG/GT 27 922 118 19 372 75

/GYAT/GT 7 174 38 1 2 1

/GYGG/GT 6 94 18 11 91 31

/GYAC/GT 2 50 8 2 50 8

/GYCA/GT 2 5 10 - - -

/GYGC/GT 2 390 5 1 5 2

/GYGT/GT 2 25 13 - - -

/GYTA/GT 2 182 9 - - -

/GYTG/GT 1 - 2 3 60 15

/GYCC/GT - - - - - -

/GYCG/GT - - - - - -

/GYCT/GT - - - - - -

/GTTC/GT - - - - - -

/GTTT/GT - - - - - -

118 7,000 531 44 619 159
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2.3.6 Discriminating A5E∆4 versus Constitutively

Spliced Exons

The difference between the 5′ss score distribution f(S) of major and minor

A5E∆4 splicing exons of tandem donors were used to test, based on the behavior

of f(S) alone, how accurate P∆4 can be distinguished from d∆4, and D∆4 from

p∆4 splicing exons. To this end, for type-I the cumulative distribution F (S(n)),

with n = 1, 2, ...N , was computed for the set {SP∆4}, by i) rank-ordering all scores

S(n) from the smallest to the largest score, ii) calculating sN =
∑

n=1..N S
(n), and

iii) normalizing F (S(n)) = sn/sN . By construction, F (S(n)) is a monotonically

increasing function of S and takes on its largest value at F (S(N)) = 1. Similarly,

G(S) = 1 − F (S) for the set {Sd∆4} was computed, which is a monotonically

decreasing function of S that takes on its largest value at G(S(1)) = 1. The in-

tersection of F (S∗) and G(S∗) yields for each set the accuracy at which {SP∆4}
and {Sd∆4} can be distinguished, with smallest probability of error on the clas-

sification of both sets (112, 113).

Figure 2.7 C shows for P∆4/d∆4 splicing exons the cumulative distributions F (S)

and G(S) in the range between -20 and 15 units, together with F (S) and G(S)

for constitutive 5′ss and dΨ4 splicing exons for comparison. On the one hand,

it was found for P∆4 and constitutive 5′ss that F (S) collapses to approximately

one curve for S > 0, and that constitutive 5′ss exhibit a long range of negative

scores, which was not seen for tandem donors. G(S) for d∆4 decays similarly to

dΨ4, albeit overall shifted by about ten units toward larger scores, and hence,

leads to a greater overlap between the F (SP∆4) and G(Sd∆4) as compared with

F (S5′ss) and G(SdΨ4) for constitutive splicing exons. Consequently, the accuracy

A(S∗ = 3.5) > 95% at which one can distinguish constitutive 5′ss from dΨ4 is

larger than A(7.3) = 78% for P∆4/d∆4. On the other hand, in Figure 2.7 D

for D∆4 and constitutive 5′ss with pΨ4 similar relationships for F (S) and G(S)

were found, with G(Sp∆4) overall shifted by about five bits toward G(SpΨ4). Both

distributions are wider gapped than observed in Figure 2.7 C, and thus, the ac-

curacy reached A(6) = 92% for alternative and A(4.6) = 99% for constitutive

splice sites, respectively.

Note that distinguishing the sets above by means of a 5′ss score difference and

the log-likelihood difference (LLD), presented in (114), are closely related. This

can most easily be seen, by considering splice site scores derived from a standard

position specific weight-matrix (PSWM) model with independent nucleotide fre-
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quencies: provided the PSWM background model remains unchanged, the slice

site score difference is equal to the LLD. For the Maxent splice site model in-

corporates higher-order statistical dependencies between nucleotides, this exact

relationship is replaced by correlated values.

For this data, the subsets of pΨ4 and dΨ4 splice sites hold an upper limit on the

overall number of human tandem donors, where the pseudo splice site remained

unobserved or unutilized. Using the threshold scores suggested from discrimi-

nating P∆4 against d∆4 (S∗ = 7.3), as well as D∆4 against p∆4 (S∗ = 6.0),

one finds that 23 (∼0.5%) of the dΨ4 set and 530 (∼1.0%) exons of the pΨ4

set exceed these thresholds and were putatively classified as unobserved tandem

donors.

2.3.7 Nucleotide Conservation around Major and Minor

A5E∆4 Splice Sites

Given existing differences between tandem donors and constitutive splicing exons

with either dΨ4 or pΨ4 splice sites, the nucleotide conservation around splice

sites was compared and contrasted (cf. Table 2.5). To this end, for each splice

site position (Pi) the nucleotide frequencies of proximal and distal tandem donors

in type-I and II was computed, and their information score I represented by in-

dividual sequence logos (95) (see Methods 2.2.4). I is close to zero in the absence

of nucleotide conservation with respect to the background, and increases with

increasing conservation up to around two bit per sequence position.

Figure 2.8 shows in part A) pictograms for constitutive 5′ss and 3′ss, proximal

(P∆4) and distal (D∆4) tandem donors, as well as A3E∆3 splicing exons; in B)

the information score difference between P∆4 and D∆4 tandem donors to consti-

tutive 5′ss, respectively; and in C) a species comparison of splice site positions of

human A5E∆4 splicing exons that were sequence conserved at positions P−4P−3

or P3P4 in exon of the orthologous mouse gene. Base frequencies of P∆4/d∆4

were compared to constitutive 5′ss/pseudo dΨ4 splice sites, as well as D∆4/p∆4

to 5′ss/pΨ4 splice sites, in order to identify differences in the base composition

between these classes.

On the one hand, clear statistical differences were found for d∆4/P∆4 splicing

exons with, e.g., significantly lower levels of C but higher levels of T at P−3

(P < 10−4, χ2-test) compared to dΨ4/5′ss splicing exons. Together with P−2

and P−1, which show a significant enrichment of G and A (P < 10−4, χ2-test) of
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tion of an alternative compared to a constitutive splice site. (C) Sequence conservation
of human P∆4 and D∆4 splice sites and splice sites of exons of orthologous mouse genes,

”anchored“ at major splice sites and with > 80% exon sequence identity.



52 Nucleotide Conservation around Major and Minor A5E∆4 Splice Sites

Table 2.5: Pseudo tandem donors occurring upstream (dΨ4, distal) or downstream (pΨ4,
proximal) of constitutive 5′ss. For constitutive exons, possible dΨ4 motifs are shown in
rows 1 and 2, and possible pΨ4 motifs are shown in rows 3 and 4. For alternative A5E∆4
exons, tandem donors are shown in the last two rows. H=not G, i.e., only A,C,T (R=not
C or T, i.e. only A or G) permitted at this motif position.

Constitutive P∆4 P∆ D∆4 D∆

exons proximal major proximal major distal major distal major

GYNN/GYNNYH 4,910 (4%) - - - -

HNNN/GYNNGY
52,887 (47%) - - - -

GRNN/GYNNGY

GYNN/GYNNGY 5,211 (5%) - - - -

HNNN/GYNNHY
50,348 (44%) - - - -

GRNN/GYNNHY

/GYNN/GYNNGY - 22 (50%) 419 (48%) 26 (22%) 235 (39%)

/GYNN/GYNNHY - 22 (50%) 453 (52%) 92 (78%) 363 (61%)

113,356 44 872 118 598

d∆4/P∆4 over 5′ss/dΨ4 splicing exons, respectively, P−2 possibly mismatches to

U1 snRNA upon binding to P∆4, while P−3 and P−1 possibly support splicing

upon binding to d∆4 due to sequence-complementarity of base pairing with U1

snRNA. Other elevated levels of d∆4/P∆4 splicing exons were found for T at

P−12 (P < 10−4), A at P−6 (P < 0.05), G at both P−5 and P5 (P < 0.05),

and C or T at P6 (P < 10−4, χ2-tests). On the other hand, D∆4/p∆4 splicing

exons showed a significant decrease (increase) of A (T) at P−2 (P < 0.02) wors-

ening the match with U1 snRNA for both D∆4 and p∆4, while an increase of

A at P8 (P < 0.01) and T at P10 (P < 0.02, χ2-tests) improved the U1 snRNA

sequence-complementarity of p∆4 over pΨ4. In all, several splice site positions

were differently depleted or elevated, often with the possibility to enhance the

sequence-complementarity to U1 snRNA (115, 116, 117, 118). In particular, G

at position P−1 has been attributed as crucial for U1 but not U5 snRNA base

pairing, creating stacking effects to G at P1 (119). The conservation of P−1

and P5 observed for A5E∆4 major-forms, as well as A5Es and CEs but also for

d∆4 splicing exons (type-I), is in agreement with an association of those posi-

tions reported by Carmel et al. (119). Additionally, P−7 and P−6 of d∆4/P∆4

splicing exons showed elevated levels of A over dΨ4/5′ss and could promote U5

snRNA-dependent base pairing via uridines in the U5 invariant loop, suggested

to compensate for weaker U1 snRNA affinity (119) (neither dΨ4/5′ss nor p∆4

splicing exons showed here elevated levels).

The different conservation levels were in accord with the average information
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score that takes into account the frequency of all nucleotides, at a given position,

against a background level. Figure 2.8 B shows the difference ∆I between tan-

dem and constitutive 5′ss, which is positive (negative) for higher (lower) scores

of tandem against constitutive 5′ss. It was found that d∆4/P∆4 splicing exons

carried overall more information at P−12, P−6–P−2, and P−3, but as well at P−5,

whereas it was found that D∆4/p∆4 carried less information at P−2 and P−1,

but more at P5 and P6. Interestingly, Figure 2.8 B shows no marked fluctuations

of ∆I between tandem and constitutive 3′ss. Figure 2.8 C supports the above

mentioned positional constraints detected for type-I and type-II alternative splic-

ing. It shows the conservation around major (P∆4, D∆4) splice sites between

human A5E∆4 splicing exons and mouse exons of orthologous genes, ‘anchored’

at /GT or /GC splice sites, respectively (the major site, but not the minor site,

is conserved by dataset construction). D∆4/p∆4 splicing exons only conserved

positions P5 and P6, whereas d∆4/P∆4 showed two recognizable overlapping 5′ss

(positions P−4–P−2 and P1–P6) with nucleotides within the alternative part being

complementary to U1 snRNA (119).

2.3.8 Higher Levels of Intron Conservation near Type I

Tandem Donors

Exon and flanking sequences of alternative conserved exons, or ACEs, of or-

thologous human and mouse genes exhibit significant higher levels of sequence

conservation. This has most clearly been demonstrated for ACEs that undergo

exon-skipping (14, 37, 120), and has also been shown for smaller sets of A5Es

and A3Es, including A3E∆3 tandem acceptors (14, 82). Such conservation could

imply the utilization of splicing regulatory signals that are common to ortholo-

gous sets of genes.

It was examined whether A5Es and their flanking regions exhibited higher se-

quence conservation when compared with constitutive exons. To this end, the

set of exons arising from tandem (overlapping) and non overlapping alternative

splice sites were mapped to exons of orthologous mouse genes. Imposing a level

of at least 80% sequence identity and canonical splice sites, matches for about

75% of P∆4 and 90% of D∆4 splice variants were obtained. For each species, the

sequences of exons and up to 200 nucleotides of their flanking sequences down-

stream of the donor splice sites were extracted, and the conservation levels for

exon and intron regions assessed (see Methods 2.2.6). As control sets, 536/653
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A3E∆3 splicing exons; a randomly selected subset of CEs with 4,145/4,910 and

4,082/4,910 up- (dΨ4) and downstream (pΨ4) pseudo splice sites, respectively;

and a randomly selected subset of 2,705/4,910 SEs were mapped. Note that exons

of orthologous mouse genes can be constitutive or alternative and, if so, of the

same or a different AS type.

Figure 2.9 A shows for P∆4 test and control sets the exon conservation as a

combined score, and the intron conservation in the range between one and 100

nucleotides. Similarly, Figure 2.9 B shows for D∆4 test and control sets the exon

and intron conservation. Test sets have smaller overall sizes than the controls,

and therefore possess larger statistical fluctuations. For both exons and introns,

the highest level of conservation was observed for the control set of human SEs,

which exhibit a clear enrichment over tandem donor A5Es and the remaining

controls, in accord with previous analyses (37; 120; 15). On the one hand, for

intron flanking regions of P∆4 splicing exons a markedly higher level of conserva-

tion was found as compared with CEs, ranging up to 80 nucleotides (Figure 2.9

A), while for intron flanking regions of D∆4 splicing exons a conservation level

similar to CEs was observed (Figure 2.9 B). On the other hand, Figure 2.9 A and

2.9 B show no marked differences of exon conservation levels between sequences

of A5E∆4 and the control sets (except SEs), and for all investigated exon types

the average conservation level was found between 80% and 85%. Previous analy-

ses used datasets enriched by AS events that were specifically conserved between

exons of orthologous human and mouse genes (also being smaller sized (14)), and

a follow-up study incorporating such data did not distinguish between P∆4 and

D∆4 splicing exons (121).

2.3.9 Occurrence of Splicing Signals in Exon Flanking Se-

quences

The above analyses suggested a higher downstream intron conservation of P∆4

as compared to D∆4 and constitutive splicing exons, in conjunction with a dif-

ferent splice site score between the major and minor splice variants. It was

examined whether the occurrence of splicing-regulatory elements could explain

the observed differences (see Methods 2.2.8). To this end, it was searched for

over-representations of known oligonucleotides (six to seven-mers) implicated in

splicing regulation, which were enriched in A5E∆4 over constitutive exon flank-

ing regions from one to 100 nucleotides. Four sets of previously computationally
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Figure 2.9: Sequence conservation and splicing regulatory elements of A5E∆4, A3E∆3,
and SEs of orthologous human and mouse genes. (A) and (B) show for different AS
types graphs of the mean exon conservation and of the mean conservation of exon flanking
sequences up to 100 nucleotides downstream, respectively. The conservation is shown
individually for P∆4 (panel A, green) and D∆4 (panel B, blue) splicing exons; extension
regions of A5E∆4 splicing exons were excluded. (C) and (D) show plots of occurrences
of different splicing regulatory elements, located within the first 100 nucleotides of exon
flanking sequences that share > 80% exon identity and splice site signals with mouse exons.
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and/or experimentally identified cis-elements were utilized: FAS2-ESS (A) and

PESS elements (B), IREs (C), as well as ESE elements (D). Figure 2.9 C com-

pares for P∆4 splicing exons the frequency of occurrences of all four sets of

sequence elements, binned to non-overlapping 20 nucleotide windows and sepa-

rated for type-I and -II, against the control. Similarly, Figure 2.9 D shows for

D∆4 splicing exons the frequency of occurrences of all four sets of sequence el-

ements. For introns, and both P∆4 and D∆4 splicing exons, a generally higher

frequency of sequence elements from sets A and C was found, particularly from

the start of the splice junction to about 40 nucleotides downstream, while ele-

ments of set B are differentially enriched in P∆4 and suppressed in D∆4 splicing

exons. Sequence elements in exons (set D) were indicative of a general enrichment

of ESEs in P∆4 splicing exons, particularly from about 40 nucleotides upstream

to the splice junction, which was not found for D∆4 splicing exons (except for a

peak at about 60 nucleotides upstream the splice junction).

Exon E15 of the gene SFRS16, e.g., showed two purine-rich motifs, GGGGGGC

and GGTGGG, located at 65 and 87 nucleotides downstream of the 5′ss (con-

tained in sets A and B), respectively. Additional hexamers were located between

the positions 117 and 123 nucleotides (GGGAGG), while other sequence ele-

ments (set C) occurred often closer to the E15 proximal donor of SFRS16, be-

tween five and 30 nucleotides. Poly(G)-rich sequence elements are binding sites

for the family of hnRNP splicing regulators (122) and have been implicated in

the control of 5′ss choice (123, 124, 125). Interestingly, a phylogenetically con-

served poly(G)-rich sequence element has previously been reported as involved in

the selection of tandem /GTNNNN/GA splice sites in the splicing of the human

FGFR gene (126).

2.3.10 A5E∆4 Splicing Exons often Produce NMD Target

Substrates

Inferred AS events of A5E∆4 and A3E∆3 splicing exons showed a
”
splicing di-

chotomy“ between the 5′ss and 3′ss – while AS events of the latter result in subtle

but perhaps biologically significant in-frame variation of a single amino-acid, tan-

dem donors result in out-of-frame shifts downstream of the tandem donor and

could thus, lead to a truncated protein with different function or unproductive

splicing, depending on position of the exon (Figure 2.10). Indeed, regulated

unproductive splicing and translation (RUST) has been proposed to be a mech-
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Figure 2.10: Occurrences of A5E and A5E∆4 exons in Refseq sequences. Each sequence
was subdivided into three segments of equal size (5′, center, and 3′), and mapped A5E and
A5E∆4 splicing exons were recorded in their respective segments.

anistic link between AS and the NMD quality control pathway (96, 127). What

is the proportion of A5E∆4 splicing exons in the present data set that might be

subjected to NMD? To address this question it was i) the initially obtained A5E

annotation
”
standardized“ by matching it with Refseq-annotated sequences;

ii) Refseq sequences with complete exon-intron structures and annotated start-

stop codons of protein coding sequence (CDS) regions identified; and iii) proximal

and distal splice sites imposed, and the altered reading-frame and stop codon po-

sition downstream of A5E∆4 splicing exons recalculated. Possible compensating

AS events were neglected at this step (Figure 2.10).

The detection of in-frame stop codons is schematically sketched in Figure 2.11.

In all, 153/171 (∼90%) inferred A5E∆4 splicing exons were confirmed by at least

one Refseq sequence, which broke down to 111/153 and 44/153 for distal and

proximal donors, respectively. A large majority of A5E∆4 splicing exons (∼94%)

was located in CDS regions, with only marginal proportions in the 5′-untranslated

region (5′-UTR) or 3′-UTR. During splicing, choice of the out-of-frame tandem

donor will create an mRNA isoform with an in-frame stop codon that introduces

a premature termination codon (PTC) and shortens the C-terminus in ∼97% of

all considered cases. Tandem splicing of exon E8 of the human RAD9 gene at

the minor distal donor d∆4, e.g., truncates the RAD9 domain by 52 amino acids

(15% of total length). While possibly still maintaining the domain functional-

ity, the loss of four C-terminal phosphoserines could prevent the interaction with

the (9-1-1) cell-cycle checkpoint response complex (128). In all, about three-

quarters (78%) of PTCs were located more than 50 nucleotides upstream of the

last exon-exon junction, and thus, predicted to produce a marked proportion of



58 A5E∆4 Splicing Exons often Produce NMD Target Substrates

5´UTR 3´UTRCDS

S

S

S SS

50 nt

78 %

4 % 94 % 2.0 %

97 % 3 % DTCPTC

A5E 4�

Hetereogeneous nuclear ribonucleoprotein U (HNRPU)
High mobility group AT-hook 1 protein (HMGA1)
Transcription associated recombination protein (PCID2)
ADP-ribosylation factor-like 2 binding protein (ARL2BP)
Basal cell adhesion molecule (BCAM)

Integrin alpha 1 (ITGA1)
Sorting nexin 14 (SNX14)
Cell surface glycoprotein CD44 (CD44)
Zinc finger protein 259 (ZNF259
Cyclin K (CCNK)
Karyopherin beta 1 (KPNB1)
Signal Transducer and Activator of transcription 2 (STAT2)
DNA damage checkpoint protein (RAD9)
DNA recombination and repair protein (MRE11A)
ATP-dependent RNA helicase (DDX1)
ATP-dependent RNA helicase (DDX24)
Heterogeneous nuclear ribonucleoprotein A1 (HNRPA1)
Heterogeneous nuclear rnp U-like protein 1 (HNRPUL1)
pre-mRNA processing factor 3 (PRPF3)
...

22 %
NMD

Figure 2.11: Annotation of A5E∆4 splicing exons in Refseq genes. Percentages refer to
fractions of A5E∆4 splicing exons located in the 5′-UTR, coding sequence (CDS) region,
or 3′-UTR. A black-colored ”s“ indicates the position of the stop codon relative to the
Refseq transcript structure, whereas the red-colored version indicates the altered stop
codon due to tandem donor splicing. A5E∆4 splicing exons embedded within CDS regions
are broken down into two categories, depending on the creation of a premature (PTC) or
delayed termination codon (DTC). PTCs can signal mRNAs as substrates for non-sense
mediated decay.

NMD substrates (10). In contexts of type-I and -II, more than twice (∼69%)

NMD candidates were produced by D∆4 splicing exons (where splicing of p∆4

produced PTCs), as compared with ∼26% P∆4 splicing exons (where splicing of

d∆4 produced PTCs). The reminder of about 5% of NMD candidates did not

stem from type-I or II.

Interestingly, a small number of A5E∆4 splicing exons ( 3%) was going to avoid

the truncation of the transcript due to the out-of-frame shift but instead ex-

tended the message. In close relation to premature termination codons (PTCs),

these were termed
”
delayed“ termination codons (DTCs), and all detected DTCs

were produced from utilization of the minor donor (p∆4). For instance, tandem

splicing at the p∆4 donor of exon E13 of the HNRPU gene (ENSG00000153187),

which encodes the heterogeneous nuclear ribonucleoprotein (hnRNP) U, extended
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the CDS regions by 27 amino acids. Due to the frame shift and the occurrence

of synonymous and non-synonymous codons, the amino-acid sequence is changed

such that the complexity at the protein level (determined by the software Smart

(129)) increases at the C-terminal end.
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2.4 Discussion

This comparative study distinguishes tandem 5′ss and 3′ss, with three to six

nucleotides long extensions, as having unusually high proportions of alternative

splicing. The study further analyzed differences and similarities between sets of

A5Es, A3Es, and CEs, and focused on a particular type of a pair of alterna-

tive donors (A5E∆4) that are tandemly arrayed and overlapping. These tan-

dem donors were experimentally validated in a panel of different human tissues,

and a dichotomy in the splicing frequency at these alternative tandem splice

sites is highlighted. The results indicate that human alternative exons spliced

at overlapping 5′ss possess features of typical splice variants and could well be

beneficial for the cell. Alternative splicing is essential for protein diversification

and has recently been suggested as mechanistically linked to post-transcriptional

gene regulation via nonsense mediated mRNA decay (NMD) (130). The con-

sequences for protein sequence and function alteration, as well as triggering of

the NMD pathway, have been demonstrated for exon-skipping events in several

studies (131, 132, 133). While there is further evidence for the functioning and

regulation of the remaining types of alternative exons (121), present understand-

ing of their sequence evolution, produced AS patterns, regulation, and functioning

still remains vague (134).

Alternative 5′ss exons (A5Es) were computationally inferred from a collection of

stringently aligned cDNA and EST sequences to the human genome, and their

sequence features were compared to known features involved in RNA splicing.

Spliced-alignments were obtained from the three independent algorithms (Sim4,

Blat, and Exalin). Exalin detected the smallest number of subtle AS pat-

terns, which are characteristic of tandem donors (involving just a few nucleotides

long extensions), most of which were also identified by Sim4 and Blat. For

there is no unique
”
true“ method of inferring AS events, all analyses were based

on the subset defined by the intersection of the predictions of all three algo-

rithms. While one cannot rule out misalignments still arising from three methods

in some instances, such rigor was taken to produce a confidence-enriched set. In

addition, other independent lines of evidence were pursued as for example the

experimentally validatation of a subset of 14 human genes with tandem donors

across different tissues. The outcome confirmed about 50% A5E∆4 splicing exons

and provided evidence that a substantial fraction of tandem donors detectable

in public sequence repositories are not explained by sequence alignment ambi-
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guities. Almost one tenth of all human A5Es with exactly one shorter and one

longer splice variant, and no other inferred splice type (SE, A3E, or RI), were

found as A5E∆4 splicing exons. Interestingly, Figure 2.2 also shows a small but

persistent pattern of higher frequencies at E = 6, 9, 12, 15 and 18 nucleotides,

which is indicative that non-overlapping splice sites had biased extensions that

preserve the reading-frame.

