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1. Introduction

In the well-known paper from 1998 [11] C.M. Bender and S. Boettcher considered the

following Hamiltonians τϵ,

τϵ(y)(x) := −y′′(x) + x2(ix)ϵy(x), ϵ > 0, x ∈ R. (1)

These complex Hamiltonians, possessing PT symmetry (the product of parity and time

reversal), can have real spectrum. This gave rise to a mathematically consistent complex

extension of conventional quantum mechanics into PT quantum mechanics, see e.g. the

review paper [10] and references therein. During the past ten years PT models have

been analyzed intensively, e.g., Bethe Ansatz techniques were considered in [21], various

global approaches based on the extension of the above operators into the complex plane

are presented in [12, 15, 39, 48], PT symmetric perturbations of Hermitian operators can

be found in [4, 17, 18, 19], extension theory for singular perturbations of PT symmetric

operators in [1, 3] and considerations on spectral degeneracies in [20, 22, 24, 47]. In [38]

PT symmetry was embedded in a general mathematical context: pseudo-Hermiticity

or, what is the same, the study of self-adjoint operators in a Krein space, see also

[2, 26, 25, 36, 40, 41].

Usually, see, e.g., [10, 11, 12], a closed densely defined operator H in the Hilbert

space L2(R) is called PT symmetric if H commutes with PT . For unbounded operators

this is also a condition on the domains. It is the aim of this paper to specify PT
symmetric operators connected with the differential expression τϵ in (1).

Here we will restrict ourselves to the most simple case: We will consider the

differential τϵ only in the case of ϵ even. Hence, the above differential expression τϵ

in (1) will be either of the form

τ4n(y)(x) := −y′′(x) + x4n+2y(x), ϵ > 0, x ∈ R.

if ϵ = 4n, n ∈ N, or it will be of the form

τ4n+2(y)(x) := −y′′(x) − x4n+4y(x), ϵ > 0, x ∈ R.

in case ϵ = 4n + 2.

We will describe all domains giving rise to a self-adjoint (Hermitian) operator in

L2(R) associated to τϵ which is at the same time PT symmetric. This seems to be a

natural question. To our knowledge it is not addressed in earlier publications.

Obviously, different domains have dramatic influence on the spectrum of the

corresponding operators. As an example, let us consider as a possible domain the set D̃

of all locally absolutely continuous functions f on the real line with a locally absolutely

continuous derivative f ′ such that f decays exponentially as |x| → ∞. Define for k ∈ N
the numbers αk := (4n + 5− k)k−4n−6ek and βk := (4n + 6− k)k−4n−5ek and a function
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c, twice continuously differentiable on [−1, 1], such that the function yk,

yk(x) :=



(−αkx + βk)e
x if x ≤ −k,

(−x)−4n−5 if − k < x < −1,

c(x) if − 1 ≤ x ≤ 1,

x−4n−5 if 1 < x < k,

(αkx + βk)e
−x if x ≥ k,

is in D̃. Obviously (yk) converges in L2(R) to the function y,

y(x) :=


(−x)−4n−5 if x < −1,

c(x) if − 1 ≤ x ≤ 1,

x−4n−5 if 1 < x,

which is not in D̃. Moreover, τ4n+2(y) is in L2(R) and (τ4n+2(yk)) converges in L2(R) to

τ4n+2(y). This shows the following.

Remark 1 The densely defined operator H defined via dom H := D̃, Hy := τ4n+2(y)

for f ∈ dom H, is not a closed operator in L2(R). Hence, its spectrum covers the

complex plane, σ(H) = C.

The domain which is naturally associated to τ4n is the maximal domain Dmax.

This is the set of all locally absolutely continuous functions f ∈ L2(R) with a locally

absolutely continuous derivative f ′ such that τ4n(f) ∈ L2(R). As τ4n is in limit point

case at +∞ and −∞, it turns out, that there is only one self adjoint operator connected

to τ4n which is also PT symmetric.

The more interesting case is ϵ = 4n + 2. The differential expression τ4n+2 is in

limit circle case at +∞ and −∞ and it admits many different self-adjoint extensions.

