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Abstract

We prove several best-possible lower bounds in terms of the order and the average
degree for the independence number of graphs which are connected and/or satisfy some
odd girth condition. Our main result is the extension of a lower bound for the indepen-
dence number of triangle-free graphs of maximum degree at most 3 due to Heckman and
Thomas [A New Proof of the Independence Ratio of Triangle-Free Cubic Graphs, Discrete
Math. 233 (2001), 233-237] to arbitrary triangle-free graphs. For connected triangle-free
graphs of order n and size m, our result implies the existence of an independent set of
order at least (4n−m− 1)/7.

Keywords: Independence; stability; triangle-free graph; odd girth
AMS subject classification: 05C69

1 Introduction

We consider finite, simple, and undirected graphs G with vertex set V (G) and edge set E(G). For a
graph G, we denote its order by n(G) and its size by m(G), respectively. The open neighbourhood of
a vertex u ∈ V (G) in a graph G is denoted by NG(u). The degree of u in G is dG(u) = |NG(u)| and
the closed neighbourhood of u in G is NG[u] = {u}∪NG(u). The minimum degree, average degree, and
maximum degree of G are denoted by δ(G), d(G), and ∆(G), respectively. The odd girth godd(G) of a
graph G is the minimum length of a cycle of odd length in G. For a set U ⊆ V (G), the subgraph of
G induced by U is denoted by G[U ]. A cutvertex of a connected graph G is a vertex whose removal
disconnects G. A block of a graph is a maximal induced subgraph without a cutvertex. An endblock of
a connected graph G is a block which contains at most one cutvertex of G. A set of vertices I ⊆ V (G)
in a graph G is independent, if no two vertices in I are adjacent. The independence number α(G) of G
is the maximum cardinality of an independent set of G. An independent set of G of cardinality α(G)
is called maximum. For undefined notation and terminology please refer to [3].
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The independence number is one of the most fundamental and well-studied graph parameters [13]. In
view of its computational hardness, various bounds on the independence number have been proposed.
Caro [4] and Wei [18] proved

α(G) ≥
∑

u∈V (G)

1
dG(u) + 1

(1)

for every graph G. Since the only graphs for which this is best-possible are the disjoint unions
of cliques, additional structural assumptions excluding these graphs allow improvements. Natural
candidates for such assumptions are triangle-freeness or — more generally — odd girth conditions as
well as connectivity.

For triangle-free graphs G, Shearer [15] proved

α(G) ≥
∑

u∈V (G)

fSh(dG(u)) (2)

where fSh(0) = 1 and fSh(d) = 1+(d2−d)fSh(d−1)
d2+1

for d ∈ N. The function fSh has the best-possible order

of magnitude fSh(d) = Ω
(

log d
d

)
. For graphs with a specified odd girth, Denley [5] and Shearer [16]

gave best-possible bounds in terms of the vertex degrees.
For triangle-free graphs G with maximum degree at most 3, Heckman and Thomas [11] gave an

elegant proof for the best-possible inequality

α(G) ≥ 1
7

(4n(G)−m(G)− λ(G))

where λ(G) counts the number of so-called difficult components of G which will be defined later. Their
result implies

α(G) ≥ 5
14
n(G)

for triangle-free graphs G of maximum degree at most 3 which was originally conjectured by Albertson,
Bollobás, and Tucker [1] and first proved by Staton [17] (cf. also [2, 6, 7, 10,12]).

For connected graphs G, Harant and Rautenbach [8] proved the existence of a positive integer
k ∈ N and a function f : V (G) → N0 with non-negative integer values such that f(u) ≤ dG(u) for
u ∈ V (G),

α(G) ≥ k ≥
∑

u∈V (G)

1
dG(u) + 1− f(u)

, and
∑

u∈V (G)

f(u) ≥ 2(k − 1). (3)

Their result is a best-possible improvement of an earlier result due to Harant and Schiermeyer [9].

The purpose of the present paper is to study independence in graphs with additional structural prop-
erties. We want to prove bounds on the independence number of connected graphs subject to odd
girth conditions and are mainly interested in bounds depending on the order and the size of the graph.

For a comparison of the results, it is convenient to introduce the following notion. For a class P
of graphs and a d ∈ R≥0, let

α(P, d) = lim
n→∞

inf
{
α(G)
n(G)

∣∣∣∣G ∈ P, d(G) ≤ d, and n(G) ≥ n
}
.

