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COMPARISON OF MODEL ORDER SELECTION TECHNIQUES FOR
HIGH-RESOLUTION PARAMETER ESTIMATION ALGORITHMS
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llImenau University of Technology
Communications Research Laboratory
P.O. Box 100565, D-98684 llmenau, Germany
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ABSTRACT extensive simulation campaigns, we also propose rules

In sensor arrav processing it is often required to knovJor the application of model order selection schemes.
yp 9 q The remainder of this article is organized as fol-

the number of signals received by an antenna armay,ws. After reviewing the notation in Section 2, the
since in practice only a limited numberofobservationsd(,ita'model is presented as an example for mo,del or-
is available. Robust techniques for the estimation oftheder estimation problems in Section 3. A short descrip-

model order are needed. tion of some of the most important recent methods for
nodel order selection is provided in Section 4. In Sec-

. . o . . 1AU€%on 5, an extension of the modified exponential fitting
in the literature considering different one-dimensional, (M-EET) is proposed. In Section 6 we perform

scenarios. Other important contributions are a mor%imulaﬂons in order to compare the Probability of De-

,?elnf.et;.al apdt'mlvrl)rg\s_d fordm O: thg mOd'ff'etc; exlfonen'tection (PoD) of the different techniques mentioned in
lal fitting test (M- ) and extensions of other known this article. General rules for the application of state-

model order selectpn techniques for the case that th81‘—the—art model order selection schemes are described
number of sensors is greater than the number of SNaR: Section 7. In Section 8 conclusions are drawn

shots.

Index Terms— Model Order Selection, Principal 2. NOTATION
Component Analysis, Signal Enumeration
In order to facilitate the distinction between scalars and
1. INTRODUCTION matrices, the following notation is used: scalars are de-
noted as italic lettersi( b, ..., A, B, ..., a,[3,...), col-

In many signal processing applications, includingUmn vectors as lower-case bold-face lettersh(. . .)
radar, sonar, communications, channel modelingdnd matrices as bold-face capital$,(B, .. .). Lower-
medical imaging, and the estimation of the Order parts are consistently named: {tigj)-element
parameters of the dominant multipath component®f the matrixA, is denoted as; ;.
from measurements, the model order selection is a We use the superscripts” ,”' ,* and* for trans-
fundamental step. It allows us to separate the on|}position, Hermitian transposition, matrix inversion, the
noise components from the principal componentdloore-Penrose pseudo inverse of matrices, and com-
applying a rank reduction of the data. For manyPlex conjugation, respectively.
parameter estimation techniques such a rank reduction
approach is crucial. 3. DATA MODEL

Therefore, as important contributions in this article,
we propose an improved form of the modified expo-Consider the observation of a linear mixture @f
nential fitting test (M-EFT) [1, 2, 3] and we compare sources which can be written as
its performance to recent model order estimation tech-

nigues available in the literature. Furthermore, after X = A-S+N, @)

. . . M d . .
1 Jozo Paulo C. L. da Costa is a scholarship holder of the Na—Where' the mixing matrixd ¢ C**¢ containsd lin-
tional Counsel of Technological and Scientific Developm@nn-  early independent vectots € CM*1, § e C*V con-

selho Nacional de Desenvolvimento Cientifico e Tecnal®gCNPq)  tains the source symbols(n), wherei = 1,...,d and
pfthe Bra2|I|a'n Government and also a First Lieutenant eBhazil- n=1.., N, and the noise matri®V « CMxN contains
ian Army (Exército Brasileiro). . . .

2rpita Thakre from Indian Institute of Technology Madrasis ~ £MCSCG (zero-mean circularly symmetric Gaussian)

leave at the limenau University of Technology as areseamsistant. ~ elements with variance? .
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For the general data model of (1), it is possible to  In [3], we have shown madifications of AIC, MDL
estimate the model order via eigenvalue based tectend EDC for the case thdt/ > N, which we denote
niques, such as EFT [1, 2, 3], Akaike’s Information here by1-D AIC and 1-D MDL. Basically the differ-
theoretic Criterion (AIC) [4, 5], and the Minimum De- ence between AIC, MDL and EDC is the penalty func-

scription Length (MDL) criterion [6, 5]. tion p(k, N, «), therefore these techniques can be writ-
On the other hand, for the techniques not based oten in the following general form

the eigenvalues profile, but on the shift invariance s .

equation, e.g., ESTimation ERror (ESTER) [7] and - argmka(k) where “)

