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Abstract

We prove that if G = (VG, EG) is a finite, simple, and undirected graph with κ com-
ponents and independence number α(G), then there exist a positive integer k ∈ N and a
function f : VG → N0 with non-negative integer values such that f(u) ≤ dG(u) for u ∈ VG,
α(G) ≥ k ≥

∑
u∈VG

1
dG(u)+1−f(u) , and

∑
u∈VG

f(u) ≥ 2(k − κ). This result is a best-possible

improvement of a result due to Harant and Schiermeyer (On the independence number of
a graph in terms of order and size, Discrete Math. 232 (2001), 131-138) and implies that
α(G)
n(G) ≥

2(
d(G)+1+ 2

n(G)

)
+

√(
d(G)+1+ 2

n(G)

)2
−8

for connected graphs G of order n(G), average

degree d(G), and independence number α(G).

Keywords: Independence; stability; connected graph
AMS subject classification: 05C69

1 Introduction

We consider finite, simple, and undirected graphs G with vertex set VG and edge set EG. For a graph
G, we denote its order by n(G) and its size by m(G), respectively. The neighbourhood of a vertex
u ∈ VG in a graph G is denoted by NG(u). The degree of u in G is dG(u) = |NG(u)| and the closed
neighbourhood of u in G is NG[u] = {u}∪NG(u). The minimum degree, average degree, and maximum
degree of G are denoted by δ(G), d(G), and ∆(G), respectively. For a set U ⊆ VG, the subgraph of G
induced by VG \ U is denoted by G − U . A set of vertices I ⊆ VG in a graph G is independent, if no
two vertices in I are adjacent. The independence number α(G) of G is the maximum cardinality of an
independent set of G.

The independence number is one of the most fundamental and well-studied graph parameters [8].
In view of its computational hardness [7] various bounds on the independence number have been
proposed. The following classical bound holds for every graph G and is due to Caro and Wei [4, 13]

α(G) ≥
∑
u∈VG

1
dG(u) + 1

. (1)

Since the only graphs for which (1) is best-possible are the disjoint unions of cliques, additional
structural assumptions excluding these graphs allow improvements of (1). Natural candidates for such
assumptions are triangle-freeness or — more generally — Kr-freeness as well as connectivity.
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For triangle-free graphs, Shearer [10,11] proved

α(G) ≥
∑
u∈VG

f(dG(u))

where f(d) = Ω
(

log(d)
d

)
has the best-possible order of magnitude (cf. also [2, 3, 12] and for similar

results concerning Kr-free graphs [1, 9]).
For connected graphs, Harant and Schiermeyer proved [5] (cf. also [6])

α(G)
n(G)

≥ 2(
d(G) + 1 + 1

n(G)

)
+

√(
d(G) + 1 + 1

n(G)

)2
− 4

. (2)

Considering

αP(d) = lim
n→∞

inf
{
α(G)
n(G)

| G ∈ P, d(G) ≤ d, n(G) ≥ n
}

where d ∈ R≥0 and P denotes an infinite class of graphs allows a simpler comparison of (1) and (2).
If G denotes the class of all graphs, then (1) implies αG(d) ≥ 1

d+1 . Similarly, if Gconn denotes the class
of all connected graphs, then (2) implies

αGconn(d) ≥

 2

1 +
√

1− 4
(d+1)2

 1
d+ 1

. (3)

The goal of the present paper are best-possible improvements of (2) and (3).

2 Results

In [5] Harant and Schiermeyer analyse the performance of a simple greedy algorithm — similar to
Algorithm 1 below — for the construction of an independent set in a given graph. They show that
applied to a connected graph G, the algorithm produces an independent set I of G with

|I| ≥ k ≥
∑
u∈VG

1
dG(u) + 1− g(u)

(4)

where k is some positive integer and g : VG → N0 is a function with g(u) ≤ dG(u) for u ∈ VG — which
we will abbreviate as “g ≤ dG” in the following — and∑

u∈VG

g(u) ≥ k − 1. (5)

Applying Jensen’s inequality to (4) and (5) easily yields (2) (cf. the proof of Corollary 3 below).
We achieve our best-possible improvements of (2) and (3) by preprocessing the input graph for

the greedy algorithm, restricting the behaviour of the algorithm, and refining its analysis. Altogether,
this allows to improve (5) by a factor of 2. Our main result is the following.

