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Chapter 1

Introduction

In free space, in the absence of any electric charge and current, the classical electrodynamics

formalism results in traveling waves, which represent the transport of energy from one point

to another with the energy density being proportional to the squared of the field amplitude.

In particular, in “vacuum”, i.e., vanishing electromagnetic field amplitude, this formalism

leads to vanishing energy as a trivial consequence. Whereas the quantum electrodynamics

(QED), according to the Heisenberg uncertainty principle, predicts a fluctuating zero-point

or vacuum field even in the absence of any source, although the field vanishes on average.

In other words there is no vacuum in the ordinary sense of nothingness. Vacuum fluctu-

ations of the electromagnetic field is known to be responsible for various phenomena, for

example, spontaneous decay, Lamb shift, and dispersion forces, as pure quantum effects.

The dispersion interactions are known as the interactions between neutral and unpolarized

(but polarizable) objects among atoms1 and macroscopic bodies. These interactions may

be classified into three categories as, the interaction between an atom and a macroscopic

body, the interaction between atoms, and the interaction between macroscopic bodies. In

this work we are going to focus on the first two categories, briefly referred to as single-atom

vdW interaction and two-atom vdW interaction, respectively.

Dispersion interactions play an important role in the understanding of many phenomena,

mostly in the field of surface science, such as surface tension [1, 2], adhesion [3], capillarity

[4, 5], adsorption of inert gas atoms to a solid surface [6, 7, 8], wetting properties of liquids

on such surfaces [8, 9, 10], but also in chemical physics, such as colloidal interactions [1, 11]

and stability [12]. The dispersion interactions also play roles in astrophysics, e.g., the

dust aggregation leading to form a planet around a star is known to be initiated by these

interactions [13]. In biology, the interaction of molecules with cell membranes and cell-

membranes interactions leading to cell adhesion are attributed to dispersion forces [14, 15].

Recently, the ability of a gecko to climb on sheer surfaces has been attributed to dispersion

forces [16].

To present the motivation for fulfilling the present work, let us first give a brief review on

previous theoretical or experimantal studies on the dispersion interactions. Since bringing

1Atoms and molecules are briefly referred to as atoms throughout.
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the complete list of the studies recorded is very cumbersome and unnecessary, we have

selected the ones which we have found to be in close relation to this work.

The vdW interaction potential of two electric2 atoms in free space was first studied by

London in the nonretarded limit, i.e., the atom-atom distances being small compared to

the wave length of the relevant fluctuating field, using second-order perturbation theory

[17]. In this limit, the interaction may be regarded as being the mutual interaction of

the fluctuating electric dipole moments of the atoms. The result is an attractive potential

proportional to l−6 with l being the interatomic distance. Later, the force on a ground-

state electric atom in the presence of a conducting wall was studied by Lennard–Jones [18]

treating the atom-wall interaction as the one between the atomic dipole moment and its

image in the conducting wall. The result is a z−3-dependent attractive potential with z

being the atom-wall separation.

The London formula was extended to arbitrary distances by Casimir and Polder within

the framework of full QED using the normal-mode expansion method and calculating the

vdW potential as the position-dependent shift of the ground-state energy of the system

by fourth-order perturbative calculations [19]. When the interatomic distance exceeds the

nonretarded limit, the retardation effects due to the finite speed of light become pronounced

and the interaction is due to the ground-state fluctuations of both the atomic dipole mo-

ments and the electromagnetic far field. In particular, they found an attractive potential

proportional to l−7 for large separations (retarded limit). Recently, a closely related Casimir

interaction between two magnetoelectric spheres has been studied by means of a scattering

method [20], where the inclusion of higher-order multipoles have been shown to lead to

corrections of the Casimir–Polder result. Casimir and Polder also considered the potential

of an electric atom in the presence of a perfectly conducting wall [19, 21]. Their result is an

attractive potential showing a z−3-dependence in the nonretarded limit, in agreement with

that of Lennard–Jones, and is proportional to z−4 in the retarded limit.

The theory was generalized in many respects, and various factors affecting the interac-

tions were taken into account. It was extended to magnetic atoms by Feinberg and Sucher

[22] who studied the retarded interaction of two electromagnetic atoms based on a calcu-

lation of photon scattering amplitudes. Their results were later reproduced in Ref. [23]

using a zero-point energy technique; It is found that in this limit, the vdW interaction

of two magnetic atoms is again an attractive potential proportional to l−7, while for two

2Here and henceforth, we refer to the “electrically polarizable” (atoms or media) as “electric”. The same

with “(para)magnetically polarizable” for which we use the term “magnetic”.
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atoms of opposed type — one electric and one magnetic — the vdW potential obeys the

same power-law, but repulsive. Later on, Feinberg and Sucher extended their formula to

arbitrary distances [24]. In particular, in the nonretarded limit the interaction potential

of two opposed-type atoms is found to be repulsive and proportional to l−4. The retarded

Feinberg–Sucher potential was extended to atoms possessing crossed electric-magnetic po-

larizabilities on the basis of a duality argument [25]. For the single-atom case, the atom-wall

vdW potential — calculated by Casimir and Polder — in the retarded limit was generalized

to atoms with both electric and magnetic polarizabilities [23], showing that a magnetic atom

is repelled by the conducting wall due to a potential proportional to z−4, in contrast to the

attractive potential with the same power-law for electric atoms.

Although in some situations the effect of material environment on the dispersion in-

teractions can be disregarded or approximately equated to the effect of conducting walls

(e.g., metal surfaces), when recalculating the nonretarded atom-wall potential in Ref. [26]

it was pointed out that a metal surface can be treated as a perfect conductor only when

slowly moving charges are dealt with, but in the case of sufficiently fast rotating dipoles a

metal behaves like a dielectric body rather than an ideally polarizable structure. Further,

to develop the theory to more realistic cases the effect of arbitrarily shaped media on the

vacuum fluctuations must be taken into account. To this aim, the normal-mode QED (on

which the early studies were based), which requires specifying the geometry of the system

at the very beginning of the calculation, is not a suitable method since it is not applicable in

the presence of absorption and it has not been fully developed for bodies owning magnetic

properties. Moreover, extending the normal-mode QED to various geometries is extremely

difficult, even for simple geometries. The single-atom vdW potential of an electric atom in

the presence of an electric half-space was first given in Ref. [27] in the nonretarded limit,

based on the S-matrix approach. A geometry-independent formula expressing the single-

and two-atom vdW potentials of electric atoms in the presence of electric media was first

obtained in Ref. [28, 29] based on linear-response theory, in terms of the (classical) Green

tensor of the macroscopic Maxwell equations and the polarizabilities of the atoms. Later,

the medium-assisted vdW interaction potential between two electric atoms was given by

treating the effect of the bodies semiclassically in Refs. [30, 31, 32], and was applied to the

case of two atoms placed between two planar perfectly conducting plates [31]. The nonre-

tarded single- and two-atom potentials in the presence of an electric half-space were later

derived using the method of image charges [33] and by linear-response formalism [34]. Other
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scenarios such as two atoms embedded in bulk magnetoelectric [35] or non-local electric ma-

terial [36] or placed in front of a metallic [37, 38, 39] or within a planar, electric, three-layer

geometry [40], or two anisotropic atoms in front of an electric half-space or within a planar

electric cavity [34] have also been studied.

The efforts in extending the theory was not confined to ground-state atoms and zero tem-

perature. The single-atom vdW force on an electric atom in an arbitrary energy-eigenstate

in the presence of an electric media was calculated making use of linear-response formalism

[41]. Within the framework of macroscopic QED, the dynamics of the single-atom vdW

in the presence of magnetoelectric media, abandoning the potential approach, was studied

in Ref. [42] via calculating the Lorentz force on an electric atom in an arbitrary energy-

eigenstate. The case where an excited atom is in a strong coupling with the electromagnetic

field, which may be realized when an excited atom is placed within a cavity or another

resonator-like geometry and results in a periodic exchange of excitation between the atom

and the field (Rabi oscillations), is studied in Ref. [43]. In studying the effect of finite

temperatures, thermal photons have been shown to result in the same power-law as in the

zero temperature for the single-atom vdW potential in the presence of a perfectly conduct-

ing wall [44], whereas regarding to the two-atom vdW potential, it has been shown that

the temperature effects mask the retardation effects as soon as the interatomic separation

exceeds the wavelength of the dominant photons, and lead to a change of the free-space

result from a l−7- to a l−6-dependence [44, 45, 46, 47, 48]. The situation of two electric

atoms between two perfectly conducting plates was later reconsidered taking into account

finite temperature effects [49]. The single-atom vdW potential of an excited magnetic atom

placed inside a planar cavity for all distance regimes has been studied invoking a full QED

treatment [50]. Further studies on the two-atom vdW interaction have included the cases

of one [51] or both atoms [52, 53] being excited, leading to potentials that vary as r−6 and

r−2 in the nonretarded and retarded limits, respectively. Modifications of the two-atom

interaction due to external fields have been shown to lead to a potential varying as r−3 in

the nonretarded limit when the applied field is unidirectional [54].

In the three-atom case, a non-additive term prevents the potential from just being the

sum of three pairwise contributions, as the presence of each atom modifies the atomic

dipole fluctuations in the others; the three-atom dispersion potential in free space was first

calculated in the nonretarded limit by pursuing the perturbation calculation to the third

order [55, 56, 57] and then extended to arbitrary interatomic distances by using sixth-order
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perturbation calculation [58], where the potentials were seen to depend on the relative

positions of the atoms in a rather complicated way. A general formula for the non-additive

N -atom vdW potential in free space was derived by summing up the response of each atom

to the quantized field caused by the other atoms [59] and by calculating the difference in the

zero-point energy of the electromagnetic field of a large cavity with and without the atoms

[60]. Later on, the nonretarded three-atom vdW potential was derived for the case with one

atom being excited [61].

For atoms that are embedded in an optically dense host body or medium, the local

electromagnetic field experienced by the atoms differs from the macroscopic one. Hence,

the theory of dispersion interactions must be modified by taking local-field corrections into

account. One approach to this problem is the real-cavity model, where one assumes that

each guest atom is surrounded by a small, empty, spherical cavity [62]. It has been used

to study the local-field corrections to the spontaneous decay rate of an atom embedded

in an arrangement of magnetoelectric bodies and/or media [63], and was recently applied

to obtain local-field corrected formulas for single- and two-atom vdW potentials of electric

atoms within such geometries [64]. Local-field corrections to the vdW potentials have also

been addressed in Ref. [65].

On the experimental side, the single-atom vdW interaction was traced first time by

experiments on the deflexion of a beam of ground-state atoms passing near a dielectric

or metal surface [66]. It was found that the attraction vdW force is proportional to z−4

for sufficiently small atom-body separations, in agreement with the theoretical results [18,

19, 21]. Similar experiments on an atomic beam passing through two conducting walls

showed a strong enhancement of the vdW potential for excited atoms [67], and later it was

found that for large atom-plate separations the vdW force on ground-state atoms become

proportional to z−5 [68] in agreement with the findings of Casimir and Polder [19, 21]. Later,

by experiments on selective reflection spectroscopy of optically active atoms near a dielectric

surface, the influence of the surface to atomic spectra recorded was attributed to the vdW

interaction [69]. The interaction between a single atom and a body has also been explored

by means of detecting the intensity of an atomic beam transmitted through a parallel-plate

cavity [70], direct force measurement using atomic-mirror techniques [71, 72], measuring

the intensity of a diffracted atomic beam from a transmission-grating [73], making use of

quantum reflection from a solid surface at nonretarded [74] and retarded [75, 76] atom–

surface separations, or determining their effect on the collective oscillation frequency of the
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magnetically trapped atoms [77]. Observations of interatomic vdW interactions based on a

determination of the scattering cross sections in the atomic collisions between two ground-

state atomic beams [78], between an atomic beam and the atoms of a stationary target gas

[79, 80], and between a beam of ground-state atoms and a beam of excited atoms [81] have

been reported.

As mentioned earlier, in obtaining general results for dispersion interactions, the methods

based on linear-response theory overcame the problems which normal-mode QED encounters

with, e.g., being applicable for various geometries. On the other hand, since the linear-

response approach is not based on an explicit quantization scheme it is less rigorous than

the normal-mode QED. This work aims to generalize the medium-assisted single-atom [28,

29, 42, 82] and two-atom vdW potentials found for electric atoms via linear-response theory

[28, 29] or semiclassical treatments [30], within the framework of macroscopic QED to the

cases where the atoms possess both electric and magnetic polarizabilities.

In chapter 2 we present the quantization scheme for a system consisting of macroscopic

magnetoelectric media, electromagnetic field, and charged particles, starting with macro-

scopic Maxwell equations. By grouping the charged particles into neutral atoms and rewrit-

ing the Hamiltonian in the multipolar coupling form, we facilitate expressing the atom-field

interaction Hamiltonian in terms of electric and magnetic dipole moments of the atoms us-

ing the long-wavelength approximation. In order to describe the paramagnetic properties of

the atoms correctly, the spin of the charged particles are included in the formalism [HS5].

In chapter 3 the formula of the vdW potential of a single ground-state atom in the

presence of an arbitrary arrangement of magnetoelectric media — previously found for

electric atoms — is generalized to atoms with both electric and magnetic polarizabilities,

using leading (second) order perturbation theory. The local-field corrections to the formula

given in Refs. [64, 65] is also generalized to the case of magnetic atoms [HS5]. The formula is

applied to obtain the vdW potential of an atom in the presence of a planar magnetoelectric

multilayer system or in the presence of a homogeneous magnetoelectric sphere.

The generalization of the formula of interatomic vdW potential between two ground-

state atoms, to atoms having both electric and magnetic polarizabilities is performed using

fourth-order perturbation theory in chapter 4 [HS1, HS5], where the local-field corrected

formulae for the cases where one or both atoms are embedded in host media are also gener-

alized to paramagnetic atoms [HS5]. The formula is applied to obtain the vdW interaction

between two atoms embedded in a bulk magnetoelectric media [HS1, HS5], two atoms in
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the presence of a planar magnetoelectric multilayer [HS1], and two atoms in the presence

of a homogeneous magnetoelectric sphere [HS4, HS5]. In the multilayer example, particular

cases of a perfectly reflecting plate and a thick magnetoelectric plate have been explored

with special emphasis on the limiting cases of retarded and nonretarded and specified ar-

rangements of the atoms with respect to the body. To illustrate the effect of the media on

the interatomic potentials, numerical results are presented. The body-induced reduction or

enhancement in the nonretarded vdW interaction potential (shown by numerical results) is,

qualitatively, explained by the method of image charges [HS1, HS3, HS4].

Summary of the main results of this work is given in chapter 5 together with some

unaddressed questions as possible subjects of further studies. Long calculations are shifted

to separate appendices for the sake of transparency.



Chapter 2

Macroscopic QED in linear media

In studying the dynamics of a system consisting of matter and the electromagnetic field, due

to the vast number of the atoms forming the bodies, it is impossible to find the analtytical

dynamic properties of each individual atom in such a complex system. However, in cases

where the dynamics of the constituents of (continuum) bodies are not of interest, it is

useful to devide the matter into a background part and an active part whose dynamics need

to be treated more explicitly, e.g., discrete atoms (if present). By means of an averaging

procedure, the problem can thus be reduced to the study of the dynamics of each continuum

body, the electromagnetic field, and the atoms. A suitable averaging leads to the well-known

Maxwell’s macroscopic equations where the media enter into account via their constitutive

relations.

2.1 Basic formalism

In the frame of macroscopic electrodynamics, the electromagnetic phenomena are governed

by the Maxwell equations

∇ ·D(r) = ρ(r), (2.1)

∇×E(r) = − ∂

∂t
B(r), (2.2)

∇ ·B(r) = 0, (2.3)

∇×H(r) = j(r) +
∂

∂t
D(r) (2.4)

where ρ and j are free1 electric-charge and current densities, respectively, D and B are

displacement and (magnetic) induction fields related to the electric field E and magnetic

field H as follows

D(r) = ε0E(r) + P(r), (2.5)

B(r) = µ0[H(r) + M(r)], (2.6)

with P and M being, respectively, the electric and magnetic polarization of the medium.

1In the study of the dispersion interactions, which is the focus of this work, the atoms among the discrete

ones and the ones forming the macroscopic bodies have no net charges, so that the free electric-charge density

refers to macroscopic excess charges.
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Assuming that the response of the media to the electromagnetic field is linear, local,

and isotropic, the general relations between the polarizations and the electromagnetic field

being in agreement with the causality and fluctuation-dissipation theorem [83] are

P(r, t) = ε0

∫ ∞

0

dτ χe(r, τ)E(r, t−τ) + PN(r, t), (2.7)

M(r, t) =
1

µ0

∫ ∞

0

dτ χm(r, τ)B(r, t−τ) + MN(r, t), (2.8)

where χe and χm are given as

χe(r, t) =

∫ ∞

−∞

dω[ε(r, ω)− 1]e−iωt , (2.9)

χm(r, t) =

∫ ∞

−∞

dω

[

1− 1

µ(r, ω)

]

e−iωt (2.10)

with ε(r, ω) and µ(r, ω) being, respectively, the position-dependent complex-valued (rela-

tive) electric permittivity and magnetic permeability of the media, with real and imagi-

nary parts — responsible for dispersion and absorption [Im ε(r, ω)> 0, Imµ(r, ω)> 0; ∀ r]
— satisfying the Kramers-Kronig relations in accordance with causality [84]. In the cases

where empty-space regions are involved, the limits Im ε(r, ω)→ 0 and Imµ(r, ω)→ 0 may be

performed after taking the expectation values and having the valume integrals performed

(if any). This way we allow the electromagnetic filed quantization scheme to be valid

for arbitrary arrangemnt of linear, causal magnetoelectric bodies with Im ε(r, ω) > 0 and

Imµ(r, ω)> 0. In Eqs. (2.7) and (2.8), PN and MN are, respectively, the noise polarization

and noise magnetization associated with the absorption. Substituting Eqs. (2.7) and (2.8)

into Eqs. (2.5) and (2.6) together with Fourier transformation, leads to the constitutive

relations

D(r, ω) = ε0ε(r, ω)E(r, ω) + PN(r, ω), (2.11)

B(r, ω) = µ0µ(r, ω)[H(r, ω) + MN (r, ω)], (2.12)

where O( r, ω) denotes the field components of O(r) in the frequency domain

O(r) =

∫ ∞

0

dωO(r, ω) + c.c. . (2.13)

Using Eqs. (2.11) and (2.12), the Maxwell equations in the case of vanishing free electric

charge and current densities are found to be

ε0∇ · ε(r, ω)E(r, ω) = ρ
N

(r, ω), (2.14)

∇×E(r, ω) = iωµ0µ(r, ω)[H(r, ω) + MN(r, ω)], (2.15)
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∇ ·B(r, ω) = 0, (2.16)

∇×H(r, ω) = −iω[ε0ε(r, ω)E(r, ω) + PN(r, ω)], (2.17)

where the noise charge density ρN is defined by

ρ
N

(r, ω) = −∇ ·PN(r, ω). (2.18)

By combining Eqs. (2.15) and (2.17) it is seen that E( r, ω) obeys the differential equation

∇× κ(r, ω)∇× E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = iωµ0jN (r, ω), (2.19)

[κ(r, ω)= 1/µ(r, ω)] with jN being the noise current density introduced as

j
N

(r, ω) = −iωPN(r, ω) + ∇×MN (r, ω), (2.20)

satisfying the continuity equation

∇ · j
N

(r, ω)− iωρ
N

(r, ω) = 0. (2.21)

Representing the solution of Eq. (2.19) in the form suggested by the method of Green

function

E(r, ω) = iωµ0

∫

d3rG(r, r′, ω) · j
N

(r′, ω), (2.22)

it is seen that the Green tensor G(r, r′, ω) has to obey the differential equation

∇× κ(r, ω)∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = Iδ(r− r′) (2.23)

[I is unit tensor] together with the boundary condition at infinity

G(r, r′, ω)→ 0 for |r− r′| → ∞. (2.24)

Note that the electromagnetic and geometric properties of the medium are fully incorporated

in the Green tensor via the space- and frequency-dependent permittivity and permeability.

In addition, the Green tensor is uniquely defined by Eq. (2.23), analytic in the upper half

of the complex-frequency plane, and has the following properties [85]

G∗(r, r′, ω) = G(r, r′,−ω∗), (2.25)

G(r, r′, ω) = GT(r′, r, ω), (2.26)

∫

d3s

{

Imκ(s, ω)
[

G(r, s, ω)×←−∇s

]

·
[

∇s ×G∗(s, r′, ω)
]

+
ω2

c2
Imε(s, ω) G(r, s, ω) ·G∗(s, r′, ω)

}

= Im G(r, r′, ω), (2.27)

Where the superscript T denotes transposition and
←−
∇ introduces differentiation to the left.
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2.2 Electromagnetic field Hamiltonian

So far, the electromagnetic field is expressed in terms of the continuous sets of complex-

valued noise polarization PN(r, ω) and noise magnetization MN(r, ω), which can therefore

be considered as playing the role of dynamical variables of the overall system consisting of

the electromagnetic field and the medium including the dissipative system. For later uses,

it is convenient to split off some factors from the noise fields to define the fundamental

dynamical variables fλ(r, ω) (λ∈{e,m}) according to

PN(r, ω) = i

√

~ε0

π
Imε(r, ω)fe(r, ω), (2.28)

MN(r, ω) =

√

− ~

πµ0
Imκ(r, ω)fm(r, ω). (2.29)

Now, the transition from classical to quantum theory can be performed by the replace-

ment of the classical fields fλ(r, ω) and f∗λ(r, ω) by the operator-valued bosonic fields f̂λ(r,

ω) and f̂
†
λ(r, ω) which are associated with the excitations of the composed system of the

electromagnetic field and the magnetoelectric media and have the following commutation

relations

[

f̂λi(r, ω), f̂ †
λ′i′(r

′, ω′)
]

= δλλ′δii′δ(r− r′)δ(ω − ω′), (2.30)
[

f̂λi(r, ω), f̂λ′i′(r
′, ω′)

]

= 0 (2.31)

(for a similar treatment in quantization scheme see also [86]). The medium-assisted electric

field expressed in terms of the bosonic field operators can be obtained by substituting

Eq. (2.20) together with Eqs. (2.28) and (2.29) into Eq. (2.22),

Ê(r) =
∑

λ=e,m

∫

d3r′
∫ ∞

0

dωGλ(r, r
′, ω) · f̂λ(r′, ω) +H.c., (2.32)

where

Ge(r, r
′, ω) = i

ω2

c2

√

~

πε0

Imε(r′, ω)G(r, r′, ω), (2.33)

Gm(r, r′, ω) = −iω
c

√

− ~

πε0

Imκ(r′, ω)
[

G(r, r′, ω)×←−∇′
]

. (2.34)

Note that the integral relation (2.27) can be rewritten as

∑

λ=e,m

∫

d3sGλ(r, s, ω) ·G∗T
λ (r′, s, ω) =

~µ0

π
ω2ImG(r, r′, ω). (2.35)

To express all other relevant fields in terms of the dynamical variables, one can make

use of the Maxwell equations (2.14)–(2.17) and the constitutive relations (2.11) and (2.12)
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which leads, for example, for the induction field to

B̂(r) =
∑

λ=e,m

∫

d3r′
∫ ∞

0

dω

iω
∇×Gλ(r, r

′, ω) · f̂λ(r′, ω) +H.c. . (2.36)

The correct time dependence of the electromagnetic field, fulfilling the Maxwell equa-

tions (2.2) and (2.4) with vanishing current density can be generated from the Heisenberg

equation of motion
˙̂O =

1

i~
[Ô, Ĥ], (2.37)

by introducing the Hamiltonian of the medium-assisted electromagnetic field as

ĤF =
∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ω f̂
†
λ(r, ω) · f̂λ(r, ω). (2.38)

It should be noted that the formalism presented here is based on the assumption of locally

responding media that has been taken into account, in frequency domain, via the constitutive

relations (2.11) and (2.12). A more general formalism is given in Ref. [87] with taking into

account the spatial dispersion of the media response to the electromagnetic field, from

which, our formalism may be recovered for locally responding media. However we restrict

our considerations to the local media throughout.

Comparing (2.38) to the Hamiltonian of a set of harmonic oscillators, it turns out that

the ground state of the medium-assisted electromagnetic field (vacuum state |{0}〉) can be

defined by

f̂λ(r, ω)|{0}〉 = 0, ∀λ, r, ω (2.39)

and the Hilbert space can be spanned by the Fock states obtained by repeated application

of the creation operator f̂
†
λ(r, ω) to this vacuum state. In particular, the single quantum

excitation and two quanta excitation of the medium-assisted electromagnetic field that will

be involved in the calculation of the vdW potentials are given by

|1λ(r, ω)〉 = f̂
†
λ(r, ω)|{0}〉, (2.40)

|1λ(r, ω), 1λ′(r′, ω′)〉 =
1√
2
f̂
†
λ(r, ω)f̂ †λ′(r

′, ω′)|{0}〉. (2.41)

It is worth mentioninig that the introduction of noise variables in Eqs. (2.7) and (2.8) which is

due to the lack of precise knowledge of the field sources, differ from the inclusion of the noice

operators in QED formalism, where fluctuations are always present due to the Heisenberg

uncertainty principle. In particular, classical electromagnetic vacuum does not fluctuate

and results in a vanishing field, while in quantum vacuum state, which is an eigenstate of
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the Hamiltonian (although not the electric or magnetic field operators), the electric field

does not achieve a definite value and is found to have nonzero dispersion, determined by

the imaginary part of the Green tensor

〈{0}|
[

∆Ê(r)
]2|{0}〉 = 〈{0}|Ê2(r)|{0}〉 − 〈{0}|Ê(r)|{0}〉

=
~µ0

π

∫ ∞

0

dω ω2Tr[ImG(r, r, ω)], (2.42)

and fluctuates around its vanishing mean value

〈{0}|Ê(r)|{0}〉 = 0. (2.43)

In order to study the interaction between the electromagnetic field and charged particles

it is useful to introduce the scalar potential ϕ̂ and vector potential Â related to the electric

and induction fields as

Ê(r) = −∇ϕ̂(r)− ˙̂
A(r), (2.44)

B̂(r) = ∇× Â(r). (2.45)

Obviously, the potentials are not unique and can be chosen in different ways. In Coulomb

gauge which is introduced upon suggesting a solenoidal vector potential, ∇·Â(r) = 0, the

first and second terms on the right-hand side of Eq. (2.44) correspond to the longitudinal

(||) and transverse (⊥) parts of the electric field where

v||(⊥)(r) =

∫

d3r′δ||(⊥)(r− r′) · v(r) (2.46)

with

δ||(r) = −∇∇

( 1

4πr

)

, δ⊥(r) = δ(r)I − δ||(r) (2.47)

for an arbitrary vector field v(r). Therefore, from Eq. (2.44), ∇ϕ̂ and Â may be expressed

in terms of bosonic variables f̂λ and f̂
†
λ

∇ϕ̂(r) = −
∑

λ=e,m

∫

d3r′
∫ ∞

0

dω ||Gλ(r, r
′ω).f̂λ(r

′, ω) +H.c., (2.48)

Â(r) =
∑

λ=e,m

∫

d3r′
∫ ∞

0

dω

iω
⊥Gλ(r, r

′ω).f̂λ(r
′, ω) +H.c., (2.49)

where

||(⊥)T (r, r′) =

∫

d3s δ||(⊥)(r− s) · T (s, r′) (2.50)

for an arbitrary tensor field T (r, r′).
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2.3 Atomic Hamiltonian

The dynamics of a system consisted of charged particles in the absence of external electro-

magnetic field, is governed by the Hamiltonian

Ĥp =
∑

α

p̂2
α

2mα
+

1

8πε0

∑

α

∑

β 6=α

qαqβ
|r̂α − r̂β|

, (2.51)

where qα and mα are the electric charge and mass of the particle α, and r̂α and p̂α are its

(operator-valued) position and canonical momentum having following commutation relations

[r̂αi, r̂βj] = [p̂αi, p̂βj ] = 0,

[r̂αi, p̂βj] = i~δijδαβ . (2.52)

In Eq. (2.51) the first term on the right-hand side is the kinetic energy of the system.

