

Information Technology and Electrical
Engineering - Devices and Systems, Materials
and Technologies for the Future

Faculty of Electrical Engineering and
Information Technology

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089

54. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

07 - 10 September 2009 PROCEEDINGS
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224758866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Herausgeber: Der Rektor der Technischen Universität llmenau
 Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c.

Peter Scharff

Redaktion: Referat Marketing
 Andrea Schneider

 Fakultät für Elektrotechnik und Informationstechnik
 Univ.-Prof. Dr.-Ing. Frank Berger

Redaktionsschluss: 17. August 2009

Technische Realisierung (USB-Flash-Ausgabe):
 Institut für Medientechnik an der TU Ilmenau
 Dipl.-Ing. Christian Weigel
 Dipl.-Ing. Helge Drumm

Technische Realisierung (Online-Ausgabe):
 Universitätsbibliothek Ilmenau

 Postfach 10 05 65
 98684 Ilmenau

Verlag:
 Verlag ISLE, Betriebsstätte des ISLE e.V.
 Werner-von-Siemens-Str. 16
 98693 llmenau

© Technische Universität llmenau (Thür.) 2009

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind
urheberrechtlich geschützt.

ISBN (USB-Flash-Ausgabe): 978-3-938843-45-1
ISBN (Druckausgabe der Kurzfassungen): 978-3-938843-44-4

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089

COMPOUND JOB SCHEDULING AND JOB-FLOWS MANAGEMENT IN DISTRIBUTED

COMPUTING

A. Tselishchev, V. V. Toporkov

CERN (European organization for nuclear research);

MPEI (Moscow Power Engineering Institute)

ABSTRACT

The paper presents an approach to the problem of job

scheduling management in distributed heterogeneous

computational environments with a fixed set of

resources. The fact that the architecture of the

computational environment is distributed,

heterogeneous and dynamic along with the autonomy

of processor nodes, makes it difficult to manage and

assign resources for job execution at the required

quality level.

Index Terms – distributed, computing,

scheduling, metascheduler, job-flow, application-

level, grid planning, complex structured jobs,

collision, resource co-allocation, co-scheduling,

planning strategies.

1. INTRODUCTION

Nowadays, there are situations when it is impossible

to process large volumes of data in a reasonable

amount of time without using distributed computing

– the data-flows need to be directed and coordinated

in a proper way to process the results of scientific

experiments, to conduct computationally intensive

research or just to monitor everyday activities on a

larger scale. This paper describes the strategies of

coordinated resource co-allocation in distributed

computing. These strategies are implemented using a

combination of job scheduling methods and

techniques of application-level scheduling, where

applications are regarded as compound jobs with a

complex structure. Strategy is considered as a set of

possible job scheduling variants on the processor

nodes with coordinated planning and assignment of

tasks, which are included into a multiprocessor job.

The choice of the specific variant depends on the load

level of the resource dynamics and is formed as a

resource query which is sent to a local batch-job

processing system. Safety strategies that take many

factors into account (i.e. actual physical availability

of resources) and allow implementing different

computing scenarios are analyzed.

In the wide range of different approaches to

computing management in distributed environments,

one can find two polar and settled trends. The first is

based on the usage of the available resources, where

resource brokers are acting as agents between users

and processor nodes. Several projects such as

AppLeS (Application-Level-Scheduling, [1]), APST

[2], Legion [3], GC-DRM [4], Condor-G [5],

Nimrod-G [6] and others follow this idea and are

often associated with application-level scheduling,

where no regulations for resource allocation are

provided. Another trend is based on the concept of

virtual organizations and is mainly aimed at Grid

systems. Both trends have their own advantages and

disadvantages. Resource brokers, that are used in the

first trend are both scalable and flexible and can be

adapted to a specific application. On the other hand

resource distribution dedicated to a specific

application as well as the usage of different criteria

by independent users for the respective job execution

plan optimization may deteriorate such integral

characteristics as completion time for the batch-job or

resource load level. This is happening especially

while considering possible competition with other

jobs.

