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Quasistatic inflation processes within
compliant tubes

Part 1: Analytical investigations

Joachim Steigenberger, Harald Abeßer

November 9, 2009

Abstract

Continuing former work [8], [9] the authors consider a mechanical
system that models a segment of a live or artificial worm or a bal-
loon for angioplasty that is placed within a cylindrical compliant tube
(vein). The statics of the inflation process is based on the Principle
of Minimal Potential Energy. This is handled as an optimal control
problem with state constraint. Certain peculiarities make the neces-
sary optimality conditions go beyond those from classical textbooks.
A careful analysis of the conditions leads to a boundary value problem
describing the shape of the inflated system and to the determination
of the contact forces between balloon and vein. Simulation results are
to be presented in a forthcoming Part 2.

Key words Biomechanics, optimal control, state constraint.
MSC (2000) 49J15, 49M05, 74F10, 74K15.

1 Problem formulation

1.1 Introduction

In this paper we continue investigations published in [8] and [9]. There, the
authors considered the statical behavior of compliant mechanical elements
called ”segments”. Such an element has a hull that consists of two rigid
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circular discs connected by a deformable membrane of circular cylindrical
original shape. When this (stress-free) cylinder is filled with some (incom-
pressible) fluid of fixed volume greater than that of the cylinder the segment
deforms into some body of revolution. The membrane enters a state of stress,
the discs longitudinally displace, and a hydrostatic pressure arises within the
fluid. Under some working hypotheses concerning the kind of compliance
of the membrane (in particular meridional inextensibility) a boundary value
problem - derived either from local equilibrium conditions or from an equiva-
lent variational problem - governs this inflation process. During this process
the segment could either be free to expand radially or it could be restricted
by a surrounding rigid tube, cylindrical or showing a constriction. In the
latter case the membrane of the inflating segment more and more presses
against the tube thereby simulating what happens during dilation of a ves-
sel in medical surgery (disregarding the severe falsification of reality by the
supposed rigidity of the tube).

In what follows we shall diminish this restrictive assumption by replacing
the rigid tube with a thin-walled compliant one. Now the tube is able to
deform radially when the inflated segment presses from inside, and this may
give a more realistic image of a dilation process. In regard of this interpre-
tation we shall call this tube a vein. It is just for the sake of keeping the
analytical effort bounded that we assume the vein to have constant original
thickness (thereby of course excluding stenoses from investigation) and the
same kind of compliance as the segment, a possibly inevitable meridional ex-
tensibility could be captured by an elastic fastening of the ends of the tube to
rigid walls. Following this description we may expect a scenario as sketched
in Figure 1.
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Figure 1: Inflated segment within vein.

As in the foregoing paper [9] mentioned above we encounter a well-known
inconvenience immanent to the problem formulation: the region of contact
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segment-vein (interval of meridian) is of course not known in advance rather
it depends on the hydrostatic pressure within the segment and so does the
pressure between membrane and vein along this region. Moreover, the shape
of the deformed membrane is strongly influenced by the vein (and vice versa)
on the region of contact while it is not directly influenced outside of this
region. These facts could be a bit unpleasant if the differential equations
which govern the problem were to be gained from local equilibrium conditions
(synthetical method). Another unfortunate fact is the lack of knowledge
about the smoothness of the deformed (thin!) membranes.

We overcome these difficulties in the same analytical way as it has been
done in the former paper. The treatment of the problem is based on the
Principle of Minimal Potential Energy for the total system. This Principle
shows up as a variational problem or, equivalently, as an optimal control
problem under state constraint (radius of segment no greater than radius
of vein). The crucial point in this formulation is that, first, only minimal
smoothness suppositions are needed, and that, second, the unknown pres-
sure of contact, being the reaction to the state constraint does not enter the
Principle. A careful analysis of the optimality conditions then yields clear
statements about the actual smoothness properties, and differential equa-
tions which determine the shape of the overall system. Finally, after this
has been managed, the geometry of both segment and vein on the contact
region is well-known, and the constraint pressure follows from the Lagrange
multiplier corresponding to the state constraint (with a comparing glance at
the membrane equations of shell theory, [4]).

The central optimal control problem exhibits some features which make
it a ”non-classical” problem: the cost functional is the sum of two integrals
with different integration intervals, and the state constraint is given only on
the smaller of these intervals. Therefore the necessary optimality conditions
deserve a very careful deduction. These investigations are the contents of
the unpublished paper [1], their results are adapted to the problem of the
present paper.

It does not bring about essential troubles if we consider an augmented
mechanical problem by allowing for additional arbitrary longitudinal forces
±F1 acting upon the side discs of the segment. Now think of the segment
being inflated (and dilating the surrounding vein) under zero longitudinal
forces. Then, while keeping the internal pressure fixed, non-zero forces, gen-
erated inside the segment or from outside by wire, and pressing or pulling
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the segment, change the shape of the segment, the dilation of the vein, and
the constraint pressure between membrane and vein. Such a scenario could
be seen in correspondence with some procedure to run at the tip of an endo-
scope.

The following considerations start with a sketch of geometry and mechan-
ics of hyperelastic skin-like membrane shells, leading to an expression of the
potential energy that can be seen as a mathematical model of the system to
be investigated. A normalization makes the model applicable to systems of
arbitrary dimension. The analysis then is (we hope) strictly mathematical
and avoids any physical arguments. A physical interpretation of the results
is given at the end.

1.2 Geometry, rheology, and potential energy

Supposing both segment and vein in deformed state to be of rotational sym-
metry we describe their surfaces of revolution by means of surface coordinates
φ ∈ [0, 2π) (latitude) and s (arc-length of meridian). So we have the radius
vectors (with functions of a sufficient smoothness class)
of the membrane:

r1(φ, s1) = x1(s1)ex + y1(s1){cos φez + sin φey}, s1 ∈ [−s10, s11], (1)

of the vein:

r2(φ, s2) = x2(s2)ex + y2(s2){cos φez + sin φey}, s2 ∈ [−s20, s21], (2)

In either case the standard meridian (φ = 0) is given by its natural
equation

dx

ds
= cos u,

dy

ds
= sin u,

du

ds
= κ, (3)

where u(s) is the angle from ex to the tangent vector of the meridian, and
κ(s) is the curvature of the meridian at that point. The moving frame is
(dx

ds
=: ẋ, etc.)

g1 := r,φ = y(s){− sin φey + cos φez},
g2 := r,s = ẋ(s)ex + ẏ(s){cos φey + sin φez},
n = −ẏ(s)ex + ẋ(s){cos φey + sin φez},

(4)

It entails the metric tensor gαβ : g11 = y2, g12 = 0, g22 = 1, and the 2nd
fundamental tensor bαβ : b11 = −yẋ, b12 = 0, b22 = κ = ẋÿ − ẍẏ.
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The compliant segment is in particular characterized by the hypothesis
that its deformable latitudinal hull statically behaves like a membrane shell,
i.e., like a solid shell with no stress couples (i.e., with no resistance against
bending = change of curvature). The membrane from above then is nothing
else but the middle surface of this shell.