Although in the present case, the canonical momentum p̂α is identical to the kinetic mo-

mentum mα
˙̂rα, this identity does not apply in general. The second term on the right-hand

side is the electrostatic potential energy of the system and can be written in terms of the

charge density and the Coulomb potential of the system. In particular, in the case where

the particles may be grouped into atoms it is useful to introduce center-of-mass and relative

coordinates

r̂A =
∑

α∈A

mα

mA

r̂α, ˆ̄rα = r̂α − r̂A (2.53)

for an arbitrary atom A (mA =
∑

α∈Amα) and associated canonical momentums

p̂A =
∑

α∈A

p̂α, ˆ̄pα = p̂α −
mα

mA

p̂A . (2.54)

This provides rewriting Eq. (2.51) in the form

Ĥp =
∑

A

ĤA +
1

2

∑

A

∑

B 6=A

ĤAB, (2.55)

where ĤA and ĤAB are, respectively, the atomic and interatomic Hamiltonians given as

ĤA =
p̂2

A

2mA
+

∑

α∈A

ˆ̄p2
α

2mα
+

1

2

∫

d3rρ̂A(r)ϕ̂A(r) =
p̂2

A

2mA
+

∑

k

EA
k |kA〉〈kA| (2.56)

with EA
n and |nA〉 denoting the eigenenergies and energy eigenstates of atomic internal

Hamiltonian, ρ̂A and ϕ̂A being, respectively, the charge density and the Coulomb potential

of atom A

ρ̂A(r) =
∑

α∈A

qαδ(r− r̂α), (2.57)



Chapter 2. Macroscopic QED in linear media 15

ϕ̂A(r) =
1

4πε0

∫

d3r′
ρ̂A(r′)

|r− r′| =
1

4πε0

∑

α∈A

qα
|r− r̂α|

, (2.58)

and

ĤAB =

∫

d3rρ̂A(r)ϕ̂B(r) =
1

4πε0

∑

α∈A

∑

β∈B

qαqβ
|r̂α − r̂β|

. (2.59)

It can be inferred easily that the Coulomb potential and the charge density obey the Poisson

equation

∇2ϕ̂A(r) = − ρ̂A(r)

ε0
, (2.60)

and the continuity relation

˙̂ρA(r) + ∇ · ĵA(r) = 0, (2.61)

where ĵA denotes the atomic current density given by

ĵA(r) =
∑

α∈A

qα
2

[

˙̂rαδ(r− r̂α) + δ(r− r̂α) ˙̂rα

]

. (2.62)

Further atomic quantities of interest are the atomic polarization and magnetization

P̂A(r) =
∑

α∈A

qαˆ̄rα

∫ 1

0

dσδ(r− r̂A − σˆ̄rα), (2.63)

M̂A(r) =
∑

α∈A

qα
2

∫ 1

0

dσ σ
[

δ(r− r̂A − σˆ̄rα)ˆ̄rα × ˙̄̂rα − ˙̄̂rα × ˆ̄rαδ(r− r̂A − σˆ̄rα)
]

. (2.64)

As a consequence of these definitions, the atomic charge and current densities can be ex-

pressed in terms of the atomic polarization and magnetization as follows:

ρ̂A(r) = −∇ · P̂A(r), (2.65)

ĵA(r) =
˙̂
PA(r) + ∇× M̂A(r) +

1

2
∇×

[

P̂A(r)× ˙̂rA − ˙̂rA × P̂A(r)
]

, (2.66)

where the third term in Eq. (2.66) is the Röntgen current density [88, 89] due to the center-

of-mass motion of the atom.

2.4 Atom-field interaction Hamiltonian

For a system consisting of atoms and a medium-assisted electromagnetic field the Hamil-

tonian can be obtained by summing HF and Hp and taking into account the atom-field

interaction Hamiltonian. As it is discussed extensively in Refs. [85, 42, 90] this can be done

by adding the Coulomb interaction between atomic charges and the medium-assisted elctro-

magnetic field and replacing p̂α with p̂α − qαÂ(r̂α) (in Coulomb gauge) according to the
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principle of minimal atom-field coupling. In order to describe correctly the paramagnetic

properties of the atoms, it is crucial to take into consideration the spins of their constituents.

Therefore, for each particle α, in addition to mass mα and charge qα, we denote its spin

by ŝα that gives rise to a magnetic dipole moment γαŝα with γα being the gyromagnetic

ratio of the particle [γe = −ege/(2me) for electrons with −e: electron charge; ge≃2, electric

g-factor; me: electron mass]. Hence, for the abovementioned system the Hamiltonian has

to include a Pauli term describing the interaction between the spins and the induction field

[HS5], viz.,

Ĥ =
∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ω f̂
†
λ(r, ω) · f̂λ(r, ω) +

∑

A

∑

α∈A

1

2mα

[

p̂α − qαÂ(r̂α)
]2

+
∑

A

∫

d3rρ̂A(r)ϕ̂(r) +
1

2

∑

A

∑

B

∫

d3rρ̂A(r)ϕ̂B(r)−
∑

A

∑

α∈A

γα ŝα · B̂(rα).

(2.67)

With ĤF , ĤA, and ĤAB given by Eqs. (2.38), (2.56), and (2.59), respectively, Eq. (2.67) can

be written as

Ĥ = ĤF +
∑

A

ĤA +
1

2

∑

A

∑

B 6=A

ĤAB +
∑

A

ĤAF , (2.68)

where

ĤAF =

∫

d3rρ̂A(r)ϕ̂(r)−
∑

α∈A

qα
mα

p̂α · Â(r̂α) +
∑

α∈A

q2
α

2mα
Â2(r̂α)−

∑

α∈A

γα ŝα · B̂(r̂α) (2.69)

is the atom-field interaction Hamiltonian. The last term on the right-hand side of (2.69) is

the newly introduced Pauli interaction [HS5].

The electric and displacement fields are not affected by the spin of the particles but by

their charges, so that the total fields are given by

Ê(r) = Ê(r)−
∑

A

∇ϕ̂A(r), (2.70)

D̂(r) = D̂(r)− ε0

∑

A

∇ϕ̂A(r), (2.71)

while the total induction and magnetic fields remain equal to the medium-assisted ones

B̂(r) = B̂(r), Ĥ(r) = Ĥ(r). (2.72)

Further, the atomic current density given by Eq. (2.62) for spinless particles, in the presence

of spin has to be generalized to

ĵA(r) =
∑

α∈A

qα
2

[

˙̂rαδ(r− r̂α) + δ(r− r̂α) ˙̂rα

]

−
∑

α∈A

γαŝα ×∇δ(r− r̂α). (2.73)
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Note that

mα
˙̂rα = p̂α − qαÂ(r̂α), (2.74)

as it can be verified easily by using the Heisenberg equation of motion for r̂α. Since the

current density associated with the spin is transverse, the continuity relation (2.61) remains

valid. Moreover, the atomic charge and current densities are still related to the atomic

polarization and magnetization via Eqs. (2.65) and (2.66) with the atomic magnetization

being modified as

M̂A(r) =
∑

α∈A

qα
2

∫ 1

0

dσ σ
[

δ(r− r̂A − σˆ̄rα)ˆ̄rα × ˙̄̂rα − ˙̄̂rα × ˆ̄rαδ(r− r̂A − σˆ̄rα)
]

+
∑

α∈A

γαŝαδ(r− r̂α). (2.75)

The consistency of the Hamiltonian (2.67) can be verified by showing that it leads to correct

time-dependence for the electromagnetic field

∇× Ê(r) = − ∂

∂t
B̂(r), (2.76)

∇× Ĥ(r) =
∑

A

ĵA(r) +
∂

∂t
D̂(r) (2.77)

and the Newton equations of motion for the particles

mα
¨̂rα = qαÊ(r̂α) +

qα
2

[

˙̂rα × B̂(r̂α)− B̂(r̂α)× ˙̂rα

]

+ γα∇α

[

ŝα · B̂(r̂α)
]

(2.78)

(Appendix A). In Eq. (2.78) the first two term on the right-hand side represent the Lorentz

force on the charged particles and the third term is the Zeeman force resulting from the

action of the induction field on the particle spins.

In most cases of interest the atoms can be assumed to be small compared to the wave

length of the relevant electromagnetic field and hence it is useful to employ center-of-mass

and relative coordinates (2.53) and apply the long wave-length approximation. This can be

done by performing a Taylor expansion for the atom-field interaction Hamiltonian (2.69)

in the center-of-mass of the atoms and keeping the leading-order terms. For neutral atoms

(
∑

α∈A qα =0) this leads to [42, HS5]

ĤAF = −d̂A · Ê||(r̂A)−
∑

α∈A

qα
mα

p̂α · Â(r̂A) +
∑

α∈A

q2
α

2mα
Â2(r̂A)−

∑

α∈A

γα ŝα · B̂(r̂A), (2.79)

where

d̂A =
∑

α∈A

qαr̂α =
∑

α∈A

qαˆ̄rα (2.80)
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is the electric dipole moment of the atom which emerges from the atomic polarization

(2.63) in this approximation. In analogy to Eq. (2.80), one can introduce the magnetic

dipole moment of the atom arising from Eq. (2.64) as

m̂A =
∑

α∈A

[qα
2

r̂α × ˙̂rα + γαŝα

]

=
∑

α∈A

[qα
2

ˆ̄rα × ˙̄̂rα + γαŝα

]

. (2.81)

Due to the large number of atom-field and atom-atom interaction terms, the Hamiltonian

(2.67) is not very practical for calculations. It can be represented in a proper form, known

as multipolar-coupling Hamiltonian, by applying the Power–Zienau–Woolley transformation

[91, 92] on the variables, which is defined according to

Ô′ = ÛÔÛ † (2.82)

with Û being the unitary operator defined as

Û = exp

[

i

~

∑

A

∫

d3rP̂A(r) · Â(r)

]

. (2.83)

In Eqs. (2.32), (2.36), (2.48), and (2.49) the fields are given as linear expressions in terms

of the fundamental variables f̂λ and f̂
†
λ and hence the transformed fields will have the same

form but in terms of the transformed variables f̂ ′λ and f̂ ′λ
†. Using (2.82) together with (2.83)

and exploiting the Baker-Hausdorff lemma

eŜÔe−Ŝ = Ô + [Ŝ, Ô] +
1

2!
[Ŝ, [Ŝ, Ô]] + . . . , (2.84)

it will be found that

f̂ ′λ(r, ω) = f̂λ(r, ω) +
1

~ω

∑

A

∫

d3r′P̂⊥
A (r′) ·G∗

λ(r
′, r, ω). (2.85)

The multipolar Hamiltonian can be obtained by rewriting the Hamiltonian (2.67) in

terms of the transformed variables. In particular, for neutral atoms it is found to be (cf.

Ref. [42])

Ĥ =
∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ω f̂
†
λ
′(r, ω) · f̂ ′λ(r, ω) +

∑

A

∑

α∈A

1

2mα

[

p̂′
α +

∫

d3rΞ̂′
α × B̂′(r)

]2

−
∑

A

∫

d3rP̂′
A(r) · Ê′(r) +

1

2ε0

∑

A

∑

B

∫

d3rP̂′
A(r) · P̂′

B(r)−
∑

A

∑

α∈A

γα ŝ′α · B̂′(rα),

(2.86)

where

Ξ̂′
α(r) = qαˆ̄r′α

∫ 1

0

dσ σδ(r−r̂′A−σˆ̄r′α)−mα

mA

∑

β∈A

qβˆ̄r
′
β

∫ 1

0

dσ σδ(r−r̂′A−σˆ̄r′α)+
mα

mA
P̂′

A(r) (2.87)
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and the transformed electric field is found to have the physical meaning of a displacement

field with respect to the atomic polarizations

Ê′(r) = Ê(r) +
∑

A

P̂⊥
A (r)

ε0

. (2.88)

Note that since the quantities ˆ̄rα, ŝα, P̂A and Â commute with both P̂A and Â, they remain

unchanged under the transformation (2.82)

ˆ̄r′α = ˆ̄rα, r̂′A = r̂A, ŝ′α = ŝα, P̂′
A(r) = P̂A(r), B̂′(r) = B̂(r). (2.89)

On the right-hand side of Eq. (2.86), the term in the squared brackets is equal to the me-

chanical momentum p̂α− qαÂ(r̂α) and the fourth term is comprised of the terms associated

with the internal Hamiltonian of the atoms (A=B) and the terms associated with the in-

teratomic Hamiltonians (A 6=B). The latter can be ignored in the cases where the atoms

are well separated from each other, i.e.,
∫

d3r P̂′
A(r) · P̂′

B(r) = δAB

∫

d3r P̂′2
A (r), (2.90)

thus, as one of the advantages of multipolar formalism, the interaction between the atoms

contributes to the Hamiltonian (only) via the electromagnetic field implicitly, and hence the

Hamiltonian (2.86) may be written as

Ĥ = Ĥ ′
F +

∑

A

Ĥ ′
A +

∑

A

Ĥ ′
AF , (2.91)

where

Ĥ ′
F =

∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ω f̂
†
λ
′(r, ω) · f̂ ′λ(r, ω), (2.92)

Ĥ ′
A =

∑

α∈A

p̂′2
α

2mα

+
1

2ε0

∫

d3r P̂′2
A (r) =

p̂′2
A

2mA

+
∑

k

EA′

k |k′A〉〈k′A|, (2.93)

Ĥ ′
AF =−

∫

d3r P̂′
A(r) · Ê′(r)−

∫

d3r M̂′
A(r) · B̂′(r) +

∑

α∈A

1

2mα

[
∫

d3r Ξ̂′
α × B̂′(r)

]2

+
1

mA

∫

d3r p̂′
α · P̂′

A(r)× B̂′(r), (2.94)

with M̂′
A being the (transformed) magnetization of the atom

M̂′
A(r) =

∑

α∈A

qα
2mα

∫ 1

0

dσ σ
[

δ(r− r̂′A − σˆ̄r′α)ˆ̄r′α × ˆ̄p′
α − ˆ̄p′

α × ˆ̄r′αδ(r− r̂′A − σˆ̄r′α)
]

+
∑

α∈A

γαŝ
′
αδ(r− r̂′α). (2.95)
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Needless to say that since the multipolar- and minimal-coupling Hamiltonians are the same,

the eigenenergies of the total system remain the same in both formalism as well as the

equation of motion of the physical variables. However the decomposition of the Hamiltonian

into parts as field, atomic, atom-atom interactions, and atom-field interactions is different

in the two formalism, hence the eigenstates of the medium-assisted field in the multipolar

scheme, differ from the eigenstates of ĤF . In particular, the ground state of the medium-

assisted field in multipolar formalism is defined by [cf. Eq. (2.39)]

f̂ ′λ(r, ω)|{0′}〉 = 0, ∀λ, r, ω . (2.96)

Similarly the eigenstates |k′A〉 of Ĥ ′
A are different from the eigenstates |kA〉 of ĤA.

Again, in the long wave-length approximation, retaining the leading-order terms in the

relative coordinates, Eq. (2.94) can be presented as

Ĥ ′
AF =− d̂′

A · Ê′(r̂′A)− m̂′
A · B̂′(r̂′A) +

∑

α∈A

q2
α

8mα

[

ˆ̄r′α × B̂′(r̂′A)
]2

+
3

8mA

[

d̂′
A × B̂′(r̂′A)

]2

+
1

mA

p̂′
A · d̂′

A × B̂′(r̂′A), (2.97)

where

d̂′
A =

∑

α∈A

qαˆ̄r′α = d̂A, m̂′
A =

∑

α∈A

[

qα
2mα

ˆ̄r′α × ˆ̄p′
α + γαŝ

′
α

]

. (2.98)

Equation (2.97) exhibits one other advantage of using the multipolar formalism as it facili-

tates expansion of the atom-field interaction Hamiltonian in terms of atomic dipole moments.

The first two terms in Eq. (2.97) are the electric and magnetic dipole interactions, respec-

tively, the next two terms represent the diamagnetic interaction and the last term is the

Röntgen interaction due to the translational motion of center-of-mass, which becomes im-

portant when studying dissipative forces such as quantum friction [93] and can be omitted

for nonrelativistic motion. Hence, ignoring the diamagnetic properties of the atoms, the

atom-field interaction Hamiltonian in multipolar formalism reduces to

Ĥ ′
AF = −d̂′

A · Ê′(r̂′A)− m̂′
A · B̂′(r̂′A). (2.99)



Chapter 3

van der Waals potential of a single atom

It is well known that a neutral atom in the presence of macroscopic bodies is subject to

a force, known as the van der Waals (vdW) force, even if both atom and medium-assisted

electromagnetic field are in their ground states. According to the well-known concept of

Casimir and Polder [19, 21], the vdW force on an atom A at a given position rA can be

derived from the associated vdW potential U(rA) according to

F(rA) = −∇AU(rA). (3.1)

3.1 General expression

The Hamiltonian for a system consisting of an atom with nonrelativistic center-of-mass

motion and the medium-assisted electromagnetic field, in electric dipole approximation, as

shown in chapter 2, can be presented in the form

Ĥ = ĤF + ĤA + ĤAF , (3.2)

with ĤF , ĤA, and ĤAF being given by Eqs. (2.92), (2.93), and (2.99) (note that here and

in the following, we drop all the primes indicating Power–Zienau–Woolley transformation).

We apply the Born-Oppenheimer approximation that follows from the inertia of electrons to

be negligible in comparison to the atom to which they are bound; the fast electronic motion

can thus be assumed to be uncoupled to the slow center-of-mass motion of the atom. By

this approximation the operator-valued center-of-mass posintion r̂A may be replaced by real-

valued rA, and the atomic Hamiltonian ĤA can thus, effectively, be thought of as being the

internal Hamiltonian of the atom

ĤA =
∑

k

EA
k |kA〉〈kA|. (3.3)

Let us assume that both the atom and the electromagnetic field are prepared in their

unperturbed ground states and consider ĤA + ĤF as the unperturbed Hamiltonian such

that the unperturbed state of the combined system is given as |0〉= |0A〉|{0}〉. Due to the

atom-field coupling, the ground-state energy of the combined system is expected to have a

shift that can be deduced from a perturbative calculation for sufficiently weak atom-field
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coupling1, by treating ĤAF as the perturbation. The vdW potential will be the position-

dependent part of this energy shift

∆E = 〈0|ĤAF |0〉 −
∑

I 6=0

〈0|ĤAF |I〉〈I|ĤAF |0〉
EI − E0

+ . . . (3.4)

with the summation on the right-hand side including position and frequency integrals. Re-

calling the interaction Hamiltonian (2.99), since the electric and magnetic dipole moments

have no diagonal matrix element in the basis of atomic eigenstates, and each of electric and

magnetic fields may be given as linear combinations of f̂λ(r, ω) and f̂
†
λ(r, ω) [Eqs. (2.32) and

(2.36)], it can be seen that the first term on the right-hand side of Eq. (3.4) (first-order

energy shift) vanishes and the vdW potential follows from the second-order energy shift.

Further, it can be seen that only intermediate states in which the atom is in an excited

state and a single quantum of the fundamental field is excited contribute to the sum. In

other words the matrix element 〈0|ĤAF |I〉 may be thought of as being related to virtual

processes consisted of one photon exchange between the atom and the electromagnetic field

together with a transition (from the ground state to an excited state or vice versa) in the

atom. Hence Eq. (3.4) may be specified to

∆E = −1

~

∑

k 6=0

∑

λ=e,m

∫

d3r

∫ ∞

0

dω

ω + ωk
A

∣

∣

∣
〈0A|〈{0}|ĤAF |1λ(r, ω)〉|kA〉

∣

∣

∣

2

, (3.5)

where ωk
A = (EA

k − EA
0 )/~ is the atomic transition frequency. With ĤAF being given by

Eq. (2.99) together with the expansions (2.32) and (2.36), the matrix elements of the inter-

action Hamiltonian (3.5) are found to be

〈0A|〈{0}|ĤAF |1λ(r, ω)〉|kA〉 = −d0k
A ·Gλ(rA, r, ω)− m0k

A ·∇A ×Gλ(rA, r, ω)

iω
(3.6)

[d0k
A = 〈0A|d̂A|kA〉, m0k

A = 〈0A|m̂A|kA〉], where the commutation relations (2.30) and (2.31)

and Eq. (2.39) have been used. Since ∆E, Eq.(3.5), is quadratic in the matrix elements,

there are three classes of contributions to the energy shift. The contribution involving

two electric-dipole transitions is known to lead to the electric part of the signle-atom vdW

potential. It can be found by replacing the matrix elecment in Eq. (3.5) by the first term

on the right-hand side of Eq. (3.6) that results in [28, 29, 41, 82, 42]

Ue(rA) =
~µ0

2π

∫ ∞

0

du u2Tr
[

αA(iu)·G(1)(rA, rA, iu)
]

, (3.7)

1A treatment on strong atom-field coupling, which is the case when the atom is in a resonator-like

geometry, is given in Ref. [43]



Chapter 3. van der Waals potential of a single atom 23

where αA(ω) is the lowest-order electric polarizability of the atom [94]

αA(ω) = lim
ǫ→0+

2

~

∑

k

ωk
Ad0k

A dk0
A

(ωk
A)2 − ω2 − iωǫ , (3.8)

and G(1) is the scattering part of the Green tensor defined by

G(r, r′, ω) = G(0)(r, r′, ω) + G(1)(r, r′, ω) (3.9)

with G(0)(r, r′, ω) being the free-space part. In particular for an isotropic atom, where

αA(ω) = lim
ǫ→0+

2

3~

∑

k

ωk
A|d0k

A |2
(ωk

A)2 − ω2 − iωǫ I ≡ αA(ω)I, (3.10)

Eq. (3.7) simplifies to

Ue(rA) =
~µ0

2π

∫ ∞

0

du u2αA(iu)TrG(1)(rA, rA, iu). (3.11)

The rA-independent term associated with the bulk part of the Green tensor gives rise to the

well-known Lamb shift and is not of interest here. Let us point out that the decomposi-

tion (3.9) is applicable when the positions referred to as r and r′ can be connected without

crossing boundaries (discontinuity surfaces with respect to permittivity and permeability

functions) in the media; the scattering part thus account for the presence of media inter-

faces. In the calculation of the single-atoms potential the Green tensor always refers two

equal positions r = r′ = rA and there is no doubt in the mentioned decomposition, but this

is not the case in the calculation of two-atom interaction potential as it will be shown in

chapter 4. However in all the examples presented through this work Eq. (3.9) is applicable.

The contribution ∆Em to ∆E which involves two magnetic-dipole transitions can be

calculated by substituting the second term on the right-hand side of Eq. (3.6) into Eq. (3.5),

resulting in

∆Em =
1

~

∑

k

∑

λ=e,m

∫

d3r1

∫ ∞

0

dω

ω2(ω + ωk
A)

×
[

m0k
A ·∇×Gλ(r, r1, ω) ·G∗T

λ (r′, r1, ω)×←−∇′ ·m0k
A

]

r=r′=rA

(3.12)

[HS5], where the identities a ·T = T T· a and (∇×T )T =−T T×←−∇ are used (a and T are,

respectively, arbitrary vector and tensor fields). The volume integral in Eq. (3.12) can be

performed using the integral relation (2.35) leading to

∆Em =
µ0

π

∑

k

∫ ∞

0

dω

ω + ωk
A

[

m0k
A ·∇×Im G(r, r′, ω)×←−∇′ ·mk0

A

]

r=r′=rA

. (3.13)
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To perform the frequency integral, we first use the identity Im G= (G−G∗)/(2i), and the

relation (2.25), to write
∫ ∞

0

dω

ω + ωk
A

Im G(r, r′, ω) =
1

2i

[
∫ ∞

0

dω

ω + ωk
A

G(r, r′, ω) +

∫ 0

−∞

dω

ω − ωk
A

G(r, r′, ω)

]

. (3.14)

The integrands on the right-hand side of Eq. (3.14) are analytic in the upper half of the com-

plex frequency plane including the real axis apart from a possible pole at the origin. We may

therefore apply Cauchy’s theorem and replace the first(second) integral by a contour integral

along the positive imaginary half-axis introducing the purely imaginary frequency ω = iu,

along an infinitely large quarter-circle in the first(second) quadrant of the complex frequency

plane, and around an infinitely small quarter-circle around the origin in the first(second)

quadrant. The integrals along the infinitely large quarter-circles vanish, the ones around the

infinitely small quarter-circles cancel each other, and summing the remaining contributions

from the two integrals in Eq. (3.14) leads to

∆Em =
µ0

π

∑

k

∫ ∞

0

du
ωk

A

ωk
A + u2

[

m0k
A ·L(r, r′, iu)·mk0

A

]

r=r′=rA
, (3.15)

where

L(r, r′, ω) = ∇×G(r, r′, ω)×←−∇′. (3.16)

The relevant, position-dependent part of ∆Em can be obtained by replacing the Green tensor

with its scattering part. We may thus represent the vdW potential of a (para)magnetic atom

as

Um
A (rA) =

~µ0

2π

∫ ∞

0

duTr
[

βA(iu)·L(1)(rA, rA, iu)
]

=
~µ0

2π

∫ ∞

0

du βA(iu)TrL(1)(rA, rA, iu),

(3.17)

where βA(ω) is the lowest-order ground-state magnetizability defined as

βA(ω) = lim
ǫ→0+

2

~

∑

k

ωk
Am0k

A mk0
A

(ωk
A)2 − ω2 − iωǫ = lim

ǫ→0+

2

3~

∑

k

ωk
A|m0k

A |2
(ωk

A)2 − ω2 − iωǫ I ≡ βA(ω)I (3.18)

Note that L(1) is given by the right-hand side of (3.16) with G(1) instead of G, and the

second equality in Eq. (3.17) and (3.18) is valid for isotropic atoms.