Let G, G∆−free, and Gconn denote the class of all graphs, all triangle-free graphs, and all connected
graphs, respectively.
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Using the convexity of the function x 7→ 1
x+1 , the bound (1) implies that α(G, d) is at least the

linear interpolation of the values α(G, d) = 1
d+1 for integral d. For d ∈ R≥0, suitable unions of cliques

of orders bd + 1c and dd + 1e imply that α(G, d) is exactly this lower bound. Similarly, a convexity
property of fSh (cf. Lemma 1 in [15]) implies that α(G∆−free, d) is at least the linear interpolation of
the values α(G∆−free, d) = fSh(d) for integral d. Here suitable unions of complete graphs of orders 1
and 2 and cycles of length 5 imply that α(G∆−free, d) is exactly this lower bound for d ≤ 2. For d > 2,
the exact value of α(G∆−free, d) is unknown. Finally, (3) implies that α(Gconn, d) is at least the linear
interpolation of the values α(Gconn, d) = 1

r for d of the form d = r − 1 + 2
r for integral r ≥ 2. In this

case, suitable connected graphs for which the removal of all bridges results in a union of cliques imply
that α(Gconn, d) is exactly this lower bound.

Figure 1 illustrates these bounds.

α(P, d)

d1 2 3 4 5 6

1

1/2

1/3

1/4

α(G∆−free, d)

d

1

1/2

2/5

17/50

1 2 3 4 5 6

Figure 1 The left graph shows the exact values of α(P, d) for P ∈ {G,Gconn}.
The right graph shows the exact value of α(G∆−free, d) for d ≤ 2 and the
lower bound based on (2).

Our results are as follows. In Section 2, we prove a lower bound on the independence number of con-
nected graphs of specified odd girth. This result relies on a very simple argument but is best-possible
for small average degrees. Still in Section 2, we give a first improvement for arbitrary odd girth and
larger average degrees. In Section 3, we prove as our main result that — after a suitable modification
— the above-mentioned bound due to Heckman and Thomas [11] still holds even if we drop the max-
imum degree condition. As a consequence we determine the exact value of α(G∆−free ∩ Gconn, d) for
d ≤ 10

3 and improve the estimate of α(G∆−free, d) for d ∈
]
2, 107

30

[
.

2 Connected Graphs with Specified Odd Girth

We need the following two notions related to the independence number. If G is a graph and H is a
spanning bipartite subgraph of G with a fixed bipartition V (G) = A ∪B, then let

αα(G) = max{|I1|+ |I2| | I1 and I2 are disjoint independent sets in G}, and
αα(G,H) = max{|I1|+ |I2| | (I1 ⊆ A) ∧ (I2 ⊆ B) ∧ (I1 and I2 are independent sets in G)}.

Clearly,
2α(G) ≥ αα(G) ≥ αα(G,H).

The basic idea of our approach in this section is captured by the following very simple lemma.
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Lemma 1 If G is a graph and H is a spanning bipartite subgraph of G, then

αα(G,H) ≥ n(G)− |E(G) \ E(H)|.

Proof: Starting with (I1, I2) = (A,B) where V (G) = A ∪ B is the fixed bipartition of H and adding
the edges of E(G) \ E(H) one by one to H, we have to remove at most one vertex from either I1 or
I2 for every added edge. Therefore, after adding all edges from E(G) \ E(H) into H, we obtain two
disjoint independent sets of G respecting the bipartition of H which are of total cardinality at least
n(G)− |E(G) \ E(H)|. 2

The next result is a first application of this idea.

Proposition 2 If G is a connected graph and T is a spanning tree of G, then the following statements
hold.

(i)

αα(G,T ) ≥ 2n(G)−m(G)− 1 (4)

with equality if and only if E(G) \ E(T ) is a matching and T + e = (V (G), E(T ) ∪ {e}) has an
odd cycle for every edge e ∈ E(G) \ E(T ).

(ii)

αα(G) ≥ 2n(G)−m(G)− 1 (5)

with equality if and only if all cycles of G are odd and vertex disjoint.

Proof: The lower bounds in (i) and (ii) follow immediately from Lemma 1. It remains to characterize
the extremal graphs for (4) and (5).

(i) Let V (G) = A ∪ B denote the bipartition of T . If E(G) \ E(T ) is a matching and T + e has an
odd cycle for every edge e ∈ E(G) \ E(T ), then G′ = (V (G), E(G) \ E(T )) is the union of complete
graphs of orders 1 and 2. Since αα(G,T ) = α(G′), this easily implies equality in (4).