The local equilibrium of the membrane under the action of the external
force per unit area

P = Pαgα + Pnn

is governed by the membrane equations [4]

∇βNαβ + Pα = 0, Nαβ = Nβα, bαβNαβ + Pn = 0.

Here, Nαβ are the stress resultants per unit of length, they determine the
stress vector dT = dT ρgρ acting at the one-dimensional cut element df =
dfαgα: dT ρ = Nρσdfσ, dfσ = gσαdfα. ∇ is covariant derivation, ∇γN

αβ =
Nαβ,γ +Γα

ργN
ρβ + Γβ

ργN
αρ, Γα

βγ are the Christoffel symbols.
Remark. Since equilibrium takes place in the actual state of the segment,
area and length are those in the deformed membrane!

Under the assumptions
- surface of revolution,
- only normal forces acting (Pα = 0),
- rotationally symmetric state of stress (Nαβ,φ = 0)
the membrane equations appear as

Ṅ12 + 2 ẏ
y
N12 = 0,

Ṅ22 + ẏ
y
N22 − yẏN11 = 0,

−yẋN11 + (ẋÿ − ẍẏ)N22 + Pn = 0.



 (5)

As to the rheological behavior of the segment’s hull we adopt the working
hypotheses from [9]:
- The hull has a constant original thickness h;
- the membrane is skin-like, i.e., any state of the segment is stable only if
the stress resultants are tensile, N11 ≥ 0, N22 ≥ 0, else a breakdown occurs
(total flexibility);
- the membrane is meridionally inextensible;
- latitudinally, the membrane is homogeneously hyperelastic.

So the principal strain in s-direction vanishes, εs = 0, and N22 appears
as the reaction to this constraint. The meridians keep their length , the
arc-length s is an invariant during deformation.
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The principal strain in φ-direction is constant along any circle of latitude,
it is given by the original (r) and actual (y) radius,

εφ(s) = (y(s)− r)/r. (6)

If σφ denotes the principal stress in latitudinal direction then hyperelasticity
means

σφ = Eχ(εφ) (7)

(χ(ε) = ε for Hooke material). Generally, E denotes some constant Young’s
modulus that is either given ( in case of Hooke material) or fictitious and
to be suitably chosen. χ(·) is a smooth function from R+ to R+, χ(0) = 0,
monotonically increasing in most cases. It is given by experiments or suitably
chosen in theory (see in [8]).
Note that σφ means force (at a cut φ = const) in φ-direction divided by the
original area of the cut element. Thus (recall ds invariant under deformation)
with h as the original thickness of the membrane shell and g0

1 := g1/ ‖ g1 ‖
there holds σφhdsg0

1 = N11df1g1, df = df 1g1 = dsg0
1, df1 = g11df

1 = yds,
and it follows

y2N11 = hEχ(
y

r
− 1). (8)

Just as a quick supplement we note that the second membrane equation
yields

yN22 =

∫ y

η2N11(η)dη

and if there are no twisting forces at the left and right boundaries then it is
easy to conclude N12 = 0.

Let us assume that the above working hypotheses qualitatively also hold
for the vein. That means, segment and vein are distinguishable by thickness
h, elasticity modulus E, and the hyperelastic characteristic χ(·). Let us use
labels 1 and 2 for quantities corresponding to the segment and to the vein,
respectively. Then all the foregoing equations are valid with adequate indices.

With regard to later calculations it is promising to skip to quantities of
physical dimension ”1”. For this end we could fix any suitable L0 as unit
of length (i.e., put x = L0x̃, etc., and drop the tilda after introduction); we
choose the segment’s meridional length L1 as the unit of length. Moreover
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(for both segment and vein) let us use the

Normalization :
N11 = (h1E1

L2
1

)n11, N22 = (h1E1)n
22,

Pn = (2h1E1

L1
)pn, F1 = (2πh1E1L1)f1,

(9)

(the parenthesized quantities are now the respective units of measurement,
and nαβ, pn, f1 to be used in calculations take real numbers as their values).
The constitutive laws now take the normalized forms

n11
1 = ψ1(y1)/y

2
1, where ψ1(y) := χ1(

y
r1
− 1),

n11
2 = ψ2(y2)/y

2
2, where ψ2(y) := βχ2(

y
r2
− 1).

(10)

Roughly, the factor β := h2E2

h1E1
can be given the interpretation

β > 1 : thick-walled vein
β < 1 : thin-walled vein

. (11)

We conclude this section by giving an expression for the potential energy
needed to formulate the Principle that is to serve as the basis of all further
analysis.

First we determine the potential energy stored in the deformed membrane.
Per original volume unit this energy is (no normalization yet)

∫ εφ

0

σφ(ε)dε =

∫ εφ

0

E1χ1(ε)dε =
E1

r1

∫ y1

r1

ψ1(η)dη,

an original volume h1 ds r1dφ then contains h1E1 ds dφ
∫ y1

r1
ψ(η)dη, and the

total energy follows by integration about meridian× (0, 2π). With normal-
ization there results the total potential energy of the deformed membrane

W1[y1] =

∫
Ψ1(y1(s))ds, measured in units 2πh1E1L

2
1, (12)

where

Ψ1(y1) :=

∫ y1

r1

ψ1(η)dη. (13)

Integration is along the full (normalized) length of a meridian. Formally the
same expression W2 we have for the potential energy stored in the deformed
vein. The potential energy of the total system is W1 + W2 supplemented by
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the energy of the inflating fluid (= pressure times volume of segment), the
energy of the longitudinal forces ±f1, and the energy of the elastic springs
at the ends of the vein.

We confine the investigations to systems of longitudinal symmetry : sup-
pose physically identical springs, a centered relative position of the segment
within the vein, and xi(0) = 0, xi(·) odd, yi(·) even functions. The latter
supposition yields that the inclinations ui are odd functions which in partic-
ular implies

ui(−0) = −ui(+0).

So we obtain

W =





∫ 1
2

− 1
2

Ψ1(y1)ds1 − p
∫ 1

2

− 1
2

y2
1 cos u1ds1 + 2f1ξ1

+
∫ l

2

− l
2

Ψ2(y2)ds2 + k(ξ2 − l
2
)2,

(14)

where ξ1 = x1(
1
2
), ξ2 = x2(

l
2
), l = L2/L1 > 1 (the normed original length of

the vein), and k is the stiffness of the springs (measured in units 2πh1E1). W
has to be seen as a functional of u1(·), y1(·), y2(·), x1(·), x2(·) that depends
on the parameters l, k, p, and f1.

Remark. It is clear what happens if we drop the symmetry supposition:
the integral bounds may change and become unequal in magnitude, the force
and the spring term either split in two.

1.3 Variational problem

The potential energy W has now to be minimized under certain side condi-
tions formulated below and in particular guaranteeing the condition ”radius
of segment no greater than radius of vein”. In view of this state constraint
(where the y1,2-values to be compared are at points lying on top of each
other - so having the same x1,2- values but different s-values in general) the
above representation of W does not match with a handy representation of
the constraint. Therefore we shall attack the problem using a x → y(x) rep-
resentation of the meridians which then admits the constraint in the simple
form y1(x) ≤ y2(x). Geometric formulae have to be adapted in corresponding
way: ds2 = dx2 + dy2, y′ := dy/dx = tan u, etc.