We restrict our considerations to atoms with centers of inversion (non-chiral atoms),

whose energy eigenstates can be chosen to be eigenstates of the parity operator. Contribu-

tions to the energy shift that contain one electric-dipole transition and one magnetic-dipole

transition can then be excluded, since d̂A is odd and m̂A is even under spatial reflection that

leads to a vanishing crossed electric-magnetic polarizability, defined as

XA(ω) = lim
ǫ→0+

2

~

∑

k

ωk
Ad0k

A mk0
A

(ωk
A)2 − ω2 − iωǫ . (3.19)
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Hence, the general formula for the total vdW potential of a single ground-state atom that

is both polarizable and (para)magnetizable, and is placed within an arbitrary environment

of magnetoelectric bodies reads [HS5]

UA(rA) = Ue(rA) + Um
A (rA), (3.20)

with Ue and Um
A being given by Eqs. (3.7) and (3.17), respectively.

3.2 Local-field corrections

Equations (3.7) and (3.17) refer to an atom that is not embedded in medium, i.e., ε(rA, ω)

= µ(rA,ω)=1. In the case where the atom under consideration is located in a host medium

one needs to include local-field corrections in the calculations to account for the difference

between the macroscopic electromagnetic field and the local field experienced by the atom.

A possible way to treat local-field effects is offered by the real-cavity model [62], where a

small spherical empty cavity of radius Rc surrounding the atom is introduced. As shown in

Ref. [64], the needed local-field corrected form of the Green tensor reads, in linear order of

ωRc/c,

G
(1)
loc(rA, rA, ω) =

ω

2πc

{

εA − 1

2εA + 1

c3

ω3R3
c

+
3

5

ε2
A(5µA − 1)− 3εA − 1

(2εA + 1)2

c

ωRc

+ i

[

3εAn
3
A

(2εA + 1)2
− 1

3

] }

I +

(

3εA
2εA + 1

)2

G(1)(rA, rA, ω), (3.21)

where εA = εA(ω)= ε(rA, ω) and µA =µA(ω)=µ(rA, ω) are, respectively, the permittivity and

permeability of the unperturbed host medium at the position of the guest atom, nA=
√
εAµA,

and G(1) is the scattering part of the uncorrected Green tensor. Inserting the corrected

Green tensor into Eqs. (3.7), one obtains the local-field corrected electric contribution to

the vdW potential [64],

Ue(rA) =
~µ0

2π

∫ ∞

0

du u2

[

3εA(iu)

2εA(iu) + 1

]2

Tr
[

αA(iu)·G(1)(rA, rA, iu)
]

, (3.22)

where the position-independent first term on the right-hand side of Eq. (3.21) is discarded.

For (para)magnetic atoms the vdW potential depends on spatial derivatives of the Green

tensor. The respective local-field corrected tensor cannot be derived directly from Eq. (3.21),

because the correction procedure does not commute with these derivatives. The local field

corrected version of the tensor L defined by Eq. (3.16) can be derived in a complete analogy

to the derivation of Eq. (3.21), which is given in Refs. [63, 64]. For this purpose we recall
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that the first term in Eq. (3.21), i.e., the position-independent part of G
(1)
loc(rA, rA, ω), stems

from the scattering Green tensor G
(1)
c (rA, rA, ω) with position rA at the center of a small

spherical cavity of radius Rc which is embedded in an infinitely extended bulk material of

permittivity εA and permeability µA. The respective tensor L
(1)
c (rA, rA, ω) reads [100]

L(1)
c (rA, rA, ω) = − iω3

6πc3
C(ω)I, (3.23)

where

C(ω) = −
µAh

(1)
1 (y)

[

y0h
(1)
1 (y0)

]′

− h(1)
1 (y0)

[

yh
(1)
1 (y)

]′

µAh
(1)
1 (y) [y0j1(y0)]

′ − j1(y0)
[

yh
(1)
1 (y)

]′ (3.24)

[y0 = ωRc/c, y = nAy0]. The local-field correction factor multiplying G(1) in Eq. (3.21) is

determined by comparing the Green tensor Gc(r, rA, ω) (with rA at the center of the cavity

and r at an arbitrary position outside the cavity) with the bulk Green tensor Gbulk(r,rA,ω)

of an infinite homogeneous medium without the cavity [86],

Gbulk(r, rA, ω) = − c2eikρ

4πεAω2ρ3
{f(−ikρ)I − g(−ikρ)eρeρ} (3.25)

with

f(x) = 1 + x+ x2, g(x) = 3 + 3x+ x2 (3.26)

[k=nAω/c, ρ= |r−rA|, eρ =(r− rA)/ρ]. In the present case, the required tensor Lc(r, rA, ω)

reads [100]

Lc(r, rA, ω) =
eikρ

4πn2
Aρ

3
D(ω) {f(−ikρ)I − g(−ikρ)eρeρ} , (3.27)

where

D(ω) = µA

h
(1)
1 (y0) [y0j1(y0)]

′ − j1(y0)
[

y0h
(1)
1 (y0)

]′

µAh
(1)
1 (y) [y0j1(y0)]

′ − j1(y0)
[

yh
(1)
1 (y)

]′ , (3.28)

and from Eqs. (3.16) and (3.25), Lbulk(r, rA, ω) can be found as

Lbulk(r, rA, ω) =
µAeikρ

4πρ3
{f(−ikρ)I − g(−ikρ)eρeρ} . (3.29)

Comparing Eqs. (3.29) and (3.27), and using similar arguments as in Refs. [63, 64], we can

conclude that the magnetic local-field correction factor is given by D/(µAn
2
A). Combining

this with Eq. (3.28) and following the line of reasoning of Refs. [63, 64], we expand all the

terms within leading order in Rcω/c to obtain the local-field corrected tensor L
(1)
loc to be

L
(1)
loc(rA, rA, ω) = − ω3

2πc3

{

µA−1

2µA+1

c3

ω3R3
c

+
3

5

µ2
A(5εA−1)−3µA−1

(2µA+1)2

c

ωRc

+ i

[

3µAn
3
A

(2µA+1)2
− 1

3

]}

I +

(

3

2µA+1

)2

L(1)(rA, rA, ω). (3.30)



Chapter 3. van der Waals potential of a single atom 27

Replacing in Eq. (3.17) L(1) with L
(1)
loc from Eq. (3.30), we obtain the local-field corrected

magnetic single-atom potential [HS5]

Um
A (rA) =

~µ0

2π

∫ ∞

0

du

[

3

2µA(iu) + 1

]2

Tr
[

βA(iu)·L(1)(rA, rA, iu)
]

, (3.31)

where a position-independent term has been discarded, as in the electric case. Needless to

say that Eqs. (3.22) and (3.31) reduce to Eqs. (3.7) and (3.17), respectively, when the atom

is situated in free space so that εA =µA =1.

3.3 Applications

In order to illustrate, more explicitly, the dependence of the vdW potential on the electro-

magnetic and geometric properties of the media, as well as its position-dependence, it is

required to specify the material environment, which may be done by substituting the ap-

propriate Green tensors into the formula. We now apply the theory to some examples and

compare the result with the familiar results for nonmagnetic atoms, with special emphsis

on whether the total potential for electromagnetic atom is invariant under a global duality

transformation ε ↔ µ, c2αA ↔ βA [95, HS6].

3.3.1 Planar multilayer media

Let us consider an isotropic atom A, possessing both electric and magnetic polarizabilities,

in front of a planar magnetoelectric multilayer system consisting of N adjoined layers la-

beled by j (j = 0, 1, 2, . . . , N − 1) with thicknesses dj (d0→∞), permittivities εj(ω), and

permeabilities µj(ω), as sketched in Fig. 3.1. We choose the coordinate system such as the z

axis is perpendicular to the layers, with the origin being on the interface between layer j=

N − 1 and the free-space region, which can be regarded as layer j=N [dN→∞, εN(ω)≡ 1,

µN(ω)≡ 1].

Let us first evaluate the electric part of the potential, which can be calculated using

Eq. (3.22). The scattering part of the Green tensor for a planar multilayer system can be

given in the form [96]

G(1)(r, r′, ω) =
1

8π2

∫

d2q

bN
ei(w·r−w

∗·r′)(rs
Ne+

s e−
s + rp

Ne+
p e−

p ), (3.32)

(z, z′> 0, q⊥ ez, w=q+ i bN ez), where bN =
√

−ω2/c2+q2 is derived from the definition

bj = bj(q, ω) =

√

−ω
2

c2
εj(ω)µj(ω) + q2, (3.33)



Chapter 3. van der Waals potential of a single atom 28

· · ·

zz = 0

j = 0

ε0(ω)

µ0(ω)

d0→∞

j = 1

ε1(ω)

µ1(ω)

d2

j = 2

ε2(ω)

µ2(ω)

d2

j = N − 1

εN−1(ω)

µN−1(ω)

dN−1

A

Figure 3.1: Sketch of the planar multilayer medium.

and the unit vectors e±
s and e±

p are, respectively, the polarization vectors for s− and p−
polarized waves, propagating in the positive/negative z direction:

e±
s = eq × ez ≡ es, e±

p =
c

ω
(q ez ∓ ibNeq) . (3.34)

Further, the (generalized) reflection coefficients rσ
j with respect to the left boundary of the

jth layer (j=1, 2, 3, . . . , N) can be obtained from the recurrence relations

rs
j = rs

j(q, u) =

(

µj−1

bj−1
− µj

bj

)

+
(

µj−1

bj−1
+

µj

bj

)

e−2bj−1dj−1 rσ
j−1

(

µj−1

bj−1
+

µj

bj

)

+
(

µj−1

bj−1
− µj

bj

)

e−2bj−1dj−1 rσ
j−1

(3.35)

and

rp
j = rp

j (q, u) =

(

εj−1

bj−1
− εj

bj

)

+
(

εj−1

bj−1
+

εj

bj

)

e−2bj−1dj−1 rσ
j−1

(

εj−1

bj−1
+

εj

bj

)

+
(

εj−1

bj−1
− εj

bj

)

e−2bj−1dj−1 rσ
j−1

(3.36)

with rσ
0 = 0 (σ= s, p). In the Cartesian coordinate system mentioned above, the scattering

Green tensor (3.32) referring to equal positions can be written as

G(1)(r, r, ω) =
1

8π

∫ ∞

0

q dq

bN
e−2bN z

[(

rs
N +

c2b2N
ω2

rp
N

)

(exex + eyey) + 2
c2q2

ω2
rp
Nezez

]

.

(3.37)

The electric part Ue of the single-atom vdW potential, as shown in Ref. [97], will be obtained

by substituting G(1) from Eq. (3.37) into Eq. (3.11) as

Ue(rA) =
~µ0

8π2

∫ ∞

0

du u2αA(iu)

∫ ∞

0

dq
q

bN
e−2bN zA

[

rs
N −

(

1 + 2
q2c2

u2

)

rp
N

]

. (3.38)

Equation (3.38) agrees with the results derived in Refs. [98] based on a linear-response

approach. A detailed analysis of Eq. (3.38) requires numerical computation, which needs
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to determine magnetoelectric properties of each individual layer [i.e., εj(ω), µj(ω)] and to

specify the atom [via specifying αA(ω)].

Let us, as a simpler example, consider a sufficiently thick plate so that the model of a

(semi-infinite) half-space applies (N=1). The electric part of the vdW potential is given by

Eq. (3.38) with the reflection coefficients given by Eqs. (3.35) and (3.36) being reduced to

rs ≡ rs
1 =

ε(iu)b− b0
ε(iu)b+ b0

, rp ≡ rp
1 =

µ(iu)b− b0
µ(iu)b+ b0

, (3.39)

where

b ≡ b1 =
√

u2/c2 + q2, b0 =
√

ε(iu)µ(iu)u2/c2 + q2. (3.40)

Further analytical processing of the potential is possible in two limiting cases of retarded

(i.e., long-distance) and nonretarded (i.e., short-distance) limits. In the retarded limit,

where zA ≫ c/ωmin with ωmin being the minimum of the characteristic atomic and medium

frequencies, it turns out that the vdW force can be derived from an attractive potential

proportional to z−4
A [97, 99]

Ue(zA) =
3~cαA(0)

64π2ε0z4
A

∫ ∞

1

dv

[

1

v4
rs(v)−

(

2

v2
− 1

v4

)

rp(v)

]

, (3.41)

where, according to Eq. (3.39), the static reflection coefficients rs(v) and rp(v) read

rs(v) =
µ(0)v−

√

n2(0)− 1 + v2

µ(0)v +
√

n2(0)− 1 + v2
, rp(v) =

ε(0)v −
√

n2(0)− 1 + v2

ε(0)v +
√

n2(0)− 1 + v2
(3.42)

[n(ω) =
√

ε(ω)µ(ω) ]. In the opposite limit of nonretarded, where zA ≪ c/[n(0)ωmax] with

ωmax being the maximum of the characteristic atomic and medium frequencies, the vdW

potential obeys different power laws in zA, depending on the strength of the permittivity

and permeability of the half-space. Unless the permittivity is very weak, the vdW potential

is found to be attractive and proportional to z−3
A [97]

Ue(zA) = − ~

16π2ε0z3
A

∫ ∞

0

duαA(iu)
ε(iu)− 1

ε(iu) + 1
, (3.43)

otherwise it is a repulsive potential proportional to z−1 [97]

Ue(zA) =
~µ0

32π2zA

∫ ∞

0

du u2αA(iu)
[µ(iu) + 3][µ(iu)− 1]

µ(iu) + 1
. (3.44)

Equation. (3.43) was also derived in Ref. [33] using method of image-charges.

Let us now evaluate the magnetic part of the vdW potential of the atom in front of the

multilayer system [HS5]. To this purpose we need to determine the tensor L(1) that can be

done by combining Eq. (3.32) with (3.16) that leads to

L(1)(r, r′, ω) =
−ω2

8π2c2

∫

d2q

bN
ei(w·r−w

∗·r′)(rp
Ne+

s e−
s + rs

Ne+
p e−

p ). (3.45)
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Comparing Eqs. (3.17) [together with Eq. (3.45)] and (3.11) [together with Eq. (3.32)], it is

seen that the magnetic part Um
A can be found from the electric part Ue given by Eq. (3.38)

by replacing αA with βA/c
2 and interchanging of rs

N and rp
N on the right-hand side [or

equivalently, interchanging of ε and µ; recall Eqs. (3.35) and (3.36)], in agreement with the

electromagnetic duality principle [95, HS6]. Needless to say that this symmetry between the

electric and magnetic parts of the vdW potential, holds for a magnetoelectric half-space. For

instance, as an immediate result of using the duality principle for the half-space example,

we may conclude from Eqs. (3.43) and (3.44) that in the nonretarded limit a (para)magnetic

atom is subject to a repulsive force proportional to z−2 in the presence of a purely electric

half-space [µ(ω)=1] and experiences an attractive force proportional to z−4 in the presence

of a purely magnetic half-space [ε(ω)= 1].

3.3.2 Homogeneous sphere

As a second example, we consider an isotropic atom A, possessing both electric and magnetic

polarizabilities, in a distance rA from the center of a homogeneous magnetoelectric sphere of

permittivity ε(ω), permeability µ(ω), and radius R (rA>R). Choosing the coordinate system

such that its origin coincides with the center of the sphere (Fig. 3.2), we may represent the

scattering part of the Green tensor as [100]

G(1)(r, r′, ω)=
iω

4πc

∞
∑

n=1

2n+ 1

n(n+ 1)

n
∑

m=0

(n−m)!

(n+m)!
(2− δ0m)

×
∑

p=±1

[

BM
n (ω)Mnm,p(r, ω/c)Mnm,p(r

′, ω/c) +BN
n (ω)Nnm,p(r, ω/c)Nnm,p(r

′, ω/c)
]

, (3.46)

where Mnm,p(r, q) and Nnm,p(r, q) are even (p=+1) and odd (p=−1) spherical wave vector

functions. In spherical coordinates, they can be expressed in terms of spherical Hankel

functions of the first kind, h(1)
n (x), and Legendre functions, Pm

n (x), as follows:

Mnm,±1(r, q) = ∓ m

sin θ
h(1)

n (qr)Pm
n (cos θ)

sin

cos
(mφ)eθ − h(1)

n (qr)
dPm

n (cos θ)

dθ

cos

sin
(mφ)eφ,

(3.47)

Nnm,±1(r, q) =
n(n+ 1)

qr
h(1)

n (qr)Pm
n (cos θ)

cos

sin
(mφ)er

+
1

qr

d[rh
(1)
n (qr)]

dr

[

dPm
n (cos θ)

dθ

cos

sin
(mφ)eθ ∓

m

sin θ
Pm

n (cos θ)
sin

cos
(mφ)eφ

]

,

(3.48)

with er, eθ, and eφ being the mutually orthogonal unit vectors pointing in the directions of

radial distance r, polar angle θ, and azimuthal angle φ, respectively (Fig. 3.2). The spherical
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Figure 3.2: Atom A in the presence of a sphere.

wave vector functions are related to each other via

∇×Mnm,±1(r, q) = qNnm,±1(r, q), (3.49)

∇×Nnm,±1(r, q) = qMnm,±1(r, q). (3.50)

The coefficients BM
n (ω) and BN

n (ω) in Eq. (3.46) read

BM
n (ω) = − µ(ω)[z0jn(z0)]

′jn(z1)−[z1jn(z1)]
′jn(z0)

µ(ω)[z0h
(1)
n (z0)]′jn(z1)−[z1jn(z1)]′h

(1)
n (z0)

, (3.51)

BN
n (ω) = − ε(ω)[z0jn(z0)]

′jn(z1)− [z1jn(z1)]
′jn(z0)

ε(ω)[z0h
(1)
n (z0)]′jn(z1)− [z1jn(z1)]′h

(1)
n (z0)

, (3.52)

where jn(z) is the spherical Bessel function of the first kind, z0 =Rω/c, z1 = n(ω)z0, and

the prime denotes differentiation with respect to the argument.

Let us first focus on the electric part Ue of the vdW potential. This part, as given in

Ref. [82], can be obtained by substituting the scattering part of the Green tensor (3.46)

referring to equal positions (Appendix B),

G(1)(r, r, ω) =
iω

8πc

∞
∑

n=1

(2n+ 1)

(

2c2BN
n

r2ω2
n(n + 1)[h(1)

n (rω/c)]2erer

+

{

BM
n [h(1)

n (rω/c)]2 +
c2BN

n

r2ω2

[

zh(1)
n (z)

]′2

z=rω/c

}

(eθeθ + eφeφ)

)

, (3.53)
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into Eq. (3.11) that leads to

Ue(rA) =
−~µ0

8π2c

∫ ∞

0

du u3αA(iu)

∞
∑

n=1

(2n+ 1)

×
([

BM
n (iu) +

n(n+ 1)

z2
BN

n (iu)

]

[

h(1)
n (z)

]2
+
BN

n (iu)

z2

[

zh(1)
n (z)

]′2
)

z=irAu/c

.

(3.54)

Further evaluation of Eq. (3.54) requires numerical method in general. However this equa-

tion can be further evaluated in the limiting cases of large and small sphere.

The limiting case of a large sphere may be defined by the condition

δ ≡ rA − R≪ R (3.55)

(Fig. 3.2). By using exactly the same argument made for an electric sphere in Ref. [82],

it can be shown that in the case where the sphere is magnetically as well as electrically

polarizable, the main contribution to the sum on the right-hand side of Eq. (3.54) arises

from n≫ 1. In this limit (Appendix B.2)

TrG(1)(rA, rA, iu) = − c2

8πu2δ3

{

ε− 1

ε+ 1
+

(3ε+ 1)(ε− 1)

(ε+ 1)2

δ

R
+

2

(ε+ 1)2

[

ε(ε− 1)2

ε+ 1

−(2µ2 + 3µ− 1)ε2 + µ− 4ε− 1

(µ+ 1)

(

Ru

c

)2

− εµ(ε− 1)

4

(

Ru

c

)4
]

δ2

2R2
+O

(

δ

R

)3
}

(3.56)

[ε=ε(iu), µ=µ(iu)]. Recalling Eq. (3.55), it can be seen that unless |ε− 1|≪1, the second

and third terms in the curly brackets in Eq. (3.56) can be approximately ignored. Only in

the case of a very weak permittivity, the permeability of the sphere may have a significant

contribution to the vdW potential. Therefore, the second term in the curly brackets is to be

ignored anyway and in the third term ε can be set to 1. Substituting the resulting expression

into Eq. (3.11) gives the vdW potential of an electric atom in the presence of a (very) large

sphere as

Ue(rA) =
~µ0

16π2

∫ ∞

0

du u2αA(iu)

{−c2
u2δ3

ε(iu)− 1

ε(iu) + 1
+

1

2δ

[µ(iu) + 3][µ(iu)− 1]

µ(iu) + 1

}

. (3.57)

Comparing Eq. (3.57) to Eqs. (3.43) and (3.44), it is seen that the first(second) term in

Eq. (3.57) corresponds to the nonretarded vdW potential in the presence of a purely elec-

tric(magnetic) half-space, as expected.

In the limiting case of a small sphere defined by the requirement rA≫R, it can be shown

that the main contribution to the integral on the right-hand side of Eq. (3.54) is resulted

effectively from the region where [82]

n(iu)Ru/c≪ 1. (3.58)
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In this region we may approximate the spherical Bessel and Hankel functions appearing in

Eqs. (3.51) and (3.52) by their next-to-leading order expansions in z [101], i.e.,

jn(z) =
zn

(2n+ 1)!!

[

1− z2

4n+ 6

]

(3.59)

and

h(1)
n (z) = −i(2n− 1)!!

zn+1

[

1− z2

2− 4n

]

, (3.60)

so that Eqs. (3.51) and (3.52), respectively, approximate to

BM
n (ω) = i

(n+ 1)(2n+ 1)[µ(ω)− 1]

[(2n + 1)!!]2[nµ(ω) + n+ 1]

(

Rω

c

)2n+1

+O

(

Rω

c

)2n+3

(3.61)

and

BN
n (ω) = i

(n+ 1)(2n+ 1)[ε(ω)− 1]

[(2n+ 1)!!]2[nε(ω) + n + 1]

(

Rω

c

)2n+1

+O

(

Rω

c

)2n+3

. (3.62)

Further, it can be seen that in contrast to the large sphere, in the sum in Eq. (3.54) the

term with n=1 is the leading one [recall (3.58)] and hence, Eq. (3.54) for the limiting case

of small sphere reduces to

Ue(rA) =
~µ2

0

16π3r4
A

∫ ∞

0

duαA(iu)e−2rAu/c

[

u2βsp(iu)

(

1 + 2
rAu

c
+
r2
Au

2

c2

)

− c
4

r2
A

αsp(iu)

(

3 + 6
rAu

c
+ 5

r2
Au

2

c2
+ 2

r3
Au

3

c3
+
r4
Au

4

c4

)]

, (3.63)

where

αsp(ω) = 4πε0R
3 ε(ω)− 1

ε(ω) + 2
, (3.64)

βsp(ω) =
4πR3

µ0

µ(ω)− 1

µ(ω) + 2
. (3.65)

Let us consider a sphere to which the Clausius-Mossotti relation applies, so that

ε(ω)− 1

ε(ω) + 2
=

1

3ε0

∑

k

nkαk(ω), (3.66)

with nk and αk(ω), respectively, being the number density and the polarizability of the

atoms of type k. Denoting by Nk the number of atoms of type k of the sphere, Eq. (3.64)

can be written as

αsp(ω) =
∑

k

Nkαk(ω), (3.67)

Accordingly, the magnetic analog of Eq. (3.67) is

βsp(ω) =
∑

k

Nkβk(ω) (3.68)
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with βk(ω) being the magnetizability of the atoms of type k. Hence we may replace in

Eq. (3.63) the sphere parameters αsp and βsp, respectively, with the electric and magnetic

polarizability of a single atom [say αk and βk], to obtain the vdW interaction potential

between two atoms, one being polarizable while the one another being simultaneously po-

larizable and magnetizable. The first and second terms in the squared brackets in Eq. (3.63)

are, respectively, in agreement with the findings in Refs. [24] and [19].

Let us now evaluate the magnetic part of the vdW potential of the atom for which the

tensor L(1) is required. This can be obtained by substituting G(1) from Eq. (3.46) into

Eq. (3.16), leading to

L(1)(r, r′, ω)=
−iω3

4πc3

∞
∑

n=1

2n+1

n(n+1)

n
∑

m=0

(n−m)!

(n+m)!
(2−δ0m)

×
∑

p=±1

[

BN
n (ω)Mnm,p(r, ω/c)Mnm,p(r

′, ω/c) +BM
n (ω)Nnm,p(r, ω/c)Nnm,p(r

′, ω/c)
]

, (3.69)

where the relations (3.49) and (3.50) have been used. Similar to the multilayer example, the

magnetic part of the potential can be obtained from its electric part. Comparing Eq. (3.17)

[together with Eq. (3.69)] and Eq. (3.11) [together with Eq. (3.46)] it is seen that the

magnetic part of the vdW potential can be found from the right-hand side of Eq. (3.54) by

replacing αA with βA/c2 and interchanging of BM
n and BN

n (or equivalently interchanging of

ε and µ), in agreement with the electromagnetic duality principle [95, HS6].

It is worth noting that according to Eq. (3.63) the interaction between an electric atom

and an atom with both electric and magnetic polarizabilities, can be expressed as the su-

perposition of the interaction potential between two electric atoms and the one between an

electric atom and a magnetic atom. Hence, making use of the duality properties mentioned

above, Eq. (3.63) can be generalized easily to give the interaction between two atoms, both

with electric and magnetic polarizabilities [24, 35, 105]. Note that in the case of atoms pos-

sessing crossed electric-magnetic polarizabilities, the right-hand side of Eq. (3.63) will be

supplemented by a non-additive term (see, e.g., Ref. [25]), so that the interaction potential

is no longer the superposition of the electric-electric and electric-magnetic interactions.