The central outcome of this study points to a splicing dichotomy between human

alternative 5′ss and 3′ss exons in that exon extensions were markedly biased to-

ward overlapping splice sites, with A5Es biased for E = 4 nucleotides (tandem

donors, A5E∆4), in contrast to A3Es biased for E = 3 nucleotides (tandem ac-

ceptors, A3E∆3). Both, A3E and A5E biases in exon length variation have been

previously reported (2, 114, 135), but their pertinent features have largely re-

mained hidden. It is important to note that AS at both the 5′ss and 3′ss gives rise

to splicing variations with very subtle changes to the encoded protein sequence,

but further downstream A5E∆4 and A3E∆3 splicing exons lead to very different

consequences. While A3E∆3 splicing exons of the form of NAG/NAG/ have

been analyzed in some detail, in part with several controversial interpretations

(2, 114), A5E∆4 splicing exons had not previously been confirmed experimentally

and only initially been characterized (135).

In this context, two related questions are whether i) such frequently observed sub-

tle changes simply arise by
”
noise“ of the spliceosome action, and ii) the splicing

cell has found a way to benefit or neutralize the downstream consequences that

arise from such AS events . Provided their biological authenticity, what is the

nature of overlapping splice site choice? Several models for splice site choice have

been proposed, including i) competition between antagonistic splicing factors (for

example ASF/SF2 and hnRNP A1) and U1-snRNP (86, 136, 87); ii) a scanning

mechanism (90); or iii) cis-acting motifs with different free-energy for binding

U1-snRNP and splice factors between competing splice sites (89). These models

take into account the binding property of the U1-snRNP and additional factors.

Consequently, known features involved in splice site choice were investigated, as

well as consequences to the post-transcriptional regulation of A5E∆4-carrying

genes. A5E∆4 splicing exons were also compared with A3E∆3 and constitutive

splicing exons in the light of existing models for 5′ss selection.

Examined features showed pertinent differences that individually came out subtle,

yet taken in concert they were indicative of a spliceosomal distinction of overlap-

ping 5′ss. The data supports that overlapping donors, but not acceptors, can be
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distinguished into major-form (D∆4, P∆4) and minor-form (d∆4, p∆4) splicing

exons for both distal (D∆4, p∆4 = type I) and proximal (d∆4, P∆4 = type II)

splice sites, respectively. This is further corroborated by their splice site scores,

which within the tandem splice sites correlated with their respective utilization as

major or minor splice variant. On the one hand, splice sites deviated most from

the consensus for P∆4 splicing exons at positions P−4, P−3, and P3 (information

score difference ∆I > 0) as well as P4, P5 (∆I < 0), thus, overlapping positions

of the U1-snRNA, which are involved in 5′ss selection (89, 123). Additionally,

some of these positions have also been related to codon preference (135). Inter-

estingly, P−12 deviated too from the consensus. Because of its close proximity to

the edge of the U1 snRNA stem-loop it could possibly contribute to U1 binding

when donor d∆4 is spliced. On the other hand, D∆4 splicing exons deviated

differently from the consensus at the positions P−2, P−1, P2 (∆I < 0) as well as

P5, P6 (∆I < 0). Based on previous experiments on position-specific stabilizing

and advancing spliceosomal interactions with the 5′ss, these differences between

types I and II are indicative that P∆4 improve compatibility with U1-snRNA

above D∆4 splicing exons.

Previous computational studies showed that the conservation of sequences flank-

ing ACEs is higher compared to sequences around species-specific or constitu-

tively spliced exons (120, 137). Here, higher levels of conservation around P∆4,

but similar levels for D∆4 splicing exons were observed, when compared with

constitutive exons or the 5′ss of A3E∆3 splicing exons. Interestingly, the higher

level is in accord with a larger number of detected silencing splicing-regulatory

elements, often positioned in proximity to A5E tandem donors. In contrast to

typical AS events, however, tandem donors are hindered to place regulatory ele-

ments between alternative donors. The data show an elevation of ESE elements

near d∆4, in conjunction with an enrichment of ESS elements of flanking introns.

This could be interpreted in a model, in which tandem donors restrictively ex-

ploit elements in proximal location, i.e., near d∆4, to attract the U1-snRNP to

this site of the tandem donor, or in distal location to d∆4, to impair U1-snRNP

binding to P∆4 (87).

For the majority of tandem donors was embedded in coding regions, the down-

stream effects of ∆4 splicing was predictive of producing PTCs. Splicing at p∆4

produced putative NMD substrates in more than two-thirds of all cases, whereas

d∆4 splicing exons showed about one-quarter, suggesting that p∆4 and d∆4 (the

minor-forms) were more likely to serve as the corresponding NMD candidates. In-
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terestingly, a small set of A5E∆4-carrying genes avoided PTCs, yet instead was

inferred to use DTCs (delayed termination codons) positioned downstream of

the original signal. Utilization of the E15 proximal tandem donor of the human

SFRS16 gene, e.g., with significantly high levels of E15 flanking sequence con-

servation well over 120 nucleotides in I16 (typical of RNA splicing conservation

across species (120)), produced a PTC that apparently avoided NMD (138). Us-

ing differentially binding antibodies, a previous study (108) showed that SFRS16

produced two detectable isoforms, which correspond to E15 tandem splicing.

A survey of gene ontology (GO) functions of the categories
”
molecular function“

and
”
biological process“ for genes with P∆4 and D∆4 splicing exons showed a sig-

nificant enrichment in several proteins, while after corrections for multiple testing

only the single GO-term
”
RNA binding“ (P < 0.005, nonparametric t-test) was

significantly enriched, when compared between P∆4/dΨ4 and D∆4/pΨ4 splicing

exons, respectively (see Methods 2.2.9).

This study substantially affirms the utilization of tandem donors. While in prin-

ciple complementing earlier findings of previously undetected tandem donor AS

events (121, 135), different approaches to the characterization of A5E∆4 events

impede to some extend the comparison of results. For example, Dou et al. 2006

find type-I tandem donor splice events more frequently than type-II, which stands

in contrast to results of this study. However, they do not provide the exact rules

based on which the
”
dominant“ (major) spliced site in a tandem is defined. This

makes their class boundaries not reproducable and hence different class occupa-

tion between the studies could be a consequence of different methods in the type-I

and II tandem donor classification. Furthermore, examples of cryptic ∆4-type 5′ss

have been reported in the literature (111, 139). In contrast, here it is demon-

strated that such splice variations are potentially enriched in authentic AS events,

and also supported by experimental studies (108, 140). Critically, pertinent data

are not yet at hand to make conclusive inference about the specific regulation of

A5E∆4 splicing exons (e.g. controlled expression of species-specific minor/major

isoforms), here transcript data acquisition and careful spliced-alignments have

added to a higher confidence of tandem donor (and acceptor) utilization, and

deeper insight will require different types of data, e.g., from mini-genes in differ-

ent organ systems and cell types, U1 snRNP mutants, or variations of splicing

factor dosages.

In one extreme view, incorporating a mechanistic and dosage-dependent model

(89, 87), the selection of AS sites depends on the properties of U1 and/or U6



64 Discussion

snRNPs binding interrelated with antagonistic effects mediated by splicing en-

hancing and suppressing factors. Although, type-II tandem donors show a re-

duced difference between distal and proximal splice sites, an initially equal chance

of U1 snRNP binding to either the proximal or distal donor, could later be com-

pensated by the higher complementarity of the minor distal donor to U6 snRNA

positions, complemented by silencing elements upstream of the major proximal

donor. Similar it was shown that the choice of a tandem splice site of E10 of

the FGFR gene can be determined by a higher sequence-compatibility of the E10

proximal splice site (p∆6) to U6 snRNA (126). In addition, constraints set by

secondary mRNA structures (75, 141) have been shown to influence splice site

choice. In the opposite extreme, suggested by subsets of tandem donors with

strong difference between distal and proximal splice site, splicing at such tandem

donors could regularly involve stochastic binding of the splicing machinery with-

out an implicit functional relevance (114), which seems to be supported by type-I

isoforms. Either view largely requires the NMD pathway to control deliberatively

or aberrantly produced truncated messages.

Earlier works investigating spliceosomal components in 5′ss recognition, suggested

co-recognition of 5′ ss by U1 snRNP and tri-snRNP as a mechanism to explain

activation of cryptic 5′ ss and U1 independent splicing. Cryptic sites were pro-

posed to substitute for mutationally silenced authentic splice sites, still bind-

ing low levels of U1 binding. Those bound U1 snRNPs in turn could recruit

tri-snRNPs, which themselves can not bind authentic splice sites but activate

nearby sequences via Prp8 or other U5 snRNP components (142). It is interest-

ing to note, that U1-dependent and U1-independent splicing share the same 5′

ss sequence requirements, leaving room for the possibility that especially ∆4 AS

events of similar splice site plasticity could be differentially regulated by differ-

ently composed spliceosomal complexes (143, 144).

An interesting question regarding the finding of deliberately or aberrantly pro-

duced AS variants with out-of-frame shifts and PTCs (either due to A5E∆4 or

other types of AS), and their functional utilization on the transcriptional or trans-

lational level, is whether there is a possible benefit of generating flawed mRNA

isoforms. If such splice variants would be generally produced across organ sys-

tems and cell types, in addition to their normal splice variants, cells would have

means of producing low levels of imperfect proteins. Depending on the efficiency

of mRNA quality control, a fraction of which is subjected to the NMD pathway

during the first pioneer round of translation and degraded, while a remaining
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fraction could still misfold and - depending on the quality control of protein syn-

thesis - form defective ribosomal products (DRiPs). Ubiquitin-tagged peptide

fragments that originate from DRiPs have recently been identified as a potent

source of antigens for display by the MHC class I molecules on the cell surface to

cognate CD8+ T-cells, in agreement with a recently suggested mechanism of
”
im-

mune surveillance“ (145, 146, 147). A motivating example is given by the human

Tyrosinase-related protein 1 (TYRP1), which utilizes two different reading-frames

to produce the protein gp75 (recognized by IgG) and a truncated 24 amino-acids

long peptide. The latter was shown to be the source of an antigenic peptide

specifically recognized by T-cells as a tumor rejection antigen (148). It remains

to be substantiated whether such antigenic peptides are linked to AS events that

produce variants with out-of-frame shifts, such as produced by tandem donors.
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Chapter 3

Petrinet Analysis of Spliceosome

Assembly

3.1 Introduction

3.1.1 The Spliceosome

Alternative splicing depends on the fundamental processes of the spliceosomal

protein complex. The spliceosome is a nuclear megadalton complex which is or-

ganized in five major subcomplexes U1, U2, U4, U5 and U6 that are formed by

core proteins and additional splicing factors. The presently known number of

splicesosomal factors is estimated to 150-300 proteins (149, 150, 151, 152, 153),

thus providing the cell with a broad repertoire of splicing regulatory proteins. The

spliceosomal subunits are ribonucleoprotein complexes of approximately 1-2 µm3

which form a structured environment around target splice sites. Only recently it

was confirmed that the snRNAs of the U2 and U6 subunits are sufficient for RNA

cleavage and re-ligation, rendering the spliceosome effectively a ribozyme (154).

Though this suggests that the splicing reaction is a relic from the RNA world, a

complex protein machine is wrapped around this mechanism with many proteins

being homologous between such different organisms as human and yeast. The

outcome of different splicing events shows that the maturation of RNA is a com-

plicated process that can be influenced by different events such as mutations in

splicing signals or signal cascades, induced by stimuli outside of the cell (155, 11).

Splicing decisions are controlled by two major determinants - i) the pre-mRNA

sequence and its inherent signals and ii) the protein-complement of the spliceo-

some where signal transduction is frequently maintained via arginine-serine rich

67
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domains of the participating proteins (RS domains) (20). Hence, the dependence

of gene expression on developmental stage and/or tissue type is modulated to a

major extent by a network of protein-protein and protein-RNA interactions that

influence the assembly and localization of active spliceosomes. Noteworthy, the

spliceosome is thought to serve not only as the catalyst of the splicing reaction

steps, but also to translate the limited information presented by pre-mRNA into

splicing specificity and orderliness (156).

3.1.2 The Basic Steps of Spliceosome Assembly

Several hypotheses about the dynamics of spliceosome assembly exist: one

model suggests the co-transcriptional assembly of spliceosomes at the nascent

pre-mRNA, consistent with the fact that in eukaryotes splicing factors have

been found in association with the c-terminal end of the RNA polymerase II

(157, 158, 159). In opposite, alternative splicing due to exon skipping can require

the presence of an at least partially transcribed pre-mRNA, as the remarkable

example of the heteronuclear ribonucleoprotein (hnRNP) A1 shows (79). There,

hnRNP A1 binds at intronic sites adjacent to an exon of its own pre-mRNA, and

by interacting hnRNP molecules across the exon, the exon is looped out from

the splicing plane, thus implying the occurrence of a post-transcriptional splicing

mechanism. Additionally, the commonly accepted model of exon definition in

higher eukaryotes (85), favors a post-transcriptional splicing mechanism. This

is reasonable since the 5′ splice site (5′ss), branchpoint (BP) and 3′ splice site

(3′ss) have to be present and recognized by an initial protein complement for

subsequent bridging across the exon. Consistently in well studied yeast splicing

systems it has been found that due to the transcription kinetics, spliceosomes

preferentially assemble post-transcriptionally on short second-exon genes, affect-

ing approximately more than 90% of yeast splicing (160). However, the same

study and others (161) observed that U1 snRNP recruitment and splicing of long

second exon genes (>1 kilobase) occurs mainly co-transcriptionally.

Opposing the stepwise assembly model, a
”

holospliceosome“ model has been pro-

posed, where a tetra- or penta-snRNP complex binds to the introns and modu-

lates RNP-RNP or RNP-pre-mRNA contacts within the complex (162, 163, 164).

Spliceosome assembly can be described as intracellular allosteric cascade, where

every interaction depends on a previous interaction. Besides the snRNP sub-
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complexes and their core components, additional proteins (splicing factors) and

enzymes (DExD/H-box proteins) are required to shape the active spliceosome.

While the first step - the E-complex assembly - requires no energy for structural

rearrangements, subsequent steps of snRNP addition and interaction involve heli-

case like ATPases that catalyze structural rearrangements in snRNA-pre-mRNA

contacts (163). The major events in the stepwise assembly prior to the activated

spliceosome include U1 snRNP binding to the 5′ ss, U2 snRNP binding to the

branchpoint, addition of a preformed U4/U6·U5 triple snRNP, interaction of U2-

and U6 snRNA and concomitant destabilization U1 and U4 snRNP (165). At this

point, the spliceosome is reshaped such that the first transesterification reaction

can take place. The snRNP and splicing factors arrange the 2′-OH of the branch-

point adenosine in such a close proximity to the 5′ss that it can perform a nu-

cleophilic attack to the 5′ss phosphodiester bond, disrupting the pre-mRNA and

forming an intermediate loop (lariate ) within the intron. Further, internal rear-

rangements of snRNA contacts and interaction of snRNP components prepare the

second step of catalysis whereupon the 3′-OH end of the upstream exon attacks

the 3′ ss phosphodiester bond, finally tethering both exons together and releasing

the lariat intron (149). These basic steps are conserved from yeast to mammals

and also similar for the minor U12 type spliceosome assembly (166; 167).

Description of the Four Major Stages of Spliceosomal Assembly

Splicecosome assembly is a hierarchical process that progresses through several

main stages designated (P→) E→ A→ B→ C (→ P). Each stage (E-C) describes

an intermediate complex that is build from the pool (P) of proteins available in

the nucleus and which are recycled for repeated rounds of spliceosome assembly.

The biochemical processes, which result in the mature spliceosome that is able to

catalyze the splicing reaction in eukaryotic messenger RNAs can be summarized

as following:

I. E-complex (commitment complex):

The recognition of the 5′ splice site is initiated by early interaction of the

U1 specific protein U1C with the 5′ss sequence (168). Additionally, inter-

actions via phosphorylated RS domains of U1-70K with splicing enhancing

factors, which bind to nearby located specific enhancer motifs, can direct

the U1 snRNP to a specific 5′ss (169). It was shown that 5′ss, which

are less complementary to the canonical eukaryotic 5′ss, are still selected
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by U1 snRNP due to interactions between U1 snRNP proteins and splice

enhancing proteins, such as ASF/SF2 or TIA1 (169, 170). This is in agree-

ment with the earlier observation that donor site selection by U1 snRNP

can be rescued by the SR protein, SC35, when the donor recognition site

within U1 snRNA is impaired (171). In contrast, a weak 5′ ss might also

be selected by variants of U1 snRNA (172). This led to the interesting

hypothesis that 5′ss selection within the E-complex might be possible even

without the binding of U1 snRNP. Experiments indicate that the presence

of higher concentrations of SR proteins enable such a spliceosomal pathway

(173). At the 3′ end of the intron, E-complex assembly involves the U2

auxilary factor, U2AF, which is a heterodimer of a 65 and 35 kDa subunit.

Together with SF1 (in mammals designated branch point binding protein,

mBBP), these factors recognize via their RNA recognition motifs (RRM)

the polypyrimidine tract, 3′ss and branchpoint, respectively. This step was

shown to occur in a coordinated way involving cooperativity between SF1

and U2AF65 (174), which can be mediated by interactions between the

RS domains of these proteins (20). Additional interactions reported dur-

ing E-complex assembly include the bridging of U1 snRNP at the 5′ss and

factors bound to the branchpoint-3′ss, which is mediated by SR protein

FBP11 (175). U2 snRNP is present in close proximity to the U1 snRNP

and formation of the E-complex depends on U2 snRNP (176, 177).

II. A-complex (pre-spliceosome):

The A-complex contains the stably integrated U2 snRNP, which is assem-

bled out of two heteromeric subcomplexes SF3a and SF3b via an interme-

diate 17S complex. Prior to their contacts to the U2 snRNA, SF3a and

SF3b are formed by several interactions between U2 core components (e.g.,

SF3b155 with SF3b14 or SF3a120 with SF3a60) (178). In this stage, U2

snRNP interacts with the branchpoint site via base pairing between U2

snRNA and the pre-mRNA under consumption of ATP (177). Addition-

ally, the transition from E to A-complex is supported by the SF3b protein,

SF3b155, which binds at both sides of the branchpoint and interacts simul-

taneously with the U2AF65 subunit and the SF3b14 protein (179, 180).

The ATP requirement during A-complex formation has been reasoned by

two other U2 snRNP proteins, SF3b125 and hPrp5, which are members of

the DExD/H family and may function either as helicases or RNPases (181).

Such auxiliary enzymes could be recruited from proximal cajal bodies or
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speckles (182).

These helicase like proteins have been shown to function as generic ATPases

that bind and hydrolyze NTP to unwind double-stranded RNAs (dsRNAs)

(165). In contrast, the ADP-bound form can modulate the annealing of

complementary RNA strands. In context of the spliceosome DEAxD/H

box helicases are governing structural rearrangements to shape the active

complex. However, many of these ATPases function in a generic way hy-

drolyzing also other RNA species. Thus, they have to be specifically ac-

tivated for catalyzing the correct structural rearrangements, not least to

ensure fidelity of the splicing reaction. It was proposed that additional

splicing factors interact with DExD/H box helicases to direct their activity

to specific substrates during the assembly process.

SF3b125 was detected only in low amounts in the SF3b subcomplex, but

not associated with the 17S U2 snRNP and hPrp5 was present in the 17S

U2 snRNP, but not in the SF3b subcomplex (182). The protein hPrp5 ex-

hibits an ATP independent function, which stabilizes U2 snRNP to the BP

(183) and was proposed to function as bridge between U1 and U2 snRNPs

at the time of A-complex formation (181). Accompanying the U2 snRNP

rearrangements, which are catalyzed by hPrp5 under ATP hydrolization,

the SF3a60 contacts to the U2 snRNA are significantly reduced upon as-

sociation of U2 with the BP in the A-complex (178). Another DExD/H

box helicase, which is required for U2 snRNP / BP interaction, is UAP56,

whose recruitment also depends on U2AF65 (184). The reactions of the

individual assembly stages are described and formalized in Table C.1.

III. B-complex (active spliceosome):

In this stage, U4, U5, and U6 snRNPs enter the assembly pathway as tri-

snRNP complex. This subcomplex is formed in a separate way, where U4

and U5 snRNP assemble, similar as U1 snRNP, from a family of seven RNA

binding proteins, termed Sm proteins (185, 186), whereas the U6 snRNA is

bound by a different set of proteins termed Sm-like proteins (187). Subse-

quently, U4 and U6 snRNP form a duplex via base pairing of their snRNAs,

resulting in a structural conformation, which is stabilized by several addi-

tional proteins, for example hSnu13, Prp3, Prp4, CypH and Prp31 (186).

The U5 snRNP contains several proteins, important for structural rear-

rangements prior to the first catalytic step of splicing, most important the
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DExD/H box helicases Brr2 and Prp28 and the two proteins Snu114 and

Prp8 (188, 186). An interaction between Prp6 and Prp31 was proposed

to serve as bridging step between U4/U6 and U5 snRNP, preparing the

formation of the U4/U6.U5 tri-snRNP complex (189). The additional pro-

teins, Snu66, Sad1 and 27K, stabilize the intermediate tri-snRNP complex.

The latter is recruited to the spliceosome which, however, is still catalyti-

cally inactive. An intermediate state, designated pre-catalytic B′ complex,

shows a more flexible tri-snRNP structure, possibly for integrating other

components, for example Prp19 (190).

Prior to the conformational rearrangement required for spliceosome activa-

tion, U1 snRNP is dissociating from the 5′ss enabling U6 snRNP to contact

donor splice site. This step involves the ATPase, Prp28, which was found

to counteract the stabilizing effect of the U1 component U1C with the U1

snRNA (191). Prp5 can leave the spliceosome at this stage as it was demon-

strated to function mainly before or during A-complex assembly (182). The

U5 snRNP components Brr2, Prp8 and Snu114 are critical for unwinding

the U4/U6 snRNA stemloop. This step resembles a G-protein activating

mechanism, where Snu114 enters a GTP dependent state, and subsequently

activates the helicase Brr2 (192, 193). This conformational change also in-

volves Prp19, a part of the Ninteenth complex (NTC) (194). Brr2 is further

involved in interactions with Prp16 and U1-70K (195, 186). After unwind-

ing the U4/U6 duplex, U2 and U6 snRNP establish several interactions via

their snRNAs and the pre-mRNA, whereas a binding motif within the U6

snRNA directly contacts the 5′ss. Subsequent release of U1 and U4 snRNP

results in the catalytically competent B* complex which forms the catalytic

core of the spliceosome (165, 186). The B-complex, composed of U4/U6.U5

tris-nRNP in close contact with the U2 snRNP, performs the first catalytic

step of splicing by nucleophilic attack of the branchpoint adenosine to the

phosphate ester bond of the 5′ ss, and is subsequently converted into C-

complex.

