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Summary 

In the present thesis DNA double strand break (DSB) induction and repair are analysed 

after laser-microbeam irradiation. Live cell imaging of DNA repair proteins fused to Green 

Fluorescent Protein (GFP) as well as immunofluorescent detection of endogenous protein 

are used. 

Laser induced DNA damage, detected by γ-H2AX foci staining depend on a subtle 

combination of used laser pulse wavelength, pulse energy and dose. The recruitment times 

of repair proteins depend inverse linearly on laser pulse energy. By extrapolation to zero, 

the recruitment time at biological relevant conditions is calculated. Interestingly, 

considerable spatial dynamics of the foci is found. Two neighbouring foci even can fuse 

within ~20 min.  

Recruitment time comparison of molecules representing early and late Non-Homologous 

end Joining (NHEJ), Homologous Recombination Repair (HRR) and the Mre11-Rad50-

NBS1 (MRN) complex reveals that the whole NHEJ machinery is assembled to DSBs 

within 1 min. Recruitment of latest NHEJ factor (XRCC4) is faster than NBS1 and is not 

directly influenced by the absence of NBS1. XRCC4 persists at DSBs longer in the G1 cell 

cycle phase than in G2 where the replacement of NHEJ by HRR molecules occurs. Rad51 

is recruited when XRCC4 is released with the complementary kinetics. DNA-PKcs 

phosphorylation at two sites, known to facilitate DNA end processing, occurs between the 

recruitment of NHEJ and HRR. 

Recruitment of DNA repair proteins gives only an indirect view on DNA double strand 

breaks in the form of foci. A new modification of Comet-assay technique the 

Immunofluorescent Comet-assay (IFCA) is developed in this work for direct visualisation 

of DSBs in single cells. IFCA uses the immunofluorescent detection of histone H1 in 

neutral and alkaline Comet-assay, and enables simple and clear visualisation of details in 

the comet tail, which are hardly detectable by conventional DNA staining dyes such as 

SYBR Green. Comparison of fragmentation patterns after different treatments reveals, that 

10 µJ of highly localized laser-microbeam irradiation induces similar fragmentation pattern 

as whole cell treatment with 20 Gy of ionizing radiation. Using IFCA, the fragment size at 

the end of the neutral comet tail is determined for the first time. 
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Zusammenfassung 

In der vorliegenden Arbeit werden die DNS-Doppelstrangbruch (DSB) Induktion und Reparatur 

nach der Laser-Mikrobestrahlung erforscht.  

Die Lebendzellmikroskopie wurde verwendet zur Untersuchung von Reparaturenzymen, die mit 

grünfluoreszierendem Protein (GFP) gelabelt wurden. Desweiteren wurden endogene Proteinen 

immunofluoreszenzoptisch analysiert.  

Die durch den Laser induzierten Schäden, nachgewiesen durch die γ-H2AX-Färbung, sind abhängig 

von einer subtilen Kombination der angewendeten Laserpulswellenlänge, der Pulsenergie und der 

Dosis. Die Akkumulationszeit der Reparaturproteine hängt reziprok-linear von der Laserpulsenergie 

ab. Durch die Extrapolierung gegen Null wird die Rekrutierungszeit unter biologisch relevanten 

Bedingungen berechnet. Deutliche räumliche Dynamiken der beschädigten Stellen werden 

erkennbar. Zwei benachbarte Foci können innerhalb von 20 Minuten fusionieren.  

Ein Vergleich der Akkumulationszeiten von Molekülen, welche die frühe und späte nicht-homologe 

End-zu-End-Verknüpfung (NHEJ), die homologe Rekombinationsreparatur (HRR) und den Mre11-

Rad50-NBS1-Komplex (MRN) repräsentieren, zeigt, dass sich alle NHEJ Enzymen am DSB 

innerhalb einer Minute ansammeln. Die Rekrutierung des letzten NHEJ-Faktors (XRCC4) erfolgt 

schneller als die von NBS1, wird aber nicht direkt durch das Fehlen des NBS1 beeinflusst. Das 

XRCC4 verweilt an den DSBs in der G1-Zellzyklusphase länger als in der G2-Phase, in welcher der 

Austausch von NHEJ durch HRR stattfindet. Das Protein Rad51 wird akkumuliert, wenn sich 

XRCC4 mit vergleichbarer Kinetik ablöst. Die DNS-PKcs-Autophosphorylierung erfolgt genau 

zwischen den Rekrutierungen von NHEJ und HRR.  

Die Rekrutierung der DNS-Reparaturproteine gibt nur einen indirekten Einblick auf die DNS-

Doppelstrang-Brüche in Form der Foci. Eine neue Modifikation der Comet-Assay-Technik, der 

Immunofluoreszent-Comet-Assay (IFCA), wurde in dieser Arbeit für die direkte Visualisierung der 

DSBs in einzelnen Zellen entwickelt. Die IFCA benutzt den immunofluoreszenten Nachweis an H1-

Histonen in neutralem und alkalischem Comet-Assay und ermöglicht eine einfache und deutliche 

Visualisierung der Details im Cometenschweif. Diese sind mit einer herkömmlichen DNS-Färbung, 

wie etwa SYBR Green, nur schwer erkennbar. Ein Vergleich verdeutlicht, dass 10 µJ der 

hochlokalisierten Laser-Mikrobestrahlung ein ähnliches Fragmentierungsmuster induziert wie eine 

gesamte Zellbehandlung mit 20 Gy ionisierender Strahlung. Die Anwendung von IFCA 

dokumentiert zum ersten Mal die Größe der Fragmente am Ende des Schweifs.  
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1. Introduction  

DNA is a molecule preserving our genetic information and therefore determining the way 

how and who we are from a biological point of view. Additionally it plays a crucial role for 

our health and longevity - the intact DNA is a basis for our healthy life. Unfortunately it is 

under enormous damaging load. Each cell in the human body suffers from thousands of 

various DNA damage per day. Another important fact is that damaged DNA molecules can 

not be replaced by an intact one as for example damaged proteins. Thus, it has to be 

repaired. If not, it can lead to mutations and genetic instability. This can further cause 

various diseases, cancer and also premature aging. In order to keep our DNA intact the 

nature has developed a huge DNA repair mechanism involving more than hundred genes 

and tens of different pathways dealing with broad range of different types of DNA damage 

(Hoeijmakers, 2001; Wood et al., 2001; Wood et al., 2005) (Figure 1.1). 

Among the high variety of DNA damage types the DNA double strand breaks (DSBs) are 

particularly harmful lesions, since, in this case, the second DNA strand can no longer be 

used as a template. Furthermore, it is the most lethal damage, since one DSB is sufficient 

for cell cycle arrest, cell death and cellular malfunctioning leading to aging. In mammals 

two major pathways are responsible for repair of DSBs. The most utilized is a error prone 

NonHomologous End Joining (NHEJ) working throughout the cell cycle. Another major 

repair pathway is Homologous Recombination Repair (HRR), which uses homologous 

information from the undamaged sister chromatid to restore the intact genetic information, 

therefore this pathway is error free and better conserves the information preserved in DNA.  

Although most genes involved in the above mentioned pathways are well known, we still 

do not completely understand the mechanism of DSB repair in the cell nucleus, since it is a 

very complex issue involving not only proteins but also a lot of their posttranslational 

modifications such as phosphorylation, acetylation and ubiquitinylation (Karagiannis and 
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El Osta, 2007; Huen and Chen, 2008). It turned out that studying the kinetics of the 

recruitment of DNA repair molecules to sites of damage in the cell nucleus significantly 

helps to understand the repair mechanisms. In order to study kinetics, a time point and the 

position of damage has to be highly defined. This is possible only if damage is introduced 

exogenously. 

 

1.1. DNA double strand break repair  

As mentioned above, DSBs are repaired by two major pathways, an error prone NHEJ and 

error free HRR, which together with the Mre11-Rad50-NBS1 (MRN) complex will be 

described in the following sections. 

NHEJ 

As recently numerous reviews have described (Weterings and Chen, 2008; van Gent and 

Van der Burg, 2007) the NHEJ is active throughout the cell cycle and is initiated by very 

strong binding of Ku70/80 heterodimer to DNA ends with a dissociation constant Kd in the 

Figure 1.1 DNA damage and repair mechanisms and consequences. A - examples of 

DNA damaging, induced lesions and their subsequent repair. B - consequences of DNA 

damage processing showing transient arrest in G1, S, G2 and M cell cycle phases, cell 

death or genetic instability. Adapted from Hoeijmakers, 2001. 
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range 1.5 - 4.0 × 10-10 M (Dynan and Yoo, 1998; Walker et al., 2001). Figure 1.2 shows 

that it is followed by the recruitment of the catalytic subunit of DNA-Protein Kinase (DNA-

PKcs) from the PIKK family (Burma et al., 2006). It was suggested that DNA-PKcs 

mediates tethering of two DNA ends by forming a synaptic complex which in its natural 

form hides DNA termini from processing and thus repair (Weterings and van Gent, 2004; 

Weterings et al., 2003). Only after autophosphorylation, DNA-PKcs molecules undergo 

conformational changes and liberate DNA ends for further processing (Ding et al., 2003; 

Weterings et al., 2003; Block et al., 2004). Here the phosphorylation of clusters around two 

positions, Ser2056 and Thr2609, are known to be involved in conformational changes 

(Weterings and Chen, 2007).  

 

Figure 1.2 Double strand break repair by Non Homologous End Joining (NHEJ). 
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Those clusters are called PQR and ABCDE correspondingly. The cluster at Ser2056 is 

autophosphorylated by the kinase domain of DNA-PKcs, whereas phosphorylation of the 

cluster at Thr2609 was shown to be mediated by ATM (Ataxia telangiectasia mutated) 

(Chen et al., 2007) or even by ATR (Yajima et al., 2006). Interestingly, it was suggested 

that the PQR cluster phosphorylation is working in the opposite direction than a ABCDE 

since upon phosphorylation of the PQR cluster the DNA end processing is inhibited (Cui et 

al., 2005). Recently additional autophosphorylation sites in the C-terminal region of DNA-

PKcs were identified at positions 3821, 4026 and 4102 (Ma et al., 2005). 

After DNA-PKcs autophosphorylation DNA ends can be processed by µ and λ 

polymerases, terminal deoxynucleotidyltransferase, polynucleotide kinase and Artemis 

endonuclease (Wyman and Kanaar, 2006; van Gent and Van der Burg, 2007). The final step 

of NHEJ is thought to be accomplished by recruitment of the recently identified XRCC4 

like factor (XLF, also named Cernunnos) (Ahnesorg et al., 2006) and subsequently the 

XRCC4/LigIV complex (Lee et al., 2000), which ligates the DSBs. So far it is not really 

known whether factors involved in the latest NHEJ step are recruited before or after the 

DNA end processing. Yano et al. reported that recruitment of indeed all factors is crucial 

for NHEJ complex stability (Yano and Chen, 2008). This indicates that for a proper repair 

all the enzymes have to be assembled sequentially in a small time window. This hypothesis 

was supported by the finding that DNA end processing by polymerases and endonucleases 

is mediated by the XRCC4/Lig4 complex (Budman et al., 2007). It means that the complex 

involved in the latest NHEJ step is present at DSBs very early, facilitates DNA end 

processing and only after that performs ligation. Correspondingly, Ku70/80, DNA-PKcs 

and XLF are estimated to be recruited within the first minute after irradiation (Mari et al., 

2006; Uematsu et al., 2007; Yano et al., 2008). In contrast, XRCC4 has been reported to 

reach the maximum only in ~ 6 min (Yano and Chen, 2008). This inconsistency might 

appear due to below described problem, arising when experiments are done using different 

laser-microbeam system or even at the same set up but different settings.  

HRR 

Unlike NHEJ, the HRR is an error free repair pathway requiring resection and also the 

homologous sequence from the sister chromatid (Li and Heyer, 2008; Wyman and Kanaar, 

2006; Sung and Klein, 2006). In mammals it is available only in the late S/G2 cell cycle 

phase and is a major repair pathway of replication generated DSBs with one DNA end. 

DNA nucleases such as MRE11 and CtIP (Buis et al., 2008a; Sartori et al., 2007) play a 
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crucial role in HRR since they produce 3´-overhangs (Figure 1.3). After resection, the 

single stranded DNA is covered by the RPA (Replication protein A) proteins, which are 

then exchanged by the Rad51 nucleoprotein filaments. This replacement is facilitated by 

Rad52 protein, while Rad54 mediates the strand invasion and recombination after correct 

positioning of the sister chromatid by cohesins. 

 

 

 

The MRN complex 

One of the key players in DSB repair is the MRE11-Rad50-NBS1 complex (MRN), which 

is involved in different stages of DNA damage response (Williams et al., 2007). As shown 

in Figure 1.4 one of the functions is the detection of DNA double strand breaks through the 

Mre11 (Meiotic recombination 11) DNA end binding domain (Lavin, 2007; Buis et al., 

2008b; Williams et al., 2008). According to the literature this binding is essential for 

activation of ATM – a PIKK 3 family kinase, which normally forms a dimer and only upon 

activation is phosphorylated and monomerized. The activated ATM phosphorylates a huge 

number of proteins involved in DSB repair. One of them is a histone H2AX, which is 

phosphorylated at Ser139 in megabase regions around the DSB (Rogakou et al., 1998). In 

Figure 1.3 Simplified scheme of DSB repair by Homologous recombination repair 

(HRR) 



Introduction
 

 6

this way γ-H2AX is forming an irradiation induced focus, which is thought to be a specific 

marker of DBSs and can be clearly visualized by fluorescence microscopy. However, the 

intial phosphorylation is directly connected with the DSB sensing by MRN and then 

activation of ATM Figure 1.4. The following γ-H2AX signal spreading is mediated by 

MDC1 (Mediator of DNA damage checkpoint protein 1) protein and works like a chain 

reaction, where MDC1 binds to initial γ-H2AX, recruits MRN complex with ATM and in 

this way phosphorylates the next H2AX, which again is detected by MDC1 (Figure 1.4) 

(Celeste et al., 2003; Stucki and Jackson, 2006). Here the second second function of MRN 

complex becomes obvious, as it is involved in the posttranslational modification of 

chromatin, surrounding the DSB (Lee and Paull, 2007). When and how this reaction stops 

is still not understood. It is known that it provides a basis for the binding of different DSB 

repair proteins by this ensuring the efficient repair and finally plays a crucial role in the cell 

cycle checkpoint activation. Where again the MRN complex was reported to be involved 

(Shiloh, 2003). Finally, the MRN complex was shown to play a crucial role in mediating 

the choice of NHEJ and HRR pathways (Yang et al., 2006). It is also important for the 

production of 3’- overhang by the nuclease activity of Mre11. 

 

 

1.2. Laser-microbeam as a precise tool to study DNA damage and repair 

A number of tools are available to experimentally induce DNA double strand breaks 

(Essers et al., 2006). One can use toxins or different types of irradiation such as ionising or 

Figure 1.4 Mre11-Rad50-NBS1 (MRN) complex as a multifunctional player in DSB 

repair 
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UV-A radiation (Rapp and Greulich, 2004). However these treatments normally induce 

damage in whole cell nucleus and their time resolution is poor since damaging procedure 

can last up to 30 min. Another possibility is a stable genetical integration of a recognition 

site for a rare cutting enzyme and then subsequent generation of damage by inducing the 

enzyme translocation into the nucleus (Rodrigue et al., 2006; Miyazaki et al., 2004). Here 

again timing of damage induction can not be controlled exactly. Thus, the starting time 

point of DNA damage repair can not be highly defined. 

There are two available techniques capable to induce highly localized damage with high 

temporal resolution. One of them is an ionising microbeam delivering heavy ions and alpha 

particles of different energies and linear transfer energies to a desired part of the cell 

nucleus (Tartier et al., 2003; Heiss et al., 2006; Prise et al., 1998; Hamada et al., 2006; 

Desai et al., 2005; Greubel et al., 2008). Although some systems already exist for the 

observation of living cells during and immediately after irradiation (Hauptner et al., 2006; 

Jakob et al., 2005), these instruments are extremely costly, rarely available, very complex 

and limited to a narrow spectrum of beam parameters. 

Another technique is the laser-microbeam generating ultraviolet, visible or near infrared 

light (Greulich, 1999). Micro-focused laser light has proven to allow very precise 

micromanipulation and microprocessing of cells (Berns and Greulich, 2007). Recently, an 

interest in laser microbeams has turned towards application in DNA repair research, 

because of their high resolution in space (x,y,z) (Meldrum et al., 2003) and time. Unlike the 

above presented tools for DNA damage induction, lasers can be simply directed to the 

preselected sub nuclear locus at user defined time points. Recently, the damage induction 

and repair exclusively in the heterochromatin of mouse cells was shown (Ayoub et al., 

2008). A distinct advantage is that the laser beam is incorporated into the same microscope 

that is used for imaging. Therefore the specimen does not need to be transferred and thus it 

allows detecting fast events: ~ 1 s if combined with live cell imaging and ~2 min if 

combined with immuno-histochemistry (Essers et al., 2006; Lukas et al., 2005). 

One of the first attempts to use a laser-microbeam for DNA double strand break repair 

studies was presented in 1999 by Rogakou et al (Rogakou et al., 1999). The authors used 

LaserScissors Module 390/20 with a pulsed UV-A laser at 390 nm to induce damage in 

cells pre-sensitized with halogenated thymidine analogs and/or DNA intercalating dyes 

such as Hoechst. Following this experiment, numerous publications appeared using 

different laser systems for DNA damaging. Some groups used pulsed UV-A lasers from 
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337 nm (nitrogen laser) to 405 nm either with the pre-sensitization as mentioned above 

(Lukas et al., 2004; Bekker-Jensen et al., 2006; Tashiro et al., 2000; Walter et al., 2003; 

Celeste et al., 2003; Mortusewicz et al., 2005; Kruhlak et al., 2006) or without it (Lan et al., 

2005; Uematsu et al., 2007). Some of the researches tried also to use low energy pulsed 

diode laser at 405 nm, however 100 line scans were needed to produce detectable double 

strand breaks (Lan et al., 2005). Higher energy pulsed laser systems have an advantage that 

DSBs can be induced just with one pulse. This increases temporal resolution as well as 

reduces unwished thermal effects. Recently also lasers in the visible and the near infrared 

range have been used. The second harmonic of Nd:YAG (Kim et al., 2005) at 532 nm was 

used to study the assembly of proteins involved in NHEJ and HRR after two photon 

damage induction. It was also reported that pulsed near infrared Ti:Sa lasers at 800 nm can 

be applied to induce DNA damage due to three-photon absorption (Meldrum et al., 2003; 

Bradshaw et al., 2005; Mari et al., 2006). 

Despite the wide usage of laser, DNA damaging effects of microbeams are understood only 

to a limited extent (Konig et al., 1999; Mohanty et al., 2002; Dinant et al., 2007) especially 

in terms of beam quality. Unfortunately, each group uses microbeams with different 

parameters - pulse energy, dose and wavelength even though DNA damage induction was 

shown to be highly dependent on the quality (pulsed vs continuous laser) of the irradiation 

source (Mohanty et al., 2002; de With and Greulich, 1995). The variation of various 

parameters may induce different responses, from moderate photodamage to complete 

destruction of the DNA. In consequence, the activated DNA repair response may vary 

largely depending on the laser system used (Dinant et al., 2007). Therefore, comparison of 

results obtained in different laboratories became a quite challenging issue. Obtaining first 

information on such differences is one of the aims of this work. 

1.3. Comet-assay for detection of DNA fragmentation 

The level of induced double strand breaks (DSBs) primarily can be estimated from the dose 

of applied noxes although dose definitions for each of the damaging agents are different. 

Grays [Gy] are used for ionizing irradiation, concentration [µg/ml] for biochemical 

damaging like drugs or enzymes and Joules [J/cm2] for UV and visible light. Consequently 

they can not be compared directly. This lack of comparability of DNA fragmentation 

induced by different noxes has the consequence that the synergies in the knowledge on 

DNA damage and subsequent repair are presently not optimally used. 
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One way to compare different damaging tools is to look at the DNA damage response for 

example by measuring the presence of DNA repair proteins such as γ-H2AX or RPA 

(Bekker-Jensen et al., 2006). However, it is not clear if these markers do really represent 

DSBs. Therefore, in this work another additional method was developed for direct detection 

of DNA damage. Correspondingly, in the case of DSBs the fragmentation levels will be 

analysed. 

For the detection of DNA breaks at a single-cell level, the neutral Comet-assay has been 

developed in 1984 (Ostling and Johanson, 1984; Olive et al., 1992). The basic principle of 

the Comet-assay is presented in Figure 1.5. The induced damage level can be quantified by 

the DNA content in the comet tail after electrophoresis of single cells embedded in the 

agarose gel. Therefore another name for this technique is a Single Cell Gel Electophoresis 

(SCGE). It is widely believed that the conventional neutral Comet-assay, where lysis and 

electrophoresis are done at pH 8, detects DNA strand breaks. Whether it detects solely 

DSBs or also single strand breaks (SSBs) is still under discussion (Collins, 2004; Collins et 

al., 2008). However, the common DNA dye based staining techniques used in previous 

approaches provide only limited resolution of the comets. Thus, visualization of details is 

not possible and the subtle differences in neutral comets after various treatments can not be 

revealed. 

 

Figure 1.5 DNA stretching in single cell gel electrophoresis. By increasing the number 

of damage (marked in red) the amount of DNA stretched out of the cell nucleus 

increases, by this forming a tail. 
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Therefore in this work a novel staining method - the Immuno Fluorescent Comet Assay 

(IFCA) using antibodies against histone H1, will be introduced. This enables direct 

visualization of fragmented chromatin with high resolution, exploiting the fact that the 

linker histone H1 is tightly bound to the DNA. It has already been reported in the literature 

that even after proteinase treatment some proteins still remain bound to DNA in the Comet-

assay (Singh et al., 1999b; Werner and Petzelt, 1981). 

Using IFCA it is possible to provide a detailed look into the neutral version of the Comet-

assay at high resolution, and even gives an estimate for the size of fragments at the end of 

the comet tail. Importantly, it allows comparing fragmentation patterns of single cells after 

different damaging treatments. 

 

1.4. Aim of the thesis  

Both, the NHEJ and HRR pathways as well as MRN function, seem to be well studied 

separately. However, it is still very poorly understood how these pathways interact with 

each other in real time. There are only few reports in literature where the timing of NHEJ 

and HRR are compared. Kim et al. have found that NHEJ and HRR are recruited 

sequentially, however only the Ku80 molecule involved in the earliest NHEJ step was 

analysed, and only the information whether the proteins are assembled or not was obtained 

(Kim et al., 2005). Furthermore, immunofluorescence staining was performed by fixing 

cells around 20 min after irradiation. Therefore, the information of the earliest steps could 

not be recorded. An interesting finding was obtained by Allen et al. who reported that HRR 

is increased in the absence of DNA-PKcs but decreased when DNA-PKcs is catalytically 

inactive, suggesting that DNA-PKcs is a protein at the interface of NHEJ and HRR 

pathways (Allen et al., 2003; Shrivastav et al., 2008), which might cooperate (Rapp and 

Greulich, 2004). However, we still do not understand how these pathways do cooperate or 

compete on the DSBs.  

