Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/29

Quasistatic inflation processes within compliant tubes

Steigenberger, Joachim ; Abeßer, Harald

November 9, 2009

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

Quasistatic inflation processes within compliant tubes

Part 1: Analytical investigations

Joachim Steigenberger, Harald Abeßer

November 9, 2009

Abstract

Continuing former work [8], [9] the authors consider a mechanical system that models a segment of a live or artificial worm or a balloon for angioplasty that is placed within a cylindrical compliant tube (vein). The statics of the inflation process is based on the Principle of Minimal Potential Energy. This is handled as an optimal control problem with state constraint. Certain peculiarities make the necessary optimality conditions go beyond those from classical textbooks. A careful analysis of the conditions leads to a boundary value problem describing the shape of the inflated system and to the determination of the contact forces between balloon and vein. Simulation results are to be presented in a forthcoming Part 2.

Key words Biomechanics, optimal control, state constraint.
MSC (2000) 49J15, 49M05, 74F10, 74K15.

1 Problem formulation

1.1 Introduction

In this paper we continue investigations published in [8] and [9]. There, the authors considered the statical behavior of compliant mechanical elements called "segments". Such an element has a hull that consists of two rigid
circular discs connected by a deformable membrane of circular cylindrical original shape. When this (stress-free) cylinder is filled with some (incompressible) fluid of fixed volume greater than that of the cylinder the segment deforms into some body of revolution. The membrane enters a state of stress, the discs longitudinally displace, and a hydrostatic pressure arises within the fluid. Under some working hypotheses concerning the kind of compliance of the membrane (in particular meridional inextensibility) a boundary value problem - derived either from local equilibrium conditions or from an equivalent variational problem - governs this inflation process. During this process the segment could either be free to expand radially or it could be restricted by a surrounding rigid tube, cylindrical or showing a constriction. In the latter case the membrane of the inflating segment more and more presses against the tube thereby simulating what happens during dilation of a vessel in medical surgery (disregarding the severe falsification of reality by the supposed rigidity of the tube).

In what follows we shall diminish this restrictive assumption by replacing the rigid tube with a thin-walled compliant one. Now the tube is able to deform radially when the inflated segment presses from inside, and this may give a more realistic image of a dilation process. In regard of this interpretation we shall call this tube a vein. It is just for the sake of keeping the analytical effort bounded that we assume the vein to have constant original thickness (thereby of course excluding stenoses from investigation) and the same kind of compliance as the segment, a possibly inevitable meridional extensibility could be captured by an elastic fastening of the ends of the tube to rigid walls. Following this description we may expect a scenario as sketched in Figure 1.

Figure 1: Inflated segment within vein.
As in the foregoing paper [9] mentioned above we encounter a well-known inconvenience immanent to the problem formulation: the region of contact
segment-vein (interval of meridian) is of course not known in advance rather it depends on the hydrostatic pressure within the segment and so does the pressure between membrane and vein along this region. Moreover, the shape of the deformed membrane is strongly influenced by the vein (and vice versa) on the region of contact while it is not directly influenced outside of this region. These facts could be a bit unpleasant if the differential equations which govern the problem were to be gained from local equilibrium conditions (synthetical method). Another unfortunate fact is the lack of knowledge about the smoothness of the deformed (thin!) membranes.

We overcome these difficulties in the same analytical way as it has been done in the former paper. The treatment of the problem is based on the Principle of Minimal Potential Energy for the total system. This Principle shows up as a variational problem or, equivalently, as an optimal control problem under state constraint (radius of segment no greater than radius of vein). The crucial point in this formulation is that, first, only minimal smoothness suppositions are needed, and that, second, the unknown pressure of contact, being the reaction to the state constraint does not enter the Principle. A careful analysis of the optimality conditions then yields clear statements about the actual smoothness properties, and differential equations which determine the shape of the overall system. Finally, after this has been managed, the geometry of both segment and vein on the contact region is well-known, and the constraint pressure follows from the Lagrange multiplier corresponding to the state constraint (with a comparing glance at the membrane equations of shell theory, [4]).

The central optimal control problem exhibits some features which make it a "non-classical" problem: the cost functional is the sum of two integrals with different integration intervals, and the state constraint is given only on the smaller of these intervals. Therefore the necessary optimality conditions deserve a very careful deduction. These investigations are the contents of the unpublished paper [1], their results are adapted to the problem of the present paper.

It does not bring about essential troubles if we consider an augmented mechanical problem by allowing for additional arbitrary longitudinal forces $\pm F_{1}$ acting upon the side discs of the segment. Now think of the segment being inflated (and dilating the surrounding vein) under zero longitudinal forces. Then, while keeping the internal pressure fixed, non-zero forces, generated inside the segment or from outside by wire, and pressing or pulling
the segment, change the shape of the segment, the dilation of the vein, and the constraint pressure between membrane and vein. Such a scenario could be seen in correspondence with some procedure to run at the tip of an endoscope.

The following considerations start with a sketch of geometry and mechanics of hyperelastic skin-like membrane shells, leading to an expression of the potential energy that can be seen as a mathematical model of the system to be investigated. A normalization makes the model applicable to systems of arbitrary dimension. The analysis then is (we hope) strictly mathematical and avoids any physical arguments. A physical interpretation of the results is given at the end.

1.2 Geometry, rheology, and potential energy

Supposing both segment and vein in deformed state to be of rotational symmetry we describe their surfaces of revolution by means of surface coordinates $\phi \in[0,2 \pi)$ (latitude) and s (arc-length of meridian). So we have the radius vectors (with functions of a sufficient smoothness class)
of the membrane:

$$
\begin{equation*}
\mathbf{r}_{1}\left(\phi, s_{1}\right)=x_{1}\left(s_{1}\right) \mathbf{e}_{x}+y_{1}\left(s_{1}\right)\left\{\cos \phi \mathbf{e}_{z}+\sin \phi \mathbf{e}_{y}\right\}, s_{1} \in\left[-s_{10}, s_{11}\right] \tag{1}
\end{equation*}
$$

of the vein:

$$
\begin{equation*}
\mathbf{r}_{2}\left(\phi, s_{2}\right)=x_{2}\left(s_{2}\right) \mathbf{e}_{x}+y_{2}\left(s_{2}\right)\left\{\cos \phi \mathbf{e}_{z}+\sin \phi \mathbf{e}_{y}\right\}, s_{2} \in\left[-s_{20}, s_{21}\right], \tag{2}
\end{equation*}
$$

In either case the standard meridian $(\phi=0)$ is given by its natural equation

$$
\begin{equation*}
\frac{d x}{d s}=\cos u, \quad \frac{d y}{d s}=\sin u, \quad \frac{d u}{d s}=\kappa \tag{3}
\end{equation*}
$$

where $u(s)$ is the angle from \mathbf{e}_{x} to the tangent vector of the meridian, and $\kappa(s)$ is the curvature of the meridian at that point. The moving frame is $\left(\frac{d x}{d s}=: \dot{x}\right.$, etc. $)$

$$
\begin{align*}
& \mathbf{g}_{1}:=\mathbf{r}, \phi=y(s)\left\{-\sin \phi \mathbf{e}_{y}+\cos \phi \mathbf{e}_{z}\right\} \\
& \mathbf{g}_{2}:=\mathbf{r}, \tag{4}\\
& \mathbf{n}=-\dot{y}(s) \mathbf{e}_{x}+\dot{x}(s)\left\{\operatorname{los}(s)\left\{\cos \phi \mathbf{e}_{y}+\sin \phi \mathbf{e}_{z}\right\},\right.
\end{align*}
$$

It entails the metric tensor $g_{\alpha \beta}: g_{11}=y^{2}, g_{12}=0, g_{22}=1$, and the 2nd fundamental tensor $b_{\alpha \beta}: b_{11}=-y \dot{x}, b_{12}=0, b_{22}=\kappa=\dot{x} \ddot{y}-\ddot{x} \dot{y}$.

The compliant segment is in particular characterized by the hypothesis that its deformable latitudinal hull statically behaves like a membrane shell, i.e., like a solid shell with no stress couples (i.e., with no resistance against bending = change of curvature). The membrane from above then is nothing else but the middle surface of this shell.

The local equilibrium of the membrane under the action of the external force per unit area

$$
\mathbf{P}=P^{\alpha} \mathbf{g}_{\alpha}+P_{n} \mathbf{n}
$$

is governed by the membrane equations [4]

$$
\nabla_{\beta} N^{\alpha \beta}+P^{\alpha}=0, \quad N^{\alpha \beta}=N^{\beta \alpha}, \quad b_{\alpha \beta} N^{\alpha \beta}+P_{n}=0
$$

Here, $N^{\alpha \beta}$ are the stress resultants per unit of length, they determine the stress vector $d \mathbf{T}=d T^{\rho} \mathbf{g}_{\rho}$ acting at the one-dimensional cut element $d \mathbf{f}=$ $d f^{\alpha} \mathbf{g}_{\alpha}: d T^{\rho}=N^{\rho \sigma} d f_{\sigma}, d f_{\sigma}=g_{\sigma \alpha} d f^{\alpha}$. ∇ is covariant derivation, $\nabla_{\gamma} N^{\alpha \beta}=$ $N^{\alpha \beta}{ }_{, \gamma}+\Gamma_{\rho \gamma}^{\alpha} N^{\rho \beta}+\Gamma_{\rho \gamma}^{\beta} N^{\alpha \rho}, \Gamma_{\beta \gamma}^{\alpha}$ are the Christoffel symbols.
Remark. Since equilibrium takes place in the actual state of the segment, area and length are those in the deformed membrane!

Under the assumptions

- surface of revolution,
- only normal forces acting ($P^{\alpha}=0$),
- rotationally symmetric state of stress $\left(N^{\alpha \beta}{ }_{\phi}{ }_{\phi}=0\right)$
the membrane equations appear as

$$
\left.\begin{array}{l}
\dot{N}^{12}+2 \dot{y}{ }_{y} N^{12}=0, \tag{5}\\
\dot{N}^{22}+\frac{\dot{y}}{y} N^{22}-y \dot{y} N^{11}=0, \\
-y \dot{x} N^{11}+(\dot{x} \ddot{y}-\ddot{x} \dot{y}) N^{22}+P_{n}=0 .
\end{array}\right\}
$$

As to the rheological behavior of the segment's hull we adopt the working hypotheses from [9]:

- The hull has a constant original thickness h;
- the membrane is skin-like, i.e., any state of the segment is stable only if the stress resultants are tensile, $N^{11} \geq 0, N^{22} \geq 0$, else a breakdown occurs (total flexibility);
- the membrane is meridionally inextensible;
- latitudinally, the membrane is homogeneously hyperelastic.