Theorem 1 If G is a graph with κ components, then there exist a positive integer k ∈ N and a
function f : VG → N0 with non-negative integer values such that f ≤ dG,

α(G) ≥ k ≥
∑
u∈VG

1
dG(u) + 1− f(u)

,

and ∑
u∈VG

f(u) ≥ 2(k − κ).
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Note that Theorem 1 is best-possible for the connected graphs which arise by adding bridges to disjoint
unions of cliques, i.e. it is best-possible for the intuitively most natural candidate of a connected graph
with small independence number.

Before we proceed to the proof of Theorem 1, we show the desired conclusion under stronger
assumptions. (These assumptions correspond to preprocessing the input graph accordingly as will
become clear in the proof of Theorem 1 below.)

Lemma 2 If G is a connected graph such that

(G1) δ(G) ≥ 3,

(G2) there is no vertex whose neighbourhood induces a complete subgraph,

(G3) there are no 2δ(G) distinct vertices u1, u2, . . . , uδ(G) and v1, v2, . . . , vδ(G) such that

dG(ui) = δ(G) for 1 ≤ i ≤ δ(G),

dG(vi) = δ(G) + 1 for 1 ≤ i ≤ δ(G),

{ui | 1 ≤ i ≤ δ(G)} induces a complete subgraph,

{vi | 1 ≤ i ≤ δ(G)} is independent, and

uivi ∈ EG for 1 ≤ i ≤ δ(G),

then there exist k ∈ N and f : VG → N0 such that f ≤ dG,

α(G) ≥ k ≥
∑
u∈VG

1
dG(u) + 1− f(u)

and ∑
u∈VG

f(u) ≥ 2(k − 1).

Proof: The proof relies on the analysis of the greedy Algorithm 1 below. In order to complete the
description of Algorithm 1, we need to specify the set S(Gi): For a subgraph H of G let S(H) denote
the set of vertices u of H such that

(S1) dH(u) = δ(H),

(S2) subject to condition (S1), ∑
v∈NH [u]

(dG(v)− dH(v))

is maximum,

(S3) subject to conditions (S1) and (S2), ∑
v∈NH [u]

(dH(v)− δ(H))

is maximum,

(S4) subject to conditions (S1), (S2), and (S3),

δ(H −NH [u])

is minimum.
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Input: A graph G satisfying (G1), (G2), and (G3).
Output: An independent set {u1, u2, . . . , uk}.
i := 1;
Gi := G;
while VGi

6= ∅ do
Select ui ∈ S(Gi);
Set

δi := δ(Gi);

Vi := NGi
[ui];

γ(u) := dG(u)− dGi
(u)∀u ∈ Vi;

Γi :=
∑
u∈Vi

γ(u);

β(u) := dGi
(u)− δi∀u ∈ Vi;

Bi :=
∑
u∈Vi

β(u);

Gi+1 := Gi − Vi;
i := i+ 1;

end
k := i− 1;

Algorithm 1

In view of Algorithm 1, we obtain

α(G) ≥ k

=
k∑
i=1

∑
u∈Vi

1
δi + 1

=
k∑
i=1

∑
u∈Vi

1
dG(u) + 1− (dG(u)− dGi(u))− (dGi(u)− δi)

=
k∑
i=1

∑
u∈Vi

1
dG(u) + 1− (γ(u) + β(u))

=
∑
u∈VG

1
dG(u) + 1− (γ(u) + β(u))

and
γ(u) + β(u) = dG(u)− δi ≤ dG(u)

for 1 ≤ i ≤ k and u ∈ Vi.
Therefore, in order to complete the proof it suffices to show that∑

u∈VG

(γ(u) + β(u)) =
k∑
i=1

(Γi +Bi) ≥ 2(k − 1).

Claim 1 If (Γi, Bi) = (0, 0) for some 1 ≤ i ≤ k, then i = 1.
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Proof of Claim 1: By the definition of S(Gi), we obtain that for every vertex u in Gi which is of
minimum degree δi all vertices v in the closed neighbourhood NGi [u] of u in Gi satisfy dG(v) =
dGi(v) = δi. Since G is connected, this implies dG(v) = dGi(v) for all vertices of G which implies
G = Gi, i.e. i = 1. 2

Claim 2 If (Γi, Bi) = (0, 1) for some 1 ≤ i ≤ k, then i < k and Γi+1 +Bi+1 ≥ 3.

Proof of Claim 2: By the definition of Γi, we obtain that all vertices v in Vi satisfy dG(v) = dGi(v)
which implies δi = dG(ui) ≥ δ(G) ≥ 3. Furthermore, by the definition of Bi, there is exactly one
vertex, say vi, in Vi which is of degree δi + 1 and all other vertices in Vi are of degree δi. Since vi has
a neighbour which is not contained in Vi, we obtain VGi+1 6= ∅, i.e. i < k.