Conversely, we assume that equality holds in (4). If T + e has no odd cycle for some edge e ∈
E(G) \ E(T ), then

αα(G,T ) = αα(G− e, T ) ≥ 2n(G)− (m(G)− 1)− 1 = 2n(G)−m(G)

which is a contradiction. Hence T + e has an odd cycle for every edge e ∈ E(G) \ E(T ).
If E(G) \E(T ) contains two distinct edges e and f which are both incident with a common vertex

u, then T is a spanning tree of G′ = G − {e, f} = (V (G), E(G) \ {e, f}). For every pair (I ′1, I
′
2)

of disjoint independent sets of G′ with I ′1 ⊆ A and I ′2 ⊆ B, (I ′1 \ {u}, I ′2 \ {u}) is a pair of disjoint
independent sets of G with I1 ⊆ A and I2 ⊆ B which implies the contradiction

αα(G,T ) ≥ αα(G′, T )− 1 ≥ 2n(G′)−m(G′)− 1− 1 = 2n(G)−m(G). (6)

This completes the proof of (i).

(ii) Let G be a connected graph such that all cycles of G are odd and vertex disjoint. If G contains a
vertex u of degree 1, then, by an inductive argument,

αα(G) = αα(G[V (G) \ {u}]) + 1 = 2n(G[V (G) \ {u}])−m(G[V (G) \ {u}])− 1 + 1
= 2(n(G)− 1)− (m(G)− 1)− 1 + 1 = 2n(G)−m(G)− 1.
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Hence, we may assume that G has an endblock which is an odd cycle C. Clearly, for every pair (I1, I2)
of disjoint independent sets of G, the set I1 ∪ I2 contains at most n(C) − 1 many vertices of C. Let
G′ = G[V (G) \ V (C)]. If G′ is empty, then G is an odd cycle and equality in (5) is trivial. Otherwise,
by an inductive argument,

αα(G) ≤ αα(G′) + n(C)− 1 = 2n(G′)−m(G′)− 1 + n(C)− 1
= 2(n(G)− n(C))− (m(G)− (n(C) + 1))− 1 + n(C)− 1 = 2n(G)−m(G)− 1,

i.e. equality in (5) holds.
Conversely, let G be a connected graph with equality in (5). If G contains two incident edges whose

removal does not disconnect the graph, then we obtain a similar contradiction as in (6). Therefore,
removing any pair of incident edges disconnects G which immedately implies that all cycles of G are
vertex disjoint. In view of this restricted structure of G, the assumption of the existence of an even
cycle easily leads to the contradiction αα(G) ≥ 2n(G)−m(G) which completes the proof. 2

Proposition 2 immediately implies the following.

Corollary 3 If G is a connected graph, then

α(G) ≥ n(G)− m(G)
2
− 1

2
(7)

with equality only if all cycles of G are odd and vertex disjoint.

In view of the extremal graphs, the estimates (5) and (7) are best-possible for graphs G of odd girth
g ∈ 2N + 1 if and only if their size is at most (g+1)n(G)

g − 1. Intuitively speaking, up to this maximum
possible size, the “price” of an additional edge is 1 for αα(G) and 1/2 for α(G). Our next result shows
that beyond this maximum possible size, additional edges are at least “50% off”.

If T is a tree and e is such that T + e = (V (T ), E(T ) ∪ {e}) is not bipartite, then e is called
T -unfaithful.

Theorem 4 Let G be a connected graph. If m(G) ≥
⌊

(godd(G)+1)n(G)
godd(G)

⌋
− 1, then

2α(G) ≥ αα(G) ≥
⌈

(godd(G)− 1)n(G)
godd(G)

⌉
− 1

2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1
))

. (8)

Proof: We consider a finite sequence

G = G0, G1, . . . , Gk

of connected graphs defined as follows. Let G0 = G. If for some i ∈ N0, the graph Gi is defined,
then let Ti be a spanning tree of Gi. Let mi denote the number of Ti-unfaithful edges of Gi. Note
that all cycles created in Ti by adding a Ti-unfaithful edge of Gi have length at least godd(G). If
mi ≤

⌊
n(G)

godd(G)

⌋
, then set k = i and terminate the sequence. If mi >

⌊
n(G)

godd(G)

⌋
, then there are two Ti-

unfaithful edges of Gi such that the two cycles created in Ti by adding these edges intersect. Clearly,
this implies the existence of two incident edges ei and fi of Gi such that Gi − {ei, fi} is connected.
Let Gi+1 = Gi − {ei, fi}. Since, for i ≥ 0, the graph Gi+1 arises from Gi by deleting two edges, this
process necessarily terminates. By the choice of k, we have mk−1 ≥

⌊
n(G)

godd(G)

⌋
+ 1. Furthermore, since
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Gk−1 has exactly m(G)− 2(k − 1) edges, we have mk−1 ≤ m(G)− (n(G)− 1)− 2(k − 1). Combining
these two estimates yields

k ≤ 1
2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1
))

+
1
2

with equality if and only if⌊
n(G)
godd(G)

⌋
+ 1 = mk−1 = |E(Gk−1) \ E(Tk−1)| = m(G)− (n(G)− 1)− 2(k − 1), (9)

which implies that all edges in E(Gk−1) \ E(Tk−1) are Tk−1-unfaithful.
Let G′k arise from Gk by deleting all non-Tk-unfaithful edges of Gk which do not belong to Tk.
By definition,

αα(Gk, Tk) = αα(G′k, Tk).