To proceed in this way the tacit supposition that the meridians are
schlicht curves with respect to the x-axis is required. Having the physical
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system in mind this is certainly not a severe restriction for the vein merid-
ian, but apparently the force f1 which directly influences the shape of the
inflated segment has to be suitably bounded above (else giving the segment
the form of a tire), see Supposition 2 and remarks following Figure 3. A
slight inconvenience enters because the integral bounds lose their constancy,
and isoperimetric side conditions occur.

The potential energy to be minimized now writes

W =

ξ1∫

−ξ1

{Ψ1(y1)
√

1 + y′21 − py2
1 + f1}dx+

ξ2∫

−ξ2

Ψ2(y2)
√

1 + y′22 dx+k(ξ2−
l

2
)2.

(15)
The task then is the following:1

Find y1 ∈ D1[−ξ1, ξ1], y2 ∈ D1[−ξ2, ξ2] with free ξ1, ξ2, 0 < ξ1 < ξ2, such
that for fixed parameters p > 0, f1 ∈ R, k > 0, l > 1, r2 ≥ r1 > 0

W → min

under the restrictions

(i) y1(−ξ1) = y1(ξ1) = r1,
(ii) y2(−ξ2) = y2(ξ2) = r2,
(iii) y2(x) ≥ y1(x), x ∈ [−ξ1, ξ1],

(iv)
∫ ξ1

−ξ1

√
1 + y′21 (x)dx = 1,

∫ ξ2

−ξ2

√
1 + y′22 (x)dx = l.

(16)

This is a Bolza-type variational problem featured by two different in-
tegration intervals, partially fixed boundaries, a state constraint on one of
the integration intervals, and isoperimetric side conditions. The class D1 of
the y1,2 guarantees that the meridians are piecewise smooth arcs which are
allowed to show finitely many edges.

Of course, by appropriate continuation of the first integrand the problem
could be made a problem with one common integration interval [−ξ2, ξ2]
but possibly discontinuous integrand and showing the peculiarity of a state
constraint (iii) on a proper subinterval.

1Smoothness classes: D0[a, b] = set of piecewise continuous functions [a, b] → R; with
k ∈ N: Dk[a, b] = set of continuous functions [a, b] → R which have continuous derivatives
up to order k − 1 and a piecewise continuous kth derivative.
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The last isoperimetric condition above clearly implies

2ξ2 ≤ l. (17)

Equivalently, the isoperimetric conditions can be fit into a Lagrange for-
mulation via additional differential equations and boundary conditions.

In the sequel the variational problem is reformulated as an optimal con-
trol problem for which the necessary optimality conditions were essentially
prepared in [1] and [2].

We shall treat this problem as a self-contained one, we avoid references to
the background physics as means of conclusion. Physical meanings of some
suppositions and facts are discussed, after the investigations are finished, in
section 3.

2 Optimal control problem

We use the inclination angles x → ui(x), i = 1, 2, of the meridians as
controls. Corresponding to the y ∈ D1 assumption above and y′i = tan ui we
start with

• Supposition 1: ui(·) ∈ D0, ui(x) ∈ (−π
2
, π

2
), i = 1, 2.

This matches the supposition of the meridians to be schlicht curves. Then,
dropping indices, there holds

√
1 + y′2 = 1/ cos u, and, putting w(x) :=∫ x

0
1

cos u(t)
dt, the first isoperimetric condition can be replaced by w′ = 1/ cos u,

w(−ξ1) = −1
2
, w(ξ1) = 1

2
(second one treated analogously).

2.1 Problem formulation

The potential energy

W =

∫ ξ1

−ξ1

{ 1

cos u1

Ψ1(y1)−py2
1+f1}dx+

∫ ξ2

−ξ2

1

cos u2

Ψ2(y2)dx+k(ξ2−
l

2
)2 (18)

is composed of two integral terms with different integration intervals and a
Bolza term

g02(ξ2) := k(ξ2 −
l

2
)2. (19)
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The task is now the following:

With free ξ1, ξ2, 0 < ξ1 < ξ2, find u1 ∈ D0[−ξ1, ξ1], u2 ∈ D0[−ξ2, ξ2],
both functions odd w.r.t. x = 0, and y1, w1 ∈ D1[−ξ1, ξ1], y2, w2 ∈
D1[−ξ2, ξ2], such that for fixed parameters p > 0, f1 ∈ R, k > 0, l >
1, r2 > r1 > 0

W → min

under the restrictions (on respective intervals)

(i) y′1 = tan u1, y′2 = tan u2,
(ii) w′

1 = 1/ cos u1, w′
2 = 1/ cos u2,

(iii) y1(±ξ1) = r1, y2(±ξ2) = r2,
(iv) w1(−ξ1) = −1

2
, w2(−ξ2) = − l

2
, w1(0) = w2(0) = 0,

(v) S(y2(x), y1(x)) := y2(x)− y1(x) ≥ 0, x ∈ [−ξ1, ξ1].

(20)

Remind that the skin property of the membranes demands y1(x) ≥ r1

(no negative strains possible in any stable configuration). We shall not cope
with these inequalities as additional constraints. Instead, if the optimality
conditions yielded solutions with y1(x) < r1 at some x then these solutions
would be dropped with regard to their physical insignificance.

2.2 Optimality conditions

The necessary optimality conditions given and utilized in the following are
essentially prepared in [2]. The peculiarity of the different integration in-
tervals together with a state constraint on a proper subinterval makes the
problem a non-familiar one that is, without any close connection to some
physical background treated in the forthcoming paper [1]. In what follows
we present and utilize the adaptation to our problem of the general necessary
optimality conditions given there.

The relative degree of the problem is h = 1 : S = y2 − y1 yields

R0(u) := S ′ = tan u2 − tan u1, (21)

hence rank(R0,u ) = rank(− cos−2 u1, cos−2 u2) = 1.
First, with a R1+4+1−valued multiplier (l0, λ, ρ) we define the Hamiltonian

in the following way:

H1(l0, λ1, λ3, y1, u1) := l0{ 1
cos u1

Ψ1(y1)− py2
1 + f1}+ λ1 tan u1 + λ3

1
cos u1

,

H2(l0, λ2, λ4, y2, u2) := l0
1

cos u2
Ψ2(y2) + λ2 tan u2 + λ4

1
cos u2

,

(22)
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and, along any feasible function x 7−→ (y1(x), .., λ4(x)),

H :=

{
H2, x ∈ [−ξ2,−ξ1) ∪ (ξ1, ξ2],
H1 + H2 + ρ(tan u2 − tan u1), x ∈ [−ξ1, ξ1].

(23)

The optimality conditions then are the following:
Let (u1, u2, y1, y2, w1, w2) be a solution of the optimal control problem.