IV. C-complex:

The C-complex contains U2, U5 and U6 snRNA at a stage subsequent to

the first chemical step, because splicing intermediates can be found in this

complex. The conformation is centered around Prp8 which is thought to

serve as a
”
surgery table“, connecting the already free 5′ and fixating the 3′
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ss such that the second transesterification can open the intron-downstream

exon connection (192). With the ligation of the free exon end, the intron

and bound snRNPs are released as a post-spliceosomal lariat complex. Sub-

sequently, bonds between U2, U6 and U5 snRNA are broken, involving the

helicase, Prp43, and U5 dissociates into smaller subcomplexes to finally join

another round of spliceosome assembly (151). Since Prp43 can be found in

the 17S U2 complex (182), which forms during early A-complex assembly,

it is conceivable that this protein remains present over several stages of the

spliceosome assembly pathway.

Additional factors support the recycling process, for example Prp24, which

reanneals U4 and U6 snRNAs and allows regeneration of the U4/U6 snRNP

duplex (196). Two important helicases, Prp16 and Prp22, impose kinetic

proofreading activity and can subject suboptimal splicing substrates into

a discard pathway (197, 198). It is important to note, that the catalyz-

ing function of the spliceosome can experimentally be reduced to its RNA

parts, making it effectively a ribozyme (154). However, the protein scaf-

fold is necessary to form the structural environment (RNA conformations)

necessary to enable the splicing reaction. Moreover the participating pro-

teins establish important links to other cellular processes as for example

transcription or nuclear export.

3.1.3 Modeling the Spliceosome

One of the major difficulties in the functional characterization of the spliceosome

arises from the dynamical interactions between its subcomplexes and the pro-

teins organized within those. Although extensive knowledge has been gathered

about the factors involved in spliceosomal function, their functional interplay

and regulatory impact is not comprehensively understood and even discussed

controversially. For example, it is still not fully understood whether the assembly

process occurs mainly co- or posttranscriptional and whether a stepwise assembly

(158, 164) rules out the possibility of a pre-assembled holospliceosome (162, 199).

in this context the term
”

transcription factory model“ has been coined denoting

the concerted action of transcription and splicing machinery at the places of

active gene transcription (200). The connection and coupling of different protein

machines in the cell emphasizes the complex environment in which spliceosomal
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assembly is embedded.

The vast amount of experimental data makes it necessary to structure the wealth

of information to derive new hypotheses on the underlying signal transduction

processes. This task requires the development of in silico models which are

able to integrate much of the existing data while being suited for rigorous

validation and stepwise extension. Further modeling goals can be summarized

in i) visualization, ii) comprehensible data annotation and iii) data abstraction,

allowing an exact mathematical description of the model.

In particular, alternative splicing often involves different sets of splicing factors

in addition to the spliceosomal core components, hence variations of the model

network should provide a sound base for testing hypotheses on the regulation of

splicing and AS events. Several structural and kinetic factors were proposed to in-

fluence splicing patterns of a gene such as i) precise balance and concentrations of

regulatory proteins , ii) nature of interaction like inhibiting or cooperative effects,

iii) number of interactions which define the connectivity of a network, iv) speed

of transcriptional elongation or recruitment of splicing factors (201, 202). Addi-

tionally, a temporal model component can be considered as the assembly pathway

bears a number of timed dependencies.

These keypoints pose an essential base for modeling spliceosomal processes, but,

most of them can be not comprehensively applied at present. Incompleteness

of experimental data as for example the lack of knowledge about interaction

kinetics, concentrations or the exact temporal order of reactions is accompanied

by heterogeneity of proposed mechanisms for different stages of spliceosome

assembly.

Protein interaction databases such as String (203), cross-referencing to Mint,

Hprd, BioGrid, Dip and Reactome, Apid (204) or IntAct(205), already

provide an extensive organization and integration of experimental and predicted

protein interaction data, but, most of them represent static interactions without

providing information about the temporal order and direction of interactions

within hierarchical networks. This underscores the need to find ways to access

this additional information from literature, incorporating knowledge that can

be used to extend the capabilities of network exploration for hierarchical

processes, such as spliceosome assembly. This should extensively support the
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generation of hypotheses on the progression of signals and protein interactions.

For comparison, Figure 3.1 depicts an unordered-undirected protein-protein

interaction network as reviewed in (206), and a directed ordered interaction

network presented in this work. Due to lack of kinetic properties, composing

(a)
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G

H

1.

2.

3.

(b)

D
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ACDB

Figure 3.1: Two types of protein interaction networks: (a) An undirected network of
binary interactions, e.g., modeled in (207) (b) Directed hierarchical molecular interaction
network as modeled here by Petri net (PN) theory

a discrete structural model was considered as a good initial choice for the

computational analysis of the spliceosome. Here, Petri net (PN) theory was

chosen, because it offers the advantage to combine visualization, with the

possibility of mathematical description and graph-theoretical analyses.

PN theory provides techniques and software tools to model, analyze, and

simulate biochemical networks (208, 209, 210, 211). Meanwhile, metabolic

networks (212, 213, 214, 210) as well as signal transduction pathways (215, 216)

and gene regulatory pathways (217, 218, 219) were successfully modeled using

PN. There are parallel approaches to structural modeling such as those based on

elementary flux modes of (220, 221) and on extreme pathways (222). They have

primarily been applied to metabolic pathways (for reviews, see (223, 224)) but

also to signaling networks (225). An interesting question is, whether the model

of stoichiometrically quantifiable mass flow inherent to metabolic networks, can

be transferred to models of information flow as occurring in signaling networks.

Recently, a model of the U1 snRNP subcomplex assembly demonstrated the

applicability of PN theory (226). The present work is the first attempt to merge

current knowledge about the entire spliceosomal assembly into a network of

directed reactions. In doing so, most challenging is the proper translation of

a huge body of experimental evidence from the literature into single reactions

steps, which can be integrated in a PN. Sorting through these reactions served

as a base for gradual refinement, converging in a validated model of spliceosome
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maturation.

Box 3.1.1 Allosteric interactions

Allosteric interactions describe interactions between
spatially separated regions of a protein and were first de-
scribed for oxygen binding within hemoglobin. In enzymes,
allostery describes the binding of an effector molecule at
a site different from the active center, affecting the sub-
strate affinity of the enzyme by conformational changes
(227). As a special case of allostery, cooperative inter-

actions describe the alleviated binding of a molecule A
to its target, after a first molecule B has already bound
(174). Cooperativity is further distinguished in homotropic
and heterotropic cooperativity, depending on whether effec-
tor and substrate are the same molecule or not, respec-
tively. This concept can be generalized and transferred
from enyzmes to protein complexes where interactions be-
tween protein(domains) dictate conformations which influ-
ence the signaling activity of the whole complex (228). Ki-
netically this means that the equilibrium constant for asso-
ciation of, for example, two dimers B·A (multimerizing to
B·A·A·B) is greater than that for A + A → A·A alone see
Figure 3.2 (229).

A B

q(AA) < q(BAAB)

B

B

BAA

A A A

A
A

Figure 3.2: In case of cooperativity the equilibrium con-
stant q = ka

kd
for association of two proteins A is greater

after binding of an allosteric effector B. ka and kd denote
the rate constants of association and dissociation respec-
tively.

The model was designed

as signal regulatory net-

work which consists of

protein and RNA species

relaying a signal rather

than a mass flow. As

such, this structural

model shows dependen-

cies of reactions rather

than their kinetics, which

for many parts of the

network is still unknown.

However, spliceosome

assembly has been shown

to form a complex in-

teracting network of

subcomplex formation

(151) best described as an

allosteric cascade (163)

that frequently involves

cooperativity (174) (see

Box 3.1.1).

However, spliceosome

assembly has been shown

to form a complex in-

teracting network of

subcomplex formation

(151) best described as

an allosteric cascade (163), that frequently involves cooperativity(174) (see

Box 3.1.1). Already a decade ago, it was proposed that the composition of

spliceosomal snRNPs could be different on different splicing substrates in a

context-dependent manner (tissue type, developmental stage). This has the

consequence that many different combinations of factors could potentially give
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rise to different types of active spliceosomes, thus, increasing the potential for

splicing regulation (230).

In light of the wealth of proteins that up to now have been identified around the

spliceosome , it is necessary to go beyond cataloging the factors. Putting protein

and mRNA factors together into the context of a larger network poses a difficult

task and requires the integration of a standardized vocabulary to unambiguously

describe all possible reactions. While this task will remain a challenge for ontology

and text mining specialists, here, it was started to summarize reactions, such that

they can be utilized for a PN model and subsequent analyses, e.g. in silico testing

of hypotheses. A number of analysis strategies accustomed to PN representation

of signaling networks is presented in the following sections.
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3.2 Methods

3.2.1 Definition of Petri Nets

The spliceosomal assembly network was modeled as a P/T net (see Box 3.2.1).

Places correspond to biological objects (e.g. RNA regions, protein factors, protein

complexes etc.), whereas transitions correspond to processes, which act upon ob-

jects (e.g. protein interaction, phosphorylation reactions, protein-mRNA binding

etc.). The direction of arcs defines pre-places (pre-transitions) and post-places

(post-transitions). Tokens represent movable objects. They are used to model

the equivalent of signal or mass flow units and are symbolized by black dots on

places. The maximum number of tokens that a place can hold is defined by its

capacity. The distribution of tokens over all places is called a marking. Each

marking defines a certain state of the system.

Box 3.2.1 Petri net definitions: A Petri net (PN) is a directed, labeled,
bipartite graph consisting of places (circles), transitions (rectangles) and arcs (ar-
rows), such that arcs connect only nodes of different type. A PN is a six-tuple
Y = (P, T, F,K,W,M0) and denotes a Place / Transition -net if the following
definitions hold (231):

i. The tuple (P, T, F ) is a net graph N with

(a) P = {p1, p2, . . . , pn} : a finite set of places

(b) T = {t1, t2, . . . , tm} : a finite set of transitions

(c) F ⊆ (P × T ) ∪ (T × P ) 6= ∅ : the set of arcs (flux relations of N)

(d) P ∪ T 6= ∅ : union of P and T is never disjunctive

(e) P ∩ T = ∅ : sets P and T are disjunctive

ii. K : P → N ∪ {∞}: the capacity of places

iii. W : F → N: the arc weights

iv. M : P → N ∪ {∞}: the marking of Y if
∀p ∈ P : M(p) ≤ K(p) with:

• M0 : P → N0 : the initial marking

• M0
w→M ′: the consecutive marking given a firing sequence w

• M0
w→ defines a firing sequence, which is activated under M0 for which

holds:
w = ∅ ∧M ′ = M0 or
∃M ′ ∈M(Y ) : M0

t1...tk→ M ′
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Places and transitions are connected via directed arcs such that arcs connect

only nodes of different type. Tokens represent movable objects. They are used to

model the equivalent of signal and/or mass flow units and are symbolized by black

dots on places. The maximum number of tokens that a place can hold is defined

by its capacity. Adjacency relations between nodes are defined by incoming and

outgoing arcs. Hence, the set

•x := {y | (y, x) ∈ F} (3.1)

defines pre-places, which feed a transition y ∈ T with tokens. Transitions without

pre-places are called input transitions and represent external sources.

Accordingly, the set

x• := {y | (x, y) ∈ F} (3.2)

defines post-places, which draw tokens from a transition y ∈ T . Transitions

without post-places are called output transitions represent external sinks. PN

are commonly modeled as transition bounded net, where each node x ∈ P ∩ T is

a boundary node if •x = ∅ ∧ x• = ∅ (232).

The dynamic behavior of the network is realized through the firing of transitions

which model the activity of biochemical reactions. A transition can fire (is en-

abled) if all pre-places are covered by at least one token (see Box 3.2.2). Tokens

represent molecules or moles. During firing of a transition according to the cor-

responding arc weights and firing rules, the number of tokens is decreased on the

pre-places and increased on the post-places. Consequently, the marking of the

net is changing, resulting in a new state of the PN. Note that in signal trans-

duction networks without mass flow and reaction stoichiometry, it is reasonable

to interpret arc weights rather as
”
information units“ with a default value of one

than as reaction quantities (see Box 3.2.3).

Starting from an initial markingM0 one can define a firing sequence M0
w→, w =

t1 . . . tk ∈ T (cf. Box 3.2.1) as a subset of transitions within the PN, which corre-

sponds to a specific signal propagation through the biological assembly network.

For each firing sequence w a frequency vector w̄ = (#(t1, w) . . .#(tn, w)) (also

called Parikh-vector) can be assigned, which indicates how often each transition

fires. The change of the net marking can be determined by:

M0
w→M′ =M0 + C · w̄ (3.3)
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whereat C is the incidence matrix, in which rows and columns correspond to P

and T , respectively, and the matrix elements describe the change of token number

on a place, when a transition fires. For metabolic networks, the incidence matrix

corresponds to the stoichiometric matrix.

Box 3.2.2 PN firing rules

The activity of reactions in a PN system (defined in Box
3.2.1) is simulated by firing of transitions, which is sym-
bolized by a token change. A transition t can only fire,
if it is enabled by satisfying following two conditions:

i. M(t•) ≥W (pi, t) : all its pre-places are occupied
by at least as many tokens as the weights of the
incoming arcs prescribe.

ii. K(t•) ≥ W (t, pi) : all its post-places must have
at least a capacity as the weights of the outgoing
arcs dictate

p1

p2 p3t1

2
3

p3p2

p1

t1

3
2

Figure 3.3: Transition firing behavior: a) Transition
t1 is enabled because pre-places p1 and p2 are occupied
by as many tokens as their arc weights prescribe. No
indicated arc weight means per default an arc weight
of one, b) After firing of t1 two tokens of p1 and one
token of p2 are consumed and three tokens of p3 are
produced. Note that in signaling networks, the number
of consumed tokens must not necessarily be equal to the
number of produced tokens.

The firing sequence w can be

determined from the solution

of the homogenous equation

system C · w̄ = 0 which is

valid if the signal or informa-

tion flow within the network

is assumed to be conserved.

This forms the base to com-

pute systems invariants from

the incidence matrix, which

can be divided in two differ-

ent vectors w̄ = x̄ or w̄ = ȳ

depending on the orientation

of C.

The vector x̄ is called non-

negative place invariant (P-

invariant) if it solves the ho-

mogeneous equation system

CT · x̄ = 0 : x1 . . . xn ∈ N0

(3.4)

The elements of a P-

invariant can be interpreted

as conservation relation for tokens. For an initial marking M0 holds:

∀M′ ∈ [M0〉 :M′ · x =M0 · x (3.5)

whereat M′ defines a consecutive marking (see Box 3.2.1), that is, a subset of

the reachability set [M0〉, which defines all possible states in the net that can

be reached from M0 by firing of w. The solution vector ȳ is called non-negative

transition invariant (T-invariant) if it is a solution of the homogeneous equation
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system

C · ȳ = 0 : y1 . . . yn ∈ N0 (3.6)

A T-invariant is a transition sequence that after firing reproduces a certain mark-

ing (state) of the network (Equation 3.5). A T-invariants Parikh-vector, indicates

how often each transition has to fire in order to reach the same state (marking)

again.

T-invariants are minimal if there exists no smaller positive T-invariant such that

ȳ′ : (ȳ− ȳ′) > 0 (231). Hence, minimal T-invariants are not further decomposable

into smaller T-invariants. The same holds for minimal P-invariants. In the

following the term
”

T-invariant“ (
”

P-invariant“) stands as abbreviation for

minimal non-negative T-invariant (P-invariant).

T-invariants can be interpreted as flux vectors. In biochemical terms, it was

shown, that under steady state conditions a metabolic network can be decomposed

into sets of minimal meaningful reaction sequences (
”
elementary flux modes“),

which may form a variety of flux patterns when expressed as non-negative linear

combinations (220, 221). Elementary flux modes correspond to non-negative

minimal T-invariants.
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Box 3.2.3 PN as signal relay networks

Signaling pathways are often mixed in their
types of involved reactions. Commonly known are
phosphorylation events where kinases modify spe-
cial domains of proteins, resulting in the capabil-
ity to bind proteins. In contrast to metabolic net-
works, where an enzymatic reaction is clearly de-
fined by its stoichiometry, in signaling events one
often observes only a state that coincides with a
certain function, without exact knowledge about
the amount of the participating signal molecules.
For example, the proteinsA andB form the dimer
AB which may function as the necessary signal to
recruit an important third factor C. Reducing the
arc weight to one is a meaningful simplification to
circumvent the lack of stoichiometric information.
It can be interpreted as the minimal information
unit triggered by an maintenance concentration
of the necessary molecules, to achieve the mini-
mal requirement for signal transduction.
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Figure 3.4: Example of signal flow in PN via a reduced
arc weight to one, m = number of tokens per place, a = arc
weights, A and B = interacting molecules a) only factor
A is present, indicated by the token at place B, hence the
transition, which models the reaction is not enabled b)
both required factors are present, indicated by the token
on each place of A and B respectively, hence the transition
can fire and generates the signaling complex AB

The spliceosomal assembly net was

modeled as transition-bounded

net, such that no places without

pre- or post transitions exist, but

transitions without pre- and post

places. The boundary transitions

describe reactions that connect

to external sources (input tran-

sitions) and external sinks (out-

put transitions) of the assembly

network, whose reactants can be

defined as buffered substances at

fixed concentrations (220). In bio-

logical interpretation that means,

all reactants feeding input transi-

tions or leaving output transitions

are considered to be external.

All reactants (places) are mod-

eled in non-limited amounts with

a capacity of K(p) → ∞ and

an inital marking of one token

per place to enable each transi-

tion. The model has been val-

idated using PN analysis tech-

niques. First, by determining the

static and dynamic properties, us-

ing the programs Ina (233) and

Pina (234), and second by com-

puting substructures as maximal

common transition sets (MCTS).

The PN model was designed, us-

ing the PN editor Snoopy (235).

The initial XML format, was converted into a pnt file format which served as

input file for the structural analysis by Ina using the command sequence given

in Table C.2.

With increasing network size and complexity, the number of T-invariants can ex-
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ponentially grow. Two approaches were employed to facilitate the validation of

the model: i) decomposition into disjunctive sub networks (MCTS) and ii) de-

composition into overlapping sub networks (T-clusters)

Partitioning of T-invariants into MCTS

MCTS are based on a matrix D in which rows and columns correspond to T and

X, respectively, with T defining the set of transitions and X defining the set of

T-invariants. Each row constitutes a subset I ⊆ X of T-invariants that share a

considered transition t. Biologically, this means that a specific reaction is part

of a certain number of all possible and minimal steady state signaling pathways

within the network. All transitions, which in this way are shared exclusively by

the same set of T-invariants, form an MCTS A ⊆ T for which holds:

∀ti, tj ∈ T : ti, tj ∈ A ⇐⇒ I(ti) = I(tj). (3.7)

The set of all transitions of T-invariant x ∈ X is called support of x and denoted

supp(x). Given Equation 3.7 it follows that each MCTS is either a subset of the

support of a T-invariant or does not participate in a T-invariant at all:

∀~y = x ∈ X : A ⊆ supp(x) ∨ A ∩ supp(x) = ∅. (3.8)

Clustering of T-Invariants

A clustering of the T-invariants was performed to find similarities imposed by

transitions that are shared between different T-invariants. T-clusters define sub

networks that can overlap (234). They facilitate the identification of frequently

traversed routes, which are formed by common subsets of reactions and are

thought to highlight more important structures within the net. The cluster anal-

ysis was done by computing a distance measure according to the transformed

Tanimoto coefficient (234), which is also known as binary distance or Jaccard

index. This measure is well suited for comparing signaling pathways in vector

representation, because it is robust against variations in the total number of re-

actions in a network by considering reactions, missing in both of the compared

T-Invariants, as additional evidence of similarity. Hence, three binary states can

be specified: M11, the number of reactions present in both compared T-Invariants,

M10, the number of reactions present only in T-invariant Ti and M10 the number
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of reactions present only in Tj. The Jaccard-Tanimoto similarity measure follows

as:

J(Ti, Tj) =
M11

M01 +M10 +M11

(3.9)

and the Tanimoto distance as:

D(Ti, Tj) =
M01 +M10

M01 +M10 +M11

= 1− J (3.10)

The corresponding distance tree of related T-invariants was constructed by the

UPGMA-algorithm (236). A threshold of 80% was chosen to merge T-invariants

with less than 20% difference into the same subtree. The same distance measure

and clustering algorithm was used to create a color map (cf. Figure 3.14). A

color map is a graphical way of displaying matrices by using colors to represent

the numerical values. Due to the binary (on/off = present / non-present) sta-

tus of transitions within T-invariants, a simplified two color mode was chosen,

where dark and light blue tones indicate the presence and absence of an reaction,

respectively. The color map also rearranges rows and columns of the distance ma-

trix so that similar rows, and similar columns, are grouped together, according

to the distance tree. This representation facilitates to visualize block patterns of

transitions, shared by different T-invariants.

3.2.2 Model Refinement

Many biological signaling processes in the human cell are well documented, for

example the caspase cascade of apoptosis or the communication network of cy-

tokines between immune cells. Reactions of these signaling pathways can be found

in databases as Kegg (237) or Transpath (238). Although the spliceosome is

for many years under investigation, no consistent and wholistic network has been

published so far. Reactions involved in spliceosome assembly were biochemically

described, but not formalized.

Because of the multitudity of involved proteins a high initial effort was necessary

to manually review literature that describe or suggest reactions involving these

proteins. Known experimental results were taken as base to extract reactions ap-

plicable for designing the PN model, but were often only vaguely or contradictory

described. Therefore, depending on available data, reactions and its participating

factors were summarized or abstracted. A naming convention for reactions was
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introduced to give a quick idea of the nature of the reaction (e.g.,
”

bdg“ for

binding
”

matur“ for maturation,
”

ass“ for assignment). All reactions used for

the model are summarized in Table C.1.

A processing scheme was developed (see Figure 3.5), which guides from the ex-

traction of reactions from literature, through their incorporation into the model

network to the subsequent validation by T-invariant and MCTS computation. In

average, each protein or reaction of the network was supported by at least one

experimental observation or thoroughly inferred from such. This time intensive

preparation could be more automatized in future, but human inspection for cor-

rectness of the pathways will remain an important aspect of quality control of

the final model. The processing steps that were iteratively applied to extend and

revalidate the model, can be summarized as follows:

i. Collect review articles about E- and A-complex assembly

ii. Identify and extract reactions, and develop the first PN model

iii. Compute T-invariants, MCTS and T-clusters

iv. Check biological meaning of T-invariants/MCTS:

first model check → describe and annotate T-invariants/MCTS

repeated model check → compare previously computed T-invariants/MCTS

if necessary, update annotation

implausible result → return to literature, consult independent reports on

reactions that appear not to be covered by T-invariants

v. Check composition of T-clusters

vi. Extend model by further reactions reported for B and C-complex formation

This procedure allows the iterative and semi-automated evaluation of the results

of the T-invariant / MCTS computation to provide support for the PN model.

However, presently the raw output of the PN editor tool (235) has to be manu-

ally checked after each processing round, because of the rearrangement of internal

node IDs after editing the network. This is a limitation of the present PN editing

software. After this intermediate check, all reactions (see Table C.1) were auto-

matically written and formatted into tabular form by a Perl script. Nevertheless,

consultation of experimental literature often involve an elaborate search for re-

ports, which describe not only the immediate partners of the reacting molecule,
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but if possible also surrounding processes for connecting the reaction appropri-

ately to the existing network.