So the principal strain in s-direction vanishes, $\varepsilon_{s}=0$, and N^{22} appears as the reaction to this constraint. The meridians keep their length, the arc-length s is an invariant during deformation.

The principal strain in ϕ-direction is constant along any circle of latitude, it is given by the original (r) and actual (y) radius,

$$
\begin{equation*}
\varepsilon_{\phi}(s)=(y(s)-r) / r . \tag{6}
\end{equation*}
$$

If σ_{ϕ} denotes the principal stress in latitudinal direction then hyperelasticity means

$$
\begin{equation*}
\sigma_{\phi}=E \chi\left(\varepsilon_{\phi}\right) \tag{7}
\end{equation*}
$$

$(\chi(\varepsilon)=\varepsilon$ for Hooke material). Generally, E denotes some constant Young's modulus that is either given (in case of Hooke material) or fictitious and to be suitably chosen. $\chi(\cdot)$ is a smooth function from \mathbb{R}^{+}to $\mathbb{R}^{+}, \chi(0)=0$, monotonically increasing in most cases. It is given by experiments or suitably chosen in theory (see in [8]).
Note that σ_{ϕ} means force (at a cut $\phi=$ const) in ϕ-direction divided by the original area of the cut element. Thus (recall $d s$ invariant under deformation) with h as the original thickness of the membrane shell and $\mathbf{g}_{1}^{0}:=\mathbf{g}_{1} /\left\|\mathbf{g}_{1}\right\|$ there holds $\sigma_{\phi} h d s \mathbf{g}_{1}^{0}=N^{11} d f_{1} \mathbf{g}_{1}, d \mathbf{f}=d f^{1} \mathbf{g}_{1}=d s \mathbf{g}_{1}^{0}, \quad d f_{1}=g_{11} d f^{1}=y d s$, and it follows

$$
\begin{equation*}
y^{2} N^{11}=h E \chi\left(\frac{y}{r}-1\right) . \tag{8}
\end{equation*}
$$

Just as a quick supplement we note that the second membrane equation yields

$$
y N^{22}=\int^{y} \eta^{2} N^{11}(\eta) d \eta
$$

and if there are no twisting forces at the left and right boundaries then it is easy to conclude $N^{12}=0$.

Let us assume that the above working hypotheses qualitatively also hold for the vein. That means, segment and vein are distinguishable by thickness h, elasticity modulus E, and the hyperelastic characteristic $\chi(\cdot)$. Let us use labels 1 and 2 for quantities corresponding to the segment and to the vein, respectively. Then all the foregoing equations are valid with adequate indices.

With regard to later calculations it is promising to skip to quantities of physical dimension " 1 ". For this end we could fix any suitable L_{0} as unit of length (i.e., put $x=L_{0} \widetilde{x}$, etc., and drop the tilda after introduction); we choose the segment's meridional length L_{1} as the unit of length. Moreover
(for both segment and vein) let us use the

$$
\text { Normalization: } \begin{align*}
& N^{11}=\left(\frac{h_{1} E_{1}}{L_{1}^{2}}\right) n^{11}, \quad N^{22}=\left(h_{1} E_{1}\right) n^{22}, \tag{9}\\
& P_{n}=\left(\frac{2 h_{1} E_{1}}{L_{1}}\right) p_{n}, \quad F_{1}=\left(2 \pi h_{1} E_{1} L_{1}\right) f_{1}, \\
& \hline
\end{align*}
$$

(the parenthesized quantities are now the respective units of measurement, and $n^{\alpha \beta}, p_{n}, f_{1}$ to be used in calculations take real numbers as their values). The constitutive laws now take the normalized forms

$$
\begin{array}{lll}
n_{1}^{11}=\psi_{1}\left(y_{1}\right) / y_{1}^{2}, & \text { where } & \psi_{1}(y):=\chi_{1}\left(\frac{y}{r_{1}}-1\right), \\
n_{2}^{11}=\psi_{2}\left(y_{2}\right) / y_{2}^{2}, & \text { where } & \psi_{2}(y):=\beta \chi_{2}\left(\frac{y}{r_{2}}-1\right) . \tag{10}
\end{array}
$$

Roughly, the factor $\beta:=\frac{h_{2} E_{2}}{h_{1} E_{1}}$ can be given the interpretation

$$
\begin{align*}
& \beta>1: \text { thick-walled vein } \\
& \beta<1: \text { thin-walled vein } \tag{11}
\end{align*}
$$

We conclude this section by giving an expression for the potential energy needed to formulate the Principle that is to serve as the basis of all further analysis.

First we determine the potential energy stored in the deformed membrane. Per original volume unit this energy is (no normalization yet)

$$
\int_{0}^{\varepsilon_{\phi}} \sigma_{\phi}(\varepsilon) d \varepsilon=\int_{0}^{\varepsilon_{\phi}} E_{1} \chi_{1}(\varepsilon) d \varepsilon=\frac{E_{1}}{r_{1}} \int_{r_{1}}^{y_{1}} \psi_{1}(\eta) d \eta
$$

an original volume $h_{1} d s r_{1} d \phi$ then contains $h_{1} E_{1} d s d \phi \int_{r_{1}}^{y_{1}} \psi(\eta) d \eta$, and the total energy follows by integration about meridian $\times(0,2 \pi)$. With normalization there results the total potential energy of the deformed membrane

$$
\begin{equation*}
W_{1}\left[y_{1}\right]=\int \Psi_{1}\left(y_{1}(s)\right) d s, \quad \text { measured in units } 2 \pi h_{1} E_{1} L_{1}^{2} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{1}\left(y_{1}\right):=\int_{r_{1}}^{y_{1}} \psi_{1}(\eta) d \eta \tag{13}
\end{equation*}
$$

Integration is along the full (normalized) length of a meridian. Formally the same expression W_{2} we have for the potential energy stored in the deformed vein. The potential energy of the total system is $W_{1}+W_{2}$ supplemented by
the energy of the inflating fluid (= pressure times volume of segment), the energy of the longitudinal forces $\pm f_{1}$, and the energy of the elastic springs at the ends of the vein.

We confine the investigations to systems of longitudinal symmetry: suppose physically identical springs, a centered relative position of the segment within the vein, and $x_{i}(0)=0, x_{i}(\cdot)$ odd, $y_{i}(\cdot)$ even functions. The latter supposition yields that the inclinations u_{i} are odd functions which in particular implies

$$
u_{i}(-0)=-u_{i}(+0) .
$$

So we obtain

$$
W=\left\{\begin{array}{c}
\int_{-\frac{1}{2}}^{\frac{1}{2}} \Psi_{1}\left(y_{1}\right) d s_{1}-p \int_{-\frac{1}{2}}^{\frac{1}{2}} y_{1}^{2} \cos u_{1} d s_{1}+2 f_{1} \xi_{1} \tag{14}\\
+\int_{-\frac{l}{2}}^{\frac{l}{2}} \Psi_{2}\left(y_{2}\right) d s_{2}+k\left(\xi_{2}-\frac{l}{2}\right)^{2}
\end{array}\right.
$$

where $\xi_{1}=x_{1}\left(\frac{1}{2}\right), \xi_{2}=x_{2}\left(\frac{l}{2}\right), l=L_{2} / L_{1}>1$ (the normed original length of the vein), and k is the stiffness of the springs (measured in units $2 \pi h_{1} E_{1}$). W has to be seen as a functional of $u_{1}(\cdot), y_{1}(\cdot), y_{2}(\cdot), x_{1}(\cdot), x_{2}(\cdot)$ that depends on the parameters l, k, p, and f_{1}.

Remark. It is clear what happens if we drop the symmetry supposition: the integral bounds may change and become unequal in magnitude, the force and the spring term either split in two.

1.3 Variational problem

The potential energy W has now to be minimized under certain side conditions formulated below and in particular guaranteeing the condition "radius of segment no greater than radius of vein". In view of this state constraint (where the $y_{1,2}$-values to be compared are at points lying on top of each other - so having the same $x_{1,2^{-}}$values but different s-values in general) the above representation of W does not match with a handy representation of the constraint. Therefore we shall attack the problem using a $x \rightarrow y(x)$ representation of the meridians which then admits the constraint in the simple form $y_{1}(x) \leq y_{2}(x)$. Geometric formulae have to be adapted in corresponding way: $d s^{2}=d x^{2}+d y^{2}, y^{\prime}:=d y / d x=\tan u$, etc.

To proceed in this way the tacit supposition that the meridians are schlicht curves with respect to the x-axis is required. Having the physical
system in mind this is certainly not a severe restriction for the vein meridian, but apparently the force f_{1} which directly influences the shape of the inflated segment has to be suitably bounded above (else giving the segment the form of a tire), see Supposition 2 and remarks following Figure 3. A slight inconvenience enters because the integral bounds lose their constancy, and isoperimetric side conditions occur.

The potential energy to be minimized now writes

$$
\begin{equation*}
W=\int_{-\xi_{1}}^{\xi_{1}}\left\{\Psi_{1}\left(y_{1}\right) \sqrt{1+y_{1}^{\prime 2}}-p y_{1}^{2}+f_{1}\right\} d x+\int_{-\xi_{2}}^{\xi_{2}} \Psi_{2}\left(y_{2}\right) \sqrt{1+y_{2}^{\prime 2}} d x+k\left(\xi_{2}-\frac{l}{2}\right)^{2} \tag{15}
\end{equation*}
$$

The task then is the following: ${ }^{1}$
Find $y_{1} \in D^{1}\left[-\xi_{1}, \xi_{1}\right], y_{2} \in D^{1}\left[-\xi_{2}, \xi_{2}\right]$ with free $\xi_{1}, \xi_{2}, 0<\xi_{1}<\xi_{2}$, such that for fixed parameters $p>0, f_{1} \in \mathbb{R}, k>0, l>1, r_{2} \geq r_{1}>0$

$$
W \rightarrow \min
$$

under the restrictions

$$
\begin{array}{ll}
\text { (i) } & y_{1}\left(-\xi_{1}\right)=y_{1}\left(\xi_{1}\right)=r_{1} \\
\text { (ii) } & y_{2}\left(-\xi_{2}\right)=y_{2}\left(\xi_{2}\right)=r_{2} \\
\text { (iii) } & y_{2}(x) \geq y_{1}(x), \quad x \in\left[-\xi_{1}, \xi_{1}\right], \tag{16}\\
\text { (iv) } & \int_{-\xi_{1}}^{\xi_{1}} \sqrt{1+y_{1}^{\prime 2}(x)} d x=1, \int_{-\xi_{2}}^{\xi 2} \sqrt{1+y_{2}^{\prime 2}(x)} d x=l
\end{array}
$$

This is a Bolza-type variational problem featured by two different integration intervals, partially fixed boundaries, a state constraint on one of the integration intervals, and isoperimetric side conditions. The class D^{1} of the $y_{1,2}$ guarantees that the meridians are piecewise smooth arcs which are allowed to show finitely many edges.

