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DETERMINISTIC PREWHITENING TO IMPROVE
SUBSPACE BASED PARAMETER ESTIMATION TECHNIQUES

IN SEVERELY COLORED NOISE ENVIRONMENTS
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Ilmenau University of Technology
Communications Research Laboratory

P.O. Box 100565, D-98684 Ilmenau, Germany
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ABSTRACT

Colored noise is encountered in a variety of signal
processing applications. For such applications the
prewhitening step becomes essential, since parameter
estimation without prewhitening can be severely
degraded.

Traditionally stochastic prewhitening techniques
transform the colored noise into white noise keeping
the SNR constant. In this paper, we propose a
deterministic approach for subspace prewhitening,
where we remove the correlation, which increases
the SNR. Consequently, in high noise correlation
scenarios, where the subspace is prewhitened by
our deterministic approach, there is a significant
improvement in the parameter estimation accuracy.
The proposed deterministic prewhitening requires
knowledge of the noise correlation. Therefore, we
also propose solutions to estimate the correlation
coefficients.

Index Terms— prewhitening, array signal process-
ing, noise correlation estimation, colored noise.

1. INTRODUCTION

In practical applications using sensor arrays the
assumption that the noise of the sensors is
uncorrelated may be not valid. For example,
underwater noise components of a sonar system are in
general spatially correlated [1]. Therefore, if no
prewhitening step is applied, a severe degradation of
the performance is observed.

Typically the prewhitening approaches require the
estimation of the noise covariance matrixRww, which
is performed by collecting measurement samples in the
absence of signal components. For example, in speech
processing applications, the noise can be recorded in

1 João Paulo C. L. da Costa is a scholarship holder of the Na-
tional Counsel of Technological and Scientific Development(Con-
selho Nacional de Desenvolvimento Cientı́fico e Tecnológico, CNPq)
of the Brazilian Government and also a First Lieutenant of the Brazil-
ian Army (Exército Brasileiro).

speechless frames [2]. The level of noise correlation
(ρ) depends on the specific application. For example,
in [3] and [4], ρ assumes values up to0.99. For other
applications, the correlation can assume smaller values.

In the stochastic prewhitening approaches of the lit-
erature [2, 5, 6], the data samples are multiplied by
some prewhitening matrix,L−1, which transforms the
correlated noise into white noise. On the other hand,
in our proposed deterministic approach, one sensor is
used as the reference, and then, the correlated part of
the noise is removed. In order to apply the determin-
istic approach, the correlation coefficients should be
estimated in terms of their amplitudes and phases. In
this paper, we also propose techniques to estimate these
correlation parameters. We compare stochastic and de-
terministic prewhitening in computer simulations and
demonstrate the improved performance of the deter-
ministic approach. Here we restrict the application of
the proposed deterministic prewhitening to ESPRIT-
type algorithms. Nevertheless our technique can be
applied together with other subspace based parameter
estimation techniques, like MUSIC, Root MUSIC, or
RARE.

The remainder of this paper is organized as follows.
After reviewing the notation in Section 2, the colored
noise model is presented in Section 3. Then, the esti-
mation of spatial frequencies with a uniform linear ar-
ray is presented as a data model example. In Section 4,
we propose the new deterministic approach, which pre-
serves the shift invariance structure and requires the es-
timation of the correlation coefficients. In Section 5,
we propose methods to estimate the correlation coeffi-
cients for the noise model described in Section 3. Sim-
ulations results comparing the different prewhitening
schemes are presented for the DOA estimation prob-
lem in Section 6. In Section 7, conclusions are drawn.

2. NOTATION

In order to facilitate the distinction between
scalars and matrices, the following notation
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is used: Scalars are denoted as italic letters
(a, b, . . . , A, B, . . . , α, β, . . .), column vectors as
lower-case bold-face letters (a, b, . . .) and matrices as
bold-face capitals (A, B, . . .). Lower-order parts are
consistently named: the(i, j)-element of the matrix
A, is denoted asai,j .

We use the superscriptsT,H ,−1 ,+, and∗ for trans-
position, Hermitian transposition, matrix inversion, the
Moore-Penrose pseudo inverse of matrices, and com-
plex conjugation, respectively.

3. DATA MODEL

As an example for the prewhitening schemes discussed
in this paper, we consider a superposition ofd planar
wavefronts received by a uniform linear array withM

sensors atN subsequent time instants. The measure-
ment samples are given by

xm(n) =
dX

i=1

si(n) · ej·(m−1)·µi + w(c)
m (n), (1)

where m = 1, 2, . . . , M , n = 1, 2, . . . , N , si(n),
whose variance isσ2

s , denotes the complex amplitude
of thei-th exponential at time instantn, µi symbolizes
the spatial frequency of thei-th exponential, and
w

(c)
m (n), whose variance isσ2

w, models the additive
spatially correlated noise component inherent in the
measurement process. In the context of array signal
processing, each of the exponentials represents one
planar wavefront.