Therefore, one of the main aims of this work is to understand the cross talk of those 

pathways. In this case the recruitment kinetics are measured of early and late NHEJ, the 

MRN complex and the HRR machinery at exactly the same conditions in human cells, by 

combining laser-microbeam for damage induction with live cell imaging and 

immunofluorescence. 
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Since laser-microbeams are used for the study, the influence of the variation of different 

laser parameters on the DNA double strand break induction has to be investigated. 

Following it, the comparison of laser micro-irradiation against other treatments such as 

ionizing radiation and chemicals in terms of the DSB induction has to be done. For this 

purpose a novel Comet-assay staining method, allowing measuring of DNA fragmentation 

with high resolution, is developed. 
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2. Materials and Methods  

2.1. Cell culture 

The human osteosarcoma U-2 OS, HeLa, HaCat (kindly received from Petra Baukamp) and 

NIH 3T3 mouse fibroblasts cell lines were maintained in RPMI containing 10% FCS, 

10.000 U/L Penicillin, 100 mg Streptomycin at standard conditions at 37°C, 5% CO2. 

Stable U-2 OS cell lines expressing EGFP tagged Ku80, XRCC4 or NBS1 where 

maintained with 300 µg/ml of G418. Wilde type and NBS1 null mouse embryonic 

fibroblasts kindly received from Z.Q.Wang and Ku80 deficient MEFs kindly received from 

M.Löbrich were maintained in DMEM with 10% FCS, 10.000 U/L Penicillin, 100 mg 

Streptomycin at 37°C, 10% CO2. Depending on the experiment the cells were seeded in 

chambered cover-slips (Nunc), µ-dish (ibidi) or 3.5 cm culture dishes two days before the 

experiment. In the case of transient transfection, one day before the experiment cells were 

transfected with vectors as described. All experiments were done in unsynchronised cells. 

2.2. Cloning 

In order to visualise the proteins of interest in the living cells, they were fused with 

Enhanced Green Fluorescent Protein or monomer Red Fluorescent Protein (EGFP or 

mRFP). Therefore the coding sequences of investigated proteins were amplified from U-2 

OS cells and then cloned into expression vectors containing coding sequences of 

fluorescent proteins. Finally, generated vectors were amplified in Escherichia coli (E.coli) 

and analysed by restriction analysis and sequencing. Vectors coding proper fusion proteins 

were further used for transient transfection or for the generation of cell lines stably 

expressing fusion proteins. 
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DNA agarose gels 

DNA gels were used either to analyse restriction digestions (analytic gels), by detecting the 

correct number and size of bands, or to purify certain nucleic acids from an inhomogenous 

mixture e.g. after polymerase chain reaction (PCR) (preparative gels). Preparative gels were 

with larger slots to accommodate large amounts of DNA. Gels contained 1.0% agarose type 

II in TAE buffer with 5 μl of ethidium bromide per 100 ml gel. DNA samples were mixed 

6:1 with 6×DNA loading buffer and run at 5 V/cm in TAE buffer. 

RNA Gels 

RNA gels were used to analyse the RNA content after RNA isolation from mammalian 

cells. They were prepared with 1.2 % agarose type II in formaldehyde (FA) gel buffer with 

3 μl of ethidium bromide per 50 ml gel. RNA samples were mixed 10:1 with 10×RNA 

Loading-buffer, denatured for 5 minutes at 65°C and then run at 5 V/cm in FA Running-

buffer. 

Generation of cDNA library 

RNA isolation of U-2 OS cells was carried out according to RNeasy® Mini Kit Protocol for 

animal cells (Qiagen). The RNA concentration was measured in RNase-free cuvettes 

(UVette, Eppendorf) using the BioPhotometer (Eppendorf) and a RNA gel was run to test 

the RNA quality. cDNA synthesis was performed using the ThermoScript™ Reverse 

Transcriptase Kit (Invitrogen) with Oligo (dT) primers. The result was controlled by 

running the DNA gel. 

Gene amplification 

The coding sequence of human gene of interest was amplified using PCR and the 

specifically designed primers shown in Table 2.1. Each primer has a sequence of a target 

and a certain restriction site at their 5’ end for direct cloning into desired vector. Primers 

were designed using Clone Manager Software (Sci-Ed Software) so that tagged fluorescent 

protein sequence in final vector is in frame with the insert. Synthesis of the primers was 

done by Eurofins MWG Operon.  
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Table 2.2 PCR setup. 

Component Amount 

10x Accu Prime™ Pfx Reaction Mix 5 µl 

Primer Mix (10 µM each) 1.5 µl 

cDNA template 2 µl 

Accu Prime™ Pfx DNA Polymerase (2.5 U/µl) 0.5 µl 

dH2O Up to 50 µl 

 

The sequence of interest was amplified by PCR using the AccuPrime™ Pfx DNA 

Polymerase Kit (Invitrogen) and certain primers. The reaction mix is shown in Table 2.2. 

Primer annealing temperatures used for PCR reactions in a Thermocycler (Eppendorf) are 

shown in Table 2.1, and the whole reaction programme is given in Table 2.3. 

Table 2.1 Primers and their annealing temperatures used for gene amplification. 
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Ku70-fw2 aaccgcggatgtcagggtgggagtcatattac SacII 
Ku70 001469 

Ku70-rv2 aaggatccaagtcctggaagtgcttggtgag 
1845 

BamHI 
60 

Ku80-fw2 aaccgcggatggtgcggtcggggaataag SacII 
Ku80 021141 

Ku80-rv2 aaggatccaatatcatgtccaataaatcgtccacatc 
2214 

BamHI 
60 

XRCC4-fw aagagctcatggagagaaaaataagcagaatc SacI 
XRCC4 003401 

XRCC4-rv2 aaccgcggaaaaatctcatcaaagaggtcttctg 
1021 

SacII 
56 

OGG1-fw aagtcgacgaaatgcctgcccgcgcgc SalI 

OGG1 002542 
OGG1-rv 

aagcggccgcaagccttccggccctttggaaccct

ttc 

1038 
NotI 

62 
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PCR products were separated on a preparative DNA agarose gel, bands with the correct 

length were cut out with a scalpel and the DNA was extracted using the QIAquick Gel 

Extraction Kit (Qiagen) according to manufacturer’s instructions. Product concentrations 

were determined by measuring absorption at 260 nm using a photometer. 

 

 

Plasmid ligation, amplification and isolation 

The restriction digestion reaction of amplified products and the target vectors, was 

performed. Approximately 3-10 μg of each PCR-product and 5-10 μg of the designated 

target vectors were digested by enzymes given in Table 2.1. The digestion in reaction mix 

shown in Table 2.4 took place at 37°C for four hours or over night. The reaction was 

terminated by heating at 65°C for 20 minutes, followed by the preparation of a preparative 

DNA agarose gel in order to cut out and purify digested product (as described above). 

 

Table 2.3 Thermocycler programme for PCR. 

Step Temperature Time 

Denaturation 95°C 5 minutes 

Denaturation 95°C 30 seconds 

Primer Annealing Individual for each 

primer 

45 seconds 

DNA synthesis 68°C 3 minutes 

 

 

35x 

Completion of 

synthesis 

68°C 10 minutes 
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Finally products were ligated into target vectors using the T4 DNA ligase (Invitrogen) at 

16°C over night. Amount of digested vector and insert molecules was set to be equal in the 

ligation reaction mix of 20 µl volume containing T4 DNA ligase and appropriate buffer. 

Next day the ligation was terminated by heating at 65°C for 10 min and the ligation product 

was transformed into competent “One shot top 10” E.coli cells (Invitrogen). 25 ng of DNA 

from ligation mix were added to 50 µl of fresh thawed cells and gently mixed. The mixture 

was kept on ice for 30 minutes, followed by a heat shock in a 42°C water bath for 45 

seconds. After keeping the cells on ice for a few more minutes, 250 μl of a warm SOC-

medium was added and the cells were incubated at 37°C and constant rotation for one hour 

to allow the expression of resistance genes. After that, 150 μl of cells were spread on a 

petri-dish containing 2% agarose/LB, 100 μg/ml kanamycin or ampicillin depending on the 

used target vector and were grown over night at 37°C. Single growing colonies were 

transferred in sterile glass-tubes containing 5 ml of LB-medium with kanamycin or 

ampicillin (100 μg/ml) and incubated at 37°C and constant rotation (225 rpm) over night. 

 

Plasmids from grown E.coli cultures were isolated using the QIAprep Spin Miniprep Kit 

(Qiagen) according to manufacturer’s instructions. To verify that the plasmids contain the 

correct insert, a test digestion was performed by choosing unsymmetrical restriction sites, 

one located in the insert and one in the original vector. Plasmids whose restriction analysis 

showed bands with correct length, were sequenced further by MWG Biotech. To obtain 

bigger amounts of the desired plasmids, after sequencing one clone was chosen and another 

transformation into ”One shot top 10” cells was performed as described above using the 

Table 2.4 Setup for restriction reaction. 

Component Amount 

10x Reaction buffer (enzyme specific) 3.0 μl 

100x BSA 0.3 μl 

Enzyme 1 2.0 μl 

Enzyme 2 2.0 μl 

Nucleic Acid (dependent on concentration) 10 µg  

dH2O Up to 30.0 µl 
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purified plasmids as a transformation agent. Growing colonies were transferred to sterile 

glass-tubes containing 50 ml of LB-medium/Kanamycin (100 μg/ml) and grown at 37°C 

and constant rotation (225 rpm) over night. Plasmids were isolated using the QIAgen 

HiSpeed Plsmid Midi Kit according to manufacturer’s instructions. 

OGG1 was cloned into pDEST47 plasmid using the Gateway system (Invitrogen) therefore 

pENTR vector was used as a primary target plasmid. After the confirmation of correct 

sequence the insert, flanked by attL sites, in pENTR vector was further transferred into 

pDest-47 vector containing attR sites by the Gateway® LR Clonase (Invitrogen) 

recombination reaction according to manufacturer’s instructions. The principle of Gateway 

system is shown in Figure 2.1. 

 

 

2.3. Transient transfection 

In general, U-2 OS cells were seeded in chambered cover glasses one day prior to 

transfection and grown over night to be approximately 60% confluent during transfection. 

Then the appropriate amount of FuGENE 6 was directly pipetted into serum free Optimem 

1 Medium without touching the plastic surface of the tube, mixed shortly and incubated for 

five minutes at room temperature. Subsequently DNA was added, carefully mixed and 

Figure 2.1 Scheme of Gateway cloning system. 
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incubated for 20 minutes. Afterwards, everything was added directly to the culture medium 

of the cells and incubated over night under normal culturing conditions. Next day the 

medium was changed. 

2.4. Stable cell line generation 

The DNA plasmids coding Ku80-EGFP, XRCC4-EGFP and NBS1-EGFP fusion proteins 

were stably introduced into the genome of U-2 OS cells in order to have similar expression 

levels in all cells through many passages. For stable transfection of U-2 OS cells, 10 µg of 

plasmid vectors containing the respective EGFP-fusion proteins were linearized via 

enzymatic digestion to ensure an insertion into the cell’s genome without disrupting any 

functional gene within the vector. The digestion was carried out as described in section 2.2, 

Ase I restriction enzyme was used to linearize all in this work used constructs. Afterwards 

the linear plasmids were purified using the QIAquick PCR Purification Kit according to 

manufacturer’s instructions. For stable transfection, U-2 OS cells were grown in 6-well 

plates to a density of 90%. The medium was changed shortly before transfection. 4.0 µg of 

the linear constructs as well as 10 µl of Lipofectamine 2000 were separately mixed with 

250 µl of Optimem 1 medium each and incubated at room temperature for five minutes. 

Both mixtures were combined and incubated together for 20 minutes, then applied to one 

well of cells and incubated at normal culturing conditions over night. For selection of 

transfected clones, cells were trypsinized and each well was transferred to a 5 ml culturing 

flask containing half the effective concentration of G418 (100 µg/ml). During a period of 

two weeks, cells were cultured in media containing increasing concentrations of G418 until 

1.5 times the effective concentration (300 µg/ml) was reached and the formation of resistant 

colonies was visible. At this point, cells were seeded at low density in 96-well plates and 

growing colonies were checked for green fluorescence under the laser-scanning 

microscope. Cells from positive wells were transferred to 96-well plates to gain individual 

clones. Clones containing the plasmid thus fluorescing in green were isolated, grown in 

culture flasks and finally frozen. 

2.5. Western Blot analysis 

Western blot was used to detect the expression levels of exogenous protein in stable U-2 

OS cell lines. 
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Cell lysate preparation 

U-2 OS cell lines expressing the exogenous fusion protein were grown in 6 cm dishes then 

trypsinized, collected in medium and cell number was counted by using Neubauer cell 

counting chamber and centrifuged at 1100 g for 5 minutes. After the removal of the 

medium, the cell pellet was resuspended in the whole cell protein extraction buffer. The 

volume of added buffer (300 µl) was selected in order to keep the same cell number per ml 

for all samples. During the resuspension the cell pellet was gently pipetted up and down 

and than gently shaken on ice for 30 minutes. After sonication (two times, 5 seconds, 30% 

amplification, Bandelin electronic) the solution was centrifuged at 14000 rpm in a cooled 

microcentrifuge for 15 minutes. The supernant - whole cell extract was finally aliquoted 

and frozen.  

Protein separation 

In order to separate proteins according to their size 10% SDS polyacrylamide gels with a 

thickness of 1 mm were prepared using the “Mini-PROTEAN 3 Cell” rag-system from 

Biorad. First, the separating gel was poured and the surface and flattened with buthanol. 

After gel polymerisation buthanol was removed and the stacking gel solution was added. 

Before analysis protein extract was mixed 6:1 with SDS-loading buffer containing DTT for 

5 min incubation at 95°C and finally placed on the ice for several minutes. Equal amount of 

proteins were loaded in each pocket. 4 µl of prestained protein standard (PageRuler 

Prestained Protein Ladder Plus) was also loaded in one empty pocket. The electrophoresis 

was carried out in SDS-Running-buffer at 120 V for variable time periods depending on the 

size of the detected protein. After electrophoresis separated proteins were visualized on one 

of the gels by Coomassie staining with Rotiphorese brilliant blue (Roth) for 20 minutes and 

subsequently destained over night. 

Blotting 

For the transfer of the separated proteins from the SDS gel to a nitrocellulose membrane 

(Hybond-ECL), the membrane was soaked for ten minutes in dH2O and shortly in Transfer 

buffer. The same procedure was done for the blotting paper. The SDS gel was removed 

from the electrophoresis chamber and also shortly covered with transfer buffer. A stack 

containing blotting paper, membrane, SDS gel and another blotting paper was placed on the 

semi dry Transfer Cell (Bio-Rad). Transfer was performed at 9 V for 90 minutes. 
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Protein detection 

Proteins on the membrane were temporarily visualized by staining with Ponceau Red 

(Roth), and destained by dH2O washing. Further the membrane was blocked with 4% non-

fat dried milk in PBST-0.05% for 1 hour at room temperature and washed in PBST-0.05% 

for 10 minutes. The primary antibody (Table 2.5) was diluted in 2 ml of PBST-0.05%, BSA 

2% and applied to the membrane with constant shaking at 4°C over night. Next day the 

membrane was washed three times with PBST-0.1% for 10 minutes each. Then it was 

incubated with 10 ml of the HRP-labelled secondary antibody (1:10000 in 4% non-fat dried 

milk in PBS) at room temperature for one hour. Subsequently the membrane was washed 

with PBST-0.01%, PBST-0.05% and PBS for ten minutes each. Finally the membrane was 

covered with ECL (Pierce) or ECL-Plus (Amersham) solution for one to three minutes 

depending on the strength of the signal. The ECL was removed and the membrane was 

exposed to a sheet of Hyperfilm ECL for one up to 60 minutes under safelight illumination 

conditions. Afterward the film was developed using the Classic E.O.S. processor (AGFA). 

 

Table 2.5 Antibodies used for Western Blot analysis. 

Antigene Species and clonality Dilution 

Ku80 mouse monoclonal 1:1000 

XRCC4 mouse polyclonal 1:1000 

NBS1 rabbit polyclonal 1:1000 

Alpha-Tubulin mouse monoclonal 1:1000 

 

2.6. Immunohistochemistry 

For visualisation of endogenous and also exogenous fusion proteins in the cell nucleus the 

Immunohistochemistry was used. Medium was removed and the cells were shortly washed 

with PBS and then fixed in 3.7% formaldehyde, 0.1% Triton X-100 in PBS for 20 minutes 

at room temperature. After wash in PBS for 5 minutes the cells were permeabilized in 0.7% 

Triton X-100 in PBS for 15 minutes at room temperature and washed again as above. The 

cells were incubated in 7% BSA in PBS plus primary antibody at 4°C overnight. The 

primary antibodies used in this study are shown in Table 2.6. After the incubation with 
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primary antibody the slides were washed in PBS, PBST-0.05% and again in PBS for 10 

min each at room temperature. Finally for indirect immunochemical detection the 

secondary antibodies were used: donkey anti-mouse conjugated with Alexa488 or 

Alexa594 and anti-rabbit conjugated with Alexa488, Alexa555 and Alexa594, at 1:400 

dilution (Molecular Probes). Secondary antibodies were diluted in PBS with 7% BSA and 

incubated on the slides for 1 hour at room temperature. After washing as described above 

the specimens were covered with ProLong Gold antifade reagent containing DAPI and 

sealed with a coverslip. 

 

Table 2.6 Antibodies used for immunohistochemistry. 

Antigene Species and clonality Dilution

γ-H2AX mouse monoclonal 1:400 

Ku80 mouse monoclonal 1:200 

XRCC4 mouse polyclonal 1:400 

NBS1 rabbit polyclonal 1:200 

Rad51 rabbit polyclonal 1:200 

53BP1 rabbit polyclonal 1:400 

DNA-PKcs (phospho Ser2056) rabbit polyclonal 1:400 

DNA-PKcs (phospho Ser2609) mouse polyclonal 1:400 

Cyclobutane pyrimidine dimers mouse monoclonal 1:400 

OGG1 mouse monoclonal 1:200 

Histone H1 mouse monoclonal 1:50 

 

2.7. Immunofluorescent Comet-assay (IFCA) 

General procedure of neutral and alkaline Comet-assays 

The Comet-assay was performed immediately after the DNA damage was induced to avoid 

DNA repair. The principle scheme of Comet-assay procedure is shown in Figure 2.2. 
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Embedding of the cells for alkaline and neutral versions of Comet-assay was performed in 

the same way as described below. 

Slide preparation 

Two types of slides were used in this work: fully frosted and partially frosted with two clear 

windows. For both of them the ground agarose layer was added in order to strengthen the 

binding of later agarose layers with cells. For that reason 100 µl of melted 1% agarose type 

II in PBS were applied to the slides, spread into a very thin ground layer and air dried. 

Slides with two windows could be further proceeded for cell embedding, while fully frosted 

slides need a thick middle layer in order to reduce the amount of light appearing due to the 

scattering by frosted glass. For this, 400 µl of the same agarose-solution was applied to a 

ground-layered slide, covered with a glass coverslip and immediately polymerized on a 

cold metal plate (4°C) to form the middle layer. 

 

 

Figure 2.2 Scheme for comet assay procedure. Red box shows the step done only in 

IFCA. In red text the step of neutralisation is shown, which is necessary only for 

Alkaline Comet-assay. Washing steps are skipped. 
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Cell embedding on slides 

Cells were washed with PBS, trypsinized and suspended in medium with FCS to block the 

trypsin activity, afterwards cells were centrifuged for 10 min at 2000 g. After removal of 

medium the cells were resuspended in PBS thereby setting the concentration of cells to 

~105 cells per ml or less and incubated at 41°C in a water bath for several minutes. Then 

cells in PBS were mixed with 1% low melting point agarose (Type VII) in PBS. 100 µl of 

the cell suspension in 0.8% agarose were added on the prewarmed slides with middle layer 

and sealed with cover slip. Polymerisation was performed by putting slides on the cold 

(4°C) metal plate for several minutes. Afterwards, slides were lysed depending on the 

Comet-assay version used. 

Alkaline Comet-assay 

Slides were incubated in alkaline lysis buffer for 60 min at 4° C. Subsequently they were 

placed in electrophoresis buffer pH>13 for 25 min in order to unwind the DNA, and 

electrophoresed at 1 V/cm for 25 min or 2 hours in the same buffer, after electrophoresis 

slides were neutralised in Tris buffer (pH7.5) for 5 min. 

Neutral Comet-assay. 

Slides for the neutral Comet-assay were incubated in neutral lysis buffer at room 

temperature for 40 min, then incubated for 10 min in 1xTBE buffer and electrophoresed in 

1xTBE buffer at 1V/cm for the times indicated in the results section. 

Enzymatic induction of DNA fragmentation 

For generation of defined numbers of SSBs and DSBs the nicking and restriction 

endonuleases Nt.BbvCI and BbvCI (New England Lab) were used respectively. Both 

enzymes recognize the sequence 5´-CCTCAGC, but induce either a SSB (nick) (Nt.BbvCI) 

or a DSB (BbvCI). Untreated HeLa cells were embedded in microgels, lysed in neutral lysis 

buffer as described above and subsequently washed in TE buffer for 10 min, then two times 

for 15 min in 1× restriction reaction buffer. Then, 15 units of the enzyme diluted in 100 µl 

of the 1× restriction reaction buffer were added to the slides. One unit is the amount of 

Nt.BbvCI enzyme required to convert 1 µg of supercoiled plasmid DNA to open circular 

form in 1 hour at 37°C in a total reaction volume of 50 µl. When for BbvCI one unit is 

defined as the amount of enzyme required to digest 1 µg of λ DNA at the same conditions. 

The slides were covered with a plastic cover slip and incubated at 37° C in humid chamber 
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for 3 hours, washed with PBS for 15 min, incubated in 1×TBE and electrophoresed as 

described above. 

Immunofluorescent Comet-assay (IFCA) 

As shown in Figure 2.2 slides of both Comet-assay versions after single cell gel 

electrophoresis were washed in PBS, followed by the addition of mouse monoclonal anti-

Histone H1 antibody (AE-4, SantaCruz) diluted 1:50 in 60 µl of PBS with 7% BSA and 

sealed with a plastic coverslip. Incubation was performed in a humid chamber overnight. 