Of course, by appropriate continuation of the first integrand the problem could be made a problem with one common integration interval $\left[-\xi_{2}, \xi_{2}\right]$ but possibly discontinuous integrand and showing the peculiarity of a state constraint (iii) on a proper subinterval.

[^0]The last isoperimetric condition above clearly implies

$$
\begin{equation*}
2 \xi_{2} \leq l \tag{17}
\end{equation*}
$$

Equivalently, the isoperimetric conditions can be fit into a Lagrange formulation via additional differential equations and boundary conditions.

In the sequel the variational problem is reformulated as an optimal control problem for which the necessary optimality conditions were essentially prepared in [1] and [2].

We shall treat this problem as a self-contained one, we avoid references to the background physics as means of conclusion. Physical meanings of some suppositions and facts are discussed, after the investigations are finished, in section 3.

2 Optimal control problem

We use the inclination angles $x \rightarrow u_{i}(x), i=1,2$, of the meridians as controls. Corresponding to the $y \in D^{1}$ assumption above and $y_{i}^{\prime}=\tan u_{i}$ we start with

- Supposition 1: $u_{i}(\cdot) \in D^{0}, u_{i}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad i=1,2$.

This matches the supposition of the meridians to be schlicht curves. Then, dropping indices, there holds $\sqrt{1+y^{\prime 2}}=1 / \cos u$, and, putting $w(x):=$ $\int_{0}^{x} \frac{1}{\cos u(t)} d t$, the first isoperimetric condition can be replaced by $w^{\prime}=1 / \cos u$, $w\left(-\xi_{1}\right)=-\frac{1}{2}, w\left(\xi_{1}\right)=\frac{1}{2}$ (second one treated analogously).

2.1 Problem formulation

The potential energy

$$
\begin{equation*}
W=\int_{-\xi_{1}}^{\xi_{1}}\left\{\frac{1}{\cos u_{1}} \Psi_{1}\left(y_{1}\right)-p y_{1}^{2}+f_{1}\right\} d x+\int_{-\xi_{2}}^{\xi_{2}} \frac{1}{\cos u_{2}} \Psi_{2}\left(y_{2}\right) d x+k\left(\xi_{2}-\frac{l}{2}\right)^{2} \tag{18}
\end{equation*}
$$

is composed of two integral terms with different integration intervals and a Bolza term

$$
\begin{equation*}
g_{02}\left(\xi_{2}\right):=k\left(\xi_{2}-\frac{l}{2}\right)^{2} \tag{19}
\end{equation*}
$$

The task is now the following:
With free $\xi_{1}, \xi_{2}, 0<\xi_{1}<\xi_{2}$, find $u_{1} \in D^{0}\left[-\xi_{1}, \xi_{1}\right], u_{2} \in D^{0}\left[-\xi_{2}, \xi_{2}\right]$, both functions odd w.r.t. $x=0$, and $y_{1}, w_{1} \in D^{1}\left[-\xi_{1}, \xi_{1}\right], y_{2}, w_{2} \in$ $D^{1}\left[-\xi_{2}, \xi_{2}\right]$, such that for fixed parameters $p>0, f_{1} \in \mathbb{R}, k>0, l>$ $1, r_{2}>r_{1}>0$

$$
W \rightarrow \min
$$

under the restrictions (on respective intervals)
(i) $y_{1}^{\prime}=\tan u_{1}, \quad y_{2}^{\prime}=\tan u_{2}$,
(ii) $w_{1}^{\prime}=1 / \cos u_{1}, \quad w_{2}^{\prime}=1 / \cos u_{2}$,
(iii) $y_{1}\left(\pm \xi_{1}\right)=r_{1}, \quad y_{2}\left(\pm \xi_{2}\right)=r_{2}$,
(iv) $w_{1}\left(-\xi_{1}\right)=-\frac{1}{2}, \quad w_{2}\left(-\xi_{2}\right)=-\frac{l}{2}, \quad w_{1}(0)=w_{2}(0)=0$,
(v) $S\left(y_{2}(x), y_{1}(x)\right):=y_{2}(x)-y_{1}(x) \geq 0, \quad x \in\left[-\xi_{1}, \xi_{1}\right]$.

Remind that the skin property of the membranes demands $y_{1}(x) \geq r_{1}$ (no negative strains possible in any stable configuration). We shall not cope with these inequalities as additional constraints. Instead, if the optimality conditions yielded solutions with $y_{1}(x)<r_{1}$ at some x then these solutions would be dropped with regard to their physical insignificance.

2.2 Optimality conditions

The necessary optimality conditions given and utilized in the following are essentially prepared in [2]. The peculiarity of the different integration intervals together with a state constraint on a proper subinterval makes the problem a non-familiar one that is, without any close connection to some physical background treated in the forthcoming paper [1]. In what follows we present and utilize the adaptation to our problem of the general necessary optimality conditions given there.

The relative degree of the problem is $h=1: S=y_{2}-y_{1}$ yields

$$
\begin{equation*}
R_{0}(u):=S^{\prime}=\tan u_{2}-\tan u_{1}, \tag{21}
\end{equation*}
$$

hence $\operatorname{rank}\left(R_{0}, u\right)=\operatorname{rank}\left(-\cos ^{-2} u_{1}, \cos ^{-2} u_{2}\right)=1$.
First, with a \mathbb{R}^{1+4+1} - valued multiplier $\left(l_{0}, \lambda, \rho\right)$ we define the Hamiltonian in the following way:

$$
\begin{align*}
& H_{1}\left(l_{0}, \lambda_{1}, \lambda_{3}, y_{1}, u_{1}\right):=l_{0}\left\{\frac{1}{\cos u_{1}} \Psi_{1}\left(y_{1}\right)-p y_{1}^{2}+f_{1}\right\}+\lambda_{1} \tan u_{1}+\lambda_{3} \frac{1}{\cos u_{1}}, \\
& H_{2}\left(l_{0}, \lambda_{2}, \lambda_{4}, y_{2}, u_{2}\right):=l_{0} \frac{1}{\cos u_{2}} \Psi_{2}\left(y_{2}\right)+\lambda_{2} \tan u_{2}+\lambda_{4} \frac{1}{\cos u_{2}}, \tag{22}
\end{align*}
$$

and, along any feasible function $x \longmapsto\left(y_{1}(x), . ., \lambda_{4}(x)\right)$,

$$
H:=\left\{\begin{array}{l}
H_{2}, x \in\left[-\xi_{2},-\xi_{1}\right) \cup\left(\xi_{1}, \xi_{2}\right], \tag{23}\\
H_{1}+H_{2}+\rho\left(\tan u_{2}-\tan u_{1}\right), x \in\left[-\xi_{1}, \xi_{1}\right] .
\end{array}\right.
$$

The optimality conditions then are the following:
Let $\left(u_{1}, u_{2}, y_{1}, y_{2}, w_{1}, w_{2}\right)$ be a solution of the optimal control problem. Then there exists a multiplier $\left(l_{0}, \lambda_{1}(\cdot), \lambda_{2}(\cdot), \lambda_{3}(\cdot), \lambda_{4}(\cdot), \rho(\cdot)\right)$, with $l_{0} \in \mathbb{R}^{+}$, $\lambda_{1,3} \in D^{1}\left[-\xi_{1}, \xi_{1}\right], \quad \lambda_{2} \in D^{1}\left(\left[-\xi_{2}, \xi_{2}\right] \backslash\left\{\xi_{1}\right\}\right), \lambda_{4} \in D^{1}\left[-\xi_{2}, \xi_{2}\right]$, and $\rho \in$ $C^{1}\left(\left[-\xi_{1}, \xi_{1}\right] \backslash\{x: S=0\}\right)$, such that
(o) $\left\{\begin{array}{l}\left(l_{0}, \lambda_{2}(x), \lambda_{4}(x)\right) \neq 0, x \in\left[-\xi_{2},-\xi_{1}\right) \cup\left(\xi_{1}, \xi_{2}\right], \\ \left(l_{0}, \lambda_{1}(x), \lambda_{2}(x), \lambda_{3}(x), \lambda_{4}(x), \rho(x)\right) \neq 0, x \in\left[-\xi_{1}, \xi_{1}\right],\end{array}\right.$
(i) $\left\{\begin{array}{cc}\lambda_{1}^{\prime}=-H, y_{1} & =-l_{0}\left\{\psi_{1}\left(y_{1}\right) / \cos u_{1}-2 p y_{1}\right\} \\ \lambda_{3}^{\prime}=-H,_{w_{1}} & =0\end{array}\right\}$ piecewise on $\left[-\xi_{1}, \xi_{1}\right]$
(ii) $\left\{\begin{array}{c}\lambda_{2}^{\prime}=-H,_{y_{2}}=-l_{0} \psi_{2}\left(y_{2}\right) / \cos u_{2} \\ \lambda_{4}^{\prime}=-H,_{w_{2}}=0 \\ \lambda_{2}\left(\xi_{1}-0\right)+\rho\left(\xi_{1}\right)=\lambda_{2}\left(\xi_{1}+0\right)\end{array}\right\}$ piecewise on $\left[-\xi_{2}, \xi_{2}\right]$,
(iii) $\left\{\begin{array}{l}H\left(\ldots, \bar{u}_{1}, \bar{u}_{2}\right) \geq H\left(\ldots, u_{1}, u_{2}\right) \text { on }\left[-\xi_{1}, \xi_{1}\right], \\ H_{2}\left(\ldots, \bar{u}_{2}\right) \geq H_{2}\left(\ldots, u_{2}\right) \text { on }\left[-\xi_{2},-\xi_{1}\right) \cup\left(\xi_{1}, \xi_{2}\right],\end{array}\right.$
(iv) $0=H, u_{i}, i=1,2$:

$$
\left\{\begin{aligned}
0 & =\left\{\left(l_{0} \Psi_{1}\left(y_{1}\right)+\lambda_{3}\right) \sin u_{1}+\lambda_{1}-\rho\right\} \text { on }\left[-\xi_{1}, \xi_{1}\right], \\
0 & =\left\{\begin{array}{l}
\left(l_{0} \Psi_{2}\left(y_{2}\right)+\lambda_{4}\right) \sin u_{2}+\lambda_{2}+\rho \text { on }\left[-\xi_{1}, \xi_{1}\right], \\
\left(l_{0} \Psi_{2}\left(y_{2}\right)+\lambda_{4}\right) \sin u_{2}+\lambda_{2} \text { on }\left[-\xi_{2},-\xi_{1}\right) \cup\left(\xi_{1}, \xi_{2}\right] .
\end{array}\right.
\end{aligned}\right.
$$

(v) $H\left(l_{0}, \lambda(\cdot), \rho(\cdot), y(\cdot), u(\cdot)\right) \in D^{1}\left[-\xi_{2}, \xi_{2}\right]$,
(vi) $\frac{d}{d x} H=H,_{x}=0$, on $\left[-\xi_{2}, \xi_{2}\right]$,
(vii) $\left\{\begin{array}{l}\text { transversality at } x= \pm \xi_{2} \text { : } \\ l_{0} k\left(\frac{l}{2}-\xi_{2}\right)-\left.H_{2}\right|_{ \pm \xi_{2}}=0,\end{array}\right.$
(viii) $\left\{\begin{array}{l}\left.(\rho S)\right|_{x=-\xi_{1}}=0 \\ \rho^{\prime} S=0 \text { on }\left[-\xi_{1}, \xi_{1}\right] \backslash\{x: S=0\} \\ \rho \text { non-decreasing on }\left[-\xi_{1}, \xi_{1}\right] \text { if } l_{0} \neq 0 .\end{array}\right.$

Figure 2: Important points.

