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ABSTRACT 
 
In this paper we compare a CDMA2000 Turbo code 
and two linear-time encodable irregular PEG LDPC 
codes, a binary one and one defined over the Galois 
field GF(64). An overview over the construction 
methods of the Shannon limit approaching codes is 
given. For each code the simulation results are 
depicted in terms of Bit Error Rate (BER) where 
several decoding iterations have been applied. 
Thereby the simulated codes share the relatively short 
binary code word length of  and a code rate 
of . For a channel model the additive white 
Gaussian noise channel (AWGNC) has been used and 
the decoding was done with the belief propagation 
(BP)-decoding algorithm. 
 

Index Terms – Turbo codes, LDCP codes, 
progressive edge-growth (PEG), GF(q), nonbinary, 
irregular, linear-time encodable codes, girth 

1. INTRODUCTION 

In 1948 Claude E. Shannon published A mathematical 
theory of communication [1], where the definition of 
the Shannon limit stems from. This limit provides a 
lower bound on the signal to noise ratio. With the 
introduction of Turbo codes in 1993 by Berrou, 
Galvieux and Thitimajshima [2] a concatenated 
coding scheme was proposed that yielded a near 
Shannon limit decoding. Low-Density Parity-Check 
(LDPC) codes had already been published in 1962 by 
Robert Gallager [3] but then have been forgotten for 
three decades. When they were rediscovered by 
MacKay and Neal in 1995 [4], a real competitor to 
Turbo codes arose. This competition has become 
fierce even for short code word length , due to 
various improvements for the LDPC code’s 
underlying parity-check matrix that have been 
published since then. Most notably progressive edge 
growth (PEG) LDPC codes presented by Hu, 
Eleftheriou and Arnold in [5] appear to be 
outstanding.  

2. SIMULATIONS 

The simulations in this paper are executed using the 
all-zero codeword which is always a valid codeword 
of any linear code. The codeword is BPSK modulated 
and then applied to the additive white Gaussian noise 
channel (AWGNC). Thereby white Gaussian noise 
gets added depending on the signal to noise ratio 
(SNR) which in channel coding simulations is usually 
defined as  (energy per bit) divided by  (spectral 
noise density). The variance of the Gaussian 
amplitude distribution is 

 
    (1) 

 
and thus is not only dependent on  but also on 
the code rate . This way it is possible to compare 
codes that exhibit different code rates. With 

 being a sent bit, the conditional probability of 
a bit  being received by the decoder is then 
distributed as follows:  

 

,   (2) 

 
For a decoder that processes soft-decision values in 
the log-domain, a convenient format is the log 
likelihood ratio (LLR) which for the AWGNC is 
expressed as  

 
.   (3) 

 
To depict the error correcting capabilities of a code, 
the bit error ratio (BER) is plotted on the y-axis of a 
graph while the according -values are plotted 
on the x-axis. The BER is obtained by dividing all 
errors occurring in a decoded codeword by the length 
of the code word  where  for all 
simulations throughout this paper. 
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3. TURBO CODES 

Turbo codes in general are defined by a serial or 
parallel concatenation of several channel-codes and 
an appropriate decoder that processes soft decisions in 
an iterative way. Thereby the Turbo decoder 
constantly refines the decoding result by an exchange 
of data (called extrinsic data) among the component 
decoders. The name Turbo code stems from the 
similarity of the decoder’s functional principle to a 
turbocharger.  

3.1. Turbo Encoder 
Here a Turbo encoder of rate  (Figure 1) is 
established as recommended in the CDMA2000 
standard [6]. It consists of a parallel concatenation of 
two 8-state convolutional encoders, where one of 
these encodes the information sequence  (also 
called the systematic part) and the other one a 
random-interleaved version  of  with 

. Each convolutional encoder is 
described by the generator polynomial in octal 
notation: 
 

     (4) 
 
The output of the first component encoder is denoted 
as  (parity part one) and the coded bit of the 
second one as . By use of an appropriate 
puncturing pattern  and  get compacted into 

. A Turbo code word then comprises of the 
systematic part and the packed parity part so that 