Then there exists a multiplier (l0, λ1(·), λ2(·), λ3(·), λ4(·), ρ(·)), with l0 ∈ R+,
λ1,3 ∈ D1[−ξ1, ξ1], λ2 ∈ D1([−ξ2, ξ2] \ {ξ1}), λ4 ∈ D1[−ξ2, ξ2], and ρ ∈
C1([−ξ1, ξ1] \ {x : S = 0}), such that

(o)

{
(l0, λ2(x), λ4(x)) 6= 0, x ∈ [−ξ2,−ξ1) ∪ (ξ1, ξ2],
(l0, λ1(x), λ2(x), λ3(x), λ4(x), ρ(x)) 6= 0, x ∈ [−ξ1, ξ1],

(i)

{
λ′1 = −H,y1 = −l0{ψ1(y1)/ cos u1 − 2py1}
λ′3 = −H,w1 = 0

}
piecewise on [−ξ1, ξ1]

(ii)





λ′2 = −H,y2 = −l0ψ2(y2)/ cos u2

λ′4 = −H,w2 = 0

}
piecewise on [−ξ2, ξ2],

λ2(ξ1 − 0) + ρ(ξ1) = λ2(ξ1 + 0)

(iii)

{
H(..., u1, u2) ≥ H(..., u1, u2) on [−ξ1, ξ1],
H2(..., u2) ≥ H2(..., u2) on [−ξ2,−ξ1) ∪ (ξ1, ξ2],

(iv) 0 = H,ui
, i = 1, 2 :




0 = {(l0Ψ1(y1) + λ3) sin u1 + λ1 − ρ} on [−ξ1, ξ1],

0 =

{
(l0Ψ2(y2) + λ4) sin u2 + λ2 + ρ on [−ξ1, ξ1],
(l0Ψ2(y2) + λ4) sin u2 + λ2 on [−ξ2,−ξ1) ∪ (ξ1, ξ2].

(v) H(l0, λ(·), ρ(·), y(·), u(·)) ∈ D1[−ξ2, ξ2],

(vi) d
dx

H = H,x = 0, on [−ξ2, ξ2],

(vii)

{
transversality at x = ±ξ2:
l0k( l

2
− ξ2)−H2 |±ξ2

= 0,

(viii)





(ρS) |x=−ξ1
= 0

ρ′S = 0 on [−ξ1, ξ1] \ {x : S = 0}
ρ non-decreasing on [−ξ1, ξ1] if l0 6= 0.
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Figure 2: Important points.

Complementary remarks:
re (i), (ii): By means of the continuity of λ3 and λ4 it follows

λ3 = const on [−ξ1, ξ1], λ4 = const on [−ξ2, ξ2].

re (ii),(iv): The λ2-jump-condition at ξ1 ensures continuity of H,u2 at
ξ1 if u2 is continuous at ξ1 (shown below).

re (vi): This means ”energy” conservation,

H = const := c on [−ξ2, ξ2].

For problems with degree h > 1 it need not be valid, [1].
re (vii): The restrictions (ii), (iv) in (20) imply ξ2 = l

2
iff u2 ≡ 0

hence y2(x) = r2. The 2nd and 3rd term of the potential energy (18) then
vanish and this means that the two subsystems segment and vein are without
mutual influence. Then one might guess the constraint to be active, S = 0,
in at most isolated points (touch points). Therefore we shall focus on the
case

l

2
− ξ2 > 0 (24)

in the sequel (active constraint on some open interval).
re (viii): r2 > r1 implies S(y2(−ξ1), y1(−ξ1)) > 0 and by continuity

S(y2(x), y1(x)) > 0 in a right neighborhood of −ξ1, hence ρ′(x) = 0 and
ρ(x) = 0 for x ∈ [−ξ1,−ξ0], where −ξ0 is the utmost left junction point.
Moreover ρ(x) ≥ 0 for x ∈ (−ξ0, , ξ1] and ρ(x) = const on (ξ0, ξ1]. (ξ0 is, by
symmetry, the utmost right disjunction point.) If ρ′ does not exist at some
x ∈ (−ξ0, ξ0) - where S = 0 - then the equation ρ′S = 0 is to be considered
formally.
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2.3 Discussion of the optimality conditions

The following analysis of the optimality conditions is based on

• Supposition 2:

(a) The fixed parameters are confined to

pr2
1 − f1 > 0. (25)

(b) If the state restriction S(y2, y1) ≥ 0 shows a non-empty activity
domain, then there is exactly one junction point −ξ0 ∈ (−ξ1, 0) (ac-
companied by the disjunction point ξ0). ξ0 = 0 describes one touch
point, it is not investigated separately but considered as the limit case
during inflation from zero pressure or during deflation from big pres-
sure.

So it holds y2(x)−y1(x) > 0 for x ∈ [−ξ1,−ξ0)∪(ξ0, ξ1] and y2(x)−y1(x) =
0 on [−ξ0, ξ0] , entailing u2(x) = u1(x) on the non-empty interval (−ξ0, ξ0).

The following investigations focus on the interval [−ξ2, 0], results concern-
ing y1,2 and u1,2 then apply to (0, ξ2] according to symmetry. But note that
the supposed geometric symmetry is in general not reflected in a symmetry
of the hamiltonian and the multipliers, observe, e.g., the monotonicity of ρ
and the jump of λ2.

1) About normality
We show that l0 = 0 yields a contradiction, so the problem is a normal

one.
Suppose l0 = 0 and observe what happens at x = −ξ1. (Denote the respec-

tive values by λ1, λ2, u1, and limits by u±2 .)
i) H,u1 |−ξ1+0= 0 : λ3 sin u1 + λ1 = 0,

ii) H,u2 |−ξ1−0= 0 : λ4 sin u−2 + λ2 = 0,

iii) H |−ξ1−0= c : λ2 sin u−2 + λ4 = c,

iv) H |−ξ1+0= c : (λ2 sin u+
2 + λ4)

1
cos u+

2

+ (λ1 sin u1 + λ3)
1

cos u1
= c.

The optimality condition (vii) with l0 = 0 yields c = 0. Then ii) and iii) form
a system of homogeneous linear equations with the unique trivial solution
λ2 = λ4 = 0, and λ1 = λ3 = 0 follows from i) and iv) in the same way. So
we have (0, λ, ρ) |−ξ1

= 0 : contradiction to optimality! Let, therefore, in all
what follows

l0 = 1.
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2) Continuity of the controls:
Preliminary note:
From optimality condition (iv), H,ui

= 0, we see that H,ui
is continuous

at any x0 ∈ [−ξ2, ξ2]. So we have for the one-sided limits at x0 (yi0, λi0

values, u±i limits at x0)

x0 ∈ [−ξ1,−ξ0) : [Ψ1(y10) + λ3] sin u±1 + λ10 = 0,
x0 ∈ [−ξ2,−ξ0) : [Ψ2(y20) + λ4] sin u±2 + λ20 = 0,
x0 ∈ (−ξ0, 0] : [Ψ1(y0) + λ3] sin u± + λ10 = ρ±,
x0 ∈ (−ξ0, 0] : [Ψ2(y0) + λ4] sin u± + λ20 = −ρ±.





(26)

This shows, first, that the limits ρ± exist and are finite. Moreover we get the

Proposition 1 At every x0 6= −ξ0 there hold the implications

x0 < −ξ0 :

{
[Ψ1(y10) + λ3] 6= 0 ⇒ u1 continuous at x0,

[Ψ2(y20) + λ4] 6= 0 ⇒ u2 continuous at x0,

−ξ0 < x0 ≤ 0 :





Sum of brackets non-zero ⇒ u and ρ continuous at x0,
One of brackets zero ⇒ ρ continuous at x0,

u continuous ⇒ ρ continuous at x0.

