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DETERMINISTIC PREWHITENING TO IMPROVE
SUBSPACE BASED PARAMETER ESTIMATION TECHNIQUES
IN SEVERELY COLORED NOISE ENVIRONMENTS

Joao Paulo C. L. da CostaFlorian Roemer, and Martin Haardt

llmenau University of Technology
Communications Research Laboratory
P.O. Box 100565, D-98684 llmenau, Germany
{joaopaulo.dacosta,florian.roemer,martin. hgg@tu-ilmenau.de

ABSTRACT speechless frames [2]. The level of noise correlation

Colored noise is encountered in a variety of signal.(p) depends on the specific application. For example,
processing applications. For such applications thd" [31 an_d [4] p assumes values up @99. For other

prewhitening step becomes essential, since parametgpphcatlons, the correlation can assume smaller values.

estimation without prewhitening can be severely In the stochastic prewhitening approaches of the lit-

erature [2, 5, 6], the data samples are multiplied by

degraded. o o .
Traditionally stochastic prewhitening techniquessome prewhltgnlng matr|.>L ’_Wh'Ch transforms the
orrelated noise into white noise. On the other hand,

transform the colored noise into white noise keepimf S )
the SNR constant. In this paper, we propose 4n our proposed deterministic approach, one sensor is

deterministic approach for subspace prewhiteningused as the reference, and then, the correlated part of
where we remove the correlation, which increase_h? noise is removed. In order o ap.plly the determin-
the SNR. Consequently, in high noise correlation'St'(_: approgch, the corre!atlon qoefflments should be
scenarios, where the subspace is prewhitened b .t|mated in terms of their ampllt.udes and p_hases. In
our deterministic approach, there is a significant!iS Paper, we also propose techniques to estimate these
improvement in the parameter estimation accuracforrelat'on parameters. We compare stochastic and de-

The proposed deterministic prewhitening requireslerministic prewhiFening in computer simulations and
knowledge of the noise correlation. Therefore, wedemonstrate the improved performance of the deter-

also propose solutions to estimate the correlatioﬁmnisnc approach. Here we restrict the application of
coefficients the proposed deterministic prewhitening to ESPRIT-

o . type algorithms. Nevertheless our technique can be
Index Terms— prewhitening, array signal process- gpplied together with other subspace based parameter

ing, noise correlation estimation, colored noise. estimation techniques, like MUSIC, Root MUSIC, or
RARE.
1. INTRODUCTION The remainder of this paper is organized as follows.

After reviewing the notation in Section 2, the colored

In practical applications using sensor arrays thenoise model is presented in Section 3. Then, the esti-
assumption that the noise of the sensors isnation of spatial frequencies with a uniform linear ar-
uncorrelated may be not valid.  For example,ray is presented as a data model example. In Section 4,
underwater noise components of a sonar system are iie propose the new deterministic approach, which pre-
general spatially correlated [1]. Therefore, if no serves the shiftinvariance structure and requires the es-
prewhitening step is applied, a severe degradation aimation of the correlation coefficients. In Section 5,
the performance is observed. we propose methods to estimate the correlation coeffi-

Typically the prewhitening approaches require thecients for the noise model described in Section 3. Sim-
estimation of the noise covariance matf,.,, which  ulations results comparing the different prewhitening
is performed by collecting measurement samples in thechemes are presented for the DOA estimation prob-
absence of signal components. For example, in speedbm in Section 6. In Section 7, conclusions are drawn.
processing applications, the noise can be recorded in

1 Jozo Paulo C. L. da Costa is a scholarship holder of the Na- 2. NOTATION
tional Counsel of Technological and Scientific Developm@n-

selho Nacional de Desenvolvimento Cientifico e TecnaldgCNPQ) - T
of the Brazilian Government and also a First Lieutenant eBhazil- In order to facilitate the distinction between

ian Army (Exército Brasileiro). scalars and matrices, the following notation
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is used: Scalars are denoted as italic lettersvhereR, is the signal covariance matrix ad@,,, is

(a,b,...,A,B,...,a,3,...), column vectors as the noise covariance matrix, such thetR,,,) = M.

lower-case bold-face lettera (b, . ..) and matrices as In practice,R,, can be estimated from a finite set of

bold-face capitalsA, B,...). Lower-order parts are realizations via

consistently named: thé, j)-element of the matrix 1 .