INA.pm
-inherits basic functions and
 object attributes of PNT.pm
-collection 

Literature
SNOOPY:

edit PN; add new 
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INA / PInA
computing t/p-
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 PN data structures; 
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Figure 3.5: Overview of methodology applied to model the spliceosomal assembly path-
way. The inner part shows steps that involve in house software (Perl) for reformatting and
analyzing the output produced by external tools.
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3.2.3 Data Preparation

To handle the output given by the program Ina, several perl scripts were written,

which run on top of two libraries, collecting functions for analysis of *.pnt and

*.ina files. These served to:

i. Rewrite summarizing reactions from *.pnt files, provided by Ina

(get reactions.pl)

ii. Find inconsistencies within the model by compiling the offending tran-

sitions in case the network is not completely covered with transitions

(check coverage.pl)

iii. Compute MCTS and print them in two different summaries (1. fractions

of T-invariants sharing the MCTS; 2. number of transitions involved in the

MCTS) along with some descriptive figures about types and frequencies

of T-invariants (compute mcts.pl); this script also creates a core file for

annotating the MCTS, from which at a second run the annotation is written

into a ready-to-use formatted table

iv. Annotate T-invariants and print them into a formatted table

(print tinv report.pl)
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3.3 Results

3.3.1 Application of PN Modules in Splicing Models

Inspired by previous suggestions (209, 239, 240), a number of smaller net modules

were designed at first, which served as building blocks describing different reac-

tions or interactions between spliceosomal components. To reach a valid model,

these net modules are useful for testing modeling strategies, which appropri-

ately reflect observed biological behavior of parts of the network. In general, the

modeling of biologically meaningful modules within signaling pathways strongly

depends on the depth of experimentally verified knowledge of the described mech-

anism. The following net modules have been used for modeling the basic reactions

of spliceosomal assembly:

i. Allosteric interaction describes the process in which a protein binds to

a specific domain of a target protein, induces a conformational change at

a distant site, and hence rendering the target protein itself active or inac-

tive. In spliceosomal processes this concept can be extended to the level

of protein complex association, where the binding of special factors is cru-

cial for subsequent progress through intermediate assembly stages (see Box

3.1.1). A module for this biochemical process is decomposable into four T-

invariants, two of which being cycles hat describe the repeated association

and disintegration of the intermediate complex, AB, and the final complex,

ABC (cf. Figure 3.6). Note that dissociation is restricted to AB + C or

A +B +C, since AC or BC are
”

forbidden“ by the allosteric rule imposed

during complex formation. The same model strongly reduces structural

complexity by exhibiting one T-invariant, covering all transitions.

Further special cases of allostery can be distinguished, and accordingly dif-

ferent net modules were designed.

(a) Allosteric inhibition depends on the presence of a specific domain

within a subcomplex, an inhibitor may bind to the complex, inducing

either disassembly of the complex or non-functionality of the complex

towards specific downstream interactions (cf. Figure 3.7). This leads

to an extension of the module depicted in Figure 3.6b, where the het-

erotrimer ABC can either participate in further reactions (ABC out),

dissociates or binds to an inhibitory factor I. After sequestration of
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(a) Allosteric cascade with dissociation

(b) Simplified allosteric cascade

Figure 3.6: Example of a module for protein complex association where two molecules
A and B form a heterodimer, AB, which defines a necessary step for binding the factor,
C, in progressing the complex assembly through complex ABC. (a) PN module with
reactions, forming (solid lines) and decomposing (dashed lines) intermediate complexes.
Two of four computed T-invariant pathways, completely covering this module are colored
and define the main signaling route (blue) and a cycle (red); green = source factors, grey
= intermediate factors (complexes); blue = target complex; (b) The same model without
dissociation reactions strongly reduces structural complexity, leading to one T-invariant.

complex IAB, AB may either dissociate again or remain for a cer-

tain time non-functional within IAB. Thus, it is modeled as output

transition (IAB out). The module designed with dissociation reac-

tions again results in several T-invariants (data not shown), including

sustained cycles of associations and dissociations. In contrast, the

module reduced for dissociation reactions exhibits two minimal T-

invariants, reflecting only the important aspects of functional ABC

and non-functional IAB formation. The simplified version may suffice

in many cases, in particular when time points of protein activities are

yet unknown, for example, the time when a specific factor dissociates

from an intermediate complex. This net module is easily modified

from the basic allosteric cascade shown in Figure 3.6b) by adding the
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inhibitor I and introducing an additional edge that purges AB.

Figure 3.7: Reduced PN module which describes the formation of an inhibiting inter-
mediate complex (IAB). The blue highlighted pathway covers reactions which result in
a functional target complex ABC, while the red colored pathway describes a T-invariant
covered by reactions which result in a non-functional complex IAB.

(b) Allosteric enhancement describes the presence of a specific pro-

tein factor, which increases the affinity of other proteins to participate

in subsequent reactions (e.g., subcomplex formation, RNA recognition

etc.). The structural analysis results in four T-invariants, two of which

producing the target complex AB. The interaction of factor A and B

can result in a dimerized complex AB (3.8a, red pathway), however,

the enhancer may be necessary for the protein (complex) to be ac-

tive. The model accounts for the presence of enhancer E with a higher

output of AB (Figure 3.8a, blue pathway) due to an increased arc

weight. Hence, transition AB out has to fire twice to reproduce the

initial marking. Biologically, this can be interpreted as an increased

signal transduction as AB reaches a state of higher disposition for

participating in downstream reactions. The reduction of the system

for the dissociation reaction of the dimer AB decreases the number

of T-invariants by one (Figure 3.8b). Two T-invariants involve transi-

tion assoc AB but only one produces AB, while the other purges AB

from the network (Figure 3.8b, red pathway). The enhancer involving

pathway via assoc ABE again produces an increased amount of AB,

thus the reduced model captures all essential aspect of the enhancer

dependent complex formation.

ii. Enzymatic reactions describe the reactions where a catalytically active

enzyme acts on molecular groups of spliceosomal proteins, e.g., kinases
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(a) Allosteric enhancement with dissociation

(b) Simplified allosteric enhancement

Figure 3.8: PN module for modeling enhanced protein-protein interaction. The presence
of enhancer proteins stabilizes complex formation and results in an increased output of
dimer, AB, compared to dimerization without the influence of enhancer protein, E. Note
that in contrast to Figure 3.6, enhancer E only mediates a temporary effect until the
dimer, AB, has stabilized its interaction. (a) The module with a dissociation transition
for dimer, AB, which results in four T-invariants, including one with a higher output of AB
(blue pathway) and one producing AB via a possibly undirected self stabilized interaction
(red pathway) (b) Replacement of the dissociation reaction by an output transition (red
pathway) reduces the number of T-invariants, while preserving the essential model function
of enhancer dependent complex formation.

phosphorylate proteins. This behavior was modeled as loop, which pre-

serves the marking of the respective place and results in a simple conserva-

tion relation (Figure 3.9a). Also helicase like proteins with DExD/H box

domains have been frequently found in purified spliceosomes (149) and were

here considered as separate module. This module was extended for another

reaction, representing the enhancement of substrate specificity of the heli-

case (see Figure 3.9). In this context, the rate of NTP hydrolyzation has
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been proposed as a crucial parameter for splicing fidelity, since fast kinetics

on weak or incorrect protein-substrate (RNA, protein) interactions increase

the chance of dissociation of essential spliceosomal proteins. In consequence,

such defective substrates could be submitted into a degradation pathway

(165). While a putative degradation pathway was integrated as a branch

into the PN, the hydrolyzation activity could not be modeled, because of

the lack of kinetic parameters. Finally, since several DExD/H box proteins

are involved in spliceosome assembly, the total accuracy of splicing may

depend on the cumulative success of enzyme modulated signal transduction

along the pathway, further complicating the corresponding kinetic model.

(a) Phosphorylation (b) Helicase specification

Figure 3.9: PN modules, modeling enzymatic activities found in protein complex assem-
bly. (a) Model of protein activation where phosphorylation of a specific domain mediates
interacting capabilities, thus, influencing subsequent complex rearrangements; (b) Binding
of a specific factor to a generic helicase, thus, mediating substrate specificity.

3.3.2 Defining Biological Reactions of the Spliceosome

Assembly Pathway

In an iterative process (see Diagram 3.5) literature was inspected to isolate reac-

tions involved in spliceosome assembly. Reactions and proteins focus on knowl-

edge reported for human spliceosomal processes, however some parts where first

discovered in yeast and the human homologue proteins discovered later. In this

way the model does not discriminate between an explicit human or yeast spliceo-

somal assembly model. All reactions are ordered according to the four major

stages of spliceosome assembly, E-, A-, B- and C-complex (see Table C.1). After
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each major stage the structural composition of the assembly network was evalu-

ated by T-invariant analysis. The net was only extended if each modeled reaction

was part of at least one T-invariant. Reactions were only included if the factors

involved could be integrated in a causal order. As consequence, some spliceoso-

mal factors, e.g., SPF27, CypE, HSP73 and others, are omitted from the model

due to lack of evidence for a specific time point at which they participate in the

spliceosomal assembly process. Further, it was assumed that all factors for which

no evidence of leaving or becoming destabilized in spliceosome assembly is given,

implicitly remain in the spliceosomal subcomplexes until finally a dissociation

into substructures (e.g., snRNPs) and their recycling takes place. Hence, not

all factors modeled with an input transition have an explicit output transition.

This is reasonable since many substructures remain intact for repeated rounds

of spliceosomal assembly (241) This results in a model with 140 reacting species

(places) comprised of RNA, proteins and intermediate complexes was established,

which covers about half of the currently known spliceosomal proteins. The net-

work was modeled as transition-bounded network with all places connected to

a total of 161 transitions. 92 (57%) of those are boundary transitions, splitting

into 68 (74%) input and 24 (26%) output transitions. In total 69 (43%) tran-

sitions describe the internal reactions of the assembly network. This biological

network was modeled by reactions, which reflect a certain hierarchy characteristic

for spliceosome assembly. Therefore and in contrast to PN models for technical

processes, the degree of concurrency of reactions is reduced in the network.

3.3.3 Invariant Signaling Pathways in Spliceosome As-

sembly

Pathways Corresponding to T-Invariants

Structural analyses resulted in a complete coverage of the network by 71 T-

invariants (see Table C.3). All T-invariants describe at least one partial pathway

within the spliceosomal assembly process and are biologically meaningful. 12 T-

invariants (17%) can be considered to be trivial as they describe solely the in-

and efflux of the DExD/H box helicases Prp5, Prp28, the proteins hPrp6, SKIP

and hDib1, the splicing factors SF1, ASF/SF2, SC35 and the SF3b components

SF3b10, SF3b14a, SF3b14b and SF3b49. However, these proteins also constitute

a set of spliceosomal components for which it is possible to narrow the putative

point of exit from the assembly process, which so far is unknown for the majority
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of proteins functioning in spliceosome assembly. For example, the four smaller

SF3b proteins are known to be required for SF3b formation, but are not detected

at the stage of C-complex formation (cf. supplements of (151)). Each set of

reactions of a T-invariant provides a solution of the homogenous equation system

derived from a matrix of all reactants and reactions under assumption of a steady

state system. As result the removal of a single reaction from an invariant signaling

pathway is critical for functioning of this pathway. In case of spliceosome assem-

bly, this does not mean that the entire assembly process is stalled. The model

clearly illustrates that different results from experimental studies shape up to a

network with an inherent redundancy to sustain specific check points which rep-

resent crucial intermediate assembly stages. For example, a critical step of early

spliceosome assembly is the donor or 5′ splice site recognition, for which several

parallel occurring signaling pathways were modeled. These pathways contribute

to the intermediate stage of E-complex assembly and are reflected in the model

by several sets of T-invariants which are listed below. Note that enumerated

T-invariants are prefixed by
”
i“. T-invariants in brackets describe spliceosomal

subpathways that involve 5′ss recognition, but do not proceed via the productive

branch of C-complex formation that results in exon ligation:

i. T-invariants i13, i14 (i68, i69) → U1 snRNP independent 5′ss recognition:

The central function of this branch is transition t16.U1 indep 5ss act, which

models the activity of the SR protein SC35. The presence of SC35 is suffi-

cient to define a 5′ss in absence of a functional U1 snRNP (143) and initiates

contacts to the BP occupying proteins SF1 and U2AF. This can result in

selection of competing 5′ss, which render this pathway a potential candi-

date for the production of alternatively spliced mRNAs (171). The remain-

ing transitions of this branch are t31.U2 BPS bdg2 and t32.U6 5ss bdg2,

which feed U2 snRNP and U4U5U6 tri-snRNP respectively and proceed

the assembly pathway to the B-complex stage. Further differences in the

T-invariants, sharing this otherwise unique branch of 5′ selection, exists in

two different ways of A-complex assembly via early t13.17S U2 matur2 (i13,

i68) or late t22.17S U1 matur1 (i14, i69) action of the enzyme SF3b125.

However, for i14 it is not clear at which time SF3b125 leaves the assem-

bly process, hence this T-invariant includes additionally the input reac-

tion t109.SF3b125 in. Another variation between these similar T-invariants

is the different proceeding during C-complex assembly after the remodel-

ing step t93.U2 3ss U6 5ss U5 remod. Either a productive spliceosome is
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formed via one type of pathway (i13, i14) or the premature disassembly is

reflected via another type of discard pathway (i68, i69).

ii. T-invariants i15-i20 (i62-i67) → ASF/SF2 dependent 5′ss recognition:

These T-invariants describe the 5′ss recognition via contacts of

U1 factor U170K and the exon-bound splicing factor ASF/SF2

(t12.ASFp U170K bdg), with subsequent contacts of U1C to intron

bound splicing factor TIA1 (t9.U1C TIA1 bdg1 ) (242, 243, 170).The U1

snRNP protein U170K hereby interacts with ASF/SF2 via its RS domains

(169). Subsequently, these T-invariants show some individualities, allowing

to form three groups.

(a) Firstly, T-invariants i15, i16 (i66, i67) describe the E-complex for-

mation via U1 contacts to the branchpoint bound splicing factor SF1

(t58.U1 SF1 bdg) and the joining of the auxiliary factor U2AF, after its

recognition of the polypyrimidine tract t59.U1 SF1 U2AF bdg. Depen-

dent on the U2 maturation via SF3b125, there exist again two different

T-invariants for this mode of E-complex formation.

(b) Secondly, the presence of the splicing factor SC35, has been found

to facilitate 5′ss recognition (t17.U170K U2AF35 bdg) but required the

U1-complex and U2AF ((244)). Hereby, the protein FBP11 helps to bridge

U1 and SF1, a constellation which is in agreement with the observation

that SF1 and U2AF bind cooperatively to the branchpoint and polypyrim-

idine tract, respectively (175, 174). This mode of E-complex assembly is

reflected by the T-invariants i17, i18 (i64, i65).

(c) Thirdly the T-invariants i19, i20 (i62, i63) describe a pathway of E-

complex assembly, in which the splicing factor SC35 can substitute for the

requirement of the auxiliary factor U2AF. Again, SC35 bridges the 5′ss

and the branchpoint via contacts to U1 and SF1 t56.U1 SC35 SF1 bdg,

but subsequently U2 is directly bound to this intermediate complex

t152.U2 SC35 bdg. It should be noted that in the subsequent A-complex

formation this pathway contains some ambiguity in that the helicase

UAP56, which is required for conformational change in transition from E to

A-complex, needs the U2AF component U2AF65 as essential cofactor for

its activity (184, 165).
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iii. T-invariants i21 - i26 (i56-i61) → 5′ss recognition in the 5′ terminal exon:

The first donor splice site within a transcript follows a different mode of

recognition. Here, the interaction of U1 snRNP proteins (U1C) to proteins

of the cap binding complex (CBC) via LUC7 has been shown and hence

was modeled with a separate reaction (t10.U1 CBC 5ss bdg), which triggers

another set of T-invariants. However, except for the interaction with the

cap binding complex, these T-invariants are the same as above (ii a-c)

and may constitute novel alternative pathways for the initial spliceosome

assembly at newly synthesized transcripts.

iv. T-invariants i27 - i32 (i50-i55) → 5′ss recognition via U1C contacts to in-

tron bound splicing factor TIA1:

This branch models the 5′ss proximal (intron) binding of the splicing regu-

lator TIA1, which stabilizes contacts of U1 with the 5′ss via interaction with

the N-terminal region of the U1-C protein (t30.U1C TIA1 bdg2 ) (170). As

alternative pathways to the proposed joint action of ASF/SF2 and TIA1 in

5′ss selection (as described above), T-invariant i29 (i52) involve SC35 and

FBP11 in subsequent A-complex formation or either only SC35 (i27, i54)

or only FBP11 (i31, i50) as U1 snRNP binding supporting splicing factors.

v. T-invariants i33 - i38 (i44-i49)→ 5′ss recognition without additional splicing

factors:

These T-invariants model the 5′ss recognition without the parallel binding

of the U1 stabilizing factors ASF/SF2 or TIA1, which could be described as

a mode for strong donor splice site selection. However, the transition from

E to A-complex may require conditions as described for the T-invariants in

ii a-c.

vi. T-invariants i39, i40 (i70, i71)→ 5′ss binding by U1 snRNP after initiating

contact to U2 snRNP via Prp5:

These T-invariants describe a pathway of splice site selection, which devi-

ates from the classical model of initial 5′ss selection. The ATPase Prp5

bridges U1 and U2 snRNP prior to substrate binding, that is U2 is already

associated with U1 and Prp5 when it binds to the intron, a fact that is ex-

perimentally affirmed by the binding of Prp5 to U1 and U2 also in absence

of pre-mRNA and by the ATP dependent requirement for Prp5 for pre-

spliceosome assembly (181). The T-invariants therefore contain the reaction

t27.U1 Prp5 U2 bdg as bridging step, followed by t28.U1 5ss U2 U2AF bdg
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describing the contacts with the 5′ss and the branchpoint/polypyrimidine

tract associated proteins. The ATP dependent structural rearrangements

towards A-complex assembly are modeled by t55.unwind1 U2 stl2 a step

that releases the U2 factor SF3a60 (165). The UAP56 catalyzed con-

formational changes in the U1/U2 pre-mRNA complex are modeled by

t29.U1U2 BPS bdg and complete the transition from E to A-complex.

Shortly after or in parallel to the recognition of the 5′ss by U1 snRNP, the U2

snRNP joins the assembly pathway and defines the branchpoint region. Matura-

tion of the 17S U2 snRNP was proposed to proceed via two different actions of the

putative DExD/H box helicase SF3b125 (182). This enzyme can act at an early

stage of 17S U2 formation by catalyzing a conformational change when SF3b is

integrated into the 12S U2 snRNP to form the intermediate 15S U2 snRNP sub-

complex (t13.17S U2 matur2 ). Alternatively, SF3b125 may act subsequent to

the binding of SF3b, in this way supporting the conformational rearrangement to

integrate the SF3a subcomplex into the U2 snRNP (t22.17S U2 matur1 ). Exper-

imental evidence suggests that this putative enzyme is largely dissociating during

17S U2 assembly (182). Hence, at least one of the alternative reactions was mod-

eled to set SF3b125 free from the U2 snRNP maturation subpathway. Due to

the two different U2 snRNP maturation scenarios, the number of T-invariants is

doubled for all subsystems, which require the presence of a mature U2 snRNP,

thus demonstrating the emergence of combinatorial complexity in the modeled

system.

A similar property of the network can be observed during late spliceosome assem-

bly, where a branching of the pathway was modeled according to the proposed

function of the Prp16 DExD/H box helicase. Although the model does not reflect

the kinetic behavior of Prp16 in detail, the effect of two different possible kinet-

ics can be described. The proper kinetics of Prp16 requires a proper substrate

of pre-mRNA and snRNP conformations and may channel spliceosome assembly

into a productive pathway of C-complex assembly, such that the second step of

splicing and exon ligation can proceed (via t101.Prp16 remod step). In contrast,

mutations in the involved RNA species or unfavorable conformations due to miss-

ing proteins, can result in a slowed Prp16 kinetics which was proposed to activate

a discard pathway (245, 241) reflected by transition t100.premature ATP hydrol.

This must not necessarily be a degradation pathway as some of the involved

factors (Spp382, Prp43) are also active in recycling spliceosomal components

(165, 197) modeled by t96.Spp382 hPrp43 act. Summarizing, two possible and
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different major outcomes of spliceosome assembly are captured by the model and

cause a doubling of observed T-invariants: i) the productive (T-invariants i13-i43)

and ii) the unproductive (T-invariants i44-i71) branch of late spliceosome assem-

bly, which are combined with all subpathways passing through E- and A-complex

assembly.

Conservation Relations Corresponding to P-invariants

Compared to the number of T-invariants the present network structure generates

four place invariants. A trivial P-invariant exists for the serin protein kinase

1 (SRPK1), which was modeled as a loop connected to the transition that

describes the phosphorylation of the splicing factor ASF/SF2. In contrast

to other putative enzymes, which act within the spliceosomal subcomplexes,

SRPK1 is active at an early stage, activating individual splicing factors. Thus,

it is assumed not to pariticipate in further spliceosome assembly and has been

modeled as available in a non-limited amount. Two other P-invariants are

related to the factors Prp31 and Prp38, which are present in the B-complex.

Prp31 has been shown to bind the U4 snRNA and the U4/U6 snRNA duplex in

presence of another factor, Snu13. Hence, Prp31 enters spliceosomal assembly

at least in the stage of U4/U6 subcomplex formation (246, 189). Furthermore

it was shown that Prp31 is destabilized at the time of catalytic activation of

the spliceosome. Thus, it was modeled to leave the spliceosomal main complex

with the reaction t.68.B complex act. This results in seven places, describing

the tri-snRNP and B-complex formation, which form a P-invariant for the

system conservation of Prp31. The fact that Prp31 is required for successive

rounds of tri-snRNP and spliceosome formation suggests this protein to be

abundantly available, which in turn justifies a conservation relation. Prp31 is

furthermore a crucial factor in spliceosome assembly because mutations in its

gene are related to the blindness causing disease retinitis pigmentosa (189).

Since all T-invariants, which involve the reaction of U4/U6 snRNP association

(t47.U4 U6 bdg, ∼79% of all T-invariants) depend on the presence of Prp31, the

model suggests that more than three quarter of the network would fail if this

protein would be knocked out.

Prp38 (yeast ortholog of human protein 27K) forms a similar albeit smaller

P-invariant of five places, which except for Prp38, is itself a complete subset

of the Prp31 P-invariant. The time of appearance and release of Prp38 is less

clear but it was shown to associate with higher affinity (and thus stability)
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with the assembled U4/U6.U5 tri-snRNP than with an individual U snRNP

(247). Hence, it was modeled to enter tri-snRNP formation at the time of U5

snRNP integration. Its involvement in structural rearrangement of the U4/U6

complex without possessing a DExD/H domain to actively participate in the

required hydrolyzation reactions, makes it a putative auxiliary factor for the

DExD/H box helicase Prp28 (247, 248). The possible connection between

Prp38 and the helicase Prp28, which catalyzes the unwinding of the U4/U6

snRNA duplex upon U2 snRNP integration (247), implies that both proteins

exit from the active assembly pathway after this step. In this way, Prp38 might

as well as Prp31 form a conservation relation at the stage of B-complex formation.

The fourth P-invariant defines the cycling of the DExD/H box helicase Prp16,

which is a crucial determinant of the second catalytic step, by catalyzing the ini-

tial conformational changes in transition from first to second catalytic step (165).

Prp16 binds transiently, being no integral snRNP component, and leaves the

spliceosome upon ATP hydrolyzation (249). The Prp16 P-invariant consists only

of three places (including the free protein Prp16), denoting the intermediate com-

plexes p90.U2 5ss U6 U5 conf1 and p100.U2 5ss U6 U5 conf2, in which Prp16

unfolds its catalytic activity. In contrast to other helicases involved in structural

rearrangements (e.g., Prp28), this enzyme occurs not in different branches of the

network, also explaining its appearance in a conservation relation.