Chapter 4

Two-atom vdW interaction potential

The method used in the previous chapter to obtain the single-atom vdW potential can be

used to find the potential for the cases including many atoms. In a many-atom case with

the interatomic forces being disregarded comparing to the forces originated from the ma-

terial bodies, e.g., in the case of sufficiently large(small) interatomic(atom-body) distances,

the total vdW potential may be given as a sum over single-atom potentials and the force

acting on each atom A is given by Eq. (3.1), independent of the other atomic positions. As

the interatomic forces become more pronounced the total vdW force on each atom follows

from a potential that depends on all atomic positions and requires higher order pertur-

bative calculations. In what follows, we calculate the vdW interaction potential between

two ground-state atoms with both electric and magnetic polarizabilities in the presence of

arbitrary magnetoelectric environment.

4.1 General expression

The Hamiltonian for a system consisting of two atoms A and B with nonrelativistic center-

of-mass motion and the medium assisted electromagnetic field in the long wave-length ap-

proximation can be given in the form

Ĥ = ĤF +
∑

A′=A,B

ĤA′ +
∑

A′=A,B

ĤA′F , (4.1)

with ĤF , ĤA′, and ĤA′F being given by Eqs. (2.92), (2.93), and (2.99), respectively. To de-

scribe the medium-assisted vdW interaction potential between two atoms by a perturbative

approach, we can exploit an argument similar to the one in the beginning of Sec. 3.1 that

suggests to treat the first two terms on the right-hand side of Eq. (4.1) as the unperturbed

Hamiltonian and the sum over the atom-field interaction Hamiltonians as the perturbation

Ĥint = ĤAF + ĤBF = −d̂A · Ê(rA)− m̂A · B̂(rA)− d̂B · Ê(rB)− m̂B · B̂(rB). (4.2)

Let us consider the two atoms and the medium-assisted electromagnetic field to be prepared

in their ground state such that the (unperturbed) state of the overall system is given by

|0〉= |0A〉|0B〉|{0}〉. Having the vdW potential of each individual atom processed in chap-

ter 3, here we focus on the interatomic vdW potential. The leading-order energy shift
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describing the interaction between the atoms is given by the fourth-order perturbation

∆(4)E =−
∑

I,II,III 6=0

〈0|Ĥint|III〉〈III|Ĥint|II〉〈II|Ĥint|I〉〈I|Ĥint|0〉
(EIII −E0) (EII − E0) (EI − E0)

+
∑

I,II 6=0

〈0|Ĥint|II〉〈II|Ĥint|0〉〈0|Ĥint|I〉〈I|Ĥint|0〉
(EI −E0)

2 (EII − E0)
, (4.3)

while the first- and third-order energy shift vanish since the electric and magnetic dipole

moments do not have diagonal matrix elements in the basis of atomic energy-eigenstates,

and the second-order energy shift contributes only to the vdW potential of the atoms,

individually. On the right-hand side of Eq. (4.3), each matrix element appearing in the

numerators may be thought of as being associated with a virtual process, which consists of

a photon exchange between one of the atoms and the electromagnetic field together with a

transition in the same atom. Every single numerator thus is related to four photon exchanges

(two emissions and two absorptions) and two mutually opposite transitions in each atom.

Only the terms in which the photon emitted by one of the atoms is absorbed by the other

one can be counted for the two-atom interaction and hence, the second term on the right-

hand side of Eq. (4.3) does not contribute to the interaction potential and the energy shift

associated with the two-atom interaction reduces to the first term on the right-hand side of

Eq. (4.3)

∆EAB = −
∑

I,II,III 6=0

〈0|Ĥint|III〉〈III|Ĥint|II〉〈II|Ĥint|I〉〈I|Ĥint|0〉
(EIII − E0) (EII − E0) (EI − E0)

. (4.4)

Further, it can be inferred that the summand on the right-hand side of Eq. (4.3) vanishes

unless the intermediate states |I〉 and |III〉 are such that one of the atoms is excited and one

medium-assisted field excitation is present, while the intermediate state |II〉 corresponds

to one of the following three types: (i) both atoms in the ground state with two field

excitation present, (ii) both atoms excited with no field excitation present, and (iii) both

atoms excited with two field excitation present. All possible intermediate states together

with the respective denominators are listed in Tab. 4.1.

Let us consider, e.g., case (1) in Tab. 4.1 for which the required matrix elements are

found to be as follows:

〈0|Ĥint|I〉 = −
[

d0k
A ·Gλ1

(rA, r1, ω1)
]

i1
+

i

ω1

[

m0k
A ·∇A ×Gλ1

(rA, r1, ω1)
]

i1
, (4.5)

〈I|Ĥint|II〉 = −δ(13)√
2

[

dk0
A ·Gλ2

(rA, r2, ω2)
]

i2
− δ(12)√

2

[

dk0
A ·Gλ3

(rA, r3, ω3)
]

i3

+
iδ(13)

ω2

√
2

[

mk0
A ·∇A ×Gλ2

(rA, r2, ω2)
]

i2
+
iδ(12)

ω3

√
2

[

mk0
A · [∇A ×Gλ3

(rA, r3, ω3)
]

i3
, (4.6)



Chapter 4. Two-atom vdW interaction potential 37Case |I〉 |II〉 |III〉 Denominator(1) |kA〉|0B〉|1(1)〉 |0A〉|0B〉|1(2), 1(3)〉 |0A〉|lB〉|1(4)〉 D1a = (ωk
A + ω′)(ω′ + ω)(ωl

B + ω′),
D1b = (ωk

A + ω′)(ω′ + ω)(ωl
B + ω)(2) |kA〉|0B〉|1(1)〉 |kA〉|lB〉|{0}〉 |0A〉|lB〉|1(2)〉 D2 = (ωk

A + ω′)(ωk
A + ωl

B)(ωl
B + ω)(3) |kA〉|0B〉|1(1)〉 |kA〉|lB〉|{0}〉 |kA〉|0B〉|1(2)〉 D3 = (ωk

A + ω′)(ωk
A + ωl

B)(ωk
A + ω)(4) |kA〉|0B〉|1(1)〉 |kA〉|lB〉|1(2), 1(3)〉 |0A〉|lB〉|1(4)〉 D4 = (ωk

A + ω′)(ωk
A + ωl

B + ω′ + ω)(ωl
B + ω′)(5) |kA〉|0B〉|1(1)〉 |kA〉|lB〉|1(2), 1(3)〉 |kA〉|0B〉|1(4)〉 D5 = (ωk

A + ω′)(ωk
A + ωl

B + ω′ + ω)(ωk
A + ω)(6) |0A〉|lB〉|1(1)〉 |0A〉|0B〉|1(2), 1(3)〉 |kA〉|0B〉|1(4)〉 D6a = (ωl

B + ω′)(ω′ + ω)(ωk
A + ω′),

D6b = (ωl
B + ω′)(ω′ + ω)(ωk

A + ω)(7) |0A〉|lB〉|1(1)〉 |kA〉|lB〉|{0}〉 |kA〉|0B〉|1(2)〉 D7 = (ωl
B + ω′)(ωk

A + ωl
B)(ωk

A + ω)(8) |0A〉|lB〉|1(1)〉 |kA〉|lB〉|{0}〉 |0A〉|lB〉|1(2)〉 D8 = (ωl
B + ω′)(ωk

A + ωl
B)(ωl

B + ω)(9) |0A〉|lB〉|1(1)〉 |kA〉|lB〉|1(2), 1(3)〉 |kA〉|0B〉|1(4)〉 D9 = (ωl
B + ω′)(ωk

A + ωl
B + ω′ + ω)(ωk

A + ω′)(10) |0A〉|lB〉|1(1)〉 |kA〉|lB〉|1(2), 1(3)〉 |0A〉|lB〉|1(4)〉 D10 = (ωl
B + ω′)(ωk

A + ωl
B + ω′ + ω)(ωl

B + ω)

Table 4.1: The intermediate states contributing to the two-atom vdW interaction accord-
ing to Eq. (4.4) together with the energy denominators are shown, where the short-hand
notations |1(µ)〉= |1λµiµ(rµ, ωµ)〉 and |1(µ), 1(ν)〉= |1λµiµ(rµ, ωµ), 1λνiν (rν , ων)〉 have been used.

〈II|Ĥint|III〉 = −δ(34)√
2

[

d0l
B ·G∗

λ2
(rB, r2, ω2)

]

i2
− δ(24)√

2

[

d0l
B ·G∗

λ3
(rB, r3, ω3)

]

i3

− iδ(34)

ω2

√
2

[

m0l
B ·∇B×G∗

λ2
(rB, r2, ω2)

]

i2
− iδ(24)

ω3

√
2

[

m0l
B ·∇B×G∗

λ3
(rB, r3, ω3)

]

i3
, (4.7)

〈III|Ĥint|0〉 = −
[

dl0
B ·G∗

λ4
(rB, r4, ω4)

]

i4
− i

ω4

[

ml0
B ·∇B ×G∗

λ4
(rB, r4, ω4)

]

i4
, (4.8)

where

δ(αβ) = δiαiβδλαλβ
δ(rα − rβ)δ(ωα − ωβ). (4.9)

By substituting these matrix elements into Eq. (4.3), we derive the contribution ∆E(1) to

the two-atom energy shift ∆E. Restricting the consideration to non-chiral atoms, since the

selection rules for electric-dipole transitions differ (under parity) from those of magnetic-

dipole transitions, the two mutually oposite transitions made by each atom must be ei-

ther of electric- or magnetic-dipole type (for the interaction of two chiral molecules in free

space, see Ref. [102]). Therefore, as in the single-atom case, we may distinguish different

classes of contributions to the vdW interaction between two atoms A and B which are

both electric and magnetic according to electric or magnetic nature of those transitions.

The vdW interaction [potential V (rA, rB)] thus may be considered as the superposition of

(i) an electric–electric interaction [potential Vee(rA, rB)] where both atoms are electrically

polarizable, (ii) an electric–magnetic interaction [potential Vem(rA, rB)] where atom A is elec-

trically polarizable and atom B is magnetically polarizable, (iii) the reverse case [potential
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Vme(rA, rB)], and (iv) a magnetic–magnetic interaction [potential Vmm(rA, rB)] where both

atoms are magnetically polarizable:

V (rA, rB) = Vee(rA, rB) + Vem(rA, rB) + Vme(rA, rB) + Vmm(rA, rB). (4.10)

To calculate the electric-electric part of the vdW potential, let us consider again case (1)

in Tab. 4.1. The corresponding matrix elements in the numerator of Eq. (4.4) can be ob-

tained from Eqs. (4.5)–(4.8) by ignoring the terms associated with magnetic dipole moments

of the atoms. In this way we derive the contribution ∆Eee
AB(1) to the two-atom energy shift

∆Eee
AB to be

∆Eee
AB(1) = − 1

~3

∑

k,l

∑

j=1,2

∑

λ1,λ2

∫

d3r1

∫

d3r2

∫ ∞

0

dω1

∫ ∞

0

dω2
1

(ωk
A + ω1)(ω1 + ω2)(ωl

B + ωj)

×
{

δj1d
0k
A ·Gλ1

(rA, r1, ω1)·G∗T
λ1

(rB, r1, ω1)·dl0
B dk0

A ·Gλ2
(rA, r2, ω2)·G∗T

λ2
(rB, r2, ω2)·d0l

B

+ δj2d
0k
A ·Gλ1

(rA, r1, ω1)·G∗T
λ1

(rB, r1, ω1)·d0l
B dk0

A ·Gλ2
(rA, r2, ω2)·G∗T

λ2
(rB, r2, ω2)·dl0

B

}

.

(4.11)

Using the integral relation (2.35) we may perform the volume integrals in Eq. (4.11) to

simplify it to

∆Eee
AB(1) = − µ2

0

~π2

∑

n,m

∫ ∞

0

dω

∫ ∞

0

dω′ ω2ω′2

(

1

D1a

+
1

D1b

)

×
[

d0k
A · ImG(rA, rB, ω) · d0l

B

][

d0k
A · ImG(rA, rB, ω

′) · d0l
B

]

, (4.12)

where D1a and D1b are, respectively, the first and second denominators in Tab. 4.1, and

without loss of generality we have assumed that the matrix elements of the electric-dipole

operators are real. The contributions ∆Eee
AB(i) to ∆Eee

AB which correspond to the cases (2)–

(10) in Tab. 4.1 can be calculated analogously. It turns out that they differ from Eq. (4.12)

only in the energy denominators. Therefore, ∆Eee
AB can be found from the right-hand side

of Eq. (4.12) by replacing the brackets in the first line by a sum over all denominators, that

can be replaced by

4(ωk
A + ωl

B + ω)

(ωk
A + ωl

B)(ωk
A + ω)(ωl

B + ω)

(

1

ω + ω′
− 1

ω − ω′

)

(4.13)

under double frequency integral in (4.12), where we have exploited the fact that the remaning

integrand is symmetric with respect to an exchange of ω and ω′ (Appendix C). Hence, the

two-atom contributions ∆Eee
AB(k) to the fourth-order energy shift lead to the vdW potential
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Vee(rA, rB)=
∑

i ∆EAB(i) as follows:

Vee(rA, rB) = −4µ2
0

~π2

∑

k,l

1

ωk
A + ωl

B

∫ ∞

0

dω

∫ ∞

0

dω′ω
2ω′2(ωk

A + ωl
B + ω)

(ωk
A + ω)(ωl

B + ω)

(

1

ω+ω′
− 1

ω−ω′

)

× [d0k
A ·ImG(rA, rB, ω)·d0l

B ][d0k
A ·ImG(rA, rB, ω

′)·d0l
B ]. (4.14)

The integral over ω′, upon using the identity Im G=(G−G∗)/(2i) and relation (2.25) can

be written as

∫ ∞

0

dω′

(

1

ω + ω′
− 1

ω − ω′

)

ω′2ImG(rA, rB, ω
′)

=
1

2i

∫ ∞

−∞

dω′

(

1

ω + ω′
− 1

ω − ω′

)

ω′2G(rA, rB, ω
′), (4.15)

where the poles at ω′=−ω and ω′=ω are to be treated as principal values. The Green tensor

is analytic in the upper half of the complex frequency plane including the real axis, apart

from a possible pole at the origin. We may therefore replace the integral on the right-hand

side of Eq. (4.15) by contour integrals along infinitely small half-circles surrounding ±ω,

and an infinitely large half-circle in the upper complex half-plane. The integral along the

infinitely large half-circle vanishes and collecting the contributions from the infinitely small

half-circles, we end up with

∫ ∞

0

dω′

(

1

ω + ω′
− 1

ω − ω′

)

ω′2ImG(rA, rB, ω
′) =

π

2
ω2[G(rA, rB, ω)+G∗(rA, rB, ω)], (4.16)

where we have again made use of the relation (2.25). Substitution of Eq. (4.16) into

Eq. (4.14) leads to

Vee(rA, rB) = − µ2
0

i~π

∑

k,l

1

ωk
A+ωl

B

{
∫ ∞

0

dω
ω4(ωk

A+ωl
B+ω)

(ωk
A+ω)(ωl

B+ω)

+

∫ −∞

0

dω
ω4(ωk

A + ωl
B − ω)

(ωk
A − ω)(ωl

B − ω)

}

[d0k
A ·G(rA, rB, ω)·d0l

B ]2. (4.17)

It can be seen that the integrands in Eq. (4.17) are analytic in the upper half of the complex

frequency plane, including the positive real axis. Therefore, this equation can be further

simplified by using a contour-integral techniques analogous to the one below Eq. (3.14),

which transforms the integrals on the right-hand side to the ones over the imaginary axis.

Combining the contributions from the two integrals leads to

Vee(rA, rB) = −2µ2
0

~π

∑

k,l

∫ ∞

0

du u4ωk
Aω

l
B

[(ωk
A)2+u2][(ωl

B)2+u2]
[d0k

A ·G(rA, rB, iu)·d0l
B ]2. (4.18)
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An expression of this type was first given in Ref. [32] on the basis of a heuristic general-

ization of the respective free-space result. We may rewrite Eq. (4.18) in terms of electric

polarizabilities of the atoms defined by Eq. (3.8) as

Vee(rA, rB) = −~µ2
0

2π

∫ ∞

0

du u4 Tr
[

αA(iu)·G(rA, rB, iu) ·αB(iu)·G(rB, rA, iu)
]

, (4.19)

where Eq. (2.35) is used. In particular for isotropic atoms Eq. (4.19) becomes

Vee(rA, rB) = −~µ2
0

2π

∫ ∞

0

du u4αA(iu)αB(iu) Tr
[

G(rA, rB, iu)·G(rB, rA, iu)
]

. (4.20)

Now, we calculate the electric-magnetic vdW potential Vem, which is due to contribution

of atom A undergoing electric transitions and B undergoing magnetic transitions. Each of

the possible intermediate-state combinations listed in Tab. 4.1 contributes to Vem, where

again we begin with the intermediate states of case (1). The respective matrix elements

in the numerator of Eq. (4.4) can be obtained from Eqs. (4.5)–(4.8) by ignoring the terms

associated with either magnetic dipole moment of atom A or electric dipole moment of atom

B. Substituting the results in Eq. (4.4) the contribution ∆Eem
AB(1) to the two atom energy

shift ∆Eem
AB is found to be

∆Eem
AB(1) =

µ2
0

~π2

∑

k,l

∫ ∞

0

dω ω

∫ ∞

0

dω′ ω′

(

1

D1a

+
1

D1b

)

×
{[

d0k
A · ImG(rA, rB, ω)×←−∇B ·m0l

B

]

[

d0k
A ·∇B × ImG(rB, rA, ω

′) ·m0l
B

]

}

, (4.21)

where the integral relation (2.35) is used. One can then easily find that the contributions

∆Eem
AB(k) (k ∈ {2, 3, . . . , 10}) from the other possible intermediate-state combinations differ

from Eq. (4.21) only with respect to their energy denominators and signs. Case (6) leads

to two terms with different energy denominators 1/D6a +1/D6b, just like case (1), while all

other cases only give rise to a single term each. Furthermore, the contributions from cases

(3)–(5), (8)–(10) differ in sign from Eq. (4.21). The electric–magnetic vdW potential can

be found as the sum of all contributions Vem(rA, rB)=
∑

k ∆Eem
AB(k). It can be seen that the

denominator sum

1

D1a

+
1

D1b

+
1

D2

− 1

D3

− 1

D4

− 1

D5

+
1

D6a

+
1

D6b

+
1

D7
− 1

D8
− 1

D9
− 1

D10
(4.22)

can be replaced by

4(ωk
A + ωl

B + ω)

(ωk
A + ωl

B)(ωk
A + ω)(ωl

B + ω)

(

1

ω + ω′
+

1

ω − ω′

)

, (4.23)
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under the double frequency integral in Eq. (4.21) (Appendix C). Hence the interaction

potential Vem(rA, rB) can be obtained from the right-hand side of Eq. (4.21) by replacing

the brackets in the first line with (4.23) as

Vem(rA, rB) = −4µ2
0

~π2

∑

k,l

1

ωk
A + ωl

B

∫ ∞

0

dω

∫ ∞

0

dω′ωω
′(ωk

A + ωl
B + ω)

(ωk
A + ω)(ωl

B + ω)

(

1

ω + ω′
+

1

ω − ω′

)

×
{[

d0k
A ·ImG(rA, rB, ω)×←−∇B ·m0l

B

]

[

m0l
B ·∇B × Im G(rB, rA, ω

′) · d0k
A

]

}

. (4.24)

Finally, following a procedure similar to the one for converting Eq. (4.14) to (4.19), we will

end up with

Vem(rA, rB) =
~µ2

0

2π

∫ ∞

0

du u2Tr
[

αA(iu) ·KT(rB, rA, iu) · βB(iu) ·K(rB, rA, iu)
]

=
~µ2

0

2π

∫ ∞

0

du u2αA(iu)βB(iu)Tr
[

KT(rB, rA, iu) ·K(rB, rA, iu)
]

, (4.25)

where

K(r, r′, ω) = ∇×G(r, r′, ω), (4.26)

and the second equality holds for isotropic atoms. Obviously, the magnetic–electric potential

Vme(rA, rB), which is due to all contributions of atom A undergoing magnetic transitions and

atom B undergoing electric transitions, can be obtained from Eq. (4.25) by interchanging

the subscripts A and B on the right-hand side of Eq. (4.25).

The magnetic–magnetic potential Vmm, associated with magnetic transitions of both

atoms, can be found in a procedure analogous to the one outlined above for deriving

Eq. (4.25), resulting in

Vmm(rA, rB) = −~µ2
0

2π

∫ ∞

0

duTr [βA(iu) ·L(rA, rB, iu) · βB(iu) ·L(rB, rA, iu)]

= −~µ2
0

2π

∫ ∞

0

du βA(iu)βB(iu)Tr [L(rA, rB, iu) ·L(rB, rA, iu)] , (4.27)

where the tensor L is given by Eq. (3.16) and again the second equality holds for isotropic

atoms.

The total two-atom vdW potential of two polarizable and (para)magnetizable atoms

placed within an arbitrary environment of magnetoelectric bodies is given by Eq. (4.10)

together with Eqs. (4.19), (4.25) and (4.27) (the diamagnetic contribution to the dispersion

potential of two atoms in free space is discussed in Refs. [102, 103, 104]). Having obtained

the single-atom and two-atom vdW potentials, the total vdW force on atom A can be

deduced from the potential U(rA, rB)

U(rA, rB) = UA(rA) + UB(rB) + V (rA, rB), (4.28)
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according to

FA(rA, rB) = −∇AU(rA, rB) = −∇AUA(rA) + FAB(rA,rB), (4.29)

with FAB being the interatomic force on atom A

FAB(rA,rB) = −∇AV (rA, rB). (4.30)

4.2 Local-field corrections

The two-atom interaction potentials given in Sec. 4.1 refer to two atoms placed in empty

regions. As in the single-atom case, the potential formulae are to be corrected when one

or both atoms are embedded in a magnetoelectric medium. Again, to treat the local field

corrections we may apply the real-cavity model; each atom can be considered to be sur-

rounded by small spherical free-space cavities of radius Rc. The local field corrected form

of the Green tensor G(rA, rB, ω) is found in Ref. [64] to be

Gloc(rA, rB, ω) =
3εA

2εA + 1
G(rA, rB, ω)

3εB
2εB + 1

, (4.31)

where εA(B) = ε(rA(B), ω) and µA(B) = µ(rA(B), ω) are, respectively, the permittivity and

permeability of the unperturbed medium at the position of the guest atom A(B).

It may be instructive to compare Eq. (4.31) with the local-field corrected Green tensor

for equal positions, Eq. (3.21). The position-independent first term on the right-hand side

of Eq. (3.21), describes the electromagnetic field reaching the point rA, where it originated,

after (multiple) scattering at the inner surface of the cavity surrounding atom A, and hence,

a similar term does not exist in Eq. (4.31), in which A and B refer to two separate points

(rA 6= rB).

Inserting the corrected Green tensor into Eq. (3.25), one obtains the local-field corrected

form of the vdW interaction potential as [64]

Vee(rA, rB) = −~µ2
0

2π

∫ ∞

0

du u4

[

3εA(iu)

2εA(iu)+1

]2 [

3εB(iu)

2εB(iu)+1

]2

× Tr
[

αA(iu) ·G(rA, rB, iu) ·αB(iu) ·G(rB, rA, iu)
]

, (4.32)

Following the method used in Ref. [64] in obtaining Eq. (4.32), the respective local-field

corrected tensors for electric-magnetic and magnetic-magnetic vdW interaction potentials

can be found in term of the uncorrected ones, respectively, as [HS5]

Kloc(rA, rB, ω) =
3

2µA + 1
K(rA, rB, ω)

3εB
2εB + 1

, (4.33)
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Lloc(rA, rB, ω) =
3

2µA + 1
L(rA, rB, ω)

3

2µB + 1
. (4.34)

The latter is almost a trivial consequent of having Eq. (3.30) obtained and a comparison

between Eqs. (3.21) and (4.31). Replacing the uncorrected tensors in Eqs. (4.25), and (4.27)

with the corrected ones leads to their local-field corrected form

Vem(rA, rB) =
~µ2

0

2π

∫ ∞

0

du u2

[

3

2µA(iu) + 1

]2 [

3εB(iu)

2εB(iu) + 1

]2

× Tr
[

αA(iu) ·KT(rB, rA, iu) · βB(iu) ·K(rB, rA, iu)
]

, (4.35)

Vmm(rA, rB) = −~µ2
0

2π

∫ ∞

0

du

[

3

2µA(iu) + 1

]2 [

3

2µB(iu) + 1

]2

× Tr [βA(iu) ·L(rA, rB, iu) · βB(iu) ·L(rB, rA, iu)] . (4.36)

Recall that Vme(rA, rB) can be obtained from Eq. (4.35) by interchanging subscripts A and

B on the right-hand side of this equation. Needless to say that Eqs. (4.32),(4.35), and (4.36)

reduce to Eqs. (4.19), (4.25), and (4.27), respectively, when the atoms are situated in free

space so that εA(B) = εA(B) =1.

4.3 Applications

Further process on the potential formulae, Eqs. (4.32), (4.35), and (4.36), is possible by

substituting the explicit form of the respective tensors, G, K, and L. This requires that

the electromagnetic and geometric properties of the material environment be specified. In

this section, considering various material systems we present the vdW potential formulae in

explicit forms with respect to electric permittivities, magnetic permeabilities, and geometric

properties of the systems. In order to illustrate the effect of the bodies on the interactions,

the examples are supported by numerical results.

4.3.1 Bulk medium

Let us, for example, consider the two atoms embedded in an infinitely extended bulk medium

of permittivity ε(ω) and permeability µ(ω). To illustrate the relevance of the local-field

corrections, let us first consider the uncorrected two-atom potential and begin with the

contributions (4.19) and (4.27), which by making use of the bulk-material tensors as given

in Eqs. (3.25) and (3.29) take the form

Vee(rA, rB) =
−~

16π3ε2
0l

6

∫ ∞

0

duαA(iu)αB(iu)
h1[n(iu)ul/c]

ε2(iu)
(4.37)
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and

Vmm(rA, rB) =
−~µ2

0

16π3l6

∫ ∞

0

du βA(iu)βB(iu)µ2(iu)h1[n(iu)ul/c] (4.38)

[l= rB− rA, l= |l|], where

h1(x) = e−2x(3 + 6x+ 5x2 + 2x3 + x4). (4.39)

We see that, due to the factors ε−2(iu) and µ2(iu), the uncorrected quantities Vee and Vmm

do not transform into each other under the duality transformation ε↔ µ, c2α↔ β. As a

consequence, the uncorrected total two-atom potential violates the duality symmetry.

By contrast, the local-field corrected two-atom potential obeys the duality symmetry.

