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1. General introduction 

 

1.1. What are endophytes? 

The word “endophyte” means “in the plant” (derived from the Greek “endon” = “within”, 

“phyton” = “plant”). This term can be used for a wide spectrum of potential hosts and 

inhabitants, e.g. bacteria (Kobayashi & Palumbo, 2000), fungi (Stone et al., 2000), plants 

(Marler et al., 1999), and insects inside plants (Feller, 1995), and algae within algae (Peters, 

1991). “Endophyte” describes the organism's different life history strategies; these  range from 

facultatively saprobic to parasitic to exploitive to mutualistic: pathogenic endophytic algae 

(Bouarab et al., 1999), parasitic endophytic plants (Marler et al., 1999), mutualistic endophytic 

bacteria (Chanway, 1996), mutualistic fungi (Schulz & Boyle, 2005), pathogenic bacteria and 

fungi in latent developmental phases (Sinclair & Cerkauskas, 1996), and commensalistic 

microorganisms (Sturz et al., 2000). 

Although there are diverse meanings for the term, endophytes are most commonly 

defined as those organisms whose “infections are inconspicuous, the infected host tissues are at 

least transiently symptomless, and the microbial colonization can be demonstrated to be internal” 

(Stone et al., 2000). The authors use this definition to describe fungal endophytes only, but it is 

equally applicable to bacterial endophytes. Moreover, it is important to remember that the 

definition describes a momentary status. Thus it includes an assemblage of microorganisms 

which grow on dead or senescing tissues following an endophytic growth phase (Stone, 1987) 

and avirulent microorganisms and virulent pathogens in the early stages of infection (Sinclair & 

Cerkauskas, 1996; Kobayashi & Palumbo, 2000). Aware of the certain discrepancies, Schulz & 

Boyle (2005) came up with a more inclusive definition of endophyte to describe those bacteria 

and fungi that can be detected at a particular moment within the tissues of apparently healthy 

plant hosts. However, in practical terms, “bacterial endophytes” are defined as those bacteria that 

can be isolated from surface-disinfected plant tissue or extracted from within the plant and that 

do not visibly harm the plant (Hallmann et al., 1997). I found this definition most applicable to 

my studies. 

Bacterial endophytes can colonize any organ of the host plant (roots, shoots, leaves, seeds 

and ovules) (reviewed by Sturz et al., 2000). Although colonization densities of bacterial 

endophytes are rarely as high as those of pathogenic bacteria, they are highest in the root tissue, 
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perhaps because this is the primary site of infection (Hallmann et al., 1997; Kobayashi & 

Palumbo, 2000). Endophytic bacteria usually invade the roots passively, e.g. at opening sites on 

roots where lateral roots emerge or in wounds (Kobayashi & Palumbo, 2000), even achieving 

systemic colonization from a single site of entry (Hallmann et al., 1997). They also can access 

intact plant tissue by invaginating the root hair cell, penetrating the junctions between root hairs 

and adjacent epidermal cells (Huang, 1986), or by producing cell wall hydrolyzing enzymes 

(Huang, 1986; Hallmann et al., 1997). They primarily colonize intercellularly (Hinton & Bacon, 

1995; Hallmann et al., 1997), though they have also been found intracellularly, e.g.  Azoarcus 

spp. (Hurek et al., 1994). 

 

1.2. Mechanisms of plant growth promotion by microorganisms  

Diverse mechanisms are involved in plant-microbe interactions (Whipps, 2001; Compant 

et al., 2005). A thorough understanding of the mechanisms that promote plant growth by 

microbes is fundamental to manipulating the rhizosphere and maximizing the processes that 

strongly influence plant productivity (Fig. 1).  

In plant growth, phytohormones, e.g. indole-3-acetic acid (IAA), ethylene (ET), 

cytokinins, and gibberellins, play important roles. These hormones can be synthesized by plants 

and also by their associated microorganisms. Plant-associated bacteria can influence plant ET 

homeostasis by producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme to 

degrade ACC, a precursor of ET biosynthesis, subsequently increasing root growth (Glick et al., 

2007) and reducing abiotic and biotic stresses caused by ET (reviewed by Saleem et al., 2007). 

Moreover, volatile organic compounds (VOCs) of Bacillus subtilis GB03 regulate IAA 

homeostasis and cell expansion, providing a new paradigm for how rhizobacteria promote plant 

growth (Zhang et al., 2007). 

Improved nutrient acquisition is involved in direct plant growth promotion. Plant-

associated microorganisms can supply macronutrients (nitrogen, phosphate, sulfate) and 

micronutrients (iron) for plants. The most prominent example of nutrient acquisition involves 

bacterial nitrogen (N) fixation (Dobbelaere et al., 2003). Bacteria can oxidize sulfate (S) to 

provide it to plants (Banerjee & Yesmin, 2002). They can also liberate phosphorus (P) from 

organic compounds such as phytates (Unno et al., 2005) or solubilize inorganic P by producing 

gluconic acid (de Werra et al., 2009) and thus promote plant growth. By synthesizing 
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siderophores, a low molecular weight protein, bacteria can help plants to sequester iron from the 

environment (Katiyar & Goel, 2004). Moreover, VOCs of Bacillus subtilis GB03 activate the 

plant’s own iron acquisition machinery to increase the assimilation of metal ions in Arabidopsis 

(Zhang et al., 2009) and elevate photosynthesis levels by modulating endogenous sugar/ abscisic 

acid (ABA) signaling (Zhang et al., 2008). 

Indirectly, microorganisms promote plant growth by reducing the activity of microbial 

pathogens not only through microbial antagonism (reviewed by Raaijmakers et al., 2009) but 

also by the activation of plant defenses, namely induced systemic resistance (ISR) (van Loon, 

2007). Microbial antagonism includes inhibiting the growth of microbial pathogens by 

antibiotics, VOCs, toxins and biosurfactants; competing for colonization sites and nutrients; 

degrading the pathogenicity of pathogens such as toxins; and degrading fungal pathogen cell 

walls by introducing chitinases and β-1,3-glucanase.   

 
Figure 1. Plant-microbe interactions for promoting plant growth. Abbreviations: ISR: induced systemic 
resistance; VOCs: volatile organic compounds 
 

1.3. Plant-driven selection of bacteria 

 Plants’ photosynthates represent major sources of carbon, nitrogen and energy for plant-

associated heterotrophic microorganisms, in particular, bacteria (Vandenkoornhuyse et al., 

2007), which in turn make plants very attractive as nutrient reservoirs for such bacteria. Plants 

require the presence of associated bacteria to growth and establish themselves in different 

ecosystems. For example, it is difficult to culture transplants of different species in the absence 
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of bacteria (Leifert et al., 1989). Bacterial endophytes have been isolated from numerous plant 

species including both monocotyledons and dicotyledons (reviewed by Kobayashi & Palumbo, 

2000). Microbes profit from plants because of the enhanced availability of nutrients, whereas 

plants can receive benefits from bacterial associates by growth enhancement or stress reduction. 

Therefore, mutualistic interactions between host plants and endophytes may be a result of the 

clear positive selection exerted on these associations (Thrall et al., 2007). 

The selective influence of plant species, cultivar, and genotype as well as plant 

developmental stages on bacteria associated with plants' roots is important for shaping microbial 

communities in the rhizosphere (Berg & Smalla, 2009; Micallef  et al., 2009). Mazzola et al., 

(2004) showed that different wheat cultivars supported larger populations of specific P. 

fluorescens strains than do others. This phenomenon has been linked to the genetic make-up of 

plants (Neal et al., 1973), possibly through differences in root exudation (Bais et al., 2006). 

Specific exudate-dependent plant-bacterial interactions have been identified in transgenic plants 

engineered in exudate synthesis, in which the growth of P. putida was enhanced in direct 

response to the stimulated secretion of phenylpropanoid compounds (Narasimhan et al., 2003). 

Other plant-specific factors such as root architecture and surface structure also influence  

rhizobial  communities (Depret & Laguerre, 2008). There is still little evidence, however, to 

explain how different plant taxa mediate a differential rhizosphere influence to give rise to 

distinct bacterial endophyte communities. 

 

1.4. Microbial cooperation in the rhizosphere  

A variety of microbial forms can be found growing in rhizosphere micro-habitats. It is 

well accepted that members of any microbial group can develop important functions in an 

ecosystem (Giri et al., 2005). Direct interactions between members of different microbial types 

often promote key processes that benefit plant growth and health. The cooperation between plant 

growth promoting rhizobacteria (PGPR) and Rhizobium improved nodulation and N2-fixation in 

legume plants (Zhang et al., 1996). Another type of interaction involves rhizosphere microbes 

and arbuscular mycorrhiza (AM) fungi and lead to establishing a functional mycorrhizosphere 

(Gryndler et al., 2000). Mycorrhiza helper bacteria are known to stimulate mycelia growth 

and/or enhance mycorrhization (Garbaye, 1994). Furthermore, AM inoculation improves the 

establishment of PGPR (Barea et al., 2002) as well as improving nodulation and rhizobial 
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activity within the nodules (Barea et al., 1987). Multi-microbial interactions, including those 

between locally isolated AM fungi, phosphate-solubilizing bacteria, and Azospirillum have also 

reported, which indicate that microorganisms act synergistically when present simultaneously in 

the rhizosphere (Muthukumar et al., 2001).  

 

1.5. Multi-functional roles of ethylene in plant  

ET is a small, readily diffusible hormone important for integrating developmental events 

with external stimuli. It is a critical component of such diverse developmental processes as seed 

germination, fruit ripening, abscission, and senescence (Abeles et al., 1992). It is also an 

important stress hormone. Adverse biotic (pathogen and insect attack) and abiotic (wounding, 

salt, drought, cold, ozone and flooding) stimuli usually lead to ET synthesis. ET, in turn, slows 

down plant growth until the stress is removed. Furthermore, ET synthesis is regulated by 

developmental cues and other hormones, such as auxin, gibberellins (GA), cytokinins and 

brassinosteroids (BR) (reviewed by Yoo et al., 2009). At the level of gene expression, ET 

induces the transcription of many genes in response to a multitude of environmental and 

developmental stimuli (reviewed by Klee, 2004). Thus, ET has a pivotal role in coordinating 

plants' internal growth, defense and survival mechanisms in response to environmental 

challenges (Fig. 2). 

 
Figure 2. The ethylene regulatory network. Abbreviations: ABA, abscisic acid; BR, brassinosteroid; JA, 
jasmonic acid, GA: Gibberellic acid (Yoo et al., 2009) 
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ET, however, has an alter ego. It has the ability to trigger exaggerated disease symptoms 

or to exacerbate an environmental pressure. It is unclear whether this reaction serves a useful 

purpose or is a malfunction in the plant’s defense mechanism, but the generalization can be made 

that, except for fruit ripening, high levels of ET are usually deleterious to plant growth and health 

(reviewed by Stearns & Glick, 2003). Therefore, a range of methods is known to be able to 

prevent the inhibiting effect of ET on postharvest ornamental crops. Interfering with the plant’s 

response to ET can in principle be achieved by: 1) inhibiting the plant’s own ET production; 2) 

blocking ET's ability to bind to its receptor; or 3) blocking the plant’s reaction to the binding of 

ET to the receptor. The most common methods of inhibiting ET biosynthesis and perception are 

summarized in Table 1 (reviewed by Serek et al., 2006)). 

Table 1. Strategies to inhibit ethylene effects by chemical, environmental and molecular genetic 
approaches (Serek et al., 2006)  
 

Process Chemical/environmental inhibition Molecular genetic inhibition 
ACC synthase (ACS) AVG 

AOA 
High CO2 

Antisense ACS 
Co-suppression ACS 

                ACC  Heterogenous expression of 
bacterial ACC deaminase 

ACC oxidase (ACO) CoCl2 
Alpha-aminoisobutyric acid 

Low O2 concentration 
High temperature 

Antisense ACO 
Co-suppression ACO 

              Ethylene  Removal by ventilation 
Chemical removal with KMnO4 

Absorption by zeolites 

 

              Receptor STS; 2,5-NBD; DACP; 
1-MCP; 3,3-DMCP 

3-MCP; 1-DCP; 1-HCP 

Expression of mutated ethylene 
receptor (etr1-1) 

            Responses Low temperature 
Cytokinin 

Expression of IPT gene from 
Agrobacterium tumefaciens 

AVG: 1-aminoethoxyvinylglicine; AOA: aminooxyacetic acid; STS: silver thiosulfate; 2,5-NBD: 2,5 bicyclohepta-
2,5-diene; DACP: diazocyclopentadiene; 1-MCP: 1-methylcyclopropene; 3,3-DMCP: 3,3-dimethylcyclopropene: 3-
MCP: 3-methylcyclopropene; 1-DCP: 1-decylcyclopropene; 1-HCP: 1-hexylcyclopropene; ipt: cytokinin 
biosynthetic gene 
 

A major advance in understanding how ET works was the discovery that it acts in a 

jasmonic acid (JA)-dependent pathway, namely induced systemic resistance (ISR), distinct from 

the salicylic acid (SA)-dependent systemic acquired resistance (SAR) pathway (Pieterse et al., 

1998). ISR results from the colonization of roots by non-pathogenic rhizobacteria, which 

enhances resistance to other pathogens. ET responsiveness is required for ISR to be induced and 
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expressed (Pieterse et al., 1998). ET and JA cooperate in inducing ET response factor (ERF1), 

which drives the activation of defense-related genes such as PR-4 and Pdf1.2 and positively 

regulates the expression of JA-inducible genes involved in defense responses (Lorenzo et al., 

2003).  

Great efforts have been made to show the role of ET in the SAR pathway (Verberne et 

al., 2003). By carrying out reciprocal grafting between WT and transgenic salicylic acid-non-

accumulating NahG or ET-insensitive Tetr tobacco plants, they could show that the SAR signal 

was dependent on ET. The burst of ET production that occurs during a hypersensitive reaction 

(HR) (De Laat & Van Loon, 1982) contributes substantially to the local induction of a subset of 

pathogenesis-related proteins (PRs) (Knoester et al., 1998), while also enabling the plant to react 

systemically and develop SAR (Verberne et al., 2003). These results indicate ET's important role 

in establishing SAR in tobacco against tobacco mosaic virus (TMV) (Ryals et al., 1996).  

ET also has a major function in the beneficial rhizobial symbiosis (Guinel & Geil, 2002). 

ET acts as a negative factor in the rhizobia’s nodulation processes. However, recent discoveries 

suggest rhizobia use several strategies to reduce the amount of ET in order to decrease the 

negative effect of ET on nodulation. One strain of rhizobia produces rhizobitoxine, an inhibitor 

of ET synthesis (Yuhashi et al., 2000). Active 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase has been detected in a number of other rhizobial strains (Ma et al., 2003). Whereas 

ET plays negative roles in rhizobial-plant interactions, it is indispensable for rhizobial nodulation 

processes via crack-entry (Ma et al., 2003). ET mediates the phenotypic plasticity in root nodule 

development (Goormachtig et al., 2004), determining the infection mechanisms of rhizobia as 

well as formation and positioning of nodule primordia (Guinel & Geil, 2002). 

 

1.6. Native model plant species: Solanum nigrum and Nicotiana attenuata  

Our group uses Solanum nigrum (black nightshade, Solanaceae) as an ecological model 

species (Schmidt et al., 2004) (Fig. 3). Its phylogenetic proximity to tomato and potato allows us 

to use genetic tools and databases that have been established for these crops. Moreover, S. 

nigrum is a wild species that has not been under artificial selection for particular traits (e.g. traits 

that enhance yield). Its particular natural history makes it ideal for studying its interactions with 

other organisms. As an annual, it colonizes nitrogen-rich agricultural and disturbed habitats at a 

wide range of altitudes throughout its pan-arctic distribution.  
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Nicotiana attenuata Torr. ex Watson (synonymous with N. torreyana Nelson and Macbr.; 

Solanaceae) is a wild tobacco species native to the Great Basin Desert in western North America 

(Fig. 3). Its seed germination is regulated by stimulants from burned wood and inhibitors from 

litter (Baldwin et al., 1994). As a consequence of the post-fire germination behavior, seeds 

germinate synchronously in nitrogen (N)-rich soils (Lynds & Baldwin, 1998) and hence plants 

rapidly grow when water availability is high. Because of its germination behavior, intense 

intraspecific competition, and highly variable herbivore interactions, N. attenuata is a 

particularly useful system to study herbivore resistance responses in nature (Baldwin, 2001).  
 

 

 

Figure 3. Solanum nigrum plant growing in the field in Jena, Germany (left) and Nicotiana attenuata 
plants growing in Utah, USA (right). Pictures were taken by Markus Hartl and Celia Diezel. 
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2. Objectives of the study 
 

Although S. nigrum and N. attenuata are ideal ecological model systems for studying 

plant-herbivore interactions (Schmidt et al., 2004; Baldwin, 2001), few reports detail how N. 

attenuata interacts with microorganisms. N. attenuata plants realize a fitness benefit from 

associating with Sebacinales fungi (Piriformospora indica and Sebacina vermifera), and their 

enhanced fitness comes at the expense of a reduction in resistance to herbivores (Barazani et al., 

2005; 2007). Studies on interactions between an arbuscular mycorrhizal species, Glomus 

intraradices, and N. attenuata have revealed a non-beneficial symbiosis (Riedel et al., 2008). 

Nevertheless, no study has focused on native microbial communities and their effects on plant 

growth and fitness. Therefore, the objectives of this thesis are to characterize and analyze the 

ecological consequences of plant-endophyte interactions in S. nigrum and N. attenuata.  