These self-adjoint extensions are described via restrictions of the maximal domain Dmax

by “boundary conditions at +∞ and −∞” which determines the set of all domains of

self-adjoint extensions associated to ϵ = 4n+2. However, as a main result of this paper

we characterize precisely which of these “boundary conditions at +∞ and −∞” give rise

to PT symmetric extensions. It turns out, see Section 4 below, that surprisingly only a

rather small class of boundary conditions gives rise to PT symmetric extensions. Hence,

in order to obtain a PT symmetric operator associated with τ4n+2 special attention has

to be given to the right boundary conditions.

Limit point/limit circle classifications are a standard tool in Sturm-Liouville theory,

we mention here only [37, 44, 45, 46]. Different boundary conditions at +∞ and −∞
change the point spectra, a fact, which has to be taken into account for numerical

simulations.

All self-adjoint operators associated to τ4n and τ4n+2 share one common property:

They commute also with the parity operator P , hence they are also self-adjoint in a

Krein space where the inner product is given by

[f, g] :=

∫
R

f(x)(Pg)(x) dx =

∫
R

f(x)g(−x) dx, f, g ∈ L2(R).



On Domains of PT Symmetric Operators Related to −y′′(x) + (−1)nx2ny(x) 4

We describe the sign type properties of all extensions. This will serve as a basis for

the application of the perturbation theory in Krein spaces which will be used in the

study of the cases ϵ not even in a subsequent paper. A short introduction to self-adjoint

operators in Krein spaces is given in the next section.

2. PT symmetric operators as self-adjoint operators in Krein spaces

Recall that a complex linear space H with a hermitian nondegenerate sesquilinear form

[., .] is called a Krein space if there exists a so called fundamental decomposition (cf.

[6, 16, 31])

H = H+ ⊕H− (2)

with subspaces H± being orthogonal to each other with respect to [., .] such that

(H±,±[., .]) are Hilbert spaces. Then

(x, x) := [x+, x+] − [x−, x−], x = x+ + x− ∈ H with x± ∈ H±, (3)

is an inner product and (H, (., .)) is a Hilbert space. All topological notions are

understood with respect to some Hilbert space norm ∥ . ∥ on H such that [., .] is ∥ . ∥-
continuous. Any two such norms are equivalent, see [34, Proposition I.1.2]. Denote by

P+ and P− the orthogonal projections onto H+ and H−, respectively. The operator

J := P+ − P− is called the fundamental symmetry corresponding to the decomposition

(2).

An element x in a Krein space (H, [., .]) is called positive (negative, neutral,

respectively) if [x, x] > 0 ([x, x] < 0, [x, x] = 0, respectively). For the basic theory

of Krein space and operators acting therein we refer to [6, 16] and, in the context of PT

symmetry, we refer to [36].

Let A be a closed, densely defined operator in the Krein space (H, [., .]). The

adjoint A+ of A in the Krein space (H, [., .]) is defined with respect to the indefinite

inner product [., .], that is, its domain dom A+ is the set of all x ∈ H for which there

exists a z ∈ H with

[Ay, x] = [y, z] for all y ∈ dom A

and for these x we put A+x := z. It is easily seen that (see, e.g., [33, 34])

A+ = JA∗J, (4)

where A∗ denotes the adjoint with respect to the Hilbert space inner product (3) and J

is the fundamental symmetry corresponding to the decomposition (2). The operator A

is called self-adjoint in the Krein space (H, [., .]) if A = A+.

The indefiniteness of the scalar product [., .] on H induces a natural classification of

isolated real eigenvalues: A real isolated eigenvalue λ0 of A is called of positive (negative)

type if all the corresponding eigenvectors are positive (negative, respectively). It is usual

to call such points of positive type (negative type, respectively), see [7, 5, 9, 32, 34, 35]

and in this case we write

λ0 ∈ σ++(A) (resp. λ0 ∈ σ−−(A)).
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Observe that there is no Jordan chain of length greater than one which corresponds to a

eigenvalue of A of positive type (or of negative type). This classification of real isolated

eigenvalues is used frequently, we mention here only [13, 14, 19, 23, 25, 36].