Next day the slides were washed in PBS, PBST-0.05% and PBS for 15 min each and 

incubated with secondary donkey anti-mouse antibody conjugated with Alexa 488 or Alexa 

594 fluorescent dyes (dilution 1:400 in PBS with 7% BSA). After 1.5 hours of incubation 

the slides were washed again as described above and mounted in DAPI/antifade (1 µg/ml 

DAPI, 100 mM DABCO, 45% glycerol, 10 mM Tris-HCl (pH 8.0) or for colocalization 

experiments slides were embedded in SYBR Green solution with antifade and finally sealed 

with a glass coverslip. 

Lambda DNA (48.5 kbp) and low range PFGE (2-200 kbp) marker migration in neutral 

Comet-assay 

Frosted slides with two windows (Erie Scientific Company) were covered with 400 µl of 

0.8% low melting point agarose in PBS, sealed with cover slip and cooled down. After 10 

min of incubation in an electrophoresis tank with 1xTBE buffer the, 25µg/ml Lambda DNA 

(New England Lab) diluted in PBS was added by the following. With the top of the 10 µl 

tip a small pocket was formed in agarose layer (as shown in Figure 3.5 G) and ~0.2 µl of 

1:1 lambda DNA and DNA loading dye mixture was loaded. After 25 min of 

electrophoresis, 30 µl of antifade solution containing YOYO1 or SYBR Green was added 

to the slides and sealed with a cover slip. A slightly different procedure was done for 

electrophoresing the low range PFGE marker purchased from New England Lab. The 

marker DNA is delivered in 1% agarose, thus it was cut into small pieces with diameter of 

~500 µm. These pieces were attached to the frosted slide with two windows and covered 

with 400 µl of 0.8 % low melting point agarose in PBS. Consequently the slides were 

covered with a cover glass and cooled down. Further processing was done as described 

above. 
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Sequence analysis 

In silico restriction fragmentation analysis for fragmentation of the whole human genome 

by cutting BbvCI enzyme was done by using Clone manager (for sequence manipulation 

and analysis) and OriginPro (for data analysis and graphical representation) software. 

In silico calculation for the number of potential DSBs arising due to closely induced SSBs 

by the nicking Nt.BbvCI enzyme was done only for the human chromosome 6. Sequences 

of all human chromosomes were obtained from the website of National Centre for 

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/). 

2.8. Damage induction and quantitative calculation of used photons, 

doses and molecule number by ionizing radiation, UV-A laser-

microbeam irradiation and bleomycin treatment 

For the following calculations of applied doses and photon numbers of different treatments 

the assumption was done that the size of a HeLa cell nucleus is 10×10×3 µm3 and it has the 

volume of 300 µm3 or 300 fl. The weight of such cell nucleus is 300 pg (assuming a density 

of 1 g/ml). 

Ionizing radiation:  

Gamma irradiation was performed using a Gammacell GC40 with 137Cs (Nordion). Doses 

were defined via the time of exposure (dose rate: 1.17 Gy/min) of the gamma source. Since 

1 Gray strictly is a dose absorbed by the tissue, and not the dose emitted by the gamma 

source, one has to assume that the biological material absorbs the ionizing radiation like 

water. This assumption is in agreement with medical literature. 

The ionizing irradiation dose is defined as the absorbed energy per 1 kg of biological tissue, 

thus 1 Gy = 1J/kg = 10-3 J/g. In this case one cell nucleus will absorb 0.3 pJ (10-3 J/g x 

300×10-12 g = 300×10-15 J = 0.3 pJ). This energy is an equivalent for (0.3×10-12 J) /(1.6×10-

19 J/eV) = 1.5×106 eV. One gamma photon of 137Cs has an energy of 662 keV. Thus, one 

single cell nucleus formally absorbs the whole energy of (1.55×106 eV)/(662 000 eV) = 2.3 

gamma photons. However a 3 µm thick nucleus is not able to absorb the whole energy of 

the one photon because the linear energy transfer (LET) of gamma photons is 0.8 keV/µm. 

Thus, 625 gamma photons with 0.8 keV LET are needed in order to apply 1 Gy irradiation 

dose on one single nucleus. 
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Laser-microbeam:  

Laser microirradiation was performed by a pulsed UV-A laser-microbeam (frequency 

tripled Nd:YLF laser generating ~20 ns pulses at 349 nm from Spectra Physics) coupled via 

the epifluorescence illumination path into a confocal laser scanning microscope (LSM 510, 

Zeiss).  

The pulse energy used to irradiate the single cell nucleus was about 10 µJ in the optical 

plane of sample. In the following the absorbed dose will be converted into an equivalent for 

ionizing radiation (J/kg) and will find out how many photons this irradiation does need for 

induction of double strand breaks. The penetration depth of such wavelength in biological 

tissue is around 60 µm (Greulich, 1999). By using the Lambert- Beer law the pulse in the 

depth of 3 µm will have the energy I3µm = I0e-dl: I3µm = I0 e-3/60 = 0.95 I0 from here the 

absorbed energy is IA = 0.05 I0 = 0.5 µJ or 3.13×1012 eV. A single photon at 349 nm has an 

energy of 3.5 eV thus the cell nucleus absorbs around 1×1012 photons. Note that in the case 

of laser-microbeam the energy is absorbed locally only in the irradiated region with a 

volume of 3 µm3  (for a 3µm thick nucleus) or 3 pg. From these numbers one can calculate 

the absorbed energy per mass unit: (0.5×106 J)/3×10-12 g = 0.5/3×10-6 J/g = 0.17×109 J/kg. 

This is a dimension of Gy that is usually used only for ionising radiation. 

Bleomycin:  

For chemical damage with bleomycin (BLM), BLM was added to the medium to a final 

concentration of 12 µg/ml. The cells were then incubated at standard conditions for 30 min.  

The molecular weight of bleomycin is 1415 g/mol. Thus the molarity in the cell nucleus is 

8.5 µM, if one assumes that bleomycin is equally distributed in the solution and the cell, 

this represent 5.12×1018 molecules in 1 litre. With a volume of the cell nucleus of 300 fl the 

number of bleomycin molecules in the single cell nucleus will be (5.12×1018 molecules/l) × 

(0.3×10-12 l) = 1.5×106 moleculess. All important parameters of different treatments are 

summarised in Table 3.1 in 3.3.3  section. 

 

 

 

 



Materials and Methods
 

 27

2.9. DNA damaging by laser irradiation 

No sensitisation was used for all laser irradiation experiments. 

2.9.1. Optical setup for irradiation at 420-455 nm 

For highly localized irradiation of the living cells in a broad range of the spectrum a tunable 

femtosecond Ti:Sa laser system was used (Figure 2.3). Fundamental (700-930 nm), 

frequency doubled (350-465 nm) and frequency tripled (250-310 nm) radiation of a Ti:Sa 

laser (Tsunami, Spectra Physics) were coupled into an Axiovert 135M microscope (Carl 

Zeiss) via the epifluorescence illumination path as shown in Figure 2.3. In Table 2.7 

properties of used beamsplitters are shown. 

 

Table 2.7 Beamsplitters used for combining the 

fundamental, second and third harmonics of Ti:Sa laser. 

 Reflection (HR) Transmision (T) 

1 250-340 nm 350-550 

2 250-550 600-1000 

3 650-1000  

4 450-600 330-450 

 

In order to investigate DNA damaging by different doses of laser light, pulse frequencies 

from 0.4 kHz to 4 MHz where changed by a pulse picker (Spectra Physics). Laser 

microbeam was focused into the middle of the field of view by using a 100X, NA 1.3 Plan 

Neofluar oil immersion objective (Zeiss). Cells in a 400 µm × 500 µm area were irradiated 

by moving the motorised x,y table, which was driven by an MCU 26 controller (Zeiss) at 

slowest available speed – 294 µm/s. At the lowest frequency (0.4 kHz) ~1.3 pulse per 1 µm 

hits the cell nucleus where in contrast at 800 kHz ~2600 pulses per µm hit the cell in 

irradiated region. Energies from 375 pJ to 7.5 pJ per ~200 fs pulse were used in order to 

investigate the pulse energy influence on DNA damage. Following the irradiation, which 

took usually around 10 min per plate (µ-Dish, Ibidi), the cells were incubated at normal 

growing conditions for one hour, then washed with PBS and fixed for immunofluorescence. 
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2.9.2. Optical setup for irradiation at 350 nm during live cell imaging 

For laser damage induction the pulsed UV-A laser was coupled into confocal laser scanning 

microscope (LSM 510) via epifluorescence illumination path (Figure 2.4 A). Laser-

microbeam was focused into the middle of the field of view by a 100X, NA 1.3 Plan 

Neofluar oil immersion objective (Zeiss). UV-A laser is a frequency tripled Nd:YLF laser 

(Spectra Physics) delivering 20 ns duration pulses at 350 nm with user defined energies 

from 1 µJ to 200 µJ at user defined repetition rates 1 Hz - 1000 Hz. Before entering the 

microscope laser pulse energy was reduced around 80% with the gradient position 

dependent attenuator (Laseroptik) (Figure 2.4).  

The cells for immunofluorescent staining were irradiated in a 500 µm ×  535 µm area by 

moving the motorised x,y table, which was driven by an MCU 26 controller (Zeiss) at 1470 

µm/s speed. For every experiment 350 Hz repetition rate with different pulse energies from 

2 - 6 µJ was used. By selected irradiation options around 100 cells were irradiated in 25 

seconds with single pulses hitting cell nucleus every 4 µm (Figure 2.4 B). For one kinetic 

measurement 8 quadrangulars were irradiated at different times during 1 hour (under 

optimal growing conditions described below) and finally fixed immediately after last 

Figure 2.3 Optical setup for DNA damage induction at 420-455 nm with second 

harmonic of the fundamental Ti:Sa laser radiation. Left panel shows the irradiation 

pattern performed by using the motorised xy table. Scale bar – 10 µm. 
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irradiation (Figure 2.4 C). The time points were determined by the time difference between 

finishing the irradiation of one quadrangular and start of the fixation. 

 

 

 

For live cell imaging 1 Hz repetition rate was used. Subsequently one single pulse was 

passed through to hit the cell nucleus at 10 seconds after the start of image acquisition. To 

provide optimal growing conditions for the living cells, an incubation chamber was 

constantly supplied with a 5% CO2, 37ºC atmosphere by a tempcontrol 37-2 digital (Zeiss) 

and a CTI-Controller 3700 digital (Zeiss). The temperature of the objective was 

additionally kept at 37ºC by a tempcontrol mini device (Zeiss). 

2.10. Microscopy and image analysis 

2.10.1. Live cell imaging 

Confocal imaging of living cells was done using a Zeiss laser scanning microscope (LSM 

510) equipped with 100X, NA 1.3 Plan Neofluar oil immersion objective, a HeNe and an 

Argon ion lasers and emission filter sets for the detection of FITC signals (BP530/20) as 

well as for Rhodamine signals (LP 580, LP 625). Scanning was controlled by the Zeiss 

LSM software version 3.2 and individual colour channels were recorded subsequently to  

Figure 2.4 A - Optical setup for DNA damage induction at 350 nm for measuring the 

recruitment kinetics of different DNA repair proteins. B - the irradiation pattern 

performed by using the motorised xy table, used for immunofluorescent detection of 

endogenous proteins. C – Irradiation of cells at 8 different times for one measurement of 

endogenous protein recruitment kinetic. 
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minimize cross talk. The time course of irradiated cells was recorded via time series of the 

LSM software. Fluorescence intensity changes in not irradiated region of the cell nucleus 

were subtracted from fluorescence intensity changes in damaged region for photobleaching 

correction due to repetitive imaging. Obtained curves were normalized to maximum. An 

average values and standard deviations for intensity changes were calculated from more 

than ten cells for every single condition (different pulse energies), if not stated otherwise in 

the text. The average curves were fitted by first order of exponential associate function 

(Figure 2.5) using instrumental weightening with a least-squares method. All mathematical 

procedures were performed by the OriginPro 7.0 software (OriginLab). 

Figure 2.5 Example of recruitment kinetic measurement by using live cell imaging of 

OGG1-S326C-EGFP and NBS1-mRFP expressed in the same cell nucleus (human U-2 

OS cells) after laser irradiation. ROI1 - region of interest at irradiated site, ROI2 – 

background. Scale bar – 5 µm. The left panel shows intensity changes at irradiated sites 

after background subtraction during observation time. Green represents OGG1-S326C, a 

DNA repair protein with fast recruitments kinetics, red shows NBS1, which is an order 

of magnitude slower. Time constants of recruitment kinetics are calculated from the fit 

with exponential association function as shown in the right part of the figure. 
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2.10.2. Immunofluorescence 

Confocal imaging of fixed samples was performed using a microscope with structured 

illumination. The Apotome (Zeiss) unit is mounted in the epifluorescence illumination path 

of an inverted Axiovert 200 (Zeiss). Filtersets for DAPI (Zeiss No 49), FITC (Zeiss No 38 

HE), Cy3 (Zeiss No 43 HE) were used. The camera (Zeiss, MRM Axiocam) as well as the 

structured illumination were controlled by the Axiovision software (Zeiss). For full 

information of the focus fluorescence intensity Z stacks containing 14 optical layers every 

250 nm were recorded by using Plan-Apochromat 63x NA 1.4 oil DIC objective (Zeiss). 

Exposition time was set to obtain not overexposed signals for foci with the highest signal 

intensity. In order to be able to compare the signal intensities, exposure time was kept 

constant during image acquisition of one independent experiment. For each time point 3 or 

4 Z-stacks were recorded. Further, 3D images were imported into ImageJ software 

(Abramoff et al., 2004) where the same threshold was set for all Z stacks from one 

experiment and finally the volume and overall intensity of every single focus was measured 

by using Sync 3D Measure plug in. Average focus intensity was calculated by dividing the 

total focus intensity by its volume. The mean of average focus intensity was obtained from 

around 100 – 300 foci for each time point by using the OriginPro software. For average 

focus intensity at time 0 sec the threshold value was taken. Normalization to maximum and 

curve fitting with the first order of exponential association or exponential decay functions 

were done as described above by using the OriginPro 7.0 software.  

Images of Immunofluorescent Comet-assay samples were taken by using the the same 

Apotome (Zeiss) set up described above. Additional air objectives EC-Plan-Neofluar 10x 

NA 0.3 and Plan-Apochromat 20x NA 0.8 were used without structured illumination to 

record comets. Macro imaging of an ~1 cm2 area was imaged using a Zeiss laser scanning 

microscope (LSM510) equipped with a HeNe and an Argon ion lasers, 10x NA 0.3 and 20x 

NA 0.8 Plan-Neofluar objectives and emission filter set for the detection of FITC signals 

(BP530/20). 
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3. Results  

3.1. Laser induce damage with high spatial resolution 

Coherent laser light can be highly focused in three dimensions to a submicrometer range. 

According to theoretical calculations, a laser at 750 nm can affect an ellipsoidal volume 

with a diameter of 667 nm and 2400 nm height, if 10% of the lasers maximum intensity is 

used as a cut off and one photon absorption is assumed (Meldrum et al., 2003). This 

affected volume can be reduced if two or three photon absorption is used: diameter – 472 

nm and height 1.2 µm for two-photon and 385 nm and 847 nm respectively for three-

photon effects (Meldrum et al., 2003). This allows very precise damage induction in desired 

regions of the cell nucleus not only in the xy-plane but also along the z axis. 

 

 

Figure 3.1 Induction of cyclobutane pyrimidine dimers (red) by a laser microbeam at 

420 nm in 3T3 cell nucleus stained with DAPI (blue); big rounded structures in blue 

channel are heterochromatin blobs, typical for mouse cells. A and B show two optical 

sections of the same cell nucleus in a distance of 2.7 µm. C – cut view in the middle 

(shown by semi transparent lines in A and B) of the 3D reconstruction of the same 

nucleus. Scale bar – 5 µm. 
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An example is shown in Figure 3.1 where a NIH 3T3 mouse fibroblast cell nucleus was 

irradiated with laser light at 420 nm in two different focal planes. It is shown that laser-

microbeam irradiation at this wavelength, can induce double strand breaks and also 

cyclobutane pyrimidine dimers (CPD). Normaly, CPD’s are induced by UV-C light due to 

direct absorption by DNA molecules, which absorb light between 240-270 nm. In these 

experiments the light at 420 nm was used, which is far away from the absorbance spectrum 

of DNA. Thus, those highly localized CPD’s are the result of two photon absorption of the 

420 nm light.  

Two perpendicular laser irradiation tracks are visualised by immunofluorescence staining 

of CPD (red color) in Figure 3.1. Since irradiation was performed in different focal planes 

of the same cell nucleus respectively, induced CPD’s are lying in different optical sections 

in a 2.7 µm distance from each other (Figure 3.1 A and B). Immunofluorescence staining 

shows that CPD’s are induced only in the laser focus where highest power density is found, 

but not above or below irradiated regions (Figure 3.1 C) where the laser beam power 

density is substantially diminished as compared to the focus. By variation of the dose and 

laser pulse energy, DNA damage in even smaller volumes can be achieved. 

3.2. DNA damage dependency on irradiation quality  

3.2.1. Different levels of DNA damage detected by γ-H2AX staining 

Parameters such as dose and pulse energy of the laser-microbeam can be tuned in a very 

broad range. Thus, in order to perform DNA repair studies after laser irradiation, it is very 

important to know which effects of DNA damage can be caused by variation of different 

laser beam parameters. Furthermore, this question needs to be clarified as more and more 

different lasers are used in medicine for diagnosis and therapy. 

In this section is shown that DNA double strand breaks can be induced also by blue laser 

light from 420 to 460 nm without an external sensitizer using doses above 103 J/m2. 

Depending on pulse energy and irradiation dose, the morphological pattern of the immuno-

stained H2AX phosphorylation can be classified into 6 categories as shown in Figure 3.2. 

All the immunofluorescent data were recorded after irradiation at two different wavelengths 

(420 nm and 455 nm) by changing dose and pulse energy in orders of magnitude: dose from 

106 J/m2 (1300 pulse/µm) to 103 J/m2 (1.3 pulse/µm) and pulse energy from 375 pJ to 7.5 pJ 

per pulse.  
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Irradiation with high dose at 420 nm (375 pJ pulses at 400 kHz ~ 1300 pulse/µm, 106 J/m2) 

induces very intense homogeneous H2AX phosphorylation (green) in the whole cell 

nucleus (marked with DAPI (blue)) (Figure 3.2, Cat.6) with no or very weak Rad51 foci 

(Red). Even in irradiated regions, compared to the other parts of the cell nucleus, the green 

Figure 3.2 Six typical patterns of double strand breaks (γ-H2AX) one hour after 

induction by laser-microbeam (420 nm) with different pulse energies at different 

repetition rates (dose) from highest damaging level Cat.6 to the lowest Cat.1. Scale bar -

10 µm, in all figures exposure time was optimized for every single picture.  
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fluorescence intensity is equal or even reduced. Note that one cell in Figure 3.2, Cat.6 

marked with a frame has no γ-H2AX signal, although is located just few micrometers from 

the irradiated cell. 

Additionally, DNA staining in laser track is reduced (arrows in the DAPI channel). Those 

facts indicate that laser-microbeam irradiation at high dose causes massive local damage of 

the nuclear structure. At a dose 5 times lower, such nuclear disruption is not detected 

anymore. However, the homogenous γ-H2AX signal is still seen in the whole cell nucleus, 

in this case with more intense signal in the laser track, which does colocalize with Rad51 

foci (Figure 3.2 Cat.5). 

The level of double strand breaks or H2AX phosphorylation around the laser track in 

category 4 is still higher than that of the not irradiated cells and became almost similar to 

that in category 3. If the dose or pulse energy of the laser beam is reduced (7.5 pJ, 13000 

pulse/µm; 124 pJ, 260 pulse/µm), the H2AX phosphorylation signal in the irradiated area 

(tracks) becomes more inhomogeneous (Cat. 1 and 2), although hundreds or thousands of 

laser pulses pass each micrometer of the laser track in cell nucleus. Some empty spaces 

occur due to nucleoli, but even outside the nucleoli γ-H2AX signal is distributed non-

homogeneously. This issue will be addressed in section 3.5. At lower doses the 

distinquishable γ-H2AX signal is no longer detected. 

3.2.2. Pulse energy and dose dependent DNA damage induction  

Irradiation dose variation by changing pulse repetition rate and thus the number of pulses 

hitting each volume of chromatin was found to induce different levels of double strand 

breaks, which were empirically evaluated by the morphology of phosphorylated H2AX 

foci. Also crucial changes were found to be induced by different laser pulse energies. 

Figure 3.3 A shows typical γ-H2AX pattern after irradiation with 375 pJ pulses at 80 kHz 

repetition rate. 
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A completely different result is obtained, when the cells are irradiated with ten times lower 

pulse energy (37 pJ) at ten fold repetition rate, i.e. same total energy (Figure 3.3 B). DNA 

damage is much lower after irradiation with reduced pulse energy although the dose was 

kept the same. Similar morphology at high pulse energy (375 pJ) is detected only if the 

total energy is reduced 20 times, as shown in Figure 3.3 C. This example clearly visualizes 

that the level of induced DNA damage highly depends not only on the dose but even 

stronger on the peak power density of the pulse. 

3.2.3. Wavelength dependent DNA damage induction  

Above it is shown how DNA damage is dependent on two laser-microbeam parameters, 

dose and pulse energy. However, still there is another very important parameter left, the 

wavelength. Various biomolecules, dependent on their chemical structure, absorb light 

photons of different wavelengths. DNA itself absorbs photons up to ~280 nm with an 

absorption maximum at 260 nm. Therefore, ultraviolet light under 280 nm might induce 

Figure 3.3 Comparison of double strand break patterns 1 hour after induction by 

different pulse energies (A,B,C) and wavelengths (A,D,E) . Figures A and B show 

differences in DSB patterns after the same overall dose but ten times lower pulse 

energies. The same pattern as in B can only be achieved if dose is reduced 

approximately 20 times using 375 pJ pulse energy (Figure C). Figures A and D show 

differences in DSB pattern after irradiation at two different wavelengths 420 (A) and 

455 nm (D), respectively, but the same dose. In order to get the same pattern as it is 

presented in D the dose of the 420 nm microbeam should be reduced two times (figure 

E). Scale bar -10 µm. Exposure time was optimized for every single picture. 
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direct DNA damage, usually due to direct absorption and photochemical reaction. 

However, the cell contains molecules which absorb not only UV-B, or -C but also UV-A 

and visible light. To those belong flavins, porphyrins, and other molecules, which are very 

good sensitizers and can be excited even by two or three photon absorption of near infrared 

light (700-900 nm). 