In general, the appearance of essential enzymes in conservation relations can

be meaningful to reflect their availability for subsequent rounds of spliceosome

assembly, which may require a constant presence proximal to the location of

spliceosome formation. The identified P-invariants suggests that more spliceo-

somal factors exists whose relative concentration do not change markedly via

repeated rounds of spliceosome assembly. Lack of evidence at which time other

catalytically active proteins specifically (re)enter the assembly process or how

long they remain associated with the main complex, presently limit the modeling

of further P-invariants. In contrast to metabolic networks, where commonly only

low molecular substances appear in conservation relations, here also enzymes or

intermediate complexes can be conserved within a defined signaling network.
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3.3.4 Decomposition of the Spliceosomal Network into

Functional Units

Analysis of Maximal Common Transition Sets

Maximal common transition sets (MCTS) have been defined as a more general-

ized concept of enzyme subsets, which define enzymes in a biochemical network,

that operate under steady state conditions always together, in one or several

metabolic fluxes. Enzyme subsets further require that the enzymes involved are

all regulated in the same direction and that their fluxes behave proportional (250).

MCTS, in contrast, relax the constraints imposed on mutually occurring sets of

reactions to some extent. Due to missing stoichiometric coefficients the constraint

of proportionality does not apply. They describe sets of reactions that are in a

maximal number of T-invariants (
”
signaling fluxes“) present, hence being shared

by different signaling pathways. Given the correctness or biological plausibility

of T-invariants, MCTS emphasize key parts of signaling routes and facilitate the

description of functional parts of a network. Vice versa, they can be indicative of

modeling flaws if they combine transitions without proven biological relationship.

Table 3.1 shows the MCTS computed on the set of all 71 T-invariants. There

exist six smaller MCTS composed of only two transitions, which nevertheless rep-

resent crucial elements of the assembly pathway. MCTS 1 (t0.U2AF35 3ss bdg,

t1.3ss in) describes the recognition of the 3′ss by the factor U2AF35 which occurs

in more than 56% of all T-invariants. Next frequently, MCTS 7 is formed by

two reactions shared by 32 T-invariants (45%), which describe the influx of the

bridging factor FBP11 (t15.FBP11 in) and subsequent binding of the U2 snRNP

to the branch site t24.U2 BPS bdg1 ). Taken together, MCTS 4 and MCTS 7

form a module that covers the FBP11 supported interaction of U1 snRNP with

the branchpoint bound factor SF1 and the subsequent joining and structural

rearrangement of U2 snRNP with replacement of U2AF at the polypyrimidine

tract. The remaining small MCTS occur still in more than one quarter of all

invariant pathways and cover the NTC-complex and Prp19 integration (MCTS

16), the late SF3b125 action in 17S U2 maturation (MCTS 9), and the slowed

ATP hydrolysis by Prp16 with initiation of the discard pathway (MCTS 18).

The largest set of shared transitions (MCTS 2) covers 54/161 (33%) of all tran-

sitions, occurring in more than three quarter of all T-invariants. This MCTS
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is composed of several building blocks, which define biological functions at es-

sential stages of spliceosome assembly, for example, branchpoint definition, 15S

U2 snRNP assembly, SF3a and SF3b subcomplex formation, U5- and U6 snRNP

maturation and the cyclophilin trimer formation. The energy supply by ATP

and removal of ADP is part of MCTS 2, which naturally has to be shared by

many T-invariants as each stage requires ATP either for phosphorylation or hy-

drolyzation reactions. The maturation and recycling of the U1 and U4 snRNP

is described by individual MCTS (11 and 13), the former consisting of reactions,

which are shared by almost three quarter (73%) of all T-invariants. All MCTS

further validate the model network, capturing crucial parts of the U1 and U2

snRNP maturation, U1 independent 5′ ss recognition and the Prp16 involved dis-

card pathway in spliceosome assembly. A more detailed PN model of U1 snRNP

assembly was recently published (226).
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Figure 3.10: The complete network of spliceosome assembly modeled as transition
bounded Petri net. The different stages are labeled with capital letters: E = E-complex,
A = A-complex, B = B-complex, TRI = tri-snRNP complex, C = C-complex and R =
recycling pathways. Places are colored according to different functions: orange = proteins
with RS domains; blue = RNA; magenta = DExD/H box proteins functioning as ATP
dependent ”RNA unwindases“; gray or hatched = logical places, indicating equal places
occurring more than once in the figure, but not in the underlying graph structure of the
PN. Transitions represented by two squares introduce hierarchical nodes, which connect to
further reactions at a lower network level (see Figure 3.12)
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Figure 3.11: Network of spliceosome assembly. The red T-invariant transitions belong to
a possible scenario of E-complex assembly, which is part of different concurring redundant
subpathways. Here, the 5′ splice site is recognized via an U1 snRNP independent pathway
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Figure 3.12: (a-k) Subhierarchy levels of the spliceosomal assembly network. Red high-
lighted transitions showing exemplarily T-invariant 13, which describes one possible sce-
nario of E-complex assembly as shown in Figure 3.11
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Table 3.1: Maximal common transition sets (MCTS) as determined from the 71 T-invariants that cover the network. Each MCTS comprises
reactions that are exclusively shared by several T-invariants and hence describe frequently used routes through the spliceosomal assembly network.

MCTS Transitions T-Invariants

ID IDs # % IDs # % Biological Interpretation

1 t0, t1 2 1.24 i13-i18, i23-i26, i29-i32, i35-i40, i44-

i47, i50-i53, i56-i59, i64-i71

40 56.34 Recognition of 3′ss by U2AF35

2 t3, t7, t11, t18-t21, t26, t42,

t44-t54, t68-t72, t86, t87, t93,

t96-t98, t104-t106, t110, t111,

t113, t114, t118-t129, t144,

t145, t150, t151

54 33.54 i13-i40, i44-i71 56 78.87 Branch point definition, 15S U2 snRNP assembly,

SF3a formation, partial SF3b formation, U5- and U6-

maturation, CypH trimer formation, ATP-in- ADP-efflux

3 t4-t6 3 1.86 i13-i18, i21-i26, i29-i32, i35-i40, i44-

i47, i50-i53, i56-i61, i64-i71

44 61.97 U2AF dimerization

4 t8, t23, t57, t158, t159 5 3.11 i13-i18, i23-i26, i29-i32, i35-i38, i44-

i47, i50-i53, i56-i59, i64-i69

36 50.70 Reactions of U2 snRNP remodeling variant 1, involving

hPrp43 and UAP56

5 t9, t12, t141-t143 5 3.11 i15-i20, i62-i67 12 16.90 ASF phosphorylation and 5′ss definition via ASF/U1

snRNP/TIA1 interactions

6 t10, t137-t139 4 2.48 i21-i26, i56-i61 12 16.90 5′ Terminal 5′ss definition via U1 snRNP interactions with

cap binding complex

7 t15, t24 2 1.24 i15-i18, i23-i26, i29-i32, i35-i38, i44-

i47, i50-i53, i56-i59, i64-i67

32 45.07 FBP11 dependent U2 snRNP binding to the branch point

8 t16, t31, t32 3 1.86 i13, i14, i68, i69 4 5.63 U1 snRNP independent 5′ss definition and A complex for-

mation

9 t22, t109 2 1.24 i14, i16, i18, i20, i22, i24, i26, i28, i30,

i32, i34, i36, i38, i40, i45, i47, i49, i51,

i53, i55, i57, i59, i61, i63, i65, i67, i69,

i71

28 39.44 SF3b125 dependent 17S U2 snRNP maturation

10 t25, t27-t29, t55 5 3.11 i39, i40, i70, i71 4 5.63 U1/U2 snRNP bridging by Prp5 and simultaneous binding

to 5′ss and branch point

11 t33, t34, t133-t136 6 3.73 i15-i40, i44-i67, i70, i71 52 73.24 U1 snRNP maturation and recycling

12 t35, t56, t152, t155 4 2.48 i19-i22, i27, i28, i33, i34, i48, i49, i54,

i55, i60-i63

16 22.54 U2AF independent A complex formation

continued next page



106
D

ecom
p

osition
of

th
e

S
p
liceosom

al
N

etw
ork

in
to

F
u
n
ction

al
U

n
its

Table 3.1: Maximal common transition sets (MCTS) as determined from the 71 T-invariants that cover the network. Each MCTS comprises
reactions that are exclusively shared by several T-invariants and hence describe frequently used routes through the spliceosomal assembly network.

MCTS Transitions T-Invariants

ID IDs # % IDs # % Biological Interpretation

13 t36, t146, t147, t149 4 2.48 i7 1 1.41 U4 snRNP maturation and recycling

14 t58, t59 2 1.24 i15, i16, i25, i26, i31, i32, i37, i38, i44,

i45, i50, i51, i56, i57, i66, i67

16 22.54 FBP11 supported U1 snRNP/SF1 binding and subsequent

interaction with U2AF bound PPT-3′ss

15 t60-t63 4 2.48 i3 1 1.41 PTB inhibitory pathway (without t2.PPT in)

16 t65, t66 2 1.24 i41, i44-i71 29 40.85 NTC-complex formation and stable Prp19 integration

17 t76, t77, t81, t82, t84, t85, t88-

t92, t94, t95, t101, t160

15 9.32 i13-i40 28 39.44 Prp16 dependent remodeling of C-complex, 2nd catalytic

step of splicing, release of ligated exons and disassembly

of postspliceosomal complex

18 t99, t100 2 1.24 i44-i71 28 39.44 Prp16 induced and slowed ATP hydrolysis and commit-

ment of C-complex to discard pathway, disassembly sup-

ported by hPrp43

19 t130-t132 3 1.86 i15-i20, i27-i32, i50-i55, i62-i67 24 33.80 TIA1 intron binding∑
- 127 78.86 - - - -
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Clustering of T-invariants and MCTS

The computed T-invariants (cf. Table C.3) were aligned to determine the

individual distance between the signaling pathways. Similar to sequence

alignments the multiple comparisons among all T-invariants can be used to

built a distance matrix based on which a clustering can be performed. Clusters

reflect groups of signaling pathways, which share a given percentage of reactions.

Here, a threshold of 80% was chosen to merge T-invariants with less than 20%

difference into the same subtree. For example, the T-invariants i13 and i14

show a difference in four reactions in a total pathway length of 92 reactions, i.e.

the transition t13.17S U2 matur2 is missed in i14 and t12.ASFp U170K bdg,

t22.17S U2 matur1, t109.SF3b125 in are missed in i13, which makes both

invariant to 96% similar (cf. Equation 3.9). Comparing different subclusters

helps to identify those reactions, which distinguish the T-invariants and which

reflect different functions in different stages of spliceosome assembly.

The cluster representation depicts all trivial T-invariants in one group in the

lower part of the tree (Figure 3.13 C1-C13, C22, C23), which is reasonable since

they share maximal two transitions with the remaining T-invariants (cluster I).

Also three short T-invariants, which describe the NTC-complex formation, the

subpathway of U4 snRNP maturation and the PTB inhibition pathway group

separately, reflecting subpathways, which are not shared by other signaling fluxes.

In contrast to the out-group, cluster I combines all T-invariants of at least four

reactions.

Subclusters can contain complete or partial MCTS. For example, cluster C17 and

C18 together constitute MCTS 10, which is composed of five reactions, describing

the subpathway of bridging the U1/U2 snRNP by Prp5 and occurs in four T-

invariants. In contrast, T-invariants i15-i20 and i62-i67 share also five reactions

involving ASF/SF2 within MCTS 5 but are part of the two different major clusters

I and IV. These clusters partition the T-invariants in two sets of reactions: one

is reaching the productive end of the spliceosomal assembly pathway (resulting

in spliced mRNA) and the other one is representing the discard pathway during

C-Complex stage.

This splitting can also be seen by visualizing all invariant pathways and their

shared reactions via a color map (cf. Figure 3.14). The color map representation

was used to aid and accelerate the visual identification of groups of reactions that

participate in different T-invariants in conjunction with the dendrogram (Figure
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Figure 3.13: The clustering of T-invariants, whereas trivial and small T-invariants are
shown in the bottom of the tree. The two main clusters are colored in blue and red. Latin
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distance measure and 80% similarity cutoff. Roman enumeration labels clusters that form
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Figure 3.14: Color map (see methods, page 84) to visualize, which transitions occur
within similar T-invariants through the network of spliceosome assembly. The similarity
can be compared via the dendrogram at top off the figure, which is the same as shown
in Figure 3.13. Dark or light blue colors indicate presence or absence of one or several
reactions respectively, among the total set of modeled reactions within one or several T-
invariants. The red dashed rectangles show an example of groups of T-invariants, which
specifically lack the reactions indicated at the right side. It is notable that these groups of
T-invariant appear in different clusters and their common features is easier detectable via
the color map compared to the dendrogram.
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3.13).

It is thought as proposal to introduce a compact representation of the network

structure to facilitate the interpretation of differences between signaling path-

ways. In this case, darker colors symbolize the presence of an reaction within

a T-invariant in vertical direction, but participation in several T-invariants

in horizontal direction. Bright colors mean that a reaction is not present in

T-invariants and consequently also not in MCTS. This representation suggests

to extend the analysis of MCTS also for sets of reactions, which form excluded

subsets specifically missing in certain MCTS. For example, in Figure 3.14 one

can easily recognize two brighter colored horizontal areas within the line of

transition t103.ASF SF2 out, which stretches exactly over the columns that

contain the T-invariants of MCTS 5 (cf. dashed rectangle in Figure 3.14).

This means, transition t103ASF SF2 out is specifically not involved in the

T-invariants i15-i20 and i62-i67.

Further analysis of line t103.ASF SF2 out within the color map reveals that

it is present in almost all other T-invariants, as expectedly in i12, which

poses the trivial influx and efflux of ASF/SF2. For example, two closely

related T-invariants, using this reactions are i13 and i14. They describe the

U1 snRNP independent 5′ss definition, which again can occur in the two

variants generated by the alternative reactions 22.17S U2 matur1 (i14) and

t13.17S U2 matur2 (i13). Interestingly, the T-invariants i13 and i14 do not

contain the ASF/SF2 influx reaction (140.ASF SF2 in), in contrast to its efflux

reaction (103.ASF SF2 out), which is only missing in MCTS 5. This suggests

that the pathways involved in MCTS 5 describe a state in which the spliceosome

has entered a repetition cycle, where many factors are already present for

recurring assembly. Thus, it is conceivable that U1 snRNP is initially available,

but dispensable in subsequent rounds of assembly when a critical amount of

SR proteins (e.g., ASF/SF2) are present to enable U1 snRNP independent 5′ss

definition. It was previously shown that SR proteins are perfectly capable to

organize the cross talk between 5′ss and branchpoint/3′ss by interacting via their

SR domains (20), which is reflected in the PN model.

Another observation that could be made from the color map concerns the ab-

sence of four reactions, t107.SF3b10 in, t108.SF3b14a in, t112.SF3b49 in and

t115.SF3b14b in in, from a large body of T-invariants (i13-i38), independent of
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the trivial T-invariants. These reactions model the influx of four SF3b specific

factors. They were modeled as logical places, each with a specified efflux re-

action prior to the C-complex stage, because experiments failed to detect these

factors within spliceosomal C-complexes (151) (supplementary material). The

T-invariants i13-i38 describe the signaling pathways that reach the final stage of

spliceosome assembly. Hence, these routes pass the stage, where the SF3b fac-

tors are leaving the active assembly process. Among others, the specified SF3b

factors are required for subsequent rounds of spliceosome assembly, thus the ab-

sence of their influx reactions from T-invariants i13-i38 can be interpreted as a

way to remain within range of the spliceosome assembly site. A different scenario

occurs for the T-invariants that enter the discard pathway, which is triggered

before C-complex formation. Here, no explicit efflux reactions could be adapted

from literature for the SF3b factors, hence their influx reaction is part of the T-

invariants i44-i71 (cf. Figure 3.14). This raises the question, what happens with

these factors and when if the discard pathway is activated during spliceosome

assembly.

3.4 Discussion

The present work describes a PN model, which combines different scenarios of

spliceosome assembly over the basic assembly stages of this multi protein complex.

The spliceosome is a nuclear macrocomplex, which is newly built after or as soon

as an precursor RNA emerges from the Polymerase II transcription complex. The

assembly process involves biochemical reactions, which can be distinguished in

enzymatic and association reactions. Unlike in metabolic networks, which com-

monly model the conversion of low molecular compounds to produce energy or

target metabolites, e.g. aminoacids (220, 251), the spliceosome assembly involves

many enzymatic reactions, which act on double stranded RNAs as substrate and

proteins or NTPs as co-factors (165, 198). This is due to the snRNA containing

core components of the spliceosome, which interact via multiple RNA-RNA con-

tacts making it necessary to re-open intermediate conformations at several stages

during the assembly process. Additionally, phosphorylation reactions as known

from signal transduction networks (252) assure the specificity and localization of

splicing factors. Consequently, the model presented here, consists of several types

of molecules (RNA, proteins and compounds of both) and reactions, which have

been designed and tested individually (cf. Chapter 3.3.1) prior to the setup of
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the complete network.

Hundreds of individual studies have investigated components of the spliceosome

or individual biochemical reactions. The knowledge of almost two decades

lab work is available but needs to be translated into a machine readable and

human comprehensible language. Thus, one of the main purposes of this work

is to channel biochemical knowledge about the spliceosome into a formalized

description, suitable for computational analysis. Among the major difficulties

is the handling of non-standardized identifiers of the involved proteins, which

exacerbates the combination of smaller models, initially devised from indivial

reports and successively combined into a larger network of interactions. Thus,

the power of predictive modeling will increase as more submodels become

integrated, covering more details of the spliceosome assembly pathway.

A network of ordered basic interactions was established, leading to the assembly

of an active spliceosome and including also the example of a discard pathway,

which was previously suggested (197). In total, about 100 proteins where

integrated into the model. Many proteins, participating in the spliceosomal

assembly pathway, are themselves alternatively spliced hence may occur in

several isoforms. For example, the U2 snRNP specific component SF3b14 shows

five predicted alternative splice forms of different types (source Asd (53)).

The interactions of SF3b14 are well described (180), including the location

of functional domains within the protein sequence. Since increasingly more

spliceosomal factors are described in such detail, it should be possible in the near

future to estimate the impact of alternative splicing on the spliceosome, which

poses an interesting example of combinatorial complexity. Suppose that in four

stages of spliceosome assembly occurs only one protein factor in two functional

different isoforms, about 24 = 16 different spliceosomes could be assembled

and contribute to different alternative splicing decisions (neglecting that some

alternative splice forms do not reach the protein level). This is a rough estimate

of the lower boundary as many more spliceosomal proteins exist, and most of

their genes are likely to be alternatively spliced. Concerning the presented Petri

Net modeling approach, one can summarize the following achievements:

i. Translation of different lines of evidence for modular subsystems of the

spliceosomal assembly pathway from experimental literature into one unique

mathematical formalism.
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ii. Compilation of minimal positive T-Invariants (P-invariants) based on the

commonly applied steady state assumption for biochemical networks.

iii. Model validation resulting in a network completely covered with T-

invariants.

iv. Representation of combined partial pathways, each supported by experi-

mental reports, allowing for model expansion and testing of new hypothe-

ses.

v. Inclusion of special aspects of 5′ splice site recognition during E-complex for-

mation as well as the potential activation of a discard pathway as simplified

model for a kinetic proof reading mechanism during C-complex formation.

vi. Easier identification of discrepancies in current experimental data by the

combinatorial arrangement of the subpathways. For example, the activation

of UAP56 by U2AF stands in contradiction to the apparent requirement of

UAP56 for transition from E- to A-complex within the U2AF independent

A-complex assembly pathway.

vii. Comprehensive and condensed visualization of the spliceosomal assembly

process, allowing the global inspection of similar and distinct routes. This

facilitates the apprehension of a large network such as the spliceosomal

assembly pathway and its further extension.

The clustering of the T-invariants representing signaling pathways and partic-

ipating in spliceosome formation, indicates that there exists a variety of sim-

ilar pathways leading to the same intermediate complexes. Although each T-

invariant, describing one of these routes, is minimal in that it would fail with the

loss of one reaction, it is clearly visible that there exists a redundancy in routes

leading to the formation of intermediate states. This observation provides the

interesting aspect of a backup failure mechanism, ensuring that independently

from alternating conditions the spliceosome reaches critical assembly checkpoints

with different protein complements. Alternatively, this might extend our view on

different spliceosomes in dependence on different cellular or environmental con-

ditions. The existence of a major and a minor spliceosome with different mRNA

substrate specificities could support this notion, but the major spliceosome as

modeled here suggests for itself a highly dynamic assembly process. The flood of
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different mechanistic examples of individual and sometimes quite different inter-

mediate steps makes it clear that there is no one spliceosome. Hence, there can

be no single model of spliceosome assembly.

Although the current model represents a higher coverage of experimentally

supported subsystems in the early (E- and A-complex) in comparison to later

assembly stages, it is tempting to hypothesize that the number of different

routes increases with the importance of the intermediate complex for the overall

assembly process.

Several requirements to future works on spliceosome analysis can be asserted

from this work, addressing both, experimental biologists and computational

scientists. First, experimental data should immediately be stored in a structured

pre-formatted way, making use of existing formalisms and avoiding unnecessary

naming morphisms. Experimental data provides precious facts which are

necessary to prepare subsequent in silico analyses. Second, theoretical and

computational contributions can still be improved in the supply of data collection

tools as well as integrated pipelines for their global evaluation and analysis. For

example, text mining tools at the level of network design and statistical measures

at the level of substructure analysis (e.g., T-invariants, MCTS) can enhance the

output of this modeling approach.

Finally, one needs to keep in mind, that structural properties depend at first

hand on the knowledge put into the model. In light of the wealth of biological

information, a direct consequence is the possibility that parts of the model are

better covered by data than others, and therefore exhibiting a higher complexity.

Consequently, these parts are stronger represented by T-invariants. Nevertheless,

the fact to observe a stronger representation of individual aspects of a biological

network justifies a model, because it captures relations and trends that are hard

to detect using detailed mechanistic studies, which moreover are to numerous for

individual analyses.
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The present dissertation is structured into three parts, which are connected by

the overall topic of Alternative Splicing and its computational analysis. The

first and second chapter concentrate on sequence based approaches, aiming on

how transcripts, which are nowadays abundantly present in public databases,

can be used to infer knowledge on the regulation of alternatively splicing. The

third chapter adds a systems biological approach by modeling the spliceosome,

the biological component, which enables eukaryotic organisms to perform the

splicing reaction.

Chapter 1 The outcome of initial preparative sequence processing usually

results in repositories of alternatively spliced transcripts such as the Eased

database (253). In consequence, a variety of databases storing alternative splice

forms exists but although most of them are based on transcript and genome

sequences of the same primary databases, the alignment algorithms and filter

criteria applied in prediction pipelines vary considerably. Hence, it is difficult

to compare alternative splice events from different databases. In essence each

dataset should be characterized before being subjected to further analyses. Fol-

lowing this idea, the first part of this work aimed on the investigation of features,

which affirm the Eased dataset of splice forms, justifying to pursue new ques-

tions based on these data. To this end the dataset was partitioned into sets of

splice forms with reference (rss) and alternative splice sites (ass). The distri-

bution of donor- and acceptor signal strength was compared between both sets

and between both types of splicing signals. From these comparisons it can be

concluded that:

• Donor- and acceptor strengths differ significantly between alternative and

reference splice sites, both signals showing a trend to weaker signals in the

set of alternative splice sites. However, there exists an overlap in the score

115
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distributions, were reference and alternative splice forms show an equal

splice site strength.