In matrix form, we can represent (1) in the follow-
ing way

X = A · S + W
(c), (2)

whereA ∈ CM×d contains the steering vectorsai ∈
C

M×1 for each of thed sources,S ∈ C
d×N contains

the symbolssi(n), andX is corrupted by some spa-
tially correlated noise matrixW (c) ∈ CM×N . We can
model the noiseW (c) asW

(c) = L · W , whereL

correlates the white noise matrixW . The noise ele-
mentswm(n) of W are modeled as ZMCSCG (zero-
mean circularly-symmetric complex Gaussian) random
variables.

In practical applications, the model order must first
be estimated. Model order estimation techniques that
are suitable for this scenario are, for example, ESTi-
mation ERror (ESTER) [7] and Subspace-based Au-
tomatic Model Order Selection (SAMOS) [8], since
both are based on the shift invariance equation and,
therefore, are compatible to the subspace deterministic
prewhitening technique proposed here.

The covariance matrix of the data model (2) is given
by

Rxx =
1

N
· E{X · XH} (3)

= A · Rss · A
H + σ2

w · Rww,

whereRss is the signal covariance matrix andRww is
the noise covariance matrix, such thattr(Rww) = M .
In practice,Rxx can be estimated from a finite set of
realizations via

Rxx ≈
1

N
· X · XH. (4)

In the absence of signals,Rww can also be estimated
by using (4).

To demonstrate the estimation of the noise corre-
lation coefficients, we consider the following specific
correlation model [9]

w
(c)
m+1(n) = ρ · wm(n) +

È
1 − |ρ|2 · wm+1(n), (5)

wherem = 1, 2, ..., M − 1 and indicates the sensor
position. Here,ρ ∈ C represents the noise correlation
coefficient between the sensorsm andm+1, such that
0 ≤ |ρ| ≤ 1.

Using this correlation model, the noise covariance
matrix forM = 3 is given by

Rww =

�
1 ρ∗ (ρ∗)2

ρ 1 ρ∗

ρ2 ρ 1

�
. (6)

4. SUBSPACE PREWHITENING APPROACHES

In the literature, we find three main stochastic
approaches for the subspace prewhitening: the
traditional one based on the Cholesky factorization of
the noise covariance matrix [2], the GEVD
approach [5, 6], and the GSVD approach [2, 5, 6].

In contrast to the stochastic approaches, a linear
preprocessing with a deterministic matrixD is applied
to remove the noise correlation between two adjacent
sensorsm and m + 1 in our proposed deterministic
approach. First we consider the case where no signal
component is present. Let us assume the noise covari-
ance model in (6) to derive a preprocessing matrixD.
To this end, each element of the prewhitened noise ma-
trix V = D · W (c) is transformed as

vm(n) = wm+1(n) ·
È

1 − |ρ|2. (7)

Note that the greater|ρ|, the smaller is the variance
of the deterministic prewhitened noise samplesvm(n).
Note that the correlated noisew(c)

m+1(n) in (5) is com-
posed of a white noise component correlated with the
noise at the previous sensorwm(n) and another uncor-
related white componentwm+1(n). Since the white
noise component ofwm(n) is known from the previ-
ous sensorm, we can use this fact to obtain (7).

In order to decorrelate the noise as in (7), we pro-
pose a deterministic prewhitening matrixD = J2 −
ρ̂ ·J1, whereJ2 ∈ RM−1×M andJ1 ∈ RM−1×M are
the selection matrices for the lastM − 1 sensors and
for the firstM − 1 sensors, respectively, and̂ρ is an
estimate ofρ. In this section we consider thatρ̂ = ρ,
and in Section 5, we propose ways of calculatingρ̂.



Next, we consider the presence of signal compo-
nents and the prewhitening matrixD is applied in the
following fashion

Y = D · X = Ã · S + V , (8)

where thei-th column ofÃ is of the form1

ãi = [1, ejµi , . . . , e(M−2)·jµi ]T · (ejµi − ρ). (9)

The structure of̃ai can be derived by observing one
sample ofym(n)

ym(n) = xm+1(n) − ρ · xm(n) (10)

=
dX

i=1

[ej·m·µi − ρ · ej·(m−1)·µi ] · si(n) + vm(n)

=
dX

i=1

[ej·(m−1)·µi ] · (ejµi − ρ) · si(n) + vm(n),

where1 ≤ m ≤ M − 1.
One important property of̃A is that it has a Van-

dermonde structure and therefore the spatial frequen-
cies can be obtained from the transformed measure-
ment matrixY in the same way as fromX. Conse-
quently,

J̃2 · Ã = J̃1 · Ã ·Φ, (11)

whereΦ is a diagonal matrix with the spatial frequen-
ciesejµi , andJ̃1 andJ̃2 are now of size(M − 2) ×
(M − 1).

