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ABSTRACT 
 
There is a large number of cable terminations 
developed in last few years. Cable failures still 
happen, causing great economic losses, mainly 
because of a cable termination breakdown. For that 
reason any improvement in the cable termination 
construction is of great interest. Cable joints and 
terminations represent the weakest part of a HV cable 
power line. At the places of cable connections and 
endings exterior cover is removed, and the radial 
character of electric field is disturbed. Because of 
high voltage, the inhomogeneous electric field exists 
on those parts of the cable, having the highest 
intensity at the ends of the covers, or screen. There 
are many approaches for solving the problem of 
minimizing electrical field intensity at the places of 
power cable splicing. Application of a metal screen 
and embedded electrodes system for electric field 
control is presented in this paper. 
 

Index Terms - Cable accessories, Maxwell’s 
equations, grounded embedded electrodes, toroidal 
equivalent electrodes, charge density, equivalent 
electrode method, electrical field distribution 

1. INTRODUCTION 

Semi-conducting (SC) materials with non-linear 
behavior are implemented in HV insulating system to 
make as uniform as possible the electric field near the 
end of the cable shield [1, 10-12]. To optimize this 
kind of structure, it is necessary to estimate the 
normal electric field at the SC boundaries with a fine 
accuracy. 

Most common solutions are those based on the 
application of geometrical potential shaping or 
application of a metal screen for electric field control. 
This leads to a homogeneous technology which 
permits to design very compact cable termination. 

An evolutionary approach to the variability 
analysis of nonlinear systems, like cable accessories, 
was presented few years ago [2]. Quasi-static 
approximation of the Maxwell’s equations for electric 
field distribution in cable terminations was applied. 

Conformal mapping (Schwartz-Cristoffel’s trans-
form) and analogies between plan-parallel and axi-
symmetrical electric systems are possible to use for 

analytical determination of electric potential and 
electric field distributions at the non modeled cable 
terminations [5]. 

Some calculation for plan and axi-symmetrical 
systems can be carried out using equivalent electrodes 
method (EEM), and it can be obtained very high 
accuracy of the calculated values [4-8]. This method 
is applicable for systems with different materials 
having different electric permittivity and magnetic 
permeability [3, 9]. 

2. THEORETICAL APPROACH 

One method for reducing strong axial fields at the end 
of cables is based on application of the grounded 
embedded electrode. Position and width of added 
electrodes make influence on strength of electrical 
field at ends of cables. 

The added electrodes are being placed at distances 
pnL  from the end of the coaxial cable outer 

conductor and at distances UEnb  from system’s axes 
(Fig. 1). The length of this electrode is UEnL . 

Due to the symmetry of the problem, by adopting a 
cylindrical system with the z-axis coincident with the 
axis of the conductor, an equivalent two-dimensional 
problem can be studied. It is possible to determine 
potential and electric field in arbitrary chosen point of 
cable end region. 

Charge density per unit surface is constant in the 
distant regions from cable breaks, which are on the 
interior conductor (having radius a ), and on the 
exterior conductor (having radius b ), respectively. 

Appropriate electrical field is: 
 

a
b r

EaE
log

0
hom = ,              (1) 

where 
a
UE =0 , and U  is voltage the coaxial cable is 

supplied with. 
The charge distributions mentioned above do not 

coincide with the real ones, because the boundary 
conditions are not satisfied, so consequently the 
conductors are not of constant potential.  
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Figure 1 Cable termination with N embedded electrodes 

 

Due to this, additional expressions are superposed 
to the previous ones. Equivalent electrodes are used 
as additional elements. Embedded and grounded 
electrodes are replaced by toroidal equivalent 
electrodes. 

Interior conductor’s equivalent electrodes radii 
are: 

        
1

1
1e 4 N

La = , 
2

2
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3

3
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and their centers are: 
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Relative charge is: 

       
aU

qQ n
n

επ
= 22

,                                          (6) 

where nq  denotes the total charge of the n -th 
equivalent electrode and ε  is permittivity of the 
medium. 