As a consequence we observe:

ρ is continuous on (−ξ0, 0].

The boundary point −ξ0 deserves extra consideration.
Now let us check the facts at various x0. For the sake of brevity in writing

we introduce the temporary convention: In the course of the following proofs
we use for the recurring brackets the abbreviations

[Ψ1(y10) + λ3] =: B1, [Ψ2(y20) + λ4] =: B2.

a) x0 ∈ (−ξ2,−ξ1). B2 = 0 implies λ20 = 0 and c = H |x0= H2 |x0= 0 :
a contradiction for c > 0, hence u2 continuous at x0, whereas for c = 0 we
have u2(x) ≡ 0, hence trivial continuity.

b) x0 = −ξ1. Claim: u2 continuous at −ξ1.
If we write (26.2) as separate equations then they can be seen as a system of
homogeneous linear equations for B2 and λ20 with coefficient matrix

M =

(
sin u−2 1
sin u+

2 1

)
.

15



Continuity of u2 means det M = 0 whereas discontinuity, det M 6= 0, would
imply a trivial solution, B2 = 0, λ20 = 0. But then we get the same conclu-
sion as under a).

Supplement: The continuity of u2 at x implies continuity of H2 at x.
Then, with x = −ξ1, H2 |−ξ1−0= (H1 + H2) |−ξ1+0 yields in particular

H1 |−ξ1+0= 0.

c) x0 ∈ (−ξ1,−ξ0). (The following reasoning also applies to (ξ0, ξ1) after
λ1, λ2 are replaced by λ1 − ρ and λ2 + ρ, respectively, with constant ρ.)
α) Claim: The brackets B1 and B2 cannot vanish simultaneously.

Proof: Assume B1 = 0 and B2 = 0. Then (26) entails λ10 = λ20 = 0 and
H |x0±0= −py2

10+f1 = c, a contradiction: 0 ≤ c = −py2
10+f1 < −pr2

1+f1 < 0.
Consequently, u1 and u2 cannot simultaneously be discontinuous.

β) W.l.o.g. x0 can be taken as the utmost left discontinuity of the u′s, for
ui ∈ D0 allows at most finitely many jumps of the controls. Assume u2

discontinuous at x0. Then (26) entails B2 = λ20 = 0 and H2 |x0±0= 0. Now
we know that H2 is continuous on [−ξ1, x0) and H2 |−ξ1

= c ≥ 0. Lemma 5
and the final remark in the Appendix yield d

dx
H2 = 0 and thus H2 = c on

[−ξ1, x0). Hence we get c = 0, and this means, following the preliminary
remark preceding (25), u2(x) = 0 for every x ∈ [−ξ2, ξ2]: u2 is continuous
throughout, contradiction!
A similar reasoning starting with discontinuous u1 yields the same result.

Summarizing: u1 and u2 are continuous on (−ξ1,−ξ0).
Now we can conclude, again exploiting the Lemma from Appendix 1 and

the final remark therein,

H1 = 0, H2 = c on [−ξ1,−ξ0). (27)

d) x = −ξ0 < 0. Remind that y1 = y2 =: y and u1 = u2 =: u in a right
neighborhood of the junction point −ξ0. Limits of H are

(H1 + H2) |−ξ0−0

= 1
cos u−1

{B1 + λ10 sin u−1 } − py2
0 + f1

+ 1
cos u−2

{B2 + λ20 sin u−2 } = c,
(28)

(H1 + H2) |−ξ0+0

= 1
cos u+{B1 + B2 + (λ10 + λ20) sin u+} − py2

0 + f1 = c.
(29)
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Limits of H,ui
= 0 can be deduced from (26):

0 = H,u1 |−ξ0−0: B1 sin u−1 + λ10 = 0,
0 = H,u2 |−ξ0−0: B2 sin u−2 + λ20 = 0,
0 = H,u1 |−ξ0+0: B1 sin u+ + λ10 − ρ+ = 0,
0 = H,u2 |−ξ0+0: B2 sin u+ + λ20 + ρ+ = 0.

Eliminating λ1,2 there follow

B1(sin u+ − sin u−1 ) = ρ+

B2(sin u+ − sin u−2 ) = −ρ+

B1(cos u+ − cos u−1 ) + B2(cos u+ − cos u−2 ) = 0.



 (30)

The 3rd equation together with the sum of the first two can be seen as a
system of homogeneous linear equations for the two brackets. Its determinant
is

∆ = sin(u+ − u−2 )− sin(u+ − u−1 ) + sin(u+
2 − u−1 ).

α) Assume u−1 6= u−2 . Then ∆ 6= 0, whence both brackets are zero and
this leads to a contradiction as under cα) above. So let

β) u−1 = u−2 . This yields ∆ = 0 and there remains

{B1 + B2}(cos u+ − cos u−2 ) = 0.

If we had u+ 6= u−1 then B1 = B2 = 0 would follow, leading to the well-known
contradiction −py2

0 + f1 = c.
Therefore we obtain the continuity u+ = u−1 = u−2 and moreover ρ+ = 0.

e) Let x0 ∈ (−ξ0, ξ0). Let ξ0 > 0. Then we have y1 = y2 =: y, u1 =
u2 =: u on this contact interval. We consider the equations (H1 +H2),ui

= 0,
and H1 + H2 = c at x0. In the limits x0 ± 0 these are

B1 sin u± + λ10 − ρ± = 0,
B2 sin u± + λ20 + ρ± = 0,
B1 + B2 + (λ10 + λ20) sin u± = (c + py2

0 − f1) cos u±.

Eliminating the λ′s in the third equation we get

(B1 + B2) cos u± = (c + py2
0 − f1).

Now either B1 + B2 = 0, giving the usual contradiction, or it holds u+ =
u−and moreover ρ+ = ρ−.
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For odd ui(·)we already know ui(−0) = −ui(+0), and the continuity then
yields

u(0) = 0. (31)

Summarizing we have found the

Proposition 2 The controls are continuous at every x: u1 ∈ C0[−ξ1, ξ1],
u2 ∈ C0[−ξ2, ξ2]. That means geometrically, the meridians are smooth curves.
In particular they do not show an edge at the junction (disjunction) point.
The describing functions y1,2 are of class C1. Furthermore ρ ∈ C0[−ξ1, ξ0],
(at ξ0 a jump may happen).

5) Differentiability of the controls
On the respective intervals we exploit the constancy of H1, H2, H and

the vanishing partial derivatives w.r.t. u1,2.
For x ∈ [−ξ1,−ξ0] we have H1 = 0, H1,u1 = 0, i.e.,

[Ψ1(y0) + λ3]
1

cos u1
+ λ1 tan u1 = py2

1 − f1,

[Ψ1(y0) + λ3]
sin u1

cos2 u1
+ λ1

1
cos2 u1

= 0.