If δi+1 < δi, then

Γi+1 +Bi+1 =
∑

u∈Vi+1

(dG(u)− δi+1)

= (dG(ui+1)− δi+1) +
∑

u∈Vi+1\{ui+1}

(dG(u)− δi+1)

≥ (δi − δi+1) +
∑

u∈Vi+1\{ui+1}

(δi − δi+1)

≥ (δi − δi+1) + |Vi+1 \ {ui+1}|
= (δi − δi+1) + δi+1

= δi

≥ 3.

Hence, we may assume that δi+1 ≥ δi.
By (G2), some vertex u′ in Vi \ {ui, vi} has a neighbour v′ which is not contained in Vi. By (S2),

dG(v′) = dGi(v
′). Since δi+1 ≥ δi, dG(v′) ≥ δi+1. By (S3), dG(v′) = dGi(v

′) = δi+1 and all neighbours
of u′ different from v′ are of degree δi in G as well as Gi. This implies that u′ is non-adjacent to vi
and that v′ is the unique neighbour of u′ which is not contained in Vi, i.e. NGi [u

′] = (Vi \ {vi})∪{v′}.
If some vertex u′′ in Vi \{ui, vi} is adjacent to vi, then (S2) and (S3) together with δi+1 ≥ δi imply

that u′′ has no neighbour which is not contained in Vi and hence NGi [u
′′] = Vi. Now,

δ(Gi −NGi [u
′]) ≤ dGi(vi)− 2 < δi

which, by (S4), implies the contradiction ui 6∈ S(Gi), i.e. Algorithm 1 would have selected u′ rather
than ui. Therefore, no vertex in Vi\{ui, vi} is adjacent to vi which implies that they all have neighbours
which are not contained in Vi. Arguing as for u′ above, we obtain that every vertex in Vi \ {ui, vi} is
adjacent to all vertices of Vi except for vi and itself and has a unique neighbour which is not contained
in Vi. Furthermore, this unique neighbour not contained in Vi is of degree δi + 1 in G as well as Gi.

Let x and y be two distinct vertices in Vi \{ui, vi} and let x′ and y′ denote their unique neighbours
which are not contained in Vi, respectively. If x′ = y′, then

δi+1 ≤ dGi+1(x′) ≤ dGi(x
′)− 2 = δi + 1− 2 < δi

which is a contradiction. Hence x′ 6= y′. If x′ and y′ are adjacent, then

δ(Gi −NGi [x]) ≤ dGi(y
′)− 2 = δi + 1− 2 < δi

which, by (S4), implies the contradiction ui 6∈ S(Gi), i.e. Algorithm 1 would have selected x rather
than ui. By symmetry, this implies that G does not satisfy (G3) which is a contradiction and completes
the proof of the claim. 2
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Claim 3 If (Γi, Bi) = (1, 0) for some 1 ≤ i ≤ k, then i < k and Γi+1 +Bi+1 ≥ 3.

Proof of Claim 3: By the definition of Γi, we obtain that there is a unique vertex u′ in Vi such that
dG(u′) = dGi(u

′) + 1 and dG(v) = dGi(v) for v ∈ Vi \ {u′}. By the definition of Bi, dGi(v) = δi for
v ∈ Vi. This implies that

δi = max{dGi(v) | v ∈ Vi} ≥ max{dGi(v) | v ∈ Vi \ {u′}} = max{dG(v) | v ∈ Vi \ {u′}} ≥ δ(G) ≥ 3.

By (G2), Vi does not induce a complete graph. This implies that some vertex u′′ in Vi \ {u′} has a
neighbour v′′ which is not contained in Vi and hence VGi+1 6= ∅, i.e. i < k.

If δi+1 < δi, then exactly the same calculation as in the proof of Claim 2 yields Γi+1+Bi+1 ≥ δi ≥ 3.
Hence, we may assume that δi+1 ≥ δi.

If u′ and u′′ are adjacent, then (S2) and (S3) imply dGi(v
′′) = δi which yields the contradiction

δi+1 ≤ dGi+1(v′′) ≤ dGi(v
′′)− 1 = δi − 1.

This implies that u′ and u′′ are non-adjacent and hence u′ 6= ui. Since dGi(u
′) = δi, u′ has a neighbour

v′ which is not contained in Vi. Now (S2) and (S3) imply that dG(v′) = dGi(v
′) = δi which yields the

contradiction
δi+1 ≤ dGi+1(v′) ≤ dGi(v

′)− 1 = δi − 1.