Subspace-based Automatic Model Order Selection
(SAMOS) [8], we use a more specific data model, J (k)
namely the superposition off planar wavefronts

received by a uniform linear array (ULA) oM\ nere ] represents an estimate of the model order
sensors duringV subsequent time instants.  The 14 penalty functions foi-D AIC, 1-D MDL and

-N(a- k)log(%) +p(k,N, ),

measurement samples are given by 1-D EDC are given byp(k,N,a) = k(2a - k),
J p(k,N, ) = 1k(2a - k)log(N), and

Tnon = Zsi(n)«ej'(m_l)'m + Ny (2)  p(k,N.a) = k(20 - k)\/NIn(InN) respectively.

i=1 According to [3] @ = min[M,N], while

wherem =1,2,...,M,n=1,2,..., N, si(n) denotes according to [10], we should use = M, and

0 < k <min[M, N]. Note that we apply in this article
the same penalty function used in [7] for the EDC
technique. Note also that in EDC a general penalty
function is proposed such that this function should
obey some restrictions, thereby AIC and MDL are
specific cases of EDC.

the complex amplitude of theth exponential at time
instantn, p; symbolizes the spatial frequency of the
i-th exponential, andh,,, , models the additive noise
componentinherent in the measurement process.
Note that (1) is a special case of (2) where il

i I J(M-1)p; 1T
column of A is equal t[1, e”*, ..., ¢ I In the Nadakuditi Edelman Model Order selection

. For the compu_tat|0n of the e|genval-u.e\§,, we can (NEMO) scheme, the cost function to be minimized is:
simply apply the eigenvalue decomposition of the sam-

ple covariance matri¥,, obtained from the measure- j_ argmin NEMO(k) where )
ment matrixX via k

A 1 Y NEMO(k):%[%] p+2(k+1)
RM:NX~X e CMxM, ()
M 2
- te = (M_k)zl'ﬂfiJrl/\%_(H%) N—(E—l)% ,
In the noiseless case, we would have odligon-zero (M0 N) N v /N

eigenvalues, however, since the data is contaminated
by noise, we havenin(M, N') non-zero eigenvalues. ¢ = 1if X ¢ RM*V andy = 2if X ¢ C**V.In
Therefore, it is our goal to estimate the number NEMO, we have thaf) < k < min(M, N).

In this article, we assume that the number of  Inthe SURE criterion, the risk(%) must be mini-
sources to be estimated is smaller than the number ahized according to the following expression:
observationsV and the number of sensor¥, i.e.,

d <min{M, N}. d:argmlgn}?(k) where (6)
- 4630% &1
R(k) = (M - k)67 +20°k + (61 — 267.0° k —
4. MODEL ORDER SELECTION (k) = (M = k)ai + 207k + (03 = 20%0” + ——) ),
TECHNIQUES 2 k My _ A2 2
p AT Sy MOk 20 )
N i=1 j=k+1 Ai = A N

State-of-the-art model order estimation techniques

based on the eigenvalues include Akaike’s Information N LFQ(M -1) Zk:(l N i )
theoretic Criterion (AIC) [4, 5], the Minimum N i1 i
Description Length (MDL) criterion [6, 5], the Y

Efficient Detection Criterion (EDC) [9], the method RN _ 2 ; ;
proposed in [10] denoted here as Nadakuditi EdeImanWherea’“ M-k 1-:;1 As ando” is estimated via
Model Order selection (NEMO) scheme, Stein’srandom matrix theory using the algorithm also derived
Unbiased Risk Estimator (SURE) [11] and the methodn [11]. In order to apply SURE, it is necessary to as-

proposed in [12] named here as RADOI. sure that a certain percentage, €2§.%, of the small-
In AIC, MDL and EDC, the information criterion est eigenvalues is only composed of noise.
is a function of the geometric meag(k), and arith- In [11], SURE outperforms the Laplace [13] and

metic meanga(k), of thek smallest eigenvalues of (3) BIC [14] methods in terms of the Probability of Detec-
respectively, and is a candidate value fat. tion (PoD).