Taking this as a system of linear equations, it solves for the λ,

λ1 = −(py2
1 − f1) tan u1,

λ3 = −Ψ1(y1) + (py2
1 − f1)/ cos u1

, x ∈ [−ξ1,−ξ0]. (32)

In the same way we obtain from H2 = c, H2,u2 = 0

λ2 = c tan u2,
λ4 = −Ψ2(y2) + c/ cos u2

, x ∈ [−ξ2,−ξ0]. (33)

Now, with a focus first on u1, we inspect

[Ψ1(y1) + λ3] cos u1 = py2
1 − f1. (34)

Since the right hand side is positive we re-encounter the fact that Ψ1(y1) +
λ3 6= 0 (even > 0).

We know y1(·) ∈ C1, the function ψ1 has been supposed smooth, say
ψ1 ∈ Cn, n ≥ 1, thus Ψ1 =

∫
ψ1 ∈ Cn+1. So it follows from the last relation

u1 ∈ C1([−ξ1,−ξ0], (−
π

2
,
π

2
))
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(at −ξ0 there is of course only a left derivative which is left-continuous). In
the same way we obtain

u2 ∈ C1([−ξ2,−ξ0], (−
π

2
,
π

2
)).

Finally, for x ∈ [−ξ0, 0] there hold H1 + H2 = c, (H1 + H2),u1 = (H1 +
H2),u2 = 0 (with u1 = u2 = u, y1 = y2 = y),

λ3 + λ4 + (λ1 + λ2) sin u = −(Ψ1(y) + Ψ2(y)) + (py2 − f1) cos u,
λ3 sin u + λ1 − ρ = −Ψ1(y) sin u,
λ4 sin u + λ2 + ρ = −Ψ2(y) sin u.

These equations yield the ρ-free representations

λ1 + λ2 = −(c + py2 − f1) tan u,
λ3 + λ4 = −(Ψ1(y) + Ψ2(y)) + (c + py2 − f1)/ cos u

, x ∈ [−ξ0, 0],

which are analogues to (33). So the same reasoning as above yields

u ∈ C1([−ξ0, 0], (−π

2
,
π

2
)).

Now it holds iteratively y′1 = tan u1 ∈ C1 ⇒ y1 ∈ C2 ⇒(by (33):)
u1 ∈ C2 ⇒ y1 ∈ C3 ⇒ ... ⇒ u1 ∈ Cn+1. The same arguments work for
y2, u2, y, u on their domains. Summarizing, we come up with

Proposition 3 If the functions ψ1 and ψ2 which describe the hyperelasticity
of segment and vein, respectively, are of class Cn, n ≥ 1, then the controls
u1 and u2 are of class Cn+1 on their domains with exception of the junction
points ±ξ0, where only continuity is ensured. Correspondingly, y1 and y2 are
Cn+2 for x 6= ±ξ0.

Finally, it is easy matter to find the values of the constants λ3 and λ4

from (32) and (33) by looking to the left boundaries of their domains. With

α1 := u1(−ξ1), α2 := u2(−ξ2), c = k(
l

2
− ξ2)

we obtain
λ3 = (pr2

1 − f1)/ cos α1, λ4 = c/ cos α2. (35)
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Moreover we get some knowledge about the smoothness of the multipliers
λ1,2 and ρ. It follows from 0 = H,u1 = H,u1 ,

0 =

{
λ1 + [Ψ1(y1) + λ3] sin u1 , x ∈ [−ξ1,−ξ0),
λ1 − ρ + [Ψ1(y1) + λ3] sin u1 , x ∈ [−ξ0, 0],

0 =

{
λ2 + [Ψ2(y2) + λ4] sin u2 , x ∈ [−ξ2,−ξ0),
λ2 + ρ + [Ψ2(y2) + λ4] sin u2 , x ∈ [−ξ0, 0],

that the smoothness of u1,2 passes to the multipliers, in particular λ1 and
λ2 are Cn+1 on [−ξ1,−ξ0) and [−ξ2,−ξ0), respectively, whereas λ1 + λ2 is
Cn+1,and ρ is D1 on [−ξ0, 0].

By means of the latter fact we obtain by simple calculation a complete
description of how the hamiltonian parts behave along an extremal:

d
dx

H1 =

{
0, x ∈ [−ξ1,−ξ0],
−ρ′ tan u1, x ∈ [−ξ0, 0],

d
dx

H2 =

{
0, x ∈ [−ξ2,−ξ0],
ρ′ tan u2, x ∈ [−ξ0, 0].

(36)

2.4 Differential equations of the extremals

Let us take up the optimality condition (4), remove the denominators, and
differentiate w.r.t. x (on [−ξ0, 0] at least piecewise allowed) observing the
optimality condition λ′1,2 = −H,y1,2 and the geometric restrictions of the form
y′ = tan u. The result is

2py1 − ψ1(y1) cos(u1) + [Ψ1(y1) + λ3] cos(u1)u
′
1 = 0,

y′1 = tan u1,

}
x ∈ (−ξ1,−ξ0),

−ψ2(y2) cos(u2) + [Ψ2(y2) + λ4] cos(u2)u
′
2 = 0,

y′2 = tan u2,

}
x ∈ (−ξ2,−ξ0),

2py1 − ψ1(y1) cos(u1) + [Ψ1(y1) + λ3] cos(u1)u
′
1 = ρ′,

y′1 = tan u1,
−ψ2(y2) cos(u2) + [Ψ2(y2) + λ4] cos(u2)u

′
2 = −ρ′,

y′2 = tan u2,





x ∈ (−ξ0, 0).

ρ′ disappears by adding the respective equations. On the interval (−ξ0, 0)
there holds u1 = u2 =: u and y1 = y2 =: y, and we let

ψ12 := ψ1 + ψ2, Ψ12 := Ψ1 + Ψ2.
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Then the outcome is, finally, a set of differential equations

2py1 − ψ1(y1) cos(u1) + [Ψ1(y1) + λ3] cos(u1)u
′
1 = 0,

y′1 = tan u1,

}
x ∈ (−ξ1,−ξ0),

−ψ2(y2) cos(u2) + [Ψ2(y2) + λ4] cos(u2)u
′
2 = 0,

y′2 = tan u2,

}
x ∈ (−ξ2,−ξ0),

2py − ψ12(y) cos(u) + [Ψ12(y) + λ3 + λ4] cos(u)u′ = 0,
y′ = tan u,

}
x ∈ (−ξ0, 0).





(37)
Remind the values λ3 = (pr2

1−f1)/ cos α1, λ4 = c/ cos α2 = k( l
2
−ξ2)/ cos α2,

to be inserted above.
Together with the boundary conditions

y1(−ξ1) = r1, u1(−ξ1) = α1,
y2(−ξ2) = r2, u2(−ξ2) = α2,
u(0) = 0,

(38)

and junction conditions

y1(−ξ0) = y2(−ξ0) = y(−ξ0),
u1(−ξ0) = u2(−ξ0) = u(−ξ0),

(39)

the differential equations form a somewhat unusual parameter dependent
boundary value problem. Parameters are p, f1, k, l, r1, r2 (fixed), and
ξ1, ξ2, ξ0, α1, α2 (to be matched). Some of the latter (initial values
ξ2, α1, α2) enter the differential equations.

If the boundary problem has a solution then it describes the left half of
the meridians, the right half is obtained by continuation to positive x, even
functions y, odd functions u.