 

(I) Plant growth promoting (PGP) endophytic bacteria from roots and stems of wild type 

(WT) S. nigrum field-grown plants are isolated and identified, and the isolates exhibiting the 

clearest PGP traits (1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic 

acid (IAA) production) and exerting the strongest positive effects on root growth of S. nigrum 

are selected; WT plants of a closely related plant species, N. attenuata, are inoculated with these 

isolates. In addition, bacterial strains from a culture collection with known PGP traits are 

analyzed in order to address the question: Do the general PGP effects of bacterial endophytes 

translate to fitness benefits in N. attenuata and S. nigrum? 

 

(II) In this study, wild type (WT) N. attenuata plants and isogenic transformed plants 

deficient in ethylene (ET) biosynthesis (ir-aco1) or perception (35S-etr1) are grown in four 

native soils collected in Utah, USA and the culturable bacterial endophytic communities of N. 

attenuata’s roots are characterized in order to address the following questions:  

- Do plant ET signaling and the ability of plants to sense or produce ET play a role in the 

recruitment of endophytic bacteria?  

- Do soil types influence the endophytic bacterial communities? 

- Do bacterial isolates specifically colonize distinct host genotypes?  

- How do the bacterial endophytes influence plant growth?  
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- Do plant genotypes with differential ET production affect the recruitment of ACC 

deaminase and IAA producing bacteria into the plant endosphere?  

I focused on the culturable bacterial endophyte community in order to test hypotheses 

about the specificity of the association between plant and bacteria with re-colonization assays. 

 

(III) A “native” Bacillus sp. strain isolated from the roots of 35S-etr1 plants grown in 

native Utah soils is selected to address the following question: How does a native bacterial 

endophyte influence the growth and fitness of its host plants, N. attenuata (WT) and especially 

the highly susceptible 35S-etr1 transgenic line in the native habitat, Utah, USA?  

 



Native bacterial endophytes and host specificity 
 

 

11 
 

Chapter I. Native bacterial endophytes promote host growth in a species-specific manner; 

phytohormone manipulations do not result in common growth responses 

 

1.1. Introduction 

Symbiotic interactions are the driving force in ecosystems; symbiosis ranges from 

parasitism to mutualism and includes everything in between. The fitness outcomes for plants 

differ accordingly: if a plant is highly susceptible to pathogens, its fitness is likely to be low in 

pathogen-rich environments; if a plant cooperates with mutualists, it is likely to thrive even in 

adverse environments. Bacteria, which colonize the interface between living plant roots and soil, 

namely the rhizosphere, are abundant symbiotic partners of plants. These so-called rhizobacteria 

are said to be plant growth promoting (PGP). Those microbes able to colonize plant roots 

internally without negatively affecting  the host are called endophytes (Schulz & Boyle, 2005). 

Although all of the approximately 300,000 plant species have been estimated to harbor one or 

more endophytes (Strobel et al., 2004), few relationships between plants and these endophytes 

have been studied in detail; the legume-rhizobia symbiosis is an exception. The mutualistic 

interaction of legumes with rhizobia involves finely tuned recognition steps which ultimately 

lead to the production of root nodules in which the plants accommodate the bacteria (Oldroyd et 

al., 2005). For other endophytic rhizobacteria, the processes of host-microbe signaling and 

colonization, and the mechanisms leading to mutual benefit are less well-characterized. 

Bacterial endophytes can accelerate seedling emergence, promote plant establishment 

under adverse conditions and enhance plant growth (Chanway, 1997; Bent & Chanway, 1998). 

Endophytic bacteria are believed to elicit plant growth promotion in one of two ways: either (1) 

indirectly by helping plants acquire nutrients, e.g. via nitrogen fixation, phosphate solubilization 

(Wakelin et al., 2004) or iron chelation (Costa & Loper, 1994), by preventing pathogen 

infections via antifungal or antibacterial agents, by outcompeting pathogens for nutrients by 

siderophore production, or by establishing the plant’s systemic resistance (van Loon et al., 

1998); or (2) directly by producing phytohormones such as auxin or cytokinin (Madhaiyan et al., 

2006), or by producing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 

which lowers plant ethylene (ET) levels (Glick, 1995). In addition to these plant-growth-

promoting traits, endophytic bacteria must also be compatible with host plants and able to 

colonize the tissues of the host plants without being recognized as pathogens (Rosenblueth & 
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Martinez-Romero, 2006). A particular bacterium may affect plant growth and development using 

one or more of these mechanisms, and may use different ones at various times during the life 

cycle of the plant. While the mechanisms of growth promotion appear to be universal -- for 

example, by changing a plant’s phytohormone metabolism -- it remains unclear how consistently 

bacterial endophytes elicit responses in host and non-host plant species. 

Many studies have documented the interaction between PGP rhizobacteria and host 

plants. A mechanistic model was previously developed by Glick et al., (1998) to explain the role 

of bacterial ACC deaminase and indole-3-acetic acid (IAA) in promoting plant growth. ET and 

IAA are implicated in virtually all aspects of plant growth and development, ranging from seed 

germination to shoot growth and leaf abscission (Woodward & Bartel, 2005). Therefore, 

production of ACC deaminase and IAA is likely an important and efficient way for endophytes 

to manipulate their plant hosts. Endophytic bacteria containing ACC deaminase promoting plant 

growth are usually located inside plant roots in the apoplast. The cleavage of ACC results in 

ammonia and α-ketobutyrate which are readily metabolized by the bacteria. In this way, these 

bacteria act as a sink for ACC. By lowering ET levels, the bacteria increase the growth of plant 

roots and shoots and reduce the inhibitory effects of ET synthesis. In addition to being produced 

by plants, IAA is also produced by root-associated bacteria such as Enterobacter spp., 

Pseudomonas spp., and Azospirillium spp. (Spaepen et al., 2007). Lowering ET in plant roots 

also relieves the suppression of auxin response factor synthesis, and indirectly increases plant 

growth (Glick et al., 2007). 

The central role of phytohormone signaling in plant-endophyte interactions suggests two 

scenarios: (1) Endophytic bacteria with general PGP traits, such as the ability to produce IAA 

and ACC deaminase, promote growth uniformly across plant species including non-hosts 

(Cakmakci et al., 2007; Domenech et al., 2007). Such endophytes are expected to be readily 

recruited by a novel host. (2) Once recruited by a particular host, endophytes undergo host-

specific adaptations; the upshot is a highly specialized, finely tuned mutualism. Such mutualisms 

may make plants better able to tolerate the endophyte and the endophyte in turn more responsive 

to the plant’s metabolism (Schulz & Boyle, 2005). Hence, non-host plants might recognize these 

endophytes as pathogens despite their plant-growth-promoting properties, either because they are 

pathogens for the non-host or because they elicit inappropriate responses in a non-host-plant 

species (Carroll, 1999). 
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In order to test these two hypotheses, I first isolated and identified plant-growth-

promoting endophytic bacteria from black nightshade (Solanum nigrum), a native plant that 

interacts with many partners in its habitat (Schmidt et al., 2004). I then selected the isolates 

exhibiting the clearest plant-growth-promoting traits and exerting the strongest positive effects 

on root growth of S. nigrum; I inoculated a closely related plant species, Nicotiana attenuata, 

with these isolates. In addition, bacterial type strains from a culture collection with known PGP 

traits were analyzed to determine whether their general PGP effects translate to fitness benefits in 

N. attenuata and S. nigrum. I report markedly different growth and fitness responses of these 

plant species to the same bacterial strains. Our results are consistent with the scenario in which 

plant growth promotion by native endophytic bacteria is highly species-specific, regardless of 

whether or not they express general PGP traits.  

 

1.2. Materials and methods 

 

1.2.1. Plant materials  

The following inbred lines were used in all experiments: S. nigrum  Sn30 (Schmidt et al., 

2004); N. attenuata (synonymous with N. torreyana) genotype Utah (Baldwin, 1998). Seed 

germination procedures of S. nigrum and N. attenuata are described elsewhere (Krugel et al., 

2002; Schmidt et al., 2004) and also detailed in General materials and methods.  

 

1.2.2. Bacterial type strains  

Six bacterial species were selected from the German culture collection (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen - DSMZ) Pseudomonas brassicacearum 

D13227, Bacillus pumilus D1794, Pseudomonas putida D50194, Pseudomonas marginalis 

D50276, Methylobacterium fujisawaense D5686 and Pseudomonas fluorescens D8568. 

 

1.2.3. Isolation of culturable endophytic bacteria  

S. nigrum plants were individually collected from field sites near Dornburg, Germany, or 

near the Max Planck Institute for Biogeochemistry, Jena, Germany. Roots were washed in tap 

water to remove soil; leaves, stems and roots were separated. Roots of S. nigrum plants growing 

in the margins of agricultural fields in the Dornburg and Saale valley were similarly collected. 
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Endophytic bacteria were isolated as described by Long et al., (2003) and also detailed in 

General materials and methods.  

 

1.2.4. Plant culture  

Seeds were surface-sterilized as described by Schmidt et al., (2004). Bacterial 

suspensions in sterile distilled water (108 cfu ml-1) (colony forming unit-cfu) were used for seed 

inoculation; control seeds were treated with sterile distilled water only. The inoculated seeds (20-

30 seeds) were incubated at room temperature overnight and transferred onto sterile filter papers 

(Whatman No.1) in Petri dishes. One week after bacterial inoculation, root and hypocotyl lengths 

were measured. Two independent experiments were carried out for all seedling assays. 

 

1.2.5. Seedling vigor assay  

Seventy-seven isolates were used for seed treatment. After surface disinfection, S. nigrum 

seeds were treated with pure cultures of these isolates (108 cfu ml-1) in distilled water for 24h; 

control seeds were incubated in sterile distilled water for 24h. 

Germination tests were carried out by the paper towel method (Wold, 1996). The 

germination paper was soaked in distilled water, 15-20 bacterially treated seeds and untreated 

seeds were placed on paper towels, rolled and wrapped with polythene to prevent drying, and 

incubated at 25 ± 2oC for seven days, when the towels were unrolled and the number of seeds 

that had germinated was counted. On the same day, seedling vigor was analyzed using the 

method of Abdul Baki and Anderson (Abdulbak & Anderson, 1973). The lengths of roots and 

hypocotyls of all the individual seedlings were measured. The vigor index (VI) was calculated 

using the formula VI = (mean root length + mean hypocotyl length)*% germination. The 

experiment was repeated twice. The strains which gave high germination and vigor were selected 

for further experiments.  

 

1.2.6. Transformation of bacteria with pDSK-GFPuv plasmid  

Preparation of electro-competent cells was carried out as standard protocol for E. coli 

with some modifications. Briefly, 0.5 l Yeast Peptone Dextrose (YPD) broth (Sigma, Steinheim, 

Germany) was inoculated with 5 ml overnight, cultured and grown to an OD600 of 0.5 – 0.7 

(0.5xYPD broth; 30°C ; 220 rpm). Cells were harvested by centrifugation (8000 x g, 4°C) and 
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washed 4 times in ice-cold 10% glycerol. Finally, the bacterial pellet was resuspended in 1.5ml 

10% glycerol, divided into 40μl aliquots, and stored at -80°C. Transformation of bacteria with 

pDSK-GFPuv plasmid was done by electroporation as described by Wang et al., (2007). 

Fluorescent transformants containing the plasmid pDSK-GFPuv were selected on Luria Broth 

(LB) agar plates supplemented with 50µg ml-1 kanamycin and identified under long-range UV 

light (365nm).  

 

1.2.7. Confocal laser-scanning microscopy (CLSM)  

Seeds were inoculated with green fluorescent protein (GFP)-labeled bacteria as described 

above. Seven days after inoculation, root colonization was observed with a CLS microscope 

LSM510 (Carl Zeiss, Jena, Germany) equipped with an Argon laser (458, 477, 488, 514nm) and 

detectors for monitoring GFP (495-590nm). Images were collected in a z-series from 30 to 130 

optical sections ranging from 1.3 to 7.2µm in thickness. Optical sections, maximum intensity 

projections and overlays were generated, and single images were processed by selecting a subset 

from a z-series using the Zeiss LSM Image Browser, version 4.0 (Carl Zeiss).  

 

1.2.8. Seedling ethylene measurement  

ET emissions from seedlings were measured continuously and non-invasively in real-

time with a photoacoustic spectrometer (INVIVO, Saint Ausgustin, Germany) as described by 

von Dahl et al., (2007). Inoculated seeds that had germinated in 100ml three-neck flasks for 7 

days at 25±2oC were subjected to ET measurements. Five three-neck flasks were used for one 

treatment and empty flasks as well as flasks with seeds treated with sterile distilled water served 

as controls.  

 

1.3. Results 

 

1.3.1. Isolation and characterization of endophytic bacteria from S. nigrum 

Seventy-seven endophytic bacterial isolates were isolated from roots, stems and leaves of 

black nightshade plants (S. nigrum) grown in two different native habitats in Jena, Germany. 

They were all characterized for their ability to 1) produce ACC deaminase; 2) synthesize the 

phytohormone IAA; 3) solubilize phosphate; and 4) colonize seedlings, since these traits are 
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associated with plant growth promotion (Sturz & Nowak, 2000). Twenty-three isolates were able 

to grow on the minimum medium DF salt supplemented with ACC as a sole N source, 

suggesting that they have ACC deaminase activity. One isolate was able to produce IAA without 

supplementation of Tryptophan (Trp) and 28 were able to produce IAA with supplementation of 

Trp. Six isolates were able to solubilize inorganic phosphate. Twenty-four isolates were able to 

colonize S. nigrum seedlings internally (Table 1). 

 

Table 1. Biochemical characteristics of endophytic bacteria isolated from S. nigrum.  

Origin* 
No. 

isolates 
Growth on DF 
salt with ACC† 

In vitro IAA production‡ Phosphate 
solubilization 

Seedling 
colonization -Trp +Trp 

BGCR1 11 1 0 3 0 2 

BGCSL1 4 0 0 1 0 0 

BGCR2 13 5 0 5 2 5 

BGCSL2 13 1 0 2 1 2 

DR 9 2 1 5 1 3 

DSL 8 5 0 5 0 4 

DSR 12 2 0 2 1 2 

SSR 7 6 0 5 1 6 

Total 77 23 1 28 6 24 
* Isolation of endophytic bacteria from roots/stem leaves from plants collected in 2 field plots of Max Planck 
Institute for Biogeochemistry (BGCR/SL), roots/stem leaves from plants collected in the Dornburg field (DR/SL), 
roots from plants grown in Dornburg field soil in greenhouse (DSR) and roots from plants grown in the greenhouse 
in soil from the Saale (SSR); † ACC: 1-Aminocyclopropane-1-carboxylate; ‡ IAA: Indole-3-acetic acid; Trp: DL-
Tryptophan 
 
1.3.2. Screening endophytic bacteria for plant growth promotion 

A S. nigrum seedling vigor assay was used to screen the endophytic bacterial isolates for 

their PGP ability, using the isolates’ effects on seed germination, root and hypocotyl growth; 37 

of 77 isolates increased seedling vigor in the first assay and were screened a second time (Fig. 1).  

Of these 37 isolates, 22 significantly enhanced seed germination - up to 100% - compared with 

untreated controls (Fisher’s PLSD test; P<0.05). One isolate, DSR3, inhibited seed germination. 

Twenty-seven isolates significantly increased the seedling root length compared with the control 

(Fisher’s PLSD test; P<0.05). Eleven isolates significantly promoted the hypocotyl growth of 

seedlings (Fisher’s PLSD test; P<0.05). Four isolates inhibited either root or hypocotyl growth 

(Fig. 1). Sixteen isolates were selected for further study because they had 1) one or more of the 



Native bacterial endophytes and host specificity 
 

 

17 
 

PGP traits (Table 1) and 2) enhanced seedling growth in both screening trials. Isolate DSR10 

strongly inhibited seedling growth and was used as a negative control in further experiments. 
 

 

Figure 1. Effects of endophytic bacteria on seedling vigor. Mean (±SE; n = 30-40) percentage 
germination, root length (cm) and hypocotyl length (cm). Seeds treated with sterile distilled water served 
as controls (white bars). The different shadings of the bars indicate the origin of the isolate (roots/stem 
leaves from S. nigrum plants collected from 2 field plots of Max Planck Institute for Biogeochemistry 
(BGCR/SL), roots/stem leaves from S. nigrum plants collected in the Dornburg field (DR/SL), roots from 
S. nigrum plants grown in Dornburg field soil in the glasshouse (DSR) and roots from plants grown in the 
glasshouse in soil from the Saale valley (SSR)). Arrows identify the sixteen isolates that were selected for 
further study. 
 
 
1.3.3. Identification of bacterial isolates. 

Sixteen isolates were selected based on their PGP traits and seedling growth promotion. 

The 16S rRNA gene was amplified in these isolates using universal primers, and sequenced. The 

sequences were similar to those of 6 bacterial genera, namely Pseudomonas, Acinetobacter, 

Pantoea (formerly Enterobacter), Agrobacterium, and Aeromonas (Table 2) with high homology 

hits in the database ranging from 95 to 100% similarity. Ten isolates were identified to species. 

Isolate DSR10 was identified as Agrobacterium tumefaciens, a phytopathogen. The sequences 

are deposited in GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) under the accession numbers 

shown in Table 2. 
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Table 2. Identification of bacterial isolates using 16S rRNA gene sequences. 