From Eqs. (4.32) and (4.36) together with Eqs. (3.25) and (3.29), respectively, we find that

Vee(rA, rB) =
−~

16π3ε2
0l

6

∫ ∞

0

duαA(iu)αB(iu)
81ε2(iu)

[2ε(iu) + 1]4
h1[n(iu)ul/c], (4.40)

Vmm(rA, rB) =
−~µ2

0

16π3l6

∫ ∞

0

du βA(iu)βB(iu)
81µ2(iu)

[2µ(iu) + 1]4
h1[n(iu)ul/c]. (4.41)

The needed tensor Kbulk for calculating the interaction potentials Vem and Vme, can be

obtained by substituting the bulk Green tensor (3.25) into Eq. (4.26) as

Kbulk(rB, rA, ω) = −KT

bulk(rB, rA, ω) =
−µ(ω)eikl

4πl2
(1−ikl)el×I (4.42)

(el = l/l). We find that Eq. (4.35) takes the form

Vem(rA, rB) =
~µ2

0

16π3l4

∫ ∞

0

du u2αA(iu)βB(iu)
81ε2(iu)µ2(iu)

[2ε(iu) + 1]2[2µ(iu) + 1]2
h2[n(iu)ul/c],

(4.43)

where

h2(x) = e−2x(1 + 2x+ x2), (4.44)

from which Vme(rA, rB) can be obtained by simply interchanging subscripts A and B on the

right-hand side. Inspection of Eqs. (4.40), (4.41), and (4.43) immediately reveals that the

duality transformation ε↔µ, c2α↔β results in

Vee(rA, rB)↔ Vmm(rA, rB), (4.45)

Vem(rA, rB)↔ Vme(rA, rB), (4.46)

so the total potential V (rA, rB), Eq. (4.10), is invariant under the duality transformation.

The result clearly shows that (i) the inclusion in the calculation of local-field effects is

essential for obtaining duality-consistent results and that (ii) the real-cavity model is an

appropriate tool for achieving this.
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It may be instructive to have a look at the nonretarded and retarded limits of Eqs. (4.40),

(4.41), and (4.43). In the nonretarded limit where the atom–atom separation is small

in comparison with the characteristic atomic and medium wavelengths, the integrals in

Eqs. (4.40), (4.41), and (4.43) are effectively limited to a region where e−2n(iu)ul/c ≃ 1, and

the approximations h1[n(iu)ul/c]≃h1(0) and h2[n(iu)ul/c]≃h2(0) result in

Vee(rA, rB) =
−3~

16π3ε2
0l

6

∫ ∞

0

duαA(iu)αB(iu)
81ε2(iu)

[2ε(iu) + 1]4
, (4.47)

Vmm(rA, rB) =
−3~µ2

0

16π3l6

∫ ∞

0

du βA(iu)βB(iu)
81µ2(iu)

[2µ(iu) + 1]4
, (4.48)

Vem(rA, rB) =
~µ2

0

16π3l4

∫ ∞

0

du u2αA(iu)βB(iu)
81ε2(iu)µ2(iu)

[2ε(iu) + 1]2[2µ(iu) + 1]2
. (4.49)

In the opposite limit, i.e., retarded limit, due to the presence of the exponential factor in the

integrands in Eqs. (4.40), (4.41), and (4.43), only small values of u significantly contribute.

Hence we may approximately replace the atomic polarizabilities and magnetizabilities and

the permittivity and permeability of the medium by their respective static values,

αA(B)(iu) = αA(B)(0), βA(B)(iu) = βA(B)(0), ε(iu) = ε(0), µ(iu) = µ(0), (4.50)

and perform the integrals in the closed form to yield

Vee(rA, rB) = −23~cαA(0)αB(0)

64π3ε2
0l

7

81ε2(0)

n(0)[2ε(0) + 1]4
, (4.51)

Vmm(rA, rB) = −23~cµ2
0βA(0)βB(0)

64π3l7
81µ2(0)

n(0)[2µ(0) + 1]4
, (4.52)

Vem(rA, rB) =
7~cµ0αA(0)βB(0)

64π3ε0l7
81n(0)

[2ε(0) + 1]2[2µ(0) + 1]2
. (4.53)

Comparing with the case of the two atoms being in free space ε= µ= 1, we see that the

medium modifies the magnitude of the interatomic potential contributions, but does not

change their signs. Since ε(iu) > 1 and µ(iu) > 1, inspection of Eqs. (4.40) and (4.41)

reveals that the medium always leads to a reduction of Vee and Vmm. In particular in the

nonretarded limit, Vee is only influenced by the electric properties of the medium and Vmm

only by the magnetic ones, cf. Eqs. (4.47) and (4.48). On the contrary, Vem and Vme are

reduced by the medium in the retarded limit, Eq. (4.53), but are enhanced by a factor of

up to 81/16 [for ε(iu)≫ 1 and µ(iu)≫ 1] in the nonretarded limit, Eq. (4.49).

In the retarded limit, the influence of the medium on all four types of potential con-

tributions is very similar. The coupling of each atom to the field is screened by a factor

9ε(0)/[2ε(0) + 1]2 for polarizable atoms, and a factor 9µ(0)/[2µ(0) + 1]2 for magnetizable
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atoms. In addition, the reduced speed of light in the medium leads to a further reduction

of the potential by a factor n(0).

It should be pointed out that the uncorrected potentials Vmm and Vem as given by

Eqs. (4.41) and (4.43) differ from the corresponding results given in Ref. [105] by factors

of µ−4 and µ−2, respectively. The discrepancy is due to the different atom–field couplings

employed; While our calculation is based on a magnetic coupling of the form m · B̂, a m · Ĥ
coupling is used in Ref. [105], which is valid only in free space (in Gaussian units) and hence

throws some doubt on whether the results found therein are correct. The potentials derived

therein thus do not follow from a Hamiltonian that is demonstrably consistent with the

Maxwell equations and generates the correct equations of motion for the charged particles

inside the atoms, whereas both of these requirements have been verified for the Hamiltonian

(2.91) together with (2.92), (2.93) and (2.94) employed in this work. Furthermore, in spite

of the use of a m · Ĥ coupling, the contribution due to the noise magnetization contained

in Ĥ (cf. Ref. [42, 90]) was not discussed.

4.3.2 Planar multilayer system

Let us consider two isotropic atoms A and B placed respectively at the positions rA and

rB in front of the planar multilayer medium described in Sec. 3.3.1. Further, let us restrict

our considerations to atoms being only electrically polarizable where the interatomic vdW

potential is given by Eq. (4.20). We choose the coordinate system as in Sec. 3.3.1 with the

x axis chosen such that the two atoms lie in the xz plane (Fig. 4.1). The Green tensor can

· · ·

zz = 0

j = 0

ε0(ω)

µ0(ω)

d0→∞

j = 1

ε1(ω)

µ1(ω)

d2

j = 2

ε2(ω)

µ2(ω)

d2

j = N − 1

εN−1(ω)

µN−1(ω)

dN−1

A

B

l X

Z

Figure 4.1: Two atoms in the presence of the planar multilayer medium.
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be given by Eq. (3.9) with

G(0)(r, r′, ω) = − c2

4πω2l3

[

f(−ilω/c)I − g(−ilω/c) ll
l2

]

eilω/c (4.54)

[with f(x) and g(x) being defined by Eq. (3.26)] and the scattering part G(1) being given by

Eq. (3.32) together with Eqs. (3.33)–(3.36). The polarization vectors defined by Eq. (3.34)

may be written in terms of the Cartesian unit vectors as

e±
s = sin φ ex − cosφ ey, (4.55)

e±
p = ∓ bN

kN
(cosφ ex + sinφ ey)−

iq

kN
ez (4.56)

with φ being the angle between eq and ex, i.e., eq =cos φ ex +sin φ ey. Equations (4.55) and

(4.56) imply that

e+
s e−

s =











sin2 φ − sinφ cosφ 0

− sinφ cosφ cos2 φ 0

0 0 0











, (4.57)

e+
p e−

p =
−1

k2
N











b2N cos2 φ b2N sinφ cosφ −ibN q cos φ

b2N sinφ cosφ b2N sin2 φ −ibN q sin φ

ibNq cosφ ibNq sinφ q2











.

(4.58)

Substituting these results into Eq. (3.32) and performing the φ-integrals by means of [101]

∫ 2π

0

dφ eix cos φ cos(νφ) = 2πiνJν(x) (4.59)

[Jν(x) denoting Bessel function], the nonzero matrix elements of the scattering-Green tensor,

in the coordinate system chosen above, are found to be as follows:

G
(1)
xx(yy)(r, r

′, ω) =
1

8π

∫ ∞

0

dq qe−bN Z+

×
{

1

bN

[

J0(qX)+(−)J2(qX)
]

rs
N +

c2bN
ω2

[

J0(qX)−(+)J2(qX)
]

rp
N

}

, (4.60)

G
(1)
xz(zx)(r, r

′, ω) = +
(−)

c2

4π

∫ ∞

0

dq q2e−bN Z+
1

ω2
J1(qX)rp

N , (4.61)

G(1)
zz (r, r′, ω) =

c2

4π

∫ ∞

0

dq q3e−bN Z+
J0(qX)

bNω2
rp
N , (4.62)

where Z+ = zA + zB, X =xB −xA.
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According to the decomposition (3.9) of the Green tensor, the two-atom potential Vee,

Eq. (4.20), can be decomposed into bulk part V (0)
ee and body-induced part V (b)

ee ,

Vee(rA, rB) = V (0)
ee (rA, rB) + V (b)

ee (rA, rB), (4.63)

where the bulk part of the interaction potential reads

V (0)
ee (rA, rB) = −~µ2

0

2π

∫ ∞

0

du u4αA(iu)αB(iu)Tr
[

G(0)(rA, rB, iu)·G(0)(rB, rA, iu)
]

, (4.64)

and the body-induced part can be written as

V (b)
ee (rA, rB) = V (1)

ee (rA, rB) + V (2)
ee (rA, rB), (4.65)

with

V (1)
ee (rA, rB) = −~µ2

0

π

∫ ∞

0

du u4αA(iu)αB(iu)Tr
[

G(0)(rA, rB, iu)·G(1)(rB, rA, iu)
]

(4.66)

coming from the cross term of bulk and scattering parts, and

V (2)
ee (rA, rB) = −~µ2

0

2π

∫ ∞

0

du u4αA(iu)αB(iu)Tr
[

G(1)(rA, rB, iu)·G(1)(rB, rA, iu)
]

(4.67)

is the scattering-part contribution. The bulk part of the interaction potential can be found

from Eq. (4.40) [ε(iu)= 1=n(iu)] as

V (0)
ee (rA, rB) =

−~

16π3ε2
0l

6

∫ ∞

0

duαA(iu)αB(iu)h1(lu/c) (4.68)

with h1(x) being given by (4.39). Equations. (4.66) and (4.67) together with Eqs. (4.54)–

(4.62) leads to

V (1)
ee (rA, rB) = − ~µ2

0c
2

32π3l5

∫ ∞

0

du u2αA(iu)αB(iu) e−lu/c

∫ ∞

0

dq q e−bN Z+

×
{

[

2f(lu/c)l2 − g(lu/c)X2
]

(

rs
N

bN
− c2bN

u2
rp
N

)

J0(qX)− 2
[

f(lu/c)l2 − g(lu/c)Z2
]

×c
2q2rp

N

bNu2
J0(qX) −g(lu/c)X2

[

rs
N

bN
+
c2bN
u2

rp
N

]

J2(qX)

}

, (4.69)

V (2)
ee (rA, rB) = − ~µ2

0

64π3

∫ ∞

0

du u4αA(iu)αB(iu)

∫ ∞

0

dq q

∫ ∞

0

dq′ q′ e−(bN +b′N )Z+

{[

rs
Nr

s′
N

bNb′N

− c2b′Nr
s
Nr

p′
N

bNu2
− c2bNr

s′
Nr

p
N

b′Nu
2

+
c4rp

Nr
p′
N

u4

(

bNb
′
N +

2q2q′2

bNb′N

)]

J0(qX)J0(q
′X) +

4c4qq′rp
Nr

p′
N

u4

× J1(qX)J1(q
′X) +

[

rs
Nr

s′
N

bN b′N
+
c4bNb

′
Nr

p
Nr

p′
N

u4
+
c2b′Nr

s
Nr

p′
N

bNu2
+
c2bNr

s′
Nr

p
N

b′Nu
2

]

J2(qX)J2(q
′X)

}

(4.70)

[Z = zB − zA, b′N = bN (q′, u), rs′
N = rs

N(q′, u), and rp′
N = rp

N(q′, u)]. Equations (4.69) and

(4.70) generalize results presented in Refs. [33, 34, 37] for two atoms in front of a metalic or

dielectric half-space, respectively to arbitrary magnetodielectric multilayer systems. Since,

in this example, V =Vee we drop the subscripts ee in the rest of this section.
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Perfectly reflecting plate

As the simplest example of a planar system, let us consider the limiting case of a perfectly

reflecting plate,

N = 1, rp = rp
1 = ±1, rs = rs

1 = ∓1, (4.71)

where the upper(lower) sign corresponds to a perfectly conducting(permeable) plate. In the

retarded limit, where l, zA, zB≫ c/ωmin [ωmin = min({ωn
A′|A′ =A,B; n= 1, 2, . . .})], V (0) is

given by Eq. (4.51) with n(0)≡ 1≡ ε(0),

V (0) = −23~cαA(0)αB(0)

64π3ε2
0l

7
, (4.72)

whereas V (1) [Eq. (4.69)] and V (2) [Eq. (4.70)] can be given in closed form in some special

cases. In this limit it is convenient to replace the integration variable q in Eqs. (4.60)–(4.62)

in favour of v= bc/u with b being defined by Eq. (3.40), i.e., q=
√
v2 − 1u/c, and hence

∫ ∞

0

dq
q

b1
· · · 7→

∫ ∞

1

dv
u

c
· · · . (4.73)

In the case where X ≪ Z+ (cf. Fig. 4.1), the exponential terms in Eqs. (4.60)–(4.62)

effectively limits the integrals to the region where qX≪ 1, hence we can approximate

Jν(qX) by Jν(0)= δν0, such that the nonzero scattering-Green tensor components read

G(1)
xx (rA, rB, iu) = G(1)

yy (rA, rB, iu) =
1

8πZ+

[

rs −
(

1 + 2
c

Z+u
+ 2

c2

Z2
+u

2

)

rp

]

e−Z+u/c, (4.74)

G(1)
zz (rA, rB, iu) = − 1

2πZ+

(

c

Z+u
+

c2

Z2
+u

2

)

rp e
−Z+u/c, (4.75)

leading to

V (1) = ±~cαA(0)αB(0)

2π3ε2
0

X2 + 6l2

l3Z+(l + Z+)5
, (4.76)

V (2) = −23~cαA(0)αB(0)

64π3ε2
0Z

7
+

. (4.77)

Thus the interaction potential (4.63) reads

V =
23~cαA(0)αB(0)

64π3ε2
0

[

− 1

l7
± 32

23

X2 + 6l2

l3Z+(l + Z+)5
− 1

Z7
+

]

, (4.78)

which is in agreement with Ref. [38] in the case of a conducting plate. In particular, if

zA≪ zB, or equivalently Z+≃Z ≃ l, from Eqs. (4.76) and (4.77) it follows that

V (1) = ∓ 6

23
V (0) , (4.79)

V (2) = V (0) , (4.80)
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so the interaction potential V , Eq. (4.63), is enhanced by the presence of the perfectly

reflecting plate:

V =



















40
23
V (0) for rp(s) = +

(−)1,

52
23
V (0) for rp(s) = −(+)1.

(4.81)

Next, we discuss the behavior of V in the case where the condition zA≪ zB is not valid.

Since the bulk part V (0) [first term in the square brackets in Eq. (4.78)] is negative, the

interaction potential is enhanced(reduced) by the plate if the scattering part V (1) +V (2)

[second and third terms in the square brackets in Eq. (4.78)] is negative(positive). In the

case of a perfectly conducting plate, it is seen that especially for Z =0, briefly referred to as

the parallel case, V (1) +V (2) is positive, and hence the interaction potential is reduced by

the plate, whereas for X = 0, briefly referred to as the vertical case, V (1) + V (2) is positive

and the interaction potential is reduced iff

zB/zA . 4.90, (4.82)

where, without loss of generality, atom A is assumed to be closer to the plate than atom

B. It is apparent from Eq. (4.78) that for a perfectly permeable plate V (1) +V (2) is always

negative, and hence the interaction potential is always enhanced by the plate.

Let us now turn to the nonretarded limit, where l, zA, zB≪c/ωmax [ωmax =max({ωn
A′|A′=

A,B; n= 1, 2, . . .})], and V (0) can be found from Eq. (4.47) [ε(iu)≡ 1]

V (0) = −Cnr

l6
, (4.83)

where

Cnr =
3~

16π3ε2
0

∫ ∞

0

duαA(iu)αB(iu). (4.84)

It can be inferred that in this limit, the main contribution to the frequency integrals in

Eqs. (4.69) and (4.70) comes from the region where u/(cb)≪ 1 (compare with the single

atom case given in Ref. [97]). In this region we have

q = b

√

1− u2

b2c2
≃ b. (4.85)

Therefore, we may use this approximation in Eqs. (4.60)–(4.62) from which, by changing

the integration variable q according to

∫ ∞

0

dq
q

b1
. . . 7→

∫ ∞

u/c

db . . . (4.86)
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and performing a Taylor expansion in u/c, we find the nonzero elements of the scattering

Green tensor as

G(1)
xx (rA, rB, iu) =

c2

4πu2l5+

(

2X2 − Z2
+

)

rp, (4.87)

G(1)
yy (rA, rB, iu) = − c2

4πu2l3+
rp, (4.88)

G
(1)
xz(zx)(rA, rB, iu) = −(+)

3c2XZ+

4πu2l5+
rp, (4.89)

G(1)
zz (rA, rB, iu) =

c2

4πu2l5+

(

X2 − 2Z2
+

)

rp, (4.90)

with l+ =
√

X2 + Z2
+, leading to

V (1) = ±4X4 − 2Z2Z2
+ +X2(Z2

+ + Z2)

3l5l5+
Cnr, (4.91)

V (2) = −Cnr

l6+
. (4.92)

Hence, the interaction potential (4.63), reads, on recalling Eq. (4.63),

V =

(

− 1

l6
± 3X4 − 3Z2Z2

+ + l2l2+
3l5l5+

− 1

l6+

)

Cnr . (4.93)

Let us again consider the effect of the plate on the interaction potential for the parallel

and vertical cases. In the parallel case, Eq. (4.93) takes the form

V =

[

− 1

l6
± 4l2 + Z2

+

3l3(l2 + Z2
+)

5

2

− 1

(l2 + Z2
+)3

]

Cnr , (4.94)

which in the on-surface limit Z+→ 0 approaches

V =



















2
3
V (0) for rp(s) = +

(−)1,

10
3
V (0) for rp(s) = −(+)1,

(4.95)

in agreement with the corresponding result found in Refs. [31, 49] for the case of conducting

plate. It can be seen easily that the term V (1) [second term in the square brackets in

Eq. (4.94)] dominates the term V (2) [third term in the square brackets in Eq. (4.94)], so

V (1) +V (2) is positive(negative) for a perfectly conducting(permeable) plate, and hence the

interaction potential is reduced(enhanced) due to the presence of the plate.

In the vertical case, from Eq. (4.93) the interaction potential is obtained to be

V =

[

− 1

l6
∓ 2

3Z3
+l

3
− 1

Z6
+

]

Cnr . (4.96)

It is obvious that V (1) +V (2) [second and third terms in Eq. (4.96)] is negative when the

plate is perfectly conducting, thereby enhancing the interaction potential since V (0) [first
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term in Eq. (4.96)] is negative. In the case of a perfectly permeable plate, V (1) + V (2) is

positive iff
zB
zA

< 1 +
2

(3
2
)

1

3 − 1
≃ 14.82, (4.97)

where atom A is again assumed to be closer to the plate than atom B.

Semi-infinite magnetoelectric half-space

Let us now abandon the assumption of perfect reflectivity and consider again the thick

magnetoelectric plate for which the single-atom potential is evaluated in chapter 3, applying

the model of half-space. The body-assisted part of the two-atom potential is given by

Eq. (4.65) together with Eqs. (4.69) and (4.70), where N =1 and the reflection coefficients

rs and rp are given by Eq. (3.39).

In the retarded limit, l, zA, zB≫ c/ωmin [with ωmin being defined as above Eq. (3.41)] we

may again replace the atomic polarizability and the permittivity and permeability of the

plate by their static values. Replacing the integration variable q in Eq. (4.69) by v= b1c/u

[see Eq. (4.73)] leads to

V (1)(rA,rB) =
~c

32π3l3ε2
0

αA(0)αB(0)

∫ ∞

1

dv

{

v2

[

Z2A5− + (Z2 − 2X2)

(

A4−

l
+
A3−

l2

)

+ l2A5+ + lA4+ + A3+

]

rp(v) + 2(v2 − 1)

[

X2B5 +
(

X2 − 2Z2
)

(

B4

l
+
B3

l2

)]

rp(v)

+

[

Z2A5+ +
(

Z2 − 2X2
)

(

A4+

l
+
A3+

l2

)

+ l2A5− + lA4− + A3−

]

rs(v)

}

, (4.98)

with rs(v) and rp(v) being defined by Eq. (3.42), and

An± =
1

cn+1

∫ ∞

0

du un e−au/c
[

J0(βu/c)± J2(βu/c)
]

, (4.99)

Bn =
1

cn+1

∫ ∞

0

du une−au/cJ0(βu/c), (4.100)

with β =X
√
v2 − 1 and a= l+ vZ+. By performing the u integrals in (4.99) and (4.100),

the explicit expressions of An± and Bn will be found as follows:

A3+ =
6a

(

a2+β2
)

5

2

, A4+ =
6
(

4a2−β2
)

(

a2+β2
)

7

2

, A5+ =
30

(

4a3 − 3aβ2
)

(

a2 + β2
)

9

2

, A3− =
6
(

a3−4aβ2
)

(

a2+β2
)

7

2

,

A4− =
6
(

4a4 − 27a2β2 + 4β4
)

(

a2 + β2
)

9

2

, A5− =
30

(

4a5 − 41a3β2 + 18aβ4
)

(

a2 + β2
)

11

2

,

B3 =
3a

(

2a2 − 3β2
)

(

a2 + β2
)

7

2

, B4 =
3
(

8a4 − 24a2β2 + 3β4
)

(

a2 + β2
)

9

2

, B5 =
15a

(

8a4 − 40a2β2 + 15β4
)

(

a2 + β2
)

11

2

.

(4.101)
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Similarly, Eq. (4.70) reduces to

V (2)(rA, rB) = − ~µ2
0

64π3c2
αA(0)αB(0)

∫ ∞

1

dv

∫ ∞

1

dv′
{

(

rpr
′
p

[

3v2v′2 − 2(v2 + v′2) + 2
]

+ rsr
′
s − rsr

′
pv

′2 − rpr
′
sv

2
)

M0 + 4vv′
√
v2 − 1

√
v′2 − 1rpr

′
pM1

+
(

rsr
′
s + rpr

′
pv

2v′2 + rsr
′
pv

′2 + rpr
′
sv

2
)

M2

}

(4.102)

[rσ = rσ(v), r′σ = rσ(v′)], where

Mn =

∫ ∞

0

du u6e−(v+v′)Z+u/cJn(βu/c)Jn(β
′u/c) (4.103)

(β ′ =X
√
v′2 − 1), which can be evaluated analytically only in some special cases. In partic-

ular, when X≪Z+ (cf. Fig. 4.1), then approximately

Mn = J2
n(0)

∫ ∞

0

du u6e−(v+v′)Z+u/c =
720c7

(v + v′)7Z7
+

δn0. (4.104)

In the nonretarded limit, l, zA, zB ≪ c/[n(0)ωmax] [with ωmax being defined as above

Eq. (3.43)], we apply a similar procedure to the one below Eq. (4.84) and expand the

reflection coefficients rs and rp, Eq. (3.39), in terms of u/(bc)

rs =
µ(iu)− 1

µ(iu) + 1
− µ(iu)[ε(iu)µ(iu)− 1]

[µ(iu) + 1]2
u2

b2c2
, (4.105)

rp =
ε(iu)− 1

ε(iu) + 1
− ε(iu)[ε(iu)µ(iu)− 1]

[ε(iu) + 1]2
u2

b2c2
. (4.106)

That leads, in the case of a magnetoelectric half-space, to

V (1) =
(

3X4 − 3Z2Z2
+ + l2l2+

) C
(1)
nr

l5l5+
+

[

Z2 − 2X2 + 3Z+ (l+ − Z+)
] C

(2)
nr

l5l+
,

(4.107)

V (2) = −C
(3)
nr

l6+
, (4.108)

where

C(1)
nr =

~

16π3ε2
0

∫ ∞

0

duαA(iu)αB(iu)
ε(iu)− 1

ε(iu) + 1
, (4.109)

C(2)
nr =

~

64π3ε2
0c

2

∫ ∞

0

du u2 αA(iu)αB(iu)
[µ(iu)− 1][µ(iu)− 3]

µ(iu) + 1
, (4.110)

C(3)
nr =

3~

16π3ε2
0

∫ ∞

0

duαA(iu)αB(iu)

[

ε(iu)− 1

ε(iu) + 1

]2

. (4.111)

In the case of a purely electric half-space (µ=1), the second term in the right-hand side

of Eq. (4.107) vanishes and the vdW interaction potential becomes

V = −Cnr

l6
+

(

3X4 − 3Z2Z2
+ + l2l2+

) C
(1)
nr

l5l5+
− C

(3)
nr

l6+
, (4.112)
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with Cnr being defined by Eq. (4.84). Equation (4.112) together with Eqs. (4.109) and

(4.111) is in agreement with the results obtained in Refs. [33, 37, 34]. In particular in the

limiting case when l≪Z+, Eq. (4.112) reduces to

V = −Cnr

l6
+

(

X2 − 2Z2
)

C
(1)
nr

l5Z3
+

. (4.113)

It is seen that the second term on the right-hand side of this equation is positive(negative)

in the parallel(vertical) case, so the vdW potential is reduced(enhanced) by the presence of

the dielectric half-space.