Besides the hamiltonian which is constant along the extremal we con-
struct another function appearing as a conserved quantity in the following
way. Take the hamiltonian parts H1 and H2 and eliminate the multipliers
λ1 and λ2 by means of the optimality condition (iv). Thereby we define the
piecewise smooth state-control functions (not depending on any non-constant
multipliers)

Φ1(u1, y1) := −(py2
1 − f1) + [Ψ1(y1) + λ3] cos u1,

Φ2(u2, y2) := [Ψ2(y2) + λ4] cos u2,

}
(40)

and we put

ϕ(x) :=

{
Φ2(u2(x), y2(x)), x ∈ [−ξ2,−ξ1),

Φ1(u1(x), y1(x)) + Φ2(u2(x), y2(x)), x ∈ (−ξ1, 0].
(41)
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It is simple calculation to prove the following

Proposition 4 ϕ is a first integral on [−ξ2, 0]: d
dx

ϕ(x) = 0 piecewise
along any solution of the foregoing differential equations.

The separate behavior of Φ1 and Φ2 along any solution of the boundary
value problem is governed by

Φ1(u1(x), y1(x)) = 0, x ∈ [−ξ1,−ξ0],
Φ2(u2(x), y2(x)) = k( l

2
− ξ2), x ∈ [−ξ2,−ξ0],

d
dx

Φ1(u, y) = −ρ′ tan u, d
dx

Φ2(u, y) = ρ′ tan u, x ∈ [−ξ0, 0].



 (42)

The rates of change of Φ1 and Φ2 are calibrated in such a way that

d

dx
[Φ1(u, y) + Φ2(u, y)] = 0.

With a glance at the originating hamiltonian parts H1 and H2 the fore-
going relations do not look very exciting, cf. (36), but interestingly these
equations enjoy a nice physical interpretation (see next Section).

First, we deduce another property of the multiplier ρ. In the present sym-
metry case the Φi(ui(·), yi(·)) are even functions of x, thus d

dx
Φi(ui(·), yi(·))

are odd. Since, furthermore, ui and yi are Cn+1, this implies

ρ′ ≥ 0 is an even Cn − function on (−ξ0, ξ0).

For numerical treatment it may be effective to use the arc lengths of
the meridians as the independent variable, i.e., to deal with the (formerly
rejected) parameter representation x(s), y(s) of the meridians. The main
advantage arises from the known and constant domains of all functions. Dis-
advantage may come from the increased number of differential equations.

Abusing notation the problem takes the following form where u′ cos u =
u′ẋ = u̇ is now the curvature of the meridians. Furthermore we eliminate
the brackets containing Ψ by means of the first integral. Let −t0 be the arc
length of the junction point, i.e., −ξ0 = x1(−t0) = x2(−t0), then we obtain

ẋ1 = cos u1, ẏ1 = sin u1,
u̇1 = {−2py1 + ψ1(y1) cos(u1)} cos u1/[py

2
1 − f1],

s ∈ [−1

2
,−t0], (43)

ẋ2 = cos u2, ẏ2 = sin u2,
u̇2 = ψ2(y2) cos2(u2)/k( l

2
− ξ2),

s ∈ [− l

2
,−t0], (44)

22



ẋ = cos u, ẏ = sin u,
u̇ = {−2py + ψ12(y) cos(u)} cos u/[py2 − f1 + k( l

2
− ξ2)],

s ∈ [−t0, 0].

(45)

y1(−1
2
) = r1,

y2(− l
2
) = r2, x2(− l

2
) = −ξ2,

u(0) = 0.
(46)

u1(−t0) = u2(−t0) = u(−t0),
y1(−t0) = y2(−t0) = y(−t0),
x1(−t0) = x2(−t0) = x(−t0).

(47)

Parameters to be matched are t0 and ξ2, only the latter enters the differential
equations. After a solution has been found then the interesting data −ξ1 =
x1(−1

2
), α1 = u1(−1

2
), α2 = u2(− l

2
) can be determined.

The differential equations (43),(44),(45) are now exactly the natural equa-
tions (see (3)) of the meridians. Letting s → −t0±0 it is simple to find (y0, u0

common values at −t0)

[py2
0 − f1](κ

−
1 − κ+) + k(

l

2
− ξ2)(κ

−
2 − κ+) = 0 (48)

as a linear relation (with non-negative coefficients) for the curvature jumps
at the junction point.

3 Some physical interpretations

The membrane equations (5) together with the hyperelasticity relations (10)
yield

y1n
22
1 = Ψ1(y1) + c22

1 , y2n
22
2 = Ψ2(y2) + c22

2 ,

connecting the stress resultants n22 with the state y . The constants c22 are
determined by the equilibrium of longitudinal forces at the ends of segment
and vein,

c22
1 = (pr2

1 − f1)/ cos α1, c22
2 = k(

l

2
− ξ2)/ cos α2.

(At first it might be amazing that these constants equal the constant mul-
tipliers λ3 and λ4. It becomes natural if we recall the place of λ3,4 within
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the hamiltonian and the meaning of the n22 as reactions to the constraint of
meridional inextensibility.)
Accordingly, we can write for the state-control functions (40)

Φ1 = −(py2
1 − f1) + y1n

22
1 cos u1,

Φ2 = −k( l
2
− ξ2) + y2n

22
2 cos u2,

and the conservation law ϕ(x) = k( l
2
− ξ2) expresses nothing but the equi-

librium of longitudinal forces at the left part of the system cut at x.

f2
f1

mm

1
-x

0
-x

2
-x 0

Figure 3. Cuts at various x, f2 = k( l
2
− ξ2) .

The non-constancy of Φ1 and Φ2 for x ∈ (−ξ0, 0] is due to the influence
of the internal constraint (contact) forces ±z acting upon the membranes.
With (42) in Proposition 4 it becomes obvious that z depends significantly
on ρ′, a fact that is investigated in detail below.

If we make a cut at x = −ξ1 + 0 it becomes clear that the equilibrium of
one of the side discs of the segment (acted upon by p, f1, and the resultant
meridional cut force) yields pr2

1 − f1 > 0 iff the inclination u1(−ξ1) of the
meridian is smaller than π/2. So the Supposition 2 gets a reasonable meaning
corresponding to the meridians being schlicht curves.

Finally, a cut at x = −ξ2 +0 exhibits that c = l
2
− ξ2 > 0 means that the

springs at the vein ends are under tension.
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4 The contact force

We start by recalling the last of the general membrane equations (5). After
normalization according to (9) it writes

−ẋyn11 + (ẋÿ − ẍẏ)n22 + 2pn = 0.

Taking this equation for the membranes of segment and vein separately we
have

− cos u1y1n
11
1 + u̇1n

22
1 + 2p− 2z = 0,

− cos u2y2n
11
2 + u̇2n

22
2 + 2z = 0.

(49)

±z are the (normalized) forces per unit of area acting in normal direction
between the contacting membranes (upon segment inwards, upon vein out-
wards), z > 0 on the contact area, z = 0 else. If we introduce the hypere-
lasticity laws for n11 and n22 and confine our considerations to the contact
area (x ∈ [−ξ0, 0], y1 = y2 = y, u1 = u2 = u, u̇ = u′ cos u) it follows after a
multiplication by y

−ψ1(y) cos u + u′ cos u[Ψ1(y) + λ3] + 2yp = 2yz,
−ψ2(y) cos u + u′ cos u[Ψ2(y) + λ4] = −2yz.