By Lemma 1,

αα(G′k, Tk) ≥ n(G)− |E(G′k) \ E(Tk)| = n(G)−mk ≥ n(G)−
⌊
n(G)
godd(G)

⌋
=

⌈
(godd(G)− 1)n(G)

godd(G)

⌉
. (10)

Since, for 0 ≤ i ≤ k − 1, the graph Gi+1 arises from Gi by deleting two incident edges, we have
αα(Gi) ≥ αα(Gi+1)− 1 which implies

αα(G) = αα(G0) ≥ αα(Gk)− k ≥ αα(Gk, Tk)− k = αα(G′k, Tk)− k. (11)

If k < 1
2

(
m(G)−

(⌊
(godd(G)+1)n(G)

godd(G)

⌋
− 1
))

+ 1
2 , then, by (10) and (11),

αα(G) ≥ αα(G′k, Tk)− k

≥
⌈

(godd(G)− 1)n(G)
godd(G)

⌉
− 1

2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1
))

.

If k = 1
2

(
m(G)−

(⌊
(godd(G)+1)n(G)

godd(G)

⌋
− 1
))

+ 1
2 , then

αα(G)
(11)

≥ αα(G′k, Tk)− k
(10)

≥ n(G)−mk − k
= n(G)− (mk−1 − 2)− k
(9)
= n(G)−

(⌊
n(G)
godd(G)

⌋
− 1
)
− 1

2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1
))
− 1

2

>

⌈
(godd(G)− 1)n(G)

godd(G)

⌉
− 1

2

(
m(G)−

(⌊
(godd(G) + 1)n(G)

godd(G)

⌋
− 1
))

which completes the proof. 2
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3 Triangle-free Graphs

In order to state the result of Heckman and Thomas [11], we need to define λ(G) for triangle-free
graphs G of maximum degree at most 3.

Heckman and Thomas call a graph a difficult block if it is one of the two graphs G2 and G3 in
Figure 2. Furthermore, they call a graph G difficult if every block of G is either difficult or is an edge
between two difficult blocks. For a graph G, λ(G) counts the number of components of G which are
difficult.

Theorem 5 (Heckman and Thomas [11]) If G is a triangle-free graph of maximum degree at most
3, then

α(G) ≥ 1
7

(4n(G)−m(G)− λ(G)) .

We will show that, in a suitably modified form, Theorem 5 remains true without the bound on the
maximum degree. Our approach will closely follow the method from [11]. A main ingredient of our
proof are further difficult blocks. Before we proceed to the formulation of our result, we define a
sequence G2, G3, G4, . . . of graphs. The first six members of this sequence are shown in Figure 2.
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Figure 2 Some difficult blocks.

For k ≥ 4, each graph Gk in this sequence arises from the graph Gk−1 by applying the extension
operation illustrated in Figure 3.
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Figure 3 The extension operation.

More formally, assuming inductively that Gk−1 contains an induced path abcd such that the vertices
a and d are of degree 3 and the vertices b and c are of degree 2, then Gk arises from Gk−1 by deleting
the two vertices b and c, adding the new vertices a′, b′, c′, d′, and e and new edges as in Figure 3.
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It follows inductively that, for k ≥ 3, the graph Gk contains exactly two vertex disjoint paths abcd
such that the vertices a and d are of degree 3 and the vertices b and c are of degree 2. Obviously,
applying the extension operation to the reverse path dcba yields an isomorphic graph. Furthermore,
we will show in Lemma 7 (i) that it does not matter to which one of the two possible paths we apply
the extension operation, i.e. the graphs in the sequence are well-defined.

Furthermore, it follows inductively that, for k ≥ 4, the graph Gk contains two unique vertex
disjoint cycles of length five which contain all vertices of degree 2 but no vertex of degree 4. We call
these two cycles the two ends of Gk. In Figure 2, the ends of G4, G5, G6, and G7 are indicated.