Bacterial 
isolates 

GenBank 
accession 
number 

Closest match according to the 16S rRNA 
gene sequence 

No. of 
bases 

Max. 
score 

% 
match 

BGCR1-1 EU434624 Enterobacter agglomerans strain A17 775 1400 99 
BGCR2-6 EU434628 Pseudomonas sp. BSs20166  682 1205 98 
BGCR2-8(1) EU434629 Pseudomonas sp. S8-130 799 1476 100 
BGCR2-9(1) EU434630 Pseudomonas brassicacearum isolate MA250 868 1604 100 
BGCSL2-8 EU434635 Pseudomonas lutea strain PSB2 806 1290 95 
DR5 EU434637 Pseudomonas thivervalensis strain H2P3 506 922 99 
DSL3 EU434639 Enterobacter agglomerans strain A17 888 1583 98 
DSL6 EU434640 Pantoea agglomerans strain PTA-AF1 661 1216 99 
DSR3 EU434642 Aeromonas veronii strain 211c 790 1448 99 
DSR10 EU434641 Agrobacterium tumefaciens strain CCBAU 

85035 
636 994 95 

SSR4 EU434643 Pseudomonas sp. S8-130 910 1676 99 
SSR5-1 EU434644 Pseudomonas sp. S8-130 902 1642 99 
SSR5-2 EU434645 Pseudomonas sp. S8-130 763 1410 100 
SSR6 EU780008 Acinetobacter calcoaceticus strain M10 875 1616 100 
SSR8-1 EU434646 Pseudomonas fluorescens 16S rRNA gene, 

strain F113 
630 1164 100 

SSR8-2 EU434647 Pseudomonas sp. OCY4 557 1022 99 
 

1.3.4. Effects of ACC deaminase and IAA from endophytic bacteria on seedling root growth 

In order to establish a link between bacterial and plant traits, I analyzed the correlation 

between physiological properties of the bacterial endophytes and their effects on inoculated S. 

nigrum seedlings. Two major bacterial characteristics were addressed, namely the abilities to 

degrade ACC through ACC deaminase and to synthesize IAA.  Of 16 selected isolates, 7 

possessed high levels of ACC deaminase ranging from 200 to 700 nmol mg protein-1 h-1 and 

significantly enhanced root growth compared with the control (Fisher’s PLSD test, P<0.05). In 

order to confirm the correlation between ACC deaminase activity and seedling root growth, I 

performed a regression analysis of bacterial ACC deaminase activity and the root length of 

seedlings that had been inoculated with the corresponding isolate. A statistically significant, 

positive relationship (r2=0.534; P=0.0009) was observed between ACC deaminase activity and  

root growth (Fig. 2A). In order to test whether reduced ACC levels in a plant affected ET 

metabolism, I determined the relation between bacterial ACC deaminase activity and plant ET 

emissions, using simple regression analysis. Although I found a significantly negative 

relationship (r2=0.679 and P=0.0063) between these two factors (Fig. 2B), ACC deaminase 

activity and subsequent lower seedling ET emissions did not account for all positive effects on 
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root growth: another group of isolates with little ACC deaminase activity also promoted root 

growth (Fig. 2A). In addition to ACC deaminase, some isolates produce IAA (Table 1). 

Exogenously applying IAA to S. nigrum seeds has a dosage-dependent effect: IAA when added 

in the range of 100µg ml-1 to 10mg ml-1 to seeds inhibited seedling root growth, but not when 

added at two lower concentrations: 1 and 10µg ml-1 (Fig. S1). Applying IAA (1µg ml-1) to seeds 

significantly increased the root growth of seedlings compared with the control. Inoculating seeds 

with 14 different IAA-producing isolates also modified root growth. Of these, two isolates 

SSR5-2 and BGCR2-9(1) increased root length in the range between 1.1 and 11µg ml-1 of IAA. 

In addition, three isolates (BGCR2-6, DSL6 and DSR10) whose IAA levels ranged from 93 to 

154µg ml-1 inhibited root growth. The mean value of bacterial IAA in culture and root length of 

seedling inoculated with the respective IAA-producing isolates was analyzed using simple 

regression, and I found a statistically significant negative relationship (r2=0.771 and P<0.0001) 

between bacterial IAA production and root growth (Fig. 2C). 

 
Figure legend: next page 
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Figure 2. Regression of bacterial traits that influence ethylene and auxin signaling against S. nigrum root 
growth as measured in the 16 isolates identified in Figure 1. (A) Regression of bacterial ACC deaminase 
activity and root lengths of seedlings inoculated with bacterial isolates. (B) Regression of bacterial ACC 
deaminase activity and ethylene emission from seedlings inoculated with bacterial isolates. (C) 
Regression of bacterial IAA and root lengths of seedlings inoculated with bacterial isolates.  

 
 
1.3.5. Endophytic bacterial colonization in root 

In order to quantify the colonization, I selected seven bacterial isolates with PGP effects. 

All were able to colonize the inner tissues of seedlings in concentrations of up to 106 cfu g-1 FM 

(Table S1). GFP-tagged strains, BGCR2-8(1) and DR5, revealed that they mainly colonize 

cortex cells and live intercellularly (Fig. 3). 

 
Figure 3. Confocal laser scanning microscopy of roots colonized by the GFP-tagged endophytic bacterial 
isolates. (A and B) Root colonization by GFP-tagged BGCR2-8(1) isolate at magnification of 100x (A) 
and 200x (B) and (C and D) root colonization by GFP-tagged DR5 isolate at magnification of 100x (C) 
and 200x (D). 
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1.3.6. Growth response of S. nigrum and N. attenuata to natural endophytic bacteria from S. 

nigrum and to type strains 

In order to determine the growth and fitness response of host and non-host plant species 

to these natural endophytic bacteria, I inoculated the seeds of S. nigrum and N. attenuata with the 

endophytic bacterial isolates from S. nigrum and measured length of seedling root and hypocotyl. 

Six isolates from the roots of S. nigrum with positive, neutral and negative effects on the root 

growth of S. nigrum were selected to determine the growth response of N. attenuata seedlings. 

These two solanaceous plant species responded differently to being inoculated with these 

isolates. Four (SSR5-1, SSR4, SSR8-1 and DR5) significantly promoted root growth of S. 

nigrum seedlings 7 days after inoculation (Fisher’s PLSD test, P<0.0001, P=0.002, P=0.004 and 

P=0.02, respectively, Fig. 4A). However, none of the selected isolates promoted root growth in 

N. attenuata seedling and some of these isolates even inhibited root growth. These isolates had 

no effect on the hypocotyl growth of S. nigrum seedlings except for isolate SSR4, which 

significantly increased hypocotyl length 7 days after inoculation (Fisher’s PLSD test, P=0.0451). 

Most of them promoted hypocotyl length of N. attenuata seedlings (Fig. 4B). 

In order to test the specific response of these two Solanaceous species, I selected six 

bacterial species from the German culture collection (DSMZ) based on their ability to promote 

growth (Madhaiyan et al., 2006). Of these six strains, four (P. brassicacearum D13227, P. 

marginalis D50276, M. fujisawaense D5686 and P. fluorescens D8568) exhibited ACC 

deaminase activity (data not shown). Three strains, P. brassicacearum D13227, B. pumilis 

D1794 and P. marginalis D50276, significantly promoted the shoot growth of S. nigrum 16 days 

after inoculation (Fisher’s PLSD test, P<0.0001, P<0.0001 and P=0.0044, respectively, Fig. 5A). 

On the other hand, the three strains, P. marginalis D50276, M. fujisawaense D5686 and P. 

fluorescens D8568, promoted shoot growth of N. attenuata 17 days after inoculation (Fisher’s 

PLSD test, P<0.0001, P<0.0001 and P=0.0311, respectively). Three strains, P. brassicacearum 

D13227, B. pumilis D1794 and P. marginalis D50276, significantly increased the fruit number of 

S. nigrum 48 days after inoculation (Fisher’s PLSD test, P=0.0485, P=0.0183 and P=0.0039, 

respectively), but only one of these strains, P. marginalis D50276, significantly enhanced the 

capsule production in N. attenuata 68 days after inoculation (Fisher’s PLSD test, P=0.003) (Fig. 

5B). Finally, only one strain, P. marginalis D50276, positively affected the shoot growth and 

fitness of both plant species.  
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Figure 4. Comparison of of S. nigrum and N. attenuata seedling growth to bacterial colonization (A and 
B) of endophytic bacteria isolated from S. nigrum. Six isolates were selected based on their effects on S. 
nigrum seedling growth. (A) Mean root length (±SE) and (B) mean hypocotyl length (±SE) of S. nigrum 
and N. attenuata seedlings. Asterisks indicate significant differences in promotion of root and hypocotyl 
growth in S. nigrum and N. attenuata seedlings by the bacterial isolates compared to the control at P<0.05 
(*); P<0.001 (**); and P<0.0001 (***).  
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Figure 5. Reproductive growth and fitness responses of S. nigrum and N. attenuata plants to known 
mutualistic bacterial strains (Pseudomonas brassicacearum D13227, Bacillus pumilis D1794, 
Pseudomonas putida D50194, Pseudomonas marginalis D50276, Methylobacterium fujisawaense D5686 
and Pseudomonas fluorescens D8568). (A) Mean stalk length (±SE) of S. nigrum and N. attenuata, (B) 
Mean (±SE) fruit number per plant (S. nigrum) and capsule number per plant (N. attenuata). Asterisks 
indicate significant differences (Fisher’s PLSD test; P<0.05 (*); P<0.001 (**); and P<0.0001 (***)). 
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1.4. Discussion 

The rhizosphere is where plant roots come in contact with soil-borne microbial 

communities. Plant-microbe interactions mostly involve microorganisms colonizing the roots of 

their hosts, namely growing plants. Colonization can take the form of many different interactions 

ranging from symbiosis to parasitism; each interaction affects plant fitness differently. Although 

plant-pathogen interactions are well studied, our understanding of the complex interactions of 

native endophytic bacteria with their plant hosts is rudimentary, at best. I isolated bacteria from 

field-grown S. nigrum and discovered a rich endophytic community with strong prevalence of 

Pseudomonas which is well-known for plant growth promotion (Mercado-Blanco & Bakker, 

2007); many of the isolated bacteria promoted growth and fitness of their host by modulating ET 

and IAA homeostasis. Although these phytohormonal pathways are conserved across plant 

species, the effects on a related solanaceous non-host plant, N. attenuata, differed, 

notwithstanding the similar extent to which the bacteria colonized the roots. This raises the 

questions: How consistent are interactions between plants and endophytic bacteria? Which 

mechanisms underlie these interactions?  And which factors determine the outcome of the 

interaction? 

PGP mechanisms of endophytic bacteria are thought to be similar to those of PGP 

rhizobacteria; namely, they affect plant growth by producing phytohormones, such as cytokinins 

or auxins, or by degrading hormone precursors, such as ACC by ACC deaminase (Glick et al., 

1998; Madhaiyan et al., 2006). This is largely supported by our findings. Changes in root growth 

of S. nigrum are clearly correlated to the production of IAA and ACC deaminase by a majority of 

endophytic bacteria I isolated (Fig. 2). Seedling ET emission were significantly lower after 

inoculation with ACC deaminase-producing isolates and subsequently, their roots grew longer 

than those of untreated seedlings (Fig. 2A & B). The relatively widespread production of IAA by 

plant-associated bacteria suggests that bacterial IAA stimulates root the development of host 

plants (Patten & Glick, 2002; Sergeeva et al., 2007). I also observed that IAA-producing isolates 

stimulated root growth, but only when they released low quantities of IAA; high levels of 

bacterial or exogenously applied IAA repressed it (Fig. 2C; Fig. S1). The concentration of 

exogenous IAA apparently determines the outcome of the interaction with IAA-producing 

endophytes.  
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PGP rhizobacteria living in the rhizosphere are generally believed to be beneficial for all 

plant species they associate with because of their conserved influence of phytohormones on plant 

growth (Sturz & Nowak, 2000; Cakmakci et al., 2007; Domenech et al., 2007). Studies on 

conifers and PGP rhizobacteria suggest that bacteria isolated from the rhizosphere of spruce 

sometimes interact with only certain ecotypes and the outcome of the interaction depends largely 

on experimental conditions (Chanway et al., 2000). For endophytic bacteria, even less is known. 

Zinniel et al., (2002) studied the host range of 29 endophytic bacteria that had been isolated from 

sorghum or corn; 26 were able to colonize at least one other host plant in sufficient densities, 

leading to the conclusion that these interactions are largely unspecific. When S. nigrum interacts 

with PGP native endophytes, their influence on the homoeostasis of IAA and ET explains at least 

part of the observed phenotypes, including growth modulation. Given that hormonal regulation is 

conserved among plants, I had anticipated that these PGP effects of IAA and ET would be 

similar in N. attenuata. However, this was not the case; ACC deaminase and IAA apparently 

affect root growth in a highly host species-specific manner (Fig. 4A) and this specificity is 

determined by the bacteria. 

 One possible explanation for the discrepancy is the relationship between bacterial ACC 

deaminase and IAA, and these bacteria’s mutual effects on root growth; some models describe 

how ACC deaminase counteracts ET-repressed auxin-response factors (ARFs) involved in root 

growth (Glick et al., 2007). The presence of ACC deaminase-producing rhizobacteria in the 

rhizosphere can depress the expression of auxin response genes in the shoots (Glick et al., 2007). 

Although it is well known that IAA can activate the transcription of ACC synthase (Kende & 

Zeevaart, 1997), it is less known whether ET inhibits IAA transport and signal transduction 

(Prayitno et al., 2006). The feedback loop of ET inhibition of IAA synthesis may limit the 

amount of ACC synthase, ACC, and, ultimately, ET that is released in response to stressful 

events in the life of the plant. The cross-talk between ET and IAA is so tightly regulated that 

phytohormonal imbalances might disturb plant growth and plants are generally very sensitive to 

IAA. Another host’s endophyte might thus produce too little or too much of it and, consequently, 

profoundly influence plant growth. Consistent with this scenario, is the observation that N. 

attenuata root growth decreased rather than increased when exposure to some PGP bacteria (Fig. 

4A). Finally, it remains to be elucidated which additional compounds are important in mediating 

the interaction of beneficial endophytic bacteria with S. nigrum. 
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The different responses of host and non-host species to the natural endophytic bacteria 

may result from a combination of several factors. The colonization success of PGP rhizobacteria 

reportedly increases the growth and fitness of many host plant species (Chanway et al., 2000; 

Benizri et al., 2001). I found no significant differences in how successfully endophytic bacteria 

colonize the host, S. nigrum, and the non-host, N. attenuata. Pseudomonas thivervalensis DR5 

colonized roots of both N. attenuata and S. nigrum (1.4x109 and 1.0x108 cfu gFM-1, 

respectively). However, P. thivervalensis DR5 significantly decreased root length of N. 

attenuata, while increasing root length in S. nigrum. In addition, endophytes may have evolved 

from parasites and may still have parasitic tendencies (Kogel et al., 2006) potentially 

contributing to incompatible interactions with non-hosts. N. attenuata may recognize the 

endophytic bacteria from S. nigrum as pathogens regardless of their stimulatory or inhibitory 

effects on S. nigrum.  Root growth diminishes when energy is allocated for defense or for saving 

storage above-ground. Our observations of increased hypocotyl growth of N. attenuata upon 

inoculation with the selected endophytic bacteria isolated from roots of S. nigrum are consistent 

with such a scenario (Fig. 4B). S. nigrum, however, has likely evolved to be able to discriminate 

between its specific endophytes and pathogens thanks to its long association with its natural 

endophytic bacterial communities. The way in which N. attenuata copes with the endophytic 

bacteria in its roots appears to be different but has not yet been analyzed. When the two plant 

species were inoculated with “generalistic” PGP rhizobacteria from the DSMZ culture collection, 

their growth and fitness differed (Fig. 5A&B). Clearly, the PGP effects of native/natural 

endophytic bacteria on their host and non-host plant species are not the same.  

Different behaviour of endophytic bacteria in the host and non-host plant species might 

be linked to the different environmental conditions under which the host and non-host grow. 

Black nightshades occur throughout the world in pioneer communities on open, disturbed and 

nutrient-rich soils, such as riverbanks, and have invaded many agricultural habitats, such as 

fields, gardens, and wasteland (Schmidt et al., 2004). In contrast, N. attenuata evolved to 

optimize its growth in the immediate post-fire environment of deserts in southwestern United 

States; seeds germinate synchronously into nitrogen (N)-rich soils and hence have selected to 

grow rapidly when water availability is high (Baldwin, 2001). Habitat-dependent co-evolution is 

likely to shape the particular endophytic bacterial communities that best fit a given habitat. 
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These findings demonstrate that native endophytic bacteria with PGP traits do not have 

general and predictable effects on the growth and fitness of all host plants, although the 

underlying mechanisms are conserved. Clearly much more can be learned from studying 

interactions between native endophytic bacteria and other native plant species in their ecological 

context.  
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Chapter II. The structure of the culturable root bacterial endophyte community of 

Nicotiana attenuata is organized by soil composition and host plant ethylene production 

and perception 

 

2.1. Introduction 

Endophytic bacteria reside inside plants and have been extracted from surface-sterilized 

tissues of cultivated and native herbs and trees (reviewed by Hallmann et al., 1997; Ryan et al., 

2008). They are thought to be recruited from the surrounding soil (reviewed by Ryan et al., 

2008) and have a continuum of effects on their host plant, from advantageous to detrimental 

(Kobayashi & Palumbo, 2000). The beneficial effects, such as growth promotion and disease 

control (Sturz et al., 1997; Sessitsch et al., 2004; Long et al., 2008) can result from indirect 

interactions during which endophytes may provide nutrients (N, P) to the plant or antagonize 

pathogens, as well as from direct interactions, such as when endophytes modify host 

phytohormone homeostasis (Sessitsch et al., 2004; Berg et al., 2005; Long et al., 2008). 

While plant-pathogen interactions and their underlying genetic mechanisms have been 

extensively studied, less is known about plant-rhizosphere or even endophyte-plant relationships. 

Numerous studies have characterized bacterial diversity in scores of plants and reported that the 

bacterial endophytic community can be specific to particular species of host plants and even 

cultivars (Sturz et al., 1997; Adams & Kloepper, 2002; Araujo et al., 2002; Zinniel et al., 2002; 

Rasche et al., 2006; Sun et al., 2008). The composition of root exudates is thought to play a 

central role in recruiting bacteria from the bulk soil into the rhizosphere (Bais et al., 2006; 

Hartmann et al., 2008; Micallef. et al., 2009) and finally into the endosphere (Balachandar et al., 

2006), but little is known about specific plant genes that facilitate the recognition and selection 

of endophytic bacteria.  