Distinct from existing solutions, our approach to

computing in heterogeneous environments contains

mechanisms of dynamic redistribution of job-flow

between processor nodes in conjunction with

application-level scheduling. It is considered that the

job can be compound and the tasks included in the

job are heterogeneous in terms of computation

volume and resource need. In order to complete the

job, one would have to co-allocate the tasks on

different processor nodes. Each task is executed on a

single processor node and it is supposed that the local

management system interprets it as a job that is

formed as a resource-query. Fundamental proposal of

this technique is that the resultant dispatching

strategies are based on the integration of job-flows

management methods and compound job scheduling

methods on processor nodes. It allows increasing the

quality of service for the jobs and distributed

environment resource usage efficiency. This paper is

related to the description of the basics of practical

implementation and simulation of the scheduling

processes proposed. The underlying theory is

described in [7] and [8].

© 2009 - 54th Internationales Wissenschaftliches Kolloquium

2. AREA OF APPLICATION AND

DEFINITIONS

The nature of computational environments

themselves demands the development of multi-

criteria and multi-factor strategies of coordinated

scheduling and resource allocation. Factors such as

the dynamic configuration of the environment, large

number of resource reallocation events, users’ and

resource owners’ needs and virtual organization

policy of resource assignment should be taken into

account. It is also very important to consider the

approach proposed not only for the distributed

computing area, but for any other activity that

involves planning. For example, publishing books,

assembling cars or making movies are processes that

share similar abstract entities as scheduling of

interrelated tasks in distributed computing. One can

relate a computational unit (resource) to an assembly

worker or illustration designer and computational

tasks to a work of any other type. Strategy, being a

set of schedules, shows the most effective (according

to the chosen strategy type) sequence of actions

which leads to the defined goal.

In our case, the goal is to execute and compute a set

of computational tasks in a distributed environment,

though the approach can surely be implemented on a

more general scale. Authors of the paper are

researching Grid planning mechanisms, so the

terminology used here will be specifically related to

this area as follows. CPU is defined as an abstract

resource, which can be used for execution of an

abstract task. The complex set of connected

interrelated tasks form a job. In some applications

jobs require co-scheduling [9] and resource co-

allocation [10] on several CPUs. In this case resource

allocation has a number of substantial specific

features caused by autonomy, heterogeneity, dynamic

changing of the contents, and failures of nodes [11].

One of the most popular techniques used in

distributed planning is pre-emptive scheduling based

on queues. This is actually not an efficient way of

multiprocessor jobs co-allocating in our opinion.

Besides, there are several well-known downsides of

this method in the cluster systems such as LL, NQE,

LSF, PBS and others. For example, traditional First-

Come-First-Serve strategy leads to idle standing

resources. Another strategy, which involves job

ranking according to the specific properties (such as

computational complexity, for example LWF or

Most-Significant-First) leads to a severe resource

fragmentation, and often makes it impossible to

execute some jobs due to the absence of idle

resources. In distributed environments these effects

can lead to unpredictable job execution time and

thereby to unsatisfactory quality of service. In order

to avoid this many projects have components which

make schedules that are supported by preliminary

resource reservation mechanisms. One example

system is the Maui cluster scheduler, where a

backfilling algorithm is implemented. The remote

Grid resource reservation mechanism is also

supported in GARA, Ursala and Silver projects. In

these only one variant of the final schedule is built

and it can become irrelevant because of changes in

the local job-queue, transporting delays etc.

The significant difference between the approach

proposed in this paper and well-known scheduling

solutions for distributed environments such as the

Grid is the fact that the whole set of scheduling co-

allocation variants actually forms a strategy. This

strategy is formed on a basis of formalized efficiency

criteria, which efficiently allow to reflect economical

principles of resource allocation by using relevant

cost functions, and solving a load balance problem

for heterogeneous processor nodes.

