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ABSTRACT

In sensor array processing it is often required to know
the number of signals received by an antenna array,
since in practice only a limited number of observations
is available. Robust techniques for the estimation of the
model order are needed.

In this paper, we propose general application rules
for the most recent model order selection techniques
in the literature considering different one-dimensional
scenarios. Other important contributions are a more
general and improved form of the modified exponen-
tial fitting test (M-EFT) and extensions of other known
model order selection techniques for the case that the
number of sensors is greater than the number of snap-
shots.

Index Terms— Model Order Selection, Principal
Component Analysis, Signal Enumeration

1. INTRODUCTION

In many signal processing applications, including
radar, sonar, communications, channel modeling,
medical imaging, and the estimation of the
parameters of the dominant multipath components
from measurements, the model order selection is a
fundamental step. It allows us to separate the only
noise components from the principal components
applying a rank reduction of the data. For many
parameter estimation techniques such a rank reduction
approach is crucial.

Therefore, as important contributions in this article,
we propose an improved form of the modified expo-
nential fitting test (M-EFT) [1, 2, 3] and we compare
its performance to recent model order estimation tech-
niques available in the literature. Furthermore, after
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extensive simulation campaigns, we also propose rules
for the application of model order selection schemes.

The remainder of this article is organized as fol-
lows. After reviewing the notation in Section 2, the
data model is presented as an example for model or-
der estimation problems in Section 3. A short descrip-
tion of some of the most important recent methods for
model order selection is provided in Section 4. In Sec-
tion 5, an extension of the modified exponential fitting
test (M-EFT) is proposed. In Section 6 we perform
simulations in order to compare the Probability of De-
tection (PoD) of the different techniques mentioned in
this article. General rules for the application of state-
of-the-art model order selection schemes are described
in Section 7. In Section 8 conclusions are drawn.

2. NOTATION

In order to facilitate the distinction between scalars and
matrices, the following notation is used: scalars are de-
noted as italic letters (a, b, . . . ,A,B, . . . , α, β, . . .), col-
umn vectors as lower-case bold-face letters (a,b, . . .)
and matrices as bold-face capitals (A,B, . . .). Lower-
order parts are consistently named: the(i, j)-element
of the matrixA, is denoted asai,j .

We use the superscriptsT ,H ,−1 ,+ and∗ for trans-
position, Hermitian transposition, matrix inversion, the
Moore-Penrose pseudo inverse of matrices, and com-
plex conjugation, respectively.

3. DATA MODEL

Consider the observation of a linear mixture ofd
sources which can be written as

X = A ⋅S +N , (1)

where the mixing matrixA ∈ C
M×d containsd lin-

early independent vectorsai ∈ C
M×1, S ∈ C

d×N con-
tains the source symbolssi(n), wherei = 1, ..., d and
n = 1...,N , and the noise matrixN ∈ C

M×N contains
ZMCSCG (zero-mean circularly symmetric Gaussian)
elements with varianceσ2

n.
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For the general data model of (1), it is possible to
estimate the model order via eigenvalue based tech-
niques, such as EFT [1, 2, 3], Akaike’s Information
theoretic Criterion (AIC) [4, 5], and the Minimum De-
scription Length (MDL) criterion [6, 5].

On the other hand, for the techniques not based on
the eigenvalues profile, but on the shift invariance
equation, e.g., ESTimation ERror (ESTER) [7] and
Subspace-based Automatic Model Order Selection
(SAMOS) [8], we use a more specific data model,
namely the superposition ofd planar wavefronts
received by a uniform linear array (ULA) ofM
sensors duringN subsequent time instants. The
measurement samples are given by

xm,n =
d

∑
i=1

si(n) ⋅ ej⋅(m−1)⋅µi + nm,n, (2)

wherem = 1,2, . . . ,M , n = 1,2, . . . ,N , si(n) denotes
the complex amplitude of thei-th exponential at time
instantn, µi symbolizes the spatial frequency of the
i-th exponential, andnm,n models the additive noise
component inherent in the measurement process.

Note that (1) is a special case of (2) where thei-th
column ofA is equal to[1, ej⋅µi , ..., ej⋅(M−1)µi ]T.