Research in plant-pathogen interactions has demonstrated that three phytohormones play 

a central role in mediating resistance to plant pathogens: salicylic acid (SA), jasmonic acid (JA) 

and ethylene (ET) (Reymond & Farmer, 1998; De Vos et al., 2006). Recently, the importance of 

JA and SA signaling in influencing bacterial endophyte communities was examined in 

Arabidopsis thaliana. Arabidopsis plants with elevated SA-regulated defense responses were less 

colonized by bacterial endophytes and harbored lower species diversity than plants of the Col 

ecotype, while JA signaling had no effect on the endophytic community (Kniskern et al., 2007). 
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To date, the influence of ET signaling on the composition of the endophyte community has not 

been thoroughly examined. 

ET mediates not only a diverse suite of metabolic and senescence processes (Bleecker & 

Kende, 2000) but also responses to abiotic and biotic stresses, including plant-pathogen 

interactions. During the early stages of these interactions, ET is thought to mediate the elicitation 

of defense reactions to pathogen attack (Piatti et al., 1991), and in susceptible plant-pathogen 

interactions, an ET burst is commonly observed early in the interaction, accelerating senescence 

processes (Stearns & Glick, 2003). Other studies however, highlight the role of ET in pathogen 

resistance. The Arabidopsis mutants ein2, which are unable to perceive ET, are more susceptible 

to the necrotrophic fungus Botrytis cinerea than are WT plants (Thomma et al., 1999); however, 

susceptibility to the biotrophic Pseudomonas syringae pv. tomato was not altered (Pieterse et al., 

1998). Reviewing the complicated and often contradictory reports on ET’s role, van Loon et al., 

(2006) recently concluded that ET’s signaling function depends on the nature of the pathogen.  

The role of ET in mediating plant-endophyte interactions remains largely unexplored. 

Iniguez et al., (2005) reported the hypercolonization of an ET-insensitive Medicago truncatula 

line by the endophyte Klebsiella pneumoniae 342 (Kp342), and Cavalcante et al., (2007) found 

that expression of an ET receptor and two ET transcription factors were differentially regulated 

in sugarcane in response to inoculation with diazotrophic endophytic bacteria.  

The ET-related bacterial communities, ACC deaminase (ACCd) and IAA producing 

bacteria, are known to affect plant growth positively by interfering with ET signaling (Glick et 

al., 2007). While the mechanisms of PGP are explored, the selective recruitment of these 

beneficial bacterial communities by the plant remains unknown (Hardoim et al., 2008). Is the 

recruitment of ACCd and IAA producing bacteria into the plant endosphere more than a chance 

event? Is the colonization process mediated by a plant’s ET production or perception? The use of 

plants with contrasting ET levels might help to elucidate this intriguing question.  

Endophytic bacterial populations can be regarded as a subset of the soil microbial 

community and thus influenced by the soil’s chemical and physical properties; however, in many 

cases, the rhizosphere communities of different plant species growing in the same soil are 

distinct (Marschner et al., 2004; Garbeva et al., 2008). That the same plant species can recruit a 

similar microbial community from different soils (Miethling et al., 2000) points to a plant-driven 
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selection process, but the extent to which soil and host plant determine the composition of the 

endophyte community remains unresolved (Garbeva et al., 2004).  

In order to manipulate endophytic bacterial populations to benefit plants, a better 

understanding of how plant signaling systems (e.g. ET signaling) influence the recruitment of 

endophytic bacterial communities from different soil types is needed. The wild tobacco species 

Nicotiana attenuata, which is native to the Great Basin Desert, USA, has evolved the ability to 

germinate in post-fire N-rich soils (Lynds & Baldwin, 1998). So far, nothing is known about the 

diversity of endophytic bacterial communities associated with this plant in nature. Here I 

characterize the culturable bacterial endophyte communities of N. attenuata’s roots and ask the 

following questions: Do plant ET signaling and the ability of plants to sense or produce ET play 

a role in the recruitment of endophytic bacteria? Do bacterial isolates specifically colonize 

distinct host genotypes? How do the bacterial endophytes influence plant growth? Do plant 

genotype and differential ET production affect the recruitment of ACCd and IAA producing 

bacteria into the plant endosphere?  

I used wild type (WT) and two isogenic transgenic lines of N. attenuata plants, ir-aco1 

and 35S-etr1, to assess the effects of ET signaling on the diversity of culturable endophytic 

bacteria in roots. N. attenuata ir-aco1 can sense ET but is deficient in ET biosynthesis, and hence 

have enhanced sensitivity to ET; N. attenuata 35S-etr1 plants are impaired in their ability to 

perceive ET and as a consequence tend to overproduce ET (von Dahl et al., 2007). All genotypes 

were grown in four different soils, two organic and two mineral, collected from N. attenuata’s 

native habitat in SW Utah, USA, just before the germination of the native seed bank. I focused 

on the culturable bacterial endophyte community in order to test hypotheses about the specificity 

of the association between plant and bacteria with re-colonization assays. To the best of our 

knowledge, this is the first examination of ET signaling in the selection of bacterial endophytes.  

 

2.2. Materials and Methods 

 

2.2.1. Plant materials 

The following inbred WT and transgenic lines of N. attenuata were used in all 

experiments: N. attenuata ecotype Utah inbred line 22, ET-biosynthesis-deficient transgenic line 

ir-aco1 (A-03-321-10) and ET-insensitive line 35S-etr1 (A-03-328-8), which are derived from 
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the same Utah inbred line and are therefore isogenic. The lines are fully characterized in von 

Dahl et al., (2007). Seed germination procedures are described elsewhere (Krugel et al., 2002; 

Long et al., 2008) and also detailed in General materials and methods.  

 

2.2.2. Bacterial strains  

Two generalist bacterial species were selected from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ), the German culture collection, Pseudomonas 

brassicacearum DSM13227 and Pseudomonas fluorescens DSM8568 for the experimental 

colonization assay. All other strains were isolated from plants grown in native Utah soils. The 

characteristics and origin of these isolates are presented in Table 1. 

Table 1. Bacterial strains used in this study 

Bacterial 
strains/isolates 

Origin Characteristics Reference 
ACCd IAA-Trp IAA+Trp 

Sphingomonas sp. WT plant root, soil O2 + - + This study 
Curtobacterium sp. WT plant root, soil O2 + - + This study 
Bacillus 
endophyticus 

ir-aco1 plant root, soil O1 + - - This study 

Methylobacterium 
extorquens 

ir-aco1 plant root, soil O1 + - - This study 

Bacillus cereus 35S-etr1 plant root, soil 
O2 

+ + + This study 

Pseudomonas 
thivervalensis 

35S-etr1 plant root, soil 
M1 

+ + + This study 

Bacillus megaterium ir-aco1 plant root, soil O1 + + + This study 
Bacillus simplex ir-aco1 plant root, soil O1 - + + This study 
Pseudomonas 
fluorescens 
DSM8568 

DSMZ + + + Long et al. 
(2008) 

Pseudomonas 
brassicacearum 
DSM13227 

DSMZ + + + Long et al. 
(2008) 

-, negative; +, positive 

 

2.2.3. Soil collection 

Four types of soils were collected from N. attenuata’s native habitat in Utah, USA (Table 

2), on Jan. 26, 2008. All soils contained the variable N derived of NH4
+ and NO3

- described in 

(Lynds & Baldwin, 1998) and contained N. attenuata seeds from previous years of N. attenuata 

growth. The soils, therefore, contained the bacterial community from which the seeds would 
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recruit their endophyte community when they germinated two months later. All soils were stored 

at 4°C for three days during shipment before being used in experiments. Two organic soils, 

located at the base of burned (soil O1) or unburned (soil O2) juniper trees, were collected from 

the following location (N37° 04 02.6 W 113° 53 04.04). The juniper tree was burned by wildfires 

in 2004 and again in 2006. Two mineral soils were collected, one that had burned in 2006 and 

2007 (M1) near Castle Cliffs along Rt. 91 (N37° 05 23.5 W 113° 50 42.4) and another (M2) 

from 8 km north on Rt. 91 near the TV tower that had burned in 2007 (N37° 06 01.9 W 113° 49 

22.7).  

 

2.2.4. Soil analysis 

 Analysis of total C and N contents in the soil samples was performed by the ChemLab of 

Max Planck Institute for Biogeochemistry (Jena, Germany) (http://www.bgc-

jena.mpg.de/service/chem_lab/roma/elemental_analysis/elemental_analysis.shtml). For the pH 

measurement, 1 g of soil was suspended in 10 ml of distilled water and shaken for 3 min. The 

slurry was allowed to settle for 30 min at room temperature before a pH electrode (Schott) was 

dipped into the supernatant to determine soil pH. 

 

2.2.5. Isolation of culturable endophytic bacteria  

Ten days after germination, one seedling from each genotype (WT and transformed lines) 

was transferred individually to 7cm pots containing the Utah soils. In total, three replicates per 

line and soil were cultivated. Plants and soils were cultured in the glasshouse (16/8 h photoperiod 

at 200-300 μmol m-2 s-1, 25/21°C, and 45-55 % relative humidity) and watered with sterile 

distilled water. Plants were harvested at the end of the rosette stage of growth (23 days after 

transplanting) and the soil was carefully removed from the roots under running tap water. 

Endophytic bacteria were isolated as described by Long et al., (2008) and also detailed in 

General materials and methods.  

 

2.2.6. Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

Approximately 120 ng of DNA (PCR product) for each sample was digested in 20 μl 

reactions containing 2 μl of 10X Buffer Tango (Fermentas, http://www.fermentas.com), 10-15 μl 

sterile deionized water (depending on the DNA concentration) and 5U of the restriction enzyme 
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HinfI or MspI (Fermentas, http://www.fermentas.com). The reaction was incubated at 37oC 

overnight. Band sizes were visualized in 2% agarose containing ethidium bromide under UV 

light. 

Cluster analysis was performed to create dendrograms that group similar bacterial isolates 

from different plant genotypes and soil types together according to their banding profile. The 

unweighted pair-group moving average (UPGMA) clustering and a Bray-Curtis similarity matrix 

were calculated for both restriction enzymes using PAST (http://folk.uio.no/ohammer/past/) 

multivariate statistics program. Bray-Curtis clustering compares the presence or absence of 

restriction banding patterns in bacterial isolates from different plant genotype and soil type. I 

refer to each banding pattern as an operational taxonomic unit (OTU). Given the fact that HinfI 

restriction yielded a more diverse banding profile than MspI digestion (Fig. S1b), further analysis 

was based on the HinfI restriction (Fig. S1a).  

 

2.2.7. 16S rDNA gene sequencing 

The same proportional number of bacterial isolates was selected for sequencing 

according to plant genotype, HinfI-OTU clustering and soil type. The sequencing was carried out 

as described in General materials and methods.  

The sequences were deposited in GeneBank (http://www.ncbi.nlm.nih.gov/Genbank/) 

with the accession numbers FJ639178-FJ639250. Alignment with related sequences from type 

strains in GenBank, bootstrap calculations and phylogenetic tree construction were carried out 

with MEGA4 (Tamura et al., 2007). Distances, including pair-wise deletions and insertions, 

were calculated according to Jukes and Cantor (Jukes & Cantor, 1969), whereupon the overall 

neighbor-joining (NJ) phylogenetic dendrogram (Saitou & Nei, 1987) was inferred, rooted and 

bootstrapped 1000 times (Felsenstein, 1985).  

 

2.2.8. Bacterial colonization assays in vitro and in the glasshouse   

In order to test the specificity of the observed pattern of bacterial endophyte colonization 

among the plant genotypes, seedlings of each genotype were individually inoculated with one of 

ten bacterial endophytes (Table 1), called “single inoculation”: two bacterial strains exclusively 

isolated from one plant genotype, called “specialists”; two bacterial strains isolated from all three 

plant genotypes, called “generalists”; and two type strains from the DSMZ culture collection 
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called “DSMZ generalists” known to be able to colonize an array of plant species, were included 

in the experiments as “positive controls”. An additional set of seedlings from each genotype was 

inoculated with a mixture of all ten bacterial endophytes, called “mixed inoculation”. The 

experimental set-up and the scheme for the cross-inoculation of bacterial isolates into host or 

non-host plants are described in Fig. 3A. Bacterial suspensions in sterile distilled water 

(OD600=1.2) were used for seed inoculation; control seeds were treated with sterile distilled water 

only. For the in vitro colonization assays, the inoculated seeds (20 seeds per Petri dish, 3 dishes 

for each combination) were incubated at room temperature overnight and transferred to sterile 

filter papers (Whatman No.1) in Petri dishes maintained in Percival growth chambers (13/11h 

day/night cycle, 155μmol m-2 s-1, 26/24°C). One week after inoculation, bacterial isolation was 

carried out as described above. Two independent experiments were carried out for all seedling 

assays. Bacterial identity was determined by 16S rDNA sequencing. 

In the glasshouse, 12-day-old seedlings were planted in Teku pots (five replicates per 

genotype and bacterial inoculum) in a random design (16/8 h photoperiod at 200-300 μmol m-2 s-

1, 25/21°C, and 45-55 % r.h.). The Teku pots were placed in separate trays to avoid cross-

contamination and watered whenever needed with sterile water. One ml of single inoculum of 

the following bacterial isolates (Table 1) was applied to the rhizosphere: P. brassicacearum 

DSM13227, B. megaterium, M. extorquens, Curtobacterium sp. and P. thivervalensis. Twelve 

days after inoculation, roots were collected and bacterial isolation was performed as described 

above. Bacterial identity was determined by 16S rDNA sequencing. One experiment was carried 

out. 

 

2.2.9. Seedling ethylene measurement 

ET emissions from WT, ir-aco1 and 35S-etr1 seedlings were measured continuously and 

non-invasively in real-time with a photoacoustic spectrometer (INVIVO, Saint Augustin, 

Germany) as described by (von Dahl et al., 2007). Thirty seeds were germinated in 100 ml three-

neck flasks on filter paper and cultivated in a Percival growth chamber (13/11h day/night cycle, 

155 μmol m-2 s-1, 26/24°C). After 12 days, flasks containing the seedlings were subjected to ET 

measurements (five replicates per genotype). Five empty flasks with filter paper and sterile 

distilled water served as controls. 
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2.2.10. Microscopic analysis and root morphological investigations 

 Seeds of WT, ir-aco1 and 35S-etr1 were germinated for 12 days on filter paper as 

described above. For root hair count, the first 1mm section of the root was photographed under a 

Zeiss Image Z1 microscope (Zeiss, Germany, 100x magnifications). The pictures were printed 

and numbers of root hairs were counted. Observation of the whole seedling was carried out using 

an Olympus SZX10 microscope (Zeiss, Germany, 10x magnifications). Root length of seedlings 

was measured using a ruler. 

 

2.2.11. Seedling response assay 

Shortly after isolation, 139 bacterial isolates were singly inoculated into WT seeds on 

filter paper as described above. Seedling growth responses to bacterial inoculum were classified 

as beneficial, pathogenic and neutral (Table 5) based on their effects on root length, hypocotyl 

length, number of true leaves and lateral root formation. “Beneficial” means that the bacterium 

enhanced at least one of the above parameters and had no negative effect on the other 

parameters. “Pathogenic” means that the bacterium caused detrimental effects on at least one of 

the above parameters. “Neutral” means that the bacterium did not cause any effect on the above 

parameters in the inoculated seedlings. 

 

2.3. Results 

 

2.3.1. Both soil type and plant genotype influence the culturable endophytic bacterial community 

The soils were characterized as organic (O1 and O2) and mineral (M1 and M2) based on 

the contents of carbon (C) and nitrogen (N) and pH (Table 2). The total C contents of the two 

organic soils (O1 and O2) are 18.7% and 17.7%, respectively, while their N contents are similar 

(0.73%). The C contents of the two mineral soils (M1 and M2) are 3.2% and 2.6% and their N 

contents are 0.07% and 0.08%, respectively. The pH of these soils ranges from 8.5 to 9.0.  In 

order to estimate the degree of colonization of the three genotypes grown in the different soils, 

the colony-forming units (CFUs) of endophytic bacteria representing the total culturable 

endophytic bacterial community for each plant genotype by soil type combination were 

determined (Fig. 1). On average, colonization of WT plants was high but variable among the four 

soils, yet colonization of ir-aco1 and 35S-etr1 plants varied even more. Plants grown in the two 
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organic soils accommodated the most endophytic bacteria; those cultivated in the mineral soils 

M1 and M2 harbored significantly fewer (P<0.05). No bacterial endophytes were isolated from 

ir-aco1 and 35S-etr1 plants grown in the mineral soils, M1 and M2, respectively. A two-way 

ANOVA revealed that the total endophytic bacterial community depended significantly on both 

plant genotype and soil type (P<0.05, Table S1).  

 
Table 2. Soil properties 

Soil Soil types C content (%) N content (%) pH 

O1 Organic, burned 18.72 0.73 8.5 

O2 Organic, unburned 17.77 0.73 8.6 

M1 Mineral, burned 3.16 0.07 9.0 

M2 Mineral, burned 2.60 0.08 8.8 
 

 

 
Figure 1. CFU isolated from roots of WT and transgenic plants grown in four different soils. nd: not 
detected.  
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2.3.2. The diversity of culturable endophytic bacteria 

In total, 139 bacterial isolates were picked from half-strength YPDA media. However, 36 

bacterial isolates were not viable after long-term preservation. Looking at bacterial colony 

morphology, I found that WT plants harbored the highest bacterial diversity (68 isolates), 

followed by ir-aco1 (36 isolates) and 35S-etr1 (35 isolates). All isolates were grouped into 28 

OTUs according to similarities within HinfI-digested 16S rDNA banding patterns. For 16S 

rDNA sequencing, 73 representative isolates were chosen based on the plant genotype, soil type 

and OTU cluster that they were originally isolated from (Fig. 2).  