The SVD ofY is given byUy ·Σ ·P H. We define
the matrixU s ∈ C(M−1)×d as the firstd columns vec-
tors ofUy. Then, there is a certainT ∈ C

d×d, such
thatÃ = U s · T

−1. Therefore, we can rewrite (11) as

J̃2 · U s = J̃1 · U s ·Ψ, (12)

whereΨ = T
−1 · Φ · T . Note thatΨ andΦ share the

same set of eigenvalues.
The prewhitened noise powerPpwt is given by

Ppwt = E{vm(n) · v∗m(n)} = σ2
w · (1 − |ρ|2), (13)

wherePw = E{wm(n) · w∗
m(n)} = σ2

w.
Since Ppwt

Pw

= 1 − |ρ|2, we havePpwt < Pw for
|ρ|2 > 0, which means that this approach always gives
a better SNR, for|ρ| > 0 than in the white noise sce-
nario. It is possible to observe this behavior by consid-
ering the SNR

SNRpwt = 10 · log10

�
σ2

s · |ejµi − ρ|2

σ2
w · (1 − |ρ|2)

�
. (14)

If the correlation|ρ| is close to1, it implies thatSNRpwt

approaches infinity. Therefore, the higher the correla-
tion, the better the parameter estimation for the deter-
ministic approach, and this is shown in the simulations

1Note that for the case thatρ is close toejµi in magnitude and
phase, thenσ2

s , the signal power for this particularµi is reduced.

in Section 6. Note that for such a gain, it is necessary
that the correlationρ should not be in phase to the sig-
nal.

The drawback of the deterministic approach is that
the array aperture is reduced fromM to M −1 sensors.
This leads to a minor performance degradation, which
becomes visible for smallM and low correlations.

In summary, the objective of thestochastic prewhiten-
ing approaches is given a certain colored noise matrix
W

(c) and an estimate of the stochastic prewhitening
matrixL

−1, to prewhiten the noise in (2), such that the
elements of the prewhitened noiseW = L

−1 · W
(c)

have zero mean and varianceσ2
w, whereσ2

w denotes
the noise power. In ourdeterministic approach, we
propose to useD, instead of the prewhitening matrix
L

−1, such thatV = D · W
(c), and the elements of

V have zero mean and variance(1 − |ρ|2) · σ2
w , where

(1 − |ρ|2) · σ2
w denotes the noise power after applying

the proposed deterministic prewhitening.

5. ESTIMATION OF THE CORRELATION
COEFFICIENT FOR THE DETERMINISTIC

APPROACH

Since for the deterministic approach in Section 4, the
estimation ofρ is necessary, we propose different ways
of performing this estimation from measurements taken
in the absence of signal components. First we represent
ρ as a function of its phase and magnitude, such that
ρ = |ρ| · ej·φ.

Let us first take the sample estimate to obtain the
phase and magnitude ofρ

ρ̂ =

NX
n=1

w
(c)
m+1(n) · [w(c)

m (n)]∗

NX
n=1

w(c)
m (n) · [w(c)

m (n)]∗

, (15)

wherem = 1, ..., M − 1. Note that the enumerator in
(15) isN times the element of̂Rww in row m + 1 and
columnm. The sample estimate is applicable to arbi-
trary colored noise models. Next we show that for the
considered specific correlated noise model, it is possi-
ble to improve the estimation of the correlation consid-
erably. To this end, we propose two other techniques:
the ESPRIT based phase estimation and the magnitude
estimation ofρ.

ForM = 3, the colored noise samples can be writ-
ten as

W
(c) =

"
1 0 0

ρ
p

1 − |ρ|2 0

ρ2 ρ ·
p

1 − |ρ|2
p

1 − |ρ|2

#
· W . (16)

Note that this linear transformation has a specific struc-
ture that can effectively be exploited to estimateρ.

For instance, the first column of the transformation
matrix, which has the strongest power, has a Vander-
monde structure with rate equal toρ. Therefore, an



ESPRIT based approach can be applied for the estima-
tion of the phase ofρ, as shown in the following shift
invariance equation

J2 · u
(c)
1 = J1 · u

(c)
1 · ρ̂, (17)

where the SVD ofW (c) is given byU (c)·Σ(c)·(P (c))H

andu
(c)
1 is the first column of the matrixU (c). The

estimated phase shiftej·φ̂ is given by ρ̂

|ρ̂| .
In Figure 1, we compare the sample estimate in (15)

with the ESPRIT based approach in (17) for the esti-
mation of ejφ. We note that the performance of the
ESPRIT based approach in (17) is far better than the
performance of the sample estimate in (15).