In the case of a purely magnetic half-space (ε=1) V (2), Eq. (4.108), does not contribute

to the vdW interaction potential and vanishes as well as the first term in the right hand

side of Eq. (4.107), resulting in

V = −Cnr

l6
+

[

Z2 − 2X2 + 3Z+(l+ − Z+)
]C

(2)
nr

l5l+
. (4.114)

In particular in the limiting case when X≪Z+, Eq. (4.114) reduces to

V = −Cnr

l6
+

(

2Z2 −X2
)

C
(2)
nr

2l5Z+
. (4.115)

It is seen that the second term on the right-hand side of this equation is negative(positive)

in the parallel(vertical) case, so the vdW potential is enhanced(reduced) due to the presence

of the magnetic half-space.

It should be pointed out that the nonretarded limit for the magnetoelectric half-space

[Eq. (4.63) together with Eqs. (4.65), (4.83), and (4.107)–(4.111) ] is in general incompatible

with the limit of perfect reflectivity [ε(iu)→∞ or µ(iu)→∞] given by Eq. (4.93), as is

clearly seen from the condition given above Eq. (4.107) [cf. also the expansions (4.105) and

(4.106), which are not well-behaved in the limit of perfect reflectivity]. As a consequence,

Eq. (4.114) does not reduce to Eq. (4.93) via the limit µ(iu)→∞. It is therefore remarkable

that the result for a purely electric half-space, Eq. (4.112), does reduce to Eq. (4.93) in the

limit ε(iu)→∞, as already noted in Ref. [106] in the case of the single-atom potential.

Figures 4.2–4.4 show the results of exact (numerical) calculation of the vdW interaction

between two identical two-level atoms near a semi-infinite half-space, as given by Eq. (4.63)

together with Eqs. (4.68), (4.65), (4.69), and (4.70). In the figures the potentials and the

forces are normalized with respect to their values in free space, V (0). In the calculations, we

have used single-resonance Drude–Lorenz-type electric and magnetic susceptibilities of the

half-space,

ε(ω) = 1 +
ω2

Pe

ω2
Te − ω2 − iωγe

, (4.116)



Chapter 4. Two-atom vdW interaction potential 55

 0.6

 0.8

 1

 0.01  0.1  1  10  100

 1

 1.1

 1.2

 0.01  0.1  1  10  100

(a)

(b)

V
/V

(0
)

V
/V

(0
)

lω10/c

Figure 4.2: The vdW potential for two identical two-level atoms in the parallel case in pres-
ence of (a) a purely electric half-space with ωPe/ω10 =3, ωTe/ω10 =1, and γe/ω10 =0.001 (b)
a purely magnetic half-space with ωPm/ω10 =3, ωTm/ω10 =1, and γm/ω10 = 0.001 is shown
as a function of the atom–atom separation l [ω10 is the atomic transition frequency, and
V (0) is the potential in free space]. The atom–half-space separations are zA =zB =0.01c/ω10

(solid line), 0.2c/ω10 (dashed line), and c/ω10 (dotted line).
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µ(ω) = 1 +
ω2

Pm

ω2
Tm − ω2 − iωγm

. (4.117)

From the figures it is seen that the vdW interaction is unaffected by the presence of the

half-space for atom–half-space separations that are much greater than the interatomic sepa-

rations, while an asymptotic enhancement or reduction of the interaction is observed in the

opposite limit.

Figure 4.2(a) shows the dependence of the normalized interaction potential V on the

atom–atom separation l in the parallel case (Z =0) for different values of the distance

zA (= zB) of the atoms from a purely electric half-space. The ratio of the interatomic force

along the connecting line of the two atoms, FABx [Eq. (4.30)] to the corresponding force

in free space, F (0)
ABx, follows closely the ratio V/V (0), so that, within the resolution of the

figures, the curves for FABx/F
(0)
ABx (not shown) would coincide with those for V/V (0). The

figure reveals that due to the presence of the electric half-space the attractive interaction

potential and force are reduced, in agreement with the predictions from the nonretarded

limit, Eq. (4.113). The relative reduction of the potential and the force are not monotonic,

there is a value of the atom–atom separation where the reduction is strongest. The l-

dependence of V/V (0) in the presence of a purely magnetic half-space in the parallel case is

shown in Figs. 4.2(b). Again, the corresponding force ratio FABx/F
(0)
ABx (not shown) behaves

like V/V (0). The figure indicates that the presence of a purely magnetic half-space enhances

the vdW interaction between the two atoms, with the enhancement increasing with the

atom-atom separation, in agreement with the nonretarded limit, Eq. (4.115).

Figure 4.3 shows V/V (0) in the vertical case (X =0) when the half-space is purely electric

[Fig. 4.3(a)] or purely magnetic [Fig. 4.3(b)]. In the figure, atom A is assumed to be closer

to the surface of the half-space than atom B, and the graphs show the variation of the

interaction potential with the atom–atom separation l for different distances zA of atom

A from the surface of the half-space. It is seen that for a purely electric half-space the

potential is enhanced compared to the one observed in the free-space case—in agreement

with Eq. (4.113). Note that there are values of the atom–atom separation at which the

enhancement is strongest. For a purely magnetic half-space, the potential is seen to be

typically enhanced although for very small atom–atom separations a reduction appears

[inset in Fig. 4.3(b)]—in agreement with Eq. (4.115). Whereas the force FBAz/F
(0)
BAz for the

force acting on atom B (not shown) again follows closely the potential ratio V/V (0), the

ratio FABz/F
(0)
ABz, for the force acting on atom A noticeably differs from V/V (0), as can be

seen from comparing Figs. 4.3 and 4.4. Clearly, the reason must be seen in the different
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Figure 4.3: The vdW potential for two two-level atoms in the vertical case in the presence of
(a) a purely electric half-space and (b) a purely magnetic half-space is shown as a function of
the atom–atom separation l. The distance between atom A (which is closer to the surface of
the half-space than atom B) and the surface is zA = 0.01c/ω10 (solid line), 0.2c/ω10 (dashed
line), and c/ω10 (dotted line). All other parameters are the same as in Fig. 4.2.
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Figure 4.4: The vdW force acting on atom A (which is closer to the surface of the half-space
than atom B) in the presence of (a) a purely electric half-space and (b) a purely magnetic
half-space is shown as a function of the atom–atom separation l. All parameters are the
same as in Fig. 4.3.
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atom–atom and atom–half-space directions in the two cases.

Figures 4.2(a) and 4.3(a) showing the interaction potential of two atoms in the presence

of a purely electric half-space in the parallel and vertical cases, respectively, confirm the

results shown in Ref. [34]. The results here are more complete because they show that the

relative potential does not have the monotonic behavior suggested by the figures in Ref. [34].

4.3.3 Homogeneous sphere

So far, the theoretical studies of medium-assisted interatomic vdW interactions have con-

centrated on bulk media and infinitely extended planar bodies. Here we shall consider the

vdW interaction between two ground-state atoms located near a finite-size body, namely, a

sphere. Let us consider two ground-state isotropic atoms A and B, being polarizable as well

as magnetizable, in the presence of a homogeneous magnetoelectric sphere of permittivity

ε(ω), permeability µ(ω), and radius R. The vdW interaction potential V can be found

using Eq. (4.10) with Vee, Vem, and Vmm being calculated from Eqs. (4.20), (4.25), and

(4.27), respectively, recalling that Vme can be found from Vem by interchanging A and B.

According to the decomposition of the Green tensor, Eq. (3.9), the tensors K and L also

can be decomposed into bulk and scattering parts and hence, Vem and Vmm can be broken

down into bulk and body-induced parts just the same as Vee, Eq. (4.63). Needless to say

that again the bulk-part contribution V (0)
ee is given by Eq. (4.68), and the contributions V (0)

em ,

and V (0)
mm can be found from Eqs. (4.43) and (4.41), respectively as

V (0)
em (rA, rB) =

~µ2
0

16π3l4

∫ ∞

0

du u2αA(iu)βB(iu) h2(ul/c), (4.118)

V (0)
mm(rA, rB) =

−~µ2
0

16π3l6

∫ ∞

0

du βA(iu)βB(iu)h1(ul/c), (4.119)

with h1(x) and h2(x) being defined by Eqs. (4.39) and (4.44). We are hence left with the

calculation of the body-induced part of the potential.

Calculation of V
(b)
ee and V

(b)
mm

To calculate V (b)
ee we first need to determine the scattering part of the Green tensor, G(1).

Choosing a spherical coordinate system such that its origin coincides with the center of

the sphere, G(1) can be given by Eq. (3.46) together with Eqs. (3.47), (3.48), (3.51), and

(3.52). Without loss of generality, we assume that the two atoms are located in the xz plane

(Fig. 4.5),

rA = (rA, θA, 0), rB = (rB, θB, π). (4.120)
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Figure 4.5: Two atoms A and B in the presence of a sphere (θA + θB = Θ).

Substituting rA and rB from Eq. (4.120) into Eqs. (3.47) and (3.48), making use of the

results in Eq. (3.46), and performing the summation over m and p in Eq. (3.46) leads to

(Appendix B)

G(1)(rA, rB, ω) =
ic

4πωrArB

∞
∑

n=1

(2n + 1)

{

n(n + 1)BN
n Pn(γ)QnerAerB − sin ΘBN

n P
′
n(γ)

×
(

QB
n erAeθB +QA

neθAerB

)

− 1

n(n + 1)

[

rArBω
2

c2
BM

n P ′
n(γ)Qn +BN

n Fn(γ)Ln

]

eθAeθB

− 1

n(n + 1)

[

rArBω
2

c2
BM

n Fn(γ)Qn +BN
n P

′
n(γ)Ln

]

eφA
eφB

}

, (4.121)

where rA(B) = |rA(B)|, γ=cos Θ, Θ= θA + θB is angular separation between two atoms with

respect to the sphere center,

Qn = h(1)
n (irAu/c)h

(1)
n (irBu/c), (4.122)

QA
n = h(1)

n (irBu/c)[yh
(1)
n (y)]′y=irAu/c, (4.123)

QB
n = h(1)

n (irAu/c)[zh
(1)
n (z)]′z=irBu/c, (4.124)

Ln = [yh(1)
n (y)]′y=irAu/c[zh

(1)
n (z)]′z=irBu/c, (4.125)

Fn(x) = n(n + 1)Pn(x)− xP ′
n(x). (4.126)
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In order to facilitate further evaluations, it is convenient to represent the free-space Green

tensor (4.54) in the same spherical coordinate system as the scattering part, so that it reads

G(0)(rA, rB, ω) =
c2eilω/c

4πω2l5
{ [

−l2f(−ilω/c) cosΘ− lAlB g(−ilω/c)
]

erAerB

+ sin Θ
[

l2f(−ilω/c) + rAlA g(−ilω/c)
]

erAeθB + sin Θ
[

l2f(−ilω/c) + rBlB g(−ilω/c)
]

eθAerB

+
[

l2f(−ilω/c) cos Θ− rArB g(−ilω/c) sin2 Θ
]

eθAeθB + l2f(−ilω/c)eφA
eφB

}

(4.127)

(l= |l|, l= rB− rA), where lA(lB) is the component of l in the direction of rA(−rB),

lA = rB cos Θ− rA, lB = rA cos Θ− rB. (4.128)

The contributions V (1)
ee and V

(2)
ee to the body-induced potential V (b)

ee , Eq. (4.65), can be

calculated by using G(0) and G(1) from Eqs. (4.127) and (4.121) in Eqs. (4.66) and (4.67),

which leads to

V (1)
ee (rA, rB) =

−~µ2
0c

3

16π3l5rArB

∞
∑

n=1

(2n+ 1)

n(n + 1)

∫ ∞

0

du uαA(iu)αB(iu)e−ξ

×
(

BN
n

{

n2(n+ 1)2Pn(γ)Qn

[

γ l2f(ξ) + g(ξ)lAlB
]

+ n(n+ 1) sin2 ΘP ′
n(γ)

[

l2f(ξ)
(

QA
n +QB

n

)

+g(ξ)
(

rAlAQ
B
n + rBlBQ

A
n

)]

+l2f(ξ)Ln

[

γFn(γ) + P ′
n(γ)

]

− rArBg(ξ) sin2 ΘLnFn(γ)
}

+ rArB
u2

c2
BM

n Qn

[

g(ξ)rArB sin2 ΘP ′
n(γ)− n(n+1)l2f(ξ)Pn(γ)

]

)

, (4.129)

V (2)
ee (rA, rB) =

−~µ2
0c

2

32π3r2
Ar

2
B

∞
∑

n=1

∞
∑

n′=1

(2n+ 1)(2n′ + 1)

n(n + 1)n′(n′ + 1)

∫ ∞

0

du u2αA(iu)αB(iu)

×
{

BN
n B

N
n′

[

n2(n+ 1)2n′2(n′ + 1)2Pn(γ)Pn′(γ)QnQn′ + n(n+ 1)n′(n′ + 1) sin2 ΘP ′
n(γ)P

′
n′(γ)

×
(

QA
nQ

A
n′ +QB

nQ
B
n′

)]

+
(

r2
Ar

2
B

u4

c4
BM

n B
M
n′ QnQ

′
n +BN

n B
N
n′LnLn′

)

[

Fn(γ)Fn′(γ) + P ′
n(γ)P ′

n′(γ)
]

−2rArB
u2

c2
BM

n B
N
n′QnLn′ [P ′

n(γ)Fn′(γ)+Fn(γ)P
′
n′(γ)]

}

, (4.130)

where ξ = lu/c. Further evaluation of Eqs. (4.129) and (4.130) requires numerical methods

in general. Before doing so, let us consider the limiting cases of large and small spheres.

The limiting case of a large sphere may be defined by the requirement that

δA′ ≡ rA′ − R≪ R, (A′ = A,B) (4.131)

and

l ≪ R⇒ Θ≪ 1 (4.132)
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(cf. Fig. 4.5). In this limit, the body-induced part of the interaction potential is found to

be (Appendix B.2)

V (b)
ee =

1

l5l5+

{

(

3X4 − 3δ2
−δ

2
+ + l2l2+

)

I011 −
l2+
R

[

3l2+(l+− δ+) + δ+(2δ2
−−X2)

]

I012

+l4+
[

δ2
− − 2X2 + 3δ+(l+ − δ+)

]

C(2)
nr −

3l5

l+
I022 −

l5

Rl3+

[

2l2+δ+ + 3
(

δ3
+ − l3+

)]

I023

− l
5δ+
Rl3+

(

5δ2
+ + 2X2

)

I123

}

, (4.133)

with X =−RΘ, δ± = δB− δA, l+ =
(

X2 + δ2
+

)1/2
,

Iijk =
~

16π3ε2
0

∫ ∞

0

duαA(iu)αB(iu)εi(iu)
[ε(iu)− 1]j

[ε(iu) + 1]k
, (4.134)

and C
(2)
nr being given by Eq. (4.110). The case of a purely electric sphere can be simply

obtained by setting µ(iu) = 1 in Eq. (4.133). For a purely magnetic sphere [ε(iu) = 1],

Eq. (4.133) reduces, under the conditions (4.131) and (4.132), to

V (b)
ee = [δ2

− − 2X2 + 3δ+(l+ − δ+)]
C

(2)
nr

l5l+
, (4.135)

that is the body-induced interaction potential in the presence of a purely magnetic half-

space [cf. Eq. (4.114)]. As expected, Eq. (4.133) for l+/R→ 0 reduces to the body-assisted

potential found for a half-space, Eq. (4.65) together with (4.107) and (4.108).

In the opposite limit of small sphere, where

R≪ rA′ (A′ = A,B), (4.136)

the body-induced part of the interaction potential yield the form (Appendix B.2)

V (b)
ee =

~

64π4ε3
0r

3
Ar

3
Bl

3

∫ ∞

0

duαA(iu)αB(iu)e−(rA+rB+l)u/c

×
(

αsp(iu)

{

[

2(1 + a)− g(a) sin2 Θ
]

g(b)f(ξ) + 2a2f(b)f(ξ) +
[

(2l2 − rArB cos Θ)f(a)f(b)

+ 2a2f(b)rAlA − 2b2f(a)rBlB
]g(ξ)

l2
sin2 Θ− 4(1 + a)(1 + b)

g(ξ)

l2
lAlB cos Θ

}

+
ab

c2
(1 + a)(1 + b)βsp(iu)

[

g(ξ)
rArB

l2
sin2 Θ− 2f(ξ) cosΘ

])

(4.137)

(a=rAu/c, b=rBu/c), where αsp and βsp are defined by Eqs. (3.64) and (3.65), respectively.

As in the case of singl-atom potential Eq. (3.63), we may replace the sphere parameters αsp

and βsp, respectively with the electric and magnetic polarizability of an atom, to obtain the

non-additive interaction potential of three atoms, two of which being purely electric whereas

the third atom being simultaneously electrically and magnetically polarizable. Indeed, after
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a straightforward but lengthy calculation, it can be shown that in the case of a purely

electric sphere, Eq. (4.137) [βsp(iu) = 0] leads to the interaction potential between three

electric atoms, as derived in Refs. [55, 57, 59, 107].

In the retarded limit where l,rA,rB ≫ c/ωmin (ωmin denoting the minimum frequency

among the relevant atomic and medium transition frequencies), due to the presence of the

exponential term in the integral in Eq. (4.137), only small values of u significantly contribute

to the integral. Therefore, the electric and magnetic polarizabilities can be approximately

replaced with their static values. After performing the remaining integral and expressing

all the geometric parameters in terms of rA, rB, and l, we arrive at

V (b)
ee =

~cαA(0)αB(0)

32π4ε3
0r

5
Ar

5
Bl

5(rA + rB + l)7

[

αsp(0)
{

S[h3(rA, rB, l)]

+ S[h3(rB, l, rA)] + S[h3(l, rA, rB)]
}

+
r2
Ar

2
B

c2
βsp(0)S[h4(rA, rB, l)]

]

, (4.138)

where

h3(x, y, z) =3x6y2(y − x)(x+ y + 7z)(x2 + 7xy + 11y2)− x4y2z2(53x4 + 280x3y − 137x2y2

− 329xy3 − 623xy2z − 192y2z2), (4.139)

h4(x, y, z) =3x4(y − x)(x+ y + 7z)(x2 + 7xy + 11y2)− 2x3z2(x+ y)(26x2 + 93xy − 133y2)

− 7x2z5(3x− 2y)− 14x3z3(2x2 − 3xy − 13y2)− x3z4(17x+ 161y)

+ 2xz6(31x+ 105y) + 5z7(14x+ z), (4.140)

and S[f(x, y, z)]= f(x, y, z)+ f(y, x, z).

In the nonretarded limit where l,rA,rB ≪ c/[n(0)ωmax] (ωmax denoting the maximum

frequency among the relevant atomic and medium transition frequencies), the leading con-

tribution to the integral in Eq. (4.137) comes from the region where e−(rA+rB+l)u/c ≃ 1, so

Eq. (4.137) reduces to

V (b)
ee =

3~

64π4ε3
0r

3
Ar

3
Bl

3

{[

1 +
1

l2
(4lAlB − rArB sin2 Θ) cos Θ + cos2 Θ

]

J1

+
rArB

c4

(

rArB

l2
sin2 Θ− 2

3
cos Θ

)

J2

}

, (4.141)

where

J1 =

∫ ∞

0

duαA(iu)αB(iu)αsp(iu), (4.142)

J2 =

∫ ∞

0

du u2αA(iu)αB(iu)βsp(iu). (4.143)
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Figure 4.6: The triangle formed by the two atoms (at the corners A and B) and the sphere
(at the corner C) is shown for the small-sphere limit. It is seen that the vector products
a·b, b·c and c·a in the Axilrod and Teller’s formula [55, 57] are equal to − cosα, − cosβ,
and − cos Θ, respectively.

In particular, in the case of a purely electric sphere (J2 =0), Eq. (4.141) can be written in a

very symmetric form. For this purpose we introduce the unit vectors a, b, and c pointing in

the directions of rA, l, and −rB, respectively (see Fig. 4.6). Noting that lA and lB defined

by Eq. (4.128) can be written as l(a·b) and l(b·c), respectively, we see that

1

l2
(4lAlB−rArB sin2 Θ) +cosΘ=3(a·b)(b·c) (4.144)

and can rewrite Eq. (4.141) as

V (b)
ee =

3~

64π4ε3
0r

3
Ar

3
Bl

3
[1− 3(a·b)(b·c)(c·a)]J1. (4.145)

If αsp(iu) in Eq. (4.142) is again identified with the electric polarizability of a single atom,

Eq. (4.145) is nothing but the formula for the nonretarded three-atom interaction potential,

which was first given by Axilrod and Teller [55, 57].

Based on numerical calculations, the effect of a medium-sized magnetoelectric sphere

on the mutual vdW interaction of two identical, electric, two-level atoms is illustrated in

Figs. 4.7 and 4.8 showing the ratio Vee/V
(0)
ee . The results have been found by exact numerical

evaluation of Eqs. (4.129), (4.130), and (4.68), where the permittivity and permeability of

the sphere have been described by the same model used for the half-space, Eqs. (4.116) and

(4.117).
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Figure 4.7: The mutual vdW potential of two identical two-level atoms in a triangular config-
uration with (a) a purely electric sphere with ωPe/ω10 =3, ωTe/ω10 =1, and γe/ω10 =0.001
and (b) a purely magnetic sphere with ωPm/ω10 =3, ωTm/ω10 =1, and γm/ω10 = 0.001 is
shown as a function of the atom–atom angular separation Θ (ω10 is the atomic transition
frequency). The sphere radius is R= c/ω10 and the distances between the atoms and the
center of the sphere are rA =rB =1.03 c/ω10 (solid line), 1.3 c/ω10 (dashed line), and 2 c/ω10

(dotted line). V (0)
ee is the potential observed in free space.
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In Fig. 4.7, a configuration is considered where the two atoms are positioned at equal dis-

tances from the sphere, rA=rB, briefly referred to as triangular configuration, and Vee/V
(0)
ee is

shown as a function of the angular separation Θ for three different values of the atom–sphere

separation. For a purely electric sphere [Fig. 4.7(a)], depending on the separation angle be-

tween the atoms, a (compared to the free-space case) relative reduction or enhancement of

the vdW potential is possible, while for a purely magnetic sphere [Fig. 4.7(b)], the potential

is typically reduced [note that for very small angular separations, a slight enhancement is

possible, as can be seen from the inset in Fig. 4.7(b)], and the reduction increases with

the angular separation. In both cases, the sphere-induced modification is strongest when

the atoms are at opposite sides of the sphere (Θ = π). Note that for small atom–sphere

separations (solid curves) and small angular separations, the potential qualitatively agrees

with the potential obtained for two atoms placed in parallel alignment near a semi-infinite

half-space, Fig. 4.2, as expected from the results in the limiting case of a large sphere.

In Fig. 4.8, a configuration is considered where the two atoms and the sphere center are

aligned on a straight line, briefly referred to as linear configuration, and Vee/V
(0)
ee is shown

as a function of the interatomic distance for three different values of the position rA of atom

A which is positioned between the sphere and atom B (Θ = 0). Unless both atoms are

very close to the sphere, the sphere gives always rise to a (compared to the free-space case)

relative enhancement of the vdW potential between the atoms; only for very small atom–

sphere separations the potential can be reduced if the sphere is purely magnetic [inset in

Fig. 4.8(b)]. Figure 4.8(a) shows that in the presence of a purely electric sphere the relative

enhancement of the potential increases with the interatomic separation l and approaches a

limit for larger interatomic separations, which depends on the separation distance between

atom A and the sphere. From Fig. 4.8(b) it is seen that in the presence of a purely magnetic

sphere the relative enhancement of the potential increases with the interatomic separation

l, reaches a maximum, and decreases with a further increase of l. In agreement with the

results of a large sphere, the potential observed for small atom sphere separations (solid

curves) and small interatomic separations qualitatively agrees with the potential obtained

for two atoms placed in vertical alignment near a semi-infinite half-space, Fig. 4.3.
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Figure 4.8: The mutual vdW potential of two identical two-level atoms in a linear config-
uration with (a) a purely electric sphere and (b) a purely magnetic sphere is shown as a
function of the interatomic distance l. Atom A is held at a fixed position between atom B
and the sphere center with rA=1.03 c/ω10 (solid line), 1.1 c/ω10 (dashed line), and 1.3 c/ω10

(dotted line). All other parameters are the same as in Fig. 4.7.
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Let us now evaluate the magnetic-magnetic part of the vdW potential, V (b)
mm, for which

the tensor L is required. The bulk part of the tensor L is given by Eq. (3.29), where

εA =µA = k=1. Comparing Eq. (3.29) with (3.25), it can be found easily that

L(0)(rA, rB, ω) = −ω
2

c2
G(0)(rA, rB, ω). (4.146)

On the other hand, the scattering part of the tensor L can be obtained by replacing G on

the right-hand side of Eq. (3.16) with G(1) from Eq. (3.46). This leads, after making use of

Eqs. (3.49) and (3.50), to

L(1)(r, r′, ω) =
−iω3

4πc3

∞
∑

n=1

2n+ 1

n(n+ 1)

n
∑

m=0

(n−m)!

(n+m)!
(2− δ0m)

×
∑

p=±1

[

BM
n (ω)Nnm,p(r, ω/c)Nnm,p(r

′, ω/c) +BN
n (ω)Mnm,p(r, ω/c)Mnm,p(r

′, ω/c)
]

.

(4.147)

By a comparison between Eqs. (4.147) and (3.46) it can be seen that L(1) can be given

as −ω2G(1)/c2 after interchanging BM
n ↔ BN

n [or, equaivalently, interchanging ε↔µ; see

Eqs. (3.51) and (3.52)]. Having these relations between the tensors L and G, a comparison

between Eqs. (4.19) and (4.27) leads directly to obtain V
(b)
mm from V

(b)
ee [Eq. (4.65) together

with Eqs. (4.66) and (4.67)] by the transformation α→ β/c2, ε↔µ [95, HS6]. Hence, all

various limiting cases treated for the potential V (b)
ee , can be transformed easily to give the

counterpart results for the potential V (b)
mm. Therefore, we are intentionally refraining from

presenting them here to avoid repetitions.