Complementary remarks:

re (i), (ii): By means of the continuity of λ_{3} and λ_{4} it follows

$$
\lambda_{3}=\text { const on }\left[-\xi_{1}, \xi_{1}\right], \quad \lambda_{4}=\text { const on }\left[-\xi_{2}, \xi_{2}\right] .
$$

re (ii),(iv): The λ_{2}-jump-condition at ξ_{1} ensures continuity of $H_{,_{u_{2}}}$ at ξ_{1} if u_{2} is continuous at ξ_{1} (shown below).
re (vi): This means "energy" conservation,

$$
H=\text { const }:=c \text { on }\left[-\xi_{2}, \xi_{2}\right] .
$$

For problems with degree $h>1$ it need not be valid, [1].
re (vii): The restrictions (ii), (iv) in (20) imply $\xi_{2}=\frac{l}{2}$ iff $u_{2} \equiv 0$ hence $y_{2}(x)=r_{2}$. The 2nd and 3rd term of the potential energy (18) then vanish and this means that the two subsystems segment and vein are without mutual influence. Then one might guess the constraint to be active, $S=0$, in at most isolated points (touch points). Therefore we shall focus on the case

$$
\begin{equation*}
\frac{l}{2}-\xi_{2}>0 \tag{24}
\end{equation*}
$$

in the sequel (active constraint on some open interval).
re (viii): $r_{2}>r_{1}$ implies $S\left(y_{2}\left(-\xi_{1}\right), y_{1}\left(-\xi_{1}\right)\right)>0$ and by continuity $S\left(y_{2}(x), y_{1}(x)\right)>0$ in a right neighborhood of $-\xi_{1}$, hence $\rho^{\prime}(x)=0$ and $\rho(x)=0$ for $x \in\left[-\xi_{1},-\xi_{0}\right]$, where $-\xi_{0}$ is the utmost left junction point. Moreover $\rho(x) \geq 0$ for $x \in\left(-\xi_{0}, \xi_{1}\right]$ and $\rho(x)=$ const on $\left(\xi_{0}, \xi_{1}\right]$. (ξ_{0} is, by symmetry, the utmost right disjunction point.) If ρ^{\prime} does not exist at some $x \in\left(-\xi_{0}, \xi_{0}\right)$ - where $S=0$ - then the equation $\rho^{\prime} S=0$ is to be considered formally.

2.3 Discussion of the optimality conditions

The following analysis of the optimality conditions is based on

- Supposition 2:

(a) The fixed parameters are confined to

$$
\begin{equation*}
p r_{1}^{2}-f_{1}>0 \tag{25}
\end{equation*}
$$

(b) If the state restriction $S\left(y_{2}, y_{1}\right) \geq 0$ shows a non-empty activity domain, then there is exactly one junction point $-\xi_{0} \in\left(-\xi_{1}, 0\right)$ (accompanied by the disjunction point $\left.\xi_{0}\right) . \xi_{0}=0$ describes one touch point, it is not investigated separately but considered as the limit case during inflation from zero pressure or during deflation from big pressure.

So it holds $y_{2}(x)-y_{1}(x)>0$ for $x \in\left[-\xi_{1},-\xi_{0}\right) \cup\left(\xi_{0}, \xi_{1}\right]$ and $y_{2}(x)-y_{1}(x)=$ 0 on $\left[-\xi_{0}, \xi_{0}\right]$, entailing $u_{2}(x)=u_{1}(x)$ on the non-empty interval $\left(-\xi_{0}, \xi_{0}\right)$.

The following investigations focus on the interval $\left[-\xi_{2}, 0\right]$, results concerning $y_{1,2}$ and $u_{1,2}$ then apply to $\left(0, \xi_{2}\right]$ according to symmetry. But note that the supposed geometric symmetry is in general not reflected in a symmetry of the hamiltonian and the multipliers, observe, e.g., the monotonicity of ρ and the jump of λ_{2}.

1) About normality

We show that $l_{0}=0$ yields a contradiction, so the problem is a normal one.
Suppose $l_{0}=0$ and observe what happens at $x=-\xi_{1}$. (Denote the respective values by $\bar{\lambda}_{1}, \bar{\lambda}_{2}, \bar{u}_{1}$, and limits by $u_{2}^{ \pm}$.)
i) $\left.H_{,_{1}}\right|_{-\xi_{1}+0}=0: \quad \lambda_{3} \sin \bar{u}_{1}+\bar{\lambda}_{1}=0$,
ii) $H,\left._{u_{2}}\right|_{-\xi_{1}-0}=0: \quad \lambda_{4} \sin u_{2}^{-}+\bar{\lambda}_{2}=0$,
iii) $\left.H\right|_{-\xi_{1}-0}=c: \quad \bar{\lambda}_{2} \sin u_{2}^{-}+\lambda_{4}=c$,
iv) $\left.H\right|_{-\xi_{1}+0}=c: \quad\left(\bar{\lambda}_{2} \sin u_{2}^{+}+\lambda_{4}\right) \frac{1}{\cos u_{2}^{+}}+\left(\bar{\lambda}_{1} \sin \bar{u}_{1}+\lambda_{3}\right) \frac{1}{\cos \bar{u}_{1}}=c$.

The optimality condition (vii) with $l_{0}=0$ yields $c=0$. Then ii) and iii) form a system of homogeneous linear equations with the unique trivial solution $\bar{\lambda}_{2}=\lambda_{4}=0$, and $\bar{\lambda}_{1}=\lambda_{3}=0$ follows from i) and iv) in the same way. So we have $\left.(0, \lambda, \rho)\right|_{-\xi_{1}}=0$: contradiction to optimality! Let, therefore, in all what follows

$$
l_{0}=1 .
$$

2) Continuity of the controls:

Preliminary note:
From optimality condition (iv), $H_{,_{i}}=0$, we see that $H_{,_{i}}$ is continuous at any $x_{0} \in\left[-\xi_{2}, \xi_{2}\right]$. So we have for the one-sided limits at $x_{0}\left(y_{i 0}, \lambda_{i 0}\right.$ values, $u_{i}^{ \pm}$limits at x_{0})

$$
\left.\begin{array}{ll}
x_{0} \in\left[-\xi_{1},-\xi_{0}\right): & {\left[\Psi_{1}\left(y_{10}\right)+\lambda_{3}\right] \sin u_{1}^{ \pm}+\lambda_{10}=0,} \\
x_{0} \in\left[-\xi_{2},-\xi_{0}\right): & {\left[\Psi_{2}\left(y_{20}\right)+\lambda_{4}\right] \sin u_{2}^{ \pm}+\lambda_{20}=0,} \\
x_{0} \in\left(-\xi_{0}, 0\right]: & {\left[\Psi_{1}\left(y_{0}\right)+\lambda_{3}\right] \sin u^{ \pm}+\lambda_{10}=\rho^{ \pm},} \tag{26}\\
x_{0} \in\left(-\xi_{0}, 0\right]: & {\left[\Psi_{2}\left(y_{0}\right)+\lambda_{4}\right] \sin u^{ \pm}+\lambda_{20}=-\rho^{ \pm} .}
\end{array}\right\}
$$

This shows, first, that the limits $\rho^{ \pm}$exist and are finite. Moreover we get the
Proposition 1 At every $x_{0} \neq-\xi_{0}$ there hold the implications

$$
\begin{gathered}
x_{0}<-\xi_{0}:\left\{\begin{array}{l}
{\left[\Psi_{1}\left(y_{10}\right)+\lambda_{3}\right] \neq 0 \Rightarrow u_{1} \text { continuous at } x_{0},} \\
{\left[\Psi_{2}\left(y_{20}\right)+\lambda_{4}\right] \neq 0 \Rightarrow u_{2} \text { continuous at } x_{0},}
\end{array}\right. \\
-\xi_{0}<x_{0} \leq 0:\left\{\begin{array}{l}
\text { Sum of brackets non-zero } \Rightarrow u \text { and } \rho \text { continuous at } x_{0}, \\
\text { One of brackets zero } \Rightarrow \rho \text { continuous at } x_{0}, \\
u \text { continuous } \Rightarrow \rho \text { continuous at } x_{0} .
\end{array}\right.
\end{gathered}
$$

As a consequence we observe:

$$
\rho \text { is continuous on }\left(-\xi_{0}, 0\right] \text {. }
$$

The boundary point $-\xi_{0}$ deserves extra consideration.
Now let us check the facts at various x_{0}. For the sake of brevity in writing we introduce the temporary convention: In the course of the following proofs we use for the recurring brackets the abbreviations

$$
\left[\Psi_{1}\left(y_{10}\right)+\lambda_{3}\right]=: B_{1}, \quad\left[\Psi_{2}\left(y_{20}\right)+\lambda_{4}\right]=: B_{2} .
$$

a) $x_{0} \in\left(-\xi_{2},-\xi_{1}\right) . \quad B_{2}=0$ implies $\lambda_{20}=0$ and $c=\left.H\right|_{x_{0}}=\left.H_{2}\right|_{x_{0}}=0$: a contradiction for $c>0$, hence u_{2} continuous at x_{0}, whereas for $c=0$ we have $u_{2}(x) \equiv 0$, hence trivial continuity.
b) $x_{0}=-\xi_{1}$. Claim: u_{2} continuous at $-\xi_{1}$.

If we write (26.2) as separate equations then they can be seen as a system of homogeneous linear equations for B_{2} and λ_{20} with coefficient matrix

$$
M=\left(\begin{array}{cc}
\sin u_{2}^{-} & 1 \\
\sin u_{2}^{+} & 1
\end{array}\right)
$$

Continuity of u_{2} means $\operatorname{det} M=0$ whereas discontinuity, $\operatorname{det} M \neq 0$, would imply a trivial solution, $B_{2}=0, \lambda_{20}=0$. But then we get the same conclusion as under a).