Arbitrary chosen embedded electrode (the n-th) is 
replaced by toroidal equivalent electrodes, placed at 
position: 

 ( )
2

2 UEn
pnEnU

l1-nLzz −−== ;  UEnbr = ;   (7) 

where is: 

        
UEn

UEn
UEn N

Ll = ; 
4e

UEn
UEn

la = .           (8) 

 
Number of those electrodes is UENN . 
 
The distance from the end of the broken coaxial 

cable exterior conductor to the n-th embedded 
electrode, pnL , influences to the electrical field and 

potential distribution in cable termination. Axial 
component of electric field is several times higher 
then the radial component. Consequently, in process 
of cable termination constructing, the position of 
embedded electrodes are chosen in such way to 
decrease axial field strength. 

3.  NUMERICAL RESULTS 

The system of 3=N  additional electrodes is 
analyzed in this paper. 

The added electrodes are placed at distances 
aLp =1 , aLp 5.22 =  and aLp 43 =  from the end of 

the outer conductor, and at distances abUE 31 = , 
abUE 42 =  and abUE 53 =  from system’s axes. The 

length of electrodes are aLLL UEUEUE 2321 === .  
Equipotential lines shape is ploted and presented 

in Fig. 2. Electric field intensity is reduced, but not 
enough. 
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Figure 2 Equipotential surfaces at the cable 
termination with 3=N  

continously placed embedded electrodes 
 
The best results are given for next arrangement of 

embedded electrodes (Fig. 3). Equipotential surfaces 
at the cable termination in this case (with three not 
continously placed embedded electrodes) is shown in 
Fig. 3. 
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Figure 3 Equipotential surfaces at the cable 
termination with 3=N  

not continously placed embedded electrodes 
 
Electric field distribution on the first, the second 

and the third embedded electrode for 110 kV cable 
line is shown in Fig. 4. 

The influence of the material properties of 
insulation and the stress control shapes are 
determined, too (Fig. 5). 
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Figure 4 Electric field distribution at embedded 
electrodes of cable termination 

 
Region between interior, 1, and the exterior 

conductor is filled with dielectric ( kε ). Deflector (4) 
is placed in refracting dielectric (3) with very high 
values of permittivity ( refε ). 

 

 
 

Figure 5 Refractive modeled cable termination 
 

 
 

Figure 6  Equipotential curves 
 
Equipotential curves are shown in Fig.6. 

Calculations are done for 35 kV cable, where: 
ab 3= , 10a=δ , ari 3.4= , 01 =iz , azd 41 = , 

azd 82 = , azi 122 = , azc 32= , azi 373 = . 



Values for maximal electric field intensity 
obtained by using the finite element method (FEM) 
and equivalent electrode method are compared. 
Results are shown in Table 1. 

Number of EE placed on electrode surfaces are 
1N , 2N  and 4N , while number of “EE” placed on 

the boundary between electrode and dielectrics are 
1dN , 3dN  and 4dN . 
 

Table 1  Maximal electric field intensity [MV/m]. 
 

1N  2N  4N  1dN  3dN  4dN  ]/[max mMVE  

5 5 5 5 5 5 2.01956757 
10 10 10 10 10 10 2.10375645 
20 20 20 20 20 20 2.69561009 
50 50 20 20 30 30 3.09095675 

100 100 50 30 50 50 3.11760922 
100 100 50 50 70 70 3.19892444 
200 200 100 50 70 70 3.27220331 
200 200 200 100 150 150 3.27992710 

1000 1000 1000 200 500 500 3. 27992711 
FEM  3.27880152 

 
4.  CONCLUSION 

Electric field of highest strength exists at the cable 
end and from exterior side of the second embedded 
grounded electrode. On which of those two points 
exist higher field depends on the embedded electrodes 
positions and sizes. The best results, (the lowest 
values of the electric field) can be obtained when 
those two values are equal. 

Equalizing of the electric field strength at the cable 
break with the fields’ values at the exterior end of the 
second embedded grounded electrode is obtained by 
appropriate choosing of its position. 
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