By L2(R) we denote the space of all equivalence classes of measurable functions f

defined on R for which
∫

R |f(x)|2dx is finite. We equip L2(R) with the usual Hilbert

scalar product

(f, g) :=

∫
R

f(x)g(x) dx, f, g ∈ L2(R).

and we define

(Pf)(x) = f(−x) and (T f)(x) = f(x), f ∈ L2(R). (5)

Then P2 = T 2 = (PT )2 = I and PT = T P . The operator P represents parity reflection

and the operator T represents time reversal. Observe that the operator T is nonlinear.

Usually, see, e.g., [10, 11, 12], a closed operator H is called PT symmetric if H

commutes with PT . For unbounded operators this is also a condition on the domains.

Therefore we will repeat the notion of PT symmetry in the following definition (see,

e.g., [10, 19, 17]). We denote by dom H the domain of the operator H.

Definition 1 A closed densely defined operator H in L2(R) is said to be PT symmetric

if for all f ∈ dom H we have

PT f ∈ dom H and PT Hf = HPT f.

Obviously, it follows from Definition 1

dom H = dom HPT .

To investigate the property of PT symmetric operators we will need in the following

the next lemma.

Lemma 1 Let H be a closed densely defined operator H in L2(R) and assume

T dom H ⊂ dom H. The operator H is PT symmetric if and only if

Pdom H ⊂ dom H and PT Hf = HPT f for all f ∈ dom H.

Proof.

Let f ∈ dom H. Let H be PT symmetric. By assumption we have T f ∈ dom H and,

from the PT symmetry we conclude PT T f = Pf is in dom H.

Contrary, for f ∈ dom H we have by assumption T f ∈ dom H and, hence,

PT f ∈ dom H, that is, H is PT symmetric. ¤

The operator P introduced in (5) gives in a natural way rise to an indefinite inner

product [., .] which will play an important role in the following. We equip L2(R) with

the indefinite inner product

[f, g] :=

∫
R

f(x)(Pg)(x) dx =

∫
R

f(x)g(−x) dx, f, g ∈ L2(R). (6)
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With respect to this inner product, L2(R) becomes a Krein space. Observe that

in this case the operator P serves as a fundamental symmetry in the Krein space

L2(R), [., .]). In the situation where [., .] is given as in (6), it is easy to see that as

the positive component H+ in a decomposition (2) the set of even functions, and as the

negative component H− the set of all odd functions of L2(R) can be chosen.

Lemma 2 Let H be a self-adjoint operator H in the Hilbert space L2(R), H = H∗, and

assume that H commutes with P. Then H is selfadjoint in the Krein space (L2(R), [., .]).

The proof of this lemma follows immediately from (4) and HP = PH. We mention

that such operators are called fundamental reducible, see, e.g., [28] and that they possess

a well developed spectral and perturbation theory, cf. [5, 8, 28, 29, 30, 31, 35, 42, 43].

3. Domains of PT symmetric operators in the case ϵ = 4n

We discuss first the more easy case ϵ = 4n for some n ∈ N, that is, we consider τ4n

defined according to (1) via

τ4n(y)(x) := −y′′(x) + x4n+2y(x), x ∈ R.

To this differential expression we will associate an operator H defined on the maximal

domain, i.e.,

Dmax := {y ∈ L2(R) : y, y′ ∈ ACloc(R), τ4ny ∈ L2(R)},

via

dom H := Dmax, Hy := τ4n(y) for f ∈ dom H.

Here and in the following ACloc(R) denotes the space of all complex valued functions

which are absolutely continuous on all compact subsets of R.

In the following theorem we collect some of the properties of H. Recall that the

differential expression τ4n is called in limit circle at ∞ (at −∞) if all solutions of the

equation τ4n(y) − λy = 0, λ ∈ C, are in L2((a,∞)) (resp. L2((−∞, a))) for some, and,

hence, for all a ∈ R. The differential expression τ4n is called in limit point at ∞ (resp.

at −∞), if it is not in limit circle at ∞ (resp. at −∞), cf. [45, Section 13.3] or [46,

Chapter 7]. In this case there exists one solution of τ4n(y) − λy = 0 which is not in

L2((a,∞)) (resp. L2((−∞, a))).