3. SIMULATION ENVIRONMENT

Strategy of a compound job execution is a set of

possible resource allocation and schedules for each

task in the job:

Distribution=<<Task{1}/Allocation{i},[Start{1},End{1}]

>, … , <Task{N} / Allocation{j}, [Start{N}, End{N}]>>,

where Allocation{i},{j} are resources (CPUs) and

StartN, EndN are run time and stop time for task N

execution. Time interval [Start, End] is treated as a

so called walltime, defined at the resource reservation

time in the local batch-job processing system. The

metascheduler task is to distribute job-flows between

processor node domains according to the selected co-

allocation strategy. It doesn’t mean that these flows

cannot intersect each other on processor nodes. A

special job-between-processor-nodes reallocation

mechanism is provided. It is executed on the higher-

level manager or on the metascheduler. Job-managers

are supporting and updating strategies based on

cooperation with local managers (batch-job

processing systems) and simulation approach for job

execution on local processor nodes. The authors have

implemented a simulation environment for the

metascheduler project and made a pilot study of the

efficiency indices of different co-allocation strategies,

based on different job structure and environment data

distribution.

The first version of the software provided the very

basic functions for creating strategies for an abstract

job generated randomly. Every job is represented as

an oriented weighted acyclic graph with vertices

corresponding to the tasks and edges corresponding

to the precedence relations between tasks. Weights of

vertices are proportional to the computational

volumes of tasks while weights of edges correspond

to data transfer times. The complexity of the graphs

is defined by the following parameters: the number of

layers, the maximum number of vertices for one layer

and the edge density. Every graph is then processed

in three major steps:

1. Forming and ranging a set of critical paths

(longest sets of connected tasks) in the graph

2. Consequential planning of every critical path in

the graph

3. Resolution of possible collisions

These steps implement the critical jobs method,

which was earlier developed by the authors [12].

3.1. Critical jobs method – ranging

In order to form a sorted critical paths array for

the graph that will include every vertex and every

edge only once, the following algorithm is proposed:

1) Build the array containing every critical path in

the graph by building a tree of critical paths

(each vertex in the tree represents one path)

a) Calculate the root vertex of the tree (longest

critical path Pn for the initial graph

Gn,1={U,V}) with Ford’s algorithm [13],

current layer n=0.

b) n=n+1

c) Calculate critical paths that correspond to

the vertices of the current layer. Each vertex

corresponds to the graph of the adjacent

vertex on n-1th layer, where one edge is

taken away. For example if the root critical

path P0 had 5 edges e1-e5 from the initial

graph, layer n=1 will have 5 vertices, that

represent 5 graphs G1,1-G1,5 and each of

them will correspond to the initial graph

without one of the five edges.

G1,1={U\e1,V}, G1,2={U\e2,V} etc. Graphs

G1,1-G1,5 will not contain the path P0, that

was calculated in the previous layer, so

Ford’s algorithm will find another critical

path for each of those graphs.

d) If a vertex corresponds to the graph without

edges, it is considered as a leaf

e) If each vertex of the current layer is a leaf,

then exit the cycle. Otherwise go to b.

2) Sort the array of paths by their lengths in

descending order (each path corresponds to the

vertex of a tree from the step 1)

3) Include paths in the final set from the top of the

array until this set comprises all vertices and

edges of the graph.

3.2. Critical jobs method – planning

The second step begins when critical path array is

received by the main planning process and the

assignment of computing resources is ready to go.

The scheduler expects an oriented graph which is

preliminarily split into critical paths as input. Output

of the scheduler is a set of vectors of a priori time

estimates for each of vertices of the graph which is

based on single-criterion optimization (in the general

case, it can be multi-criteria but current version of

software implements single-criterion optimization).

This set was earlier defined as a strategy for a job.

Input data requirements consist in following: critical

jobs must be ranged i.e. ordered by a priori execution

time estimates. Execution time estimate is counted as

a sum of each task execution time using the fastest

processor possible plus sum of the data exchange

times between the tasks. Critical paths are defined by

tasks belonging to a job and information links

conveying the precedence relations. Input data also

includes processor performance values for each of the

tasks.