• The difference of the average splice site strength (∆S = |Srss − Sass|) be-

tween alternative and reference splice sites is lower at acceptor compared

to donor sites.

• Donor splicing signals are weaker than acceptor splicing signals irrespective

of the classification into alternative or reference splice sites, being in agree-

ment with the fact that initial donor site selection often requires additional

determinants to achieve the necessary level of specificity.

Additionally, the transcript abundance representing alternative and reference

splice sites was compared. Here, the Eased dataset showed the general trend

that alternative splice sites (pairs of donor- and acceptor sites) are less abun-

dantly supported by transcripts than the reference splice sites. This finding was

complemented by the observation that the set of more frequently used splice sites

(as derived from the transcript abundance) tend to pose a stronger splicing signal

than splice sites of low utilization.

The lower signal strength of alternative compared to constitutive splice sites has

been previously reported for other datasets of splice events (254). This agreement

was taken to conclude that the splice site strength of alternative splice forms of

the Eased database can be sufficiently discriminated from reference splice site.

A follow-up analysis on additional splicing regulating motifs was conducted. The

weaker signal or information content of alternative splice sites raises the question

how trans-acting factors (e.g., the spliceosome) distinguish between these splice

sites. As one possible explanation the action of regulatory proteins was proposed

(6), which bind to motifs near alternative splice sites and serve as guiding elements

for example by interactions between RS domains. Hence, the presence of binding

motifs of four well characterized splicing regulating proteins (ASF/SF2, SC35,

SRp40 and SRp55) was analyzed and compared between alternative and reference

splice sites and between exon and intron splice site context. This led to the

following conclusions:

• The four investigated splicing factor binding motifs occur among ass and

rss individually more frequently in the intronic donor than in the intronic

acceptor context, but with about the same frequency in the exonic donor

region. This indicates that the conservation of these motifs is reduced in
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the intron compared to the exon region near donor sites, and even more

reduced in the intron region near acceptor sites. Such constraints can be

imposed by the coding region, polypyrimidine tract and branchpoint, which

are determinants of splice site selection in both, ass and rss.

• While the investigated motif frequencies are about equal between ass and

rss in the exonic contexts of all four binding motif, the intronic regions

show more binding motifs near alternative than near reference splice sites,

indicating a higher conservation pressure for splicing factor binding sites for

the alternative splice forms.

• For all four SR proteins it is found that although there are less binding

motifs in the intron context compared to the exon context near splice sites,

the intron context of rss is indicative of less binding motifs than the intron

context in ass.

• The polarization (difference in binding motif frequency between exon and

intron context) is for ASF/SF2 stronger in ass than in rss around both,

donor and acceptor sites. SC35 shows almost no polarization and SRp40

and SRp55 only at donor sites, with more binding sites in the exonic than

intronic donor context. It can be concluded that although ASF/SF2 has

been found to participate in splicing of non-alternative exons, the frequency

of its binding motifs is discriminative for alternative and reference splice

sites.

Summarizing, there are qualitative differences in the distribution of binding motifs

for auxiliary splicing factors, depending on the splice site proximal location within

one and the same class (ass or rss). Additionally, also differences between ass

and rss exists, which stand in line with the compensatory effect that splicing

factors convey to the selection of weak alternative splice sites. Although binding

motifs for splicing factors are thought to be degenerated in composition, their

presence provide an effective means for the cell to regulate splice site selection

via concentration gradients of these factors. It is tempting to speculate that an

additional layer of specificity in modulating splice site selection may be achieved

by combinations of binding motifs, similar as found for transcription factors (255).

This analysis did not distinguish between different types of ass (an alternative

site can either be an alternative acceptor or donor site), however, since eukaryotic

exons are relatively short (in average around 100-140nt) the definition of splice
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sites occurs predominantly across exons (known as exon definition model (85)).

In consequence, the binding of regulatory factors on either site may have an effect

on the alternative splicing of both splice sites.

Chapter 2 The Eased database does not resolve different alternative splicing

patterns in more detail, for example, exon skipping or specific A5E events. Ad-

ditionally, the filter parameter of the Eased prediction pipeline was restricted to

alignment variations of at least six nucleotides, a limitation of which also other

databases suffer. In consequence, minor splice site variations were commonly con-

sidered as noise of the alignment algorithm in the past. In 2004, the first reports

affirmed the frequent occurrence of subtle variations at human acceptor splice

sites and experimentally proved their plausibility as alternative splice forms (2).

The second part of this thesis connects to this development by focusing on a spe-

cial kind of subtle splice events at donor splice sites. Alterations at donor sites

were already early shown to pose a crucial element for splice site selection (86).

The complementarity of the 5′ss to the 3′ end of the U1 snRNA introduces a

naturally favored second donor signal and raises the question whether alternative

splicing at this tandem splicing signal leads to a regulatory effect in gene expres-

sion. Using the dataset of the Hollywood database (3), at first the prevalence

of alternative donor splice events with focus on single exons was determined, This

led to the following conclusions:

• An initial dataset of 5,275 exons, indicating alternative splicing at their

downstream flanking donor site, shows a dominant fraction (17 - 38%) of

subtle variations (e.g., < 6 bp), which is higher than previous estimates of

alignment error rates stated (256).

• Samples indicate that the initial annotation method (Sim4) produces false

positive splice forms (see Appendix B.1(a)), which are corrected by a more

recent method using dynamic programming in conjunction with a splice

site model (Exalin). This advises to reckon with a higher false positive

rate in predicting subtle splice events without additional constraints in the

transcript-genome alignment strategy.

• Independent from the prediction method the most frequent alternative

donor splice pattern differs by 4 nucleotides (9 - 28% of all A5E), and thus,

contrast the most frequent variation (3 nt) observed at acceptors sites.
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• The abundance of subtle splice events (< 6 nt), including the most fre-

quently occurring ∆4 isoforms could also be observed in the comparative

species Mus musculus

The amount of A5E∆4 splicing is in agreement with the frequency reported pre-

viously in a smaller dataset (7.5%), which however, was based on alternative

splice events conserved in human and mouse (14). Trusting such rigor, all fur-

ther analyses and results are based on the most stringent dataset refined by the

Exalin alignment method, pointing to a somewhat higher occurrence of 9% ∆4

isoforms. Based on the transcript evidence, supporting each of two alternative

splice events, an obvious difference between donor and acceptor sites is found.

While A3E show no clear separation into classes, where either one of the distal

or proximal splice sites is preferred, such a dichotomy is observed for the A5E

including the ∆4 splice variants. Thus the transcript support suggests that in

general two types of alternative donor splice events are distinguishable: a prox-

imal major event (type-I, A5E P∆4) and a distal major event (type-II, A5E

D∆4). Further, the transcript evidence indicates a higher occurrence of type-II

than type-I A5E∆4 events, a polarization, which appears exactly opposite within

the remaining A5E events. This situation suggests a formal distinction between

non-overlapping and overlapping (tandem) donor sites, which in similar way was

found by other reports (257, 121).

Following this classification scheme, A5E∆4 splice forms are characterized, lead-

ing to the following conclusions:

• The minor form of both A5E∆4 types exhibits in general a weaker splice

site score compared to the major form, however, type-I minor donor splice

sites are still closer to the U1 snRNA consensus motif than type-II minor

sites, implicating a higher potential for selection of the minor upstream

donor (d∆4) in type-I A5E∆4 isoforms.

• Pseudo splice sites distanced by four nucleotides from authentic donor splice

sites in constitutive exons are more reliably distinguished than minor and

major sites of tandem donors in both, type-I and II classification (estimated

accuracy of ≥95%). However, type-II A5E∆4 events reach almost the same

accuracy (92%) in distinguishing the minor from the major donor splice site,

indicating a risk to enrich also false positive events (pseudo splice sites) in

this class.
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• Both classes showed a different scheme in position specific nucleotide con-

servation, which may influence the binding selectivity by snRNAs of the

spliceosomal complexes U1, U5 and U6. With respect to the weaker tan-

dem donor sites, type-I A5E∆4 events show positions conserved, which are

crucial for U1 and U6 snRNA binding, while type-II A5E∆4 events show

less conservation and in different positions. The finding of individual splice

site nucleotides complement the results determined in the splice site score

analysis.

• The presence of cis-elements for binding of splicing silencing proteins, dif-

fered between both classes, with a tendency to more silencer elements within

the downstream intron of type-I A5E∆4 events and less silencer elements

of type-II A5E∆4 events compared to introns downstream of constitutive

donors. This affirms a functional role for the distal minor donor, while it

appears less likely that the distal major donor is silenced to improve the

proximal minor donor.

• The comparison of orthologous tandem donor regions indicate that both

classes do not reach conservation levels in the flanking intronic region, as

observed for skipped exons. However, type-I AS events showed a better

intron conservation in the corresponding mouse genes, supporting the pres-

ence of evolutionary conserved regulatory elements. Additionally, examples

are found, where not only the splice site motif was conserved in the orthol-

ogous mouse gene but also both donors are confirmed by transcript data,

pointing to regulatory importance of this splicing modus.

• A5E∆4 splice events are in more than 90% of all cases located within the

coding region and, thus, cause a shift in the open reading frame. Type-II

AS events introduced in nearly 70% a premature termination codon (PTC)

when spliced at the minor donor, while splicing of only one quarter of type-I

minor donors caused a PTC. Most of these PTC are located at a distance

from the alternative translation stop signal to qualify as triggers of the

nonsense mediated decay (NMD) pathway. This suggests especially type-II

alternative splicing to be a mechanism of down-regulating protein isoforms

within the cell, as contrasted by type-I isoforms, which more frequently

may produce truncated proteins. Moreover, type-I splice events occurred

significantly more frequently in genes, which encode RNA binding proteins,

suggesting a regulatory function at the RNA level of gene expression.
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Some questions have been posed by this analysis and remain open for further anal-

ysis. The set of tandem donors, showing the highest conservation compared to

mouse (for example SFRS16 exon 15, MSF2 exon 3, CASD1 exon 14 or BRSK1

exon 3) can be investigated on a broader range of species to infer knowledge

about their evolutional background. Although small, the subset of A5E∆4 tan-

dem donors with high conserved flanking introns may serve to isolate, in more

detail, sequence regions with impact on the U1 or U6 binding behavior. Another

extension of this work can investigate to what extent A5E∆4 events and other

frame shifting AS events occur mutually and compensate each other to avoid the

NMD pathway. The problem here is that EST inferred AS events are not well

suited for such an in silico analysis as it has to be assured that two or more AS

events derive from the same mRNA. The analysis of conserved positions within

tandem donor sites raised the question, to what extend, secondary structures

of precursor messenger RNAs contribute to the specific selection of overlapping

alternative splice sites. For example, sequence parts downstream of the tan-

dem donor and complementary to the distal donor, may, under specific cellular

conditions occupy the distal donor within a stemloop structure, such, that the

proximal donor locates in an open loop, and hence, remain accessible for spliceo-

somal components. This would suggest a model, which controls the regulation of

overlapping donor sites by two different layers: i) the increased specificity due to

the larger sequence context involved in stemloop formation around the splice site

and ii) the presence of proteins, which control the structural conformation of the

pre-mRNA molecule.

It also remains to be investigated to what extent mutations in splice sites result

in the creation of A5E∆4 tandem donors or shift splicing from the proximal to

the distal donor and vice versa. Aberrant donor splice sites have been previously

investigated, but without closer examination of the impact on subtle splice

events (258). Some earlier experimental reports indicate the involvement of

subtle splice variations in disease formation. For example, a G to A mutation at

the first position of intron 10 in the adenosine deaminase (ADA) gene results in a

shift from the distal to the proximal donor site. In consequence, a 4 nt insertion

can be observed in cDNAs of ADA deficient patients (259). In contrast to this

kind of proximal ∆4 donors usage other cases of donor mutations at the first

intron base shifted splicing to cryptic donor splice sites located more than 10

nt downstream of the mutation (258). Finally, to address subtle donor splicing

in a medical way, the measuring of this pattern over various tissues and by uti-
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lizing microarrays, will give further insights in the regulation of these splice forms.

Chapter 3 The DNA and mRNA sequence based analysis of alternative splic-

ing has revealed a magnitude of information, covering different splicing patterns,

signals and binding motifs and their evolutionary conservation. However, to

understand what initiates and governs the position specific splicing of mRNA re-

quires to understand the network of molecules, which participate in the splicing

reaction.

The first and second chapter demonstrated, how sequence inherent signals con-

cur with the occurrence of alternative splicing patterns and how A5E∆4 splice

variants are enriched in the functional category of mRNA-binding factors. Also

the importance of the donor site nucleotide composition is clearly a crucial pa-

rameter to distinguish AS types. These findings strongly underline the influence

of trans-acting elements in the splicing process. Which proteins do interact at

which time to realize a specific spliceosome and how? Does a redundancy in the

proteomic complement exists, which allows to perform the splicing reaction with

high accuracy and reproducibility even under changing conditions ?

Presently, no database can serve with a map of interactions signaling reactions,

which describe the spliceosome assembly or summarize and visualize possible

nuances of this network. The last chapter aimed on fixating and arranging a

large part of data on spliceosomal proteins and ribonucleoprotein complexes into

a model for structural analysis.

The achievements of the general model can be summarized as follows:

• The model establishes a network of reactions leading to the assembly of an

active spliceosome.

• The model includes more than one hundred molecular components including

their ordered and directed interactions, derived by extensive screening of

literature.

• The model combines RNA as well as proteins and intermediate compounds

of both molecules as reacting and interacting species in the network.

• Components of the spliceosome are modeled in different layers to provide a

clear representation. Large biological networks often suffer the problem of

overcrowded layout, which impedes orientation. Compartmentalization and
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hierarchical layers as shown in Figure 3.10 and Figure 3.11 are approaches

to circumvent this problem.

• The network is designed as Petri net model, which allowed the computa-

tional validation by decomposition into minimal T-invariants.

• The model network is completely covered by T-invariants, each correspond-

ing to a biological process during spliceosome assembly.

• T-invariants are further grouped into functional clusters, which are a helpful

technique to accentuate similarities and differences in long pathways.

Further, as regards biological content, the model allows the following conclusions:

• Excluding the decomposition reactions of the multitude of intermediate

complexes prevents the formation of futile cycles.

• The presence of a discard pathways as previously suggested (197), is demon-

strative for a regulatory circuit, but also for the problem of combinatorial

complexity of spliceosome assembly.

• The different pathways of E-complex assembly indicate redundant modes

of spliceosome assembly.

• All stages of spliceosome assembly involve factors, which possess a multitude

of interaction partners, which presently cannot be included into the model

due to uncertainty about their function and time of entering the assembly

process.

• The feedback of non-protein coding alternative splice forms on spliceosome

assembly as demonstrated in chapter 2, is presently not clear.

The network of spliceosomal assembly as presented here, serves as a basic scaffold

to successively map the occurrence and impact of alternative splice events on the

assembly pathway. This may aid in the investigation of new hypotheses about

which alternative splice events contribute to which spliceosomal states, allowing to

classify spliceosomes in more detail according to their composition and assembly.

For example, if a general splicing factor like ASF/SF2 becomes alternatively

spliced, such that it can not be phosporylated and hence, participate in splice site

recognition anymore, one would expect a spliceosome, which can only recognize
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very strong consensus donor sites. Since also other splicing factors, for example,

SC35 or TIA1 are known to influence the initial steps during E-complex assembly,

redundancy in recognition of pre-mRNA signals by interchangeable factors must

be taken into account. This introduces some degree of redundancy, but may

assure the fidelity of the splice reaction under different conditions.

Finally, another important aspect for future works, envisioning the step from

structural to kinetic modeling, is the consideration of concentration levels

of spliceosomal core components and auxiliary factors. For example, RNAi

knockouts of transcripts of several DExH/D helicases (Brr2, Prp5, Prp22)

affect the exon inclusion levels of the DSCAM exon 4 cluster (201). Since

alternative splicing can be associated with weaker splice sites, the kinetics of

generating such splice patterns might be more affected by fluctuating levels of

spliceosomal proteins, compared to constitutive splice sites. Consistent with

this, the concentration ratios of antagonistic splicing factors as ASF/SF2 and

hnRNP A1 have been shown to vary over a wide range of tissues (260), which

suggests a tissue dependent difference in the kinetics of spliceosome assembly.

Beside the core spliceosome there exist related regulatory networks, which involve

essential alternative splicing events, hence being interesting candidate networks

for follow-up models to this work. Two examples are given below:

• The Drosophila female-specific splicing regulatory protein Tra2 stabilizes

the binding of SR proteins to a splicing enhancer element, which facil-

itates recruitment of the U2AF heterodimer to the weak female-specific

polypyrimidine tract of the dsx gene (6). Together with an auto-regulatory

splicing mechanism on its own pre-mRNA, this protein controls the pro-

duction of sex specific alternative isoforms in the fruitfly development. The

human orthologue Tra2ß is not less important, because it regulates splicing

of exon 10 in the Tau gene (261), whose missplicing causes a severe variant

of frontotemporal dementia (FTPD17).

• The Drosophila SXL protein constitutes a splicing factor, which is function-

ing prior to Tra2. It involves SPF45 as co-regulator and binds cooperatively

up and downstream of an alternative exon in its own pre-mRNA (6). The

auto-regulatory feedback systems in the sex determination cascade of the

fruitfly, constitutes interesting models for system biological analyses (262).

Some conclusions emerged from this work also with respect to technical aspects
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of Petri net modeling: i) Petri net modeling software, as used here (235), should

be improved to overcome the problem of node ID preservation. Presently, the

modification of parts of the network resets the IDs of all, even of unchanged,

places and transitions. In consequence, it is unnecessary exacerbated, especially

in large networks, to compare the outcomes of T-invariant and MCTS analyses

between different model scenarios. ii) Reactions and reactants should be labeled

uniformly in a standardized way. The challenge lies in the balance of mnemonic

labels to preserve a clear network representation. Ideally, the model would be

converted into a standardized design language (e.g., systems biology markup lan-

guage (263)) to make it comparable and applicable for other analysis tools. iii) A

great deal of progress in the ab initio design of such model networks will be

gained, if an automated text mining procedure for timed biological interactions

between spliceosomal components is integrated into the design phase. This as-

certains a higher information background on biochemical reactions and provides

the possibility to estimate a reliability measure via the number of independent

reports for each modeled reaction.
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Glossary

A

Acceptor: 3′ splice site, that marks the intron end during the splicing process. This boundary is involved in

the second step of splicing where the downstream exon
”
accepts“ the upstream exon when it is handed

in for ligation to the downstream exon by the spliceosome

ALN: Dynamic programming algorithm for identifying gene structures by aligning protein sequences or pro-

tein homology profiles against codon-encoded DNA. Splicing signals, long gaps, coding potential and

frameshift errors are considered in finding optimal matches to the reference sequence

AltExtron: Collection of manually curated and experimentally confirmed alternatively spliced exons,

based on annotated GenBank sequences and together with →AltExtron part of the Alterna-

tive Transcript Diversity Consortium a the European Molecular Biological Laboratory (EMBL)

→http://www.ebi.ac.uk/asd/altextron

AltSplice: Production and annotation pipeline for computationally derived alternative splice events based on

the Ensembl genome annotation project →http://www.ebi.ac.uk/asd/altsplice/

B

Bipartite Graph: A graph G = {V,E} whose nodes can be split into disjoint subsets A,B, such that no edges

exist between elements of the same set. (V = set of vertices or nodes and E = set of edges).

If {v, w} ∈ E then holds either v ∈ A ∧ w ∈ B or v ∈ B ∧ w ∈ A. {A,B} is called bipartition of G.

BLAST: Basic local alignment search tool. Generic term for a collection of programs which implement an

alogrithm for comparing a new DNA or protein sequence against a database of known sequences. The

algorithm returns a set of optimal local alignments given some specified parameter (e.g. gap penalties,

seed word length) and their significance as determined by the chance to find the query sequence in a

database of random sequences. WU-BLAST is one implementation of the BLAST alogrithm provided

by the University of Washington →http://blast.wustl.edu/

C

Cajal Body: Organelle of the nucleus, 0.1-2.0 micrometer in diameter. Cajal bodies are considered as sites of

assembly and/or modification of the transcription machinery and splicing factors

cDNA: Copy DNA. Doublestranded DNA prepared from reversed transcribed RNA. cDNA is more stable

than RNA and hence suited to study the modifications a transcript is subjected to during the RNA

maturation process

CDS: Coding sequence, part of the mature messenger RNA which encodes the primary amino acid sequence

of a protein
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css: constitutive splice site, splice site, flanking an exon for which at a given stage of transcript knowledge no

alternative splicing is observed

D
dbEST: Division of GenBank that stores→ EST with some basic annotations, presently (release August 2008)

hosting more than 1,600 organisms, with human (8,137,901 EST) and mouse (4,850,258 EST) being the

most frequently represented species →http://www.ncbi.nlm.nih.gov/dbEST

Donor: 5′ splice site marking the exon-intron boundary during initiation of the splicing process and commits

the upstream exon during initiation of spliceosome assembly

E
Ensembl: Genome Browser of the European Molecularbiological Laboratory (EMBL) and the European Bioin-

formatics Institute (EBI), based on a gene modelling pipeline that integrates sequence data from

primary sources of more than ∼ 40 genomes (release 47, July 2008). Especially suited for bioinfor-

matic analysis due to fast access of sequences and their annotations via a Perl programming interface

→http://www.ensembl.org

EST: Expressed Sequence Tag; short cDNA sequence read of ∼400-600 nt length, consitituing parts of a

mRNA. EST are often prepared from total RNA after cell breakdown, reverse transcription, cloning and

sequencing. Oligo deoxy-thymine primer or poly-dT beads are used for selectively enriching messenger

RNA from cell extracts, hence EST data may represent only a minor fraction of the total cellular RNA

among which mRNA makes up for ∼5% in eucaryotic cells

EvidenceViewer: Graphical visualisation of biological evidence supporting a particular gene model.

Linked to the genomic map viewer of GenBank, displaying all RefSeq models, anno-

tated known or potential transcripts of a gene, which align to the area of interest

→http://www.ncbi.nlm.nih.gov/sutils/static/evvdoc.html

Exon: pre-mRNA part which is spliced into the mature messenger RNA. As determined by the human genome

project, the mean exon length of human protein coding genes is 145 bp (median 122 bp), see also

G
GenBank: Primary database of publicly available nucleotide sequences and their protein translations with

basic annotations, maintained at the National Center of Biotechnology Information, Bethesda USA.

GenBank stores sequences produced by laboratories worldwide and contained with release 166 (June

2008) 88,554,578 sequences of more than 100,000 organisms →http://www.ncbi.nlm.nih.gov/Genbank/

GeneMine: Software pipeline for automated analysis of DNA and protein sequences by integrating informa-

tion of different biological web resources and making them available for mining in a local database

→http://bioinformatics.ucla.edu/genemine

GENOA: Genome annotation pipeline. Performs spliced alignments of repeat-masked cDNAs (BLASTN)

against genomic sequence to find significant loci of transcription. Subsequently, cDNAs and ESTs are

stringently (re)aligned to these loci by the algorithms mRNAvsGen and Sim4 respectively, to infer high

quality exons →http://genes.mit.edu/genoa

I
Intron: pre-mRNA part which is spliced out and hence missing in the mature messenger RNA. As determined

by the human genome project, the mean intron length of human protein coding genes is 3,365 bp (median

1,023 bp), see also
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M

MegaBlast: Speed optimised alignment program for only slightly differing nucleotide sequences. By using

a ”greedy” algorithm it is about 10 times faster compared to BLASTN, when used with larger word

sizes of the seed alignments (over 16 nucleotides) and consequently can better handle longer sequences

→http://www.ncbi.nlm.nih.gov/blast/megablast.shtml

R

RefSeq: Non-redundant, manually curated database of sequences of more than 5,000 different taxa (release

30 - Juli 2008) including genomic DNA, transcripts, and proteins with stable identifiers. RefSeq entries

are derived from publicly available archives of primary research data and as such provide a synthesis of

information →http://www.ncbi.nlm.nih.gov/RefSeq/

RS domain: → SR proteins

rss: reference splice site, synonym for constitutive splice site due to the fact that constitutive splice sites may

be involved in alternative splicing, which has just not been verified yet

S

Sim4: Program designed for rapid aligning spliced transcripts against genomic DNA of sizes >100 kB. The

algorithms finds matching seeds (12-mers) and extends them to gap-free genomic HSPs, which are

subsequently assembled to an exon core chain by dynamic programming, favouring HSP positions at

GT..AG or CT..AC intron boundaries.