Supplement: The continuity of u_{2} at x implies continuity of H_{2} at x. Then, with $x=-\xi_{1},\left.H_{2}\right|_{-\xi_{1}-0}=\left.\left(H_{1}+H_{2}\right)\right|_{-\xi_{1}+0}$ yields in particular

$$
\left.H_{1}\right|_{-\xi_{1}+0}=0 .
$$

c) $x_{0} \in\left(-\xi_{1},-\xi_{0}\right)$. (The following reasoning also applies to $\left(\xi_{0}, \xi_{1}\right)$ after λ_{1}, λ_{2} are replaced by $\lambda_{1}-\rho$ and $\lambda_{2}+\rho$, respectively, with constant ρ.)
$\boldsymbol{\alpha})$ Claim: The brackets B_{1} and B_{2} cannot vanish simultaneously.
Proof: Assume $B_{1}=0$ and $B_{2}=0$. Then (26) entails $\lambda_{10}=\lambda_{20}=0$ and $\left.H\right|_{x_{0} \pm 0}=-p y_{10}^{2}+f_{1}=c$, a contradiction: $0 \leq c=-p y_{10}^{2}+f_{1}<-p r_{1}^{2}+f_{1}<0$.

Consequently, u_{1} and u_{2} cannot simultaneously be discontinuous.
$\boldsymbol{\beta})$ W.l.o.g. x_{0} can be taken as the utmost left discontinuity of the $u^{\prime} s$, for $u_{i} \in D^{0}$ allows at most finitely many jumps of the controls. Assume u_{2} discontinuous at x_{0}. Then (26) entails $B_{2}=\lambda_{20}=0$ and $\left.H_{2}\right|_{x_{0} \pm 0}=0$. Now we know that H_{2} is continuous on $\left[-\xi_{1}, x_{0}\right)$ and $\left.H_{2}\right|_{-\xi_{1}}=c \geq 0$. Lemma 5 and the final remark in the Appendix yield $\frac{d}{d x} H_{2}=0$ and thus $H_{2}=c$ on $\left[-\xi_{1}, x_{0}\right)$. Hence we get $c=0$, and this means, following the preliminary remark preceding (25), $u_{2}(x)=0$ for every $x \in\left[-\xi_{2}, \xi_{2}\right]: u_{2}$ is continuous throughout, contradiction!
A similar reasoning starting with discontinuous u_{1} yields the same result.
Summarizing: u_{1} and u_{2} are continuous on ($-\xi_{1},-\xi_{0}$).
Now we can conclude, again exploiting the Lemma from Appendix 1 and the final remark therein,

$$
\begin{equation*}
H_{1}=0, \quad H_{2}=c \text { on }\left[-\xi_{1},-\xi_{0}\right) . \tag{27}
\end{equation*}
$$

d) $x=-\xi_{0}<0$. Remind that $y_{1}=y_{2}=: y$ and $u_{1}=u_{2}=: u$ in a right neighborhood of the junction point $-\xi_{0}$. Limits of H are

$$
\begin{gather*}
\left.\left(H_{1}+H_{2}\right)\right|_{-\xi_{0}-0} \tag{28}\\
=\frac{1}{\cos u_{1}^{-}}\left\{B_{1}+\lambda_{10} \sin u_{1}^{-}\right\}-p y_{0}^{2}+f_{1} \\
+\frac{1}{\cos u_{2}^{-}}\left\{B_{2}+\lambda_{20} \sin u_{2}^{-}\right\}=c, \tag{29}\\
\left.\left(H_{1}+H_{2}\right)\right|_{-\xi_{0}+0} ^{\cos u^{+}}\left\{B_{1}+B_{2}+\left(\lambda_{10}+\lambda_{20}\right) \sin u^{+}\right\}-p y_{0}^{2}+f_{1}=c .
\end{gather*}
$$

Limits of $H_{,_{i}}=0$ can be deduced from (26):

$$
\begin{array}{ll}
0=H,\left.u_{1}\right|_{-\xi_{0}-0}: & B_{1} \sin u_{1}^{-}+\lambda_{10}=0, \\
0=H,\left.u_{2}\right|_{-\xi_{0}-0}: & B_{2} \sin u_{2}^{-}+\lambda_{20}=0, \\
0=H,\left.u_{1}\right|_{-\xi_{0}+0}: & B_{1} \sin u^{+}+\lambda_{10}-\rho^{+}=0, \\
0=H,\left.u_{2}\right|_{-\xi_{0}+0}: & B_{2} \sin u^{+}+\lambda_{20}+\rho^{+}=0 .
\end{array}
$$

Eliminating $\lambda_{1,2}$ there follow

$$
\left.\begin{array}{c}
B_{1}\left(\sin u^{+}-\sin u_{1}^{-}\right)=\rho^{+} \tag{30}\\
B_{2}\left(\sin u^{+}-\sin u_{2}^{-}\right)=-\rho^{+} \\
B_{1}\left(\cos u^{+}-\cos u_{1}^{-}\right)+B_{2}\left(\cos u^{+}-\cos u_{2}^{-}\right)=0 .
\end{array}\right\}
$$

The 3rd equation together with the sum of the first two can be seen as a system of homogeneous linear equations for the two brackets. Its determinant is

$$
\Delta=\sin \left(u^{+}-u_{2}^{-}\right)-\sin \left(u^{+}-u_{1}^{-}\right)+\sin \left(u_{2}^{+}-u_{1}^{-}\right)
$$

$\boldsymbol{\alpha}$) Assume $u_{1}^{-} \neq u_{2}^{-}$. Then $\Delta \neq 0$, whence both brackets are zero and this leads to a contradiction as under $\mathbf{c} \boldsymbol{\alpha}$) above. So let
$\boldsymbol{\beta}) u_{1}^{-}=u_{2}^{-}$. This yields $\Delta=0$ and there remains

$$
\left\{B_{1}+B_{2}\right\}\left(\cos u^{+}-\cos u_{2}^{-}\right)=0
$$

If we had $u^{+} \neq u_{1}^{-}$then $B_{1}=B_{2}=0$ would follow, leading to the well-known contradiction $-p y_{0}^{2}+f_{1}=c$.
Therefore we obtain the continuity $u^{+}=u_{1}^{-}=u_{2}^{-}$and moreover $\rho^{+}=0$.
e) Let $x_{0} \in\left(-\xi_{0}, \xi_{0}\right)$. Let $\xi_{0}>0$. Then we have $y_{1}=y_{2}=: y, u_{1}=$ $u_{2}=: u$ on this contact interval. We consider the equations $\left(H_{1}+H_{2}\right)_{u_{i}}=0$, and $H_{1}+H_{2}=c$ at x_{0}. In the limits $x_{0} \pm 0$ these are

$$
\begin{aligned}
& B_{1} \sin u^{ \pm}+\lambda_{10}-\rho^{ \pm}=0 \\
& B_{2} \sin u^{ \pm}+\lambda_{20}+\rho^{ \pm}=0 \\
& B_{1}+B_{2}+\left(\lambda_{10}+\lambda_{20}\right) \sin u^{ \pm}=\left(c+p y_{0}^{2}-f_{1}\right) \cos u^{ \pm} .
\end{aligned}
$$

Eliminating the $\lambda^{\prime} s$ in the third equation we get

$$
\left(B_{1}+B_{2}\right) \cos u^{ \pm}=\left(c+p y_{0}^{2}-f_{1}\right)
$$

Now either $B_{1}+B_{2}=0$, giving the usual contradiction, or it holds $u^{+}=$ u^{-}and moreover $\rho^{+}=\rho^{-}$.

For odd $u_{i}(\cdot)$ we already know $u_{i}(-0)=-u_{i}(+0)$, and the continuity then yields

$$
\begin{equation*}
u(0)=0 . \tag{31}
\end{equation*}
$$

Summarizing we have found the
Proposition 2 The controls are continuous at every x : $u_{1} \in C^{0}\left[-\xi_{1}, \xi_{1}\right]$, $u_{2} \in C^{0}\left[-\xi_{2}, \xi_{2}\right]$. That means geometrically, the meridians are smooth curves. In particular they do not show an edge at the junction (disjunction) point. The describing functions $y_{1,2}$ are of class C^{1}. Furthermore $\rho \in C^{0}\left[-\xi_{1}, \xi_{0}\right]$, (at ξ_{0} a jump may happen).

5) Differentiability of the controls

On the respective intervals we exploit the constancy of H_{1}, H_{2}, H and the vanishing partial derivatives w.r.t. $u_{1,2}$.

For $x \in\left[-\xi_{1},-\xi_{0}\right]$ we have $H_{1}=0, H_{1, u_{1}}=0$, i.e.,

$$
\begin{aligned}
& {\left[\Psi_{1}\left(y_{0}\right)+\lambda_{3}\right] \frac{1}{\cos _{1} u_{1}}+\lambda_{1} \tan u_{1}=p y_{1}^{2}-f_{1},} \\
& {\left[\Psi_{1}\left(y_{0}\right)+\lambda_{3}\right] \frac{\sin u_{1}}{\cos ^{2} u_{1}}+\lambda_{1} \frac{1}{\cos ^{2} u_{1}}=0 .}
\end{aligned}
$$

Taking this as a system of linear equations, it solves for the λ,

$$
\begin{align*}
& \lambda_{1}=-\left(p y_{1}^{2}-f_{1}\right) \tan u_{1}, \tag{32}\\
& \lambda_{3}=-\Psi_{1}\left(y_{1}\right)+\left(p y_{1}^{2}-f_{1}\right) / \cos u_{1}
\end{align*}, x \in\left[-\xi_{1},-\xi_{0}\right] .
$$

In the same way we obtain from $H_{2}=c, H_{2, u_{2}}=0$

$$
\begin{align*}
& \lambda_{2}=c \tan u_{2}, \tag{33}\\
& \lambda_{4}=-\Psi_{2}\left(y_{2}\right)+c / \cos u_{2}
\end{align*}, x \in\left[-\xi_{2},-\xi_{0}\right] .
$$

Now, with a focus first on u_{1}, we inspect

$$
\begin{equation*}
\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \cos u_{1}=p y_{1}^{2}-f_{1} \tag{34}
\end{equation*}
$$

Since the right hand side is positive we re-encounter the fact that $\Psi_{1}\left(y_{1}\right)+$ $\lambda_{3} \neq 0($ even $>0)$.