For the computation of the eigenvalues,λi, we can
simply apply the eigenvalue decomposition of the sam-
ple covariance matrix̂Rxx obtained from the measure-
ment matrixX via

R̂xx =
1

N
X ⋅XH ∈ C

MxM . (3)

In the noiseless case, we would have onlyd non-zero
eigenvalues, however, since the data is contaminated
by noise, we havemin(M,N) non-zero eigenvalues.
Therefore, it is our goal to estimate the numberd.

In this article, we assume that the number of
sources to be estimated is smaller than the number of
observationsN and the number of sensorsM , i.e.,
d ≤min{M,N}.

4. MODEL ORDER SELECTION
TECHNIQUES

State-of-the-art model order estimation techniques
based on the eigenvalues include Akaike’s Information
theoretic Criterion (AIC) [4, 5], the Minimum
Description Length (MDL) criterion [6, 5], the
Efficient Detection Criterion (EDC) [9], the method
proposed in [10] denoted here as Nadakuditi Edelman
Model Order selection (NEMO) scheme, Stein’s
Unbiased Risk Estimator (SURE) [11] and the method
proposed in [12] named here as RADOI.

In AIC, MDL and EDC, the information criterion
is a function of the geometric mean,g(k), and arith-
metic mean,a(k), of thek smallest eigenvalues of (3)
respectively, andk is a candidate value ford.

In [3], we have shown modifications of AIC, MDL
and EDC for the case thatM > N , which we denote
here by1-D AIC and 1-D MDL. Basically the differ-
ence between AIC, MDL and EDC is the penalty func-
tion p(k,N,α), therefore these techniques can be writ-
ten in the following general form

d̂ = argmin
k
J(k) where (4)

J(k) = −N(α − k) log(g(k)
a(k)) + p(k,N,α),

whered̂ represents an estimate of the model orderd.
The penalty functions for1-D AIC, 1-D MDL and
1-D EDC are given byp(k,N,α) = k(2α − k),
p(k,N,α) = 1

2
k(2α − k) log(N), and

p(k,N,α) = 1

2
k(2α − k)√N ln(lnN) respectively.

According to [3] α = min[M,N], while
according to [10], we should useα = M , and
0 ≤ k ≤ min[M,N]. Note that we apply in this article
the same penalty function used in [7] for the EDC
technique. Note also that in EDC a general penalty
function is proposed such that this function should
obey some restrictions, thereby AIC and MDL are
specific cases of EDC.

In the Nadakuditi Edelman Model Order selection
(NEMO) scheme, the cost function to be minimized is:

d̂ = argmin
k

NEMO(k) where (5)

NEMO(k) = ψ
4
[N
M
] t2k + 2(k + 1) ,

tk =
⎡⎢⎢⎢⎢⎣
(M − k) ∑

M
i=k+1 λ

2

i

(∑M
i=k+1 λi)2

− (1 + M
N
)
⎤⎥⎥⎥⎥⎦
N − ( 2

ψ
− 1)M

N
,

ψ = 1 if X ∈ R
M×N andψ = 2 if X ∈ C

M×N . In
NEMO, we have that0 ≤ k <min(M,N).

In the SURE criterion, the risk̂R(k)must be mini-
mized according to the following expression:

d̂ = argmin
k
R̂(k) where (6)

R̂(k) = (M − k)σ̂2

k + 2σ
2
k + (σ̂4

k − 2σ̂
2

kσ
2 + 4σ̂2

kσ
2

N
) k

∑
i=1

1

λi

+ 4σ2

N

k

∑
i=1

M

∑
j=k+1

λi − σ̂2

k

λi − λj

+ 2σ2

N
k(k − 1)

− 2σ2

N
(M − 1) k

∑
i=1

(1 − σ̂
2

k

λi

)

whereσ̂2

k =
1

M − k

M

∑
i=r+1

λi andσ2 is estimated via

random matrix theory using the algorithm also derived
in [11]. In order to apply SURE, it is necessary to as-
sure that a certain percentage, e.g.,25 %, of the small-
est eigenvalues is only composed of noise.