Theorem 1 The differential expression τ4n is in the limit point case at ∞ and at −∞.

The operator H with domain dom H = Dmax is self-adjoint in the Hilbert space L2(R)

and the spectrum of H consists of isolated simple eigenvalues which are non negative,

real and accumulating to infinity,

σ(H) = σp(H) = {λ1, λ2, . . .} ⊂ R+.
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Proof.

By [46, Example 7.4.2 (1)] we have limit point case at ∞ and at −∞ and the operator

H with the domain dom H = Dmax is self-adjoint in the Hilbert space L2(R). Denote

by τ4n,+ and τ4n,− the restriction of the differential expression τ4n to R+ and R−,

respectively. Obviously, τ4n,+ is in limit point case at ∞, τ4n,− is in limit point case

at −∞ and at the other, finite, end point zero the potential x 7→ x4n+2 is integrable

over every interval (−a, 0) and (0, a) for a > 0. Hence, zero is a regular end point

of the differential expressions τ4n,+ and τ4n,−, respectively, cf. [45, Section 13.1] or [37,

Chapters 1 and 2]. We set

Dmax,± := {y ∈ L2(R±) : y, y′ ∈ ACloc(R±), y(0) = 0, τ4ny ∈ L2(R±)}

and define H4n,±y := τ4n,±(y) for y ∈ dom H4n,± = Dmax,±. It follows from [37, Lemma

3.1.2] that the essential spectrum of H4n,± is empty. It is easily seen that the difference

of the resolvents of H and the operator H4n,+ ⊕ H4n,−, considered as an operator in

L2(R) = L2(R+) ⊕ L2(R−) with domain Dmax,+ ⊕ Dmax,−, is a finite rank operator.

Hence, the essential spectrum of H is empty, that is, the spectrum of H consists of

isolated eigenvalues only. Obviously, we have H ≥ 0. Therefore all eigenvalues are

non-negative and, as τ4n is in the limit point case at ∞ and at −∞, all eigenvalues are

simple. ¤

Theorem 2 We have

T dom H = dom H and Pdom H = dom H. (7)

Moreover H commutes with P, with T and with PT . Hence H is PT symmetric and

self-adjoint in the Krein space (L2(R), [., .]). In particular we have

(PH)∗ = HP = PH.

Proof.

Relation (7) follows immediately from the definition of the operators P and T and,

hence, H commutes with P and with T ,

PH = HP and T H = HT . (8)

From this we conclude

PT Hf = HPT f for all f ∈ dom H

and, by Lemma 1, H is PT symmetric. Relation (8), Theorem 1 and Lemma 2 imply

the selfadjointness of H in the Krein space (L2(R), [., .]). ¤

According to Theorem 1 all eigenvalues of H are isolated and simple. Then, see [16,

Corollary VI.6.6], the corresponding eigenvectors are not neutral vectors in the Krein

space (L2(R), [., .]) and we obtain the following.
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Theorem 3 All eigenvalues of H are either of positive or of negative type,

σ(H) = σp(H) = σ++(H) ∪ σ−−(H).

Remark 2 We mention that the sets σ++(H) and σ−−(H) are stable under

perturbations small in gap, we refer to [5, 7, 32, 35].

4. Domains of PT symmetric operators in the case ϵ = 4n + 2

Now we discuss the case ϵ = 4n + 2 for some n ∈ N, that is, we consider τ4n+2 defined

according to (1) via

τ4n+2(y)(x) := −y′′(x) − x4n+4y(x), x ∈ R.

From [46, Example 7.4.2 (2)]§ we conclude the following.

Proposition 1 The differential expression τ4n+2 is in the limit circle case at ∞ and at

−∞.

Recall that τ4n+2 is called in limit circle at ∞ (at −∞) if all solutions of the equation

τ4n+2(y) − λy = 0, λ ∈ C, are in L2((a,∞)) (resp. L2((−∞, a))) for some a ∈ R.

Again, we consider the maximal domain, i.e.,

Dmax := {y ∈ L2(R) : y, y′ ∈ ACloc(R), τ4n+2(y) ∈ L2(R)}.