We know $y_{1}(\cdot) \in C^{1}$, the function ψ_{1} has been supposed smooth, say $\psi_{1} \in C^{n}, n \geq 1$, thus $\Psi_{1}=\int \psi_{1} \in C^{n+1}$. So it follows from the last relation

$$
u_{1} \in C^{1}\left(\left[-\xi_{1},-\xi_{0}\right],\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
$$

(at $-\xi_{0}$ there is of course only a left derivative which is left-continuous). In the same way we obtain

$$
u_{2} \in C^{1}\left(\left[-\xi_{2},-\xi_{0}\right],\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) .
$$

Finally, for $x \in\left[-\xi_{0}, 0\right]$ there hold $H_{1}+H_{2}=c,\left(H_{1}+H_{2}\right)_{,_{1}}=\left(H_{1}+\right.$ $\left.H_{2}\right)_{u_{2}}=0\left(\right.$ with $\left.u_{1}=u_{2}=u, y_{1}=y_{2}=y\right)$,

$$
\begin{aligned}
& \lambda_{3}+\lambda_{4}+\left(\lambda_{1}+\lambda_{2}\right) \sin u=-\left(\Psi_{1}(y)+\Psi_{2}(y)\right)+\left(p y^{2}-f_{1}\right) \cos u, \\
& \lambda_{3} \sin u+\lambda_{1}-\rho=-\Psi_{1}(y) \sin u, \\
& \lambda_{4} \sin u+\lambda_{2}+\rho=-\Psi_{2}(y) \sin u .
\end{aligned}
$$

These equations yield the ρ-free representations

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}=-\left(c+p y^{2}-f_{1}\right) \tan u \\
& \lambda_{3}+\lambda_{4}=-\left(\Psi_{1}(y)+\Psi_{2}(y)\right)+\left(c+p y^{2}-f_{1}\right) / \cos u
\end{aligned}, x \in\left[-\xi_{0}, 0\right],
$$

which are analogues to (33). So the same reasoning as above yields

$$
u \in C^{1}\left(\left[-\xi_{0}, 0\right],\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
$$

Now it holds iteratively $y_{1}^{\prime}=\tan u_{1} \in C^{1} \Rightarrow y_{1} \in C^{2} \Rightarrow$ (by (33):) $u_{1} \in C^{2} \Rightarrow y_{1} \in C^{3} \Rightarrow \ldots \Rightarrow u_{1} \in C^{n+1}$. The same arguments work for y_{2}, u_{2}, y, u on their domains. Summarizing, we come up with

Proposition 3 If the functions ψ_{1} and ψ_{2} which describe the hyperelasticity of segment and vein, respectively, are of class $C^{n}, n \geq 1$, then the controls u_{1} and u_{2} are of class C^{n+1} on their domains with exception of the junction points $\pm \xi_{0}$, where only continuity is ensured. Correspondingly, y_{1} and y_{2} are C^{n+2} for $x \neq \pm \xi_{0}$.

Finally, it is easy matter to find the values of the constants λ_{3} and λ_{4} from (32) and (33) by looking to the left boundaries of their domains. With

$$
\alpha_{1}:=u_{1}\left(-\xi_{1}\right), \quad \alpha_{2}:=u_{2}\left(-\xi_{2}\right), c=k\left(\frac{l}{2}-\xi_{2}\right)
$$

we obtain

$$
\begin{equation*}
\lambda_{3}=\left(p r_{1}^{2}-f_{1}\right) / \cos \alpha_{1}, \quad \lambda_{4}=c / \cos \alpha_{2} . \tag{35}
\end{equation*}
$$

Moreover we get some knowledge about the smoothness of the multipliers $\lambda_{1,2}$ and ρ. It follows from $0=H_{,_{u_{1}}}=H,_{u_{1}}$,

$$
\begin{aligned}
& 0= \begin{cases}\lambda_{1}+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \sin u_{1}, & x \in\left[-\xi_{1},-\xi_{0}\right), \\
\lambda_{1}-\rho+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \sin u_{1}, & x \in\left[-\xi_{0}, 0\right],\end{cases} \\
& 0= \begin{cases}\lambda_{2}+\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \sin u_{2}, & x \in\left[-\xi_{2},-\xi_{0}\right), \\
\lambda_{2}+\rho+\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \sin u_{2}, & x \in\left[-\xi_{0}, 0\right],\end{cases}
\end{aligned}
$$

that the smoothness of $u_{1,2}$ passes to the multipliers, in particular λ_{1} and λ_{2} are C^{n+1} on $\left[-\xi_{1},-\xi_{0}\right)$ and $\left[-\xi_{2},-\xi_{0}\right)$, respectively, whereas $\lambda_{1}+\lambda_{2}$ is C^{n+1}, and ρ is D^{1} on $\left[-\xi_{0}, 0\right]$.

By means of the latter fact we obtain by simple calculation a complete description of how the hamiltonian parts behave along an extremal:

$$
\begin{align*}
& \frac{d}{d x} H_{1}=\left\{\begin{array}{l}
0, \\
-\rho^{\prime} \tan u_{1}, \quad x \in\left[-\xi_{1},-\xi_{0}\right], \\
0, \\
\frac{d}{d x} H_{2}=\left[\begin{array}{l}
0
\end{array},\right. \\
\rho^{\prime} \tan u_{2}, \\
, \quad x \in\left[-\xi_{2},-\xi_{0}, 0\right]
\end{array}\right. \tag{36}
\end{align*}
$$

2.4 Differential equations of the extremals

Let us take up the optimality condition (4), remove the denominators, and differentiate w.r.t. x (on $\left[-\xi_{0}, 0\right]$ at least piecewise allowed) observing the optimality condition $\lambda_{1,2}^{\prime}=-H, y_{1,2}$ and the geometric restrictions of the form $y^{\prime}=\tan u$. The result is

$$
\left.\begin{array}{c}
2 p y_{1}-\psi_{1}\left(y_{1}\right) \cos \left(u_{1}\right)+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \cos \left(u_{1}\right) u_{1}^{\prime}=0, \\
y_{1}^{\prime}=\tan u_{1}, \\
-\psi_{2}\left(y_{2}\right) \cos \left(u_{2}\right)+\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \cos \left(u_{2}\right) u_{2}^{\prime}=0, \\
y_{2}^{\prime}=\tan u_{2}, \\
2 p y_{1}-\psi_{1}\left(y_{1}\right) \cos \left(u_{1}\right)+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \cos \left(u_{1}\right) u_{1}^{\prime}=\rho^{\prime}, \\
y_{1}^{\prime}=\tan u_{1}, \\
-\psi_{2}\left(y_{2}\right) \cos \left(u_{2}\right)+\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \cos \left(u_{2}\right) u_{2}^{\prime}=-\rho^{\prime}, \\
y_{2}^{\prime}=\tan u_{2},
\end{array}\right\} x \in\left(-\xi_{2},-\xi_{0}\right),
$$

ρ^{\prime} disappears by adding the respective equations. On the interval $\left(-\xi_{0}, 0\right)$ there holds $u_{1}=u_{2}=: u$ and $y_{1}=y_{2}=: y$, and we let

$$
\psi_{12}:=\psi_{1}+\psi_{2}, \Psi_{12}:=\Psi_{1}+\Psi_{2} .
$$

Then the outcome is, finally, a set of differential equations

$$
\begin{align*}
& \left.\begin{array}{l}
2 p y_{1}-\psi_{1}\left(y_{1}\right) \cos \left(u_{1}\right)+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \cos \left(u_{1}\right) u_{1}^{\prime}=0, \\
y_{1}^{\prime}=\tan u_{1},
\end{array}\right\} x \in\left(-\xi_{1},-\xi_{0}\right), \\
& \left.\begin{array}{l}
-\psi_{2}\left(y_{2}\right) \cos \left(u_{2}\right)+\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \cos \left(u_{2}\right) u_{2}^{\prime}=0, \\
y_{2}^{\prime}=\tan u_{2},
\end{array}\right\} x \in\left(-\xi_{2},-\xi_{0}\right), \\
& \begin{array}{l}
\left.\begin{array}{l}
2 p y-\psi_{12}(y) \cos (u)+\left[\Psi_{12}(y)+\lambda_{3}+\lambda_{4}\right] \cos (u) u^{\prime}=0, \\
y^{\prime}=\tan u,
\end{array}\right\} x \in\left(-\xi_{0}, 0\right) .
\end{array} \tag{37}
\end{align*}
$$

Remind the values $\lambda_{3}=\left(p r_{1}^{2}-f_{1}\right) / \cos \alpha_{1}, \lambda_{4}=c / \cos \alpha_{2}=k\left(\frac{l}{2}-\xi_{2}\right) / \cos \alpha_{2}$, to be inserted above.

Together with the boundary conditions

$$
\begin{align*}
& y_{1}\left(-\xi_{1}\right)=r_{1}, u_{1}\left(-\xi_{1}\right)=\alpha_{1}, \\
& y_{2}\left(-\xi_{2}\right)=r_{2}, u_{2}\left(-\xi_{2}\right)=\alpha_{2}, \tag{38}\\
& u(0)=0,
\end{align*}
$$

and junction conditions

$$
\begin{align*}
& y_{1}\left(-\xi_{0}\right)=y_{2}\left(-\xi_{0}\right)=y\left(-\xi_{0}\right) \tag{39}\\
& u_{1}\left(-\xi_{0}\right)=u_{2}\left(-\xi_{0}\right)=u\left(-\xi_{0}\right)
\end{align*}
$$

the differential equations form a somewhat unusual parameter dependent boundary value problem. Parameters are $p, f_{1}, k, l, r_{1}, r_{2}$ (fixed), and $\xi_{1}, \xi_{2}, \xi_{0}, \alpha_{1}, \alpha_{2}$ (to be matched). Some of the latter (initial values $\xi_{2}, \alpha_{1}, \alpha_{2}$) enter the differential equations.

If the boundary problem has a solution then it describes the left half of the meridians, the right half is obtained by continuation to positive x, even functions y, odd functions u.

Besides the hamiltonian which is constant along the extremal we construct another function appearing as a conserved quantity in the following way. Take the hamiltonian parts H_{1} and H_{2} and eliminate the multipliers λ_{1} and λ_{2} by means of the optimality condition (iv). Thereby we define the piecewise smooth state-control functions (not depending on any non-constant multipliers)

$$
\left.\begin{array}{l}
\Phi_{1}\left(u_{1}, y_{1}\right):=-\left(p y_{1}^{2}-f_{1}\right)+\left[\Psi_{1}\left(y_{1}\right)+\lambda_{3}\right] \cos u_{1} \tag{40}\\
\Phi_{2}\left(u_{2}, y_{2}\right):=\left[\Psi_{2}\left(y_{2}\right)+\lambda_{4}\right] \cos u_{2},
\end{array}\right\}
$$

and we put

$$
\varphi(x):=\left\{\begin{array}{c}
\Phi_{2}\left(u_{2}(x), y_{2}(x)\right), \quad x \in\left[-\xi_{2},-\xi_{1}\right), \tag{41}\\
\Phi_{1}\left(u_{1}(x), y_{1}(x)\right)+\Phi_{2}\left(u_{2}(x), y_{2}(x)\right), \quad x \in\left(-\xi_{1}, 0\right] .
\end{array}\right.
$$

It is simple calculation to prove the following
Proposition 4φ is a first integral on $\left[-\xi_{2}, 0\right]: \frac{d}{d x} \varphi(x)=0$ piecewise along any solution of the foregoing differential equations.