.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Turbo encoder r=1/2 

3.2. Turbo decoder 
The Turbo decoder shown in Figure 2 consists of two 
BCJR component decoders that exchange extrinsic 
data in an iterative process. The BCJR decoder was 
presented in 1974 by Bahl, Cocke, Jelinek, and Raviv 
[7]. It describes a soft input/soft output decoder that 
maximizes the a posteriori probability  
(MAP) with the BPSK modulated bit . 
Using Bayes’ theorem [8] the LLR is derived which 

in case of the AWGNC is . Thus the 
decoder is called a log MAP decoder. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Turbo decoder 

3.3. Turbo code simulations 
As mentioned before, the simulation was executing 
using a code word of length . The result is 
seen in Figure 3. 

 
Figure 3: BER of Turbo code; n=1008; r=1/2 

4. LDPC CODES 

LDPC codes are asymptotically optimal regarding the 
Shannon-limit. To achieve this optimum, the code-
length has to be very large and thus the decoding 
complexity gets extremely high.  

4.1. Parity-check matrix & Tanner graph 
The name of LDPC codes stems from their underlying 
sparse Parity-Check Matrix (PCM) which exhibits a 
low density of nonzero elements. In the following 
example (Figure 4) a PCM is shown together with 
their corresponding Parity-check equations. 
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Figure 4: PCM example 
 

With the help of the Gaussian elimination any PCM 
can be transformed to  
 

    (5) 
 
with  being the identity matrix. From this the 
generator matrix  
 

   (6) 
 
is derived. A codeword is then obtained by 
multiplying the information word  with the 
generator-matrix .  

Alternatively to the matrix representation, LDPC 
codes can be represented by a Tanner graph [9]. This 
bipartite graph consists of symbol-nodes and check-
nodes connected via edges. Thereby check-nodes 
depict the rows, symbol-nodes the columns and edges 
the nonzero-entries of the PCM respectively. In 
Figure 5 the Tanner graph corresponding to the PCM 
in Figure 4 is shown. The black edges adjacent to 
symbol-node  correspond to the bold nonzero 
entries in the PCM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Tanner graph example 

4.2. Cycles & girth 
Any set of consecutive edges that connect node  with 
node  is called a path. If such a path connects a node 

 with itself, it is called a cycle of . In Figure 5 a 
cycle of length 4 is shown. Local girth  refers to 
the length of the shortest cycle a symbol-node  
participates in. Global girth  is defined as 

 and so equals the length of the shortest 
cycle in the graph [5]. A low global girth has a 
harmful impact on the decoding performance which is 
thus mainly dependent on the construction of the 
PCM or the Tanner graph. This is the reason for 
optimizing the construction method in reference to the 
resulting decoding performance. 

4.3. Regular & Irregular LDPC codes 
The PCM of regular LDPC codes possesses exactly  
nonzero elements in each column and  in each row 
and thus all check-nodes and symbol-nodes share the 
same number of adjacent edges respectively. When 
Gallager introduced LDPC codes in [3] he also 
proposed a pseudorandom construction of a regular 
PCM. Though he suggested avoiding 4-cycles, he did 
not provide any advice on how to do so. Figure 4 
shows the PCM of a  Gallager code 
and Figure 5 the appropriate Tanner graph. 

In contrast to regular LDPC codes, irregular codes 
exhibit several row and column weights. They are 
described through the use of the symbol-node degree 
distribution  

 
,   (7) 

 
where  is the maximum number of edges 
connected to a symbol-node in the graph and  is the 
fraction of symbol-nodes connected to  check-nodes. 
Since it is a distribution it follows: 
 

.    (8) 

4.4. PEG LDPC codes 
In [5] a construction method is described which is 
based on Tanner graphs and maximizes the global 
girth. This is done by progressively establishing edges 
between the symbol- and check-nodes. For each 
placement of an ), the check-node  to get 
connected to the current symbol-node  is chosen in a 
way that the local girth  is maximized. This way 
the global girth  is maximized as well because 

. There are three different situations 
when choosing a check-node  in order to establish 
an edge ): 
1. If it is the first edge to get connected to a symbol-

node  choose the check-node having the 
lowest check-node degree (fewest connected 
edges) under the current graph settings. 