A, is denoted as, ;. Ro~ - X X' 4)
We use the superscripts™ ,~! .+, and* for trans-

position, Hermitian transposition, matrix inversion, the In the absence of signal#.,,, can also be estimated

Moore-Penrose pseudo inverse of matrices, and conby using (4).

plex conjugation, respectively. To demonstrate the estimation of the noise corre-
lation coefficients, we consider the following specific
3. DATA MODEL correlation model [9]
Wl () = p - wn(n) + /1= 16l Wi (n), (5)

As an example for the prewhitening schemes discussed

in this paper, we consider a superpositiondglanar ~ wherem = 1,2,..., M — 1 and indicates the sensor
wavefronts received by a uniform linear array with ~ position. Herep € C represents the noise correlation
sensors afV subsequent time instants. The measurecoefficient between the sensersandm + 1, such that

ment samples are given by 0<[p[<1. _ _ .
Using this correlation model, the noise covariance

d . . A
(1) = Zsi(n) e M=y (©) (. 1) matrix for M = 3 is given by

—~ Lop* (p*)?
Ryw = p2 1 p* . (6)
wherem = 1,2,....M, n = 1,2,...,N, s;(n), PP 1

whose variance ig?, denotes the complex amplitude
of thei-th exponential at time instant, ;; symbolizes
the spatial frequency of the-th exponential, and 4. SUBSPACE PREWHITENING APPROACHES

w'$ (n), whose variance is2, models the additive he i find th i hasti
spatially correlated noise component inherent in the the r:teratfure, hWe Ig o ma;‘r.] SFOC'aStIﬁ
measurement process. In the context of array signdlPProaches for the subspace prewhitening: the

processing, each of the exponentials represents Oﬁ@ditional one based on the Cholesky factorization of
planar wavefront the noise covariance matrix [2], the GEVD

In matrix form, we can represent (1) in the follow- approach [5, 6], and the GSVD'approach [2.5, 6]',
ing way In contrgst tq the stocha.lsyc. approaghes, a linear
preprocessing with a deterministic matiixis applied
X = AS+wWO, (2)  to remove the noise correlation between two adjacent
sensorsm andm + 1 in our proposed deterministic
approach. First we consider the case where no signal
componentis present. Let us assume the noise covari-

whereA € CM*d contains the steering vectots €
CMx1 for each of thel sources,S € C¥*VN contains

the symbolss;(n), and X is corrupted by some spa- ance model in (6) to derive a preprocessing maibpix

i i iy () MxN . . .
tially correlatgd nm(s;e matni(ﬂi € C7. We can To this end, each element of the prewhitened noise ma-
model the noisdV'® asW'® = L - W, whereL tix V = D - W© is transformed as

correlates the white noise matri#. The noise ele- - P
mentsw,, (n) of W are modeled as ZMCSCG (zero- Um () = Wm1(n) - 1 = ol )

mean circularly-symmetric complex Gaussian) randon\qte that the greatep|, the smaller is the variance

variables. o _of the deterministic prewhitened noise samplggn).
In practical applications, the model order must first - (e) . .
Note that the correlated noise,,”, ; (n) in (5) is com-

be estimated. Model order estimation techniques that . . .
are suitable for this scenario are, for example, ESTi-pofSed of a wh|te. noise component correlated with the
mation ERror (ESTER) [7] and Subspace-based Ayloise at the previous sensoy, (n) and another uncor-

tomatic Model Order Selection (SAMOS) [8], since related white componenty,1(n). Since the white

both are based on the shift invariance equation and.°'>¢ component o, (n) 1S known from. the previ
. .. _Qus sensom, we can use this fact to obtain (7).
therefore, are compatible to the subspace deterministic . :
In order to decorrelate the noise as in (7), we pro-

prewhitening technique proposed here. S o o -~
The covariance matrix of the data model (2) is given‘?Ose a determlmstl(I:Mp_rle va 1\? ltening matml\}_l_x 1\”22
p-J1,whereJ, € R andJ, € R are

by the selection matrices for the la&f — 1 sensors and
R,, = 1 E{X - X1 3) for.the first M — llsenso.rs, respectiyely, aridis an
N estimate ofp. In this section we consider that= p,

A Ry - A"+ 02 - Ryw, and in Section 5, we propose ways of calculating



Next, we consider the presence of signal compoin Section 6. Note that for such a gain, it is necessary
nents and the prewhitening matl? is applied in the that the correlatiop should not be in phase to the sig-
following fashion nal.

- o The drawback of the deterministic approach is that

Y=D-X=A4-5+V, ®)  the array aperture is reduced frdmito A/ — 1 sensors.