The separate behavior of Φ_{1} and Φ_{2} along any solution of the boundary value problem is governed by

$$
\left.\begin{array}{l}
\Phi_{1}\left(u_{1}(x), y_{1}(x)\right)=0, x \in\left[-\xi_{1},-\xi_{0}\right] \tag{42}\\
\Phi_{2}\left(u_{2}(x), y_{2}(x)\right)=k\left(\frac{l}{2}-\xi_{2}\right), x \in\left[-\xi_{2},-\xi_{0}\right], \\
\frac{d}{d x} \Phi_{1}(u, y)=-\rho^{\prime} \tan u, \frac{d}{d x} \Phi_{2}(u, y)=\rho^{\prime} \tan u, x \in\left[-\xi_{0}, 0\right] .
\end{array}\right\}
$$

The rates of change of Φ_{1} and Φ_{2} are calibrated in such a way that

$$
\frac{d}{d x}\left[\Phi_{1}(u, y)+\Phi_{2}(u, y)\right]=0 .
$$

With a glance at the originating hamiltonian parts H_{1} and H_{2} the foregoing relations do not look very exciting, cf. (36), but interestingly these equations enjoy a nice physical interpretation (see next Section).

First, we deduce another property of the multiplier ρ. In the present symmetry case the $\Phi_{i}\left(u_{i}(\cdot), y_{i}(\cdot)\right)$ are even functions of x, thus $\frac{d}{d x} \Phi_{i}\left(u_{i}(\cdot), y_{i}(\cdot)\right)$ are odd. Since, furthermore, u_{i} and y_{i} are C^{n+1}, this implies

$$
\rho^{\prime} \geq 0 \text { is an even } C^{n}-\text { function on }\left(-\xi_{0}, \xi_{0}\right) .
$$

For numerical treatment it may be effective to use the arc lengths of the meridians as the independent variable, i.e., to deal with the (formerly rejected) parameter representation $x(s), y(s)$ of the meridians. The main advantage arises from the known and constant domains of all functions. Disadvantage may come from the increased number of differential equations.

Abusing notation the problem takes the following form where $u^{\prime} \cos u=$ $u^{\prime} \dot{x}=\dot{u}$ is now the curvature of the meridians. Furthermore we eliminate the brackets containing Ψ by means of the first integral. Let $-t_{0}$ be the arc length of the junction point, i.e., $-\xi_{0}=x_{1}\left(-t_{0}\right)=x_{2}\left(-t_{0}\right)$, then we obtain

$$
\begin{gather*}
\dot{x}_{1}=\cos u_{1}, \dot{y}_{1}=\sin u_{1}, \tag{43}\\
\dot{u}_{1}=\left\{-2 p y_{1}+\psi_{1}\left(y_{1}\right) \cos \left(u_{1}\right)\right\} \cos u_{1} /\left[p y_{1}^{2}-f_{1}\right], \tag{44}\\
\dot{x}_{2}=\cos u_{2}, \dot{y}_{2}=\sin u_{2}, \\
\left.\dot{u}_{2}=\psi_{2}\left(y_{2}\right) \cos ^{2}\left(u_{2}\right) / k\left(\frac{l}{2}-\xi_{2}\right),-t_{0}\right], \\
\end{gather*}
$$

$$
\begin{gather*}
\dot{x}=\cos u, \dot{y}=\sin u, \tag{45}\\
\dot{u}=\left\{-2 p y+\psi_{12}(y) \cos (u)\right\} \cos u /\left[p y^{2}-f_{1}+k\left(\frac{l}{2}-\xi_{2}\right)\right], \\
s \in\left[-t_{0}, 0\right] .
\end{gather*}
$$

$$
\begin{align*}
& y_{1}\left(-\frac{1}{2}\right)=r_{1}, \\
& y_{2}\left(-\frac{l}{2}\right)=r_{2}, \quad x_{2}\left(-\frac{l}{2}\right)=-\xi_{2}, \tag{46}\\
& u(0)=0 .
\end{align*}
$$

$$
\begin{align*}
& u_{1}\left(-t_{0}\right)=u_{2}\left(-t_{0}\right)=u\left(-t_{0}\right), \\
& y_{1}\left(-t_{0}\right)=y_{2}\left(-t_{0}\right)=y\left(-t_{0}\right), \tag{47}\\
& x_{1}\left(-t_{0}\right)=x_{2}\left(-t_{0}\right)=x\left(-t_{0}\right) .
\end{align*}
$$

Parameters to be matched are t_{0} and ξ_{2}, only the latter enters the differential equations. After a solution has been found then the interesting data $-\xi_{1}=$ $x_{1}\left(-\frac{1}{2}\right), \alpha_{1}=u_{1}\left(-\frac{1}{2}\right), \alpha_{2}=u_{2}\left(-\frac{l}{2}\right)$ can be determined.

The differential equations (43),(44),(45) are now exactly the natural equations (see (3)) of the meridians. Letting $s \rightarrow-t_{0} \pm 0$ it is simple to find (y_{0}, u_{0} common values at $-t_{0}$)

$$
\begin{equation*}
\left[p y_{0}^{2}-f_{1}\right]\left(\kappa_{1}^{-}-\kappa^{+}\right)+k\left(\frac{l}{2}-\xi_{2}\right)\left(\kappa_{2}^{-}-\kappa^{+}\right)=0 \tag{48}
\end{equation*}
$$

as a linear relation (with non-negative coefficients) for the curvature jumps at the junction point.

3 Some physical interpretations

The membrane equations (5) together with the hyperelasticity relations (10) yield

$$
y_{1} n_{1}^{22}=\Psi_{1}\left(y_{1}\right)+c_{1}^{22}, \quad y_{2} n_{2}^{22}=\Psi_{2}\left(y_{2}\right)+c_{2}^{22},
$$

connecting the stress resultants n^{22} with the state y. The constants c^{22} are determined by the equilibrium of longitudinal forces at the ends of segment and vein,

$$
c_{1}^{22}=\left(p r_{1}^{2}-f_{1}\right) / \cos \alpha_{1}, \quad c_{2}^{22}=k\left(\frac{l}{2}-\xi_{2}\right) / \cos \alpha_{2} .
$$

(At first it might be amazing that these constants equal the constant multipliers λ_{3} and λ_{4}. It becomes natural if we recall the place of $\lambda_{3,4}$ within
the hamiltonian and the meaning of the n^{22} as reactions to the constraint of meridional inextensibility.)
Accordingly, we can write for the state-control functions (40)

$$
\begin{aligned}
& \Phi_{1}=-\left(p y_{1}^{2}-f_{1}\right)+y_{1} n_{1}^{22} \cos u_{1}, \\
& \Phi_{2}=-k\left(\frac{l}{2}-\xi_{2}\right)+y_{2} n_{2}^{22} \cos u_{2},
\end{aligned}
$$

and the conservation law $\varphi(x)=k\left(\frac{l}{2}-\xi_{2}\right)$ expresses nothing but the equilibrium of longitudinal forces at the left part of the system cut at x.

Figure 3. Cuts at various $x, f_{2}=k\left(\frac{l}{2}-\xi_{2}\right)$.
The non-constancy of Φ_{1} and Φ_{2} for $x \in\left(-\xi_{0}, 0\right]$ is due to the influence of the internal constraint (contact) forces $\pm z$ acting upon the membranes. With (42) in Proposition 4 it becomes obvious that z depends significantly on ρ^{\prime}, a fact that is investigated in detail below.

If we make a cut at $x=-\xi_{1}+0$ it becomes clear that the equilibrium of one of the side discs of the segment (acted upon by p, f_{1}, and the resultant meridional cut force) yields $p r_{1}^{2}-f_{1}>0$ iff the inclination $u_{1}\left(-\xi_{1}\right)$ of the meridian is smaller than $\pi / 2$. So the Supposition 2 gets a reasonable meaning corresponding to the meridians being schlicht curves.

Finally, a cut at $x=-\xi_{2}+0$ exhibits that $c=\frac{l}{2}-\xi_{2}>0$ means that the springs at the vein ends are under tension.

4 The contact force

We start by recalling the last of the general membrane equations (5). After normalization according to (9) it writes

$$
-\dot{x} y n^{11}+(\dot{x} \ddot{y}-\ddot{x} \dot{y}) n^{22}+2 p_{n}=0 .
$$

Taking this equation for the membranes of segment and vein separately we have

$$
\begin{align*}
& -\cos u_{1} y_{1} n_{1}^{11}+\dot{u}_{1} n_{1}^{22}+2 p-2 z=0 \\
& -\cos u_{2} y_{2} n_{2}^{11}+\dot{u}_{2} n_{2}^{22}+2 z=0 \tag{49}
\end{align*}
$$

$\pm z$ are the (normalized) forces per unit of area acting in normal direction between the contacting membranes (upon segment inwards, upon vein outwards), $z>0$ on the contact area, $z=0$ else. If we introduce the hyperelasticity laws for n^{11} and n^{22} and confine our considerations to the contact area $\left(x \in\left[-\xi_{0}, 0\right], y_{1}=y_{2}=y, u_{1}=u_{2}=u, \dot{u}=u^{\prime} \cos u\right)$ it follows after a multiplication by y

$$
\begin{aligned}
& -\psi_{1}(y) \cos u+u^{\prime} \cos u\left[\Psi_{1}(y)+\lambda_{3}\right]+2 y p=2 y z \\
& -\psi_{2}(y) \cos u+u^{\prime} \cos u\left[\Psi_{2}(y)+\lambda_{4}\right]=-2 y z .
\end{aligned}
$$

Now it is evident that either of these equations allows to calculate $z(x)$ as soon as the functions u and y are known. Equivalently it holds

$$
\begin{equation*}
4 y z=2 y p-\left[\psi_{1}(y)-\psi_{2}(y)\right] \cos u+\left[\Psi_{1}(y)-\Psi_{2}(y)+\lambda_{3}-\lambda_{4}\right] \dot{u} \tag{50}
\end{equation*}
$$

If we compare with the first version of the differential equation (37) it turns out that ρ^{\prime} has a clear physical meaning,

$$
\begin{equation*}
\frac{d}{d x} \rho=2 y z \tag{51}
\end{equation*}
$$

In particular this reflects the facts $z \geq 0$ and ρ non-decreasing. Constancy of ρ is equivalent to zero contact force.