In [11], SURE outperforms the Laplace [13] and
BIC [14] methods in terms of the Probability of Detec-
tion (PoD).



The RADOI model order selection scheme is an
empirical approach [12], and its cost function is given
by

d̂ = argmin
k

RADOI(k) where (7)

RADOI(k) = λk+1 ⋅ (M

∑
i=2

λi)−1 − ξk ⋅ (M−1

∑
i=1

ξi)−1 ,

(8)

whereξk = 1− α⋅(λk−µk)

µk

, µk = 1

M−k
⋅ ∑M

i=k+1 λi, andα
is given by

α = [argmax
k

(λk − µk)
µk

]−1 . (9)

In [12], RADOI outperforms the Gerschgoerin disk es-
timator (GDE) criterion [15] in the presence of colored
noise, while its performance in the presence of white
noise is similar to the GDE criterion.

Other recent approaches based on expressions
with eigenvectors are ESTimation ERror (ESTER) [7]
and Subspace-based Automatic Model Order Selection
(SAMOS) [8]. Note that although for many scenarios
the Probability of Detection (PoD) of SAMOS is supe-
rior to the PoD of ESTER, in SAMOS there is the limi-
tation that1 ≤ d̂ <min (⌊M−1

2
⌋ ,N), while d̂ in ESTER

can assume values such that1 ≤ d̂ < min (M,N). ⌊⌋
denotes the floor operator. Both ESTER and SAMOS
are based on the shift invariance equations, which con-
strain the type of data used, in contrast to the other tech-
niques in this article.

The ESTER’s residual error for the model order es-
timation is given as follows:

d̂ = argmax
k

1

EE(k)2 where (10)

EE(k)2 = ∥J1 ⋅Uk ⋅ Ψ̂ − J2 ⋅Uk∥22 where

Ψ̂ = (J2 ⋅Uk)+ ⋅ J1 ⋅Uk

whereJ1 ∈ R
M−1×M andJ2 ∈ R

M−1×M are the se-
lection matrices for the firstM − 1 sensors and for the
lastM − 1 sensors respectively, andUk represents the
k first left singular eigenvectors ofX .

In SAMOS, the matrixU tb
k = [J2Uk J1Uk] ∈

C
M−1×2⋅d is defined. Without noiseU tb

k is a rank-d
matrix, and the lastd singular valuesλtb

d+1,...,λtb
2d are

equal to zero. Therefore, the model order selection ex-
pression for SAMOS is given by:

d̂ = argmax
k

1

ES(k) where (11)

ES(k) = 1

k

2k

∑
i=k+1

λtb
i where

whereλtb
i denotes thei-th singular value ofU tb

k .

5. EXTENSION OF THE MODIFIED
EXPONENTIAL FITTING TEST

AIC and MDL often fail when the number of inde-
pendent temporal snapshotsN is small, in contrast to
EDC and mainly NEMO, whose PoD is very high in
such a case. The Modified Exponential Fitting Test (M-
EFT) [3], an improved version of the Exponential Fit-
ting Test (EFT) [1, 2], has also a very high PoD for such
a scenario. EFT is based on the observation that, in the
noise-only case, the profile of the ordered eigenvalues
can be well approximated by a decaying exponential.

Let λi be thei-th eigenvalue of the sample covari-
ance matrix in (3). The exponential model may be ex-
pressed as

E{λi} = E{λ1} ⋅ q(α,β)i−1, (12)

whereE{⋅} is the expectation operator and we assume
that the eigenvalues are sorted so thatλ1 is the largest.
The termq(α,β) for the M-EFT is given by

q(α,β) = (13)

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
¿ÁÁÀ 30

α2 + 2
−

√
900(α2 + 2)2 − 720α

β(α4 + α2 − 2)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

so that0 < q(α,β) < 1 and whereα = min {M,N}
andβ =max{M,N}.