This completes the proof of Claim 3. 2

Since Claims 1, 2, and 3 immediately imply
∑
u∈VG

(γ(u) + β(u)) ≥ 2(k − 1), the proof is complete. 2

With Lemma 2 at hand, we can now proceed to the

Proof of Theorem 1: For contradiction, we assume that G is a counterexample of minimum order.
Clearly, G is connected and not complete. By Lemma 2, G does not satisfy either (G1), or (G2), or
(G3). Accordingly, we will consider three cases.

Case 1 G does not satisfy (G2).

Let u be a vertex of G whose neighbourhood induces a complete subgraph. The number m′ of edges of
G between NG(u) and VG \NG[u] is exactly

∑
v∈NG(u)

(dG(v)−dG(u)) and the number κ′ of components

of G′ = G−NG[u] satisfies κ′ ≤ m′.
By the choice of G, there exist k′ ∈ N and f ′ : VG′ → N0 with f ′ ≤ dG′ such that

α(G′) ≥ k′ ≥
∑
v∈VG′

1
dG′(v) + 1− f ′(v)

and ∑
v∈VG′

f ′(v) ≥ 2(k′ − κ′).

Clearly, α(G) ≥ α(G′) + 1 ≥ k′ + 1. If k = k′ + 1 and f : VG → N0 is such that

f(v) =


0 , if v = u,
dG(v)− dG(u) , if v ∈ NG(u),
f ′(v) + (dG(v)− dG′(v)) , if v ∈ VG′ = VG \NG[u],
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then f ≤ dG,

α(G) ≥ k

= 1 + k′

≥
∑

v∈NG[u]

1
dG(u) + 1

+
∑
v∈VG′

1
dG′(v) + 1− f ′(v)

=
∑

v∈NG[u]

1
dG(v) + 1− f(v)

+
∑
v∈VG′

1
dG(v) + 1− f(v)

=
∑
v∈VG

1
dG(v) + 1− f(v)

and ∑
v∈VG

f(v) =
∑

v∈NG(u)

(dG(v)− dG(u)) +
∑
v∈VG′

(f ′(v) + (dG(v)− dG′(v)))

= m′ +
∑
v∈VG′

(dG(v)− dG′(v)) +
∑
v∈VG′

f ′(v)

= 2m′ +
∑
v∈VG′

f ′(v)

≥ 2m′ + 2(k′ − κ)
≥ 2k′

= 2(k − 1).

This contradiction completes the proof for Case 1.

Case 2 G does not satisfy (G1), i.e. δ(G) ≤ 2.

By Case 1, we may assume that δ(G) = 2 and that u is a vertex of degree 2 in G with the two
non-adjacent neighbours v and w.

Let G′ arise from G − {u,w} by adding new edges between v and all vertices in NG(w) \NG(v).
Clearly, G′ is connected. Let I ′ be a maximum independent set of G′. If I ′ contains v, then let
I = I ′ ∪ {w}, otherwise, let I = I ′ ∪ {u}. Clearly, I is an independent set of G which implies
α(G) ≥ α(G′) + 1.

By the choice of G, there exist k′ ∈ N and f ′ : VG′ → N0 with f ′ ≤ dG′ such that

α(G′) ≥ k′ ≥
∑
v∈VG′

1
dG′(v) + 1− f ′(v)

and ∑
v∈VG′

f ′(v) ≥ 2(k′ − 1).

If k = k′ + 1 and f : VG → N0 is such that

f(x) =


1 , if x = u,
dG(w)− 1 , if x = w,
f ′(v)− (|NG(w) \NG(v)| − 1) , if x = v,
f ′(x) + 1 , if x ∈ (NG(w) ∩NG(v)) \ {u},
f ′(v) , if x ∈ VG \ ({v, w} ∪ (NG(w) ∩NG(v))).
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then f ≤ dG,

α(G) ≥ k

= 1 + k′

≥ 1
2

+
1
2

+
∑
x∈VG′

1
dG′(x) + 1− f ′(x)

=
1

dG(u) + 1− 1
+

1
dG(w) + 1− (dG(w)− 1)

+
∑
x∈VG′

1
dG(x) + 1− f(x)

=
∑
x∈VG

1
dG(x) + 1− f(x)

and∑
v∈VG

f(v) = 1 + (dG(w)− 1)− (|NG(w) \NG(v)| − 1) + |(NG(w) ∩NG(v)) \ {u}|+
∑
x∈VG′

f ′(x)

≥ 1 + (dG(w)− 1)− (dG(w)− 2) +
∑
x∈VG′

f ′(x)

= 2 +
∑
x∈VG′

f ′(x)

≥ 2 + 2(k′ − 1)
= 2(k − 1).