The graphs in {Gk | k ≥ 2} are called difficult blocks. A graph is called difficult, if the removal of
all its bridges results in a graph whose components are all difficult blocks. For a graph G, let λ(G)
denote the number of difficult components of G. Our main result in this section is the following.

Theorem 6 If G is a triangle-free graph, then

α(G) ≥ 1
7

(4n(G)−m(G)− λ(G)) .

The bound in Theorem 6 is best-possible for all difficult graphs (cf. Claim 1 below). Furthermore, it
is clearly also best-possible for all graphs for which the bound in Theorem 5 is best-possible. These
graphs have been characterized by Heckman [10].

Before we prove Theorem 6 we establish some useful properties of the difficult blocks.

Lemma 7 Let k ≥ 2.

(i) For k ≥ 4, Gk has an automorphism which exchanges the ends.

(ii) Gk has order 3k − 1, size 5k − 5, and independence number k.

(iii) For every two vertices u and v of Gk, the graph Gk has a maximum independent set containing
neither u nor v.

(iv) If abcd is an induced path of Gk such that the vertices b and c have degree 2 and u 6∈ {a, d} is a
vertex of Gk, then the graph Gk has a maximum independent set containing a and d but not u.

Proof: (i) We prove the result by induction on k. For k ≤ 7, the statement is obvious from Figure 2.
Therefore, let k ≥ 8. By induction, Gk arises by applying the extension operation to both ends of
Gk−2 (cf. Figure 4).
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Figure 4 Gk−2 extended twice.

By induction, Gk−2 has an automorphism π which exchanges the ends. Clearly, {π(x), π(y)} = {x′, y′}
and also {π(x′), π(y′)} = {x, y}. Since x↔ y and x′ ↔ y′ are automorphisms of Gk−2, we may assume
π(x) = x′, π(x′) = x, π(y) = y′, and π(y′) = y which easily implies the existence of the desired
automorphism for Gk.
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(ii) The order and size of Gk are obvious in view of the definition of the extension operation. We
prove that Gk has independence number k by induction on k. For k ≤ 4, this is obvious. Therefore,
let k ≥ 5. By (i), Gk−1 arises by applying the extension operation to one end of Gk−2 and Gk arises
by applying the extension operation to the end of Gk−1 which is disjoint from the vertex set of Gk−2

(cf. Figure 5).

r

r

rr

r
�
�
�
�
�� B
B
B
B
BB

r

rr rr
�
�
�
�
�� B

B
B
B
BB 











B
B
B
B
BB

J
J
J
J
JJ

r

r

Gk
E

Figure 5 Gk−2 extended twice together with an end E.

Let I be a maximum independent set of Gk. Clearly, I intersects the set E (cf. Figure 5) in at least 1
and at most 2 vertices. If |I ∩E| = 1, then we may assume that I contains a vertex u of degree 2 from
E and deleting NGk [u] from Gk results in Gk−1. Hence, by induction, α(Gk) = |I| = 1 +α(Gk−1) = k.
If |I ∩E| = 2, then deleting NGk [I ∩E] from Gk results in Gk−2. Hence, by induction, α(Gk) = |I| =
2 + α(Gk−2) = k, by induction. This completes the proof of (ii).

(iii) We prove this by induction on k. For k ≤ 4, the statement is easily verified. Therefore, let k ≥ 5.
Let E be an end of Gk which contains as few elements from {u, v} as possible. Since the two ends
of Gk are vertex disjoint, E contains at most one of the two vertices u and v. By (i), Gk arises by
applying the extension operation to an end of Gk−1 such that E is created as a new end, i.e. using
the notation in Figure 3 we have E = {a′, b′, c′, d′, e}. Since k ≥ 5, the choice of E implies that if
e ∈ {u, v}, then d 6∈ {u, v}.

By induction, Gk−1 has a maximum independent set I containing neither u nor v. Let I ′ = I\{b, c}.
If a, d ∈ I, then one of the two sets I ′∪{b′} and I ′∪{c′} yields the desired independent set. If b, d ∈ I,
then one of the two sets I ′∪{a′, c′} and I ′∪{b′, d′} yields the desired independent set. If a, c ∈ I, then
one of the four sets I ′ ∪ {b′, e}, I ′ ∪ {c′, e}, I ′ ∪ {b′, d}, and I ′ ∪ {c′, d} yields the desired independent
set. If I ∩ {a, b, c, d} ⊆ {b, c}, then one of the two sets I ′ ∪ {a′, c′} and I ′ ∪ {b′, d′} yields the desired
independent set. This completes the proof of (iii).