Figure S1 shows the Bray-Curtis similarity of the OTU clusters in which the 

representative isolates with their origins (soil type and plant genotype) and number of isolates for 

each OTU cluster are presented. Most of the bacterial isolates from organic and mineral soils 

were found to separate into distinct OTU clusters. Bacterial isolates belonging to Bacillus sp. 

were isolated only from plants grown in the organic soils.  

I analyzed the culturable bacterial diversity of three plant genotypes that differed in their 

production and perception of ET (Table 3 and Fig. 2). WT plants were found to harbor the 

highest diversity of endophytic bacteria sequenced, followed by 35S-etr1 and ir-aco1 plants. The 

sequence analysis revealed that Bacillus sp. and Pseudomonas sp. were the most abundant 

genera isolated from WT and transgenic plants. Fifteen bacterial species belonging to six 

bacterial genera were found in WT plants; eleven bacterial species belonging to three bacterial 

genera were found in 35S-etr1 plants; and eight bacterial species belonging to three bacterial 

genera were found in ir-aco1 plants. Interestingly, a small fraction of these isolates were found 

exclusively in either WT or transgenic plants. Sphingobium sp., Sphingomonas sp., 

Curtobacterium sp., B. nealsonii, and P. brassicacearum were found exclusively in WT plant 

roots. Two bacterial species, P. thivervalensis and B. cereus, were found only in 35S-etr1 plant 

roots, and two bacterial species, Methylobacterium extorquens and B. endophyticus, were found 

exclusively in ir-aco1 plant roots. 

Bacterial diversity is also dependent on the soil type in which different plant genotypes 

were grown. Plants grown in the two organic soils (O1 and O2) harbored a high endophytic 

bacterial diversity compared to the bacterial community of plants grown in the two mineral soils 

(M1 and M2); this community was represented only by Pseudomonas spp. The endophytic 

bacterial community of plants grown in the recently fire-affected soil, O1, was represented by 
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two bacterial genera; in contrast, the endophytic bacterial community of N. attenuata plants 

grown in the unaffected soil O2 was represented by six different genera (Table 4).  

 

Table 3. Number of culturable bacterial endophytes from different plant genotypes 

Bacterial genera/species WT ir-aco1 35S-etr1 
Bacillus sp. 11 7 3 
Bacillus simplex 2 2 1 
B. pumilus 1 1 3 
B. pichinotyi 1 - 1 
B. nealsonii 1 - - 
B. muralis 1 1 1 
B. megaterium 2 2 3 
B. endophyticus - 1 - 
B. cereus - - 1 
Curtobacterium sp. 2 - - 
Methylobacterium extorquens - 1 - 
Pseudomonas sp. 6 4 2 
Pseudomonas thivervalensis - - 2 
P. putida 1 - 1 
P. fluorescens 1 2 - 
P. brassicacearum 1 - - 
Sphingomonas sp. 1 - - 
Sphingobium sp. 1 - - 
Uncultured bacterium 1 - 1 
Total 33 21 19 
-, absence; the highlighted marks represent bacterial species specific for a particular genotype. 
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Table 4. Number of culturable bacterial endophytes from different soil types  

Bacterial genera/species O1 O2 M1 M2 
Bacillus sp. 11 10 - - 
Bacillus simplex 3 2 - - 
B. pumilus - 5 - - 
B. pichinotyi 2 - - - 
B. nealsonii 1 - - - 
B. muralis 2 1 - - 
B. megaterium 2 5 - - 
B. endophyticus 1 - - - 
B. cereus - 1 - - 
Curtobacterium sp. - 2 - - 
Methylobacterium extorquens - 1 - - 
Pseudomonas sp. 1 4 3 4 
Pseudomonas thivervalensis - - 2 - 
P. putida - - 2 - 
P. fluorescens - 1 1 1 
P. brassicacearum - - - 1 
Sphingomonas sp. - 1 - - 
Sphingobium sp. - 1 - - 
Uncultured bacterium 2 - - - 
Total 25 34 8 6 

-, absence 
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Figure 2.  Phylogenetic tree showing the relative positions of bacterial isolates as inferred from their 16S 
rRNA gene sequences using the neighbor-joining method. Bacterial species preceded by their GenBank 
accession numbers were used as standard strains. Flavobacterium degerlachei (AJ557886) was used as an 
outgroup organism. Bootstrap values above 50 are shown, representing the percentage of support for 
clusters out of 1000 replications. O = organic, M = mineral. The scale gives genetic distances. 
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2.3.3. Specificity of bacterial endophyte colonization 

All the seeds inoculated with bacteria germinated. Of the six specialist isolates, five were 

able to re-colonize their hosts and five were also found to colonize non-host seedlings upon 

single inoculations (Fig. 3B). The specialist for 35S-etr1, P. thivervalensis, colonized only 35S-

etr1 seedlings. The two generalists for all genotypes, B. megaterium and B. simplex, colonized 

35S-etr1 and WT seedlings, but not ir-aco1 seedlings. The two DMSZ generalists, P. fluorescens 

DSM8568 and P. brassicacearum DSM13227, colonized WT and the two transgenic seedlings. 

Interestingly, 35S-etr1 seedlings were colonized by all isolates upon single inoculations. In the 

mixed inoculation treatments, one of the generalists, either P. fluorescens DSM8568 or P. 

brassicacearum DSM13227, was able to infect all plant genotypes (Fig. 3C). Notably, the 

specialists Curtobacterium sp. and M. extorquens were able to re-colonize their particular hosts, 

WT and ir-aco1, respectively. The generalist P. brassicacearum DSM13227 fully colonized 35S-

etr1 seedlings. 

 

2.3.4. Re-colonization and persistence in the glasshouse 

The selected endophytic bacteria were able to re-colonize their hosts in a highly diverse 

and competitive environment in a non-sterile inoculation experiment under glasshouse conditions 

(Fig. 4). Of the five bacterial isolates (Table 1), P. brassicacearum DSM13227 and B. 

megaterium were re-isolated from the roots of all N. attenuata genotypes, whereas M. extorquens 

was found to re-colonize only the roots of ir-aco1 and 35S-etr1 plants. Curtobacterium sp. and 

P. thivervalensis did not colonize any N. attenuata genotype. 
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Figure 4. Colonization of different plant genotypes by individual bacterial isolates under glasshouse 
conditions. nd: not detected. 
 

2.3.5. Effects of bacterial endophytes on seedling growth 

Single inoculation of 139 isolates into WT seeds affected seedling growth; germination 

rate, however, was not influenced. Of these 139 isolates, 64 were beneficial with respect to 

seedling growth, 37 pathogenic and 38 neutral (Table 5). Among these 64 plant-growth-

promoting isolates, 35 showed ACCd activity and 37 produced IAA. However, 25 isolates 

lacking ACCd activity and 21 isolates unable to produce IAA also promoted seedling growth. 

Using plants impaired either in ET production (ir-aco1) or perception (35S-etr1), I investigated 

the influence of plant ET signaling on the recruitment of ACCd- and IAA-producing bacteria. 

The number of isolates producing ACCd and IAA was not significantly different among the plant 

genotypes (P>0.05, Table S2 and S3).  However, the abundance of bacteria producing ACCd and 

IAA was greater in organic soils O1 and O2 (Fig. 5), while in mineral soil M1, plants harbored 

significantly fewer ACCd- and IAA-producing isolates (P<0.05, Table S2 and S3), and no 

ACCd- and IAA-producing bacteria were detected in the plants grown in soil M2.  

 

2.3.6. ET production and root morphology of WT and transgenic plants 

 Constitutive ET emissions of 35S-etr1 seedlings were significantly higher than those of 

WT and ir-aco1 seedlings (P<0.0001) (Fig. 6A). WT seedlings produced a significantly larger 

number of root hairs in the investigated section than did seedlings of ir-aco1 and 35S-etr1 lines 

(P<0.0001) (Fig. 6C). Moreover, roots of 35S-etr1 and ir-aco1 seedlings are significantly longer 
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than those of WT seedlings (P=0.001) (Fig. 6B). The number of lateral roots was similar for the 

three genotypes (data not shown).  

Table 5. Number of bacterial endophytes influencing growth* of wild-type seedlings  

Soil type No. of total isolates Beneficial† Pathogenic‡ Neutral٭ 

O1 49 24 10 15 

O2 55 28 10 17 

M1 18 9 7 2 

M2 17 3 10 4 

Total 139 64 37 38 
* Parameters measured: root length, hypocotyl length, number of true leaves and lateral root formation 
† Bacterium enhanced at least one of the above parameters and without negative effect on the other 
parameters 
‡ Bacterium caused detrimental effects on at least one of the parameters  
 Bacterium did not influence any of the parameters ٭

 

Figure 5. Diversity of endophytic bacteria producing (A) ACCd and (B) IAA. nd: not detected. 
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clusters were significantly higher in plants grown in the two organic soils with higher C and N 

contents (Table 2) compared with those in the plants grown in the two mineral soils (Figs. 1 & 

S1). It is widely accepted that organic matter promotes both plant and soil microbial growth due 

to higher C, P and N supply rates (Vaidya et al., 2008) and enhanced nutrient availability may 

allow plants to support larger populations of endophytic bacteria. I found that the plants grown in 

the recently burned soil O1 and the unburned soil O2 harbored similar numbers of total 

culturable endophytic bacteria; however, they differed with respect to diversity. These findings 

concurred with the study of Hamman et al., (2007), which found no significant difference in total 

microbial biomass between the unburned and burned soils, but that the communities in the 

burned sites differed in species composition from those of the unburned soils. The recent 

invasion of cheat grass into the Great Basin Desert has dramatically shortened the average fire 

cycle of this habitat, and conclusions about the importance of fire in structuring soil communities 

would require more detailed investigations.  

ET signaling plays an important role in mediating different types of induced plant 

resistance to pathogens: induced systemic resistance (ISR) by rhizobacteria as reviewed by van 

Loon et al., (2006) and systemic acquired resistance (SAR) by pathogens as reviewed by Sticher 

et al., (1997). One may ask if these plant defense responses that require ET signaling also affect 

a plant’s endophytic bacterial communities. Hallmann (2003) experimentally induced resistance 

in potato plants by applying Rhizobium etli G12 to one-half of a split potato root system; the 

endophytic bacterial spectrum was analyzed for the other “uninduced” half of the split root 

system and compared with that of a non-treated plant. Total bacterial diversity and number of 

bacterial species were significantly higher in elicited than in non-elicited roots. These results 

indicate that eliciting bacteria-mediated induced plant defense responses increases the density 

and spectrum of root bacterial endophytes. Using the Arabidopsis mutants cpr1and npr1-1 which 

display either constitutive SAR or are unable to express SAR, Hein et al., (2008) found visible 

differences in the rhizosphere community fingerprints of the mutant plants compared to WT; 

however, there was no clear decrease of rhizosphere species diversity associated with 

constitutive SAR expression. The study suggested that SAR can alter rhizosphere bacterial 

communities. Our study provided evidence that plant ET signaling influences the initial 

recruitment of bacterial communities from the soil. The two transgenic plants differed from WT 

plants with respect to the size of their total culturable endophytic bacterial community (Fig. 1) as 
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well as its diversity (Table 3). In their native soils, N. attenuata WT plants harbored a more 

diverse bacterial community compared to ir-aco1 and 35S-etr1 plants; a result opposite of the 

expectation that impairments of ET signaling would be associated with increases in bacterial 

endophyte population and diversity.  

The smaller and less diverse community found in ET- signaling deficient plants suggests 

that many bacterial species may require the plant’s ability to produce and/or perceive ET for 

them to become endophytic. The variation in the bacterial endophyte community of ir-aco1 and 

35S-etr1 plants grown in native soils (Fig. 1) may also be explained by other biotic factors, e.g., 

endophytic fungi or unculturable bacteria that compete for the same niches in the plant (Singh et 

al., 2009) and whose communities have not been investigated. On the other hand, the lack of ET 

signaling might facilitate plant-endophyte communication. For example, P. thivervalensis was 

originally isolated only from 35S-etr1 plants, and even under stringent conditions (single in vitro 

inoculation) it was only able to colonize 35S-etr1 plants, suggesting that high levels of ET 

coupled with an insensitivity to ET are required for colonization (Fig. 3B). This is consistent 

with the findings of Persello-Cartieaux et al., (2001), who showed a similarly intimate 

relationship between the rhizosphere bacterium P. thivervalensis and A. thaliana mutant plants 

insensitive to IAA. Dong et al., (2003) demonstrated the existence of a specific colonization 

pattern for the Salmonella-Medicago truncatula interaction. By testing four Salmonella strains 

and two M. truncatula lines (WT and the symbiosis mutant dmi1), they showed that the 

colonization of the host plant was an active process, determined by the characteristics of the 

specific bacterial strain and the plant. Hence, the recruitment of soil-dwelling bacteria into the 

endosphere is likely defined by host genotype and specific genes.  

Since the ir-aco1 and 35S-etr1 plants have not yet been metabolically characterized 

beyond their differential ET production and perception, uncharacterized changes in root 

metabolomics (e.g. ACC accumulation) and exudates could explain the observed patterns of 

bacterial association. Buer et al., (2006) demonstrated that ET signaling modulates flavonoid 

accumulation in A. thaliana roots and recent reviews by Bais et al., (2006) and Hartmann et al., 

(2008) highlight the importance of flavonoids and other root exudates in the plant-driven 

recruitment of rhizosphere bacteria. In addition, I hypothesize that root morphology might 

influence the endophytic bacterial community. For example, soil-dwelling bacteria probably 

enter roots via cracks in lateral root junctions and through root hairs as reviewed by Glick et al., 
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(1999). While there is a consensus on possible effects of microbes on root morphology (Persello-

Cartieaux et al., 2001; Lopez-Bucio et al., 2007), data on how plant root morphology itself 

initially affects the structure of an associated rhizosphere or endosphere bacterial community are 

scarce. Depret & Laguerre (2008) reported that modifications in host root and nodule 

development appear to influence the ability of particular rhizobial genotypes to colonize the host 

legume. I found that ET signaling affected root morphology of N. attenuata seedlings, 

specifically, root hair number and root length (Fig. 6). WT plants, which have significantly more 

root hairs, might provide microbes with a greater number of points of entry; however, stochastic 

sampling process may also account for the more diverse endophytic bacteria community 

(Hardoim et al., 2008).  

Our single inoculation experiments highlighted specific plant traits associated with 

deficiencies in ET signaling (Fig. 3B) that affected colonization patterns. For other genotype-

endophyte associations (WT and ir-aco1), the interactions did not prove to be that stringent. 

However, these experiments with single inoculations of other specialists and generalists revealed 

that 35S-etr1 plants were the most susceptible host plants tested. 35S-etr1 plants were highly 

colonized by all bacterial endophytes tested, particularly in experiments lacking competition 

(Fig. 3B). This is consistent with the studies on an ET-insensitive mutant sickle M. truncatula in 

which Klebsiella pneumoniae 342 (Kp342), a bacterial endophyte enhancing plant growth and 

nutrition, hypercolonized the mutant compared to the WT plants (Iniguez et al., 2005). 

Furthermore, the greater susceptibility of ET-insensitive plants with regard to pathogenic 

microbes has been demonstrated in various studies as reviewed by van Loon et al., (2006). Thus, 

I propose that the similar resistance mechanisms might be involved in regulating colonization by 

endophytic and pathogenic bacteria under simplified conditions.   

Not only do plants select particular bacterial communities, but interactions among the 

bacteria themselves influence colonization success. Complex dynamics in the bacterial 

communities such as facilitation and competition might play a role in the colonization process 

(Li & Alexander, 1986; Ramos et al., 2003b; Verma et al., 2004; Rosenblueth & Martinez-

Romero, 2004). Li and Alexander (1986) showed that Enterobacter aerogenes, Pseudomonas 

marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by 

Rhizobium meliloti of roots grown on agar and reduced nodulation by R. meliloti. In the mixed 

inoculation studies, I found that 35S-etr1 seedlings were fully colonized by the DSMZ generalist 
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P. brassicacearum DSM13227 (Fig. 3C), which apparently could exclude even the specialist P. 

thivervalensis. However, in WT and ir-aco1 plants, the specialists successfully re-colonized their 

hosts in mixed inoculation experiments (Fig. 3C), suggesting that synergistic interactions 

occurred among the bacterial endophytes (Sturz et al., 1997). In general, at least one of the two 

DSMZ generalists, P. brassicacearum DSM13227 and P. fluorescens DSM8568, was able to 

colonize the three N. attenuata lines upon single or mixed inoculation. These two strains belong 

to the genus Pseudomonas, which is known to be rapid and successful plant colonizer even under 

highly competitive situations (Lugtenberg et al., 2001).  

An additional trait of so-called “true” endophytes is their ability to re-infect their putative 

host (Rosenblueth & Martinez-Romero, 2006; Hardoim et al., 2008). In our non-sterile 

glasshouse experiments, some of the inoculated endophytes were able to re-colonize their host, 

whereas some were not (Fig. 4). Since re-infection was successful for most host and also some 

non-host associations under in vitro conditions, these observation might be explained by other 

biotic factors mentioned above. I interpret these results as showing that the specific bacterial 

endophyte-host interactions depend not only on the host plant genotype but also on interspecific 

interactions of bacterial endophyte communities.  