This contradiction completes the proof for Case 2.

Case 3 G does not satisfy (G3).

For contradiction, we assume that the vertices u1, u2, . . . , uδ(G) and v1, v2, . . . , vδ(G) are as specified in
(G3). By Case 2, δ(G) ≥ 3. Let G′ arise from G − {u1, u2, . . . , uδ(G)} by adding δ(G) − 1 new edges
between v1 and the vertices in {v2, v3, . . . , vδ(G)}. Clearly, G′ is connected.

Let I ′ be a maximum independent set of G′. If I ′ contains v1, then let I = I ′ ∪ {u2}, otherwise,
let I = I ′ ∪ {u1}. Clearly, I is an independent set of G which implies α(G) ≥ α(G′) + 1.

By the choice of G, there exist k′ ∈ N and f ′ : VG′ → N0 with f ′ ≤ dG′ such that

α(G′) ≥ k′ ≥
∑
v∈VG′

1
dG′(v) + 1− f ′(v)

and ∑
v∈VG′

f ′(v) ≥ 2(k′ − 1).

If k = k′ + 1 and f : VG → N0 is such that

f(x) =


1 , if x ∈ {u1, u2, . . . , uδ(G)},
f ′(v)− (δ(G)− 2) , if x = v1,
f ′(v) , if x ∈ VG′ \ {v1}.

then f ≤ dG,

α(G) ≥ k

= 1 + k′
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≥ δ(G)
δ(G) + 1− 1

+
∑
x∈VG′

1
dG′(x) + 1− f ′(x)

=
∑
v∈VG

1
dG(v) + 1− f(v)

and ∑
v∈VG

f(v) = δ(G)− (δ(G)− 2) +
∑
x∈VG′

f ′(x)

= 2 +
∑
x∈VG′

f ′(x)

≥ 2 + 2(k′ − 1)
= 2(k − 1).

This contradiction completes the proof. 2

Corollary 3 (i) If G is a connected graph, then

α(G)
n(G)

≥ 2(
d(G) + 1 + 2

n(G)

)
+

√(
d(G) + 1 + 2

n(G)

)2
− 8

.

(ii) If d ∈ R≥0, then

αGconn(d) ≥

 2

1 +
√

1− 8
(d+1)2

 1
d+ 1

.

Proof: (i) By the convexity of the function x 7→ 1
x and Jensen’s inequality (J), we obtain from Theorem

1

k ≥
∑
x∈VG

1
dG(x) + 1− f(x)

(J)

≥ n(G)
1

n(G)

∑
x∈VG

(dG(x) + 1− f(x))

≥ n(G)

d(G) + 1− 2(k−1)
n(G)

which is equivalent to
(

k
n(G)

)2
+ 1

2

(
d(G) + 1 + 2

n(G)

)
k

n(G) − 1 ≥ 0. Since α(G)
n(G) ≥

k
n(G) , this easily

implies (i).
Since (ii) follows immediately from (i), the proof is complete. 2

For integer values of d ≥ 0, (1) together with the consideration of disjoint unions of complete graphs of

order d+ 1 actually yields αG(d) = 1
d+1 . Similarly, if d ∈ R≥0 is such that d =

2((r
2)+1)
r = r− 1 + 2

r for
some integer r ≥ 2, then the connected graphs Gr,s which arise by adding s new edges to the disjoint
union of s complete graphs of order r satisfy d(Gr,s) = d = r − 1 + 2

r and α(Gr,s)
n(Gr,s)

= s
rs = 1

r . Since(
2

1+
√

1− 8
(d(Gr,s)+1)2

)
1

d(Gr,s)+1 = 1
r we obtain αGconn(d) =

(
2

1+
√

1− 8
(d+1)2

)
1
d+1 for these values of d.
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For d ∈ R≥0 \ N0, the convexity of x 7→ 1
x+1 implies that the right hand side of (1) is smallest

possible for a graph G, if all vertices of G have degree either bd(G)c or dd(G)e. Since the disjoint union
of cliques of orders bd(G)c + 1 and dd(G)e + 1 has this property and gives equality in (1), it follows
easily that αG(d) = dd(G)e−d(G)

bd(G)c+1 + d(G)−bd(G)c
dd(G)e+1 , i.e. αG(d) is the linear interpolation of the values 1

d+1
assumed for integer values of d. Using similar arguments, it is straightforward to show that the exact
value of αGconn(d) also is the linear interpolation of the values 1

r assumed for values of d = r − 1 + 2
r

for integer r ≥ 2.
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