In order to study all self-adjoint operators associated with τ4n+2 we need to introduce

some notations. For two functions f, g ∈ ACloc(R) with continuous derivative, we define

[f, g]x for x ∈ R via

[f, g]x := f(x)g′(x) − f ′(x)g(x).

Note that if f and g are real valued, then [f, g]x is the Wronskian W (f, g). It is well

known that the limit of [f, g]x as x → ∞ and x → −∞ exists for f, g ∈ Dmax, see [45,

Satz 13.4] or [46, p. 184]. We set

[f, g]∞ := lim
x→∞

[f, g]x and [f, g]−∞ := lim
x→−∞

[f, g]x.

Lemma 3 There exist real valued solutions w1, w2 ∈ Dmax of the equation

τ4n+2(y) = 0

such that w1 is an odd and w2 an even function with

[w1, w2]−∞ = [w1, w2]∞ = 1

and

[w1, w1]−∞ = [w1, w1]∞ = [w2, w2]−∞ = [w2, w2]∞ = 0.

§ In the formulation of [46, Example 7.4.1] and, hence, in [46, Example 7.4.2 (2)] a minus sign is
missing.
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Proof.

With each solution z ∈ Dmax of the equation τ4n+2(y) = 0 also the function x 7→ z(x) is

a solution of τ4n+2(y) = 0. Hence, by Proposition 1, there exist two linearly independent

real valued solutions z1, z2 ∈ Dmax of the equation τ4n+2(y) = 0. Denote by z1,odd and

z1,ev the odd part of z1 and the even part of z1, respectively. That is

z1,odd(x) :=
z1(x) − z1(−x)

2
and z1,ev :=

z1(x) + z1(−x)

2
x ∈ R.

We have z1 = z1,odd + z1,ev. Similarly, we denote by z2,odd and z2,ev the odd and even

part of z2. The functions x 7→ z1(−x) and x 7→ z2(−x) belong to Dmax and are solutions

of τ4n+2(y) = 0. Hence, z1,odd, z1,ev, z2,odd and z2,ev belong to Dmax and are real valued

solutions of τ4n+2(y) = 0. Assume that z1,odd and z2,odd are zero functions. Then z1, z2

are even functions and their derivatives z′1, z
′
2 are odd functions. We conclude for x ∈ R

[z1, z2]x = z1(x)z′2(x) − z′1(x)z2(x)

= − z1(−x)z′2(−x) + z′1(−x)z2(−x) (9)

= − [z1, z2]−x.

As z1, z2 are two real valued, linearly independent solution of τ4n+2(y) = 0, their

Wronskian [z1, z2]x is constant for all x ∈ R and non zero, a contradiction. Hence

z1,odd or z2,odd is not equal to zero. For simplicity, assume that z1,odd is not equal to zero.

We set

w1 := z1,odd.

By a calculation similar to (9) we see that at least one of the functions z1,ev and z2,ev

is non zero. Let us assume that z2,ev is not identically zero. Obviously, z2,ev and w1

are linearly independent solutions of τ4n+2(y) = 0, and their Wronskian W (w1, z2,ev) is

constant and non zero. We set

w2 := W (w1, z2,ev)
−1z2,ev.

Therefore, [w1, w2]−∞ = [w1, w2]∞ = 1, w1 is an odd, w2 an even function and w1, w2 are

solutions from Dmax of the equation τ4n+2(y) = 0. The remaining assertion of Lemma 4

follows from the fact that w1 and w2 are real valued functions. ¤

For simplicity we set for f ∈ Dmax

α1(f) := [w1, f ]−∞, α2(f) := [w2, f ]−∞,

β1(f) := [w1, f ]∞, β2(f) := [w2, f ]∞.

The next lemma describes the behaviour of the above numbers under the operators P
and T .

Lemma 4 For f ∈ Dmax we have

α1(Pf) = β1(f), α2(Pf) = −β2(f),

β1(Pf) = α1(f), β2(Pf) = −α2(f),

α1(T f) = β1(f), α2(T f) = −β2(f),

β1(T f) = α1(f), β2(T f) = −α2(f).
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Proof.