One of the advantages of studying culturable endophytic bacterial communities is the 

ability to investigate their effects on plant growth as reviewed by Barriuso et al., (2008). I found 

that about half of the isolates were beneficial for WT plant growth (Table 5) under in vitro 

conditions. However, several “endophytic” isolates had pathogenic or neutral effects. How a 

particular bacterial endophyte community is selected by the host plant may reveal how plants 

tolerate harsh conditions. One example can be seen in  the recruitment of beneficial ET-related 

bacterial communities by the host plant: the ACCd-producing bacteria, which are able to lower 

stress associated ET production in plant roots by cleaving the ET precursor, ACC, which results 

in enhanced plant growth (Glick et al., 2007).  IAA- and ACCd-producing bacteria were 

abundant in plants grown in the organic soils O1 and O2 (Fig. 3), which is in accordance with the 

total culturable bacterial community (Fig. 1). One might expect that plants whose ET signaling 

ability is impaired (35S-etr1 and ir-aco1), which causes them to misread environmental signals 

and experience stress, might recruit such beneficial bacteria to greater extent than do WT plants. 

Interestingly, our results did not support this expectation: the different plant genotypes did not 

recruit ACCd/IAA-producing bacteria differently. It might be possible that cultivated plants such 
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as canola and tomato which rely on ACCd/IAA producing bacteria to ameliorate abiotic stresses, 

such as salinity or heavy metal, actively select for these bacterial communities under stress 

conditions (Glick et al., 2007). However, native plants like N. attenuata which have evolved to 

tolerate stressful environments might not recruit ACCd producing bacteria as PGPR, but merely 

let them in and they thrive as parasites. Thus I propose that plant’s ability to produce or sense ET 

does not directly control the recruitment of these communities for native plants (Fig. 5 and Table 

S2 & S3). Furthermore, an association between plant growth and ACCd/IAA production was 

found in only half of the PGP isolates; hence, there are clearly many other ways by which 

bacterial endophytes can promote growth, and additional experiments will be required to 

elucidate these underlying mechanisms. 

In conclusion, the results confirm the central role of soil type and highlight, though to a 

lesser extent, the role of ET signaling in shaping endophytic bacterial community structure. 

Specific interactions between endophytic bacteria and their host plants are regulated not only by 

plant ET signaling but also by the bacteria themselves. The host plants’ ability to recruit 

ACCd/IAA-producing bacteria seems to be independent of ET signaling. 
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Chapter III. Native bacterial endophyte from Nicotiana attenuata enhances the growth and 

fitness of its host in the natural ecosystem 

 

3.1. Introduction 

Bacterial endophytes have been intensively studied in the context of agricultural practices 

rather than ecology or biodiversity (Hallmann et al., 1997; Sturz et al., 2000). Most studies have 

focused on bacterial endophytes and their ability to enhance the productivity of cultivated plants. 

Only a few studies have reported on the bacterial endophyte communities associated with native 

plant species and/or on assessing plant-growth-promoting (PGP) effects in nature (Hallmann et 

al., 1997; Sturz et al., 2000; Long et al., 2008). Therefore, the endosphere of wild plant species 

represents a potentially promising source from which PGP endophytic bacteria can be isolated 

(Domenech et al., 2007; Barriuso et al., 2008).  

Endophytic bacteria have been studied as possible inoculants for increasing plant 

productivity (Hallmann et al., 1997). Several mechanisms have been postulated to explain how 

endophytes stimulate plant growth. These mechanisms are broadly categorized as direct or 

indirect (Glick, 1995). Direct mechanisms elicit growth promotion by bacterial determinants, 

including the interference of plant hormone homeostasis by the production of plant hormones.  

Examples of such hormones include indole-3-acetic acid (IAA), gibberellins (GA), cytokinin or 

the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd), which degrades 

ACC, an ethylene (ET) precursor, subsequently enhancing root growth by reducing ET (Glick, 

1995). Furthermore, the solubilization of inorganic phosphate (P) (Park et al., 2009) as well as 

the release of volatile organic compounds (VOCs) is known to affect plant growth positively 

(Ryu et al., 2003). Endophytic bacteria that promote plant growth indirectly by suppressing 

pathogens and eliciting induced systemic resistance (ISR) are well-known in biological control 

or defense against insect herbivores (Kloepper et al., 1992; Dobbelaere et al., 2003; Van Oosten 

et al., 2008).  

Bacterial endophytes qualify as plant-growth-promoting bacteria (PGPB) when they are 

able to colonize and elicit positive effects on the plant as reviewed by Hardoim et al., (2008). 

Some bacterial endophytes are commercially available as inoculants for agriculture, but the 

inoculation of soil with these bacteria may affect the composition and structure of endosphere 

microbial communities as reviewed by Castro-Sowinski et al., (2007). Synergistic effects 
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between the introduced bacterial endophytes and the endogenous microbial communities led to 

positive effects on plant growth (Ramos et al., 2003a). However, the opposite might be true for 

antibiotic-producing bacterial endophytes that negatively affect resident microbial communities 

as reviewed by Castro-Sowinski et al., (2007), again influencing plant growth. Therefore, 

knowledge of the structure of endosphere microbial communities and their diversity is the key to 

better understanding interactions with introduced bacterial endophytes and host plants in nature.  

The plant hormone ET is known to regulate multiple physiological and developmental 

processes in plants, such as seedling emergence, leaf and flower senescence, and ripening organ 

abscission, and it is also involved in the reactions of plants to abiotic and biotic stresses (van 

Loon et al., 2006). Blocking ET perception with ET response inhibitors such as 1-

methylcyclopropene (1-MCP) helps to increase the longevity of flowers and ornamental plants 

(Serek et al., 1995). However, the absence of ET perception was shown to weaken the ability of 

transgenic Tetr tobacco plants to withstand common, generally non-pathogenic, opportunistic 

soil-borne fungal organisms (Knoester et al., 1998; Geraats et al., 2002). Intensive research has 

been conducted using the mutated dominant ET resistance gene etr1-1 from Arabidopsis. Early 

experiments with this gene were carried out on petunia (Wilkinson et al., 1997). In these very 

thorough experiments, a CaMV35S::etr1-1 construct was transferred to petunia, resulting in the 

constitutive expression of the etr1-1 gene coupled with ET insensitivity. Nonetheless, 

constitutive gene expression gave rise to undesirable side effects such as the poor root 

development of cuttings, less efficient seed germination and rooting, and delayed seedling 

growth. Most of these effects can be explained by the role of ET plays at the different 

developmental stages (reviewed by Serek et al., 2006).  

Our Nicotiana attenuata mutant line 35S-etr1 consistently shows a similar growth 

phenotype to the above-mentioned mutated plants and higher mortality compared to wild type 

(WT) plants, and thus is ideal for studying the recruitment of PGP bacterial endophytes and their 

effects on plant growth and survival in nature. In a previous study, many endophytic bacteria 

were isolated from the roots of WT, ir-aco1 and 35S-etr1 N. attenuata plants grown in native 

Utah soils. A number of isolates were shown to be beneficial for seedling growth under in vitro 

conditions. For the present study, a native bacterial isolate, Bacillus sp., was selected among the 

most potential PGP isolates and used to address the following question: how does a native 

bacterial endophyte isolate influence the growth and fitness of its host plants, N. attenuata (WT), 
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and especially the highly susceptible 35S-etr1 transgenic line in the native habitat, southwestern 

Utah, USA?  

 

3.2. Materials and Methods 

 

3.2.1. Plant materials and bacterial strain 

The following inbred WT and transgenic lines of N. attenuata were used in all 

experiments: N. attenuata ecotype Utah inbred line 22 and ET-insensitive line 35S-etr1 (A-03-

328-8); these are derived from the same Utah inbred line and are therefore isogenic. The lines are 

fully characterized in von Dahl et al., (2007). Seed germination procedures are described 

elsewhere (Krugel et al., 2002; Long et al., 2008) and also detailed in General materials and 

methods. The bacterial strain (Bacillus sp.) was isolated from 35S-etr1 plants grown in native 

Utah soils.  

 

3.2.2. Bacterial colonization assays in the glasshouse and in the field  

Bacterial suspensions in sterile distilled water (OD600=1.2) were used for seed 

inoculation; control seeds were treated with sterile distilled water only. For the in vitro 

colonization assays, the inoculated seeds of WT and 35S-etr1 (20 seeds per Petri dish, 3 dishes 

for each combination) were incubated at room temperature overnight and transferred to GB5 

medium in Petri dishes maintained in Percival growth chambers (13/11h day/night cycle, 

155μmol m-2 s-1, 26/24°C). Ten days after inoculation (DAI), bacterial isolation was carried out 

as described in General materials and methods. Two independent experiments were carried out 

for all seedling assays. Bacterial identity was determined by 16S rDNA sequencing. 

For glasshouse experiments, 12-day-old seedlings were planted in Teku pots, and the 

inoculated and uninoculated seedlings (WT and 35S-etr1) were grown in separate Teku pots. 

These pots were maintained in Snijders growth chamber (16/8 h photoperiod at 200-300 μmol m-

2 s-1, 26/24°C, and 65-70 % r.h.). After 10 days, plants were transferred to 460ml pots containing 

a 1cm-thick layer of lecaton at the bottom filled up with sterile sand. Pots were placed on 

separate coasters to avoid cross-contamination. Each plant was fertilized with 50ml of 

Ca(NO3)2.4H2O and 0.4g l-1 and Flory B1 0.2 g l-1 every alternate day. Thirty days after 

inoculation, roots were collected and bacterial isolation was performed as described in General 
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materials and methods. Bacterial identity was determined by 16S rDNA sequencing. Two 

independent experiments were carried out for glasshouse conditions.  

For the field experiment, 15-day-old seedlings (inoculated and uninoculated) were 

transferred to 50-mm peat pellets (Jiffy) 15 days after germination and hardened off to the 

environmental conditions of high sun exposure and low relative humidity over 2 weeks. Small, 

adapted, rosette-stage plants of equal size were transplanted into a natural population in Utah and 

watered every other day for 2 weeks until roots were established. Plants were grown in pairs of 

the inoculated and uninoculated WT and 35S-etr1 plants and created a quadruplet planting 

formation (Fig. 1). Fifty-two DAI, 5 plants from each treatment were collected for bacterial 

isolation. At the end of the experiment (73DAI), all remaining plants were harvested and 

bacterial colonization was quantified. The experiment was carried out in the field season 2009 in 

southwestern Utah, USA. Bacterial identity was determined by 16S rDNA sequencing. 

 

3.2.3. Ethylene measurement 

ET emissions from WT and 35S-etr1 seedlings (inoculated and uninoculated) were 

measured continuously and non-invasively in real-time with a photoacoustic spectrometer 

(INVIVO, Saint Augustin, Germany) as described by von Dahl et al., (2007). Thirty seeds were 

germinated in 100 ml three-neck flasks on filter paper and cultivated in a Percival growth 

chamber (13/11h day/night cycle, 155 μmol m-2 s-1, 26/24°C). After 12 days, flasks containing 

the seedlings were subjected to ET measurements (five replicates per treatment). Five empty 

flasks with filter paper and sterile distilled water served as blank controls. Two independent 

experiments were carried out. 

ET emission from the leaves of inoculated and uninoculated WT/35S-etr1 plants (36DAI) 

upon treatment with M. sexta oral secretions (OS) was measured. The fully expanded leaf (+1 

leaf) was wounded with a fabric pattern wheel, and immediately 20µl of either water or M. sexta 

larvae OS (1/2 dilution) was applied to the puncture wounds. The leaf was cut and put into a 

250ml three-neck flask. Five hours after accumulation, the flasks were subjected to ET 

measurement. 
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3.2.4. Seedling IAA quantification 

The Bacillus sp.-inoculated and -uninoculated seedlings of WT and 35S-etr1 were 

harvested 12 DAI and immediately frozen in liquid nitrogen and kept at -80°C until analyzed. 

Approximately 500mg of liquid nitrogen-ground leaf powders was extracted over night by 

diffusion in the dark at -20°C using 100% methanol containing 25mM diethylditho-carbamic 

acid (DECT, Sigma Aldrich: http://www.sigmaaldrich.com), and 50ng of internal standard 13C6 

Indole-3-acetic acid (Cambridge Isotope Laboratories, Inc.: http://www.isotope.com). Samples 

were centrifuged at 3000 x g, 4°C for 30 minutes, and supernatants were collected before pellets 

were re-extracted with 100% methanol/25mM DECT on ice for 30 minutes. Samples were 

centrifuged as above and supernatants combined in single tubes. Water was added to adjust the 

final concentration of methanol in each supernatant to 50% methanol (v/v) and samples were 

passed through preconditioned SupelcleanTM LC-18 SPE columns (Supelco: 

http://www.sigmaaldrich.com). Flow-through fractions were applied to an activated 

diethylaminoethyl Sephadex A25 (DEAE) column equilibrated with 50% methanol (Amersham 

Pharmacia Biotech: http://www1.gelifesciences.com) and samples were absorbed to the resin by 

gravity flow. After the samples were completely adsorbed, DEAE columns were rinsed with 

50mL of 50% methanol (v/v). New Supelclean LC-18 SPE columns were coupled underneath the 

DEAE columns and IAA was eluted from DEAE using 6% formic acid (v/v) (Riedel-de Haen: 

http://www.sigmaalrich.com). IAA retentate was subsequently eluted from the Supelclean LC-18 

SPE columns with 5mL of diethyl ether (Fluka: http://www.sigmaaldrich.com) after the SPE 

columns were briefly dried with air in the syringe. The remaining acidic water phase from ether 

fractions was removed by pipetting and samples were quickly evaporated under a stream of 

nitrogen. Dried samples were quantitatively dissolved in 1.5mL of 100% methanol and dried 

under vacuum in Eppendorf tubes (Eppendorf Concentrator 5301; http://www.eppendorf.com). 

Samples were finally re-dissolved in 150µL 70% (v/v) methanol, centrifuged at 16X1000g, 4°C 

for 30 minutes and 10 µL applied to 1200L LC/MS/MS/MS system (Varian, Palo Alto, CA, 

USA) for IAA measurement. An aliquot was transferred to HPLC vials and measured on a 1200 

L liquid chromatography–triple quadrupole mass spectrometry system (Varian, Palo Alto, USA). 

10 µl was injected onto a prodigy column (150x2 mm, 3µm diameter, Phenomenex, USA) 

attached to a pre-column (C18, 4 x 2 mm, Phenomenex, USA). A mobile phase composed of 

0.05% acetic acid and acetonitrile was used in a gradient mode for the separation. The mobile 
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phase comprised of solvent A (0.05% acetic acid) and solvent B (acetonitrile) used in a gradient 

mode time/concentration for (min/%B): 1.5/20; 6’/97; 17’/97; 18’/20; 25’/20.  Compound was 

detected as negative ions in a MRM mode. Molecular ions M-H (-) at m/z 174 generated from 

endogenous auxin and from its internal standards 180 were fragmented under 35V CE. The 

product ion of auxin and its internal standard is m/z 130 and 136, respectively. The ratio of ion 

intensities of the response of the product ions was used to quantify auxin content. 

 

3.2.5. Plant growth performance and herbivore screen in the glasshouse and the field 

In glasshouse, percentage of survivorship (%) of the inoculated and uninoculated plants 

was calculated 24DAI. Length of the longest leaf/rosette diameter and stalk length were 

measured from 25DAI. Total capsule number per plant was counted at the end of experiment 

(63DAI). 

In the field, 53 replicates consisting of four WT and 35S-etr1 (inoculated and 

uninoculated) plants were transplanted on 13 April 2009 (30DAI) into the field plot in a 

quadruplet planting formation as shown in Fig. 1. The distance between plants was 40cm. 

Rosette diameter and stalk elongation were measured on 30 April, 16 May and 27 May 

(47, 63 and 73 DAI). The flower number was recorded for all plants on 27 May (73 DAI). The 

nectar volume and total sugar content were also measured on 27 May (73DAI) as described by 

(Kessler et al., 2008). 

Leaf area damage as a percentage of canopy damaged by herbivores and dryness, was 

estimated on 27 May (73 DAI). Characteristic damage caused by grasshoppers (Trimerotropis 

spp.), mirids (Tupiocoris notatus Distant), leaf miners, tree crickets and noctuidae was recorded 

separately.  

 
Figure 1. Experiment set up in the field plot in Utah, USA. WT and 35S-etr1 plants were planted in pairs, 
uninoculated (-) and inoculated (+). Plants were monitored for growth, fitness and herbivore damage. 
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3.2.6. Manduca sexta performance assay 

M. sexta eggs were supplied by North Carolina State University. Two M. sexta neonates 

were placed on the +1 leaf of each plant (inoculated and uninoculated WT and 35S-etr1 plants) 

(n=10). Two days later, one larva was left on each plant. Larval mass was determined on days 4 

(40DAI) and 8 (44DAI), by which time larvae were in the second or third instar. Due to 

mortality and to larval movement off the plants, the experiment was stopped after 8 days. Plants 

were randomized spatially in the glasshouse.  

 

3.3. Results 

 

3.3.1. PGP trait characterization of Bacillus sp. 

Three PGP traits including production of IAA and ACCd and the ability of Bacillus sp. to 

solubilize inorganic P were characterized (Table 1). The Bacillus sp. isolate was able to produce 

IAA only in the presence of Trp (12.25 µg ml-1). It also produced ACCd (0.347 µmole alpha-

ketobutyrate mg-1 protein h-1) and solubilized inorganic P 14 DAI. 

 

Table 1. PGP trait characterization of Bacillus sp. 