In order to find out how double strand break induction depends on the wavelength, the 

comparison of γ-H2AX foci morphology after irradiation at 420 and 455 nm was 

performed. Already a small shift (35 nm) into the red region of the spectrum caused less 

damage when all other microbeam parameters were kept the same (Figure 3.3 A and D). 

Irradiation at 420 nm with 260 pulses per µm each of 375 pJ energy cause high level of 

DNA damage - γ-H2AX phosphorylation all over the whole cell nucleus with a more 

intense signal in the irradiated region. In contrast, irradiation with the same pulse energy 

and dose, but with the wavelength shifted to the red about 35 nm, induced DSBs only in the 

laser track. No increased level of the signal was detected in other parts of the nucleus. A 

similar damage pattern is observed after irradiation at 420 nm only if the total dose is 

reduced at least 2 times (130 pulses/µm) (Figure 3.3). Even though it looks as if damage is 

still a bit higher than in Figure 3.3 D but in this case one can say that in order to induce the 

same level of DNA double strand breaks at 455 nm at least two times higher dose than at 

420 nm is needed. 

3.3. Immunofluorescent Comet-assay – a novel staining method of CA for 

comparison of DNA fragmentation levels in single cells  

In the previous sections laser induced damage was visualised by γ-H2AX antibody, which 

is widely accepted as a marker for DSBs (Rogakou et al., 1998). However, whether it labels 

exclusively DSBs is still under discussion. Therefore, a novel variation of neutral Comet-

assay - Immunofluorescent Comet-assay (IFCA) was used to analyse DNA fragmentation. 

This method serves not only for high resolution visualisation of fragments, but also helps to 

get more detailed insight into mechanism of neutral Comet-assay. 

3.3.1. IFCA versus conventional SYBR Green staining  

It is widely accepted that histone H1 is a protein strongly binding to DNA. In this section is 

shown that it can be detected by immunofluorescence even after lysis and electrophoresis in 

the neutral Comet-assay. The possibility to use antibody staining of histone H1 enables the 
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visualization of neutral comets with higher resolution or more details than after the 

conventional DNA staining with SYBR Green. 
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Figure 3.4 directly compares conventional SYBR Green staining and IFCA for the neutral 

Comet-assay. The samples were double-stained by both methods. The left column of Figure 

3.4 shows images taken using a FITC filterset (SYBR Green). The right column shows 

images of the identical cells taken with a Cy3 filterset (IFCA). During image acquisition, 

care was taken not to overexpose the images and subsequently the images were processed 

identically in order to ensure a valid comparison. Additionally the intensity profiles of the 

comets are shown (Figure 3.4 E and F). With the conventional comet assay (left column, 

Figure 3.4 A, C) at most faint tails are visible. In contrast, IFCA of the same cells reveals 

much more details. Long single filaments emanate from the head. They can be recognized 

even in the untreated cell (Figure 3.4 B), this might be due to the intrinsic damage or due to 

experimental procedures. In the cells irradiated with 10 Gy (137Cs, photon energy 662 keV), 

additional filaments emanate from the head as is evident from the intensity increase in the 

middle part of the tail from IFCA intensity profile comparison (Figure 3.4 F, arrow). The 

small intensity increase at the end of the tail is due to the short fragments (Figure 3.4 D), 

which are detected only by IFCA. A magnified view of this region marked with a frame in 

Figure 3.4 is additionally shown in Figure 3.4 G. 

Interestingly, the histone H1 signal could be detected using IFCA even after harsh 

conditions used in alkaline lysis and electrophoresis. Representative images of untreated 

and irradiated (10 Gy) Hela cells after alkaline Comet-assay and IFCA staining are shown 

in Figure 3.4 H and I respectively. It shows that immunofluorescent staining of histone H1 

reveals high level of details in tails of both - neutral and alkaline comets. 

Figure 3.4 Direct comparison of IFCA and SYBR Green staining for neutral Comet-

assay. A and C - SYBR Green staining of the untreated cells (A) and cells after 10 Gy 

irradiation (C), intensity profiles of the same cells are shown in panel E. B and D - 

IFCA staining of neutral Comet-assay of the untreated (B) and with 10 Gy irradiated 

cells (D), F represents intensity profiles. G - magnification of comet tail in D showing 

small dot like and fibre like fragments marked with arrows. H and I - IFCA staining 

after alkaline Comet-assay H - untreated and I - irradiated with 10 Gy cells. J and K - 

colocalization of SYBR Green (green) and Histone H1 (red) signals. IFCA signal 

colocolizes with SYBR Green in neutral J and alkaline K comets. L and M – Projections 

of Z-Stack of undamaged cells after 2D gel electrophoresis and IFCA staining. 7 min 

horizontal, then 7 min at 45° and 7 min at 90° – L; 10 min horizontal, then 10 min 

vertical – M. Scale bars - 50 µm.  
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An attempt to visualize these details with SYBR Green staining would require over 

exposure or rude processing of the images by increasing brightness and contrast. This was 

done in Figure 3.4 J and K, where the SYBR Green and the IFCA signal colocalization is 

shown in both Comet-assay versions. Green represents DNA staining by SYBR Green 

whereas red is IFCA detection of Histone H1. The image was processed in order to show 

the colocalization of signals especially at the end of the tail (insert in Figure 3.4 J and K, 

top right). Yellow and orange show that the signals in the neutral Comet-assay indeed do 

colocalise. This proves that histone H1 is still bound to DNA after the lysis and 

electrophoresis, and IFCA truly visualizes chromatin.  

Bottom images show two dimensional IFCA of undamaged cells. In Figure 3.4 L 

electrophoresis was done 7 min horizontally, then 7 min at 45° angle and last 7 min at 90° 

angle. While Figure 3.4 M was taken of the undamaged cell electrophoresed at two 

different angles 0° and 90° each for 10 min. These both images are Z-stack projections on 

xy plane. By performing the two dimensional electrophoresis in combination with histone 

H1 immunofluorescent staining, single fibers can be easily separated. However, the number 

of fibers going out from the head is still difficult to be determined. 

3.3.2. SSBs in neutral Comet-assay and fragment size estimation  

According to literature, closely located SSBs in a distance up to 14 nucleotides on opposite 

strands make the DNA structure unstable and can be converted into DSBs at 37° C (Vispe 

and Satoh, 2000). Detailed in silico sequence analysis of chromosome #6 shows that 

Nt.BbvCI (nicking) can produce 49 pairs of SSBs that fulfil above mentioned requirements. 

This means that theoretically 49 DSBs and 50 fragments due to clustered SSBs can be 

generated. Chromosome #6 contains about 2.75 % of whole human diploid genome 

sequence. Extrapolating this to the whole genome of a diploid cells one would expect to 

have approximately 1764 DSBs generated by clustered SSBs; this is equal to 44 Gy if 

gamma irradiation induce ~ 40 DSBs/cell/Gy (Gulston et al., 2002). In contrast, after 

BbvCI digestion (pure DSB induction) one would expect to obtain ~2.8 106 DSBs and the 

same number of fragments (according to the whole genome in silico fragmentation 

analysis). Consequently the comets and their profile intensities representing nicking (Figure 

3.5 B) and cutting (Figure 3.5 C) show very large differences in the tail. Figure 3.5 B and E 

show a number of fragments as a result of the action of the nicking enzyme Nt.BbvCI and 
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thus represent SSBs converted to DSBs. In contrast, after the digestion with BbvCI only a 

few fibres are still bound to the former nucleus (head) (Figure 3.5 C and F frame I). The 

majority of the genome is highly fragmented as predicted and is visible as a cloud of small 

fragments (Figure 3.5 C and F frame III). An even better insight into the fragmentation 

pattern can be obtained by extending the electrophoresis time up to 3h (Figure 3.5 E and F). 

The damaging pattern after BbvCI treatment shows three different types of fragments. 

Figure 3.5 F frame I shows several long fibres emanating from the former nucleus (head), 

which are still connected to it. Frame II shows several tens of shorter, but still stretched 

fibre fragments. The majority of signal in Figure 3.5 C and F are dot like and form a big 

cloud at the end of the comet tail (frame III). Interestingly, a detailed analysis of all human 

chromosome fragmentation by the BbvCI enzyme showed that almost all fragments 

(>99.9%) should be in the range from 5 bp to 30 kbp. Thus, fragments with the size up to 

30 kbp migrate very fast and form a big cloud of dot like fragments at the end of the tail 

(frame III).  

Additional experiment was done to investigate how DNA molecules of similar size migrate 

under the same conditions. Lambda DNA with the size of 48.5 kbp was used. Figure 3.5 G 

shows that after 25 min of electrophoresis the 48.5 kbp sized DNA migrate approximately 

540 µm from the loading pocket and are found to be located at the end of the neutral comet 

tail (comet tail length in insert – 520 µm). The 48.5 kbp DNA is not forming short stretched 

fibres but form dot like structure (not shown). This confirms that dot like fragments in 

IFCA are at least not larger than 50 kbp. Longer fibres (frames I and II in Figure 3.5 C) 

may occur because of incomplete restriction due to hardly accessible DNA. 
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Furthermore, Figure 3.5 H shows the result of low range PFGE marker electrophoresis for 

25 min done on the Comet-assay. The intensity profile of it was modulated by 5 Gaussian 

peaks representing fragments of distinct size (Figure 3.5 I and J). This indicates that also 

fragments even down to 4.4 kbp are not washed away but are partially separated and can be 

detected in the neutral Comet-assay if a highly sensitive approach is used. Fragments with 

the size higher than 48 kbp are not well separated firstly due to the fact that the 

conventional gel electrophoresis in general can not separate fragments larger than ~50 kbp 

and secondly, since the introduced low range PFGE marker gel piece diameter is around 

500 µm. It means that the peaks representing high molecular weight molecules (143 – 50 

kbp) after short migration are very broad and are located within 500 µm from the marker 

gel incorporation. 

3.3.3. DNA fragmentation after ionizing radiation, UV-A laser-microbeam and 

chemical damage  

The fragmentation pattern after treatment with different DNA double strand break induction 

mechanisms was studied using IFCA. Figure 3.6 shows typical comets after neutral IFCA 

of HeLa cells treated by ionizing radiation, UV-A laser-microbeam irradiation and 

bleomycin.  

Figure 3.5 Single strand breaks and double strand breaks in the neutral Comet-assay. A, 

B and C - Representative IFCA images of cells treated with enzyme buffer NEB4 as 

control (A) nicking Nt.BbvCI (B) and with cutting BbvCI (C) enzymes recognizing the 

same DNA sequence and electrophoresed for 25 min. D - intensity profiles. E and F - 

Comets after the same treatment but, 3 hours of electrophoresis. G - In the single cell gel 

electrophoresis for 25 min lambda DNA (48.5 kbp) migrate 530 µm. This means that 

fragments of such size are located at the end of the comet tail (neutral comet stained 

with YOYO1 is shown in the insert). H - migration of low range PFGE marker in 25 

min of neutral electrophoresis stained with SYBR Green. I - intensity profile of insert in 

J with the intensity profile modulation by using 5 Gaussian peak functions representing 

the distinct fragment sizes in PFGE – J. Neutral Comet-assay shows fragmentation of 

DNA after nicking enzyme treatment due to single strand breaks located on opposite 

strands close to each other (<14 nt). After cutting with BbvCI, dot like fragments in the 

size up to ~ 50 kbp form a big cloud at the end of the comet tail (frame III). 
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Figure 3.6 Fragmentation patterns of differently damaged cells (IR, Bleomycin, UV-A 

laser) after neutral lysis, 2h electrophoresis and IFCA. The damage type and dose are 

given on the right side. A - Untreated cells do not show any fragmentation. B, C and D 

represent comets after exposure to 10 Gy, 20 Gy and 40 Gy respectively. E- top comet 

after irradiation with one pulse of UV-A laser-microbeam; bottom untreated cell nearby. 

F - different fragmentation patterns after bleomycin treatment 12 µg/ml. 
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In Figure 3.4 it was already shown that untreated cells do not have fragments at the end of 

the tail. Indeed no fragmentation is detected even after 2h of electrophoresis, - all 

chromosomes appear to emanate out of the nucleus (Figure 3.6 A). After 10 Gy irradiation 

short fibre fragments as well as several dot like fragments occur (Figure 3.6 C). The 

number of both short and dot like fragments increases after irradiation with 20 Gy and 40 

Gy (Figure 3.6 C and D). 

In Figure 3.6 E DNA fragmentation after irradiation with one single 10 µJ (20 ns) pulse of a 

UV-A laser-microbeam is shown in direct comparison with untreated cell. Lasers induce a 

high number of small dot like as well as short and longer fibre fragments (Figure 3.6 E). 

From the intensity profiles in Figure 3.7 is seen that the fragmentation pattern is similar to 

that after 20 Gy irradiation. The difference is only that damage after ionizing radiation are 

induced in the whole cell nucleus whereas damage after laser irradiation are induced in a 

small volume of laser focus. It shows that irradiation with a UV-A laser does induce a high 

concentration of SSBs and DSBs in a small volume of the cell nucleus, without an external 

sensitizer. 

 

 

After the bleomycin treatment the fragmentation level varies largely from cell to cell as it 

was already reported by Ostling et al. (Ostling and Johanson, 1987). In Figure 3.6 F four 

different types of comets detected after 12 µg/ml bleomycin treatment are depicted. Comets 

similar to untreated cells as well as with medium and very high fragmentation level can be 

found. It shows that DNA damage induction by bleomycin in asynchronous cells differs 

Figure 3.7 A and B - comparison of intensity profiles showing that laser microiradiation 

induced pattern is similar to the one induced by 20 Gy (A), when the third bleomycin 

comet from Figure 3.6 F has a pattern similar to that after 40 Gy (B). 



Results
 

 46

severely. It is possible that this variation is dependent on the cell cycle phase, where 

bleomycin uptake and the DNA access are different.  

Table 3.1 compares the parameters of treatments inducing similar fragmentation pattern. 

The calculation of parameters is in details described in materials and methods. 

 

Table 3.1 Comparison of important parameters for every type of treatment. 

Treatment 

Photon 

energy Dose 

Absorbed 

energy 

Number of 

photons 

needed 

Molecules 

per 

nucleus 

20 Gy (137Cs) 661 keV 
20 Gy or 

J/kg 
0.6×10-12 J 12.5 ×103  

10 µJ 

UV-A, 350nm 

Laser pulse 

3.5 eV 
17 ×107 

J/kg 
1×10-6 J 1×1012  

BLM 

12 µg/ml 
    1.5×106 

 

3.4. Timing of DNA repair proteins on laser induced DSBs 

In order to understand the DSB repair dynamics, the recruitment kinetics of repair proteins 

were measured. Damage was induced with a pulsed UV-A laser at 350 nm (section 2.9.2). 

In the following sections the life cell imaging was used to measure EGFP fusion proteins, 

while immunofluorescence analysis was used to detect the behaviour of the endogenous 

proteins. 

3.4.1. Generation of expression constructs and U-2 OS cell lines stably expressing 

fusion proteins 

Recruitment kinetics of Ku80-, XRCC4- and NBS1- EGFP fusion proteins were measured 

using U-2 OS cell lines stably expressing those exogenous proteins. Ku80-EGFP and 
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XRCC4-EGFP stable U-2 OS cell lines as well as plasmids were generated by the diploma 

student Teresa Lenser under my supervision (Lenser, 2007).  

NBS1 sequence was cut out by using restriction enzymes SacII and BamHI from pIRES-

NBS1 plasmid kindly provided by E.Fritz and cloned into pEGFP-C1 vector. In the final 

construct the sequence coding the first seven amino acids in the N-terminus of the NBS1 

protein are missing. Nevertheless, the protein showed identical accumulation kinetics to 

laser induced damage as NBS1-2GFP construct used by Lukas et. al. (Lukas et al., 2004) 

(data not shown). Coding DNA sequences of Ku80 and XRCC4 were amplified from 

human U-2 OS cells and cloned into pEGFPC3 and pEGFPN1. The OGG1 cDNA was 

amplified from human keratinocytes (HaCat), cloned into pENTR4 and then through LR 

recombinase reaction transferred into pDEST47 plasmid containing the GFP sequence. All 

the constructs are summarized in Table 3.2 and corresponding maps are shown in Figure 

3.8. In order to prove that the correct insert was cloned into the correct vector, the 

restriction analysis was performed followed by the sequencing. Sequences of the used 

inserts are displayed in Appendix.  

 

 

No mutation was found in the cDNA of Ku80, XRCC4 and NBS1. However, a point 

mutation, where C is replaced by C, was discovered at the position 977 of the amplified 

glycosylase OGG1 gene sequence. This results in the substitution of serine for cystein at 

Table 3.2 Overview of used vectors for expression of fusion proteins. 

Expression vector 

Vector 

Size, kbp Fusion protein 

Molecular 

weight of 

fusion 

protein 

Molecular 

weight of 

endogenous 

protein 

pDest47-OGG1-S326C 7215 N – OGG1 – GFP – C   66 kDa 39 kDa 

pEGFP-N1-Ku80 5711 N – Ku80 – EGFP – C   110 kDa 83 kDa 

pEGFP-C3-XRCC4 5704 N – EGFP – XRCC4 –C 66 kDa 38 kDa 

pmRFP-C1-NBS1 6958 N – pmRFP – NBS1 –C 112 kDa 85 kDa 

pEGFP-C1-NBS1 6992 N – EGFP – NBS1 –C 112 kDa 85 kDa 
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the position 326 (S326C). This is a frequent OGG1 polymorphism occurring in humans, 

which causes functional defects in the enzyme (Hill and Evans, 2006). OGG1-S326C tends 

to form dimers, has lower DNA binding affinity but still excise 8-OxoGuanine, however at 

rates 2 to 6 fold lower than wild type glycosylase (Hill and Evans, 2006).  

 

 

In the Figure 3.9 localisation of fusion proteins in human U-2 OS cells is shown. OGG1-

S326C-EGFP signal, as expected, colocolize with DAPI signal representing nuclear DNA 

and is recognized by anti-OGG1 antibody. The Ku80-EGFP is also located in the cell 

nucleus as expected, however with preferential localisation in the nucleoli. It was reported 

that only in S and G2 cell cycle phase Ku80 proteins are accumulated to nucleoli (Li and 

Yeh, 1992), while recent studies used Ku80-EGFP fusion proteins, which are excluded 

from it (Koike and Koike, 2008; Mari et al., 2006). Notably, a pEGFPC3-Ku80 construct 

(generated by Teresa Lenser) product, where EGFP is tagged at the N terminal of Ku80, 

showed very little or no signal in nucleoli. However the accumulation kinetics of 

pEGFPC3-Ku80 and pEGFPN1-Ku80 at the same damaging conditions were the same 

(data not shown). 

Figure 3.8 Maps of expression vectors with marked restriction site for linearization used 

in generation of stable cell lines. 
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The product of pEGFPC3-XRCC4 construct was mainly found in the nucleus and excluded 

from the nucleoli. Minor fluorescence was detected in the cytoplasm as well. It is in 

consistance with data from the literature (Mizuta et al., 1997; Yurchenko et al., 2006). 

Strictly nuclear localization also for NBS1-EGFP is shown in the right panel of Figure 3.9 

in agreement with literature data (Lukas et al., 2003). As expected all fusion proteins 

showed accumulation to laser induced damages (Figure 3.11 A), with different kinetics 

described in the following section. 

 

 

In order to obtain similar fusion protein expression levels in all analysed cells, the U-2 OS 

lines stably expressing Ku80-EGFP or XRCC4-EGFP or NBS1-EGFP were generated as 

described in the materials and methods. Only OGG1-S326C-GFP was used as a transient 

Figure 3.9 Localisation of fusion proteins in U-2 OS cells. Each column starting from 

above shows staining of EGFP fusion protein (green), specific antibody (red) and 

nuclear DNA (blue). Scale bar – 5 µm. 
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transfection. The western blot analysis of stable cell lines indicates that the fusion 

(exogenous) proteins are expressed at the expected size (Figure 3.10 B). Ku80-EGFP and 

NBS1-EGFP expression levels are somewhat lower than those of the corresponding 

endogenous proteins, while XRCC4-EGFP is expressed at higher levels than endogenous 

XRCC4 (Figure 3.10 B). 

 

 

3.4.2. Recruitment of DSB repair proteins highly depend on the used laser pulse energy 

At a single DSB only a few molecules of each of the NHEJ enzymes are recruited. Thus, 

the signal from proteins at a DSB can not be distinguished from the background signal and 

their recruitment kinetics can not be measured directly. In order to overcome this, the 

accumulation kinetics for human Ogg1-S326C-EGFP, Ku80-EGFP, XRCC4-EGFP and 

NBS1-EGFP proteins were measured after laser-microbeam irradiation, which is known to 

induce DSBs with high efficiency as shown in section 3.3.3 and also by others (Uematsu et 

al., 2007; Mari et al., 2006). Each cell was irradiated with a single pulse having a defined 

energy 10 seconds after image acquisition start. Spot formation for each of the above 

mentioned fusion proteins is shown in Figure 3.11 A, where the foci are indicated with 

arrows. Intensity changes at irradiated regions were normalized in order to compare 

recruitment kinetics. Examples of mean accumulation curves of stably expressed XRCC4-

GFP in U-2 OS cells after irradiation with different laser pulse energies are shown in Figure 

Figure 3.10 A – schematic depiction of OGG1-S326C-, Ku80-, XRCC4- and NBS1-

EGFP fusion proteins and their size. B – western blot analysis of stable U-2 OS cell 

lines expressing Ku80-EGFP, NBS1-EGFP and XRCC4-EGFP, showing that fusion 

proteins are expressed at the expected size. 
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3.11 B. The corresponding recruitment times after fitting mean curves with the one phase 

exponential association function are presented in Table 3.3. 

 

 

Figure 3.11 Recruitment of EFGP fusion proteins highly depend on pulse energy. A - 

Time laps imaging of protein recruitment to DSBs after irradiation with 6 µJ laser 

pulses for Ogg1-S326C, XRCC4, NBS1 and with 8µJ pulses for Ku80. Scale bar – 2 

µm. B - Shows average curves (n > 10) of to maximum normalized XRCC4 

accumulation kinetics after damaging with different energy laser pulses. C - 

Recruitment times of all measured proteins are highly dependent on pulse energy, 

straight lines show linear regression fits which are used to extrapolate data points to low 

dose conditions in order to estimate recruitment times at biologically relevant situation. 
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The same procedure was applied also for OGG1-S326C-, Ku80- and NBS1-EGFP fusion 

proteins. Results are summarized in Table 3.3 and graphically presented in Figure 3.11 E. 

As mentioned, every data point is a result of more then 10 experiments, only OGG1-S326C 

at 4 µJ and XRCC4 at 4.4 µJ were measured 3 and 4 times respectively. The accumulation 

time (τA) inversely depends on the laser pulse energy for all proteins. By decreasing the 

pulse energy and thus the damage level, recruitment of the measured proteins slows down. 