Taking into account that w1 is odd and w′
1 is even, we see

α1(Pf) = lim
x→−∞

−f ′(−x)w1(x) − f(−x)w′
1(x)

= lim
x→∞

f ′(x)w1(x) − f(x)w′
1(x) = β1(f)

and β1(Pf) = α1(PPf) = α1(f). Similarly, as w2 is even and w′
2 is odd,

α2(Pf) = lim
x→−∞

−f ′(−x)w2(x) − f(−x)w′
2(x)

= lim
x→∞

−f ′(x)w2(x) + f(x)w′
2(x) = −β2(f)

and β2(Pf) = −α2(PPf) = −α2(f). The remaining statements of Lemma 4 follow

immediately from the definition of the operator T . ¤

In the sequel we will use the functions w1 and w2 from Lemma 4 to describe all

boundary conditions for self-adjoint operators associated to the differential expression

τ4n+2.

The following is from [45, p. 64], [27, III.5] see also [46, Chapter 10, Section 4.4]. As

usual, we will consider two different kinds of boundary conditions: mixed and separated.

All self-adjoint operators Hα,β associated to the differential expression τ4n+2 with

separated boundary conditions are of the following form. For α, β ∈ [0, π) we set

dom Hα,β :=

{
f ∈ Dmax :

α1(f) cos α − α2(f) sin α = 0,

β1(f) cos β − β2(f) sin β = 0.

}
. (10)

Then (cf. [45, Satz 13.21] and also [46, Chapter 10, Section 4.5]) the operator Hα,β,

Hα,βf = τ4n+2(f) for f ∈ dom Hα,β, (11)

is self-adjoint in the Hilbert space L2(R) and the spectrum of Hα,β consists of isolated

simple eigenvalues λn, n ∈ N,

σ(H) = σp(H) = {λ1, λ2, . . .} ⊂ R with
∑
n∈N

|λn|−2 < ∞.

All self-adjoint operators HB associated to the differential expression τ4n+2 with

mixed boundary conditions are of the following form. For ϕ ∈ [0, 2π), a, b, c, d ∈ R with

ad − bc = 1 we set

B := eiϕ

(
a b

c d

)
, (12)

dom HB :=

{
f ∈ Dmax :

(
β1(f)

β2(f)

)
= B

(
α1(f)

α2(f)

)}
. (13)

Then (cf., e.g., [45, Satz 13.21]) the operator HB,

HBf = τ4n+2(f) for f ∈ dom HB, (14)
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is self-adjoint in the Hilbert space L2(R) and the spectrum of HB consists of isolated

eigenvalues λn, n ∈ N, with multiplicity equal or less than two,

σ(H) = σp(H) = {λ1, λ2, . . .} ⊂ R with
∑
n∈N

|λn|−2 < ∞.

We now formulate the main results of this section. We start with the case of

separated boundary conditions.

Theorem 4 The operator Hα,β defined via (10) and (11) with α, β ∈ [0, π) is PT
symmetric if and only if

α + β = π or α + β = 0.

In this case, Hα,β commutes with P and with T . Hence Hα,β is self-adjoint in the Krein

space (L2(R), [., .]). In particular, all eigenvalues of Hα,β are either of positive or of

negative type,

σ(Hα,β) = σp(Hα,β) = σ++(Hα,β) ∪ σ−−(Hα,β). (15)

Proof.

Assume α+β = π. If, in addition, α ̸= π
2
, then we have sin β = sin α and cos β = − cos α

and with Lemma 4 we conclude for f ∈ dom Hα,β

α1(Pf) cos α − α2(Pf) sin α = −β1(f) cos β + β2(f) sin β = 0

β1(Pf) cos β − β2(Pf) sin β = −α1(f) cos α + α2(f) sin α = 0.

Hence, Pf ∈ dom Hα,β. If α = β = π
2

then for f ∈ dom Hπ
2
, π
2

we have α2(f) = β2(f) = 0

and, by Lemma 4, Pf ∈ dom Hπ
2
, π
2
.

Assume α + β = 0. Then for f ∈ dom H0,0 we have α1(f) = β1(f) = 0 and, by

Lemma 4, Pf ∈ dom H0,0.

Hence, if α + β = π or α + β = 0 and we have Pdom Hα,β ⊂ dom Hα,β. Moreover,

dom Hα,β = PPdom Hα,β ⊂ Pdom Hα,β, that is

Pdom Hα,β = dom Hα,β.