The scheduler algorithm contains a cycle which

iterates over each critical path. As a result of single

iteration one or more distribution variants are

produced. These distribution variants are sub-vectors

of the final distribution vector that is the output of the

whole planning process.

During each iteration, a sub-vector includes a priori

time estimation for corresponding tasks of a critical

job. If there is more than one variant at the start of

iteration, then each of them is processed. During this

process several new variants may be added to the list,

but they can be checked during the next iteration for

next critical job.

The cycle includes following steps:

1. If the undistributed task count of the current

critical job is greater than 1, a search-tree is created

according to the method described in [12], and the

optimization is applied. After filling up the search-

tree, «reverse» and «forward walk» are conducted

that result in one or more sub-vectors as one or more

optimums of criteria function could be found during

the «forward walk». If a tree has been made for the

first critical job, the sub-vectors are copied to final

distribution variant list. Otherwise the sub-vectors are

merged with existing ones from the list. If a tree has

been constructed for other critical job and m variants

exist at the moment, then adding up n new variants

will produce m*n resulting sub-vectors.

All the tasks that belong to the current critical job are

considered as distributed at this point. There is a

possibility of search-tree processing failure which can

be the result of a too-tight time (or any other

variable) constraint. If this is the case the current

variant is considered invalid and is removed from the

list later.

2. If a critical job contains only one undistributed

task, its time boundaries are specified within the

already distributed tasks of the job. If there is a

processor that can run the undistributed task in the

specified time, then a priori time estimation for this

task and processor is saved to the variant, otherwise

the current variant is considered invalid. The variant

count can decrease or remain the same during this

type of iteration.

3. If a critical job contains only one information link

(edge in the graph), which can happen if a job

consists of two tasks and both are distributed to the

moment of iteration start, a simple check of time

boundaries is performed. If the data exchange

provided with information link does not fit into the

time boundaries that are specified by the distributed

tasks (which may happen if their distributions

overlap), then the current variant is also considered

invalid.

4. If a critical job contains the only isolated task, then

the whole planning scale (time reserve) becomes its

time execution estimate. Such an assignment depends

on criteria used for planning which is average

processor utilization. With other criteria functions

the assignment rule for an isolated task job may vary.

The variant count does not change during this type of

iteration.

5. When all tasks of all critical jobs are distributed or

the variant list is empty the planning process is

finished. As a result, the ranged set of optimal

schedules is forwarded to the possible collisions

resolution module. This schedule is called the

preliminary schedule.

3.3. Critical jobs method – collisions

The planning step of the critical jobs method

considers the types of CPUs to which tasks can be

assigned. It is assumed that there is an unlimited

number of each CPU type for task assignment,

though the method can easily be adapted for

processing real CPU entities and not the CPU types if

the preliminary schedule is then processed by the

collision resolution module (which is also

implemented in the simulation environment).

The collision resolution module checks for possible

intersections of the assigned tasks in the preliminary

schedule (i.e. if two or more tasks are assigned on the

same CPU during the same time interval) and

reassigns tasks to other CPUs according to the

defined policy. Algorithms and heuristics proposed

for this reassignment include bipartite graph analysis,

where every reassignment is efficiently calculated

and leads to the minimal value of the defined penalty

criterion. The final list of schedules is considered to

be the strategy for the planning of a given job.

4. SIMULATION RESULTS

The program model allows setting all parameters of

the random job-flow, schedule criteria, penalty

functions, and the frequency of jobs submission.

After the simulation timelines of resource utilization

and detailed information about corresponding

collisions and the way they were resolved is shown.

Figure 1 Sample jobs

After successful testing of the developed algorithms

the revision of all operational parts of the scheduler

and preparation of the kernel for the integration into

a real environment was considered. Demonstration

and operational modules were separated and

optimized. A full refactoring and profiling of the

project source code led to a performance increase of

400%. Simple example describing the result of

processing two jobs by the system is explained below.