The RADOI model order selection scheme is an 5. EXTENSION OF THE MODIFIED

empirical approach [12], and its cost function is given EXPONENTIAL FITTING TEST
by
R AIC and MDL often fail when the number of inde-
d =argmin RADOI(k) where (7) pendent temporal snapshatsis small, in contrast to
k EDC and mainly NEMO, whose PoD is very high in

Mo\ ML such a case. The Modified Exponential Fitting Test (M-
RADOI(K) = Ak - (g; )‘i) & ( Z 51') ' EFT) [3], an improved version of the Exponential Fit-
(8)  ting Test(EFT)[1, 2], has also a very high PoD for such

a scenario. EFT is based on the observation that, in the

where¢, = 1- a‘()\lljk—ﬂk) e = ﬁ . Z%]ﬁ-l );, anda ESLSEéocvlé/llc:se, th.e profile of the orQered eigenvglues
pproximated by a decaying exponential.
Let \; be thei-th eigenvalue of the sample covari-

]—1 ance matrix in (3). The exponential model may be ex-

is given by

(Ak = pr)
Mk

o= [arg max (9) pressedas
i G . i-1
In [12], RADOI outperforms the Gerschgoerin disk es- E{Ai} =E{A}-qla. 5)7, (12)

timator (G.DE') criterion [15] in 'the presence of colore'd whereE {-} is the expectation operator and we assume
noise, while its performance in the presence of whitg, 4t the eigenvalues are sorted so thats the largest.

noise is similar to the GDE criterion. The termg(a, 3) for the M-EFT is given by
Other recent approaches based on expressions
with eigenvectors are ESTimation ERror (ESTER) [7] q(a,B) = (13)
and Subspace-based Automatic Model Order Selection
(SAMOS) [8]. Note that although for many scenarios 30 900 720
the Probability of Detection (PoD) of SAMOS is supe- P | "\ a2 +2 ~ \/(aQ +2)2 Blat+a?-2) [’

rior to the PoD of ESTER, in SAMOS there is the limi-

tation thatl < d < min ([ 45 ], V'), whiledinESTER ¢4 that) < g(a, 3) < 1 and wheren = min {M, N}

can assume values such that d < min (M, N). ||  andf = max {M, N}.

denotes the floor operator. Both ESTER and SAMOS  Three fundamental equations are necessary for the
are based on the shift invariance equations, which coryerivation of M-EFT. The first one is the assumption
strain the type of data used, in contrast to the other techyf the exponential profile approximation in (12). The

niques in this article. second is the sum of the expectation of the eigenvalues
The ESTER's residual error for the model order es-n

timation is given as follows:

~ 1 «
d = AIEMA s where (10) ;E{/\i} =M o2, (14)

|J,-Up-®-J,-Upg|2 where

2
EE(k)A . The last fundamental equation is the expectation of the
Vo= (Jo-Up) - J1-Uy square of the eigenvaluesin

whereJ; ¢ RM2>M gndJ, ¢ RM-1*M gre the se-
lection matrices for the first/ — 1 sensors and for the
last M - 1 sensors respectively, aiid; represents the
k first left singular eigenvectors of .

In SAMOS, the matrixUZb = [JoUy, J U] € Incaseofreal-valued noise, we set 1, otherwisey =
CM-1x2d jg defined. Without noisé]ff is a rankd 0. Basically (15) is modified here in contrastto [1, 2, 3]
matrix, and the lastl singular values\?, ,,.. \!’, are  duetothe fact that{rn, » n, ,,-nmn 1y, ,} = 3 for
equal to zero. Therefore, the model order selection exteal-valued noise, and is equal2dor complex-valued

iE{A?}:%-(M+N+7).a;§. (15)
i=1

pression for SAMOS is given by: noise.
Therefore, in contrast to (13), we obtajfirom the
- 1 - .
d = arng?XEs(k) where  (11) following equation
1 2k Cy(M,N)=1)-¢*"' +(Cy(M,N)+1)-¢
Es(k) = — > M’ where ( ) ( )
ki:k+1 (16)

where)!® denotes the-th singular value ot/%. _(Cl(M’ N)+ 1) 1+ 1= Ci(M,N) =0,



whereC; (M, N) = 22847 To find a closed-form e» .
pression for the ratgin (13), equation (16) was solv "
in [3] using an approximation. Alternatively, in tt 07t
variation of M-EFT, we can solve (16) using numeri
methods. Moreover, we extend (16) also to the r
valued case, which can be accomplished by reple
C1(M,N) = $£5 as used in [3] by the more gene
expressiorCy (M, N) = 2220

Similarly to the EFT, in our proposed variation
the M-EFT, it is assumed that the smallest eigenval
a noise eigenvalue, and then the prediction of the r
eigenvalues is performed by using the set of the pi ‘ ‘ ‘ ‘ ‘ ‘ ‘
ous eigenvalues. Thereby, it is only possible to ok 1 14 16 B © 22 2
«a - 1 predicted eigenvalues.