Bacterial isolate  IAA (µg/ml)
† 
 ACCd

*
  Phosphate solubilization  

Bacillus sp.  12.25±0.0073  0.347±0.001  +  

Mean ± SE (n=5); †, IAA production (+Trp); *, µmole alpha-ketobutyrate mg-1 protein h-1  

 

3.3.2. Effects of Bacillus sp. inoculation on plant growth and fitness 

Inoculating WT and 35S-etr1 seeds with Bacillus sp. significantly enhanced seedling 

growth in vitro 10 DAI compared with the control seedlings. In the glasshouse, inoculation with 

Bacillus sp. increased survivorship of 35S-etr1 plants compared to the uninoculated ones 24DAI 

(Fig. 2A). Bacillus sp.-inoculated plants showed a significant increase in rosette diameter and 

stalk length (P<0.05) 30 DAI (Fig. 2B and C) compared to the uninoculated plants. Fitness 

measurements represented by number of capsules per plant were carried out. A significant 

increase in total capsule number was found in the inoculated plants at the end of the glasshouse 

experiment (62 DAI) (P<0.05) (Fig. 2D).  
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An independent experiment in which Bacillus sp. was inoculated into the rhizosphere of 

21-day-old WT seedlings instead of coating the seeds with the bacterium was carried out to 

investigate if the impacts of Bacillus sp. on plant growth could also obtain when plants recruit 

the bacterium at a later stage of development (Fig. 3). The inoculated WT plants had 

significantly bigger rosette diameters than did the uninoculated plants 12 DAI (P<0.05). Bacillus 

sp. colonized roots of the inoculated WT plants (103 cfu g-1 root FW) 44DAI. 

In the field, Bacillus sp.-inoculated WT and 35S-etr1 plants grew significantly bigger 

than did the uninoculated plants (rosette diameter and stalk length) (P<0.05) (Fig. 4A & B). 

Inoculation with Bacillus sp. also enhanced the survivorship of 35S-etr1 plants (Fig. 4C), which 

have high mortality in the field. The number of flower was evaluated 62 DAI, and no significant 

difference was found between inoculated and uninoculated WT plants. Interestingly, the 

uninoculated 35S-etr1 plants did not produce any flowers until the end of the experiment, while 

the inoculated 35S-etr1 plants produced the same number of flowers as the WT uninoculated 

plants (Fig. 4D). Nectar production in flower, which is an important trait for fitness, was 

measured 73 DAI. No significant difference in nectar volume and total sugar content in nectar 

between the inoculated and uninoculated WT plants was found (Fig. 5B & 5C). A comparison of 

nectar volume between the uninoculated and inoculated 35S-etr1 plants was not possible.  
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Figure 2. Performance of the uninoculated (-) and inoculated (+) WT and 35S-etr1 plants in the 
glasshouse. (A) percentage survivorship (%) 24DAI; Mean ± SE of (B) length of the longest leaf (cm) 25, 
27, 29, 31, 33 and 33 DAI, (C) stalk length (cm) 37, 39, 41, 43, 45 and 47 DAI, (D) total capsule number 
per plant 63 DAI. The asterisk (*) depicts a significant difference between the uninoculated (-) and 
inoculated (+) plants (P<0.05, ANOVA Fisher’s PLSD test). 
 



Native bacterial endophyte promotes host plant growth and fitness 
 

 

61 
 

 

Figure 3. Growth of the uninoculated (-) and inoculated (+) WT plants upon inoculation of the 
rhizosphere with Bacillus sp. in the glasshouse. Mean ± SE of (A) rosette diameter 12DAI and (B) stalk 
length (cm) 30DAI. The asterisks (* and **) depicts significant difference between the uninoculated (-) 
and inoculated (+) plants (P<0.05, ANOVA Fisher’s PLSD test). 

 

Figure 4. Performance of the uninoculated (-) and inoculated (+) WT and 35S-etr1 in the field. Mean ± 
SE of (A) rosette diameter (cm) 46, 62 and 73 DAI (A); (B) stalk length (cm) 62 and 73 DAI; (C) 
survivorship (%) 46 and 62 DAI. and (D) number of flower 62 DAI. nd: not detected. 
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Figure 5. Mean ± SE of (A) flower number per plant; (B) nectar amount per plant (µl) and (C) nectar 
sugar content (%) of the uninoculated (-) and inoculated (+) WT and 35S-etr1 plants 73DAI in the field. 
nd: not detected. 
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3.3.3. Effects of Bacillus sp. inoculation on seedling IAA and ET production 

 Seedlings of WT and 35S-etr1 were inoculated with Bacillus sp. The inoculation resulted 

in a significantly higher number of later roots in the inoculated plants compared to in the 

uninoculated ones (Fig. 6). There was no significant difference in ET emission between the 

inoculated and uninoculated seedlings (Fig. 7A). No significant difference in free IAA content 

was found between inoculated and uninoculated WT seedlings (Fig. 7B). However, the 

inoculated 35S-etr1 seedlings contained slightly more IAA than did the uninoculated 35S-etr1 

seedlings. There was no difference in IAA content between WT and 35S-etr1 plants. 

 

Figure 6. Mean ± SE of lateral root number of the uninoculated (-) and inoculated (+) WT and 35S-etr1 
seedlings 12DAI in vitro. The asterisks (* and ***) depicts significant difference between the 
uninoculated (-) and inoculated (+) seedlings (P<0.05, ANOVA Fisher’s PLSD test). 

 
Figure 7. Mean ± SE of (A) ET emission (nl g-1 FW) and (B) total free IAA (ng g-1 FW) (B) in the 
uninoculated (-) and inoculated (+) WT and 35S-etr1 seedlings 12DAI in vitro. DW: dry weight; FW: 
fresh weight 
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3.3.4. Colonization of WT and 35S-etr1 plants by Bacillus sp. 

Bacillus sp. was able to colonize both WT and 35S-etr1 seedlings at high levels (107 cfu 

g-1 root FW) 11 DAI (Fig. 8). The persistence of Bacillus sp. in glasshouse- and field-grown 

plants was observed till 30 DAI and 73 DAI, respectively. Although there was a continuous 

reduction in bacterial colonization in roots of the field plants over time, the colonization 

remained high with 105 and 104 cfu g-1 root FW, 47 DAI and 73 DAI, respectively. In the 

glasshouse, there was a strong correlation between the rate of bacterial colonization rate and the 

growth of rosette diameter 22 DAI (Fig. 9; P<0.0001 and R2=0.84). However, no significant 

correlation between the extent of Bacillus sp. colonization and rosette diameter/stalk length in 

the field plants was observed at the end of the field experiment (73 DAI). Notably, Bacillus sp. 

could be re-isolated only from the roots of the inoculated plants. 

 

3.3.5. Influence of Bacillus sp. inoculation on the dominant resident bacterial endophyte 

communities 

The inoculation with Bacillus sp. strongly influenced the dominant bacterial endophyte 

communities of the inoculated plant roots. The “dominant bacterial endophyte” refers to the one 

colonized roots of the plants to the same extent as Bacillus sp did (Fig. 10). In Bacillus sp.-

inoculated roots of the field-grown plants, several other species of bacterial endophytes had also 

become highly abundant while not being detectable in roots of the uninoculated plants at the end 

of the field experiment (73 DAI) (Fig. 10). Three different bacterial genera, namely, Erwinia sp., 

Pseudomonas sp., and Pantoea sp., dominated infected roots, while roots of uninoculated plants 

harbored only Enterobacter cloacae (Fig. 10). The inoculated WT plants were colonized by 

Erwinia sp. and Pantoea sp. Meanwhile, the inoculated 35S-etr1 plants harbored Erwinia sp. and 

Pseudomonas sp. Furthermore, there was no difference in the extent of colonization by E. 

cloacae of the uninoculated WT and the 35S-etr1 plants. Interestingly, these dominant bacterial 

isolates were able to colonize the roots as much as Bacillus sp. did (Fig. 10). Nevertheless, no 

difference in colonization by Bacillus sp. (105 cfu g-1 FW) of the inoculated plants was observed.  
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Figure 8. Mean ± SE of log CFU g-1 root FW of Bacillus sp. in WT (black bar) and 35S-etr1 (gray bar) 
plants 11 DAI in vitro, 30DAI in the glasshouse, 47 and 73DAI in the field. 

 

Figure 9. Correlation between Bacillus sp. colonization (log CFU g-1 root FW) and rosette diameter (cm) 
22DAI. Significant correlation was determined by simple regression analysis (P<0.0001 and R2=0.84). 
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Figure 10. Effect of Bacillus sp. colonization (introduced endophyte-black bar) on the occurrence of 
dominant resident endophytes, namely Erwinia sp., Pseudomonas sp., and Pantoea sp., in the roots of the 
inoculated (+) WT and 35S-etr1 plants and colonization of Enterobacter cloacae in the uninoculated (-) 
WT and 35S-etr1 plants 73DAI in the field. 

 

3.3.6. Effects of Bacillus sp. inoculation on M. sexta performance and herbivore damage in the 

field 

In the glasshouse, M. sexta larvae were smaller on the inoculated WT plants than on the 

uninoculated ones 4 and 8 days after feeding (40 and 44DAI, respectively) (P<0.05). However, 

there was no difference in M. sexta performance between the inoculated and uninoculated 35S-

etr1 plants (Fig.11).  

In the field, no significant difference was found in herbivore damage between the 

inoculated and uninoculated plants (P>0.05). However, the Bacillus sp. inoculated plants (both 

WT and 35S-etr1) tends to be more resistant to grasshoppers and tree crickets than were the 

uninoculated plants (Fig.12A & B). Conversely, the inoculated plants encountered more damage 

by mirids, noctuidae and leaf miners than did the uninoculated plants (Fig. 12C, D & F). 

 

3.3.7. Inoculation of Bacillus sp. stimulates induced ET burst 

In order to test if Bacillus sp. inoculation mediating plant defense against M. sexta is due 

to stimulation of ET production, M. sexta oral secretions (OS) were applied to the artificially 

wounded sites of leaves and ET emission was measured. The OS-induction of leaves from the 

inoculated plants (WT and 35S-etr1) resulted in significantly higher ET production (P<0.05) 
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compared to the OS-induction of leaves from the uninoculated plants (Fig.13). However, no 

significant difference in ET emission between the wounded leaves and wounded plus OS treated 

ones (P>0.05) was observed.  

 

Figure 11. Larval mass of Manduca sexta 4 and 8 days after feeding on the uninoculated (-) and 
inoculated (+) WT and 35S-etr1 plants 40 and 44DAI in the glasshouse. The asterisk (*) depicts the 
significant difference between the caterpillar mass on the uninoculated (-) and inoculated (+) WT plants 
(P<0.05, ANOVA Fisher’s PLSD test). 
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Figure 12. Herbivore damage to the uninoculated (-) and inoculated (+) WT and 35S-etr1 plants in the 
field, Utah 73DAI. Percentage (%) of damage caused by (A) grasshoppers, (B) tree crickets, (C) mirids 
and (D) noctuidae; (E) number of mirids on each plant and (F) the occurrence of leaf miners on each 
plant. nd: not detected.   
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Figure 13. Mean ± SE of ET emission (nl g-1 leaf FW) from leaves of the uninoculated (-) and inoculated 
(+) WT and 35S-etr1 plants upon mechanical wounding (W) or wounding plus M. sexta oral secretions 
(OS) application. FW: fresh weight. 

 

3.4. Discussion 

In a previous study, the success with which bacterial endophytes recruited from the native 

soils by WT and 35S-etr1 plants was investigated. A number of endophytic bacterial isolates had 

beneficial effects on WT seedling growth. Deficient ET perception makes 35S-etr1 plants highly 

mortal and susceptible to pathogen infection (Serek et al., 2006; van Loon et al., 2006). 

However, these plants might “select partners” which are beneficial for their growth and fitness in 

nature. Indeed, 35S-etr1 plants which were reported to be unable to survive in the native habitats 

of N. attenuata (personal communication) performed better upon inoculation of a native Bacillus 

sp. isolate than did the uninoculated 35S-etr1 plants.  

Endophytic bacteria stimulate plant growth by producing IAA and ACCd and 

solubilizing inorganic P (Long et al., 2008; Park et al., 2009). Although Bacillus sp. isolate was 
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able to produce ACCd, there was no correlation between ACCd activity, ET production and root 

growth. The function of IAA appears to be prevalent in this isolate since the inoculated plants 

produced more lateral roots than the uninoculated ones (Fig. 6), reflecting the effects of IAA on 

plant roots (Celenza et al., 1995). Root branching is one of the most important phenotypes plants 

can have to grow and survive in nature, because roots are involved in acquiring water and 

nutrients from the soils as reviewed by Wang et al., (2006). No significant difference in free IAA 

levels between the inoculated and uninoculated WT and 35S-etr1 plants was detected (Fig. 7). 

This suggests that inoculating plants with Bacillus sp. might alter plant IAA distribution and 

perception rather than only IAA levels which resulted in lateral root formation (Zhang et al., 

2007). Moreover, the synergistic effects of IAA and ACCd might be responsible for promoting 

plant growth (Glick et al., 2007). A significant difference in the number of lateral roots per 

inoculated and uninoculated 35S-etr1 seedling was found, though lateral root formation was 

reported to be dependent on ET response (Negi et al., 2008). Bacterial IAA production has also 

been reported to be essential for rhizosphere competence and host colonization as reviewed by 

Spaepen et al., (2007). Bacillus sp. turned out to be a strong root colonizer, probably due to high 

levels of IAA production, which might be augmented under field conditions where it has to 

compete with indigenous microflora for the same niches. 

As the colonization by Bacillus sp. is only restricted to the roots, all the above-ground 

growth promotion is likely due to signaling transduction or nutrient transport occurring inside the 

plants, between roots and shoots as reviewed by Wang et al., (2006). WT and 35S-etr1 plants 

inoculated with Bacillus sp. showed a significant increase in plant growth under glasshouse and 

field conditions (Figs. 2 & 3). Interestingly, the inoculation also greatly enhanced plant fitness as 

measured by capsule production (glasshouse) (Fig. 2D) and flower number (field) (Fig. 4D).  

Although capsule number of the field plants could not be evaluated, the number of flowers 

suggests Bacillus sp. benefited the inoculated 35S-etr1 plants (73DAI) (Fig. 5A). It is possible 

that the uninoculated 35S-etr1 plants produced flowers after our experiment ended. However, 

delaying flower production will dramatically influence a plant's fitness in nature (Baker et al., 

1994; Baldwin, 2001).  

Modifications in the plant-microorganism partnership bring about intricate reactions. 

What happens to the root bacterial endophyte communities when a bacterial endophyte is 

introduced into the roots? It has been reported that PGPB influenced resident microorganisms in 
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the rhizosphere as reviewed by Castro-Sowinski et al., (2007). Consistent with these findings, I 

found that inoculation with Bacillus sp. strongly affected the root bacterial endophyte 

communities compared with those of the uninoculated plants in the field (Fig.10). The inoculated 

plants harbored a more diverse and dominant endophytic bacteria community. These dominant 

bacterial endophytes belong to Erwinia sp., Pantoea sp., and Pseudomonas sp., which are 

thought to be PGPB and biological control agents against pathogens (Montesinos et al., 2002). In 

contrast, the uninoculated control plants (both WT and 35S-etr1) were dominated by only one 

bacterial species, E. cloacae. This bacterial species has been known to be antagonistic against 

other bacterial species as reviewed by Uddin & Viji, (2002). Thus, inter-populational interactions 

between Bacillus sp. and bacterial partners might contribute to enhancing plant growth and 

survival in the field (Ramos et al., 2003b). Further investigations need to be done to verify if 

there are synergistic effects on plant growth and defense when these isolates are combined.  

The ability to colonize the host plant is one of the most important traits of competent 

bacterial endophytes (reviewed by Hardoim et al., 2008). Some bacterial endophytes 

significantly increased the colonization rate in the host plants over different stages of plant 

growth (reviewed by Kobayashi & Palumbo, 2000 and Hardoim et al., 2008). However, I report 

a slight reduction in Bacillus sp. colonization from seedling (11 DAI) to rosette stage (30DAI) in 

the glasshouse as well as from rosette (47DAI) to flowering stage (73 DAI) in the field (Fig. 8). 

Micallef et al., (2009) showed that as plants age, the slow-down in the active release of root 

exudates strongly influences the rhizobacterial and control bulk soil communities. It is also 

reasonable to presume that Bacillus sp. colonized the roots of the host plants at a high level in the 

early stages (seedling or rosette) when there was no competition with other microorganisms in 

the same niche. Furthermore, N. attenuata plants may regulate Bacillus sp. colonization, 

preventing this isolate from multiplying and becoming a biotic stressor (Rosenblueth & 

Martinez-Romero, 2006).  

Since plants were inoculated with Bacillus sp. in the roots and none was detected in the 

leaf, the effects on herbivore performance are probably due to ISR. There have been very few 

studies on ISR induced by PGPR against herbivorous insects such as Spodoptera exigua (Van 

Oosten et al., 2008) or reduced feeding by the cucumber beetles Diabrotica undecimpunctata 

and Acalymma vittata (Zehnder et al., 2000). However, the effectiveness of ISR triggered by 

Bacillus sp. was proven against certain insect species, namely M. sexta, in the glasshouse only 



Native bacterial endophyte promotes host plant growth and fitness 
 

 

72 
 

(Fig. 11). No significant difference in damage caused by grasshoppers (Trimerotropis spp.), 

mirids (Tupiocoris notatus Distant), leaf miners, tree crickets and noctuidae between the 

inoculated and uninoculated plants was observed in the field (Fig. 12).  

