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ABSTRACT 

 

The paper presents an approach to the problem of job 

scheduling management in distributed heterogeneous 

computational environments with a fixed set of 

resources. The fact that the architecture of the 

computational environment is distributed, 

heterogeneous and dynamic along with the autonomy 

of processor nodes, makes it difficult to manage and 

assign resources for job execution at the required 

quality level. 

 

Index Terms – distributed, computing, 

scheduling, metascheduler, job-flow, application-

level, grid planning, complex structured jobs, 

collision, resource co-allocation, co-scheduling, 

planning strategies. 

1. INTRODUCTION 

Nowadays, there are situations when it is impossible 

to process large volumes of data in a reasonable 

amount of time without using distributed computing 

– the data-flows need to be directed and coordinated 

in a proper way to process the results of scientific 

experiments, to conduct computationally intensive 

research or just to monitor everyday activities on a 

larger scale. This paper describes the strategies of 

coordinated resource co-allocation in distributed 

computing. These strategies are implemented using a 

combination of job scheduling methods and 

techniques of application-level scheduling, where 

applications are regarded as compound jobs with a 

complex structure. Strategy is considered as a set of 

possible job scheduling variants on the processor 

nodes with coordinated planning and assignment of 

tasks, which are included into a multiprocessor job. 

The choice of the specific variant depends on the load 

level of the resource dynamics and is formed as a 

resource query which is sent to a local batch-job 

processing system. Safety strategies that take many 

factors into account (i.e. actual physical availability 

of resources) and allow implementing different 

computing scenarios are analyzed.  

In the wide range of different approaches to 

computing management in distributed environments, 

one can find two polar and settled trends. The first is 

based on the usage of the available resources, where 

resource brokers are acting as agents between users 

and processor nodes. Several projects such as 

AppLeS (Application-Level-Scheduling, [1]), APST 

[2], Legion [3], GC-DRM [4], Condor-G [5], 

Nimrod-G [6] and others follow this idea and are 

often associated with application-level scheduling, 

where no regulations for resource allocation are 

provided. Another trend is based on the concept of 

virtual organizations and is mainly aimed at Grid 

systems. Both trends have their own advantages and 

disadvantages. Resource brokers, that are used in the 

first trend are both scalable and flexible and can be 

adapted to a specific application. On the other hand 

resource distribution dedicated to a specific 

application as well as the usage of different criteria 

by independent users for the respective job execution 

plan optimization may deteriorate such integral 

characteristics as completion time for the batch-job or 

resource load level. This is happening especially 

while considering possible competition with other 

jobs.  

Distinct from existing solutions, our approach to 

computing in heterogeneous environments contains 

mechanisms of dynamic redistribution of job-flow 

between processor nodes in conjunction with 

application-level scheduling. It is considered that the 

job can be compound and the tasks included in the 

job are heterogeneous in terms of computation 

volume and resource need. In order to complete the 

job, one would have to co-allocate the tasks on 

different processor nodes. Each task is executed on a 

single processor node and it is supposed that the local 

management system interprets it as a job that is 

formed as a resource-query. Fundamental proposal of 

this technique is that the resultant dispatching 

strategies are based on the integration of job-flows 

management methods and compound job scheduling 

methods on processor nodes. It allows increasing the 

quality of service for the jobs and distributed 

environment resource usage efficiency. This paper is 

related to the description of the basics of practical 

implementation and simulation of the scheduling 

processes proposed. The underlying theory is 

described in [7] and [8]. 
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2. AREA OF APPLICATION AND 

DEFINITIONS 

The nature of computational environments 

themselves demands the development of multi-

criteria and multi-factor strategies of coordinated 

scheduling and resource allocation. Factors such as 

the dynamic configuration of the environment, large 

number of resource reallocation events, users’ and 

resource owners’ needs and virtual organization 

policy of resource assignment should be taken into 

account. It is also very important to consider the 

approach proposed not only for the distributed 

computing area, but for any other activity that 

involves planning. For example, publishing books, 

assembling cars or making movies are processes that 

share similar abstract entities as scheduling of 

interrelated tasks in distributed computing. One can 

relate a computational unit (resource) to an assembly 

worker or illustration designer and computational 

tasks to a work of any other type. Strategy, being a 

set of schedules, shows the most effective (according 

to the chosen strategy type) sequence of actions 

which leads to the defined goal.  