Since we have already estimated the phase shift be-
tween two consecutive sensors, this information can be
applied in order to phase align the correlated noise sam-
ples. Therefore, we consider the case thatρ ∈ R, and
the outputs of two consecutive sensors are given by

xm(n) = w(c)
m (n) (18)

xm+1(n) = wm+1(n) ·
È

1 − ρ2 + w(c)
m (n) · ρ.

The noise power can be estimated by

σ̂2
w =

1

N
·

NX
n=1

x2
m(n) =

1

N
·

NX
n=1

[w(c)
m (n)]2. (19)

Given the noise model, the following expression can be
derived

E{[xm+1(n) − xm(n)]2} = 2 · σ2
w · (1 − ρ). (20)

Sinceσ2
w was estimated in (19) and using the expres-

sion in (20), the magnitude estimation ofρ is calculated
according to

ρ̂ = 1 −
1

2 · N · σ̂2
w

·
NX

n=1

[xm+1(n) − xm(n)]2 (21)

In Figure 2, we compare the performance of the magni-
tude estimation in (21) with the sample estimate in (15),
and the magnitude estimation outperforms significantly
the estimation by the sample estimate. Note that both
approaches have a better estimation accuracy when the
number of samples is increased.

6. SIMULATION RESULTS

In this section we present simulations results, with which
we compare the proposed deterministic method to the
stochastic approaches. We consider the data symbols
si(n) as being ZMCSCG distributed. The performance
comparison is based on the spatial frequency estima-
tion with standard ESPRIT (SE) [5] and for each re-
alization, the spatial frequency for each source is cho-
sen randomly from a uniform distribution in the inter-
val from −π

2 to π
2 . In addition, we assume thatρ is
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ESPRIT based, N = 10
Sample estimate, N = 10
ESPRIT based, N = 100
Sample estimate, N = 100

Fig. 1. Complementary cumulative distribution function (CCDF)

of the root mean square error (RMSE) ofρ̂

|ρ̂|
considering a only noise

system withM = 11 sensors, andN = 10 andN = 100 snapshots.

known, since we are interested in evaluating the differ-
ent prewhitening schemes and not the estimation ofρ,
which may vary, for example, for a different number
of snapshots according to Section 5. The notation in
the legends is the following: SE Color stands for the
estimation without using any prewhitening, SE DET
for the deterministic approach proposed here, SE CP
for the classical prewhitening in [2], SE GEVD for the
prewhitening scheme in [5, 6], and SE GSVD for the
prewhitening in [2, 5, 6].

In Figure 3, the RMSE of the spatial frequencies is
plotted versus the SNR. For this scenario,ρ = 0.7 and
all the prewhitening techniques outperform SE Color.
Note that the SE DET outperforms all the other prewhiten-
ing techniques.

In order to observe the performance as a function of
ρ, we fix the SNR to1 dB in Figure 4. Note that a con-
siderable improvement by using all types of prewhiten-
ing is only observed forρ > 0.3. Also note that the
stochastic prewhitening schemes tend to keep the noise
powerσ2

w constant for all values ofρ. On the other
hand, for the deterministic approach, the greater the
correlation, the greater the gain obtained, which is ex-
pected according to (14). Therefore, in Figure 4, the
deterministic prewhitening outperforms significantly the
stochastic approaches forρ > 0.7, and only slightly
for 0.4 ≤ ρ ≤ 0.7. As a drawback, we note that
for ρ ≤ 0.4, the stochastic prewhitening techniques
slightly outperforms SE DET, and forρ < 0.3, the esti-
mation without prewhitening also slightly outperforms
SE DET. This phenomenon is due to the aperture re-
duction already mentioned in Section 4.

7. CONCLUSIONS

In this paper, we propose a deterministic prewhitening
technique, which outperforms the prewhitening tech-
niques presented in the literature in case of high noise
correlation. Observe that in general we have three cases:
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Fig. 4. RMSE of the spatial frequencies vs. correlation factorρ

considering a system withN = 10 snapshots and withM = 10

sensors.d = 3 sources are present. It was fixedSNR = 1 dB.

First there is the case of a small noise correlation, when
the prewhitening step for the simulated scenario does
not give a significant improvement. For an intermedi-
ate level of noise correlation, the stochastic prewhiten-
ing slightly outperforms the deterministic. Finally, for
a high noise correlation, the proposed deterministic ap-
proach outperforms significantly the stochastic approaches.

Moreover we propose an ESPRIT based phase es-
timation together with the proposed magnitude estima-
tion to obtain the correlation coefficients. Therefore,
depending on the estimated level of correlation, it is
possible to switch between no prewhitening, the deter-
ministic and stochastic prewhitening.
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