SQL storage types: Define the data types each field in a SQL table can hold. This is an important issue in

design of biological databases, as it is beforehand often unknown how large certain values can become

during analysis. For example a field which stores intron sequences (string type) is critically initialized

with the MySQL data type TEXT as this allows only the storage of values of maximal L = 216 + 2

bytes (1 string character = 1 byte).

SR proteins Family of splicing factors that share a modular structure consisting of one or two copies of an

N-terminal RRM (RNA-recognition motif) followed by a C-terminal domain rich in alternating serine

and arginine residues, termed the RS domain

T

TBLASTN: Runtime intensive BLAST due to aligning a query protein sequence against a dynamically trans-

lated nucleotide sequence database resulting in a six-fold increased sequence search space because of

three possible reading frames on forward and reverse strand →http://blast.ncbi.nlm.nih.gov/blast/

U

UCSC Browser: Via a webbrowser accessible graphical representation of many eukaryotic genome sequences

and their annotation maintained at the University of California Santa Cruz. Additionally, a table browser

allows direct access to the underlying database →http://genome.ucsc.edu/

UniGene: Database of Unified clusters of ESTs and full-length mRNA sequences. Transcripts are clustered in

a non-redundant and gene-oriented way and annotated with related information (e.g. tissue type). The

latest version of the human taxon (#214, June 2008) contains 122,958 clusters representing more than

6.9 million transcripts →http://www.ncbi.nlm.nih.gov/UniGene
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[212] Hofestädt, R. Petri Net application of metabolic processes. J System Analysis, Modeling and Simulation
16, 113–122 (1994).
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[242] Puig, O., Gottschalk, A., Fabrizio, P. & Séraphin, B. Interaction of the U1 snRNP with nonconserved
intronic sequences affects 5’ splice site selection. Genes Dev 13(5), 569–580 Mar (1999).

[243] Del Gatto-Konczak, F. et al. The RNA-binding protein TIA-1 is a novel mammalian splicing regulator
acting through intron sequences adjacent to a 5’ splice site. Mol Cell Biol 20(17), 6287–99 (2000).

[244] MacMillan, A. M., McCaw, P. S., Crispino, J. D. & Sharp, P. A. SC35-mediated reconstitution of splicing
in U2AF-depleted nuclear extract. Proc Natl Acad Sci U S A 94(1), 133–136 Jan (1997).

[245] Konarska, M. M. & Query, C. C. Insights into the mechanisms of splicing: more lessons from the
ribosome. Genes Dev 19(19), 2255–2260 Oct (2005).

[246] Nottrott, S., Urlaub, H. & Lührmann, R. Hierarchical, clustered protein interactions with U4/U6 snRNA:
a biochemical role for U4/U6 proteins. EMBO J 21(20), 5527–5538 Oct (2002).

[247] Xie, J., Beickman, K., Otte, E. & Rymond, B. C. Progression through the spliceosome cycle requires
Prp38p function for U4/U6 snRNA dissociation. EMBO J 17(10), 2938–2946 May (1998).

[248] Lybarger, S. et al. Elevated levels of a U4/U6.U5 snRNP-associated protein, Spp381p, rescue a mutant
defective in spliceosome maturation. Mol Cell Biol 19(1), 577–584 Jan (1999).

[249] Schwer, B. & Guthrie, C. PRP16 is an RNA-dependent ATPase that interacts transiently with the
spliceosome. Nature 349(6309), 494–499 Feb (1991).

[250] Pfeiffer, T., Sánchez-Valdenebro, I., Nuño, J. C., Montero, F. & Schuster, S. METATOOL: for studying
metabolic networks. Bioinformatics 15(3), 251–257 Mar (1999).

[251] Schuster, S., Klipp, E. & Marhl, M. The Predictive Power of Molecular Network Modelling, volume 3.
Springer, discovering biomolecular mechanisms with computational biology edition, (2006).

[252] Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev
14(9), 1027–1047 May (2000).

[253] Pospisil, H., Herrmann, A., Pankow, H. & Reich, J. G. A database on alternative splice forms on the
integrated genetic map service (IGMS). In Silico Biol 3(1-2), 229–234 (2003).

[254] Thanaraj, T. A., Clark, F. & Muilu, J. Conservation of human alternative splice events in mouse. Nucleic
Acids Res 31(10), 2544–2552 May (2003).

[255] Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of
transcription factors and binding motifs. Genome Biol 5(8), R56 (2004).

[256] Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST
sequences. Bioinformatics 21(9), 1859–1875 May (2005).

[257] Ermakova, E. O., Nurtdinov, R. N. & Gelfand, M. S. Overlapping alternative donor splice sites in the
human genome. J Bioinform Comput Biol 5(5), 991–1004 Oct (2007).

[258] Buratti, E. et al. Aberrant 5’ splice sites in human disease genes: mutation pattern, nucleotide structure
and comparison of computational tools that predict their utilization. Nucleic Acids Res 35(13), 4250–4263
(2007).

[259] Santisteban, I. et al. Novel splicing, missense, and deletion mutations in seven adenosine deaminase-
deficient patients with late/delayed onset of combined immunodeficiency disease. Contribution of genotype
to phenotype. J Clin Invest 92(5), 2291–2302 Nov (1993).
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[265] Rosbash, M. & Séraphin, B. Who’s on first? The U1 snRNP-5’ splice site interaction and splicing.
Trends Biochem Sci 16(5), 187–190 May (1991).

[266] Xiao, S. H. & Manley, J. L. Phosphorylation-dephosphorylation differentially affects activities of splicing
factor ASF/SF2. EMBO J 17(21), 6359–6367 Nov (1998).

[267] Ma, C.-T. et al. Ordered multi-site phosphorylation of the splicing factor ASF/SF2 by SRPK1. J Mol
Biol 376(1), 55–68 Feb (2008).

[268] Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and
regulated alternative splicing. Cell 75(6), 1061–1070 Dec (1993).
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Table A.1: Description of tables within the Eased database that where used for the validation analyses. Column two summarizes the main
aspects of the data each table holds and column three lists the relations each table shares with other tables. A respective diagram is given in
Figure A.1

Table Name Description Relations (to other tables)

genes basic description of each gene: Ensembl ID, chromosome and position therein, genomic sequence (slice),
number of assigned Ensembl transcripts

genes features (1:n), trans (1:n)

genes features cross referencing gene identifier to other databases genes (n:1)

trans basic description of Ensembl transcripts matching a gene: transcript sequence, CDS start (end) within
genomic sequence slice, CDS start (end) within transcript sequence, strand orientation, number of ss
pairs (introns), number of matching alternative ESTs,number of matching constitutive ESTs

genes (n:1), exons (1:n), protein features (1:n),
trans features (1:n), asfs unique (1:n), hsps
(1:n), as hsps (1:n), trans tissue (1:n)

trans features cross referencing transcript identifier to other databases trans (n:1)

trans tissue referencing numbers of alternative (constitutive) ESTs grouped by tissue types that coincide with an
Ensembl transcript

trans (n:1), est tissue (m:1)

protein features cross references to functional domain databases, annotation of domain start (end) in the protein sequence trans (n:1)

exons basic description of Ensembl exons making up a complete transcript: start (end) witin genomic sequence,
exon end positions within CDS

asfs unique basic description of AS events: type classification a-h (see Figure 1.2), length, quality, position of donor
(acceptor) site within transcript and genomic sequence, donor (acceptor) dinucleotides, number of further
alternative (constitutive) ESTs coinciding with the AS event

trans (n:1), asfs tissue (1:n), asfs ce (1:n),
asfs ae (1:n)

asfs tissue referencing numbers of alternative (constitutive) ESTs grouped by tissue types that coincide with an as
event

asfs ae (n:1), est tissue (m:1)

asfs ae extended description of AS events: EST ID, type (insert, skip), quality, start (end) of alternative part
within EST sequence (skip/insert length), strand orientation, average EST identity, overlap, reference
to the flanking hsp’s

asfs unique (n:1), hsps, asfs tissue (1:n), ests
(n:1)

asfs ce extended description of reference splice events: EST ID, quality, start (end) of constitutive part within
EST sequence, spanning the alternative part (hence representing the exonic part of the Ensembl tran-
script

asfs unique (n:1), hsps, asfs tissue (1:n), ests
(n:1)

as hsps as table asfs ae but with referene to Ensembl transcript ID trans (n:1), ests (n:1)

hsps basic description of EST:mRNA (Ensembl transcript) alignments: identity, mismatches, gaps, start
(end) position within query (EST) sequence, start (end) within subject (mRNA) sequence, evalue,
bitscore

trans (n:1), ests (n:1), asfs ae

ests tissue description of available tissue type asfs tissue (1:m), trans tissue (1:m)

ests library besic description of EST libraries: UniGene library ID, library name- and description, reference to tissue
ID, developmental stage- and disease status annotation

ests (1:n), ests tissue (1:1)



A
p
p

en
d
ix

151
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1:n
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1:n
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trans_tissue

trans_id: VARCHAR(20) (FK)

tissue_id: INTEGER (FK)

type_2: ENUM('ce','ae')

anz: INT(10)

asfs_tissue

asf_id: INTEGER(10) (FK)

tissue_id: INTEGER (FK)

type_2: ENUM('ce','ae')

anz: INT(10)

trans_features

trans_id: VARCHAR(20) (FK)

types: VARCHAR(32)

acc_id: VARCHAR(64)

trans_idx

trans_id
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acc_idx
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trans

trans_id: VARCHAR(20)

gene_id: VARCHAR(20) (FK)

version: SMALLINT(5)

ext_name: VARCHAR(32)

description: TINYTEXT

seq: MEDIUMTEXT

protein_seq: TEXT

strand: TINYINT(4)

dna_cds_start: INTEGER(10)

dna_cds_end: INTEGER(10)

cds_start: SMALLINT(5)

cds_end: SMALLINT(5)

nae: INTEGER(10)

nce: INTEGER(10)

nss: SMALLINT(5)

ae_cancer: SMALLINT(5)

ae_health: SMALLINT(5)

ae_disease: SMALLINT(5)

ae_adult: SMALLINT(5)
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ae_newborn: SMALLINT(5)
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Figure A.1: Entity relationship diagram of the EASED database (v193̇4a). Gene- and Transcript IDs are based on the Ensembl freeze of
December 2003
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Table B.1: A general problem of aligning cDNAs and ESTs against genomic DNA is to
correctly map transcript sequences. Posttranscriptional modifications and in vitro tran-
scription errors (1-4% in ESTs (256)) may affect alignment programs and to output genomic
coordinates of erroneously aligned transcript blocks. Subsequently, this may introduce a
bias in exon datasets derived from such alignment approaches. Generally, Sim4 is a very
fast and capable alignment algorithm that has been successfully used for almost a decade
(91). However, a recent comparison of alignment programs revealed apparent weaknesses
in the correct alignment of mismatches or insertions/deletion near the splice junction (264).
Splicing analysis is crucially depending on correct alignments of transcribed sequences, es-
pecially near alternative splice sites: Thus, the two best-performing programs according
to a report by Zhang and Gish (264) (EXALIN and BLAT ) were applied for validating
initial SIM4 alignments. In order to demonstrate the filtering capabilities of EXALIN, the
following examples of an erroneous and correct A5E∆4 splice site prediction are shown for
illustration below

(a) Erroneous SIM4 alignment:Filtering alignments for canonical /GT and AG/ splice sites, as fre-
quently applied to prepare data sets of alternatively spliced exons, is not sufficient to effectively remove
false-positive alignments. (Incorrect aligned nucleotides are marked in red.

DISTAL SPLICE SITE

Sequence
ID

SIM4 (True positives) EXALIN (True positives)

BI037972 CAGAAGCCAAAATG AGGTTGAAGGCTGC CAGAAGCCAAAATG AGGTTGAAGGCTGC

||||||||||||||>>> >>>|||||||||||||| ||||||||||||||<<<<<< <<<<<<||||||||||||||

ENSG146592 CAGAAGCCAAAATGGTA CAGAGGTTGAAGGCTGC CAGAAGCCAAAATGGTAAGT TTTCAGAGGTTGAAGGCTGC

PROXIMAL SPLICE SITE

Sequence
ID

SIM4 (False positives) EXALIN (True negatives)

BQ367677 AAATGAGTTGGAAG GCTGCATTGACTCA CAGAAGCCAAAATG A-GTTGGAAGGCTG

|||||-|-|--||->>> >>>|||||||||||||| ||||||||||||||<<<<<< <<<<<<| ||| ||||||||

ENSG146592 AAATG G T AA GTA AAGGCTGCATTGACTCA CAGAAGCCAAAATGGTAAGT TTTCAGAGGTT-GAAGGCTG

(b) Correct SIM4 alignment: The ∆4 exon extension is marked in bold letters.

DISTAL SPLICE SITE

Sequence ID SIM4 (True positives) EXALIN (True positives)

BF871212 ACTTCATCCAGTCG GAAGAGAAGATGGA ACTTCATCCAGTCG GAAGAGAAGATGGA

||||||||||||||>>> >>>|||||||||||||| ||||||||||||||<<<<<< <<<<<<||||||||||||||

ENSG102878 ACTTCATCCAGTCGGTA AAGGAAGAGAAGATGGA ACTTCATCCAGTCGGTAGGT TAAAAGGAAGAGAAGATGGA

PROXIMAL SPLICE SITE

Sequence ID SIM4 (True positives) EXALIN (True positives)

AW841572 CATCCAGTCGGTAG GAAGAGAAGATGGA CATCCAGTCGGTAG GAAGAGAAGATGGA

||||||||||||||>>> >>>|||||||||||||| ||||||||||||||>>>>>> >>>>>>||||||||||||||

ENSG102878 CATCCAGTCGGTAGGTT AAGGAAGAGAAGATGGA CATCCAGTCGGTAGGTTTGT TAAAAGGAAGAGAAGATGGA
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B.2 A5E∆4 Splice Site Scores in M. musculus
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Figure B.1: Scatter plots of 5′ss scores of competitive and tandem donors extracted
from mouse M.musculus. (A) and (B) show the individual and mean scores (the latter
is marked by solid/dashed lines) for P∆4 and D∆4 splicing exons, respectively. Scattered
data and mean scores are in accord with human P∆4 and D∆4 splicing exons.
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B.3 Base Composition of Tandem Splice Sites

Table B.2: Weblogo (95) representations of human A5Es and A3Es with exon extensions
E = 3, 4, · · · , 20 nucleotides, in a sequence windows 20nt up- and downstream of the
alternative sequence region. The middle column shows for A5Es the high degeneracy of
splice sites, while the last column shows for A3Es the degeneracy of the pyrimidine-tract
that is increasingly less present with increasing extension for the proximal 3′ss, and more
present for E > 12 nucleotides for the distal 3′ss.
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Appendix 157

Table B.2: Weblogo (95) representations of human A5Es and A3Es with exon extensions
E = 3, 4, · · · , 20 nucleotides, in a sequence windows 20nt up- and downstream of the
alternative sequence region. The middle column shows for A5Es the high degeneracy of
splice sites, while the last column shows for A3Es the degeneracy of the pyrimidine-tract
that is increasingly less present with increasing extension for the proximal 3′ss, and more
present for E > 12 nucleotides for the distal 3′ss.
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Appendix C

Supplements to Chapter 3

C.1 Description of Reactions of the Spliceoso-

mal Model Network
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Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

E Complex Reactions

Assembly of U1 specific factors with U1 core components 1 t136.U1 matur U1C + U1A + U170K + U1snRNA → U1 (185)

Base pairing between U1 5′ end of the U1 snRNA and strong intron 5′ss
(consensus donor) via U1C:5′ ss contacts

2 t41.U1 5ss bdg U1 + 5ss → U1 5ss (265, 168)

Interaction of phosphorylated ASF/SF2 (regiospecific phosporylation by
SRPK1) with U170K enhances recognition of weak 5′ss. Also TIA1
promotes binding of U1 snRNP to weak 5′ ss which may happen in concert
or independent of ASF/SF2.

3 t143.ASF phosph ASF SF2 + ATP + SRPK1 → ASFp +
SRPK1 + ADP

(266, 267)

4 t141.ASFp ex bdg ASFp + 5ss ex → ASFp ex (86, 87)

5 t12.ASFp U170K bdg ASFp ex + U1 + 5ss → ASFp U1 5ss (268, 169)

6 t9.U1C TIA1 bdg1 ASFp U1 5ss + TIA1 int → U1 5ss (242, 243,
170)

LUC7 links Cap-Binding-Complex (CBC) to the U1 snRNP via interaction
with U2AF65 when splicing the 5′terminal exon

7 t137.U1 CBC bdg CBC + U1 + LUC7 + U2AF → U1 CBC (230)

8 t10.U1 CBC 5ss bdg U1 CBC + 5ss → U1 5ss (269)

TIA1 binds near 5′ ss and stabilizes U1 snRNP recruitment via direct
interaction with U1C when splicing weak 5′ss or in absence of cap on 5′

exon

9 t131.TIA1 5ss int bdg TIA1 + 5ss int → TIA1 int (242, 243)

10 t30.U1C TIA1 bdg2 U1 + 5ss + TIA1 int → U1 5ss (170)

U2AF65 dimerizes with U2AF35. U2AF35 recognizes and binds 3′ss
(particular for weak PPT). Cooperative binding of U2AF65 to the PPT and
SF1(BBP) to the branch point. Interaction between SF1 and U2AF65 after
U2AF35 recognized the 3′ss

11 t6.U2AF dim U2AF65 + U2AF35 → U2AF (270)

12 t0.U2AF35 3ss bdg U2AF + 3ss + PPT → U2AF PPT 3ss (165, 174,
270)

13 t7.SF1 BPS bdg SF1 + BPS → SF1 BPS

14 t14.SF1 U2AF bdg SF1 BPS + U2AF PPT 3ss → SF1 U2AF (163, 174)

U1snRNP defines 5′ss and U2AF65 binding to PPT, U2AF65 is anchored as
heterodimer via U2AF35 at the 3′ss

15 t59.U1 SF1 U2AF bdg U1 SF1 + U2AF PPT 3ss → U1 SF1 U2AF (271)

FBP11/Prp40 bridges U1 and SF1 U2AF and establishes cooperativity
between 5′ and 3′ss recognition. SC35 can also be involved in bridging 5′

and 3′ss via interactions of U170K and U2AF35

16 t58.U1 SF1 bdg U1 5ss + SF1 BPS + FBP11 → U1 SF1 (E
complex)

(175, 271)

17 t17.U170K U2AF35 bdg U1 5ss + SC35 + SF1 U2AF + FBP11 →
U1 SF2 U2AF

(268, 272)
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Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

U1 and U2 become ATP-independent bridged by DEAD-box protein Prp5.
Subsequently U1 interacts with 5′ss and U2 with U2AF. Within the bridged
complex U1/SF1 interactions still occur.

18 t27.U1 Prp5 U2 bdg U1 + U2 + Prp5 → U1 Prp5 U2 (181)

19 t28.U1 5ss U2 U2AF bdg 5ss + U1 Prp5 U2 + SF1 U2AF →
U1U2 bridge

SC35 activates 5′ss, independent of functional U1 snRNP 20 t16.U1 indep 5ss act SC35 + 5ss +SF1 U2AF → U2AF SC35 5ss (171, 173,
244)

PTB binds to PPT, outcompeting U2AF and preventing E complex
assembly and, thus, splicing of tissue specific exons (e.g. c-src exon N1)

21 t61.PTB PTT bdg PTB + PPT + U1 5ss → PTB PPT (6, 273)

22 t62.E complex inhib PTB PPT → U1 5ss + U1 5ss block

A Complex Reactions

Assembly of U2 subunit SF3b (components shared with U12 snRNP) 23 t111.SF3b dim SF3b10 + SF3b14a + SF3b14b + SF3b49 +
SF3b125 + SF3b130 + SF3b145 + SF3b155 +
ATP → SF3b + ADP

(274, 182)

Binding of subunit SF3b to core U2 snRNP 24 t21.15S U2 matur 12S U2 core + SF3b + U2A + U2B→ 15S U2 (275)

Dissociation of SF3b DEAD-box protein SF3b125 25 t13.17S U2 matur2 15S U2 + SF3a → SF3b125 + U2 (182)

Assembly of U2 subunit SF3a 26 t104.SF3a dim SF3a60 + SF3a66 + SF3a120 → SF3a (275)

Binding of subunit SF3a to 15S U2 snRNP 27 t22.17S U2 matur1 15S U2 + SF3a + ATP + SF3b125 → U2
+ADP

(182)

U2 snRNP component SF3b155 binds to both sides of the BPS and interacts
with U2AF65, after U2AF binding to the PPT. hPrp43 was found in 17S
U2 complex and proposed to facilitate U2 formation by associating with pre-
mRNA as part of the 17S U2 snRNP. hPrp43 was found to be activated in
post-spliceosomal complex formation.

28 t8.SF3b155 U2AF65 bdg U2AF PPT 3ss + U2 +hPrp43 → U2 PPT (179, 182)

Prp5 replaces Prp9 (SF3a60) within U2 snRNP subcomplex and promotes
opening of the U2 snRNA stemloop IIa, thus increasing U2 sensitivity for the
branch point sequence (BPS)

29 t23.unwind2 U2 stl2 Prp5 + ATP + U2 PPT→ ADP + U2 remod1
+ SF3a60

(165, 183,
181)

Specific activation of ATPase UAP56 by U2AF65 30 t57.UAP56 U2AF65 bdg1 UAP56 +U2 remod1 → U2 UAP56 ass (184, 165)

31 t25.UAP56 U2AF65 bdg2 UAP56 +U1U2 remod → U2 UAP56 ass

continued next page
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Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

Action of Prp5 within bridged U1U2 complex. UAP56 catalyzes stable
transition from E to A complex by release of SF1 and binding of strutural
rearranged U2 to the branch point

32 t55.unwind1 U2 stl2 U1U2 bridge + ATP → SF3a60 + ADP +
U1U2 remod

(165, 181)

33 t29.U1U2 BPS bdg U1U2 UAP56 ass + ATP→ SF3a60 + SF1 +
U2AF + ADP + U1U2 BPS (A complex)

ATP dependent (DEAD box helicase/unwindase action) release of SF1 from
BPS and binding of U2 to the branch point sequence

34 t24.U2 BPS bdg1 U2 UAP56 ass + ATP + U1 SF1 U2AF + →
SF1 + U2AF + ADP + U1U2 BPS (A com-
plex)

(165,
163),p345

35 t31.U2 BPS bdg2 U2AF SC35 5ss + U2 UAP56 ass → SF1 +
U2AF + U2 BPS

U2AF independent but U1 dependent 5ss recognition (SC35 und Prp5
supported)

36 t56.U1 SC35 SF1 bdg SC35 + U1 5ss + SF1 BPS → U1 SC35 SF1 (244)

37 t152.U2 SC35 bdg U1 SC35 SF1 + U2 → U1 SC35 U2

38 t35.unwind3 U2 stl2 Prp5 + ATP + U1 SC35 U2→SF3a60 + ADP
+ U2 remod2

39 t155.U2 BPS bdg3 UAP56 + ATP + U2 remod2 → U1U2 BPS

B Complex Reactions

In presence of Snu13(15.5K), Prp31(61K) interacts with U4 and U4/U6
snRNA duplex, but not with U6 snRNA alone. Sm proteins form the U4
snRNP core, while Sm like proteins (Lsm) form the core of U6 snRNP

40 t147.U4 matur U4snRNA + Sm + Snu13 → U4 (246, 186)

41 150.U6 matur U6snRNA + Lsm → U6 (187)

Prp24 ass anneals U4 and U6 snRNA to form snRNA duplex within the
U4/U6 snRNP subcomplex. U4 or U4/U6 binds Prp31 in the presence of
Snu13

42 t47.U4 U6 bdg U6 + U4 + Prp31 + Prp24 → U4U6 complex (165, 189,
276)

Prp3 and Prp4 interact directly with each other; CypH, Prp4 and Prp3 form
a stable RNA free trimeric subcomplex.