Three fundamental equations are necessary for the
derivation of M-EFT. The first one is the assumption
of the exponential profile approximation in (12). The
second is the sum of the expectation of the eigenvalues
in

α

∑
i=1

E{λi} =M ⋅ σ2

n. (14)

The last fundamental equation is the expectation of the
square of the eigenvalues in

α

∑
i=1

E{λ2

i } = M
N
⋅ (M +N + γ) ⋅ σ4

n. (15)

In case of real-valued noise, we setγ = 1, otherwiseγ =
0. Basically (15) is modified here in contrast to [1, 2, 3]
due to the fact thatE{nm,n ⋅n∗m,n ⋅nm,n ⋅n∗m,n} = 3 for
real-valued noise, and is equal to2 for complex-valued
noise.

Therefore, in contrast to (13), we obtainq from the
following equation

(C1(M,N) − 1) ⋅ qα+1 + (C1(M,N) + 1) ⋅ qα

(16)

−(C1(M,N) + 1) ⋅ q + 1 −C1(M,N) = 0,



whereC1(M,N) = M+N+γ

M ⋅N
. To find a closed-form ex-

pression for the rateq in (13), equation (16) was solved
in [3] using an approximation. Alternatively, in this
variation of M-EFT, we can solve (16) using numerical
methods. Moreover, we extend (16) also to the real-
valued case, which can be accomplished by replacing
C1(M,N) = M+N

M ⋅N
, as used in [3] by the more general

expressionC1(M,N) = M+N+γ

M ⋅N
.

Similarly to the EFT, in our proposed variation of
the M-EFT, it is assumed that the smallest eigenvalue is
a noise eigenvalue, and then the prediction of the noise
eigenvalues is performed by using the set of the previ-
ous eigenvalues. Thereby, it is only possible to obtain
α − 1 predicted eigenvalues.

The decision if a certain eigenvalue is a noise eigen-
value is performed by computing its relative distance
with respect to the predicted eigenvalue. For this rel-
ative distance a threshold is defined as function of the
probability of false alarm.

Finally the estimation of the model order stops when
the relative distance between the eigenvalue and its pre-
diction is outside the threshold region, otherwise, the
next larger eigenvalue is tested.

6. SIMULATION RESULTS

In this section we present simulation results demon-
strating the performance of the proposed methods con-
sidering the data model from (2). Following the CFAR
(Constant False-Alarm Rate) approach, the probabil-
ity of false alarm is set to a constant for all signal to
noise ratios. For simplicity, we setPfa = 10−4 for
all threshold values computed for M-EFT and the pro-
posed variation. It is therefore instructive to compare
the probability of correct detection, i.e.,Pr (d̂ = d) ver-
sus the SNR. We also assume that the noise samples are
zero mean circularly symmetric complex Gaussian dis-
tributed and mutually independent with variance equal
toσ2

n. The spatial frequenciesµi are drawn from a uni-
form distribution in[−π,π]. The source symbols are
zero mean i.i.d. circularly symmetric complex Gaus-
sian distributed with power equal toσ2

s for all the sources.
The SNR at the receiver can then be defined as

SNR = 10 ⋅ log10 (σ2
s

σ2
n

) . (17)

In Figure 1, we consider real-valued Gaussian data
and noise, and as expected the extension of the M-EFT,
represented in the legend as M-EFT II, outperforms M-
EFT.

Several recent model order selection techniques are
compared in Figure 2, and particularly in this scenario
we are interested in the case of having a small number
of both sensors and snapshots. We can see that the two
versions of M-EFT and the traditional EFT outperform
all the other techniques. The 1-D AIC has a better per-
formance than AIC, and also than the other techniques
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Fig. 1. Comparing the M-EFT II and M-EFT for the
case of real noise. Probability of detection vs. SNR for
an array of sizeM1 = 5. The number of snapshotsN is
set to 6 and the number of sourcesd = 3.

in the literature. The same behavior is observed for the
1-D MDL and MDL.

In Figure 3, we increase the number of sensors to
100, and a very significant difference of performance
between the M-EFT techniques and all the other tech-
niques is observed. For example, NEMO is5 dB far
away from the M-EFT techniques. Furthermore,1-D
AIC and1-D MDL have a better performance than AIC
and MDL, while no improvement is observed for1-D
EDC compared to the EDC.