Fig. 1 represents two jobs with walltimes t1=110 and

t2=140 that are submitted to the distributed

environment with 8 abstract CPUs. If the jobs are

submitted one-by-one the metascheduler will also

schedule them one-by-one and will guarantee that

every job will be scheduled within the defined time

interval and in a most efficient way in terms of a

selected penalty cost-function and maximize average

load balance of CPUs on a single job scale (Fig. 2).

Job-flow execution will be finished at t3=250. This is

a classic example of application-level scheduling and

no integral job-flow characteristics are optimized in

this case.

To combine application-level scheduling and job-

flow-level scheduling and to fully exploit the

advantages of the approach proposed, one can submit

both jobs simultaneously or store them in a buffer and

execute the scheduling for all jobs in the buffer after

a certain amount of time (buffer time). If the

metascheduler gets more than one job to schedule it

runs the developed mechanisms that optimize the

whole job-flow (two jobs in this example). In that

case the metascheduler will still try to find an

optimal schedule for each single job as described

 Figure 2 Consequential scheduling

above and, at the same time, will try to find the most

optimal job assignment so that the average load of

CPUs will be maximized on a job-flow scale. Fig. 3

shows, that both jobs are executed within t4=t2=140,

every data dependency is taken into account (e.g. for

the second job: task p2 is executed only after tasks

p0,p4 and p1 are ready), and the final schedule is

chosen from the calculated strategy with the lowest

penalty function value.

It is important to mention that users can submit jobs

without information about the task execution order as

required by existing schedulers like the Maui cluster

scheduler [14] where only queues are supported.

Implemented mechanisms of our approach support a

complex structure for the job, which is represented as

a directed graph, so users should only provide data

dependencies between tasks (i.e. the structure of a

job) and the metascheduler will calculate the

schedules to satisfy their needs by providing optimal

plans for the jobs (application-level scheduling) and

the needs for the resource owners by optimizing the

defined characteristics of the job-flow for the

distributed system (job-flow scheduling).

The last version of the simulation environment was

implemented as a two-module system: the first

generates jobs and the second makes schedules. Jobs

are submitted in the XML format with the description

of all data dependencies between the connected tasks.

Settings for the generating module allow defining

parameters of the job-flow and settings for the

metascheduling module allow defining the policy for

the scheduling. Currently, two criteria functions can

be chosen for application-level scheduling (lowest

cost of the schedule and maximum average CPU

utilization for one single job) and one for the job-flow

scheduling (maximum average CPU utilization for

Figure 3 Collective scheduling

the job-flow). Planning module gathers the statistics

of the planning, including the overall cost (in terms

of the defined penalty function) of every job

execution and the whole job-flow, average load

balance of CPUs and others.

In order to combine application-level and job-flow

scheduling the critical jobs method was improved

and now operates with a dynamic set of CPUs,

checking the availability of each CPU every time an

assignment or reassignment is made. It guarantees

the optimal schedule for the single job and the

metascheduling module allocates only idle CPUs for

task assignment, so possible job intersections are

avoided and the overall characteristics of the job-flow

are optimized. Currently only the basic first-come-

first-served (FCFS) management policy is

implemented in the metascheduler module, so every

job or a set of jobs as described in the example is

planned and assigned at the moment it comes to the

system, but as the project kernel was reorganized it is

now possible to implement more advanced techniques

such as gang-scheduling or buffer-based planning.

5. CONCLUSION

In this paper, the practical implementation basics of

the combined approach proposed for the resource co-

allocation in distributed computing systems are

presented. Authors plan to implement advanced

scheduling policies in the project to make the

metascheduler more flexible. Further improvements

of the simulation system will also include the

implementation of different criteria functions for job

and job-flow scheduling.

At present, when the importance of effective resource

utilization is very high in the different areas, it is

obvious that the successful completion of the project

will make it possible to create a powerful tool that

will allow the execution of complex structured

distributed scenarios with complex data dependencies

on a set of resources in an optimal way.