Now it is evident that either of these equations allows to calculate z(x) as
soon as the functions u and y are known. Equivalently it holds

4yz = 2yp− [ψ1(y)− ψ2(y)] cos u + [Ψ1(y)−Ψ2(y) + λ3 − λ4]u̇. (50)

If we compare with the first version of the differential equation (37) it turns
out that ρ′ has a clear physical meaning,

d

dx
ρ = 2yz. (51)

In particular this reflects the facts z ≥ 0 and ρ non-decreasing. Constancy
of ρ is equivalent to zero contact force.

5 Conclusion

In this paper we set up and investigate a mathematical model of a balloon-
like compliant mechanical device ’segment’ that is inflated within a (long)
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cylindrical compliant tube (’vein’). Put in concrete terms, compliance means
hyperelasticity with a special anisotropy. The background system can be seen
as part of a worm crawling in a compliant tube or as a system in medical
endoscopy. The investigations continue former work, [8], [9] that concerned
freely inflating segments and rigid surrounding tubes, respectively. As be-
fore, the mathematical treatment is based on the Principle of Minimal Poten-
tial Energy formulated as an optimal control problem with state constraint.
The latter shows some features which put it beyond textbook problems, the
respective optimality conditions are derived in [1]. In comparison to a for-
mulation by means of the theory of membrane shells this treatment allows
to keep the smoothness assumptions (which demand some care when dealing
with skin-like membranes) on a general level. Any nice smoothness proper-
ties then are deduced from the optimality conditions. Moreover, contrasting
common use, see, e.g., [6], [7], [10], no presuppositions about the shape of
the inflated system are introduced.

The analysis of the optimality condition ends up with a 9-dimensional or-
dinary boundary value problem where several given parameters (the internal
pressure of the segment in the first place) and two to-be-matched parame-
ters enter the differential equations and the boundary conditions as well. All
geometrical and physical quantities are appropriately normalized so that the
boundary value problem applies to segment-vein systems of arbitrary abso-
lute size and elasticity. A solution of the boundary value problem describes
the shape of the deformed system, afterwards the internal force between the
contacting segment and vein can be determined utilizing a formula. The
paper does not present any numerical exploitation of the final mathematical
model yet.

Various improvements of the presented model are at hand. We list some
samples.
• Drop the constraint of meridional inextensibility; this might give a more
realistic rheology - but at the expense of losing the maximum volume con-
figuration of the inflated (p = ∞) segment. (Fortunately, this configuration
is given by quadrature and serves as a comfortable start in iteration proce-
dures, [9]).
• Allow for asymmetry of the system: eccentric position of the segment
within the vein, or two non-compensating forces instead of ±f1 equilibrated
by tangential forces in the contact area, or different spring stiffnesses. The
optimality conditions remain essentially unchanged.
• Replace the isobaric process ’change of shape by variable f1 at constant
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pressure p0’ by an isochoric one, ’change of shape by variable f1 at constant
volume v0 of the segment’. Then the pressure p varies in the neighborhood
of the pre-adjusted pressure p0 (corresponding to v0), and it is governed by

the additional isoperimetric side condition
∫ ξ1

−ξ1
y2

1dx = v0, [8].

As to the background application problems it is clear that the presented
investigations plus forthcoming numerical results are only a first step towards
a description of, e.g., stenosis dilatation, [10]. Until now nothing has been
done to capture a complicated rheology and rotational non-symmetry (or
randomness) of the constricting plaque. And concerning worm-like motion,
at least a concatenation of segments within a rigid or compliant surrounding
demands an intensified theoretical attention.

6 Appendix

About a lemma on differentiating a composite function under lack of chain-
rule.

Lemma 5 1) h ∈ C0([t1, t2]× Rm,R1) : (t, u) 7→ h(t, u).
2) ∃ h,t (·, u) ∈ C0([t1, t2],R1) for u ∈ U ⊂ Rm.
3) u ∈ D0([t1, t2], U), w.l.o.g. left continuous.

If u solves a minimum principle

h(t, u(t)) := min
v∈U

h(t, v), t ∈ [t1, t2], (∗)

then, on [t1, t2],

(i) h(·, u(·)) ∈ D1,
(ii) d

dt
h(t, u(t)) = h,t (t, u(t)) piecewise,

(iii) h(t, u(t)) =
∫ t

t1
h,s (s, u(s))ds + h(t1, u(t1)).

Proof: (see [5], p.77)
a) Claim: h(·, u(·)) continuous.
Let τ > 0, t, t + τ ∈ [t1, t2]. Then (*) implies

h(t, u(t) ≤ h(t, u(t + τ)), h(t + τ , u(t + τ)) ≤ h(t + τ , u(t))̇.
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With τ → +0 there results

h(t, u(t + 0)) ≤ h(t, u(t)) ≤ h(t, u(t + 0)),

i.e., right-continuity at t. Left-continuity is trivial by 3).
b) Claim: u continuous at t0 ⇒ ∃ d

dt
h(t0, u(t0)).

Consider the difference

δ := h(t0 + τ , u(t0 + τ))− h(t0, u(t0)).

(*) implies

h(t0 + τ , u(t0 + τ))− h(t0, u(t0 + τ)) ≤ δ ≤ h(t0 + τ , u(t0))− h(t0, u(t0)).

Mean-value theorem: ∃ ϑ1, ϑ2 ∈ (0, 1) s.t.

τ · h,t (t0 + ϑ1τ , u(t0 + τ)) ≤ δ ≤ τ · h,t (t0 + ϑ2τ , u(t0)).

Let u be continuous at t0, let τ 6= 0. Then 3) implies that δ/τ is bounded
below and above by h,t (t0, u(t0))+o(1)τ→0. Thus ∃ limτ→0

δ
τ

= d
dt

h(t0, u(t0)).
c) We have shown the claimed equation (ii) above at every t ∈ [t1, t2] where
u is continuous, so d

dt
h is D0. Then (iii) follows trivially.

Application to present context
Connection with foregoing optimal control problem: Let

h(t, v) := H(t, x(t), λ(t), v),

where H = f0(t, x, v) + λf(t, x, v) is the Hamiltonian of a control problem,
x ∈ D1 the state, λ ∈ D1 multipliers such that ẋ = H,λ , λ̇ = −H,x .
Suppose the premises of the above lemma to be fulfilled. Furthermore let

h(t, u(t)) := min
v∈U

H(t, x(t), λ(t), v).

Then the lemma yields H(·, x(·), λ(·).u(·)) ∈ D1 and d
dt

H = H,t p.w..

Remark: All this applies to the segment-vein problem. Here v stands for
(u1, u2) and, though H is supplemented by the term ρR0 this does not disturb
the above reasoning: ρ is constant on (−ξ1,−ξ0)∪ (ξ0, ξ1) whereas R0 is zero
on (−ξ0, ξ0). Since either Hi depends only on ui, the minimum principle
applies to H1 and H2 separately and, thus, entails the t−differentiability of
these functions.
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