(iv) Since the result is easy to check for k ≤ 4, we assume that k ≥ 5. By (i), we may assume that
Gk is as in Figure 5 such that a and d belong to E. Since deleting NGk [a] ∪ NGk [d] from Gk results
in Gk−2, the desired statement follows from (iii). This completes the proof. 2

Proof of Theorem 6: In order to obtain a contradiction, we assume that G is a counterexample of
mininum order. Clearly, G is connected. Analogously to Heckman and Thomas [11], we prove a series
of claims.

Claim 1 G is not difficult, i.e. λ(G) = 0.

Proof of Claim 1: In order to obtain a contradiction, we assume that G is difficult. Let G have bk
blocks isomorphic to Gk for k ≥ 2. Note that G has

∑
k≥2

bk − 1 bridges. By Lemma 7 (ii) and (iii), we

obtain

α(G) =
∑
k≥2

kbk

9



=
1
7

4
∑
k≥2

(3k − 1)bk −

∑
k≥2

(5k − 5)bk +
∑
k≥2

bk − 1

− 1


=

1
7

(4n(G)−m(G)− λ(G))

which is a contradiction. 2

Claim 2 The graph G has no vertex of degree 1.

Proof of Claim 2: In order to obtain a contradiction, we assume that u is a vertex of degree 1. Let v
denote the neighbour of u. If G′ = G[V (G) \ {u, v}], then α(G) ≥ α(G′) + 1 and λ(G′) ≤ dG(v) − 1.
We obtain

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ 1 +
1
7

(− 8 + dG(v)− (dG(u)− 1)) ≥ 0. (12)

Now, by the choice of G,

α(G) = (α(G)− α(G′)) + α(G′)

≥ (α(G)− α(G′)) +
1
7
(
4n(G′)−m(G′)− λ(G′)

)
=

1
7

(4n(G)−m(G)− λ(G))

+(α(G)− α(G′)) +
1
7
(
−4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′)

)
≥ 1

7
(4n(G)−m(G)− λ(G)) (13)

which is a contradiction. 2

For a subgraph H of G, let φ(H) denote the number of edges of G with exactly one end in V (H).

Claim 3 If H is a difficult induced subgraph of G, then φ(H) ≥ 3. Furthermore, if φ(H) = 3, then
H is a difficult block.

Proof of Claim 3: In order to obtain a contradiction, we assume that H is a difficult induced subgraph
of G with φ(H) ≤ 2. Clearly, φ(B) ≤ 2 for some endblock B of H. Let k ≥ 2 be such that B is
isomorphic to Gk. Let G′ = G[V (G) \ V (B)]. By Lemma 7 (ii) and (iii), α(G) ≥ α(G′) + k. By the
definition of a difficult graph, λ(G′) ≤ φ(B)− 1. By Lemma 7 (ii),

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ k +
1
7

(− 4(3k − 1) + (5k − 5 + φ(B))− (φ(B)− 1)) = 0.

Arguing as with (12) and (13), we obtain a contradiction. This proves the first part of the desired
statement.

If H is not a difficult block, then H has two endblocks B1 and B2, and so φ(H) ≥ (φ(B1)− 1) +
(φ(B2)− 1) ≥ 4. This completes the proof of Claim 3. 2

Claim 4 If v is a vertex of degree 2 and u and w are the neighbours of v, then dG(u) + dG(w) ≤ 5.
Furthermore, if dG(u) + dG(w) = 5, then G′ = G[V (G) \ {u, v, w}] is a difficult block and α(G) =
α(G′) + 1.
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Proof of Claim 4: In order to obtain a contradiction, we assume that dG(u) + dG(w) ≥ 6. Clearly,
α(G) ≥ α(G′) + 1. By Claim 3, λ(G′) ≤

⌊
dG(u)+dG(w)−2

3

⌋
. Now

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ 1 +
1
7

(
−12 + (dG(u) + dG(w))−

⌊
dG(v) + dG(w)− 2

3

⌋)
= 1 +

1
7

(
−10 +

⌈
2(dG(v) + dG(w)− 2)

3

⌉)
≥ 0.

Arguing as with (12) and (13), we obtain a contradiction.
If dG(u) + dG(w) = 5 and either α(G) ≥ α(G′) + 2 or λ(G′) = 0, we obtain a similar contradiction

as above. Hence α(G) = α(G′) + 1 and λ(G′) = 1. This, together with Claim 3, implies that G′ is a
difficult block. 2

Claim 5 If abcd is an induced path such that dG(b) = dG(c) = 2, then a and d have a common
neighbour.