In our case, the goal is to execute and compute a set 

of computational tasks in a distributed environment, 

though the approach can surely be implemented on a 

more general scale. Authors of the paper are 

researching Grid planning mechanisms, so the 

terminology used here will be specifically related to 

this area as follows. CPU is defined as an abstract 

resource, which can be used for execution of an 

abstract task. The complex set of connected 

interrelated tasks form a job. In some applications 

jobs require co-scheduling [9] and resource co-

allocation [10] on several CPUs. In this case resource 

allocation has a number of substantial specific 

features caused by autonomy, heterogeneity, dynamic 

changing of the contents, and failures of nodes [11]. 

One of the most popular techniques used in 

distributed planning is pre-emptive scheduling based 

on queues. This is actually not an efficient way of 

multiprocessor jobs co-allocating in our opinion. 

Besides, there are several well-known downsides of 

this method in the cluster systems such as LL, NQE, 

LSF, PBS and others. For example, traditional First-

Come-First-Serve strategy leads to idle standing 

resources. Another strategy, which involves job 

ranking according to the specific properties (such as 

computational complexity, for example LWF or 

Most-Significant-First) leads to a severe resource 

fragmentation, and often makes it impossible to 

execute some jobs due to the absence of idle 

resources. In distributed environments these effects 

can lead to unpredictable job execution time and 

thereby to unsatisfactory quality of service. In order 

to avoid this many projects have components which 

make schedules that are supported by preliminary 

resource reservation mechanisms. One example 

system is the Maui cluster scheduler, where a 

backfilling algorithm is implemented. The remote 

Grid resource reservation mechanism is also 

supported in GARA, Ursala and Silver projects. In 

these only one variant of the final schedule is built 

and it can become irrelevant because of changes in 

the local job-queue, transporting delays etc.  

The significant difference between the approach 

proposed in this paper and well-known scheduling 

solutions for distributed environments such as the 

Grid is the fact that the whole set of scheduling co-

allocation variants actually forms a strategy. This 

strategy is formed on a basis of formalized efficiency 

criteria, which efficiently allow to reflect economical 

principles of resource allocation by using relevant 

cost functions, and solving a load balance problem 

for heterogeneous processor nodes.  

3. SIMULATION ENVIRONMENT 

Strategy of a compound job execution is a set of 

possible resource allocation and schedules for each 

task in the job: 

 

Distribution=<<Task{1}/Allocation{i},[Start{1},End{1}]

>, … , <Task{N} / Allocation{j}, [Start{N}, End{N}]>>, 

 

where Allocation{i},{j} are resources (CPUs) and 

StartN, EndN are run time and stop time for task N 

execution. Time interval [Start, End] is treated as a 

so called walltime, defined at the resource reservation 

time in the local batch-job processing system. The 

metascheduler task is to distribute job-flows between 

processor node domains according to the selected co-

allocation strategy. It doesn’t mean that these flows 

cannot intersect each other on processor nodes. A 

special job-between-processor-nodes reallocation 

mechanism is provided. It is executed on the higher-

level manager or on the metascheduler. Job-managers 

are supporting and updating strategies based on 

cooperation with local managers (batch-job 

processing systems) and simulation approach for job 

execution on local processor nodes. The authors have 

implemented a simulation environment for the 

metascheduler project and made a pilot study of the 

efficiency indices of different co-allocation strategies, 

based on different job structure and environment data 

distribution.  