The data can be easily fitted by linear regression, shown as the straight line in Figure 3.11 

C. This allows to extrapolate recruitment times to low dose, which reflect the biologically 

more relevant situation. For NBS1 the estimated recruitment time is 129 ± 12 sec which is 

close to the value of 177 ± 41 sec measured after laser irradiation of BrdU sensitized cells 

(Lukas et al., 2004). These authors used laser irradiation, which has been found to be 

comparable to 3 Gy of the ionizing radiation (Bekker-Jensen et al., 2006). This indicates 

that the extrapolation strategy is valid and can be used to calculate the accumulation of 

NHEJ proteins at conditions comparable to ionizing radiation. 

 

Table 3.3 Recruitment times of EGFP fusion proteins to damage sites induced by pulses of 

different energies. 

OGG1-S326C Ku80 XRCC4 NBS1 

Pulse 

energy, 

µJ 

τA, sec 

Pulse 

energy, 

µJ 

τA, sec 

Pulse 

energy, 

µJ 

τA, sec 

Pulse 

energy, 

µJ 

τA, sec 

4 9.4 ± 2.2   4.4 46.8 ± 10.3 4 84.4 ± 13.9

6 2.8 ± 0.8   6 34.2 ± 5.6 6 76.5 ± 8.3 

8 2.2 ± 0.4 8 8.9 ± 1.5 8 20.7 ± 2.7 8 59.0 ± 4.5 

10.2 1.9 ± 0.5 10 3.7 ± 1.3 10 12.2 ± 1.1 10 33.2 ± 2.2 

 

Estimated recruitment times at low dose after linear extrapolation 

5.1 ± 1.4 sec 27.1 ± 0 sec  58.8 ± 8.0 sec 129.3 ± 12.0 sec 
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Although the polymorphic OGG1-S326C is known to cleave 8-OxoGuanine at rates from 2 

to 6 fold slower than wilde type protein, it is recruited to damage site very rapidly. It is the 

first recruited protein (τ = 5 ± 1 sec) indicating that with the UV-A laser-microbeam 

considerable oxidative damage is induced (Lan et al., 2005), which due to base excision 

repair machinery (BER) is converted into SSBs. If the SSBs are located on opposite strands 

very close to each other, in a distance lower than 14 nucleotides, the DNA structure 

becomes unstable and finally two SSBs are converted into one DSB (Vispe and Satoh, 

2000). Apparently, concentrated UV-A laser light induces large amount of oxidative 

damage in a small region and thus induces DSBs via SSBs.  

Further, by following the extrapolation to zero in Figure 3.11 C laser induced DSBs are 

detected by Ku80 with the time constant of 27.1 seconds. The late NHEJ enzyme XRCC4 

is recruited with the time constant of 58.8 ± 8 sec. It was shown that XRCC4 is basically 

recruited by Ku80 and does not require DNA-PKcs (Mari et al., 2006), which seems to 

improve the stability of the NHEJ complex (Yano and Chen, 2008). The latest protein 

recruited to the laser induced DSBs is NBS1-EGFP with an accumulation time of 129 ± 

12.0 seconds. 

3.4.3. Late NHEJ factor XRCC4 is recruited earlier than NBS1 from the MRN complex 

The above described data show that under the measured conditions XRCC4-EGFP 

molecules are recruited earlier than NBS1. This is surprising since XRCC4 is in a complex 

with Ligase IV and thus is involved in the latest NHEJ step, while generally NBS1 is 

believed to be a key player in the choice of the pathway and is thought to be involved in 

sensing of DSB and chromatin modification around the DSB. In Figure 3.12 A a direct 

comparison of the mean accumulation curves of NBS1 and XRCC4 is depicted. Those 

curves were measured by live cell imaging after irradiation with a 6 µJ laser pulse. Foci 

fluorescence intensity of XRCC4-EGFP reaches plateau at around 120 sec after the laser 

pulse, while the NBS1-EGFP signal reaches plateau only at around 200 sec. A fit of those 

curves gives accumulation times of 34.2 and 76.5 seconds respectively (Table 3.3), 

indicating that XRCC4 is recruited two times faster than NBS1. 
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In order to exclude artefacts possible in live cell imaging experiments, especially due to the 

higher expression levels of XRCC4-EGFP (Figure 3.10 B), the recruitments of endogenous 

DSB repair enzymes were measured by using the immunofluorescence staining after the 

UV-A laser-microbeam irradiation with pulse energy of 4 µJ. This energy was chosen due 

to the fact that at lower pulse energies XRCC4 signal could not be detected or properly 

Figure 3.12 Exogenous and endogenous XRCC4 are recruited earlier or not later than 

NBS1. A – average (n = 14) of normalized focus intensity changes of XRCC4-EGFP 

(red) and NBS1-EGFP (black) after laser irradiation with 6 µJ pulse measured by live 

cell imaging. B - representative recruitment kinetics of endogenous XRCC4 (red) and 

NBS1 (black) over 1 h normalized to maximum. Each point represents a mean of 

average foci intensity in 3D of around 200 foci (~ 50 cells). Error bars represent 

standard deviations. C – representative images of projections of 14 optical slices for 

every cell nucleus at different times after laser-microbeam irradiation over 1h 

(correspond to B). 
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evaluated anymore. Although the fixation procedure decreases the temporal resolution, it 

was found that fast processes still can be detected after antibody staining. Representative 

images of foci formation of XRCC4 and NBS1 over 1 h in double stained samples are 

shown in Figure 3.12 C. For each time point the mean of measured average focus intensity 

of around 200 foci was calculated. The result is shown in Figure 3.12 B. Curves were 

normalized to their maximum in order to obtain the direct comparison of temporal 

dynamics. XRCC4 represented in red colour reaches the maximum at 90 sec after 

irradiation while the NBS1 signal reaches the maximum only at 390 sec (Figure 3.12 B). 

The same behaviour pattern of both endogenous proteins was reproduced in six 

experiments out of six shown in Figure 3.13.  

 

 

Additionally, the average recruitment time values from four (XRCC4) and two (NBS1) 

independent experiments after fitting the curves with an exponential association function 

are presented in Table 3.4, showing very fast XRCC4 (~ 16 sec) and slower NBS1 (~ 87 

sec) recruitment. Standard deviations of calculated recruitment times are very high due to 

the fact that fit was done only on first 5 points, having already high standard deviations. 

Figure 3.13 Recruitment kinetics of endogenous XRCC4 and NBS1 measured in doubly 

stained samples. Label 37ºC means that experiments were performed under optimal cell 

growing conditions. Whereas RT - means that experiment were performed at room 

temperature without CO2 supply. In all cases XRCC4 (red) reaches maximum faster 

than NBS1 (black). 
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Endogenous protein accumulation confirms the data obtained from live cell imaging of 

fusion proteins. It shows that endogenous XRCC4 is recruited faster or at least not later 

than endogenous NBS1. Especially, significant differences can be seen in the insert of 

Figure 3.12 B where comparison of data points 30 sec after irradiation is depicted. At this 

time point the average intensity of XRCC4 foci is very close to the maximum intensity, 

while for NBS1 it is close to the background value. The same is observed also for all 

endogenous XRCC4 accumulation kinetics shown in Figure 3.13 

 

Table 3.4 Recruitment kinetics of endogenous proteins and kinetics 

of DNA-PKcs phosphorylation. 

16 ± 19 sec;      n = 4 XRCC4 

XRCC4 decay after 390 sec 625 ± 748 sec;  n = 4 

NBS1 87± 64.5 sec;    n = 2 

Phosphorylation of DNA-PKcs at Ser2056 158 ±  81 sec;   n = 2 

Phosphorylation of DNA-PKcs at Thr2609 304 ± 110 sec;   n = 2 

Rad51 (fit after 390 sec) 445 ± 663 sec;   n = 2 

 

3.4.4. XRCC4 recruitment time does not depend on the NBS1  

It was earlier described that NBS1 is believed to be a molecule mediating pathway choice 

as well as it is also thought to be involved in DSB sensing. In contrast the results above 

show very early XRCC4 recruitment to laser induced DSBs even before NBS1. In order to 

confirm this data and also to clarify whether NBS1 regulates recruitment of enzymes 

involved in late NHEJ, the focus formation of XRCC4 in NBS1 null cells was analysed. 

Immunofluorescent staining in Figure 3.14 A shows that endogenous XRCC4 form focus in 

wilde type and NBS1 null mouse embryonic fibroblasts. The same is observed when both 

cell lines are transfected with plasmid for transient XRCC4-EGFP expression. Moreover, in 
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both cell lines normalized accumulation kinetics after laser irradiation are identical (Figure 

3.14 B). Note, that here only information whether foci are formed and how fast are they 

formed is available. Possible slight differences in total foci intensity should be elucidated 

by further experiments. In MEF cells without Ku80 protein that is responsible for 

recruitment of XRCC4 (Mari et al., 2006) no XRCC4 foci could be detected at different 

times, whereas 53BP1 is clearly detectable (Figure 3.14 C). Live cell imaging of the same 

Ku80 deficient MEF’s transfected with the XRCC4-EGFP also didn’t show any formation 

of focus (data not shown). These results indicate that NBS1, in contrast to Ku80, is not 

directly involved in recruitment of XRCC4. 

 

Figure 3.14 XRCC4 accumulation time is not affected by presence or absence of NBS1. 

A - immunofluorescene of endogenous protein shows efficient endogenous XRCC4 foci 

formation in NBS1 proficient and null MEF’s (pulse energy 4 µJ). B - shows that 

XRCC4-EGFP fusion protein reaches plateau in wilde type and NBS1-/- cells within the 

same time (Pusle energy 8 µJ). C – in Ku80 deficient cells after 390 seconds 

endogenous XRCC4 is not accumulated to laser induced damage marked by 53BP1. 

Scale bar – 5 µm. 
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3.4.5. XRCC4 is replaced by Rad51 

For direct comparison of NHEJ and HRR timing, the double staining of endogenous 

XRCC4 and Rad51 was performed in cells irradiated with laser microbeam at different 

times. In Figure 3.15 A the XRCC4 foci average intensity (red) shows typical behaviour by 

reaching the maximum few minutes after treatment when Rad51 foci can not be detected 

yet. This experiment was performed two times, the outcome was the same, the mean curve 

of those two experiments is shown in Figure 3.16. 

After residence at DSBs till 400 sec (indicated with vertical line) XRCC4 signal starts to 

decrease. Simultaneously, at the same time (400 sec) Rad51 signal starts to grow 

dramatically with the similar kinetics of XRCC4 signal decay (Table 3.4; Rad51 τA = 445 ± 

663 while XRCC4 τD = 625 ± 748). Interestingly, XRCC4 foci are observed in every cell 

nucleus at the accumulation stage (0 – 400 sec). As shown in the Figure 3.15 C, 90 seconds 

after irradiation XRCC4 foci are formed in cells with high level of Rad51 expression as 

well as in those cells, which do not have Rad51 protein, marked with frames. At the 

dissociation stage (400 - 2400 sec post irradiation) only several cells show foci. Figure 3.15 

C shows an example where four cells with different Rad51 expression levels are depicted 

1170 seconds after irradiation. One dark cell nucleus in the red channel was labelled with 

the frame in Figure 3.15. It shows that Rad51 expression level is very low and consequently 

no foci formation of Rad51 at laser irradiated sites can be observed, while XRCC4 foci are 

highly intense. In contrast, the neighbouring cell marked with an arrow shows opposite 

effect. It has high expression level of Rad51 and therefore intense foci at DSBs while 

XRCC4 foci intensity is dramatically reduced compared to the cell in frame. This can 

clearly be compared in depicted profile intensity curves for both time points. These results 

indicate that HRR machinery after 400 seconds start to exchange NHEJ at laser induced 

DSBs in cells with high Rad51 expression (representing cells in late S, G2 cell cycle 

phase). While in cells with low Rad51 level (representing cells in G1 phase) XRCC4 foci 

persist longer. It can clearly be seen in the plot, where correlation between the focus 

average intensities of Rad51 and XRCC4 are shown at 1170 sec after irradiation (Figure 

3.15 B). The linear regression line with negative slope can be fitted through all data points, 

indicating that foci with high Rad51 intensity have low intensity of XRCC4 and vice versa. 
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Figure 3.15 XRCC4 exchange by Rad51 molecules. A - Focus average intensity changes 

during 1h at laser induced DSBs, normalized to maximum, visualised by double staining 

of XRCC4 and Rad51 (C). B - XRCC4 and Rad51 average focus intensity correlation at 

20 min after irradiation. Fit by linear regression function shows that cells with higher 

Rad51 foci signal has lower intensity XRCC4 foci. C - comparison of double staining at 

90 and 1170 sec after irradiation. Frames show cells with low Rad51 expression levels 

where XRCC4 foci are detectable longer than in cells with high Rad51 levels shown 

with arrow. Rectangles in overlay images show the location where intensity profiles 

(right panel) were measured. Scale bar - 10 µm. 
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3.4.6. DNA-PKcs is phosphorylated after NHEJ and before HRR are recruited 

Since phosphorylation of DNA PKcs also was shown to be very important for DNA repair, 

in the following the immunofluorescence method was applied to measure also the 

phosphorylation kinetics of DNA-PKcs at Ser2056 and Thr2609 sites with the specific 

antibodies. 

The recruitment times, obtained from fitting the curves shown in Figure 3.16 with the 

exponential association function, are summarized in Table 3.4 (see above in section 3.4.3). 

Both sites of the DNA-PKcs kinase are phosphorylated slower than NBS1 is accumulated, 

and most interestingly, with different kinetics. The serine 2056 is modified two fold faster 

than threonine 2609 with the time constants of 158 ± 81 and 304 ± 110 seconds, 

respectively. This suggests that those sites are involved in different processes. This is in 

agreement with Uematsu et al. who reported that the Ser2056 site is a result of the 

autophosphorylation (Uematsu et al., 2007; Chen et al., 2007), while the threonine 2609 is 

most probably phosphorylated by ATM or even may be by ATR. One can suggest, that 

faster autophosphorylation at the Ser2056 site is responsible for DNA-PKcs structure 

changes, which does liberate DNA ends, allowing them for enzymatic processing. In 

contrast, the DNA-PKcs phosphorylation by ATM at the Thr2609 could be probably 

responsible for release of NHEJ complex?  

 

Figure 3.16 DNA-PKcs is phosphorylated after recruitment of XRCC4 and NBS1, but 

before Rad51. Recruitment kinetics of XRCC4 (red), NBS1 (black), Rad51 (orange) and 

phosphorylation dynamics of DNA-PKcs at sites Ser2056 (blue) and Thr2609 (green). 

Right panel shows time course of first 20 min. 
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Interestingly, the time constants for phosphorylations are between the NBS1 and Rad51 

recruitment, i.e., modifications of those sites are slower than NBS1, but still faster than 

Rad51 recruitment. This can be obviously recognized in Figure 3.16 where mean kinetics 

of all measured endogenous protein recruitments and phosphorylations are shown. 

3.5. Spatial dynamics of laser induced damage  

In the following section spatial dynamics of damaged site will be analysed. Again live cell 

imaging and immunofluorescence analysis are used for that purpose. 

3.5.1. Quasi continuous laser irradiation induce different levels of DSBs on laser track 

Low pulse energies of 37.5 pJ at quasi continuous irradiation with 520 pulses per µm were 

delivered to the cell nuclei by Ti:Sa laser system. In Figure 3.17 an U-2 OS cell nucleus 

was irradiated twice at different sites with about 520 pulses per µm i.e. in a quasi 

continuous manner, since the distance between pulses is below the resolution limit of a 

microscope. Hence, one would expect that damage would be induced continuously along 

the track. In contrast to expectation, immunofluorescence staining against γ-H2AX and 

Rad51 shows different results. Phase contrast image merged with the green channel (γ-

H2AX) in Figure 3.17 demonstrates that non-homogeneity in the γ-H2AX signal is not 

caused by the presence of nucleoli, which are located in this case outside of the laser track.  

 

 

Figure 3.17 Double strand break induction in U-2 OS cells after irradiation with 520 low 

energy (37.5 pJ at 420 nm) pulses per 1 µm. Inserts represent intensity profile of γ-

H2AX and DAPI signals in first irradiated regions. Phase contrast is depicted in order to 

annotate nucleoli influence in discontinuously induced DSBs. Scale bar - 5 µm. 
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One explanation for the occurrence of non-homogeneously distributed DNA damage foci 

may be that firstly chromatin and secondly endogenous photosensitizers are distributed 

non-homogeneously in the cell nucleus. However, the graph in Figure 3.17 with the 

intensity profile curves, taken from irradiated region, shows that there is no strong 

correlation between γ-H2AX foci (green) and DAPI staining (blue). Thus, it can be 

speculated that other factors like the DNA repair machinery also may play a crucial role in 

such inhomogeneous distribution of foci, however this has to be elucidated in further 

experiments. 

3.5.2. Laser induced foci fuse ~ 20 minutes after irradiation 

Aten and co-authors have already reported another type of clustering (Aten et al., 2004) that 

appears after alpha particle irradiation in some G1 phase cells. Between 3 to 5 big γ-H2AX 

clusters are formed with a distance of ~2 µm from each other. The same effect is observed 

also in this study after Ti:Sa laser irradiation at 420 nm.  

In Figure 3.18 A seven cell nuclei are shown. Six cells show more or less continuous γ-

H2AX signal. Whereas one nucleus, marked with an arrow, has 5 large foci distributed 

approximately 2 µm from each other without Rad51 signal. Absence of Rad51 signal 

discloses that cell is in G1 cell cycle phase. Phase contrast image overlay with γ-H2AX 

signal indicates that signal empty spaces appear not due to nucleoli. 

Furthermore, foci clustering dynamics in living cells after irradiation with UV-A laser (350 

nm) was detected. U-2 OS cells transiently expressing NBS1-EGFP fusion protein were 

irradiated with laser-microbeam at four different locations. Spatial dynamics of those four 

NBS1-EGFP foci is depicted in Figure 3.18 B, where pictures of one single plane were 

taken every 2 minutes. It can be clearly recognized that the second focus is moving towards 

the first one and merges after ~ 20 min. The same type of damaged DNA fusion was 

detected in nine of ten observed cells. Furthermore, only damage that were close to each 

other (in a distance not longer that 2µm) were able to merge. In order to confirm that this 

fusion of several damaged sites is not a consequence of natural chromatin dynamics, three 

foci at different directions but still close to each other were induced in cells stably 

expressing NBS1-EGFP fusion protein. After 1h only one focus could be observed (Figure 

3.19). 
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Figure 3.18 A- Clustering of DSB foci. The cell marked with an arrow one hour after 

irradiation has five distinct big γ-H2AX foci, which do not colocalize with Rad51 and 

thus, possibly are in G1 cell cycle phase. Phase contrast picture shows that empty spaces 

in γ-H2AX signal are not due to nucleoli. In this experiment irradiation with laser-

microbeam at 420 nm, 50 pulse/µm, 185 pJ was done. Scale bar – 10 µm. B – Fusion of 

GFP-NBS1 foci in living cells induced by UV-A laser (350nm). Two neighbouring foci 

are fused approximately in ~20 min after irradiation. Time laps starting at 3 min after 

irradiation are shown. In the right panel pictures the same cell are shown before, 3 min 

and 45 min after irradiation. Scale bar – 2 µm. 

Figure 3.19 Fusion of GFP-NBS1 foci induced in three directions. Time laps starting at 

4 min after irradiation show that three foci induced in three directions also coalesce. 

Right panel shows foci in overlay with phase contrast. Scale bar – 2 µm. 
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4. Discussion  

4.1. DNA double strand break induction depends on a subtle combination 

of pulse peak power, dose and wavelength of the laser-microbeam 

Among all known experimental techniques for DNA damage induction, the laser-

microbeam is the most versatile in terms of spatial and temporal accuracy, in terms of 

compatibility with the microscopic techniques required to directly observe the repair 

process and in terms of flexibility of beam parameters. Here it is shown, that induced DNA 

damages are neither solely dependent on the wavelength, nor on pulse peak power nor on 

dose but on a subtle combination of all three parameters. 

Unlike in the most other studies on laser induced DNA damage repair in the present work 

the laser damaging approach was applied without pre-sensitization. In this case the 

biological system is not disturbed by exogenous elements such as BrdU or DNA 

intercalating dye Hoechst, which directly influence the environment of the DNA backbone 

and therefore might have an effect on the physical DNA properties. Notably, avoiding the 

pre-sensitization still allows inducing different levels of double strand breaks. Figure 3.2 

Cat. 1 and Figure 3.17 show that low pulse energy applied at a high repetition rate, induces 

just several discrete DSB foci in the laser track, although quasi continuous irradiation is 

performed. By higher energy pulses even a destruction of DNA can be induced, indicated 

by reduced DAPI staining in the laser track (Cat 6 in Figure 3.2). In this case the γ-H2AX 

staining is observed in the entire cell nucleus. 

The phenomenon of H2AX phosphorylation covering the whole cell nucleus is still not 

understood. One explanation for this could be that high energy pulses activate a large 

number of ATM molecules at the irradiated site, which spread over the entire cell nucleus 

and phosphorylate H2AX even in the intact chromatin. Such a hyperactivation of ATM 
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possibly can be achieved not only due to DNA ends occurring in DSBs but also due to the 

dramatic change in the chromatin structure (Bakkenist and Kastan, 2003) caused by high 

energy laser pulses. 

4.2. Fusion of laser induced damage 

Formation of large distinct foci after quasi continuous irradiation with higher pulse energies 

was described in the section 3.5.2. Large γ-H2AX clusters are detected after one hour by 

immunofluorescent detection. The same phenomenon was seen also after damage induction 

with alpha particles (Aten et al., 2004). The authors concluded that several neighbouring 

damage sites coalesce with time. However, microscopy of fixed samples could not 

definitely confirm whether the fusion is responsible for the formation of large γ-H2AX 

clusters. It is possible that chromatin heterogeneity might cause heterogeneous γ-H2AX 

pattern. On the other hand Kruhlak et al. (Kruhlak et al., 2006) have reported that ionizing 

irradiation induced foci in mammals fuse only transiently and two neighbouring foci 

induced by low energy of UV-A laser do not coalesce within 10 min. In the present study, 

the cells expressing NBS1-EGFP were observed up to one hour after UV-A laser 

irradiation, showing for the first time, that the laser induced damages really fuse if located 

near to each other. The time needed for such coalescence is about ~ 20 min, thus it is not 

surprising that Kruhlak et al. couldn’t observe it within 10 min. Furthermore, a fusion of 

three damaged sites induced at different directions indicates that this process is not caused 

by natural chromatin dynamics, but most probably is driven by some mechanism indeed 

related to DNA repair. It is thought that the MRN complex could be involved in this 

process (Aten et al., 2004). Interestingly, in agreement with the shown data, repair centres 

were detected in yeast (Lisby et al., 2003). In this case only two or three Rad52 foci were 

observed after whole cell treatment with ionizing radiation at a dose equivalent to 80 DSBs. 