This leads to a minor performance degradation, which
) ) ) becomes visible for small/ and low correlations.
a; =[1,e/, . eM=2Im]T (eI — gy (9) In summary, the objective of thetochastic prewhiten-
ing approaches is given a certain colored noise matrix
W) and an estimate of the stochastic prewhitening
matrix L', to prewhiten the noise in (2), such that the
elements of the prewhitened noi$¥ = L~ - W (©

where thei-th column of A is of the fornt

The structure ofa; can be derived by observing one
sample ofy,,(n)

Ym(n) = Tmr1(n) = p - wm(n) (10)  have zero mean and varianed, whereo? denotes
d - ey the noise power. In oudeterministic approachwe
=Y [eZmH =l ] si(n) + vm(n) propose to useD, instead of the prewhitening matrix

s
Il
-

L' suchthatV = D - W, and the elements of
mel)m (e V have zero mean and variande— |p|?) - o2, where
[e |- (e = p) - si(n) + vm(n), (1 — |p|?) - 02 denotes the noise power after applying
the proposed deterministic prewhitening.

|
.M&

Il
-

wherel < m < M — 1.

One important property oft is that it has a Van- 5. ESTIMATION OF THE CORRELATION
dermonde structure and therefore the spatial frequen- -oEEEICIENT FOR THE DETERMINISTIC

cies can be obtained from the transformed measure- APPROACH

ment matrixY in the same way as fronX. Conse-

quently, Since for the deterministic approach in Section 4, the
Jy-A=J, A ®, (11)  estimation of is necessary, we propose different ways

of performing this estimation from measurements taken
where® is a diagonal matrix with the spatial frequen- in the absence of signal components. First we represent
ciese’ti, andJ; andJ, are now of siz§ M — 2) x  p as a function of its phase and magnitude, such that

(M —1). o ; p=lpl-e

The SVD ofY is givenbyU , - 3 - P*. We define Let us first take the sample estimate to obtain the
the matrixU, € C(M~1 x4 as the first/ columns vec-  phase and magnitude pf
tors of U,,. Then, there is a certaifi € C**¢, such Y@ -
thatA = U, - T~ '. Therefore, we can rewrite (11) as W1 (1) - [y (n)]

Jy Us=J, U, -0, (12) p="= : (15)
© (1) - Tap(©) (1 )]*

where® = T~! . & . T. Note that® and® share the ;wm (n) - fwr ()]
same set of eigenvalues. h

The prewhitened noise powéy,; is given by wherem = 1, ..., M — 1. Note that the enumerator in

« 2 2 15) is N times the element aR,,,, in rowm + 1 and
Powe = E{vm(n) - v (n)} = oy - (1= o), (13) fZO|L)Jmnm. The sample estimate is applicable to arbi-
whereP,, = E{w,,(n) - w*,(n)} = o2 trary colored noise models. Next we show that for the
Since% = 1— |p|?, we haveP,,, < P, for considered specific correlated noise model, it is possi-
% ye to improve the estimation of the correlation consid-
erably. To this end, we propose two other techniques:
the ESPRIT based phase estimation and the magnitude

|p|? > 0, which means that this approach always give
a better SNR, fofp| > 0 than in the white noise sce-
nario. Itis possible to observe this behavior by consid

i estimation ofp.
ering the SNR For M = 3, the colored noise samples can be writ-
o2 - |edri — p|? ten as
w P w = p \/W 0 -W. (16)
If the correlatiorip| is close tol, itimplies thatSNR .+ S IRVAE ER VAR PIE

approaches infinity. Therefore, the higher the correla-\ote that this linear transformation has a specific struc-
tion, the better the parameter estimation for the detefye that can effectively be exploited to estimate
ministic approach, and this is shown in the simulations  £qr instance, the first column of the transformation

INote that for the case thatis close toei#i in magnitude and ~ Matrix, which has t_he strongest power, has a Vander-
phase, them?2, the signal power for this particular; is reduced. monde structure with rate equal o Therefore, an




ESPRIT based approach can be applied for the es

tion of the phase op, as shown in the following shi ' T
invariance equation oo aﬂ“%.‘
osl E RS
Ts-ul® = J1-ul® . p, a7 o X“a \“
0.6F EN Ky
where the SVD oW (©) is given byU (). 2. (P & | LR
andu® is the first column of the matrit/). The o4 &
estimated phase shif? is given by‘—gl. 03 [+ ESPRITbased N 210 E
In Figure 1, we compare the sample estimate in 02 | e N
with the ESPRIT based approach in (17) for the ¢ 01l
mation ofe’?. We note that the performance of 1 .