7. COMPARISON OF STATE-OF-ART
SCHEMES

After extensive simulation campaigns, we have obtained
the following results for different one-dimensional sce-
narios:

1.1) If M > N , the two versions of M-EFT outperform
all the other model order estimation techniques.
As an exception for this rule, the scenario de-
scribed in rule 1.3) is shown;

1.2) If M ≤ N and considering a high number of sam-
ples,N , many solutions can be applied, e.g., M-
EFT and its variation proposed here, the tradi-
tional EFT, AIC, and MDL. However, since thresh-
old coefficients are not required for AIC and MDL,
they turn out to be the best option.

1.3) If N ≤ 8 andM ≤ 10, or even smaller, then the
traditional EFT and the NEMO slightly outper-
forms the two versions of M-EFT. Otherwise, the
versions of M-EFT have a better PoD.

In addition, for real valued data, the proposed vari-
ation of M-EFT should be used instead of M-EFT and
for complex value data, both can be applied.
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Fig. 2. Probability of detection vs. SNR for an array of sizeM1 = 15. The number of snapshotsN is set to 10 and
the number of sourcesd = 3.
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Fig. 3. Probability of detection vs. SNR for an array of sizeM1 = 100. The number of snapshotsN is set to 10
and the number of sourcesd = 3. In this scenario thePfa is set to10−5.



8. CONCLUSIONS

In this article, we present general rules for selecting the
best model order selection techniques for different sce-
narios. We propose also a variation of M-EFT, whose
PoD is higher for real valued data if compared to the
M-EFT.
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G. Del Galdo, “Enhanced model order estimation
using higher-order arrays,” inProc. 40th Asilo-
mar Conf. on Signals, Systems, and Computers,
Pacific Grove, CA, USA, Nov. 2007.

[4] H. Akaike, “A new look at the statistical model
identification,” IEEE Trans. on Automatic Con-
trol, vol. AC-19, pp. 716–723, 1974.

[5] M. Wax and T. Kailath, “Detection of signals
by information theoretic criteria,” IEEE Trans.
on Acoustics, Speech, and Signal Processing, vol.
ASSP-33, pp. 387–392, 1985.

[6] A. Barron, J. Rissanen, and B. Yu, “The mini-
mum description length principle in coding and
modeling,” IEEE Trans. on Information Theory,
vol. 44, pp. 2743–2760, 1998.

[7] R. Badeau, B. David, and G. Richard, “Selecting
the modeling order for the esprit high resolution
method: an alternative approach,” inProc. IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2004), Montreal,
Canada, May 2004.

[8] J.-M. Papy, L. De Lathauwer, and S. Van Huf-
fel, “A shift invariance-based order-selection
technique for exponential data modelling,”IEEE
Signal Processing Letters, vol. 14, pp. 473–476,
July 2007.

[9] P.R. Krishnaiah L.C. Zhao and Z.D.Bai, “On de-
tection of the number of signals in presence of
white noise,” Journal of Multivariate Analysis,
vol. 20, pp. 1–25, 1986.

[10] Raj R. Nadakuditi and A. Edelman, “Sample
eigenvalue based detection of high-dimensional
signals in white noise using relatively few sam-
ples,” IEEE Transactions of Signal Processing,
vol. 56, pp. 2625–2638, July 2008.

[11] M.O. Ulfarsson and V. Solo, “Rank selection in
noisy PCA with SURE and random matrix the-
ory,” in Proc. International Conference on Acous-
tics, Speech and Signal Processing (ICASSP
2008), Las Vegas, USA, Apr. 2008.

[12] E. Radoi and A. Quinquis, “A new method for
estimating the number of harmonic components
in noise with application in high resolution radar,”
EURASIP Journal on Applied Signal Processing,
pp. 1177–1188, 2004.

[13] T. Minka, “Automatic choice of dimensionality
for pca,” Advances in Neural Information Pro-
cessing Systems, pp. 598–604, 2000.

[14] R. Kass and A. Raftery, “Bayes factors,”Journal
of the American Statistical Association, vol. 90,
no. 430, pp. 773–795, 1995.

[15] H.-T. Wu, J.-F. Yang, and F.-K. Chen, “Source
number estimators using transformed gerschgorin
radii,” IEEE Transactions on Signal Processing,
vol. 43, no. 6, pp. 1325–1333, 1995.