So far, DNA damage foci after quasi-continuous irradiation represent an interesting 

observation, however its molecular origin still has to be elucidated. 

4.3. IFCA for high resolution visualisation of DNA fragmentation  

For a more direct view on DNA damages, as compared to indirect visualization by repair 

proteins, in the present work the immunofluorescent Comet-assay (IFCA) was established. 

This is a highly sensitive method for the visualisation of single chromatin fibers and 

chromatin fragments with high resolution in the alkaline and the neutral Comet-assays. 
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IFCA uses immunofluorescent detection of the linker histone H1 protein instead of the 

standard DNA binding dyes used in the conventional Comet-assays. Conventional staining 

provides quite blurred comet tails where the fine structure of the fragmented DNA can be 

resolved only after overexposure or harsh image processing by increasing brightness and 

contrast. Even then, details of the comet tail can not be recorded with such resolution as by 

using IFCA, which now can be complementarily used for direct visualisation of DSBs. 

In the tail of the neutral and alkaline Comet-assays IFCA clear signals of histone H1 are 

detected that completely colocalize with the SYBR Green signal (conventional Comet 

assay). This documents that histone H1 is a strongly DNA binding protein and still can be 

detected even after neutral and alkaline Comet-assay procedures. This is relatively 

surprising, since the alkaline lysis buffer uses 2.5 M NaCl, which should strip all non-

covalently bound proteins from the DNA (Levin et al., 1978). Only in the middle part of the 

comet the green signal over - shines the red one coming from antibody staining (Figure 3.4 

J and K). It can be that the high number of chromatin fibres enter the neighbouring agarose 

pores and thus form a structure with high density, which restricts chromatin access by large 

antibody molecules, while the small SYBR Green molecules still stain DNA. Therefore, the 

better accessible single fibres in the periphery of the tail are stained more intensively by 

IFCA. This fact might limit the use of IFCA for a large dose range. However, it in turn 

might allow studying low dose effects with higher sensitivity than conventional dye based 

staining. One could speculate, that in ideal case the undamaged cell will not have any tail 

while the cell with one DSB (for example induced by nuclease) will show two chromatin 

fiber ends, stretched out of the head. However, the method still has to be optimized in order 

to get such a high sensitivity.  

The IFCA experiments show, that long chromatin fibers are emanating also from untreated 

cells. In the literature, such stretching was described to occur only after induction of DNA 

double strand breaks (Klaude et al., 1996; Singh and Stephens, 1997; Rivero et al., 2003). 

Singh et al. (Singh and Stephens, 1997) have demonstrated that DNA stretching is different 

at various electrophoresis conditions. No stretched fibres are detected when electrophoresis 

is performed at 0.5 V/cm (Singh and Stephens, 1997). For IFCA experiments 1 V/cm is 

used thus, probably, it causes stretching of chromatin fibres. The origin of these long 

filaments is still not clearly understood. Collins et al. claim that the comet tail, especially in 

the alkaline version is formed of relaxed loops (formed after strand break induction) 

(Collins et al., 1997; Collins, 2004). Others predict that chromosome ends are moving out 
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of the nucleus in the neutral and alkaline Comet-assay (Singh and Stephens, 1997; Singh et 

al., 1999a; Rivero et al., 2003). Singh et al, utilizing the comet assay in combination with 

the fluorescence in situ hybridisation technique (Comet-FISH) have shown that one fibre 

belongs to one chromosome. However, they couldn’t prove that it is a chromosome end and 

not a stretched loop containing two chromatin fibres (Rivero et al., 2003). In the present 

work no reliable evidences could be provided either for DNA loop or chromosome end 

hypotheses. However, the presented data, especially the 2D IFCA experiments of 

undamaged cells (Figure 3.4 L and M) at least support the conclusion that each filament 

observed in comet tail is the end of a one intact chromosome, containing one chromatin 

fibre. 

4.4. Fragment size calibration and direct comparison of fragmentation 

patterns after different damaging treatments 

For the first time the fragment size distribution in the neutral Comet-assay is shown. From 

the lambda DNA (48 kbp) migration pattern one can assume that double stranded fragments 

with the size of 48 kbp migrate 540 µm within 25 min of electrophoresis and are located at 

the end of the comet tail as dot like structures (Figure 3.5 G). A similar result is predicted 

from the comparison of the in silico fragmentation analysis of the cutting/restriction 

enzyme BbvCI with its fragmentation pattern in the comet tail. This reveals that fragments 

up to 30 kbp are forming dot like fragments at the end of the tail.  

 

 

 

Figure 4.1 Fragment size distribution in the neutral Comet-assay. HeLa cell after 10 Gy 

irradiation and 25 minutes of electrophoresis. Red – IFCA signal, green – SYBR Green 

signal representing DNA. Scale bar – 100 µm. 



Discussion
 

 68

General conclusion can be drawn, suggesting that chromatin fragments up to ~50 kbp are 

forming dot like fragments at the end of the comet tail (Frame III in Figure 3.5 C). Larger 

fragments with the size of several hundreds of kbp form short and longer fibres (Frame II in 

Figure 3.5 C). Finally, long fibres connected to the head are megabase DNA molecules, 

obviously representing single chromosomes (Frame III in Figure 3.5 C) (Figure 4.1). 

Comparison of fragmentation patterns with different noxes reveals that after bleomycin 

treatment the damaging level highly differs from cell to cell (Ostling and Johanson, 1987). 

A treatment with 12 µg/ml bleomycin for 30 min results in a fragmentation pattern similar 

to that of 40 Gy of 137Cs exposure (Figure 3.6 B). For this damage millions of molecules in 

one cell nucleus are needed (Table 4.1). 

The DNA damage patterns after ionizing and UV-A radiation are surprisingly similar to 

each other. In particular, ionizing radiation of 20 Gy (photon energy 662 000 eV) induces a 

similar fragmentation pattern as 10 µJ laser irradiation (3.5 eV). This means that the photon 

number required to induce the same fragmentation pattern is approximately 108 times 

higher for UV-A laser treatment although the energies of photons differs only 2×105 times 

(Table 4.1). Thus the gamma photons induce damage 500 times more efficiently than UV-

A photons (350 nm) although the overall absorbed energy is the same (Table 4.1). 

 

Table 4.1 DNA fragmentation efficiency of treatments. 

Treatment 
Number of photons or 

molecules 

Relative break 

efficiency 

20 Gy (137Cs) 1.25 ×104 500 

10 µJ UV-A, 350nm 

Laser pulse 
1×1012 1 

BLM, 12 µg/ml 1.5×106 n.d. 

 

The 500 times higher efficiency of gamma irradiation compared to UV-A is probably due 

to physical, but not biological effects. A significant difference in irradiation protocols is 

that a small number of ionising photons affects the whole cell nucleus. In contrast, the UV-
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A laser-microbeam induces highly localized damage. It delivers 1013 UV-A photons into a 

small volume of 3 µm3 during a short time period of 20 nsec. It means 106 photons per 

femtosecond – approximately one optical cycle. This probably causes the saturation of 

molecules in the excited state and many following photons can not be absorbed. 

Consequently the factor of 500 has to be taken as an empirical value and can be used for the 

comparison of UV-A and ionizing irradiation induced effects in terms of double strand 

breaks. Here, the comparison of fragmentation after irradiation with the same geometries is 

necessary.  

It is worth noting, that, by keeping in mind the theory that chromosomes in the interphase 

cell nucleus form chromosome territories (Cremer and Cremer, 2001), the fragments at the 

end of the Comet-assay after one pulse of spatially resolved laser-microbeam irradiation 

should originate from one or at least few chromosomes. In contrast, after entire nucleus 

gamma irradiation, various fragments should be generated from (all) different 

chromosomes. 

4.5. Inverse relationship of DSB repair protein recruitment time with 

pulse energy 

Changing the pulse energy, thus dose and pulse peak power simultaneously, the recruitment 

kinetics of the DSB repair proteins change their characteristics: accumulation time 

increases linearly with decreasing energy of the laser pulses. This allows extrapolating the 

dependency curves to zero in order to estimate the protein dynamics at low dose conditions. 

This is extremely important for NHEJ proteins, since only several molecules of each NHEJ 

factor are known to bind to DSBs. Therefore, due to low signal to noise ratio these enzymes 

can not be visualised as foci after ionizing radiation. Interestingly, the NBS1 recruitment 

time estimated by extrapolation (129 ± 12 sec) is very close to the value reported by Lukas 

et al (Lukas et al., 2004), (177 ± 41 sec) who applied local UV-A laser irradiation on cells 

pre-sensitized with BrdU. After comparison of the RPA foci appearance in the laser track to 

that one after ionizing radiation they  claimed that laser damaging used in their setup is 

equivalent to 3 Gy of ionizing radiation (Bekker-Jensen et al., 2006). This shows that the 

extrapolation strategy used in the present work is valid and can be applied to calculate 

recruitment of DNA repair proteins fused to EGFP at biologically relevant conditions. 

The inverse linear recruitment time dependency on pulse energy is quite intriguing. One 

could expect that the accumulation of proteins at high pulse energies would be slower due 
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to the limited number of proteins in the cell and a high amount of induced DNA damage. In 

contrast, the observed effect is opposite to this expectation and can be explained by the 

following. It is known that UV-A laser light at low doses induces single strand breaks (Lan 

et al., 2005). If the dose given at the same time point is increased, additionally double 

strand breaks are induced, thus different repair pathways are activated simultaneously 

(Dinant et al., 2007). Important is that those DSBs most probably are secondary damages, 

generated due to the clustered SSBs. The requirement for such an event is two SSBs on the 

opposite strands in a distance less than 14 base pairs (Vispe and Satoh, 2000). This makes 

the DNA structure unstable and thus a DSB is generated. The conversion of two closely 

located SSBs into one DSB requires time, therefore at low pulse energies recruitment of 

DSB repair proteins is delayed due to slowly generated DSBs. By elevating the pulse 

energy, the power density increases and direct destruction of DNA backbone becomes 

possible. Therefore, primary DSBs are induced in higher amounts. This means, that DSBs 

are generated immediately. Subsequently DSB repair can be performed without a delay. In 

conclusion, it can be stated that the inverse recruitment time dependency is due to the 

change in ratio of primary and secondary induced DSBs. Presently this is a working 

hypothesis, which should be confirmed experimentally in the future work. 

4.6. Early NHEJ is followed by recruitment of the MRN complex, DNA-

PKcs autophosphorylation and late HRR  

The most intriguing result of this study is that the late NHEJ factor XRCC4 is recruited to 

laser induced damage earlier than NBS1. This was demonstrated by two methods: the live 

cell imaging of EGFP fusion proteins as well as by the immunofluorescent staining for 

detection of the endogenous proteins. This finding is very surprising, since XRCC4 is 

generally thought to be involved in the latest NHEJ step in complex with Lig4, which 

ligates DNA ends. So far, NBS1 was believed to be on the top of both the NHEJ and the 

HRR pathways and therefore would be one of the key molecules for pathway choice (Yang 

et al., 2006). Notably, NBS1 absence does not inhibit XRCC4 focus formation as shown in 

section 3.4.4, indicating that XRCC4 assembly to DSBs is not directly dependent on NBS1. 

It rather requires Ku80 in agreement with the literature (Mari et al., 2006). 

In Saccharomyces cerevisiae it was demonstrated that for the Dnl4 (homologue of human 

Lig4) recruitment at DSBs, induced by HO-endonuclease, the Ku70/80 heterodimer is 

required but not MRX complex (MRN in humans), which seems to be more important for 
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dissociation of Dnl4 (Wu et al., 2008). This publication reported that Dnl4 assembly at 

endonuclease induced DSBs in Saccharomyces cerevisiae is delayed around 10 min 

compared to MRX complex. Additionally, in mammals it was shown that XRCC4 is 

present at PPOI endonuclease induced damage several hours later than ATM (Berkovich et 

al., 2007). This is in contrast to data shown in the present study (section 3.4.3) and can be 

explained by several facts. First of all those two publications apply a damage induction 

method using endonucleases, which is a method with low temporal resolution (at least 

several tens of minutes). Secondly, both groups use the Chromatin Immuno Precipitation 

(ChIP) technique to measure the protein presence at one DNA site close to the DSB 

whereas the present study uses the evaluation of average focus intensity. Thus proteins 

bound directly to damage as well as to the surrounding chromatin are detected. Here the 

behaviour of NBS1 and XRCC4 proteins is known to be different. XRCC4 is known to 

bind directly to damage site (DNA ends) through Ku70/80 and DNA-PKcs. In contrast, 

NBS1 is involved in the sensing of the DSBs through the Mre11 binding to DNA ends and 

additionally is involved in chromatin modification around the DSBs in range of megabase 

pairs. Therefore, the measured kinetics of NBS1 accumulation as a focus signal increase, 

represents proteins involved in both functions.  

 

 

Following this, it is worth to notice the finding demonstrating that XRCC4 recruitment time 

is not affected by absence of NBS1. This shows that those proteins are recruited to DSBs 

Figure 4.2 Possible model for DSB stabilization in surrounding chromatin through MRN 

complex. Adapted from (van Gent and Van der Burg, 2007). 
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most probably independently. As was proposed by several groups, NHEJ is responsible for 

the stability of DNA ends (Soutoglou et al., 2007; van Gent and Van der Burg, 2007) in 

close proximity, binding directly to them, while the MRN complex (Mre11-Rad50-NBS1) 

is stabilising DNA ends on the larger scale, by managing the interaction network in 

surrounding chromatin through γ-H2AX and MDC1 (Figure 4.2). 

In the following, timing events measured in this work will be discussed. Ku80 is the fastest 

molecule found to be at DSBs with a recruitment time of 27 seconds. It rapidly recruits 

DNA-PKcs and all other NHEJ factors such as XLF and XRCC4/Lig4, before the assembly 

of NBS1 and chromatin modifications such as γ-H2AX are achieved. DNA-PKcs is known 

to inhibit access to DNA ends until it is autophosphorylated. Thus, no repair can take place 

(Weterings and Chen, 2007) although the ligation machinery is already in the vicinity of the 

lesion. Lou et al. has reported that autophosphorylation of DNA-PKcs at Ser2056 is 

mediated by the MDC1 protein (Lou et al., 2004), which has a very similar recruitment 

behaviour as NBS1 (Lukas et al., 2004). In agreement, phosphorylation at this site of DNA-

PKcs is done after the NBS1 (Figure 3.14 and Table 3.4) is recruited. Therefore MDC1 

mediated autophosphorylation of DNA-PKcs indicates conformational changes of DNA-PK 

that allow the processing machinery to perform its task. Obviously, this happens only after 

assembly of all NHEJ factors to the damaged site. This is supported by a recent publication, 

showing that efficient DNA end processing by endonucleases or polymerases requires the 

presence of XRCC4/Lig4 complex (Budman et al., 2007). 

Figure 3.15 and Figure 3.16 show that XRCC4 persists at DSBs approximately 400 seconds 

after irradiation and then starts to go away exactly in that moment when the Rad51 focus 

intensity starts to increase dramatically. The kinetics of XRCC4 signal decay and Rad51 

accumulation are complementary (Table 3.4) suggesting that Rad51 replaces XRCC4. 

Furthermore, phosphorylation at both DNA-PKcs sites (Ser2056 and Thr2609) occurs 

exactly between the accumulation of those two molecules (Figure 3.16). Therefore, 

depending on the DNA end processing, which obviously depends on the cell cycle phase 

and DNA damage type, the pathway finally is chosen. In the G2 phase, Rad51, representing 

the action of HRR, starts to accumulate rapidly and replaces the NHEJ machinery. In 

contrast, in the G1 phase XRCC4 persists longer at DBSs and therefore, Lig4 ligates DNA 

ends (Figure 3.15). This experimentally corroborates an earlier suggestion that DNA-PKcs 

might be a molecule regulating the pathway choice (Allen et al., 2003; Allen et al., 2002; 

Shrivastav et al., 2008) and shows the timing of events. 
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The described model is shown in Figure 4.3 and explains how HRR repair can be initiated 

in the G2 cell cycle phase since it is well known that Ku70/80 molecules have a high 

affinity to DNA ends (Walker et al., 2001) and thus, if bound to them, would initiate NHEJ 

without allowing the HRR to proceed to G2. According to the model in Figure 4.3, early as 

well as late NHEJ factors are in fact recruited rapidly to DSBs and are inactive (therefore 

black colour in Figure 4.3), till DNA-PKcs is phosphorylated and DNA end processing is 

started. Only then either NHEJ join the DNA ends or gives access to the HRR pathway. 

 

 

This hypothesis is also supported by the fact that ubiquitinylation of histones occurs at the 

onset of HRR (Mailand et al., 2007). Recently it was shown that ubiquitinylation of Ku80 is 

needed for its release (Postow et al., 2008). One could speculate that those both facts are 

Figure 4.3 Model showing early recruitment of all NHEJ factors that are exchanged by 

HRR molecules after the DNA end processing when the choice of repair pathway is 

done. 
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related to each other, suggesting that after ubiquitinylation the NHEJ machinery is released 

(Ku80) and HRR is recruited. Alternatively it could be that the simple DSBs are repaired by 

NHEJ immediately without choosing the pathway and only complex DSBs requires 

resection and thus HRR.  

In conclusion, double strand break repair starts with the assembly of NHEJ enzymes. The 

pathway choice is made during the DNA processing until 400 sec after irradiation. After 

this time point, XRCC4/Lig4 either further ligates DNA ends in G1 cells and thus remains 

longer visible, or it starts to detach from the damaged site and is replaced by Rad51 in G2 

cells where HRR is possible. This supports the hypothesis that NHEJ factors and the MRN 

complex is initially recruited to the laser induced damage independent of each other. And 

gives an explanation how NHEJ and HRR pathways can cooperate on one DSB. 
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4.7. Final conclusions/theses 

From this work the following conclusions can be drawn: 

1. Early and late NHEJ factors are recruited very early (within 1 min) to the DSBs, even 

earlier than NBS1. 

2. Recruitment time of XRCC4 is not directly influenced by NBS1. 

3. HRR machinery (Rad51) is replacing NHEJ proteins at laser induced DSBs in G2 cell 

cycle phase after the decision of pathway choice is done ~ 400 sec after DNA 

damaging. 

4. DNA-PKcs is phosphorylated at Ser2056 and Thr2609 with different kinetics. With 

time constants between recruitment of NHEJ and HRR. 

5. Timing model of cooperation of NHEJ, HRR pathways and MRN complex at laser 

induced DSBs is presented. 

6. Recruitment kinetics of DNA repair proteins inversely depend on used laser pulse 

energy. 

7. This dependency can be extrapolated to zero, allowing the estimation of the protein 

recruitment time at biologically relevant conditions. 

8. This inverse dependency could be due to the different ratio of DSBs generated due to 

clustered SSBs and directly induced DSB by high energy pulses (DSBSSB :DSBCut). 

Low energy induce more DSBs via clustered SSBs and therefore more time is needed 

for DSB formation, while at higher energies fraction of primary DSBs increases. 

9. The new method for visualisation of Comet-assay was developed and named as 

Immunofluorescent Comet-assay (IFCA). It enables visualisation of comet tails with 

high resolution. It allows visualising details, hardly detectable by conventional staining 

methods. 

10. IFCA detects single fragments at high resolution and possibly will be able to detect 

single DSBs when optimized. 

11. The size of fragments at the end of the neutral comet tail was determined, showing that 

small dot like fragments are of the size up to ~ 50 kbp. Larger fragments form filaments 

of different length.  
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12. Laser-microbeam induced γ-H2AX and NBS1 foci do coalesce in 20 min after 

irradiation if induced close to each other. 