-4 -3 -2 -1 o

ESPRIT based approach in (17) is far better thar 10 0 RMSE of pphase 1
performance of the sample estimate in (15). . o )

Since we have already estimated the phase shift bé:_lg. 1. Complementary cumulative (1A|str|but.|on .functlon (CC.DF)
tween two consecutive sensors, this information can b&' e 0ot mean square error (RMSE)g considering a only noise
applied in order to phase align the correlated noise san®YStem WithM = 11.sensors, and/ = 10 and" = 100 snapshots.

ples. Therefore, we consider the case hat R, and
the outputs of two consecutive sensors are given by - known, since we are interested in evaluating the differ-

tm(n) = w(n) (18)  ent prewhitening schemes and not the estimatiop, of
. — w, A J1 = 2 © (1) - p. which may vary, for gxample, fqr a different number
me1(n) W1 (1) PP Fwm (n) - p of snapshots according to Section 5. The notation in

the legends is the following: SE Color stands for the

N estimation without using any prewhitening, SE DET

.2 1 9 1 c 9 for the deterministic approach proposed here, SE CP
Tw =N Z:lx’”(n) N Z:l[w’(”) (I A9 for the classical prewhitening in [2], SE GEVD for the

" " prewhitening scheme in [5, 6], and SE GSVD for the
Given the noise model, the following expression can beprewhitening in [2, 5, 6].
derived In Figure 3, the RMSE of the spatial frequencies is
) ) plotted versus the SNR. For this scenayios 0.7 and

Eflemii(n) —zn(m)} =2-0, - (L=p). (20) g the prewhitening techniques outperform SE Color.

Sinceo? was estimated in (19) and using the expres-.NOte that the SE DET outperforms all the other prewhiten-

. . S ) ing techniques.
Zlé)cnolrréli(r?g )tbthe magnitude estimationyofs calculated In order to observe the performance as a function of

p, we fix the SNR tal dB in Figure 4. Note that a con-

The noise power can be estimated by
N

1 N siderable improvement by using all types of prewhiten-
p=1- SN 3T Z[xm+1(n) —z,(n)]* (21)  ing is only observed fop > 0.3. Also note that the
Tw 531 stochastic prewhitening schemes tend to keep the noise

2
In Figure 2, we compare the performance of the magni—poweraw constant for all values op. On the other

S . . . hand, for the deterministic approach, the greater the
tude estimation in (21) with the sample estimate in (15)’(:orrelation the greater the gari)r? obtained V\?hich is ex-

and the magnitude estimation outperforms significantly ected according to (14). Therefore, in Figure 4, the

the estimation by the sample estimate. Note that botlg o L LS
eterministic prewhitening outperforms significantly the

approaches have a pe_tter estimation accuracy when tg?ochastic approaches for> 0.7, and only slightly
number of samples is increased.

for 0.4 < p < 0.7. As a drawback, we note that
for p < 0.4, the stochastic prewhitening techniques
6. SIMULATION RESULTS slightly outperforms SE DET, and far< 0.3, the esti-

mation without prewhitening also slightly outperforms

Inthis section we present simulations results, with whicBE DET. This phenomenon is due to the aperture re-

we compare the proposed deterministic method to thguction already mentioned in Section 4.

stochastic approaches. We consider the data symbols

s;(n) as being ZMCSCG distributed. The performance 7. CONCLUSIONS

comparison is based on the spatial frequency estima-

tion with standard ESPRIT (SE) [5] and for each re-In this paper, we propose a deterministic prewhitening

alization, the spatial frequency for each source is chotechnique, which outperforms the prewhitening tech-

sen randomly from a uniform distribution in the inter- niques presented in the literature in case of high noise

val from —% to 7. In addition, we assume thatis  correlation. Observe thatin general we have three cases:
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Fig. 2. Complementary cumulative distribution function (CCDF)
of the root mean square error (RMSE)|pf considering a only noise
system with)M/ = 2 sensors, andv = 10 andN = 100 snapshots.
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Fig. 3. RMSE of the spatial frequencies vs. SNR considering a[5]

system withN' = 10 snapshots, with\/ = 10 sensors and with
p = 0.7. d = 3 sources are present.
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Fig. 4. RMSE of the spatial frequencies vs. correlation fagior
considering a system witflv. = 10 snapshots and witd/ = 10
sensorsd = 3 sources are present. It was fixeR = 1 dB.

First there is the case of a small noise correlation, when
the prewhitening step for the simulated scenario does
not give a significant improvement. For an intermedi-
ate level of noise correlation, the stochastic prewhiten-
ing slightly outperforms the deterministic. Finally, for
a high noise correlation, the proposed deterministic ap-
proach outperforms significantly the stochastic approsiche
Moreover we propose an ESPRIT based phase es-
timation together with the proposed magnitude estima-
tion to obtain the correlation coefficients. Therefore,
depending on the estimated level of correlation, it is
possible to switch between no prewhitening, the deter-
ministic and stochastic prewhitening.
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