Calculation of V
(b)
em and V

(b)
me

The body-induced part of the electric-magnetic interaction potential can be considered,

similar to the electric-electric part, in the form

V (b)
em (rA, rB) = V (1)

em (rA, rB) + V (2)
em (rA, rB) (4.148)

with V (1)
em and V (2)

em being given as

V (1)
em (rA, rB) =

~µ2
0

π

∫ ∞

0

du u2αA(iu)βB(iu)Tr
[

K(0)T(rB, rA, iu) ·K(1)(rB, rA, iu)
]

, (4.149)

V (2)
em (rA, rB) =

~µ2
0

2π

∫ ∞

0

du u2αA(iu)βB(iu)Tr
[

K(1)T(rB, rA, iu) ·K(1)(rB, rA, iu)
]

. (4.150)

Here, we use the same coordinate system chosen for deriving Eqs. (4.129) and (4.130) in

which the bulk part of the tensor K given by Eq. (4.42) [µ(ω)= 1= k] takes the form

K(0)(rB, rA, ω) =
eilω/c

4πl3
(1− ilω/c)(rA sin Θ erB

eφA
+ lBeθB

eφA
+ rB sin Θ eφB

erA
+ lAeφB

eθA
)

(4.151)
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and the scattering part can be found by substituting G(1)(r, r′, ω) from Eq. (3.46) into

(4.26) and setting r and r′, respectively, to rB and rA given by Eq. (4.120), that results in

(Appendix B)

K(1)(rB, rA, ω) =
iω

4πrArB

∞
∑

n=1

(2n+ 1)

{

rAB
M
n QnP

′
n(γ) sin Θ erB

eφA

+
1

n(n+ 1)

[

rAB
M
n Q

B
nFn(γ)− rBB

N
n Q

A
nP

′
n(γ)

]

eθB
eφA

+ rBB
N
n QnP

′
n sin Θ eφB

erA

+
1

n(n+ 1)

[

rBB
N
n Q

A
nFn(γ)− rAB

M
n Q

B
nP

′
n(γ)

]

eφB
eθA

}

. (4.152)

Using Eqs. (4.151) and (4.152) in Eqs. (4.149) and (4.150), we find

V (1)
em =

−~µ2
0

16π3cl3rArB

∞
∑

n=1

(2n+ 1)

n(n + 1)

∫ ∞

0

du u3αA(iu)βB(iu)e−lu/c

(

1 +
lu

c

)

×
{

n(n + 1) sin2 Θ
[

r2
AB

M
n + r2

BB
N
n

]

QnP
′
n(γ) + rAB

M
n Q

B
n [lBFn(γ)− lAP ′

n(γ)]

+ rBB
N
n Q

A
n [lAFn(γ)− lBP ′

n(γ)]
}

, (4.153)

V (2)
em =

~µ2
0

32π3c2r2
Ar

2
B

∞
∑

n,n′=1

(2n+ 1)(2n′ + 1)

n(n+ 1)n′(n′ + 1)

∫ ∞

0

du u4αA(iu)βB(iu)

×
{

n(n+ 1)n′(n′ + 1)QnQn′ sin2 ΘP ′
n(γ)P ′

n′(γ)
[

r2
AB

M
n B

M
n′ + r2

BB
N
n B

N
n′

]

+
[

r2
BB

N
n B

N
n′QA

nQ
A
n′ + r2

AB
M
n B

M
n′ QB

nQ
B
n′

]

[Fn(γ)Fn′(γ) + P ′
n(γ)P ′

n′(γ)]

− 2rArBB
M
n B

N
n′QB

nQ
A
n′ [P ′

n(γ)Fn′(γ) + P ′
n′(γ)Fn(γ)]

}

. (4.154)

Let us, as in the case of electric-electric potential, consider the limiting cases of large and

small sphere. In the case of a large sphere, provided by the conditions (4.131) and (4.132),

we obtain (Appendix B.2)

V (b)
em =

~µ2
0

32π3l3l4+(l+ + δ+)2

{

2l+(l+ + δ+)2
[ (

X2 − δ−δ+
)

J10 +
(

X2 + δ−δ+
)

J01

]

+ l3(2l2+ +X2)(J20 + J02) +4l3
(

X2 − l+δ+
)

J11

}

, (4.155)

where X, δ±, and l+ are defined as below Eq. (4.133), and

Jkl =

∫ ∞

0

du u2αA(iu)βB(iu)

[

ε(iu)−1

ε(iu) + 1

]k [

µ(iu)− 1

µ(iu) + 1

]l

. (4.156)

In the opposite limiting case of a small sphere, where the condition (4.136) comes true, V (b)
em
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can be approximated to (Appendix B.2)

V (b)
em =

~µ3
0c

2

64π4l3r3
Ar

3
B

∫ ∞

0

du u2αA(iu)βB(iu)e−(rA+rB+l)u/c
(

1 + l
u

c

)

{

[

2rB(1 + a) sin2 Θ

+ (lB − lA cos Θ)f(a)
]

(1 + b)rBαsp(iu) +
[

2rA(1 + b) sin2 Θ + (lA − lB cos Θ)f(b)
]

× (1 + a)rA
βsp(iu)

c2

}

(4.157)

with a and b being defined below Eq. (4.137), and αsp and βsp being given by Eqs. (3.64)

and (3.65). It is worth mentioning that the non-additive interaction potential of three

atoms (polarizable atom A, magnetizable atom B, and a simultaneously polarizable and

magnetizable third atom) in free space may be obtained from Eq. (4.157) by the same

approach used below Eq. (4.137) to obtain the non-additive three-atom potential for two

polarizable atoms A and B, and a third simultaneously polarizable and magnetizable atom.

It should be pointed out that these results together with the duality principle may be

used to obtain the non-additive potential between three atoms, each being simultaneously

polarizable and magnetizable.

Let us now present some numerical results illustrating the effect of a medium-sized

magnetoelectric sphere on the electric-magnetic vdW interaction potential between two

two-level atoms with equal transition frequencies. We again focus on the case where atom

A is electric and atom B is magnetic. The results for two magnetic atoms can be found

from that of two electric atoms, Figs. 4.7 and 4.8, by the duality. Figures 4.9 and 4.10 show

the ratio Vem/V
(0)
em obtained by exact numerical computation of Eqs. (4.118), (4.153), and

(4.154), with the permittivity and permeability of the sphere being described by Eqs. (4.116)

and (4.117), respectively.

Figure 4.9 shows the ratio Vem/V
(0)
em as a function of the angular separation Θ of the

atoms in triangular configuration (rA = rB), for three different values of the atom–sphere

separation. It is seen that, dependent upon Θ, enhancement or reduction of Vem/V
(0)
em can

be observed. To be more specific, Vem/V
(0)
em first increases with Θ, attains a maximum, and

then decreases with increasing Θ to eventually become minimal at Θ = π when the atoms

are positioned at opposite sides of the sphere. Whereas the position of the maximum shifts

with the atom–sphere separation, the minimum is always at Θ = π observed. Note that

when the electric sphere is replaced with an analogous magnetic sphere, the same behavior

is found, because of duality.

Figure 4.10 illustrates the dependence of the ratio Vem/V
(0)
em on the separation distance l

between the two atoms in linear configuration, with atom A being closer to the sphere than
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Figure 4.9: The (normalized) vdW interaction potential between two two-level atoms of
transition frequency ω10 in the presence of an electric sphere is shown as a function of the
atom–atom angular separation Θ. The sphere parameters are the same as in Fig. 4.7(a).
Atom A is electrically and atom B is magnetically polarizable. The values of rA = rB are
1.03 c/ω10 (solid line), 1.3 c/ω10 (dashed line), and 2 c/ω10 (dotted line).
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Figure 4.10: The vdW interaction potential between the same two atoms as in Fig. 4.9 in
the presence of (a) an electric sphere and (b) an analogous magnetic sphere is shown as a
function of atom–atom distance l for Θ = 0 and rB = rA + l. The sphere parameters are
the same as in Fig. 4.8. The values of rA are 1.03 c/ω10 (solid line), 1.1 c/ω10 (dashed line),
1.3 c/ω10 (dotted line).
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atom B. From Fig. 4.10(a) it is seen that in the case of an electric sphere the interaction

potential is reduced compared to its value in free space; the ratio Vem/V
(0)
em decreases with

increasing l and approaches an asymptotic limit that depends to the distance between atom

A and the sphere. On the contrary, from Fig. 4.10(b) it is seen that in the case of the

analogous magnetic sphere the interaction potential is enhanced compared to its value in

free space, with a pronounced maximum of the ratio Vem/V
(0)
em being observed. For large

atom–atom distances, Vem/V
(0)
em approaches an asymptotic limit that is independent of the

distance between atom A and the sphere.

4.4 Method of image charges

Many features of the vdW potential observed in Figs. 4.2–4.4, 4.7, and 4.8 can be subject

to a physical interpretation via the method of image charges. Although being strictly valid

only for sufficiently small atom–atom and atom–surface distances (such that retardation is

negligible) and being most easily applicable in the perfect conductor limit, this approach

yields qualitative predictions for the body-induced enhancement and reduction of the poten-

tial which apply beyond this case. According to this method, the effect of the boundaries is

simulated by suitably placed image charges of appropriate magnitudes, so that the two-atom

vdW potential effectively consists of interactions between fluctuating dipoles A and B and

their images A′ and B′ in the body, with

Ĥint = V̂AB + V̂AB′ + V̂BA′ (4.158)

being the corresponding interaction Hamiltonian. Here, V̂AB denotes the direct interaction

between dipole A and dipole B, while V̂AB′ and V̂BA′ denote the indirect interaction between

each dipole and the image induced by the other one in the body. The leading contribution

to the energy shift is of second order in Ĥint,

∆EAB = −
∑

k,l 6=0

〈0A, 0B|Ĥint|kA, lB〉
~(ωk

A + ωl
B)

〈kA, lB|Ĥint|0A, 0B〉. (4.159)

In this approach, V (0) corresponds to the product of two direct interactions, so it is

negative because of the minus sign on the right-hand side of Eq. (4.159). Accordingly, V (2)

is due to the product of two indirect interactions and is also negative. Hence the realization

of enhancement or reduction of the interaction potential depends only on the sign of V (1) and

its magnitude compared to that of V (2). The terms containing one direct and one indirect

interaction are contained in V (1) and determine its sign. The orientations of the dipoles
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A and B are random and independent of each other, so that strictly speaking the signs of

all dipole–dipole interactions has to be obtained by averaging over all possible orientations.

The effect of such averaging on the sign of the interactions can be reproduced by restricting

the attention to the maximally attractive case of both dipoles pointing in the same direction

parallel to their connecting line, with the dipole–dipole interaction V̂AB being negative in this

case. The image dipoles A′ and B′ are constructed by appropriate reflection of the dipoles

A and B. The resulting signs of the interactions V̂AB′ and V̂BA′ between dipoles and image

dipoles are negative/positive if the respective dipole moments are parallel/antiparallel. We

can hence predict the sign of V (1) from a graphical construction of the image charges.

4.4.1 perfectly reflecting plate

Let us begin with the case of two atoms in the presence of a perfectly reflecting plate, for

which the sign of V (1), Eq. (4.91), is summarized in Tab. 4.2, and the graphical construction

of the image charges are sketched in Figs. 4.11 and 4.12.

conducting plate permeable plate

parallel case + −
vertical case − +

Table 4.2: Sign of V (1) for a perfectly reflecting plate.

Figure 4.11(a) shows two electric dipoles in front of a perfectly conducting plate in the

parallel case. The configuration of the dipoles and images indicates repulsion between dipole

A(B) and dipole B′(A′), so V (1) is positive, in agreement with Tab. 4.2. On the contrary,

in the vertical case from Fig. 4.11(b) an attraction is indicated, i.e., negative V (1), which is

also in agreement with Tab. 4.2.

The case of two electric dipoles in front of a perfectly permeable plate can be treated

by considering two magnetic dipoles in front of a perfectly conducting plate, as the two

situations are equivalent due to the duality between electric and magnetic fields in the

absence of free charges or currents. From Figs. 4.12(a) (parallel case) and 4.12(b) (vertical

case) it is apparent that the interaction between dipole A(B) and dipole B′(A′) is attractive

in the parallel case and repulsive in the vertical case, again confirming the sign of V (1) as

given in Tab. 4.2. When the dipole–dipole separation in Fig. 4.12(b) is sufficiently small

compared with the dipole–surface separations, then the direct interaction between the two

dipoles is expected to be stronger than their indirect interaction via the image dipoles. As
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Figure 4.11: Two electric dipoles near a perfectly conducting plate are shown in (a) a parallel
case (b) a vertical case.
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Figure 4.12: Two magnetic dipoles near a perfectly conducting plate are shown in (a) a
parallel case (b) a vertical case.

a result, V (1) will be the dominant term in V (1) +V (2) and V (1) + V (2) becomes positive.

However, when the dipole–dipole separation exceeds the dipole–surface separations, then

the indirect interaction may become comparable to the direct one, and V (2) may be the

dominant term, leading to negative V (1) + V (2). The image dipole model hence gives also a

qualitative explanation of the condition (4.97).

4.4.2 Homogeneous sphere

Let us now turn to the case of two electric atoms in the presence of a sphere. Figure 4.13

and 4.14 show, respectively, two electric dipoles and two magnetic dipoles near a purely
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electric sphere in a triangular configuration, together with their images in the sphere. As in

the case of a perfectly reflecting plate, the case of two electric dipoles in the presence of a

purely magnetic body (i.e., the sphere) is replaced by two magnetic dipoles in the presence

of a purely electric body, on the basis of utilizing the electromagnetic duality properties.

In a triangular configuration, when the inter-dipole angular separation is very small,

the curvature of the spherical surface can be disregarded and the sphere can be approxi-

mately replaced by a half-space as in Figs. 4.13(a) and 4.14(a). Hence, for small angular

separations, the interpretation of the sphere-induced enhancement or reduction of the two-

atom interaction potential is the same as the case where the atoms are in the presence

of a perfectly reflecting plate. That means, in small angular separations, a purely elec-

tric sphere suppresses the two-atom interaction potential whereas a purely magnetic sphere

enhances the potential. This confirms the numerical results for short distances presented

in Fig. 4.7. The case of two atoms located at the opposite ends of a sphere diameter
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Figure 4.13: Two electric dipoles near a purely electric sphere are shown in a triangular
configuration where the dipole-dipole angular separation (a) is small enough to replace the
sphere, approximately, by a half-space and (b) is equal to π.

is sketched in Figs. 4.13(b) and 4.14(b), which, respectively, correspond to the cases of a

purely electric sphere and a purely magnetic sphere, where in the latter the electromag-

netic duality principle is invoked. It can be inferred from the figures that, in the case of

a purely electric(magnetic) sphere V (1)
ee is negative(positive), and as a consequence, Vee is
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Figure 4.14: Two magnetic dipoles near a purely electric sphere are shown in a triangular
configuration for a (a) very small angular separation (b) maximal angular separation.

enhanced(reduced) in agreement with the curves in Fig. 4.7 (Θ = π).

We turn now to the linear configuration. For dipoles situated near a purely electric

sphere [Fig. 4.15(a)], V (1)
ee is negative resulting in an enhancement of the total interaction

potential for all distance regimes as visible in Fig. 4.8(a). For a purely magnetic sphere,

we again invoke the duality principle to replace it by a purely electric one, and the electric

dipoles by magnetic ones as shown in Fig. 4.15(b). It can be inferred from the sketch that

V
(1)
ee is positive for all distances. In order to be conclusive about the body-induced effects,

one hence has to compare the magnitudes of the competing V (1)
ee and V (2)

ee . For small atom–

atom separations, the direct interaction dominates, so V
(1)
ee is stronger than V

(2)
ee and the

potential is reduced as shown in Fig. 4.14(b), inset. As the interatomic separation increases,

the indirect interaction gains in relevance and hence V (2)
ee may become dominant leading

to an enhancement of the total vdW potential, in agreement with the curves presented in

Fig. 4.8(b).
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Figure 4.15: Two dipoles near a purely electric sphere are shown in a linear configuration.
Figure 4.15(a) is showing two electric dipoles while in Fig. 4.15(b) two magnetic dipoles are
shown.



Chapter 5

Summary and outlook

In this work the formulae of single-atom van der Waals (vdW) potential and two-atom vdW

interaction potential of ground-state electric atoms in the presence of an arbitrary arrange-

ment of linear magnetoelectric bodies have been generalized to atoms with both electric

and magnetic polarizabilities within the framework of macroscopic quantum electrodynam-

ics (QED). To this end, starting with the macroscopic Maxwell equations, we have extended

an existing quantization scheme for a system consisting of a medium-assisted electromag-

netic field and an atom with spinless constituents to a many-atom case, where in order to

account for the paramagnetic atom-field interactions correctly, the spin of the constituents

of the atoms are involved, leading to a spin-induced term in the magnetic dipole moment of

the atoms. The quantization is followed by introducing a Hamiltonian whose consistency is

examined by showing that it leads to the dynamical Maxwell equations and Newton equa-

tion of motion as the equations of motion for the electromagnetic field and for the charged

particles, respectively. By transforming the Hamiltonian to the multipolar-coupling form,

using the long wave-length approximation, and ignoring the diamagnetic properties of the

atom, the atom-field interaction part of the Hamiltonian is written as a sum over the inter-

actions of the electric and (transformed) magnetic dipoles with the (transformed) electric

and (magnetic) induction fields, respectively, where the center-of-mass motion of the atoms

are assumed to be sufficiently slow.

The single-atom vdW potential has been calculated using second-order perturbation

theory. It is seen that the potential can be thought of as being the superposition of the

potential of an electric atom and that of a magnetic atom. For the cases where the atom

under consideration is embedded in a host medium, where the field experienced by the atom

differs from the macroscopic one, the local-field corrections to the single-atom vdW potential

are presented using the real-cavity model. The corrections come into effect via frequency-

dependent factors, which depend on the magnetoelectric properties of the medium at the

location of the atom. The resulting expression has been applied for an atom in the presence

of a planar, magnetoelectric, multilayer media and then for a homogeneous, medium-sized

magnetoelectric sphere. It is found that, in both examples, the electric and magnetic parts

of the vdW potential can be transformed into one another by duality transformations. The
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sphere example has been considered also for the limiting cases of a large sphere and a small

sphere. In particular, in the limiting case of a small sphere the formula of the interaction

potential between two atoms in free space, both having electric and magnetic polarizabilities,

is reobtained by replacing the sphere polarizabilities with those of a single atom. In a many-

atom case as long as the interatomic potentials are disregarded comparing to the atom-body

potentials, e.g., in a dilute gas near a magnetoelectric media, the vdW potential of a many-

atom system can be obtained by a summation over the single-atom vdW potentials. As the

interatomic distances are reduced, the interatomic potentials can not be discarded.

The two-atom vdW interaction potential has been derived employing fourth-order per-

turbation theory. It is seen that the interaction potential, can be considered as the super-

position of the interaction potentials for the four different possible scenarios, in which each

atom has either electric or magnetic polarizability. The local-field corrections to the formu-

lae for the cases where one or both atoms are embedded in host media have been presented,

again using the real-cavity model. By applying the theory to the case where the two atoms

are embedded in a bulk magnetoelectric medium, it is inferred that (i) in general, unless the

local-field corrections are taken into account the resulting expressions for the potential do

not respect the electromagnetic duality properties, (ii) the real-cavity model is an appropri-

ate tool for obtaining the local-field corrections, and (iii) a medium-induced enhancement

or reduction in the interaction potential is possible depending on the electric and magnetic

strength of the polarizabilities of both atoms and the medium. In particular, in the retarded

limit the interaction is always screened by the medium.

The formula found for the two-atom vdW interaction potential has also been applied to

calculate the interaction potential between two electric atoms in the presence of a planar

magnetoelectric multilayer, and then to two atoms with both electric and magnetic polariz-

abilities in the presence of a magnetoelectric homogeneous sphere. As simpler cases for the

former application, the interaction potential in the presence of a perfectly reflecting plate

and in the presence of a thick magnetoelectric layer (half-space) are calculated with special

emphasis on the limiting cases of retarded and nonretarded, and particular arrangements

of the atoms with respect to the bodies. Developing the applications to more complex ge-

ometries may facilitate controlling the dispersion forces via manipulating the surrounding

environment. Repulsive components of the forces would open interesting possibilities of

reducing or even eliminating the potentially disturbing effects of attractive forces.

In computing the interaction potential in the presence of a sphere, for the sake of trans-
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parency, we broke the calculation down into two cases of equal-type atoms and opposed-type

atoms, with respect to their electric or magnetic polarizabilities, and we could thus shorten

the calculation by showing that the potential expressions do respect the duality transfor-

mations. As in the case of single-atom potential, we have also considered the two limiting

cases of a large sphere and a small sphere for the two-atom interaction potential. In partic-

ular, making use of the result for a small sphere, we have generalized an existing formula

for the non-additive interaction potential between three electric atoms to atoms owning,

simultaneously, both electric and magnetic polarizabilities.

To illustrate the effect of the bodies on the vdW interaction potential, the examples of

two atoms in the presence of a half-space and the one for two atoms in the presence of a

sphere are followed by numerical results, where the atoms are at equal distances from the

body, or aligned on a straight line perpendicular to the surface of the body. The numerical

calculations show that — compared to the case of the atoms being in free space — the vdW

interaction can be enhanced as well as reduced, depending on the electromagnetic properties

of the body, the position of the atoms with respect to the body, and the position of the

atoms relative to each other. Finally, the body-induced enhancement or reduction of the

vdW interatomic potential (shown by the numerical results) in the nonretarded limit are

interpreted, qualitatively, exploiting the method of image-charges.

The theory can be extended in various aspects. The medium-assisted single- and two-

atom vdW potentials, for atoms being in arbitrary energy eigenstates, are already given

in the literature for electric atoms (for the two-atom case see, e.g., Refs. [108, 109]). It is

almost a trivial step to include paramagnetic atoms in the perturbative calculations. When

dealing with excited atoms, a possible time-dependence of the vdW forces may need to be

taken into account. This is particularly the case where some atomic transition frequencies

are neighboring some resonant frequencies of the material environment. In such cases the

perturbation theory may become invalid because of the strong atom-field coupling. One

possible solution would be a non-perturbative aproach similar to the one given for a single

electric atom in Ref. [42]. By using a more general formalism for macroscopic QED in linear

media [87], the theory can be extended to the cases of anisotropic or non-local responding

media. The influence of finite temperatures could be included by replacing the ground-state

expectation value of the medium-assisted field with its thermal expectation value at the

beginning of the perturbative calculations.
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Appendix A

Heisenberg’s equations of motion

The Maxwell equations (2.76) and (2.77) are established in Ref. [42] by making use of

Heisenberg equation of motion (2.37) for induction and displacement fields, but for the

case where only a single atom interacts with medium-assisted electromagnetic field and the

spin-filed interaction is absent. Since the induction field commutes with r̂α, p̂α, ŝα, Â, and

P̂A, the presence of the atoms and particles spin do not affect the commutation relation

[B̂(r), Ĥ] with Ĥ being given by Eq. (2.67) and it reduces to [B̂(r), ĤF ]. Hence, Eq. (2.76)

remains unchanged with respect to Ref. [42].

In order to prove Eqs. (2.77) and (2.78) it is useful to decompose the Hamiltonian (2.67)

into two parts as

Ĥ = Ĥ0 + Ĥs (A.1)

with Ĥ0 representing the first four terms in Eq. (2.67) and Ĥs being the Pauli interaction

term

Ĥs = −
∑

A

∑

α∈A

γα ŝα · B̂(rα). (A.2)

Thus the Heisenberg equation of motion for displacement vector becomes

˙̂
D(r) =

1

i~
[D̂(r), Ĥ0] +

1

i~
[D̂(r), Ĥs]. (A.3)

The firs and second terms on the right-hand side of this equation are responsible for the

generalization of the counterpart equation in Ref. [42] to many-atom case and spin-present

case, respectively. The generalization to many-atom case can be performed in a procedure

completely analogous to the single-atom case in Ref. [42] and leads to

1

i~
[D̂(r), Ĥ0] = ∇× Ĥ(r)−

∑

A

∑

α∈A

qα
2

[

˙̂rαδ(r− r̂α) + δ(r− r̂α) ˙̂rα

]

. (A.4)

Recalling Eqs. (A.2) and (2.71) together with Eq. (2.58) and noting that r̂α commutes with

both ŝα and B̂(r̂α) we will find

[D̂(r), Ĥs] = [D̂(r), Ĥs]. (A.5)

Combining Eqs. (A.5), (A.2), and (2.45) we obtain

1

i~
[D̂(r), Ĥs] =

∑

A

∑

α∈A

γα

i~
[D̂(r), Â(rα)]×←−∇α · ŝα =

∑

A

∑

α∈A

γα ŝα ·∇× δ⊥(r− rα)

=
∑

A

∑

α∈A

γα ŝα ·∇× [δ(r− rα)I] =
∑

A

∑

α∈A

γα ŝα ×∇δ(r − rα), (A.6)
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where in the second equality the commutation relation between the displacement field and

vector potential is used [42]

[D̂(r), Â(r′)] = i~δ⊥(r− r′). (A.7)

Finally, combining Eqs. (A.3), (A.4), and (A.6) leads to the equation of motion (2.77) with

ĵA(r) given by Eq. (2.73).

For concluding the equation of motion (2.78), again we make use of the decomposi-

tion (A.1) and apply the Heisenberg equation on ˙̂rα

¨̂rα =
1

i~

[

˙̂rα, Ĥ0

]

+
1

i~

[

˙̂rα, Ĥs

]

. (A.8)

Although the first term on the right-hand side of Eq. (A.8) is given in Ref. [42] for a single-

atom case as

1

i~

[

˙̂rα, Ĥ0

]

=
qα
mα

Ê(r̂α) +
qα

2mα

[

˙̂rα × B̂(r̂α)− B̂(r̂α)× ˙̂rα

]

, (A.9)

it can be found easily that in the many-atom case it does not show any explicit change, such

that the total electric field Ê contains the contributions from all atoms. Using Eqs. (2.74)

and (A.2) we will find

1

i~

[

˙̂rα, Ĥs

]

= − 1

i~mα

∑

A

∑

β∈A

γβ

[

p̂α , ŝβ · B̂(r̂β)
]

=
1

mα

∑

A

∑

β∈A

γβ∇α

[

ŝβ · B̂(r̂β)
]

=
γα

mα
∇α

[

ŝα · B̂(r̂α)
]

. (A.10)

By combining Eqs. (A.8)–(A.10) we arrive at the equation of motion (2.78).
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Scattering Green tensor in the presence

of a sphere

For two arbitrarily chosen points r1=(r1,θ1,φ1) and r2=(r2,θ2,φ2), upon recalling Eqs. (3.47)

and (3.48), for performing the summations over m and p in the scattering part of the Green

tensor given by Eq. (3.46) we can write

n
∑

m=0

∑

p=±1

(n−m)!

(n+m)!
(2− δ0m)M(1)

nm,p(r1, ω/c)M
(1)
nm,p(r2, ω/c)

= Qn

{ eθ1
eθ2

sin θ1 sin θ2
S1 −

eθ1
eφ2

sin θ1
S2 +

eφ1
eθ2

sin θ2
S3 + eφ1

eφ2
S4

}

, (B.1)

n
∑

m=0

∑

p=±1

(n−m)!