5 Conclusion

In this paper we set up and investigate a mathematical model of a balloonlike compliant mechanical device 'segment' that is inflated within a (long)
cylindrical compliant tube ('vein'). Put in concrete terms, compliance means hyperelasticity with a special anisotropy. The background system can be seen as part of a worm crawling in a compliant tube or as a system in medical endoscopy. The investigations continue former work, [8], [9] that concerned freely inflating segments and rigid surrounding tubes, respectively. As before, the mathematical treatment is based on the Principle of Minimal Potential Energy formulated as an optimal control problem with state constraint. The latter shows some features which put it beyond textbook problems, the respective optimality conditions are derived in [1]. In comparison to a formulation by means of the theory of membrane shells this treatment allows to keep the smoothness assumptions (which demand some care when dealing with skin-like membranes) on a general level. Any nice smoothness properties then are deduced from the optimality conditions. Moreover, contrasting common use, see, e.g., [6], [7], [10], no presuppositions about the shape of the inflated system are introduced.

The analysis of the optimality condition ends up with a 9-dimensional ordinary boundary value problem where several given parameters (the internal pressure of the segment in the first place) and two to-be-matched parameters enter the differential equations and the boundary conditions as well. All geometrical and physical quantities are appropriately normalized so that the boundary value problem applies to segment-vein systems of arbitrary absolute size and elasticity. A solution of the boundary value problem describes the shape of the deformed system, afterwards the internal force between the contacting segment and vein can be determined utilizing a formula. The paper does not present any numerical exploitation of the final mathematical model yet.

Various improvements of the presented model are at hand. We list some samples.

- Drop the constraint of meridional inextensibility; this might give a more realistic rheology - but at the expense of losing the maximum volume configuration of the inflated $(p=\infty)$ segment. (Fortunately, this configuration is given by quadrature and serves as a comfortable start in iteration procedures, [9]).
- Allow for asymmetry of the system: eccentric position of the segment within the vein, or two non-compensating forces instead of $\pm f_{1}$ equilibrated by tangential forces in the contact area, or different spring stiffnesses. The optimality conditions remain essentially unchanged.
- Replace the isobaric process 'change of shape by variable f_{1} at constant
pressure p_{0} ' by an isochoric one, 'change of shape by variable f_{1} at constant volume v_{0} of the segment'. Then the pressure p varies in the neighborhood of the pre-adjusted pressure p_{0} (corresponding to v_{0}), and it is governed by the additional isoperimetric side condition $\int_{-\xi_{1}}^{\xi_{1}} y_{1}^{2} d x=v_{0}$, [8].

As to the background application problems it is clear that the presented investigations plus forthcoming numerical results are only a first step towards a description of, e.g., stenosis dilatation, [10]. Until now nothing has been done to capture a complicated rheology and rotational non-symmetry (or randomness) of the constricting plaque. And concerning worm-like motion, at least a concatenation of segments within a rigid or compliant surrounding demands an intensified theoretical attention.

6 Appendix

About a lemma on differentiating a composite function under lack of chainrule.

Lemma 5 1) $h \in C^{0}\left(\left[t_{1}, t_{2}\right] \times \mathbb{R}^{m}, \mathbb{R}^{1}\right):(t, u) \mapsto h(t, u)$.
2) $\exists h_{, t}(\cdot, u) \in C^{0}\left(\left[t_{1}, t_{2}\right], \mathbb{R}^{1}\right)$ for $u \in U \subset \mathbb{R}^{m}$.
3) $u \in D^{0}\left(\left[t_{1}, t_{2}\right], U\right)$, w.l.o.g. left continuous.

If u solves a minimum principle

$$
\begin{equation*}
h(t, u(t)):=\min _{v \in U} h(t, v), \quad t \in\left[t_{1}, t_{2}\right], \tag{*}
\end{equation*}
$$

then, on $\left[t_{1}, t_{2}\right]$,
(i) $h(\cdot, u(\cdot)) \in D^{1}$,
(ii) $\frac{d}{d t} h(t, u(t))=h, t(t, u(t))$ piecewise,
(iii) $h(t, u(t))=\int_{t_{1}}^{t} h,_{s}(s, u(s)) d s+h\left(t_{1}, u\left(t_{1}\right)\right)$.

Proof: (see [5], p.77)
a) Claim: $h(\cdot, u(\cdot))$ continuous.

Let $\tau>0, t, t+\tau \in\left[t_{1}, t_{2}\right]$. Then $\left({ }^{*}\right)$ implies

$$
h(t, u(t) \leq h(t, u(t+\tau)), \quad h(t+\tau, u(t+\tau)) \leq h(t+\tau, u(t)) .
$$

With $\tau \rightarrow+0$ there results

$$
h(t, u(t+0)) \leq h(t, u(t)) \leq h(t, u(t+0)),
$$

i.e., right-continuity at t. Left-continuity is trivial by $\mathbf{3}$).
b) Claim: u continuous at $t_{0} \Rightarrow \exists \frac{d}{d t} h\left(t_{0}, u\left(t_{0}\right)\right)$.

Consider the difference

$$
\delta:=h\left(t_{0}+\tau, u\left(t_{0}+\tau\right)\right)-h\left(t_{0}, u\left(t_{0}\right)\right) .
$$

(*) implies

$$
h\left(t_{0}+\tau, u\left(t_{0}+\tau\right)\right)-h\left(t_{0}, u\left(t_{0}+\tau\right)\right) \leq \delta \leq h\left(t_{0}+\tau, u\left(t_{0}\right)\right)-h\left(t_{0}, u\left(t_{0}\right)\right) .
$$

Mean-value theorem: $\exists \vartheta_{1}, \vartheta_{2} \in(0,1)$ s.t.

$$
\tau \cdot h, t\left(t_{0}+\vartheta_{1} \tau, u\left(t_{0}+\tau\right)\right) \leq \delta \leq \tau \cdot h, t\left(t_{0}+\vartheta_{2} \tau, u\left(t_{0}\right)\right)
$$

Let u be continuous at t_{0}, let $\tau \neq 0$. Then $\mathbf{3}$) implies that δ / τ is bounded below and above by $h_{, t}\left(t_{0}, u\left(t_{0}\right)\right)+o(1)_{\tau \rightarrow 0}$. Thus $\exists \lim _{\tau \rightarrow 0} \frac{\delta}{\tau}=\frac{d}{d t} h\left(t_{0}, u\left(t_{0}\right)\right)$. c) We have shown the claimed equation (ii) above at every $t \in\left[t_{1}, t_{2}\right]$ where u is continuous, so $\frac{d}{d t} h$ is D^{0}. Then (iii) follows trivially.

Application to present context

Connection with foregoing optimal control problem: Let

$$
h(t, v):=H(t, x(t), \lambda(t), v),
$$

where $H=f_{0}(t, x, v)+\lambda f(t, x, v)$ is the Hamiltonian of a control problem, $x \in D^{1}$ the state, $\lambda \in D^{1}$ multipliers such that $\dot{x}=H,_{\lambda}, \dot{\lambda}=-H,_{x}$. Suppose the premises of the above lemma to be fulfilled. Furthermore let

$$
h(t, u(t)):=\min _{v \in U} H(t, x(t), \lambda(t), v) .
$$

Then the lemma yields $H(\cdot, x(\cdot), \lambda(\cdot) \cdot u(\cdot)) \in D^{1}$ and $\frac{d}{d t} H=H_{, t} \quad$ p.w..

Remark: All this applies to the segment-vein problem. Here v stands for $\left(u_{1}, u_{2}\right)$ and, though H is supplemented by the term ρR_{0} this does not disturb the above reasoning: ρ is constant on $\left(-\xi_{1},-\xi_{0}\right) \cup\left(\xi_{0}, \xi_{1}\right)$ whereas R_{0} is zero on $\left(-\xi_{0}, \xi_{0}\right)$. Since either H_{i} depends only on u_{i}, the minimum principle applies to H_{1} and H_{2} separately and, thus, entails the t-differentiability of these functions.

References

[1] Abeßer H., Steigenberger J., Ein Optimalsteuerproblem mit einem speziellen Zielfunktional und Zustandsbeschränkungen in einem Teilintervall bei beliebigem Relativgrad. TU Ilmenau (Germany), Inst. Math., Preprint No. M 28/09, 2009. (http://www.tuilmenau.de/fakmn/Preprints.528.0.html).
[2] Abeßer H., Steigenberger J., Optimalsteuerprobleme unter Zustandsrestriktionen. TU Ilmenau (Germany), Inst.Math., Preprint No. M11/05. (http://www.tu-ilmenau.de/fakmn/Preprints.528.0.html).
[3] Boegelsack G., On fluidmechanical compliant actuators. 19th Working Meeting of IFToMM Commission A, Kaunas, 2000, 51-56.
[4] Green A., Zerna W., Theoretical Elasticity, Clarendon Press, Oxford, 1954.
[5] Hestenes M.R., Calculus of Variations and Optimal Control Theory. John Wiley, NewYork, London, Sydney, 1966.
[6] Nakamura T. et al., Peristaltic crawling robot based on the locomotion mechanism of earthworms. 4th IFAC Sympos. on Mechatronic Systems, Heidelberg (Germany), 2006, 139-144.
[7] Shinohara H., et al., Derivation of a mathematical model for pneumatic artificial muscles. 4th IFAC Sympos. on Mechatronic Systems, Heidelberg (Germany), 2006, 266-270.
[8] Steigenberger J., Contribution to the mechanics of worm-like motion systems and artificial muscles. Biomech. Model. Mechanobiol. 2, 2003, 37-57.
(DOI 10.1007/s10237-003-0027-2).
[9] Steigenberger J., Abeszer H., Quasistatic inflation processes within rigid tubes.

- ZAMM 88, No.7, 2008, 556-572. (DOI 10.1002/zamm.200700166).
- TU Ilmenau (Germany), Inst.Math., Preprint No. M09/06, 2006, (http://www.tu-ilmenau.de/fakmn/Preprints.528.0.html).
[10] Venhaus M., et al., Simulations and experiments of the balloon dilatation of airway stenoses. Biomed. Tech. 2009, 54, 187-195, de Gruyter, Berlin, NewYork, (DOI 10.1515/BMT.2009.022).

[^0]: ${ }^{1}$ Smoothness classes: $D^{0}[a, b]=$ set of piecewise continuous functions $[a, b] \rightarrow \mathbb{R}$; with $k \in \mathbb{N}: D^{k}[a, b]=$ set of continuous functions $[a, b] \rightarrow \mathbb{R}$ which have continuous derivatives up to order $k-1$ and a piecewise continuous $k t h$ derivative.