43 t127.Prp3 Prp4 bdg Prp3+ Prp4 → P3P4 dim (277, 246,
186)

44 t126.CypH P3P4dim bdg P3P4 dim + CypH → CypH trimer

Prp8, Brr2 and Snu114p interact directly with each other. Prp8 interacts
also with Snu114 (human ortholog = U5.40K). Brr2p, and Prp8p copurify,
along with Snu114 as an RNA-free heterotetrameric complex. U5 snRNA
associates with several U5 specific proteins including the DExD/H box
helicase Prp28.

45 t118.Prp8 trimer U5 Prp8 + U5 Snu114 +U5 Brr2 →
pre U5 trimer

(193, 186)

46 t119.U5 aux bdg pre U5 trimer + U5 40K + Prp28 →
pre U5 heteromer

continued next page
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Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

47 t123.U5 matur Sm + U5snRNA + hDib1 +hLin1 + Prp28 +
U5 aux tetramer → 20S U5

Prp3 (CypH trimer) interacts with Prp24 (recycling factor) prior to U4/U6
snRNA unwinding, specifying Prp24. Prp6 function as bridging factor be-
tween human U5 snRNP and U4/U6 snRNPs. Prp38 is suggested to promote
a conformational change within the spliceosome needed to expose the U4/U6
helices, for later release of U4.

48 t53.U4U6 U5 bdg Prp38 + hPrp6 + CypH trimer + 20S U5 →
U4U5U6 conf1

(247, 276,
186)

Snu66 (U5.110K) interacts with hPrp3, hPrp6 and hBrr2, contributing to
bridging the snRNPs in the tri-snRNP

49 t48.U4U6U5 stab U4U6U5 conf1 + hSad1 + hSnu66 + tris 27K
→ hLin1 + U4U6U5 conf2

(186)

Specific activation of DExD/H box helicase Brr2 by Snu114 and GTP hy-
drolyzation, preparing unwinding of U4/U6 duplex

50 t46.Snu114 Brr2 act U4U6U5 conf2 + GTP → Brr2 ass + GDP (165, 192,
193)

Activated (specifically directed) helicase Brr2 catalyzes unwinding of U4/U6
stemloop II, involving Prp8. Prp19 is required for tri-snRNP formation (sug-
gested regulatory role in U4/U6 unwinding)

51 t52.U4U6 uwd Brr2 ass + Prp19 + ATP → CypH trimer +
U4U6U5 conf3 + ADP

(278, 151,
194)

Prp28 destabilizes U1C, preparing U1 dissociation. Prp5 is not required any-
more (see text). Additionally, Prp8 governs activities of the kinases Prp28
(and Brr2).

52 t34.U1C diss Prp28 + U1U2 BPS + ATP + U5 Prp8 →
U1C + ADP + U1 5ss destab + Prp5

(191, 192,
279)

Interaction of Prp19 with FBP11 and U2AF65 (both present in A complex)
stabilizes tri-snRNP addition, while U1 and U4 are released from tri-snRNP
complex. Dib1 (U5.15K) and Prp28 (U5.100K) are absent in B-complexes
after U4/U6 dissociation. This step is assumed to be similar in the U1
independent spliceosomal assembly pathway.

53 t33.U6 5ss bdg1 U4U6U5 conf3 (Prp19 present)+
U1 5ss destab (FBP11, U1 SF1 U2AF
present) → U2U6U5 5ss + hDib1 + Prp28 +
Prp38 +U1 + U4

(280, 281,
195, 163,
282)

54 t32.U6 5ss bdg2 U4U6U5 conf3 + U2 BPS → U2U6U5 5ss +
hDib1 + Prp28 + Prp38 + U4

(142)

In human, Prp19 is stably associated with several proteins, forming the het-
eromeric NTC complex

55 t65.Prp19 stab NTC heteromer + Prp19 → 14S NTC Prp19 (194)

NTC complex subsequently acts to U4 dissociation stabilizing association of
U5 and U6 with the activated spliceosome. NTC destabilizes U6-associated
Lsm proteins, but promotes U6:5′ss interactions during activation for 1st step
catalysis; Prp31 and Prp3 are destabilized during the catalytic activation step.

56 t68.B compl act U2U6U5 5ss + SKIP + 14S NTC Prp19 →
Prp31 + Prp3 + U2 3ss U6 5ss U5 (45S ac-
tivated spliceosome) + free Lsm

(151, 283)

Binding of Prp2 to the spliceosome requires prior binding of Spp2. 57 t70.Spp2 Prp2 act Spp2 + Prp2 → Prp2 ass (165)
continued next page



164
D

escrip
tion

of
R

eaction
s

of
th

e
S
p
liceosom

al
M

o
d
el

N
etw

ork
Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

Opening of RNA at 5′ss and ligation of intron 5′ end to branch point adenin
(nucleophilic attack).

58 t69.1st catal step U2 3ss U6 5ss U5 + Prp2 ass + ATP →
U2 3ss U6 5ssfree U5 + ADP

(284, 154)

C Complex Reactions

Conformational rearrangements by ATP hydrolysis by Prp16, requiring a clear
branch point signal. DDX35 and Hsp73 occur together with Prp17 in C-
complex, but not in 45S activated spliceosomes (B complex). Critical step
due to kinetic proofreading by Prp16 and essential for submitting optimal
substrates into the 2nd step of splicing or suboptimal splicing substrates into
a discard pathway. Many SR proteins are not observed anymore in purified
complexes of this stage.

59 t93.U2 3ss U6 5ss U5 remodPrp16 + U2 3ss U6 5ssfree U5 + ATP +
Hsp73 + DDX35 → U2 5ss U6 U5 conf1 +
ADP + ASF SF2 + SC35

(165, 151,
197)

Proper kinetic speed of Prp16 in ATP hydrolyzation and conformational tran-
sition to lariat intermediate, resulting in positioning 5′ss near downstream
exon, enabling 3′ss recognition by U5snRNA and Prp8. Four SF3b proteins
are not detected in C-complex.

60 t101.Prp16 remod step U2 5ss U6 U5 conf1 → SF3b49 + SF3b14a +
SF3b14b + SF3b10 + U2 5ss U6 U5 conf2

(285, 151,
197)

DExD/H box ATPase Prp22p binds to the intron just upstream of the 3′ss
to promote exon ligation. Prp22 proofreads exon ligation by sensing aber-
rant substrates before the second transesterification. Hydrolyzation of ATP
serves as timer to reject intermediates after a certain time, thus, favoring
only fast substrates to be spliced. Prp22 binds additional factors, such as
Slu7 and Prp8, which are essential for splicing fidelity and may regulate the
ATP dependent activityof Prp22.

61 t92.U2U6U5 3ss remod Prp22 + Prp17 + Prp18 + Slu7 +
U2 5ss U6 U5 conf2 + ATP → Prp16 +
U2U6U5 3ss + ADP

(165, 286,
198, 287)

2nd catalytic step by opening the substrate RNA at the 3′ss and ligation of
free exon ends along with release of the catenated exons and a post-splicing
complex (containing the lariat, composed of intron and associated RNPs).

62 t94.2nd catal step U2U6U5 3ss → spliced mRNA +
post splsom complex

(165)

DExD/H helicase Prp43 replaces Prp22 and promotes release and dissassem-
bly of factors from the postspliceosomal complex. Prp6 is modeled to leave
at this stage in order to rejoin another round of tri-snRNP assembly.

63 t95.intron release post splsom complex + Prp43 ass + ATP →
U2U6 lariat + ADP + hPrp6 + 35S U5

(288, 241,
193)

Brr2 mediated U2 release separating U2 snRNA from intron, during spliceo-
some disassembly. Brr2 is still part of the postspliceosomal complex, hence
not separately modeled. GTP is required for the Snu114-GTP state, which
regulates Brr2 helicase activity.

64 t77.U2 release GTP + U2U6U5 lariat→ U2 + GDP + U6 +
intron

(192, 193)

continued next page
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Table C.1: Reactions (transitions) involved in spliceosome assembly (act = activated, ass = assigned, bdg = binding, conv = converted, dim
= dimerized, hydrol = hydolized, inhib = inhibited, matur = maturated, phosph = phosphorylated, stab = szabilized, stl = stemloop, uwd =
unwound, tri-snRNP = U4/U5/U6 subcomplex)

Description ID Label Reaction References

35S U5 snRNP is converted into a 20S particle. This conversion involves the
release of the Prp19 (NTC) complex and reassociation of Prp6, Prp28 and
hDib1.

65 t85.35S U5 conv Prp28 + hDib1 + 35S U5 → 14S NTC Prp19
+ SKIP + 20S U5

(151)

Negative outcome of kinetic proofreading pathway: suboptimal splicing sub-
strates slow conformational rearrangement powered by ATP hydolysis by
Prp16 and activate a discard pathway.

66 t100.premature ATP hydrolU2 5ss U6 U5 conf1 + ATP →
U2 3ss U6 5m discard + Prp16 + ADP

(165, 197)

Spp382p-dependent activity in the discard pathway of impaired spliceosomes
(in presence of defective RNA substrates). Additionally, this activity can
be stimulated byhPrp43, leading to dissociation and reorganization of the
spliceosome.

67 t96.Spp382 hPrp43 act hPrp43 + Spp382 → Prp43 ass (241)



166 Application of the Integrated Net Analyszer

C.2 Application of the Integrated Net

Analyszer

Table C.2: Analysis sequence in the program INA, applied to the presented PN model.
Abbrev.: A,S,Q = primary command switches; W,V,F,E = secondary command switches;
Y/N = yes/no decision, e/f = exit/format decision.

Analysis Decision ParameterFunction

A Analyse a Petri net pnt file (name input file*.pnt)
Y Reset current name options?

W(V) Transitions (place) names to be written
N Print static conflicts?

S Compute a basis for all semipositive P/T invariants
Y Check current options?

T/P Computation of T/P invariants
F Outputformat: print non-zero entries with names (#)

N Skip a certain number of lines?
N Set reduction options?
(f) Results by other format?
N Reset reduction options?
Y Change output format (E) ?

E Print non-zero entries only (name output file*.res)
(e) Results by other format?
Q Quit analysis

Q Quit program
Y forget the net?
Y Save the commands OPTIONS.ina / Rename SES-

SION.ina? (name output file *.ina)
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C.3 T-Invariants Computed for the Spliceoso-

mal Assembly Network



168
T

-In
varian

ts
C

om
p
u
ted

for
th

e
S
p
liceosom

al
A

ssem
b
ly

N
etw

ork
Table C.3: Description of trivial and non-trivialT-invariants, describing signaling pathways during the process of spliceosome assembly

ID #t Transitions Biological Interpretation

1 2 t102, t116 Prp28 (DDX23) influx and efflux (trivial)
2 2 t39, t117 HDib1(U5.15K) influx and efflux (trivial)
3 5 t2, t60-t63 PTB inhibition of branchsite, outcompeting U2AF(65) and blocking

of E complex formation(PTB is itself alternatively spliced)
4 2 t156, t157 SF1 (BBP) influx and efflux (trivial)
5 2 t37, t38 Prp5 (DDX46) influx and efflux (trivial)
6 2 t153, t154 SC35 (SFRS2,SRp30b) influx and efflux (trivial)
7 5 t36, t146-t149 U4 snRNP maturation and decay
8 2 t78, t112 SF3b49 (SAP49) influx and efflux (trivial)
9 2 t80, t108 SF3b14a (SAP14) influx and efflux (trivial)
10 2 t79, t115 SF3b14b (PHF5A) influx and efflux (trivial)
11 2 t74, t107 SF3b10 influx and efflux (trivial)
12 2 t103, t140 ASF/SF2 (SFRS2A, SRp30a) influx and efflux (trivial)
13 91 t0-t8, t11, t13, t14, t16, t18-t21, , t23, t26, t31, t32, t37, t42, t44-t54, t57, t64,

t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129,
t144, t145, t148, t150, t151, t158-t160

U1 independent 5′ss activation, early SF3b125 action
(t13.17S U2 matur2 ) in U2 maturation

14 92 t0-t8, t11, t14, t16, t18-t23, t26, t31, t32, t37, t42, t44-t54, t57, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t144, t145,
t148, t150, t151, t158-t160

As i13 but via late SF3b125 action (t22.17S U2 matur1 ) in U2 snRNP
maturation

15 105 t0-t9, t11-t13, t15, t18-t21, t23, t24, t26, t33, t34, t40, t42, t44-t54, t57-t59, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t104-t106, t110, t111, t113, t114, t116-t136,
t141-t145, t148, t150, t151, t153, t158-t160

SRp (ASF/SF2) supported 5′ss recognition with U1C-TIA1 stabili-
sation, FBP11 (PRP40) mediated cross-intron bridging to SF1, early
SF3b125 action (t13.17S U2 matur2 ) in U2 maturation

16 106 t0-t9, t11, t12, t15, t18-t24, t26, t33, t34, t40, t42, t44-t54, t57-t59, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t104-t106, t109-t111, t113, t114, t116-t136, t141-t145,
t148, t150, t151, t153, t158-t160

As i15, but via late SF3b125 action (t22.17S U2 matur1 )

17 104 t0-t9, t11-t15, t17-t21, t23, t24, t26, t33, t34, t40, t42, t44-t54, t57, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t104-t106, t110, t111, t113, t114, t116-t136, t141-t145,
t148, t150, t151, t158-t160

SRp (ASF/SF2, SC35) supported 5′ss recognition with U1C-TIA1
stabilization, FBP11 mediated cross-intron bridging to SF1-U2AF
heteromer, early SF3b125 action (t13.17S U2 matur2 ) in U2 mat-
uration

18 105 t0-t9, t11, t12, t14, t15, t17-t24, t26, t33, t34, t40, t42, t44-t54, t57, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t104-t106, t109-t111, t113, t114, t116-t136, t141-t145,
t148, t150, t151, t158-t160

As i17, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

19 93 t3, t7, t9, t11-t13, t18-t21, t26, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t104-t106, t110, t111, t113, t114, t116-t136, t141-t145, t148,
t150-t152, t155, t160

SRp (ASF/SF2,SC35) supported 5′ss recognition, U2AF independent
E/A-complex assembly early SF3b125 action (t13) in U2 maturation

20 94 t3, t7, t9, t11, t12, t18-t22, t26, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t104-t106, t109-t111, t113, t114, t116-t136, t141-t145, t148,
t150-t152, t155, t160

As i19, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

continued next page
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Table C.3: Description of trivial and non-trivialT-invariants, describing signaling pathways during the process of spliceosome assembly

ID #t Transitions Biological Interpretation

21 93 t3-t7, t10, t11, t13, t18-t21, t26, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129, t133-t139, t144,
t145, t148, t150-t152, t155, t160

5′ terminal exon 5′ss recognition via U1-CBC interaction (with
U2AF), SC35 supported 5′ss recognition, but U2AF independent (!)
E-/A-complex assembly, early SF3b125 action (t13) in U2 maturation

22 94 t3-t7, t10, t11, t18-t22, t26, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76, t77, t81,
t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t139, t144, t145,
t148, t150-t152, t155, t160

As i21, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

23 101 t0-t8, t10, t11, t13-t15, t17-t21, t23, t24, t26, t33, t34, t40, t42, t44-t54, t57, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129,
t133-t139, t144, t145, t148, t150, t151, t158-t160

5′ terminal exon 5′ss recognition via U1-CBC interaction (with
U2AF), SC35 supported 5′ss recognition, FBP11 (PRP40) mediated
cross-intron bridging to SF1-U2AF heteromer, early SF3b125 action
(t13) in U2 maturation

24 102 t0-t8, t10, t11, t14, t15, t17-t24, t26, t33, t34, t40, t42, t44-t54, t57, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t139,
t144, t145, t148, t150, t151, t158-t160

As i23, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

25 102 t0-t8, t10, t11, t13, t15, t18-t21, t23, t24, t26, t33, t34, t40, t42, t44-t54, t57-t59, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129,
t133-t139, t144, t145, t148, t150, t151, t153, t158-t160

5′ terminal exon 5′ss recognition via U1-CBC interaction (with
U2AF), FBP11 mediated cross-intron bridging between U1 and SF1,
early SF3b125 action (t13) in U2 maturation

26 103 t0-t8, t10, t11, t15, t18-t24, t26, t33, t34, t40, t42, t44-t54, t57-t59, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t139,
t144, t145, t148, t150, t151, t153, t158-t160

As i25, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

27 90 t3, t7, t11, t13, t18-t21, t26, t30, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t136, t144, t145,
t148, t150-t152, t155, t160

Intron sided 5′ss recognition via U1C-TIA1 contacts, U2AF indepen-
dent E/A-complex assembly, early SF3b125 action (t13) in U2 matu-
ration

28 91 t3, t7, t11, t18-t22, t26, t30, t33-t35, t40, t42, t44-t54, t56, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t136, t144, t145, t148,
t150-t152, t155, t160

As i27, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

29 101 t0-t8, t11, t13-t15, t17-t21, t23, t24, t26, t30, t33, t34, t40, t42, t44-t54, t57, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t136,
t144, t145, t148, t150, t151, t158-t160

Intron sided U1 5′ss recognition, FBP11 mediated cross-intron bridg-
ing to SF1-U2AF heteromer, early SF3b125 action (t13) in U2 matu-
ration

30 102 t0-t8, t11, t14, t15, t17-t24, t26, t30, t33, t34, t40, t42, t44-t54, t57, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t136, t144, t145,
t148, t150, t151, t158-t160

As i29, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

31 102 t0-t8, t11, t13, t15, t18-t21, t23, t24, t26, t30, t33, t34, t40, t42, t44-t54, t57-t59, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t136,
t144, t145, t148, t150, t151, t153, t158-t160

Intron sided U1 5′ss recognition, FBP11 mediated cross-intron bridg-
ing between U1 and SF1, early SF3b125 action (t13) in U2 maturation

32 103 t0-t8, t11, t15, t18-t24, t26, t30, t33, t34, t40, t42, t44-t54, t57-t59, t64, t68-t72, t76,
t77, t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t136, t144, t145,
t148, t150, t151, t153, t158-t160

As i31, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

33 87 t3, t7, t11, t13, t18-t21, t26, t33-t35, t40-t42, t44-t54, t56, t64, t68-t72, t76, t77, t81,
t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129, t133-t136, t144, t145,
t148, t150-t152, t155, t160

Normal U1 5′ss recognition, bridging of U1 via SC35 to SF1-BP, U2AF
independent E/A-complex assembly, early SF3b125 action in U2 mat-
uration

continued next page
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Table C.3: Description of trivial and non-trivialT-invariants, describing signaling pathways during the process of spliceosome assembly

ID #t Transitions Biological Interpretation

34 88 t3, t7, t11, t18-t22, t26, t33-t35, t40-t42, t44-t54, t56, t64, t68-t72, t76, t77, t81, t82,
t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t136, t144, t145, t148,
t150-t152, t155, t160

As i32, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

35 98 t0-t8, t11, t13-t15, t17-t21, t23, t24, t26, t33, t34, t40-t42, t44-t54, t57, t64, t68-
t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129,
t133-t136, t144, t145, t148, t150, t151, t158-t160

Normal U1 5′ss recognition, FBP11 mediated cross-intron bridging to
SF1-U2AF heteromer, early SF3b125 action (t13) in U2 maturation

36 99 t0-t8, t11, t14, t15, t17-t24, t26, t33, t34, t40-t42, t44-t54, t57, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t136, t144,
t145, t148, t150, t151, t158-t160

As i35, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

37 99 t0-t8, t11, t13, t15, t18-t21, t23, t24, t26, t33, t34, t40-t42, t44-t54, t57-t59, t64,
t68-t72, t76, t77, t81, t82, t84-t98, t101, t103-t106, t110, t111, t113, t114, t116-t129,
t133-t136, t144, t145, t148, t150, t151, t153, t158-t160

Normal U1 5′ss recognition, FBP11 mediated cross-intron bridging
between U1 and SF1, early SF3b125 action (t13) in U2 maturation

38 100 t0-t8, t11, t15, t18-t24, t26, t33, t34, t40-t42, t44-t54, t57-t59, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t103-t106, t109-t111, t113, t114, t116-t129, t133-t136, t144,
t145, t148, t150, t151, t153, t158-t160

As i37, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

39 100 t0-t7, t11, t13, t14, t18-t21, t25-t29, t33, t34, t37, t42, t44-t55, t64, t68-t72, t76, t77,
t81, t82, t84-t98, t101, t103-t108, t110-t129, t133-t136, t144, t145, t148, t150, t151,
t153, t157, t160

U1 U2 snRNP interaction via Prp5 and subsequent binding to 5′ss and
SF-U2AF engaged BP/3′ss, early SF3b125 action in U2 maturation

40 101 t0-t7, t11, t14, t18-t22, t25-t29, t33, t34, t37, t42, t44-t55, t64, t68-t72, t76, t77, t81,
t82, t84-t98, t101, t103-t129, t133-t136, t144, t145, t148, t150, t151, t153, t157, t160

As i39, but via late SF3b125 action (t22.17S U2 matur1 ) in U2
snRNP maturation

41 4 t64-t66, t83 NTC-complex formation
42 2 t67, t75 SKIP (PRPF45) influx and efflux (trivial)
43 2 t43, t73 Prp6 (U5.102K) influx and efflux (trivial)
44 93 t0-t8,t11,t13,t15,t18-t21,t23,t24,t26,t33,t34,t40-t54,t57-t59,t64-t72,t86,t87,t93,t96-

t100,t103-t108,t110-t116,t118-t129,t133-t136,t144,t145,t148,t150,t151,t153,t158,t159
Similar to i37, but entering the discard pathway before C-complex
stage. Hence, some transitions as t43.hPrp6 in, t65.Prp19 stab,
t66.NTC form, t67.SKIP in, t107.SF3b10 in, t108.SF3b14a in,
t112.SF3b49 in or, t115.SF3b14b in, which leave the assembly pro-
cess after the critical stage where the spliceosome can turn into the
discard pathway, appear in this T-invariant since these factors need
to be recylcled (drawn as logical places) in case of the productive
outcome of spliceosome assembly, but have no explicit output transi-
tion in case of the discard pathway (this applies for all T-invariants
covering the discard pathway)