2. If there are still check-nodes that are not already 
connected to the current graph  choose one of 
them. 

3. If neither of the two former cases are true  
establish a PEG-tree with  as a root of that tree. 
Then choose a check-node of the bottom-layer. 

As an example for a PEG-tree the creation process 
with symbol-node  as a root is depicted in Figure 6.  

symbol- 
nodes 

check- 
nodes 

         

      

4-cycle 



The encoding time of LDPC codes usually 
increases with . Hu, Eleftheriou and Arnold also 
propose an improved version of irregular PEG LDPC 
codes in [5]. It is based on a partitioning of the PCM 
so that  

 
, with 

 

. (9) 

 
The parity bits can then be calculated according to  
 

 (10) 
where . 

 
Figure 6: PEG-tree for  

4.5. Nonbinary LDPC codes 
By an increase of a binary PCM’s column weight, the 
Hamming weight spectrum and hence the decoding 
performance gets improved. The drawback is that if 
the PCM possesses more nonzero entries, the number 
of cycles increases which results in a degradation of 
the codes error correction capabilities. When moving 
to GF(q) the mean column weight increases while the 
number of cycles in the nonbinary Tanner graph 
remains the same [10]. The construction methods to 
attain a nonbinary PCM do not differ from those of 
binary LDPC codes. But in contrast to the latter, the 
PCM of nonbinary LDPC codes possesses elements 
defined over the Galois field . 
Thereby the nonzero entries in  are generated 
through the use of a primitive polynomial  where 

. It is also essential to realize calculations 
required during the decoding process in the Galois 
field . They are based on a polynomial 
representation of the elements. A  symbol is 
represented by  bit, whereas the exponents of the 
corresponding polynomial stand for the indices of the 
several bits and the coefficients for their value.  

4.6. LDPC code simulations 
Here a binary irregular PEG LDPC code that is linear-
time encodable is simulated. The length of the 
codeword is  and the symbol-node degree 
distribution is 

, which 
is the same as the one in [5]. The belief propagation 
(BP) decoder applied for this simulation works in the 
log domain as is described in [11]. The simulation 
results can be seen in Figure 7. 

 
Figure 7: BER of linear-time encodable PEG LDPC 

code; n=1008; r=1/2 
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For constructing the nonbinary LDPC code, 
GF  has been chosen with 

 which is taken from [7]. 
The code word length is  in symbols and 

 in bits. The decoding was done with a 
FFT-based BP-decoder as described in [12]. 

 
Figure 8: BER of linear-time encodable PEG LDPC 

code defined over GF(64); n=168; r=1/2 

5. COMPARISON 

In Figure 9 the BER of the following codes is 
showed: 
1. CDMA2000 Turbo code, , , 

100 decoding iterations 
2. Irregular linear-time encodable PEG LDPC code; 

, , 100 decoding iterations 
3. Irregular linear-time encodable PEG LDPC code 

over GF(64), , , , 
100 decoding iterations 

 
As seen in Figure 9 the LDPC code defined over 

GF(64) clearly beats the Turbo code in terms of BER. 
Furthermore it is important to point out that LDPC-
decoders are fully parallelizable and should therefore 
offer extremely high-speed applications. Moreover 
the parity-check matrix (PCM) of LDPC codes can be 
used to check after each iteration if a valid codeword 
has been found and thus the number of computations 
can be strongly reduced. In contrast to Turbo codes 
the minimum distance is higher and thus the LDPC 
decoder can detect its own errors. 

 
Figure 9: Comparison of Turbo code and LDPC code 

6. CONCLUSION 

The PEG algorithm offers an effective construction 
method for high girth LDPC codes that are 
competitive to Turbo codes. Especially when moving 
to higher order Galois fields GF(q) irregular PEG 
LDPC codes beat the applied Turbo code even for a 
short code word length. As a result of this comparison 
we construct a near Shannon limit coding scheme for 
2D-Data Matrix code applications using the explored 
nonbinary linear-time encoding PEG LDPC code. 
This leads to better results in terms of BER and 
computational burden. 
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