13. The level of laser induced damage highly depends on combination of used laser-

microbeam wavelength, pulse power density (defined by energy and pulse duration) and 

dose (repetition rate). 
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6. Appendix 

6.1. Abbreviations 

ATM   Ataxia Telangiectasia Mutated 

ATR   Ataxia-Telangiectasia and Rad3-related 

(E)GFP  (Enhanced) Green Fluorescent Protein 

BLM   Bleomycin 

BP   Band Pass 

bp   Base Pair 

BSA   Bovine Serum Albumin 

CA   Comet-Assay 

Cat.   Category 

cDNA   Coding DNA 

CPD   Cyclobutane Pyrimidine Dimers 

CW   Continous Wave 

DABCO  1,4-diazabicyclo[2.2.2]octane 

DAPI   4',6-diamidino-2-phenylindole 

DMEM  Dulbecco´S Modified Eagle Medium 

DNA   Deoxyribo-Nucleic Acid 

DNA-PKcs  DNA Dependent Protein Kinase Catalytic Subunit 

DSB   Double Strand Break 

DTT   Dithiothreitol 

E.coli   Escherichia Coli 
EDTA   Ethylenediaminetetraacetic Acid 

FCS   Fetal Calf Serum 

G418   Geneticin 

H2AX   H2A Histone, Member X 
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γ-H2AX  Phosphorylated Histone H2AX 

Gy   Gray 

HeNe   Helium-Neon 

HRP   Horseradish Peroxidase 

HRR   Homologous Recombination Repair 

IFCA   Immunofluorescent Comet-Assay 

kb   Kilobase 

Kd   Dissociation Constant 

Ku80   X-ray Repair, Complementing Defective, in Chinese Hamster, 5 

Lig4   Ligase 4 

LP   Long Pass 

LSM   Laser Scanning Microscope 

mRFP   Monomeric Red Fluorescent Protein 

MDC1   Mediator of DNA Damage Checkpoint Protein 1 

MRE11  Meiotic Recombination 11 

MRN complex Mre11/Rad50/Nbs1 Complex 

NA   Numeric Aperture 

NBS1   Nijmegen Breakage Syndrome 

Nd:YAG  Neodymium-Doped Yttrium Aluminium Garnet 

Nd:YLF  Neodymium-Doped Yttrium Lithium Fluoride 

NHEJ   Non-Homologous End Joining 

PAGE   Polyacrylamide Gel Electrophoresis 

PBS   Phosphate Buffered Saline 

PCR   Polymerase Chain Reaction 

PFGE   Pulsed Field Gel Electrophoresis 

RNA   Ribonucleic Acid 

RNase   Ribonuclease 

ROI   Region Of Interest 

ROS   Reactive Oxygen Species 

rpm   Rotations per Minute 

RPMI   Cell Culture Medium (Roswell Park Memorial Institute) 

RT-PCR  Reverse Transcriptase PCR 

SDS   Sodium Dodecyl Sulfate 

SSB   Single Strand Break 
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TEMED  Tetramethyl-1,2-Diaminoethane 

Ti:Sa   Titanium:Sapphire 

Tris   Tris(Hydroxymethyl)Aminomethane 

Triton X-100  Octylphenoldecaethylenglycolether 

Tween 20  Polyoxyethylensorbitanmonolaurat 

U-2 OS  Human Osteosarcoma Cell Line 

UV-A   Ultraviolet Light (320 - 400 Nm) 

XLF   Xrcc4-like Factor 

XRCC4  X-ray Repair, Complementing Defective, in Chinese Hamster, 4 
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6.2. Buffers and solutions  

BUFFER SUBSTANCE 
END 
CONCEN-
TRATION 

AMOUNT 
 

6x DNA Loading 
Buffer 

Tris HCl, 0.5 M, pH 7.5 20 mM 400 µl 

Glyerol 20% 3 ml 

Bromphenol Blue 0.25% 25 mg 

Xylene cyanol 0.25% 25 mg 

dH2O - up to 10 ml  

10x FA Gel-Buffer, 
pH 7.0 

MOPS 200 mM 41.8 g 

Natrium acetate 50 mM 6.8 g 

EDTA 10 mM 3.7 g 

DEPC water - up to 1000 ml  

1x FA Running-
Buffer 

10x FA Gel-Buffer 1x 100 ml 

Formaldehyde 37% 0.75% 20 ml 

DEPC water - up to 1000 ml  

Fixation Solution 

Formaldehyde 3.7% 37 µl 

Triton X-100 1% Stock 0.1% 100 µl 

PBS - up to 1 ml  

10x PBS, pH 7.4 

NaCl 137 mM 80.0 g 

KCl 2.7 mM 2.0 g 

Na2HPO4 10 mM 17.8 g 

KH2PO4 2 mM 2.73 g 

dH2O - up to 1000 ml  

1x PBS 
10x PBS, pH7.4 1x 100 ml 

dH2O - up to 1000 ml  

1x PBS-T 0.05% 

10x PBS, pH7.4 1x 100 ml 

Tween 20 0.05% 500 µl 

dH2O - 900 ml  

1x PBS-T 0.1% 

10x PBS, pH7.4 1x 100 ml 

Tween 20 0.1% 1000 µl 

dH2O - 900 ml  

DABCO Antifade 

DABCO 2 mM 223 mg 

1M tris-HCl (pH8) 2 % 0.2 ml 

Glycerol 90 % 9 ml 

dH2O 8 % 0.8 ml  

Permeabilization 
Solution 

Saponine 1%Stock (10 mg in 1 ml PBS) 0.01% 10 µl 

Triton X-100 1% Stock 0.7% 700 µl 
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PBS - up to 1 ml  

10x RNA Loading 
Buffer 

Bromphenol Blue Solution 0.002% 20 mg 

EDTA 500 mM, pH 8.0 4 mM 80 µl 

Formaldehyde 37% 2.7% 720 µl 

Glyerol 20% 2 ml 

Formamide 30% 3.084 ml 

10x FA Gel Buffer 4x 4 ml 

DEPC water - up to 10 ml  

RPMI Medium 

RPMI Medium 88.5% 177 ml 

FCS 10% 20 ml 

2 Mercaptoethanol 10 mM 0.05 mM 1 ml 

Penicillin/Streptomycin 1% 2 ml  

1x SDS Gel 
Destaining Buffer 
for Commassie 

Acetic Acid 10% 100 ml 

Ethanol 10% 200 ml 

dH2O - up to 1000 ml  

1x SDS Gel Drying 
Buffer  

Glycerin 10% 100 ml 

Methanol 20% 200 ml 

dH2O - up to 1000 ml  

6x SDS Loading 
Buffer 

Tris HCl, pH6.8 0.27 M 425 mg 

Glycerol 60% 6 ml 

SDS 6% 0.6 g 

Bromphenolblau 0.12% 12 mg 

DTT 0.3 M Fresh 46 mg/ml 

dH2O - 4 ml  

5x SDS Running 
Buffer, pH 8.8 

Tris-Base 500 mM 60.6 g 

Glycin 1.52 M 114 g 

SDS 1% 10 g 

dH2O - up to 1000 ml  

Separating Gel (for 
4 gels 10%)  

Acryl-Bisacrylamid (29:1) 40% 13.3% 6.7 ml 

Tris HCl 3 M, pH 8.8 0.38 M 2.5 ml 

SDS 10% 0.1% 0.2 ml 

dH2O - 9.6 ml 

Ammonium persulphate 1.5% 0.075% 1 ml 

TEMED 0.05% 10 µl  

Stacking Gel (for 4 
gels)  

Acryl-Bisacrylamid (29:1) 40% 6.4% 1.6 ml 

Tris HCl 0.5 M, pH 6.8 0.125 M 2.5 ml 

SDS 10% 0.1% 0.1 ml 

dH2O - 5 ml 

Ammonium persulphate 1.5% 0.12% 0.8 ml 
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TEMED 0.1% 10 µl  

50x TAE Buffer 

Tris Base 2 M 242 g 

Acetic Acid 2 M 57.1 ml 

EDTA 0.5 M pH 8.0 50 mM 100 ml 

dH2O - up to 1000 ml  

1x TAE Buffer 
50x TAE Buffer 1x 25 ml 

dH2O - up to 1000 ml  

10x Transfer 
Buffer, pH 8.8 

Tris Base 250 mM 30.3 g 

Glycine 1.92 M 144.1 g 

dH2O - up to 1000 ml  

1x Transfer Buffer, 
pH 8.8 

10x Tranfer Buffer 1x 100 ml 

Methanol 10% 100 ml 

dH2O - up to 1000 ml  

1x Whole Cell 
Protein Extraction 
Buffer Stock 
Solution  

Tris-HCl 1 M pH 7.4 20 mM 4 ml 

MgCl2 0.5 M 1 mM 0.4 ml 

NaCl 5 M 500 mM 20 ml 

Glycerol 0.1 M 20 mM 40 ml 

NP40 0.1 M 0.5 mM 1 ml 

EDTA 0.5 M 1 mM 0.4 ml 

EGTA 0.2 M 1 mM 1 ml 

dH2O - up to 200 ml  

1x Whole Cell 
Protein Extraction 
Buffer  

1x Whole Cell Protein Extraction Buffer 
Stock Solution 

1x 1 ml 

DTT 1 M 1 mM 1 µl 

PMSF 0.5 M 1 mM 2 µl 

NaF 0.5 M 2.5 mM 5 µl 

Na3VO4 0,1 M 0.2 mM 5 µl 

B-glycerolphosphate 1 M 1 mM 1 µl  

Neutral lysis, pH8 

EDTA 33 mM 10.7 g 

SDS 0.5 % 5 g 

dH2O  Up to 1000 ml  

Alkaline lysis  

Tris, pH10 100 mM stock 10 mM 100 ml 

EDTA, 500 mM Stock 100 mM 200 ml 

NaCl 2.4 M 140.4 g 

N-Lauroylsarcosine Sodium salt 1 % 10 g 

NaOH 77.5 mM 3.1 g 

dH2O  Up to 890 ml 

10% DMSO, and 1% Triton X-100 have to be added shortly before use  

1x TBE Buffer 
Tris-base 90 mM 10.9 g 

Boric acid 90 mM 5.56 g 
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EDTA 0.2 mM 0.74 g 

dH2O  Up to 1000 ml  

Alkaline 
electrophoresis 
pH13.1 

NaOH, 1M stock 333 mM 300 ml 

EDTA, 500 mM stock 1 mM 2 ml 

dH2O  Up to 1000 ml  

Neutralisation 

0.4 M tris, pH7.5 

Tris-HCl 320 mM 50.8 g 

Tris-base 80 mM 9.44 g 

dH2O  Up to 1000 ml  

Tris 100 mM, pH10 
Tris-base 100 mM 12.1 g 

dH2O  Up to 1000 ml  

TE, pH7.4 

Tris-HCl 10 mM 1.57 g 

EDTA 1 mM 0.37 g 

dH2O  Up to 1000 ml  

SYBR Green 
staining solution 

DABCO-Antifadel 49.9 % 4990 ml 

TE-buffer(filtrated) 49.9 % 4990 ml 

SYBR Green (10,000x) 20x 20 µl  

1× restriction 
reaction pH7.9 

Potassium acetate 50 mM  

Tris acetate 20 mM  

Magnesium acetate 10 mM  

DTT 1 mM   
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6.3. Materials and Manufacturers 

Antibodies 

 

Primary Antibodies 

53BP1 (NB-100-305) Novus Biologicals, Littleton, USA 

Cyclobutane pyrimidine dimers (mc-062) Kamiya, Seattle, USA 

DNA-PKcs (phospho Ser2056) Abcam, Cambridge, UK 

DNA-PKcs (phospho Ser2609) Abcam, Cambridge, UK 

GFP (sc-8334) Santa Cruz Biotechnology, Santa Cruz, USA 

Histone H1 (sc-8030) Santa Cruz Biotechnology, Santa Cruz, USA 

Ku80 (MS-285-P0) Lab Vision, Suffolk 

NBS1 (NB-100-143) Novus Biologicals, Littleton, USA 

OGG1 (915-020) Biomol, Hamburg, GER 

Rad51 (PC-130) Calbiochem,  

Rad51 (sc-8349) Santa Cruz Biotechnology, Santa Cruz, USA 

Tubulin-alpha (sc-5286) Santa Cruz Biotechnology, Santa Cruz, USA 

XRCC4 (ab2857) Abcam, Cambridge, UK 

γH2AX (05-636) Upstate, Temecula, USA 

 

Secondary Antibodies 

anti-mouse IgG Alexa Fluor 488 (donkey, A21202) Invitrogen, Karlsruhe, GER 

anti-mouse IgG Alexa Fluor 594 (donkey, A21203) Invitrogen, Karlsruhe, GER 

anti-mouse IgG HRP (NA 931) GE Healthcare, Buckinghamshire, UK 

anti-rabbit IgG Alexa Fluor 488 (donkey, A21206) Invitrogen, Karlsruhe, GER 

anti-rabbit IgG Alexa Fluor 555 (donkey, A31572) Invitrogen, Karlsruhe, GER 

anti-rabbit IgG Alexa Fluor 494 (donkey, A11053) Invitrogen, Karlsruhe, GER 

anti-rabbit IgG HRP (goat, P0448) DAKO, Hamburg, GER 
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Chemicals and Kits 

 

AccuPrime™ Pfx DNA Polymerase Kit Invitrogen, Karlsruhe, GER 

Acetic acid  Roth, Karlsruhe, GER 

Acetone Roth, Karlsruhe, GER 

Acryl-Bisacrylamid (29:1) Roth, Karlsruhe, GER 

Agarose type II Sigma-Aldrich, Munich, GER 

Agarose type VII Sigma-Aldrich, Munich, GER 

Ammonium persulphate Sigma-Aldrich, Munich, GER 

Bacto-Agar Beckton Dickinson, Heidelberg, GER 

B-glycerolphosphate Sigma-Aldrich, Munich, GER 

Boric acid Roth, Karlsruhe, GER 

Bovine Serum Albumine (Fraction V) Sigma-Aldrich, Munich, GER 

Bromphenol Blue Sigma-Aldrich, Munich, GER 

Butanol Roth, Karlsruhe, GER 

DABCO Sigma-Aldrich, Munich, GER 

DMSO Roth, Karlsruhe, GER 

DNA Standard Marker Eurogentec, Seraing, Belgium 

DTT Sigma-Aldrich, Munich, GER 

ECL Pierce Western Blotting Substrate Perbio Science, Bonn, GER 

ECL Plus Amersham Western Blotting Detection System GE Healthcare, Buckinghamshire, GBR 

EDTA Roth, Karlsruhe, GER 

EGTA Sigma-Aldrich, Munich, GER 

Ethanol Roth, Karlsruhe, GER 

Ethidium Bromide SERVA, Heidelberg, GER 

Fetal calf serum PAA Laboratories, Pasching, AUT 

Formaldehyde 37% Sigma-Aldrich, Munich, GER 

Formamide Sigma-Aldrich, Munich, GER 

FuGENE HD Transfection Reagent Roche, Mannheim, GER 

FuGENE 6 Transfection Reagent Roche, Mannheim, GER 

G418 Sigma-Aldrich, Munich, GER 

Giemsa stain, Modified solution Sigma-Aldrich, Munich, GER 

Glycerol/ glycerine Roth, Karlsruhe, GER 

HiSpeed Plasmid Purification Midi and Mini Kits QIAGEN, Hilden, GER 

Hybond-ECL Nitrocellulose Membrane GE Healthcare, Buckinghamshire, GBR 

Hyperfilm ECL Amersham GE Healthcare, Buckinghamshire, GBR 

Isopropanol Roth, Karlsruhe, GER 

Kanamycin Sigma-Aldrich, Munich, GER 

Ampicillin Sigma-Aldrich, Munich, GER 
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KCl Sigma-Aldrich, Munich, GER 

KH2PO4 Merck, Darmstadt, GER 

Lambda DNA New England Biolabs, Frankfurt a.M., GER 

LB-medium capsules Q-BIOgene, Morgane-Irvine, USA 

Methanol Roth, Karlsruhe, GER 

2-mercaptoethanol Merck, Darmstadt, GER 

MgCl2 Sigma-Aldrich, Munich, GER 

MOPS Roth, Karlsruhe, GER 

Na Acetate Sigma-Aldrich, Munich, GER 

NaCl Roth, Karlsruhe, GER 

NaF Roth, Karlsruhe, GER 

Na2HPO4 Merck, Darmstadt, GER 

NaH2PO4 Roth, Karlsruhe, GER 

NaOH Roth, Karlsruhe, GER 

Na3VO4 Sigma-Aldrich, Munich, GER 

N-Lauroylsarcosine Sodium salt solution Fluka, Steinheim, GER 

Nonfat dried milk powder AppliChem, Darmstadt, GER 

NP40 Sigma-Aldrich, Munich, GER 

Top10 E.coli cells Invitrogen, Karlsruhe, GER 

OptiMEM 1 medium Invitrogen, Karlsruhe, GER 

PageRuler Prestainded Protein Ladder Plus Fermentas, Vilniuse, LT 

PCR Primers Eurofins MWG Operon, Ebersberg, GER 

pEGFP-C3/C1/N1, mammalian expression vectors Clontech, Saint-Germain-en-Laye, Dann 

Penicillin/Streptomycin Solution Sigma-Aldrich, Munich, GER 

PFGE marker, low range New England Biolabs, Frankfurt a.M., GER 

PMSF Sigma-Aldrich, Munich, GER 

PonceauS Concentrate Roth, Karlsruhe, GER 

ProLong Gold antifade reagent with DAPI Invitrogen, Karlsruhe, GER 

Protease Inhibitor Cocktail Roche, Mannheim, GER 

QIAprep Spin Miniprep Kit QIAGEN, Hilden, GER 

QIAquick Gel Extraction Kit QIAGEN, Hilden, GER 

Rneasy® Mini Kit QIAGEN, Hilden, GER 

Rotiphorese blauR brilliant blue concentrate Roth, Karlsruhe, GER 

RPMI 1640 Medium Biochrom AG, Berlin, GER 

Saponine Sigma-Aldrich, Munich, GER 

SDS SERVA, Heidelberg, GER 

Smart Ladder (Dann Standard) Eurogentec, Köln, GER 

Smart Ladder Small Fragment Eurogentec, Köln, GER 

Sodium Azide Sigma-Aldrich, Munich, GER 

SYBR Green Invitrogen, Karlsruhe, GER 
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TEMED Roth, Karlsruhe, GER 

ThermoScript™ Reverse Transcriptase Invitrogen, Karlsruhe, GER 

Tris acetate Roth, Karlsruhe, GER 

Tris Base Sigma-Aldrich, Munich, GER 

Tris HCl Roth, Karlsruhe, GER 

Triton X-100 Sigma-Aldrich, Munich, GER 

Trypsin/ EDTA Solution Biochrom AG, Berlin, GER 

Tween 20 Roth, Karlsruhe, GER 

Xylene cyanol Sigma-Aldrich, Munich, GER 

YOYO-1 Invitrogen, Karlsruhe, GER 

 

 

Technical Equipment and Materials 

 

6-well plates Greiner Bio-One, Frickehausen, GER 

96-well plates Thermo Fisher Scientific (Nalgene Nunc), 
Langenselbold, GER  

Achromat objective Zeiss, Jena, GER 

Argus XI Version 5.0.10 biostep, Jahnsdorf, GER 

AxioVert 135M Zeiss, Jena, GER 

AxioVert 100M Zeiss, Jena, GER 

AxioVert 200 ApoTome, ApoTome Slider module, 
Axiocam MRm 

Zeiss, Jena, GER 

Axiovision Software Zeiss, Jena, GER 

Bio-Imager  DH-30132  biostep, Jahnsdorf, GER 

BioPhotometer (Spectrophotometer) Eppendorf, Hamburg, GER 

Blot Paper extra thick Bio-Rad Laboratories, Munich, GER 

Cell culture incubator Heraeus Instruments GmbH, Düsseldorf 

Centrifuge Tubes 15ml, 50ml Greiner Bio-One, Frickenhausen, GER 

Clone Manager Professional Version 8 Sci-Ed Software, Cary, USA 

Chambered Coverglasses with 1-8 chambers Nunc, Lab-Tek™, Wiesbaden, GER 

Coverslips round 12mm Roth, Karlsruhe, GER 

CTI-Controller 3700 digital ReCon, Erbach, GER 

Culture dishes Greiner Bio-One GmbH, Solingen, GER 

Culture flasks Greiner Bio-One GmbH, Solingen, GER 

Electrophoresis Chamber and Power Supply PAC 
3000 

Bio-Rad Laboratories, Munich, GER 

Electrophoresis Chamber ThermoFisher Scientific, OWL Separation Systems, 
Waltham, USA 
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Gammacell GC40 (CS137) MDS Nordion, Kanata, CAN 

Gradient attenuator Laseroptik 

ImageJ Version 1.40 Wayne Rasband, National Institutes of Health, USA 

Lab-Shaker Gerhardt, Königswinter, GER 

Lab-Shaker Lab Therm Adolf-Kühler AG, SUI 

LSM 510 Zeiss, Jena, GER 

LSM 510 Software Zeiss, Jena, GER 

L-Win Triton Control Newport Spectra-Physics, Darmstadt, GER 

Mastercycler Gradient Eppendorf, Hamburg, GER 

Microcentrifuge 5415C Eppendorf, Hamburg, GER 

Microplate Reader Model 3550 Bio-Rad Laboratories, Munich, GER 

Microscope Slides, SuperFrost Plus Menzel Gläser, Braunschweig, GER 

Microscope Telaval 31 Zeiss, Jena, GER 

Mini centrifuge C-1200 Labnet International, Windsor, GBR 

Mini Protean® Sytem Western Blot  Bio-Rad Laboratories, Munich, GER 

Mixer magnetic, heatable, RCT basic Kika Labortechnik, Köln, GER 

OriginPro 7.0 OriginLab Corporation, Northampton, USA 

Parafilm „M“ Laboratory Film American National Can™, Chicago, USA 

pH-Meter CG837 Schott, Mainz, GER 

Pipettes cell star (1-50ml) Greiner Bio-One, Frickenhausen, GER 

Pipettes Pipetman (P2-P5000) Gilson, Limburg-Offheim, GER 

Pipette tips (10-1000µl) Roth, Karlsruhe, GER 

Pipettes Research (10-1000µl) Eppendorf, Hamburg, GER 

Pipetus-akku Hirschmann Laborgeräte, Eberstadt, GER 

Plan-Neofluar objectives Zeiss, Jena, GER 

Processor Classic E.O.S. AGFA Healthcare, Köln, GER 

Pulse Picker Newport Spectra-Physics, Darmstadt, GER 

Reaction tubes (0.5-2ml) Roth, Karlsruhe, GER 

Sonificator Sonoplus HD70 Bandelin electronic, Berlin, GER 

Steril Hood “Steril Gard Hood”  Baker Company Inc, Sanford, USA 

tempcontrol 37-2 digital PeCon, Erbach, GER 

tempcontrol mini PeCon, Erbach, GER 

Thermomixer 5437 Eppendorf, Hamburg, GER 

Thermocycler gradient Eppendorf, Hamburg, GER 

Trans-Blot SD Semi-Dry Transfer Cell Bio-Rad Laboratories, Munich, GER 

Triton UV Laser System (Nd:YLF, frequency tripled, 
350nm) 

Newport Spectra-Physics, Darmstadt, GER 

Ti:Sapphire laser, Tsunami Newport Spectra-Physics, Darmstadt, GER 

Uvette (cuvettes) Eppendorf, Hamburg, GER 

VarioCam  PCO Computer Optics, Kelheim, GER 
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Vortex-Genie 2 Scientific Industries, Bohemia, USA 

Waterbath, GFL GFL Gesellschaft für Labortechnik mbH, Burgwedel, 
GER 

Waterbath JulaboVC 12B JULABO Labortechnik, Seelbach, GER 

 

Restriction Enzymes and Reagents 

 

AgeI (R0552S) New England Biolabs, Frankfurt a.M., GER 

AseI (R0526S) New England Biolabs, Frankfurt a.M., GER 

BamHI (10220612001) Boehringer, Mannheim, GER 

BbvCI (R0601S) New England Biolabs, Frankfurt a.M., GER 

BglI (404101) Boehringer, Mannheim, GER 

BglII (R0144S) New England Biolabs, Frankfurt a.M., GER 

BsrGI (R0575L) New England Biolabs, Frankfurt a.M., GER 

BstBI (R0519S) New England Biolabs, Frankfurt a.M., GER 

EcoRI (R101L) New England Biolabs, Frankfurt a.M., GER 

HaeII (693 928) Boehringer, Mannheim, GER 

HindIII (R0104S) New England Biolabs, Frankfurt a.M., GER 

NdeI (R0111S) New England Biolabs, Frankfurt a.M., GER 

NotI (R0189S) New England Biolabs, Frankfurt a.M., GER 

Nt.BbvCI (R0632S) New England Biolabs, Frankfurt a.M., GER 

PciI (V0275S) SibEnzyme, RUS 

PstI (621633) Boehringer, Mannheim, GER 

PvuII (642703) Boehringer, Mannheim, GER 

SacI (669806) Boehringer, Mannheim, GER 

SacII (R0156L) New England Biolabs, Frankfurt a.M., GER 

SalI (R0138L) New England Biolabs, Frankfurt a.M., GER 

SfiI (R0123S) New England Biolabs, Frankfurt a.M., GER 

SspI (10972967001) Boehringer, Mannheim, GER 

XbaI (10674257001) Boehringer, Mannheim, GER 

XhoI (R0146S) New England Biolabs, Frankfurt a.M., GER 

  

NEB Buffer 1 (B7002S) New England Biolabs, Frankfurt a.M., GER 

NEB Buffer 2 (B7002S) New England Biolabs, Frankfurt a.M., GER 

NEB Buffer 3 (B7002S) New England Biolabs, Frankfurt a.M., GER 

NEB Buffer 4 (B7004S) New England Biolabs, Frankfurt a.M., GER 

Puffer A (141 7959) Boehringer, Mannheim, GER 

Puffer H (141 7991) Boehringer, Mannheim, GER 
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Puffer M (141 7983) Boehringer, Mannheim, GER 

100x BSA (B9001S) New England Biolabs, Frankfurt a.M., GER 

T4 DNA Ligase and Buffer Invitrogen, Karlsruhe, GER 
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6.4. Sequencing 

Here, the sequencing results of plasmids used in this work are presented. In all cases 

beginning and end of the coding sequence of protein of interest are given. 

pEntr-OGG1 

Mutation at position 1113 (977 in cDNA of gene) G is instead of C, marked with red 

background. This point mutation cause a change of amino acid in the protein from Serine to 

Cysteine at 326 site (S326C). 