The decision if a certain eigenvalue is a noise eigenFig. 1. Comparing the M-EFT Il and M-EFT for the
value is performed by computing its relative distancecase of real noise. Probability of detection vs. SNR for
with respect to the predicted eigenvalue. For this relan array of sizel/; = 5. The number of snapshaté is
ative distance a threshold is defined as function of th&et to 6 and the number of sourees 3.
probability of false alarm.

Finally the estimation of the model order stops wheny, e |iterature. The same behavior is observed for the
the relative distance between the eigenvalue and its pre-n MpL and MDL.

diction is outside the threshold region, otherwise, the |, Figure 3, we increase the number of sensors to

Probability of detection
[=] [=]
> o
T

o
w

o
N

next larger eigenvalue is tested. 100, and a very significant difference of performance
between the M-EFT techniques and all the other tech-
6. SIMULATION RESULTS nigues is observed. For example, NEMOb5islB far

away from the M-EFT techniques. FurthermoreD
In this section we present simulation results demonA|C and1-D MDL have a better performance than AIC
strating the performance of the proposed methods corand MDL, while no improvement is observed foiD
sidering the data model from (2). Following the CFAR EDC compared to the EDC.
(Constant False-Alarm Rate) approach, the probabil-
ity of false alarm is set to a constant for all signal to 7. COMPARISON OF STATE-OF-ART
noise ratios. For simplicity, we se®, = 10~ for SCHEMES
all threshold values computed for M-EFT and the pro-

posed variation. It is therefore instructive to compareafter extensive simulation campaigns, we have obtained

the probability of correct detection, i.&y (d = d) ver- e following results for different one-dimensional sce-
sus the SNR. We also assume that the noise samples g{§jos:

zero mean circularly symmetric complex Gaussian dis-
tributed and mutually independent with variance equali.1) If M > N, the two versions of M-EFT outperform

to o2. The spatial frequencigs are drawn from a uni- all the other model order estimation techniques.

form distribution in[-m, w]. The source symbols are As an exception for this rule, the scenario de-

zero mean i.i.d. circularly symmetric complex Gaus- scribed in rule 1.3) is shown;

sian distributed with power equal &g for all the sources.

The SNR at the receiver can then be defined as 1.2) It M < N and considering a high number of sam-
o2 ples, N, many solutions can be applied, e.g., M-

SNR = 10-log;, (—;) . a7 EFT and its variation proposed here, the tradi-

Tin tional EFT, AIC, and MDL. However, since thresh-

old coefficients are not required for AIC and MDL,

In Figure 1, we consider real-valued Gaussian data :
they turn out to be the best option.

and noise, and as expected the extension of the M-EFT,
represented in the legend as M-EFT I, outperforms M—1'3) If N < 8andM < 10. or even smaller. then the

EFT. i ) traditional EFT and the NEMO slightly outper-
Several recent model order selection techniquesare  5rmsthe two versions of M-EFT. Otherwise. the
compared in Figure 2, and particularly in this scenario versions of M-EFT have a better PoD.

we are interested in the case of having a small number

of both sensors and snapshots. We can see that the two |n addition, for real valued data, the proposed vari-
versions of M-EFT and the traditional EFT outperform ation of M-EFT should be used instead of M-EFT and
all the other techniques. The 1-D AIC has a better perfor complex value data, both can be applied.
formance than AIC, and also than the other techniques
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the number of sources= 3.

Probability of detection

Fig. 3. Probability of detection vs. SNR for an array o

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1~

O
-1

L

SNR

F

dB]
si¥h = 100.

and the number of sourcds- 3. In this scenario thé, is set tol0~°.

[ ]
l:
——M EFT Il
' MEFT ||
| %= EFT
! % RADOI
® | ==NEMO
. —=—SAMOS
) —v—ESTER
-4a-1-D EDC
'l
[ ]

g -m-1-D AIC
K —— MDL H
N —e—AIC

5 10 15

The number of snapshoi$ is set to 10



8. CONCLUSIONS

In this article, we present general rules for selecting the
best model order selection techniques for different sce-
narios. We propose also a variation of M-EFT, whose

PaoD is higher for real valued data if compared to thel10]

M-EFT.
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