Proof of Claim 5: In order to obtain a contradiction, we assume that a and d have no common
neighbour. This implies that

G′ = (V (G) \ {b, c}, (E(G) \ {ab, bc, cd}) ∪ {ad}).

is triangle-free. Clearly, α(G) ≥ α(G′) + 1. Since G′ is connected, λ(G′) ≤ 1. Now

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′)) ≥ 1 +
1
7

(−8 + 2− 1) = 0.

Arguing as with (12) and (13), we obtain a contradiction. 2

Claim 6 If v is a vertex of degree 2 and u and w are the neighbours of v, then dG(u) + dG(w) = 5.

Proof of Claim 6: In view of Claim 2 and Claim 4, we assume, for contradiction, that dG(u)+dG(w) =
4. Let u′ be the neighbour of u different from v and let w′ be the neighbour of w different from v. By
Claim 5, u′ and w′ are adjacent. Let G′ = G[V (G) \ {u, v, w, u′, w′}]. Clearly, α(G) ≥ α(G′) + 2. By
the definition of a difficult graph, λ(G′) ≤ (dG(u′)− 2) + (dG(w′)− 2)− 1. Now

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ 2 +
1
7

(− 20 + (dG(u′) + dG(w′) + 1)− (dG(u′) + dG(w′)− 5))

= 0.

Arguing as with (12) and (13), we obtain a contradiction. 2

Claim 7 The graph G has no vertex of degree 2.

Proof of Claim 7: In order to obtain a contradiction, we assume that b is a vertex of degree 2 and that
a and c are the neighbours of b. By Claim 6, we may assume that a has degree 3 and c has degree 2.
By Claim 4, G′ = G[V (G) \ {a, b, c}] is a difficult block and satisfies α(G) = α(G′) + 1. If G′ = G2,
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then it follows easily that G = G3 which is a contradiction. Hence, we may assume that G′ = Gk for
some k ≥ 3.

By Claim 6, the neighbour d of c different from b has degree 2 in G′. Since G′ is a difficult block,
d has a neighbour e of degree 2 in G′. Let f denote the neighbour of d in G′ different from e and let
g denote the neighbour of e in G′ different from f . Since g is of degree at least 3, Claim 6 implies
that a is adjacent to e in G. Since G is triangle-free, a is not adjacent to g in G. If a is not adjacent
to f in G, then Lemma 7 (iv) applied to G′, the induced path gedf of G′, and the unique vertex u in
NG(a) \ {b, e} implies the existence of a maximum independent set I ′ of G′ containing g and f but
not u. Now I ′ ∪ {a, c} is an independent set of G which implies the contradiction α(G) ≥ 2 + α(G′).
Hence a is adjacent to f in G. Now G arises by applying the extension operation to the difficult block
G′ (cf. Figure 6), i.e., by definition, G is a difficult block which is a contradiction. 2

r r

rr

�
�
�
�
��B
B
B
B
BB r rr

rr

�
�
�
�
��J

J
J
J
JJ

J
J
J
J
JJ

g e
d

c

b

a
f

G′

G

Figure 6 G arises by applying the extension operation to G′.

Claim 8 If H is a difficult induced subgraph of G, then φ(H) ≥ 4.

Proof of Claim 8: This follows immediately from the fact that every difficult graph has at least four
vertices of degree 2 and G has no vertex of degree 2. 2

Claim 9 The minimum degree of G is 3.

Proof of Claim 9: In order to obtain a contradiction, we assume that the minimum degree of G is
d ≥ 4. Let u be a vertex of minimum degree. Let D denote the degree sum of the neighbours of u.
Clearly, D ≥ d2. Let G′ = G[V (G) \NG[u]]. Clearly, α(G) ≥ α(G′) + 1. By Claim 8, λ(G′) ≤

⌊
D−d

4

⌋
.

Now

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ 1 +
1
7

(
−4(d+ 1) +D −

⌊
D − d

4

⌋)
= 1 +

1
7

(
−4(d+ 1) + d+

⌈
3(D − d)

4

⌉)
≥ 1 +

1
7

(
−4(d+ 1) + d+

⌈
3(d2 − d)

4

⌉)
≥ 0.

Arguing as with (12) and (13), we obtain a contradiction. 2

Claim 10 The graph G is cubic.

Proof of Claim 10: In order to obtain a contradiction, we assume that G is not cubic. By Claim 9,
this implies the existence of a vertex u of degree 3 such that the degree sum D of the neighbours of u
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satisfies D ≥ 10. Let G′ = G[V (G) \NG[u]]. Clearly, α(G) ≥ α(G′) + 1. By Claim 8, λ(G′) ≤
⌊
D−3

4

⌋
.