The first version of the software provided the very 

basic functions for creating strategies for an abstract 

job generated randomly. Every job is represented as 

an oriented weighted acyclic graph with vertices 

corresponding to the tasks and edges corresponding 

to the precedence relations between tasks. Weights of 

vertices are proportional to the computational 

volumes of tasks while weights of edges correspond 

to data transfer times. The complexity of the graphs 



is defined by the following parameters: the number of 

layers, the maximum number of vertices for one layer 

and the edge density. Every graph is then processed 

in three major steps: 

1. Forming and ranging a set of critical paths 

(longest sets of connected tasks) in the graph  

2. Consequential planning of every critical path in 

the graph 

3.  Resolution of possible collisions 

These steps implement the critical jobs method, 

which was earlier developed by the authors [12].  

 

3.1. Critical jobs method – ranging 

 

In order to form a sorted critical paths array for 

the graph that will include every vertex and every 

edge only once, the following algorithm is proposed: 

1) Build the array containing every critical path in 

the graph by building a tree of critical paths 

(each vertex in the tree represents one path) 

a) Calculate the root vertex of the tree (longest 

critical path Pn for the initial graph 

Gn,1={U,V}) with Ford’s algorithm [13], 

current layer n=0. 

b) n=n+1 

c) Calculate critical paths that correspond to 

the vertices of the current layer. Each vertex 

corresponds to the graph of the adjacent 

vertex on n-1th layer, where one edge is 

taken away. For example if the root critical 

path P0 had 5 edges e1-e5 from the initial 

graph, layer n=1 will have 5 vertices, that 

represent 5 graphs G1,1-G1,5 and each of 

them will correspond to the initial graph 

without one of the five edges.  

G1,1={U\e1,V}, G1,2={U\e2,V} etc. Graphs 

G1,1-G1,5 will not contain the path P0, that 

was calculated in the previous layer, so 

Ford’s algorithm will find another critical 

path for each of those graphs. 

d) If a vertex corresponds to the graph without 

edges, it is considered as a leaf 

e) If each vertex of the current layer is a leaf, 

then exit the cycle. Otherwise go to b. 

2) Sort the array of paths by their lengths in 

descending order (each path corresponds to the 

vertex of a tree from the step 1) 

3) Include paths in the final set from the top of the 

array until this set comprises all vertices and 

edges of the graph. 

 

3.2. Critical jobs method – planning 

 

The second step begins when critical path array is 

received by the main planning process and the 

assignment of computing resources is ready to go. 

The scheduler expects an oriented graph which is 

preliminarily split into critical paths as input. Output 

of the scheduler is a set of vectors of a priori time 

estimates for each of vertices of the graph which is 

based on single-criterion optimization (in the general 

case, it can be multi-criteria but current version of 

software implements single-criterion optimization). 

This set was earlier defined as a strategy for a job. 

Input data requirements consist in following: critical 

jobs must be ranged i.e. ordered by a priori execution 

time estimates. Execution time estimate is counted as 

a sum of each task execution time using the fastest 

processor possible plus sum of the data exchange 

times between the tasks. Critical paths are defined by 

tasks belonging to a job and information links 

conveying the precedence relations. Input data also 

includes processor performance values for each of the 

tasks. 

The scheduler algorithm contains a cycle which 

iterates over each critical path. As a result of single 

iteration one or more distribution variants are 

produced. These distribution variants are sub-vectors 

of the final distribution vector that is the output of the 

whole planning process. 

During each iteration, a sub-vector includes a priori 

time estimation for corresponding tasks of a critical 

job. If there is more than one variant at the start of 

iteration, then each of them is processed. During this 

process several new variants may be added to the list, 

but they can be checked during the next iteration for 

next critical job. 