6. ACKNOWLEDGEMENTS

This work is supported by the Russian Foundation for

Basic Research, project no. 09-01-00095.

7. REFERENCES

[1] Adaptive computing on the Grid using AppLeS

Berman, F.; Wolski, R.; Casanova, H.; Cirne, W.;

Dail, H.; Faerman, M.; Figueira, S.; Hayes, J.;

Obertelli, G.; Schopf, J.; Shao, G.; Smallen, S.;

Spring, N.; Su, A.; Zagorodnov, D. Parallel and

Distributed Systems, IEEE Transactions on Volume

14, Issue 4, April 2003 Page(s): 369 – 382 Digital

Object Identifier 10.1109/TPDS.2003.1195409

[2] Practical Divisible Load Scheduling on Grid

Platforms with APST-DV van der Raadt, K.; Yang

Yang; Casanova, H. Parallel and Distributed

Processing Symposium, 2005. Proceedings. 19th

IEEE International Volume , Issue , 04-08 April

2005 Page(s): 29b - 29b Digital Object Identifier

10.1109/IPDPS.2005.351

[3] Michael J. Lewis, Adam J. Ferrari, Marty A.

Humphrey, John F. Karpovich, Mark M. Morgan,

Anand Natrajan, Anh Nguyen-Tuong, Glenn S.

Wasson and Andrew S. Grimshaw, "Support for

Extensibility and Site Autonomy in the Legion Grid

System Object Model," Journal of Parallel and

Distributed Computing, Volume 63, Number 5, pp.

525-38, May 2003.

[4] Digital right management based on Grid

Computing architecture (GC-DRM) Min-Jen Tsai;

Yuan-Fu Luo Computer Supported Cooperative Work

in Design, 2008. CSCWD 2008. 12th International

Conference on Volume , Issue , 16-18 April 2008

Page(s):494 – 500 Digital Object Identifier

10.1109/CSCWD.2008.4537028

[5] http://www.cs.wisc.edu/condor/condorg/

[6] http://www.csse.monash.edu.au/~davida/nimrod/

nimrodg.htm

[7] Toporkov, V.V. Tselishchev, A. Safety Strategies

of Scheduling and Resource Co-allocation in

Distributed Computing, Proceedings of the 2008

Third International Conference on Dependability of

Computer Systems DepCoS-RELCOMEX ISBN:978-

0-7695-3179-3

[8] V. V. Toporkov Supporting Schedules of

Resource Co-Allocation for Distributed Computing in

Scalable Systems ISSN 0361-7688, Programming

and Computer Software, 2008, Vol. 34, No. 3, pp.

160–172. © Pleiades Publishing, Ltd., 2008.Original

Russian Text V.V. Toporkov, 2008, published in

Programmirovanie, 2008, Vol. 34, No. 3.

[9] M.A. Ioannidou and H.D. Karatza, “Multi-site

Scheduling with Multiple Job Reservations and

Forecasting Methods”, Proc. of the ISPA 2006,

LNCS, Vol. 4330, Springer-Verlag Berlin

Heidelberg, 2006, pp. 894-903.

[10] K. Kurowski, J.Nabrzyski, A. Oleksiak, et. al,

“Multicriteria Aspects of Grid Resource

Management”. In: J. Nabrzyski, J.M. Schopf, J.

Weglarz (eds), Grid Resource Management. State of

the Art and Future Trends, Kluwer Acad. Publ.,

2003, pp. 271-293.

[11] V. Voevodin, “The Solution of Large Problems

in Distributed Computational Media”,Automation

and Remote Control, Pleiades Publishing, Inc., 2007,

Vol. 68, No. 5, pp.773-786.

[12] V.V. Toporkov Modeli raspredelennykh

vychislenii (Models of Distributed Computing),

Phismatlit 2004, Moscow, 320p ISBN:5-9221-0495-0

(in Russian)

[13] Lestor R. Ford jr., D. R. Fulkerson: Flows in

Networks, Princeton University Press, 1962

[14] http://www.clusterresources.com/