 

    1  GCAGGCTCCA CCATGGGAAC CAATTCAGTC GACGAAATGC CTGCCCGCGC GCTTCTGCCC 

  > START OGG1 

   61  AGGCGCATGG GGCATCGTAC TCTAGCCTCC ACTCCTGCCC TGTGGGCCTC CATCCCGTGC 

  121  CCTCGCTCTG AGCTGCGCCT GGACCTGGTT CTGCCTTCTG GACAATCTTT CCGGTGGAGG 

  181  GAGCAAAGTC CTGCACACTG GAGTGGTGTA CTAGCGGATC AAGTATGGAC ACTGACTCAG 

  241  ACTGAGGAGC AGCTCCACTG CACTGTGTAC CGAGGAGACA AGAGCCAGGC TAGCAGGCCC 

  301  ACACCAGACG AGCTTGAGGC CGTGCGCAAG TACTTCCAGC TAGATGTTAC CCTGGCTCAA 

  361  CTGTATCACC ACTGGGGTTC CGTGGACTCC CACTTCCAAG AGGTGGCTCA GAAATTCCAA 

  421  GGTGTGCGAC TGCTGCGACA AGACCCCATC GAATGCCTTT TCTCTTTTAT CTGTTCCTCC 

  481  AACAACAACA TCGCCCGCAT CACTGGCATG GTGGAGCGGC TGTGCCAGGC TTTTGGACCT 

  541  CGGCTCATCC AGCTTGATGA TGTCACCTAC CATGGCTTCC CCAGCCTGCA GGCCCTGGCT 

  601  GGGCCAGAGG TGGAGGCTCA TCTCAGGAAG CTGGGCCTGG GCTATCGTGC CCGTTACGTG 

  661  AGTGCCAGTG CCCGAGCCAT CCTGGAAGAA CAGGGCGGGC TAGCCTGGCT GCAGCAGCTA 

  721  CGAGAGTCCT CATATGAGGA GGCCCACAAG GCCCTCTGCA TCCTGCCTGG AGTGGGCACC 

  781  AAGGTGGCTG ACTGCATCTG CCTGATGGCC CTAGACAAGC CCCAGGCTGT GCCCGTGGAT 

  841  GTCCATATGT GGCACATTGC CCAACGTGAC TACAGCTGGC ACCCTACCAC GTCCCAGGCG 

  901  AAGGGACCGA GCCCCCAGAC CAACAAGGAA CTGGGAAACT TTTTCCGGAG CCTGTGGGGA 

  961  CCTTATGCTG GCTGGGCCCA AGCGGTGCTG TTCAGTGCCG ACCTGCGCCA ATGCCGCCAT 

 1021  GCTCAGGAGC CACCAGCAAA GCGCAGAAAG GGTTCCAAAG GGCCGGAAGG CTTGCGGCCG 

  END OGG1 > 

 1081  CACTCGAGAT ATCTAGACCC AGCTTTCTTG 
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pEGFPC3-XRCC4 

   1 AGATCTCGAG CTCATGGAGA GAAAAATAAG CAGAATCCAC CTTGTTTCTG AACCCAGTAT 

  > START XRCC4 

  61  AACTCATTTT CTACAAGTAT CTTGGGAGAA AACACTGGAA TCTGGTTTTG TTATTACACT 

 121 TACTGATGGT CATTCAGCAT GGACTGGGAC AGTTTCTGAA TCAGAGATTT CCCAAGAAGC 

 181 TGATGACATG GCAATGGAAA AAGGGAAATA TGTTGGTGAA CTGAGAAAAG CATTGTTGTC 

 241 AGGAGCAGGA CCAGCTGATG TATACACGTT TAATTTTTCT AAAGAGTCTT GTTATTTCTT 

 301 CTTTGAGAAA AACCTGAAAG ATGTCTCATT CAGACTTGGT TCCTTCAACC TAGAGAAAGT 

 361 TGAAAACCCA GCTGAAGTCA TTAGAGAACT TATTTGTTAT TGCTTGGACA CCATTGCAGA 

 421 AAATCAAGCC AAAAATGAGC ACCTGCAGAA AGAAAATGAA AGGCTTCTGA GAGATTGGAA 

 481 TGATGTTCAA GGACGATTTG AAAAATGTGT GAGTGCTAAG GAAGCTTTGG AGACTGATCT 

 541 TTATAAGCGG TTTATTCTGG TGTTGAATGA GAAGAAAACA AAAATCAGAA GTTTGCATAA 

 601 TAAATTATTA AATGCAGCTC AAGAACGAGA AAAGGACATC AAACAAGAAG GGGAAACTGC 

 661 AATCTGTTCT GAAATGACTG CTGACCGAGA TCCAGTCTAT GATGAGAGTA CTGATGAGGA 

 721 AAGTGAAAAC CAAACTGATC TCTCTGGGTT GGCTTCAGCT GCTGTAAGTA AAGATGATTC 

 781 CATTATTTCA AGTCTTGATG TCACTGATAT TGCACCAAGT AGAAAAAGGA GACAGCGAAT 

 841 GCAAAGAAAT CTTGGGACAG AACCTAAAAT GGCTCCTCAG GAGAATCAGC TTCAAGAAAA 

 901 GGAAAATTCT AGGCCTGATT CTTCACTACC TGAGACGTCT AAAAAGGAGC ACATCTCAGC 

 961 TGAAAACATG TCTTTAGAAA CTCTGAGAAA CAGCAGCCCA GAAGACCTCT TTGATGAGAT 

1021  TTTCCGCGGG CCCGGGATC 

       > END XRCC4 

 

pEGFPN1-Ku80 

   1 GGCGTGTACG GTGGGAGGTC TATATAAGCA GAGCTGGTTT AGTGAACCGT CAGATCCGCT 

  61 AGCGCTACCG GACTCAGATC TCGAGCTCAA GCTTCGAATT CTGCAGTCGA CGGTACCGCG 

 121 GATGGTGCGG TCGGGGAATA AGGCAGCTGT TGTGCTGTGT ATGGACGTGG GCTTTACCAT 

 > START KU80 

 181 GAGTAACTCC ATTCCTGGTA TAGAATCCCC ATTTGAACAA GCAAAGAAGG TGATAACCAT 

 241 GTTTGTACAG CGACAGGTGT TTGCTGAGAA CAAGGATGAG ATTGCTTTAG TCCTGTTTGG 

 301 TACAGATGGC ACTGACAATC CCCTTTCTGG TGGGGATCAG TATCAGAACA TCACAGTGCA 

 361 CAGACATCTG ATGCTACCAG ATTTTGATTT GCTGGAGGAC ATTGAAAGCA AAATCCAACC 

 421 AGGTTCTCAA CAGGCTGACT TCCTGGATGC ACTAATCGTG AGCATGGATG TGATTCAACA 

 481 TGAAACAATA GGAAAGAAGT TTGAGAAGAG GCATATTGAA ATATTCACTG ACCTCAGCAG 

 541 CCGATTCAGC AAAAGTCAGC TGGATATTAT AATTCATAGC TTGAAGAAAT GTGACATCTC 

 601 CCTGCAATTC TTCTTGCCTT TCTCACTTGG CAAGGAAGAT GGAAGTGGGG ACAGAGGAGA 

 661 TGGCCCCTTT CGCTTAGGTG GCCATGGGCC TTCCTTTCCA CTAAAAGGAA TTACCGAACA 

 721 GCAAAAAGAA GGTCTTGAGA TAGTGAAAAT GGTGATGATA TCTTTAGAAG GTGAAGATGG 

 781 GTTGGATGAA ATTTATTCAT TCAGTGAGAG TCTGAGAAAA CTGTGCGTCT TCAAGAAAAT 

 841 TGAGAGGCAT TCCATTCACT GGCCCTGCCG ACTGACCATT GGCTCCAATT TGTCTATAAG 

 901 GATTGCAGCC TATAAATCGA TTCTACAGGA GAGAGTTAAA AAGACTTGGA CAGTTGTGGA 

 961 TGCAAAAACC CTAAAAAAAG AAGATATACA AAAAGAAACA GTTTATTGCT TAAATGATGA 

1021  TGATGAAACT GAAGTTTTAA AAGAGGATAT TATTCAAGGG TTCCGCTATG GAAGTGATAT 
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1081  AGTTCCTTTC TCTAAAGTGG ATGAGGAACA AATGAAATAT AAATCGGAGG GGAAGTGCTT 

1141  CTCTGTTTTG GGATTTTGTA AATCTTCTCA GGTTCAGAGA AGATTCTTCA TGGGAAATCA 

1201  AGTTCTAAAG GTCTTTGCAG CAAGAGATGA TGAGGCAGCT GCAGTTGCAC TTTCCTCCCT 

1261  GATTCATGCT TTGGATGACT TAGACATGGT GGCCATAGTT CGATATGCTT ATGACAAAAG 

1321  AGCTAATCCT CAAGTCGGCG TGGCTTTTCC TCATATCAAG CATAACTATG AGTGTTTAGT 

1381  GTATGTGCAG CTGCCTTTCA TGGAAGACTT GCGGCAATAC ATGTTTTCAT CCTTGAAAAA 

1441  CAGTAAGAAA TATGCTCCCA CCGAGGCACA GTTGAATGCT GTTGATGCTT TGATTGACTC 

1501  CATGAGCTTG GCAAAGAAAG ATGAGAAGAC AGACACCCTT GAAGACTTGT TTCCAACCAC 

1561  CAAAATCCCA AATCCTCGAT TTCAGAGATT ATTTCAGTGT CTGCTGCACA GAGCTTTACA 

1621  TCCCCGGGAG CCTCTACCCC CAATTCAGCA GCATATTTGG AATATGCTGA ATCCTCCCGC 

1681  TGAGGTGACA ACAAAAAGTC AGATTCCTCT CTCTAAAATA AAGACCCTTT TTCCTCTGAT 

1741  TGAAGCCAAG AAAAAGGATC AAGTGACTGC TCAGGAAATT TTCCAAGACA ACCATGAAGA 

1801  TGGACCTACA GCTAAAAAAT TAAAGACTGA GCAAGGGGGA GCCCACTTCA GCGTCTCCAG 

1861  TCTGGCTGAA GGCAGTGTCA CCTCTGTTGG AAGTGTGAAT CCTGCTGAAA ACTTCCGTGT 

1921  TCTAGTGAAA CAGAAGAAGG CCAGCTTTGA GGAAGCGAGT AACCAGCTCA TAAATCACAT 

1981  CGAACAGTTT TTGGATACTA ATGAAACACC GTATTTTATG AAGAGCATAG ACTGCATCCG 

2041  AGCCTTCCGG GAAGAAGCCA TTAAGTTTTC AGAAGAGCAG CGCTTTAACA ACTTCCTGAA 

2101  AGCCCTTCAA GAGAAAGTGG AAATTAAACA ATTAAATCAT TTCTGGGAAA TTGTTGTCCA 

2161  GGATGGAATT ACTCTGATCA CCAAAGAGGA AGCCTCTGGA AGTTCTGTCA CAGCTGAGGA 

2221  AGCCAAAAAG TTTCTGGCCC CCAAAGACAA ACCAAGTGGA GACACAGCAG CTGTATTTGA 

2281  AGAAGGTGGT GATGTGGACG ATTTATTGGA CATGATATTG GATCCACCGG TCGCCACCAT 

 END KU80 > 

 

pEGFPC3-NBS1 

Sequencing is not complete. Not sequenced part is shown in red colour. 

    1  ATTCTGCAGT CGACGGTACC GCGGGCCCGG CAGGAGGAGA ACCATACAGA CTTTTGACTG 

         < Start NBS1 

   61  GCGTTGAGTA CGTTGTTGGA AGGAAAAACT GTGCCATTCT GATTGAAAAT GATCAGTCGA 

  121  TCAGCCGAAA TCATGCTGTG TTAACTGCTA ACTTTTCTGT AACCAACCTG AGTCAAACAG 

  181  ATGAAATCCC TGTATTGACA TTAAAAGATA ATTCTAAGTA TGGTACCTTT GTTAATGAGG 

  241  AAAAAATGCA GAATGGCTTT TCCCGAACTT TGAAGTCGGG GGATGGTATT ACTTTTGGAG 

  301  TGTTTGGAAG TAAATTCAGA ATAGAGTATG AGCCTTTGGT TGCATGCTCT TCTTGTTTAG 

  361  ATGTCTCTGG GAAAACTGCT TTAAATCAAG CTATATTGCA ACTTGGAGGA TTTACTGTAA 

  421  ACAATTGGAC AGAAGAATGC ACTCACCTTG TCATGGTATC AGTGAAAGTT ACCATTAAAA 

  481  CAATATGTGC ACTCATTTGT GGACGTCCAA TTGTAAAGCC AGAATATTTT ACTGAATTCC 

  541  TGAAAGCAGT TGAGTCCAAG AAGCAGCCTC CACAAATTGA AAGTTTTTAC CCACCTCTTG 

  601  ATGAACCATC TATTGGAAGT AAAAATGTTG ATCTGTCAGG ACGGCAGGAA AGAAAACAAA 

  661  TCTTCAAAGG GAAAACATTT ATATTTTTGA ATGCCAAACA GCATAAGAAA TTGAGTTCCG 

  721  CAGTTGTCTT TGGAGGTGGG GAAGCTAGGT TGATAACAGA AGAGAATGAA GAAGAACATA 

  781  ATTTCTTTTT GGCTCCGGGA ACGTGTGTTG TTGATACAGG AATAACAAAC TCACAGACCT 

  841  TAATTCCTGA CTGTCAGAAG AAATGGATTC AGTCAATAAT GGATATGCTC CAAAGGCAAG 
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  901  GTCTTAGACC TATTCCTGAA GCAGAAATTG GATTGGCGGT GATTTTCATG ACTACAAAGA 

  961  ATTACTGTGA TCCTCAGGGC CATCCCAGTA CAGGATTAAA GACAACAACT CCAGGACCAA 

 1021  GCCTTTCACA AGGCGTGTCA GTTGATGAAA AACTAATGCC AAGCGCCCCA GTGAACACTA 

 1081  CAACATACGT AGCTGACACA GAATCAGAGC AAGCAGATAC ATGGGATTTG AGTGAAAGGC 

 1141  CAAAAGAAAT CAAAGTCTCC AAAATGGAAC AAAAATTCAG AATGCTTTCA CAAGATGCAC 

 1201  CCACTGTAAA GGAGTCCTGC AAAACAAGCT CTAATAATAA TAGTATGGTA TCAAATACTT 

 1261  TGGCTAAGAT GAGAATCCCA AACTATCAGC TTTCACCAAC TAAATTGCCA AGTATAAATA 

 1321  AAAGTAAAGA TAGGGCTTCT CAGCAGCAGC AGACCAACTC CATCAGAAAC TACTTTCAGC 

 1381  CGTCTACCAA AAAAAGGGAA AGGGATGAAG AAAATCAAGA AATGTCTTCA TGCAAATCAG 

 1441  CAAGAATAGA AACGTCTTGT TCTCTTTTAG AACAAACACA ACCTGCTACA CCCTCATTGT 

 1501  GGAAAAATAA GGAGCAGCAT CTATCTGAGA ATGAGCCTGT GGACACAAAC TCAGACAATA 

 1561  ACTTATTTAC AGATACAGAT TTAAAATCTA TTGTGAAAAA TTCTGCCAGT AAATCTCATG 

 1621  CTGCAGAAAA GCTAAGATCA AATAAAAAAA GGGAAATGGA TGATGTGGCC ATAGAAGATG 

 1681  AAGTATTGGA ACAGTTATTC AAGGACACAA AACCAGAGTT AGAAATTGAT GTGAAAGTTC 

 1741  AAAAACAGGA GGAAGATGTC AATGTTAGAA AAAGGCCAAG GATGGATATA GAAACAAATG 

 1801  ACACTTTCAG TGATGAAGCA GTACCAGAAA GTAGCAAAAT ATCTCAAGAA AATGAAATTG 

 1861  GGAAGAAACG TGAACTCAAG GAAGACTCAC TATGGTCAGC TAAAGAAATA TCTAACAATG 

 1921  ACAAACTTCA GGATGATAGT GAGATGCTTC CAAAAAAGCT GTTATTGACT GAATTTAGAT 

 1981  CACTGGTGAT TAAAAACTCT ACTTCCAGAA ATCCATCTGG CATAAATGAT GATTATGGTC 

 2041  AACTAAAAAA TTTCAAGAAA TTCAAAAAGG TCACATATCC TGGAGCAGGA AAACTTCCAC 

 2101  ACATCATTGG AGGATCAGAT CTAATAGCTC ATCATGCTCG AAAGAATACA GAACTAGAAG 

 2161  AGTGGCTAAG GCAGGAAATG GAGGTACAAA ATCAACATGC AAAAGAAGAG TCTCTTGCTG 

 2221  ATGATCTTTT TAGATACAAT CCTTATTTAA AAAGGAGAAG ATAACTGAGG ATTTTAAAAA 

       End NBS1 > 

 2281  GAAGCCATGG GGATCCACCG GATCTAGATA ACTGATCATA ATCAGCCATA CCACA 
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Previous work on the protein-substrate interaction 

The research topic presented in this thesis was my PhD topic since the beginning of 2005. 

In the time period from 2003 to 2005 I was working on a PhD thesis on the topic: 

“Investigation of protein-protein, protein-substrate and protein-DNA interactions by using 

time resolved UV-spectroscopy” supervised also by Prof. K.O.Greulich. The change of the 

research topic in 2005 happened due to the change of the research scope of the institute 

from Institute of Molecular Biotechnology (IMB) to Leibniz Institute for Age research, 

Fritz-Lipmann institute (FLI). In the following section the work done from 2003 to 2005 

will be shortly summarized.  

Investigation of protein-protein, protein-substrate and protein-DNA interactions by using 

time resolved UV-spectroscopy 

The aim of the work was to develop the label free protein microarray analysis by measuring 

changes in intrinsic protein fluorescence 

Detection of protein-protein interactions on microarrays by fluorescent labels is a very 

sensitive method. Nevertheless, label coupling to biological molecules can alter their native 

structure and thus their functionality. Moreover, some rare proteins may be lost during this 

time consuming and expensive labeling process. These disadvantages can be avoided by 

using label free detection techniques. In this short summary the principle of the label free 

optical method for analysis of protein – protein interactions by employing the native 

fluorescence of proteins will be introduced. Main results will be also presented.  

Principle 

Proteins usually contain various amounts of intrinsic fluorophores tyrosine and 

tryptophane. Those two aromatic amino acids have an absorbtion maximum around 280 nm 

and fluorescence from 300 to 350 nm depending on the environment. The fluorescence 

maximum as well as the life time of excited tryptophane highly depends on the 

environment. Alteration in the environment of these two aromatic amino acids may lead to 

variations of the excited state lifetime. Therefore a change of the fluorescence decay may 

be observed, when the target molecule binds to the immobilized protein. Furthermore, an 

increase in fluorescence intensity due to the fluorophores in the captured molecule can also 

provide information on protein-protein binding. 
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The intrinsic fluorophores were excited at around 280 nm by a frequency tripled Ti:Sa laser 

delivering pulses of approx. 200 fs length. The fluorescence decay kinetics of proteins 

immobilized on the slides after incubation with a binding partner or just a buffer were 

measured in a spectral range of 300 – 360 nm by Time Correlated Single Photon Counting 

technique or Streak camera (Hamamatsu). The hydrogel slides used for protein 

immobilization preserve proteins in their native state. Alternatively activated fused silica 

(quartz glass) slides were used. Both supports are distinguished by their low luminescence 

background upon excitation at 280 nm. 

 

 

Figure 6.1 Detection of protein-substrate interaction on protein microarray. A – 

calibration curve of detection of lysozyme molecules. B – Antibody detection 

sensitivity, immobilized lysozyme was incubated with different concentrations of 

specific antibody. C and D – a prolongation of streptavidin tetramer fluorescence decay 

is observed upon biotin binding to immobilized protein. The effect is even stronger 

when the streptavidin tetramer is immobilized with all binding sites being occupied -  E 

and F - An increase in fluorescence intensity (red curve) is observed when lysozyme or 

pepsin antibodies bind to immobilized lysozyme or pepsin respectively (black), while 

the level of unspecific binding is low (green and blue curves).  
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Results 

The Figure 6.1 A and B demonstrate the sensitivity of the method. It was found that 7000 

lysozyme molecules per µm2 (or 0.16 ng/mm2) immobilized on the microarray slide can be 

detected by the intrinsic protein fluorescence. Lysozyme slide incubation with the specific 

lysozyme antibody in different concentrations, shows that the lowest detectable 

concentration of the antibody in solution is 8 nM (Figure 6.1 B). An example of the 

fluorescence changes after this reaction is shown in Figure 6.1 E and F, where dramatic 

increase in fluorescence intensity is observed after the specific lysozyme (E) and pepsin (F) 

antibody binding to the immobilized corresponding antigens. The last example Figure 6.1 C 

and D demonstrates protein interaction with a small molecule. In this case streptavidin, 

immobilized on the slide, was incubated in the solution with biotin. Upon two biotin 

molecule binding to one streptavidin, the fluorescence life time of later is prolonged. Even 

stronger effect is found when the fluorescence decay of immobilized streptavidin in 

complex with four biotin molecules is recorded. 

Conclusion 

This work demonstrates that the time resolved UV spectroscopy is a suitable technique to 

detect binding of antibodies or small sized target molecules to proteins on the microarray. 

Two parameters can be used in this case: the fluorescence intensity increase is observed 

when large molecules containing lot of aromatic amino acids are bound; and changes in 

fluorescence life time can be detected upon binding of the small molecule. 
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