The cycle includes following steps: 

1. If the undistributed task count of the current 

critical job is greater than 1, a search-tree is created 

according to the method described in [12], and the 

optimization is applied. After filling up the search-

tree, «reverse» and «forward walk» are conducted 

that result in one or more sub-vectors as one or more 

optimums of criteria function could be found during 

the «forward walk». If a tree has been made for the 

first critical job, the sub-vectors are copied to final 

distribution variant list. Otherwise the sub-vectors are 

merged with existing ones from the list. If a tree has 

been constructed for other critical job and m variants 

exist at the moment, then adding up n new variants 

will produce m*n resulting sub-vectors. 

All the tasks that belong to the current critical job are 

considered as distributed at this point. There is a 

possibility of search-tree processing failure which can 

be the result of a too-tight time (or any other 

variable) constraint. If this is the case the current 

variant is considered invalid and is removed from the 

list later.   

2. If a critical job contains only one undistributed 

task, its time boundaries are specified within the 

already distributed tasks of the job. If there is a 

processor that can run the undistributed task in the 

specified time, then a priori time estimation for this 

task and processor is saved to the variant, otherwise 

the current variant is considered invalid. The variant 



count can decrease or remain the same during this 

type of iteration. 

3. If a critical job contains only one information link 

(edge in the graph), which can happen if a job 

consists of two tasks and both are distributed to the 

moment of iteration start, a simple check of time 

boundaries is performed. If the data exchange 

provided with information link does not fit into the 

time boundaries that are specified by the distributed 

tasks (which may happen if their distributions 

overlap), then the current variant is also considered 

invalid. 

4. If a critical job contains the only isolated task, then 

the whole planning scale (time reserve) becomes its 

time execution estimate. Such an assignment depends 

on criteria used for planning which is average 

processor utilization. With other criteria functions 

the assignment rule for an isolated task job may vary. 

The variant count does not change during this type of 

iteration. 

5. When all tasks of all critical jobs are distributed or 

the variant list is empty the planning process is 

finished. As a result, the ranged set of optimal 

schedules is forwarded to the possible collisions 

resolution module. This schedule is called the 

preliminary schedule. 

3.3. Critical jobs method – collisions 

 

The planning step of the critical jobs method 

considers the types of CPUs to which tasks can be 

assigned. It is assumed that there is an unlimited 

number of each CPU type for task assignment, 

though the method can easily be adapted for 

processing real CPU entities and not the CPU types if 

the preliminary schedule is then processed by the 

collision resolution module (which is also 

implemented in the simulation environment).  

The collision resolution module checks for possible 

intersections of the assigned tasks in the preliminary 

schedule (i.e. if two or more tasks are assigned on the 

same CPU during the same time interval) and 

reassigns tasks to other CPUs according to the 

defined policy. Algorithms and heuristics proposed 

for this reassignment include bipartite graph analysis, 

where every reassignment is efficiently calculated 

and leads to the minimal value of the defined penalty 

criterion. The final list of schedules is considered to 

be the strategy for the planning of a given job.  

 

4. SIMULATION RESULTS 

 

The program model allows setting all parameters of 

the random job-flow, schedule criteria, penalty 

functions, and the frequency of jobs submission. 

After the simulation timelines of resource utilization 

and detailed information about corresponding 

collisions and the way they were resolved is shown. 

 

 
Figure 1 Sample jobs 

After successful testing of the developed algorithms 

the revision of all operational parts of the scheduler 

and preparation of the kernel for the integration into 

a real environment was considered. Demonstration 

and operational modules were separated and 

optimized. A full refactoring and profiling of the 

project source code led to a performance increase of 

400%. Simple example describing the result of 

processing two jobs by the system is explained below.  

Fig. 1 represents two jobs with walltimes t1=110 and 

t2=140 that are submitted to the distributed 

environment with 8 abstract CPUs. If the jobs are 

submitted one-by-one the metascheduler will also 

schedule them one-by-one and will guarantee that 

every job will be scheduled within the defined time 

interval and in a most efficient way in terms of a 

selected penalty cost-function and maximize average 

load balance of CPUs on a single job scale (Fig. 2). 