Now

(α(G)− α(G′)) +
1
7

(− 4(n(G)− n(G′)) + (m(G)−m(G′))− λ(G′))

≥ 1 +
1
7

(
−16 +D −

⌊
D − 3

4

⌋)
= 1 +

1
7

(
−13 +

⌈
3(D − 3)

4

⌉)
≥ 1 +

1
7

(
−13 +

⌈
3(10− 3)

4

⌉)
= 0.

Arguing as with (12) and (13), we obtain a contradiction. 2

Since, by Theorem 5, the desired result holds for cubic graphs, the proof is complete. (The only
argument missing for an independent proof not relying on Theorem 5 corresponds exactly to Claim 6
in [11]. Since G is cubic, the very same proof as in [11] works.) 2

Heckman and Thomas [11] described a linear time algorithm which determines an independent set of
an order as guaranteed by Theorem 5 in a given triangle-free graph of maximum degree at most 3.
The proof of Theorem 6 easily yields a polynomial time algorithm which determines an independent
set of an order as guaranteed by Theorem 6 in a given triangle-free graph. In fact, Claims 1 through
10 correspond to reduction steps in an obvious recursive procedure. Since one can check in polynomial
time whether a given graph is difficult or a difficult block, the reduction steps corresponding to Claims
1 and 3 can be implemented in polynomial time. Since all other claims correspond to purely local
operations and the problem can be solved in linear time for cubic graphs, the polynomial running time
of the overall procedure follows.

We close with some consequences of our results. We are able to determine the exact value of
α(G∆−free ∩ Gconn, d) for d ≤ 10

3 and to improve the estimate of α(G∆−free, d) based on (2) (cf. Figure
1) for d ∈

]
2, 107

30

[
.

Corollary 8 (i)

α(G∆−free ∩ Gconn, d) ≥
{

4−d
4 , if 2 ≤ d ≤ 12

5 ,
8−d
14 , if 12

5 < d

with equality for 2 ≤ d ≤ 10
3 .

(ii) If G is a triangle-free connected graph, then

α(G)
n(G)

≥

{
10−d(G)

20 , if 2 ≤ d(G) < 10
3 ,

8−d(G)
14 , if 10

3 ≤ d(G).

(iii) If G is a triangle-free connected graph, then

α(G)
n(G)

≥ 119
235
− 5

94
d(G).

Furthermore, α(G∆−free, d) ≥ 119
235 −

5
94d(G).
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Proof: (i) Corollary 3 and Theorem 6 imply that α(G∆−free ∩ Gconn, d) has at least the given values.
That α(G∆−free ∩ Gconn, d) is not larger follows by considering connected graphs whose cycles are all
of length 5 and vertex disjoint for 2 ≤ d ≤ 12

5 and connected difficult graphs for 12
5 ≤ d ≤

10
3 .

(ii) If d(G) ≥ 10
3 , then λ(G) = 0 and Theorem 6 implies the desired result. Hence, we assume that

2 ≤ d(G) < 10
3 . If G is not difficult, then Theorem 6 implies the desired result, because 4n(G)−m(G)

7 >
5n(G)−m(G)

10 . If G is a difficult block, then Lemma 7 (ii) implies α(G) = 5n(G)−m(G)
10 . Finally, if G is a

difficult graph but not a block, then Lemma 7 (ii) and (iii) imply α(G) > 5n(G)−m(G)
10 .

(iii) Let G be a triangle-free connected graph. Let g(d) = 119
235 −

5
94d. Since, for d = 2 and d = 107

30 ,
the value of g(d) coincides with the convex linear interpolation of the values fSh(x) for integral x,
Shearer’s bound (2) implies α(G)

n(G) ≥
119
235 −

5
94d(G) for d(G) ≤ 2 or d(G) ≥ 107

30 . For 2 < d ≤ 10
3 ,

we have g(d) ≤ 10−d
20 . Finally, for 10

3 < d < 107
30 , we have g(d) ≤ 8−d

14 . Therefore, (ii) implies that
α(G)
n(G) ≥

119
235 −

5
94d(G) for 2 < d(G) < 107

30 .

Since α(G)
n(G) ≥ g(d(G)) holds for all values of d(G), the lower bound on α(G∆−free, d) follows. 2

Figure 7 summarizes the results from Corollary 8.

d

α(P, d)

2 12/5 3 10/3 107/30 4

1/2

2/5

1/3

19/60

Figure 7 The upper line shows the exact value of α(G∆−free∩Gconn, d) from Corol-
lary 8 (i). The middle line shows the lower bound on α(G∆−free, d)
from Corollary 8 (iii). The lower dashed line is the lower bound on
α(G∆−free, d) based on (2) (cf. the right graph in Figure 1).
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