(n+m)!
(2− δ0m)N(1)

nm,p(r1, ω/c)N
(1)
nm,p(r2, ω/c) =

c2

ω2r1r2

{

n2(n+ 1)2Qner1
er2
S5

+ n(n+ 1)QB
n er1

eθ2
S6 −

n(n + 1)

sin θ2
QB

n er1
eφ2

S7 + n(n+ 1)QA
neθ1

er2
S8 + Lneθ1

eθ2
S4

− Ln

sin θ2
eθ1

eφ2
S3 +

n(n+ 1)

sin θ1
QA

neφ1
er2
S7 +

Ln

sin θ1
eφ1

eθ2
S2 +

Ln

sin θ1 sin θ2
eφ1

eφ2
S1

}

, (B.2)

where Qn, QA
n , QB

n , and Ln are given by Eqs. (4.122)–(4.125) (with r1, r2 and −iω instead

of rA, rB and u, respectively), and S1–S8 are defined as

S1 =
n

∑

m=0

Cmnm
2Pm

n (cos θ1)P
m
n (cos θ2) cos (mφ̄), (B.3)

S2 =

n
∑

m=0

CmnmP
m
n (cos θ1)

dPm
n (cos θ2)

dθ2
sin (mφ̄), (B.4)

S3 =

n
∑

m=0

Cmnm
dPm

n (cos θ1)

dθ1
Pm

n (cos θ2) sin (mφ̄), (B.5)

S4 =

n
∑

m=0

Cmn
dPm

n (cos θ1)

dθ1

dPm
n (cos θ2)

dθ2
cos (mφ̄), (B.6)

S5 =
n

∑

m=0

CmnP
m
n (cos θ1)P

m
n (cos θ2) cos(mφ̄), (B.7)

S6 =
n

∑

m=0

CmnP
m
n (cos θ1)

dPm
n (cos θ2)

dθ2
cos (mφ̄), (B.8)
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S7 =

n
∑

m=0

CmnmP
m
n (cos θ1)P

m
n (cos θ2) sin (mφ̄), (B.9)

S8 =

n
∑

m=0

Cmn
dPm

n (cos θ1)

dθ1
Pm

n (cos θ2) cos (mφ̄) (B.10)

(φ̄≡ φ2− φ1) with

Cmn =
(n−m)!

(n+m)!
(2− δ0m). (B.11)

To perform the summations S1–S8 we make use of the addition theorem for spherical har-

monics, which reads

n
∑

m=0

Cmn cos(mλ)Pm
n (cos θ1)P

m
n (cos θ2),= Pn(ψ) (B.12)

where

ψ = cos θ1 cos θ2 + sin θ1 sin θ2 cosλ. (B.13)

The summation in the left hand side of Eq. (B.12) coincides with S5, where λ is replaced

by φ̄. The rest, introduced in Eqs. (B.3)–(B.6) and (B.8)–(B.10), can be found by proper

differentiations of S5, for example

S1 = −d2S5

dφ̄2
= sin θ1 sin θ2[cos φ̄ P ′

n(ψ)− sin θ1 sin θ2 sin2 φ̄ P ′′
n (ψ)]. (B.14)

B.1 Derivation of Eqs. (3.53), (4.121), and (4.152)

Now by setting r1 and r2, respectively, to rA and rB given by Eq. (4.120), the nonzero

summations in Eqs. (B.3)–(B.10) are found to be

S1 = − sin θA sin θBP
′
n(γ), S4 = −Fn(γ), S5 =Pn(γ), S6 = S8 =− sin ΘP ′

n(γ) (B.15)

with γ being defined below Eq. (4.121). Using Eqs. (B.1) and (B.2) together with Eq. (B.15)

in Eq. (3.46) leads to Eq. (4.121).

In the calculation of the single-atom potential where r1 = r2 =(r, θ, φ), we will find

S1 =
1

2
n(n+ 1) sin2 θ, S2 = S3 = S6 = S7 = S8 = 0, S4 =

1

2
n(n + 1), S5 = 1. (B.16)

Substituting Eqs. (B.1) and (B.2) with S1–S8 given by Eq. (B.16) into Eq. (3.46) leads to

Eq. (3.53).
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The tensor K(1)(rB, rA, ω), which is required for calculating V (b)
em can be obtained from

Eq. (4.26) by replacing G in the right-hand side with G(1) given by Eq. (3.46), i.e.,

K(1)(rB, rA, ω) =
iω2

4πc2

∞
∑

n=1

2n+ 1

n(n + 1)

n
∑

m=0

(n−m)!

(n+m)!
(2− δ0m)

×
∑

p=±1

[

BM
n (ω)Nnm,p(rB, ω/c)Mnm,p(rA, ω/c) +BM

n (ω)Nnm,p(rB, ω/c)Mnm,p(rA, ω/c)
]

,

(B.17)

where relations (3.49) and (3.50) have been used. The summations over m and p can be

performed in the same way as outlined above for deriving Eq. (4.121) that leads to

n
∑

m=0

∑

p=±1

CmnNnm,p(rB, k)Mnm,p(rA, k) =
c

rBω

{

n(n + 1)Qn sin ΘP ′
n(γ)erB

eφA

+QB
nFn(γ)eθB

eφA
−QB

nP
′
n(γ)eφB

eθA

}

, (B.18)

n
∑

m=0

∑

p=±1

CmnMnm,p(rB, k)Nnm,p(rA, k) =
c

rAω

{

−QA
nP

′
n(γ)eθB

eφA

+ n(n+ 1)Qn sin ΘP ′
n(γ)eφB

erA
+QA

nFn(γ)eφB
eθA

}

, (B.19)

where rA and rB are given by Eqs. (4.120). Equation (4.152) is the result of the substitution

of Eqs. (B.18) and (B.19) in Eq. (B.17)

B.2 The limiting cases of large and small sphere

When in the case of a large sphere the conditions (4.131) and (4.132) are satisfied, then the

leading contributions to the sums in Eqs. (4.121) and (4.152) come from terms with n≫ 1

(also see Ref. [82]) for which, the spherical Bessel and Hankel functions approximate to [101]

jn(z) =
zn

(2n+ 1)!!

[

1− z2

4n+ 6
+

z4

(16n+ 24)(2n+ 5)

]

(B.20)

and

h(1)
n (z) = −i(2n− 1)!!

zn+1

[

1+
z2

4n− 2
+

z4

(16n− 8)(2n− 3)

]

, (B.21)

respectively. Hence, Eqs. (3.51) and (3.52) approximate to

BM
n (iu) =

(−1)n+1(Ru/c)2n+1

[(2n+ 1)!!]2
(

a1n + a0 + a−1n
−1

)

(B.22)

and

BN
n (iu) =

(−1)n+1(Ru/c)2n+1

[(2n+ 1)!!]2
(

b1n+ b0 + b−1n
−1

)

, (B.23)
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respectively, where

a1 = 2
µ− 1

µ+ 1
, (B.24)

a0 = [1 + 3µ+ (1 + µ)R2u2/c2]
µ− 1

(µ+ 1)2
(B.25)

a−1 =
1

4(µ+ 1)3

{

4µ(µ−1)2−4µ(µ+1)(2εµ−µ−1)R2u2/c2+(µ−εµ+1)(µ2−1)R4u4/c4
}

(B.26)

[ε=ε(iu), µ=µ(iu)], and b1, b0, and b−1 can be found from a1, a0, and a−1, respectively, by

interchanging of µ and ε. Equations (4.122)–(4.125) then approximate to

Qn =
(−1

ab

)n

[(2n− 1)!!]2
[

1− 1

4
(a2 + b2)n−1 +

1

32
(a2 + b2)(a2 + b2 − 4)n−2

]

, (B.27)

QA
n =

(−1

ab

)n

[(2n− 1)!!]2
[

−n+
1

4
(a2 + b2)− 1

32
(b4− 4b2 + a4 +2a2b2 +12a2)n−1

]

, (B.28)

Ln =
(−1

ab

)n

[(2n− 1)!!]2
[

n2 − 1

4
(a2 + b2)n+

1

32
(a2 + b2)(a2 + b2 − 12)

]

(B.29)

(a= rAu/c; b= rBu/c; QB
n can be found from QA

n by interchanging of a and b). In order

to illustrate the application of the approximation scheme to the Green tensors (4.121) and

(4.152), let us consider the element G(1)
rr (rA, rB, iu) for example, which using Eqs. (B.23)

and (B.27) yields the form

G(1)
rr (rA, rB, iu) =

−c2
4πu2R3

{ε− 1

ε+ 1
s2 +

(2ε+ 1)(ε− 1)

(ε+ 1)2
s1 +

1

8(ε+ 1)3

[

8ε2(ε− 1)

− 4(1 + ε)(ε2 + 2µε2 − 2ε− 1)R2u2/c2 − ε(ε2 − 1)µR4u4/c4
]

s0

}

, (B.30)

[t= R2/(rArB)] where

sk =
∞

∑

n=1

nktnPn(γ). (B.31)

Using the identity [101]
∞

∑

n=1

tnPn(γ) =
1

√

1− 2tγ + t2
− 1 (B.32)

and performing suitable differentiations with respect to t, we will obtain

s0 =
1

√

1− 2tγ + t2
− 1, (B.33)

s1 =
γ − t

[1− 2tγ + t2]3/2
, (B.34)

s2 =
γt+ (γ2 − 2)t2 − γt3 + t4

[1− 2tγ + t2]5/2
. (B.35)
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Recalling the conditions (4.131) and (4.132), we can further simplify the result. Up to

second order in the small parameters δA′/R, we have

tk = 1− kδA + δB
R

+
k(k + 1)

2

δ2
A + δ2

B

R2
+ k2 δAδB

R2
, (B.36)

implying that

1− 2tγ + t2 ≃ Θ2 +
(δA + δB)2

R2
=

l2+
R2
. (B.37)

Using Eqs. (B.33)–(B.37) in Eq. (B.30), we find that within this order,

G(1)
rr (rA, rB, iu) =

c2

4πu2

{

X2 − 2δ2
+

l5+

ε− 1

ε+ 1
− δ+
Rl3+

(2ε+ 1)(ε− 1)

(ε+ 1)2
− 1

8(ε+ 1)3

[

8ε2(ε− 1)

− 4(1 + ε)(ε2 + 2µε2 − 2ε− 1)R2u2/c2 − ε(ε2 − 1)µR4u4/c4
] 1

R2l+

}

, (B.38)

with X, δ± and l+ being defined below Eq. (4.133). Recalling that X, l+, δ+≪R, it can

be seen that unless |ε− 1|≪ 1, the third term in the curly brackets in Eq. (B.38) can be

approximately ignored and hence, in this term ε may be set to 1, that leads to

G(1)
rr (rA, rB, iu) =

c2

4πu2

{

X2 − 2δ2
+

l5+

ε− 1

ε+ 1
− δ+
Rl3+

(2ε+ 1)(ε− 1)

(ε+ 1)2
+

u2

4c2l+
(µ− 1)

}

. (B.39)

The free-space counterpart of this tensor element can be simply found from Eq. (4.127),

with the conditions (4.131) and (4.132) applied, as

G(0)
rr (rA, rB, iu) =

c2(X2 − 2Z2)

4πu2l5
. (B.40)

The other Green tensor elements in Eqs. (4.121) and (4.127) can be evaluated in a quite

similar way. Substituting the resulting expression for G(0) and G(1) in Eqs. (4.66) and (4.67)

and summing them in accordance with Eq. (4.65), we eventually arrive at Eq. (4.133). A

similar calculation leads to Eq. (4.155) for electric-magnetic part of the interaction potential.

In the limiting case of a small sphere where the condition (4.136) holds, the leading

contributions to the frequency integrals in Eqs. (4.129) and (4.130) come from the region

where u≪ c/R, or equivalently |z0|, |z1|≪ 1 (also see Ref. [82]). In this region we may

approximate the spherical Bessel and Hankel functions appearing in Eqs. (3.51) and (3.52)

by their next-to-leading order expansions in z [101], i.e.,

jn(z) =
zn

(2n+ 1)!!

(

1− z2

4n+ 6

)

(B.41)

and

h(1)
n (z) = −i(2n− 1)!!

zn+1

(

1− z2

2− 4n

)

, (B.42)
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so that Eqs. (3.51) and (3.52), respectively, approximate to

BM
n =

(2n+ 1)i

[(2n + 1)!!]2(nµ+ n+ 1)

[

(n+ 1)(µ− 1)

(

iRu

c

)2n+1

+O

(

iRu

c

)2n+3
]

(B.43)

and

BN
n =

(2n+ 1)i

[(2n+ 1)!!]2(nε+ n + 1)

[

(n+ 1)(ε− 1)

(

iRu

c

)2n+1

+O

(

iRu

c

)2n+3
]

, (B.44)

revealing that V (2)
ee is small in comparison to V (1)

ee [compare Eqs. (4.129) and (4.130)] and

can be neglected, so that, in leading order of Ru/c, V (b) =V (1). Further, it can be seen that

in the sums in Eq. (4.129) the terms with n=1 is the leading one, for which

Qn = −(1 + a)(1 + b)

a2b2
e−a−b, (B.45)

QA
1 =

f(a)(1 + b)

a2b2
e−a−b, (B.46)

QB
1 =

(1 + a)f(b)

a2b2
e−a−b, (B.47)

L1 = −f(a)f(b)

a2b2
e−a−b, (B.48)

F1(γ) = P1(γ) = γ, (B.49)

BM
1 (iu) =

2

3

µ(iu)− 1

µ(iu) + 2

(

Ru

c

)3

, (B.50)

BN
1 (iu) =

2

3

ε(iu)− 1

ε(iu) + 2

(

Ru

c

)3

. (B.51)

Substituting Eqs. (B.45)–(B.51) in Eq. (4.129), we arrive at Eq. (4.137). Equation (4.157)

is derived by calculation similar to the one outlined above for obtaining Eq. (4.137).
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Sum over the energy denominators

From the energy denominators given in Tab. (4.1), it is strightforward to obtain

1

D1b
+

1

D2
± 1

D3
+

1

D6b
+

1

D7
± 1

D8
=

1

ωk
A + ωl

B

[

(

1

ωk
A + ω

+
1

ωl
B + ω

)(

1

ω + ω′
∓ 1

ω − ω′

)

+

(

1

ωk
A + ω′

+
1

ωl
B + ω′

)(

1

ω + ω′
± 1

ω − ω′

)

]

. (C.1)

Since the denominators appear in combinations of the form of Eq. (4.12) and (4.21), where

they are multiplied with terms (the two factors in square brackets) which are always the

same and symmetric with respect to ω and ω′, we may interchange ω ↔ ω′ in the second

term and recombine it with the first one to obtain

1

D1b
+

1

D2
± 1

D3
+

1

D6b
+

1

D7
± 1

D8
→ 2

ωk
A + ωl

B

(

1

ωk
A + ω

+
1

ωl
B + ω

)(

1

ω + ω′
± 1

ω − ω′

)

, (C.2)

where the symbol → denotes equality under the double frequency integral. Similarly we

have

1

D1a
± 1

D4
± 1

D5
=

1

(ωk
A + ω′)(ωl

B + ω′)

(

1

ω + ω′
± 1

ω − ω′

)

∓ 1

(ωl
B + ω′)(ωk

A + ω)(ω − ω′)
,

(C.3)
1

D6a
± 1

D9
± 1

D10
=

1

(ωn
A + ω′)(ωm

B + ω′)

(

1

ω + ω′
± 1

ω − ω′

)

∓ 1

(ωk
A + ω′)(ωl

B + ω)(ω − ω′)
.

(C.4)

The second terms in Eqs. (C.3) and (C.4) cancel each other after an interchange of ω ↔ ω′

to yield

1

D1a
± 1

D4
± 1

D5
+

1

D6a
± 1

D9
± 1

D10
→ 2

(ωk
A + ω)(ωl

B + ω)

(

1

ω + ω′
∓ 1

ω − ω′

)

. (C.5)

Summation of the right-hand sides of Eqs. (C.2) and (C.5) immediately results (4.13) and

(4.23).
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Zusammenfassung

In dieser Arbeit wurde das van-der-Waals-Potential eines Atoms im Grundzustand sowie

die van-der-Waals-Wechselwirkung zweier Grundzustandsatome in Anwesenheit beliebiger

linear reagierender magnetoelektrischer Körper im Rahmen der makroskopischen Quan-

tenelektrodynamik untersucht. Den Schwerpunkt der Arbeit stellt die Erweiterung der schon

bekannten Theorie für elektrisch polarisierbare Atome auf den Fall polarisierbarer und

magnetisierbarer Grundzustandsatome dar. Ausgehend von den makroskopischen Maxwell-

gleichungen für das körpergestützte elektromagnetische Feld wurde zunächst das bekann-

te Quantisierungsschema für das mediengestützte elektromagnetische Feld unter Annahme

eines spinlosen Atoms auf den Fall mehrerer Atome erweitert, wobei Atomkern und Elektro-

nen Spin besitzen um die paramagnetische Atom-Feld-Wechselwirkung zu berücksichtigen.

Man erhält einen spinabhängigen Term in der Formel für das magnetische Dipolmoment der

Atome. Es wird gezeigt, dass der bei der Quantisierung eingeführte Hamiltonian in konsisten-

ter Weise auf die korrekten zeitabhängigen Maxwellgleichungen und die Newtonschen Bewe-

gungsgleichungen für die geladenen Teilchen führt. Der Hamiltonian wird in die multipolar

gekoppelte Form transformiert, wobei eine Langwellennäherung benutzt wird und mögliche

diamagnetische Eigenschaften der Atome vernachlässigt werden. Der Anteil des Hamiltoni-

ans, der die Wechselwirkung zwischen Atom und mediengestütztem Feld beschreibt, lässt

sich als Summe der Wechselwirkungen der (transformierten) elektrischen und magnetischen

Dipole mit den (transformierten) elektrischen und (magnetischen) Feldern schreiben. Dabei

wird angenommen, dass die Schwerpunktsbewegung der Atome hinreichend langsam ist.

Das van-der-Waals-Potential eines Atoms im Grundzustand, das sowohl elektrisch als

auch magnetisch polarisierbar ist und sich in der Nähe eines beliebigen Systems magne-

toelektrischer Materie befindet, wurde durch Störungstheorie in zweiter Ordnung berech-

net. Die gefundene Formel zeigt, dass das Potential als eine Überlagerung des Potentials

eines elektrischen Atoms und desjenigen eines magnetischen Atoms dargestellt werden kann.

Besonders betrachtet wurde das van-der-Waals-Potential eines Grundzustandsatoms, das in

ein magnetoelektrisches Medium eingebettet ist, so dass Lokalfeldkorrekturen nötig werden,

da sich das mikroskopische (lokale) Feld am Ort des Atoms vom makroskopischen unterschei-

det. Die Lokalfeldkorrektur wurde im Rahmen des Real-Cavity-Modells durchgeführt und

schlägt sich in zwei frequenzabhängigen Faktoren nieder, die von den magnetoelektrischen

Eigenschaften des Mediums am Standort des Atoms abhängen. Der resultierende Ausdruck



Zusammenfassung 98

für das van-der-Waals-Potential wurde für zwei Beispiele spezialisiert. Zum einen wurde das

van-der-Waals-Potential eines Atoms in einem planaren magnetoelektrischen Vielschichtsys-

tem analytisch untersucht und numerisch weiter ausgewertet. Zum anderen wurde die all-

gemeine Formel auf den Fall einer makrokopischen homogenen magnetoelektrischen Kugel

angewandt. Es hat sich herausgestellt, dass in beiden Beispielen die elektrischen und mag-

netischen Teile des van-der-Waals-Potentials durch Anwendung geeigneter Dualitätstrans-

formationen ineinander transformiert werden können. Das Beispiel der Kugel wurde für die

Grenzfälle einer sehr großen und einer sehr kleiner Kugel näher untersucht. Das Ergebnis

im Fall der sehr kleinen Kugel fällt mit dem Resultat für die van-der-Waals-Wechselwirkung

zwischen zwei Atomen im freien Raum zusammen, wenn die elektrische und die magnetische

Polarisierbarkeit der Kugel mit den betreffenden Größen eines Atoms gleichgesetzt werden.

Die gewonnenen Resultate können zudem zur Beschreibung der Wechselwirkung mehrerer

Atome mit einem magnetoelektrischen Körper verwendet werden, solange die interatomaren

Potentiale gegenüber der Atom-Körper-Wechselwirkung vernachlässigt werden können. Dies

ist zum Beispiel in einem verdünnten Gas mit großen Abständen zwischen den einzelnen

Gasatomen der Fall. Die van-der-Waals-Wechselwirkung eines solchen Systems mehrerer

Atome mit dem makrokopischen Körper ergibt sich dann einfach als Summe der Potentiale

der einzelnen Atome.

Durch Anwendung von Störungstheorie vierter Ordnung wurde das van-der-Waals Po-

tential zwischen zwei polarisierbaren und magnetisierbaren Atomen im Grundzustand in

Anwesenheit einer beliebigen Anordnung magnetoelektrischer Körper hergeleitet. Das ge-

fundene Potential kann als Superposition der Potentiale der vier möglichen Szenarien be-

trachtet werden: beide Atome sind nur elektrisch polarisierbar, beide Atome sind nur mag-

netisch polarisierbar, oder eines ist nur elektrisch, das andere nur magnetisch polarisierbar

beziehungsweise umgekehrt. Um die Einbettung eines oder beider Atome in ein Medium

zuzulassen, wurden die nötigen Lokalfeldkorrekturen mit angegeben. Die Untersuchung der

Wechselwirkung zweier Atome in einem unendlich ausgedehnten homogenen magnetoelek-

trischen Medium zeigt insbesondere, dass (i) die geforderte Dualitätsbeziehung zwischen

elektrischen und magnetischen Termen nur dann erhalten bleibt, wenn Lokalfeldkorrek-

turen einbezogen werden, dass (ii) das Real-Cavity Modell ein geeignetes Werkzeug zur

Durchführung der Lokalfeldkorrektur ist, und dass (iii) das van-der-Waals Potential durch

die Einbettung der Atome in ein Medium größer oder kleiner werden kann. Die Änderung

hängt von der Stärke der elektrischen und magnetischen Polarisierbarkeit der Atome und
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des Mediums ab. Insbesondere im retardierten Fall wird die van-der-Waals-Wechselwirkung

zwischen den Atomen reduziert, was mit einer Abschirmung durch das Medium begründet

werden kann.

Als Anwendung der gefundenen Formel für das Zweiatompotential wurde die Wech-

selwirkung zweier elektrischer Atome in der Nähe eines planaren magnetoelektrischen Viel-

schichtsystems berechnet. Als Spezialfälle wurden eine perfekt reflektierende Platte und eine

dicke magnetoelektrische Schicht (Halbraum) betrachtet. Besonderes Augenmerk liegt dabei

auf den retardierten und nicht-retardierten Limites sowie auf besonderen Anordnungen der

Atome im Verhältnis zum magnetoelektrischen Körper. Die Anwendung der Theorie auf

komplexere Geometrien könnte dazu genutzt werden Dispersionskräfte auf Atome zu kon-

trollieren, indem das umliegende Medium manipuliert wird. Insbesondere die Erzeugung

abstoßender Kräfte wäre von Interesse, da hierdurch potentiell störende Effekte anziehender

Kräfte reduziert oder eliminiert werden könnten.

Als weiteres Beispiel wurden zwei polarisierbare und magnetisierbare Atome in der Nähe

einer makroskopischen magnetoelektrischen homogenen Kugel untersucht. Aus Transparenz-

gründen wurde die Berechnung zunächst für die Spezialfälle zweier Atome mit gleichen

bzw. entgegengesetzten Polarisationseigenschaften eingeschränkt (beide Atome nur elek-

trisch oder magnetisch polarisierbar bzw. eines nur elektrisch und eines nur magnetisch).

Durch Dualitätstransformationen konnte wieder auf allgemeinere Fälle geschlossen werden.

Wie schon für das Ein-Atom-Potential wurden wiederum die Grenzfälle einer sehr großen

und einer sehr kleinen Kugel untersucht. Durch die Anwendung des Resultats für die kleine

Kugel konnte die nicht-additive Wechselwirkung dreier elektrischer und magnetischer Atome

bestimmt werden. Numerisch berechnet wurden die Fälle, bei denen sich die Atome in glei-

cher Entfernung vom Körper befinden oder auf einer geraden Linie senkrecht zur Oberfläche

des Körpers angeordnet sind. Die numerischen Berechnungen belegen, dass – gegenüber

Atomen im freien Raum – die van-der Waals-Wechselwirkungen sowohl verstärkt als auch

reduziert werden können, in Abhängigkeit von den elektromagnetischen Eigenschaften des

Körpers, der Position der Atome relativ zum Körper und der Lage der Atome zueinander.

Das Verhalten des (numerisch berechneten) van-der-Waals-Potentials zwischen zwei Atomen

mit gleichen Polarisationseigenschaften im Medium kann qualitativ mit Hilfe der Spiegel-

ladungsmethode für kleine Atom-Atom- und Atom-Körper-Abstände interpretiert werden

(nicht-retardierter Grenzfall).

Die Theorie kann in verschiedener Hinsicht erweitert werden: Die Ein- und Zweiatom-
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potentiale, bei denen sich die Atome in beliebigen Energieeigenzuständen befinden, sind

in der Literatur bisher nur für elektrische Atome angegeben worden (für das Zweiatom-

potential siehe zum Beispiel die Arbeiten [108, 109]). Es ist ein nahezu trivialer Schritt,

paramagnetische Atome in die störungstheoretischen Berechnungen mit einzubeziehen. Bei

der Untersuchung angeregter Atome muss eine dann mögliche explizite Zeitabhängigkeit

der van-der-Waalskräfte eventuell in Rechnung gestellt werden. Dies ist besonders dann der

Fall, wenn atomare Übergangsfrequenzen und Mediumresonanzfrequenzen nah beieinander

liegen. In solchen Fällen kann die störungstheoretische Behandlung wegen starker Atom-

Feld-Kopplung ihre Gültigkeit verlieren. Eine mögliche Lösung könnte in einem nicht-stö-

rungstheoretischen Zugang ähnlich dem, der in [42] für den Fall eines einzelnen, elektrisch

polarisierbaren Atoms entwickelt wurde, bestehen. Indem man einen allgemeineren Formal-

ismus für die makroskopische Quantenelektrodynamik in linearen Medien [87] benutzt, kann

die Theorie so erweitert werden, dass auch anisotrope oder nicht-lokal reagierende Medien

behandelt werden können. Der Einfluss einer endlichen Temperatur kann berücksichtigt

werden, indem man zu Beginn der störungstheoretischen Berechnungen Grundzustandser-

wartungswerte des mediengestützten Feldes durch thermische Erwartungswerte ersetzt.
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