Job-flow execution will be finished at t3=250. This is 

a classic example of application-level scheduling and 

no integral job-flow characteristics are optimized in 

this case.  

To combine application-level scheduling and job-

flow-level scheduling and to fully exploit the 

advantages of the approach proposed, one can submit 

both jobs simultaneously or store them in a buffer and 

execute the scheduling for all jobs in the buffer after 

a certain amount of time (buffer time). If the 

metascheduler gets more than one job to schedule it 

runs the developed mechanisms that optimize the 

whole job-flow (two jobs in this example). In that 

case the metascheduler will still try to find an 

optimal schedule for each single job as described 



              Figure 2 Consequential scheduling 

above and, at the same time, will try to find the most 

optimal job assignment so that the average load of 

CPUs will be maximized on a job-flow scale. Fig. 3 

shows, that both jobs are executed within t4=t2=140, 

every data dependency is taken into account (e.g. for 

the second job: task p2 is executed only after tasks 

p0,p4 and p1 are ready), and the final schedule is 

chosen from the calculated strategy with the lowest 

penalty function value.  

It is important to mention that users can submit jobs 

without information about the task execution order as 

required by existing schedulers like the Maui cluster 

scheduler [14] where only queues are supported. 

Implemented mechanisms of our approach support a 

complex structure for the job, which is represented as 

a directed graph, so users should only provide data 

dependencies between tasks (i.e. the structure of a 

job) and the metascheduler will calculate the 

schedules to satisfy their needs by providing optimal 

plans for the jobs (application-level scheduling) and 

the needs for the resource owners by optimizing the 

defined characteristics of the job-flow for the 

distributed system (job-flow scheduling).  

The last version of the simulation environment was 

implemented as a two-module system: the first 

generates jobs and the second makes schedules. Jobs 

are submitted in the XML format with the description 

of all data dependencies between the connected tasks. 

Settings for the generating module allow defining 

parameters of the job-flow and settings for the 

metascheduling module allow defining the policy for 

the scheduling. Currently, two criteria functions can 

be chosen for application-level scheduling (lowest 

cost of the schedule and maximum average CPU 

utilization for one single job) and one for the job-flow 

scheduling (maximum  average CPU utilization for 

 

  
Figure 3 Collective scheduling 

the job-flow). Planning module gathers the statistics 

of the planning, including the overall cost (in terms 

of the defined penalty function) of every job 

execution and the whole job-flow, average load 

balance of CPUs and others.  

In order to combine application-level and job-flow 

scheduling the critical jobs method was improved 

and now operates with a dynamic set of CPUs, 

checking the availability of each CPU every time an 

assignment or reassignment is made. It guarantees 

the optimal schedule for the single job and the 

metascheduling module allocates only idle CPUs for 

task assignment, so possible job intersections are 

avoided and the overall characteristics of the job-flow 

are optimized. Currently only the basic first-come-

first-served (FCFS) management policy is 

implemented  in the metascheduler module, so every 

job or a set of jobs as described in the example is 

planned and assigned at the moment it comes to the 

system, but as the project kernel was reorganized it is 

now possible to implement more advanced techniques 

such as gang-scheduling or buffer-based planning.  

5. CONCLUSION 

In this paper, the practical implementation basics of 

the combined approach proposed for the resource co-

allocation in distributed computing systems are 

presented. Authors plan to implement advanced 

scheduling policies in the project to make the 

metascheduler more flexible. Further improvements 

of the simulation system will also include the 

implementation of different criteria functions for job 

and job-flow scheduling. 

At present, when the importance of effective resource 

utilization is very high in the different areas, it is 



obvious that the successful completion of the project 

will make it possible to create a powerful tool that 

will allow the execution of complex structured 

distributed scenarios with complex data dependencies 

on a set of resources in an optimal way. 
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