An easy calculation gives Hα,βP = PHα,β and Lemma 4 gives

T dom Hα,β = dom Hα,β, and T Hα,β = Hα,βT .

Hence

PT Hα,βf = Hα,βPT f for all f ∈ dom Hα,β.

By Lemma 1, Hα,β is PT symmetric. Lemma 2 implies the selfadjointness of Hα,β in

the Krein space (L2(R), [., .]). Relation (15) follows from the fact that the spectrum of

Hα,β consists only of isolated, simple eigenvalues and from [16, Corollary VI.6.6].

It remains to show that Hα,β is not PT symmetric if α + β ̸= π and α + β ̸= 0.

For this we consider functions y1, y2, z1, z2 from Dmax such that yj, j = 1, 2 equal wj on
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the interval (1,∞), equal zero on the interval (−∞,−1) and the functions zj, j = 1, 2

equal wj on the interval (−∞,−1) and equal zero on the interval (1,∞). Set

y := − cos βy1 + sin βy2 − cos αz1 + sin αz2.

We have y ∈ Dmax and, by Lemma 3,

α1(y) = sin α, α2(y) = cos α,

β1(y) = sin β, β2(y) = cos β.

From this we conclude y ∈ dom Hα,β and with Lemma 4

α1(Py) cos α − α2(Py) sin α = β1(y) cos α + β2(y) sin α

= sin β cos α + cos β sin α

= sin(α + β) ̸= 0,

as α + β ∈ (0, 2π) with α + β ̸= π. Hence Py /∈ dom Hα,β and we see with Lemma 1

that Hα,β is not PT symmetric. ¤

Now we formulate a similar result for the case of mixed boundary conditions.

Theorem 5 The operator HB defined via (12), (13) and (14) is PT symmetric if and

only if

B = ±

(
a b

c a

)
with a2 − bc = 1. (16)

In this case, HB commutes with P and with T . Hence HB is self-adjoint in the Krein

space (L2(R), [., .]). The spectrum of HB consists only of isolated eigenvalues with

multiplicity one or two.

Proof.

Let f ∈ dom HB, i.e.(
β1(f)

β2(f)

)
= eiϕ

(
a b

c d

)(
α1(f)

α2(f)

)
, (17)

for some ϕ ∈ [0, 2π), a, b, c, d ∈ R with ad − bc = 1. Lemma 4 implies(
β1(Pf)

β2(Pf)

)
=

(
1 0

0 −1

)(
α1(f)

α2(f)

)
,

(
α1(Pf)

α2(Pf)

)
=

(
1 0

0 −1

) (
β1(f)

β2(f)

)
and Pf is in dom HB if and only if(

α1(f)

α2(f)

)
= eiϕ

(
1 0

0 −1

)(
a b

c d

)(
1 0

0 −1

) (
β1(f)

β2(f)

)
.

With (17) we see that this is the case if and only if(
α1(f)

α2(f)

)
= e2iϕ

(
1 0

0 −1

)(
a b

c d

)(
1 0

0 −1

)(
a b

c d

)(
α1(f)

α2(f)

)
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which is equivalent to(
α1(f)

α2(f)

)
= e2iϕ

(
a2 − bc b(a − d)

c(d − a) d2 − bc

)(
α1(f)

α2(f)

)
. (18)

Similar as in Theorem 4 we consider functions y1, y2, z1, z2 from Dmax such that yj,

j = 1, 2, equals wj on the interval (1,∞), equals zero on the interval (−∞,−1) and

the functions zj, j = 1, 2, equals wj on the interval (−∞,−1) and equals zero on the

interval (1,∞). Set

y := −ceiϕy1 + aeiϕy2 + z2, and z := −deiϕy1 + beiϕy2 + z1

We have y, z ∈ Dmax and

α1(y) = 1, β1(y) = aeiϕ,

α2(y) = 0, β2(y) = ceiϕ,

α1(z) = 0, β1(z) = beiϕ,

α2(z) = 1, β2(z) = deiϕ.

Hence, y, z ∈ dom HB, see (17). Inserting y and z in (18) we see

e2iϕ(a2 − bc) = 1, b(a − d) = 0 = c(d − a), e2iϕ(d2 − bc) = 1.

For c ̸= 0 it follows a = d and, from ad − bc = 1, we obtain a2 − bc = 1. For c = 0 it

follows a2 = d2 = 1 and ad = 1 This gives a = d = ±1. Moreover, in both cases (i.e.

c ̸= 0 and c = 0) ϕ is either zero or π. This shows that Pdom HB ⊂ dom HB if and only

if (16) holds.

Hence, if (16) does not hold, there exists f ∈ dom HB with Pf is not in dom HB

and we see with Lemma 1 that HB is not PT symmetric.

Conversely, if (16) hold, then we have Pdom HB ⊂ dom HB and dom HB =

PPdom HB ⊂ Pdom HB, that is Pdom HB = dom HB. An easy calculation gives

HBP = PHB and Lemma 4 gives

T dom HB = dom HB, and T HB = HBT ,

hence PT HBf = HBPT f for all f ∈ dom HB. By Lemma 1, HB is PT symmetric.

Lemma 2 implies the selfadjointness of HB in the Krein space (L2(R), [., .]). ¤

As mentioned above, the spectrum of HB consists only of isolated eigenvalues with

multiplicity less or equal to two. We have the following.

Proposition 2 Let the operator HB be PT symmetric and let λ0 ∈ σp(HB) with dim

Ker (HB − λ0) = 1, then

λ0 ∈ σ++(HB) ∪ σ−−(HB). (19)

If λ0 ∈ σp(HB) with dim Ker (HB − λ0) = 2, then

λ0 /∈ σ++(HB) ∪ σ−−(HB). (20)



On Domains of PT Symmetric Operators Related to −y′′(x) + (−1)nx2ny(x) 14

Proof.

Relation (19) follows from the fact that isolated eigenvalues with multiplicity one in

the Krein space (L2(R), [., .]) are not neutral, see [16, Corollary VI.6.6]. Using the

reasoning in the proof of Lemma 3 applied to the equation τ4n+2(y) − λ0y = 0, we find

an odd and an even eigenfunction of HB corresponding to the eigenvalue λ0. Then the

odd eigenfunction is a negative vector in the Krein space (L2(R), [., .]) and the even

eigenfunction is a positive vector in the Krein space (L2(R), [., .]) and (20) holds. ¤

Remark 3 Let the operator HB be PT symmetric. It is usual in the perturbation theory

in Krein spaces to consider spectral points of type π+ and π−, denoted by σπ+(HB) and

σπ−(HB), see [7, 28, 35]. The main property of these points is that they are invariant

under compact perturbations and perturbations small in norm or small in the gap metric.

We mention here only that isolated eigenvalues of finite algebraic multiplicity are spectral

points of type π+ and π+. Hence

σ(HB) = σp(HB) = σπ+(HB) ∪ σπ−(HB).

With Theorems 4 and 5 all self-adjoint operators associated to the differential

expression τ4n+2 which give rise to a PT symmetric operator can precisely be

characterized. We wish to emphasize the following.

Corollary 1 If αβ ̸= 0 and α + β ̸= π, then the operator Hα,β is not PT symmetric.

Corollary 2 If d ̸= a or ϕ is not zero or π, then the operator HB is not PT symmetric.
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Schar L(λ) = λ2I + λB + C, Habilitationsschrift, Technische Universität Dresden (German)
[34] Langer H 1982 Functional Analysis (Springer) 948 1
[35] Langer H, Markus A and Matsaev V 1997 Math. Ann. 308 405
[36] Langer H and Tretter C 2004 Czechoslovak J. Phys. 54 1113
[37] Levitan B M and Sargsjan I S 1991 Sturm-Liouville and Dirac operators (Kluwer)
[38] Mostafazadeh A 2002 J. Math. Phys. 43 205
[39] Smilga A V 2008 J. Phys. A: Math. Theor. 41 244026
[40] Tanaka T 2006 J. Phys. A: Math. Gen. 39 L369
[41] Tanaka T 2006 J. Phys. A: Math. Gen. 39 14175
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