ET emission has been reported to be essential for establishing proper defense responses 

to M. sexta attack in N. attenuata (Kahl et al., 2000; von Dahl et al., 2007). The inoculated WT 

plants were primed to release more ET upon OS-induction or wound-induction while Bacillus sp. 

inoculation suppressed the growth of M. sexta larvae. However, the inoculated 35S-etr1 plants 

did not influence M. sexta's performance even though there was a significant ET emission after 

OS-induction in these plants. This suggests that the resistance to M. sexta induced by Bacillus sp. 

inoculation is dependent on ET perception. Herbivore-induced ET is known to modify the 

accumulation of direct defenses, including phenolics (Hudgins et al., 2004), alkaloids (Kahl et 

al., 2000) and protein-based defenses (Harfouche et al., 2006), as well as the release of volatile 

organic compounds thought to function as indirect defenses (Schmelz et al., 2003). Rather than 

being the principal elicitor of herbivore-induced defense responses, ET appears to play a more 

subtle role in modulating other defense signals, including JA (reviewed by von Dahl & Baldwin, 

2007). Therefore, further studies of other phytohormones such as JA and SA as well as 

secondary metabolites and protease inhibitor activity induced upon treatment with M. sexta OS 

will help to address the underlying mechanisms of ISR elicited by Bacillus sp. against insect 

herbivory in N. attenuata. 

In conclusion, ET perception is essential for plant growth and fitness in nature. Bacillus 

sp. isolate proved to be an ideal candidate for studying the ecological consequences of bacterial 

endophytes on the growth and fitness of N. attenuata. Because it shares common phenotypic 

traits of PGPB and has the ability to drive the root bacterial endophyte communities, Bacillus sp. 

isolate might be recruited by the host plant to help it grow and withstand abiotic and biotic 

stresses in nature. Moreover, native plants can function as true ‘filters’ of soil organisms, 

selecting those that are successful and competent endophytes. The complete cycle of bacterial 

endophyte selection and evaluation (trapping from native soils, inoculation of the host plants and 

tests of their efficiency by measuring the growth of host plants in native habitats) demonstrated 

the ecological relevance of the synergy between bacteria endophytes and N. attenuata in nature. 
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3. Summary 

All plants in nature harbor a diverse community of endophytic bacteria which can 

positively affect host plant growth. Changes in plant growth frequently reflect alterations in 

phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease 

ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or 

produce indole acetic acid (IAA). (I) Whether these common PGP mechanisms work similarly 

for different plant species has not been rigorously tested.  

A plant’s bacterial endophyte community is thought to be recruited from the rhizosphere, 

(II) but how this recruitment is influenced by the plant’s phytohormone signaling is unknown. 

ET is known to regulate plant-microbe interactions; here I assess ET’s role in the recruitment of 

culturable endophytic bacteria from native soils.  

Endophytic bacteria have been well-studied to enhance plant growth of different 

importantly agricultural plant species. (III) However, little is known about how they influence 

growth and fitness of a native plant species in nature. 

 

(I) Native bacterial endophytes promote host growth in a species-specific manner; 

phytohormone manipulations do not result in common growth responses.  

I isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP 

traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling 

colonization); and determined their effects on their host, S. nigrum, as well as on another 

Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted 

root growth were associated with ACC deaminase activity and IAA production. However, in N. 

attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. 

attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ) reinforced 

the conclusion that the PGP effects are not highly conserved. I conclude that native/natural 

endophytic bacteria with PGP traits do not have general and predictable effects on the growth 

and fitness of all host plants, although the underlying mechanisms are conserved. 
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(II) The structure of the culturable root bacterial endophyte community of Nicotiana 

attenuata is organized by soil composition and host plant ethylene production and 

perception.  

I grew wild type (WT) Nicotiana attenuata plants and isogenic transformed plants 

deficient in ET biosynthesis (ir-aco1) or perception (35S-etr1) in four native soils and quantified 

the extent of culturable bacterial endophyte colonization (by plate counting) and diversity ( by 

amplified rDNA restriction analysis and 16S rDNA sequencing). The endophyte community 

composition was influenced by soil type and ET signaling. Plants grown in organic (vs. mineral) 

soils harbored a more diverse community and plants impaired in ET homeostasis harbored a less 

diverse community compared to WT plants. WT and ET-signaling-impaired plants fostered 

distinct bacteria in addition to common ones. In vitro re-colonization by common and genotype-

specific isolates demonstrated the specificity of some associations and the susceptibility of 35S-

etr1 seedlings to all tested bacterial isolates, suggesting an active process of colonization driven 

by plant- and microbe-specific genes. In conclusion, the results confirm the central role of soil 

type and highlight, though to a lesser extent, the role of ET signaling in shaping endophytic 

bacterial community structure. Specific interactions between endophytic bacteria and their host 

plants are regulated not only by plant ET signaling but also by the bacteria themselves. The host 

plants’ ability to recruit ACC deaminase/IAA-producing bacteria seems to be independent of ET 

signaling. 

 

 

(III) Native bacterial endophyte from Nicotiana attenuata enhances the growth and fitness 

of its host in natural ecosystem 

In this study, I used wild type (WT) Nicotiana attenuata, a wild tobacco species native to 

the Great Basin Desert, Utah, USA, and a transformed line (35S-etr1) deficient in ethylene (ET) 

perception, usually prone to pathogen infection, and has high mortality. A Bacillus sp. strain 

isolated from roots of 35S-etr1 plants grown in native Utah soils and its associated plant-growth-

promoting (PGP) traits such as the ability to produce indole-3-acetic acid (IAA) and 1-

aminocyclopropane-1-carboxylate (ACC) deaminase as well as inorganic phosphate (P) 

solubilization were characterized. The effects of Bacillus sp. inoculation on the growth and 

fitness of N. attenuata wild-type (WT) and 35S-etr1 plants were evaluated under glasshouse and 
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field conditions. In the glasshouse, measurements of rosette diameter, stalk length, and seed 

capsule number in the inoculated plants were significantly higher than in the uninoculated plants. 

These PGP effects were also observed under field conditions. Bacterial inoculation additionally 

resulted in a significant increase in the survivorship of 35S-etr1 plants in glasshouse and in the 

field. The colonization of N. attenuata plants by Bacillus sp. persisted till the end of the 

experiment. Moreover, inoculation of this isolate strongly influenced the dominant bacterial 

endophyte communities in the roots of N. attenuata WT and 35S-etr1 field plants. Although 

there was no significant difference in herbivore damage between the inoculated and uninoculated 

plants in the field, larvae of a specialist herbivore Manduca sexta performed worse on the 

inoculated plants than on the uninoculated plants in glasshouse. Taken together, it becomes clear 

that Bacillus sp. is beneficial for WT and 35S-etr1 plant growth and fitness in the natural 

settings.  
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4. Zusammenfassung 

Basierend auf der Feststellung, dass zahlreiche Arten endophytischer Bakterien in 

verschiedenen Pflanzen nachgewiesen wurden, wird vermutet, dass alle Pflanzen von 

endophytischen Bakterien besiedelt und durch diese im Wachstum beeinflusst werden können. 

Letzteres geschieht unter anderem durch das Eingreifen der Bakterien in die Hormonhomeostase 

der Wirtspflanzen. Zum Beispiel reduzieren wachstumsfördernde Rhizobakterien die 

Ethylenkonzentration in Pflanzen, indem sie dessen chemischen Vorläufer 1-

aminocyclopropane-1-carboxylate (ACC) enzymatisch spalten. Der pflanzliche Hormonhaushalt 

kann auch direkt durch die Produktion von Hormonen, wie Indol-3-essigsäure (IAA), durch 

Bakterien beeinflusst werden.  

Ob diese verbreiteten Mechanismen der Wachstumsförderung durch Mikroorganismen bei 

verschiedenen Pflanzen ähnlich Effekte auslösen, wurde noch nicht im Detail untersucht und ist 

Bestandteil dieser Arbeit (I). Desweiteren besteht die Annahme, dass eine Selektion von 

Bakterien aus der Wurzelrhizosphere in die Endosphere durch den pflanzlichen Partner 

stattfindet. In wieweit die Signaltransduktion des Pflanzenhormons Ethylen dabei eine Rolle 

spielt, ist unbekannt (II). Der landwirtschaftliche Aspekt wachstumsfördernder, endophytischer 

Bakterien wurde in zahlreichen Kulturpflanzen studiert. Über die Bedeutung dieser Bakterien für 

das Gedeihen und die Reproduktion wilder Pflanzen in ihrem natürlichen Umfeld erbringt dieses 

Manuskript neue Aufschlüsse (III).  

 

(I) Natürlich vorkommende bakterielle Endophyten fördern das Pflanzenwachstum in 

Abhängigkeit von Pflanzenspezies; Beeinflussung der Hormonhomeostase führt nicht zu 

generellen Wachstumseffekten.  

Zahlreiche kultivierbare, bakterielle Endophyten wurden von im Freiland gezogenen 

Nachtschatten (Solanum nigrum) isoliert und deren Pflanzenwachstums-fördernde 

Charakteristika wie ACC-Deaminase (ACCd) Aktivität, IAA Produktion, Phosphat- 

Solubilisation und Kolonisationsrate von Keimlingen bestimmt. Zudem wurden 

Wachstumseffekte dieser Bakterien auf ihre Herkunftspflanze, S. nigrum, und auf eine eng 

verwandte Solanaceae, Nicotiana attenuata, untersucht. Es zeigte sich, dass der Großteil der 

bakteriellen Isolate mit positiven Effekten auf das Wurzelwachstum von S. nigrum in Korrelation 

mit der Produktion von ACCd und IAA standen. Für N. attenuata wurde eine Verbindung von 
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Wurzelwachstum mit der Produktion von IAA, jedoch nicht mit ACCd, deutlich. Die Inokulation 

von S. nigrum und N. attenuata mit Stämmen Wachtsums-fördernder Bakterien einer 

Kulturensammlung (DSMZ) untermauerte die Schlussfolgerung, dass die selben bakteriellen 

wachstumsfördernden Eigenschaften nicht unbedingt die gleiche Wirkung auf unterschiedliche 

Pflanzenarten zeigen müssen.  

 

(II) Die Zusammensetzung der kultivierbaren, endophytischen Bakteriengemeinschaft in 

Nicotiana attenuata Wurzeln unterliegt dem Einfluss von Bodencharakteristika und der 

Produktion sowie Wahrnehmung des Phytohormons Ethylen durch die Wirtspflanze 

Wildtyp Pflanzen des wilden Tabaks, Nicotina attenuta, heimisch im Great Basin 

Dessert, Utah, USA, und transgene Linien, welche ein Defizit entweder in der Synthese von ET 

(ir-aco1) oder in der Wahrnehmung (35S-etr1) aufweisen, wurden in vier verschieden Böden aus 

Utah kultiviert. Die Böden wurden, basierend auf ihrem Stickstoff- und Kohlenstoffgehalt, als 

nährstoffreiche (organische) bzw. nährstoffarme (mineralische) Böden eingestuft.  Die 

Kolonisationsrate der endophytischen Bakteriengemeinschaft wurde mittels Auszählen von 

Kulturplatten; die Diversität durch ARDRA (amplified rDNA restriction analysis) und 

Sequenzierung von repräsentativen Isolaten evaluiert. Die Versuche zeigten, dass der Bodentyp 

und Ethylen-Signaltransduktion die endophytische Bakteriengemeinschaft stark beeinflussten. 

Im Vergleich zu N. attenuata Pflanzen, die in den mineralischen Böden kultiviert wurden, 

wiesen Pflanzen, die in den organischen Böden gezogen wurden, eine höhere Diversität an 

kultivierbaren, endophytischen Bakterien auf. Desweiteren verfügten WT Pflanzen über eine 

vielfältigere bakterielle Endophytengemeinschaft als die transgenen Linien. Einige der 

endophytischen Spezies wurden nur in Verbindung mit bestimmten Genotypen gefunden. In 

vitro Kolonisationsstudien mit häufig bzw. nur spezifisch auftretenden Bakterienisolaten zeigten, 

dass manche der N. attenuata-Endophyten-Interaktionen in der Tat spezifisch sind und dass 35S-

etr1 Keimlinge von allen getesteten bakteriellen Stämmen besiedelt werden konnte. Dies lässt 

auf einen aktiven Besiedlungsprozess schließen, d er durch pflanzliche und bakterielle Gene 

reguliert wird.  Zusammenfassend lässt sich feststellen, dass Bodentyp und Ethylen-

Signaltransduktion der Wirtpflanze auf die Struktur der endophytischen Bakteriengemeinschaft 

von N. attenuata starken Einfluss nehmen.  
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(III) Ökologische Auswirkungen von Bacillus sp. auf Wachstum und Fitness von Nicotiana 

attenuata  

Aus Wurzeln, der in Utah-Böden kultivierten transgenen N. attenuata Linie 35S-etr1, 

welche eine hohe Anfälligkeit gegenüber Krankheiten und eine erhöhte Mortalitätsrate aufweist, 

wurde der bakterielle Endophyt Bacillus sp. isoliert. Pflanzenwachstums-fördernde 

Charakteristika wie die Produktion von IAA oder ACCd und die Solubilisierung von Phosphor 

wurden bestimmt und die Auswirkungen einer Inokulation von Bacillus sp. in N. attenuata WT 

und 35S-etr1 unter Gewächshaus- und Freilandbedingungen untersucht. Die Inokulation im 

Gewächshaus führte zu signifikanter Zunahme in Rosettendurchmesser und Sprosslänge sowie 

der Anzahl der Samenkapseln bei beiden Genotypen gegenüber nicht-inokulierten Pflanzen. 

Diese Beobachtungen wurden unter Freilandbedingungen (Utah, USA) bestätigt. Zudem 

steigerte die Beimpfung der sonst sehr anfälligen 35S-etr1Pflanzen die Überlebensrate deutlich. 

Obwohl das Ausmaß der Besiedlung durch endophytische Bacillus sp. Bakterien während des 

Versuchs stetig abnahm, erwies sich die Kolonisation der Pflanzen bis zum Ende des Versuchs 

als persistent. Die künstliche Beimpfung von N. attenuata im Freiland beeinflusste die 

Zusammensetzung der bakteriellen Endophytengemeinschaft der Wurzeln von WT und 35S-

etr1Pflanzen deutlich, jedoch zeigte die Inokulation keine Auswirkungen auf Insektenbefall. Im 

Gegensatz dazu führte die Bacillus sp Inokulation unter Gewächshausbedingungen bei WT 

Pflanzen zu einem verzögerten Wachstum der Raupen des Spezialisten Manduca sexta. Diese 

Ergebnisse demonstrieren, dass Bacillus sp. das Wachstum und die Fitness von WT und 35S-etr1 

Pflanzen in ihrer natürlichen Umgebung positiv beeinflussen kann.  
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5. General materials and methods 

 

5.1. S. nigrum germination 

• Prepare fresh sterilization solution: 0.1g of dichloroisocyanuric acid sodium salt (DCCS), 

5ml water, 50µl of 0.5% Tween-20 stock 

• Incubate seeds shaking for 5 minutes in the sterilization solution, then wash 3 times 

thoroughly with sterile water. 

• Incubate seeds in 5ml 1M KNO3 at 4ºC in darkness over night. 

• Prepare germination plates: Dissolve 1x strength Gamborg’s B5 (3.16g/L) in 980mL distilled 

water. Adjust pH to 6.80. Add 6g Phytagel (or 6g plant agar). Make sure that the stirrer is on 

before adding phytagel to prevent clumping. Autoclave for 121ºC for 20mins. Pour the media 

into 100x25mm Petri dishes in the sterile bench. Leave the lids of the Petri dishes open for 

faster cooling and also to prevent condensation water from settling onto the lids. Keep the 

media in a water bath set to 57ºC if you cannot pour the media immediately. Below this 

temperature, phytagel will become hard and it cannot be dissolved again in the microwave.   

• Spill seeds together with the incubation solution into an empty sterile petri dish. Use a sterile 

forceps to plant 20 seeds well spaced into each Petri dish containing the germination media. 

• Seal Petri dishes with parafilm and incubate for 7 days under the following conditions: 

26ºC/16h 100% light, 24ºC/8h darkness in a Percival growth chamber. 

 

5.2. N. attenuata germination 

The following solutions and media should be prepared beforehand: Sterilization solution 

(to be prepared shortly before germination) containing 0.1g DCCS; 5ml distilled water; and 50μl 

of 0.5% Tween-20 detergent stock solution. 

Stock solutions: 0.1M GA3 (dissolves in ethanol) and sterile filtered; 50x diluted liquid smoke 

(House of Herbs, Passaic NJ) in distilled water. Autoclave and store at room temperature 

Germination media: see above 

Germination procedure: 

• Sterilization of seeds: Pour some seeds into a plastic tube (e.g falcon tube) and incubate in 

the freshly prepared sterilization solution for 5mins. The seeds will turn lighter in color. After 
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5mins, decant the solution, along with any empty seeds that may float on the solution during 

the sterilization process, and rinse the seeds left in the tube at least 3 times in sterile water.  

• Treatment with germination cues (Gibberellic acid and smoke): Add 50μl of the 0.1M GA3 

stock solution and 5ml of the diluted liquid smoke solution to the seeds. Incubate for 1 hour. 

• Germination: After 1 hour, decant the GA3/smoke solution and rinse the seeds in sterile water 

three times. Spill them onto a sterile Petri dish and use a sterile Pasteur pipette to transfer the 

seeds onto the germination media. It is important to note that the seeds should be placed 

gently on the media and not to be pressed into the media. Place 20-30 seeds per Petri dish 

and minimize the amount of water transferred to the dish. After finishing placing the seeds, 

seal the Petri dish with parafilm and incubate in a Percival chamber with the following 

regime set: 27ºC/16hrs 100% light, 24ºC/8hrs dark in a Percival growth chamber. Seedlings 

can be seen clearly after 6 days. 

 

5.3. Bacterial endophyte isolation 

Endophytic bacteria were isolated after removing epiphytes from root tissues by surface 

disinfection using serial washing in 70% ethanol for 1 min, sodium hypochlorite solution (1-

1.5% available Cl–) (Sigma, Steinheim, Germany) for 2 min and three rinses in sterilized distilled 

water. The success of disinfection was verified by plating aliquots of the sterile distilled water 

used in the final rinse onto half-strength Yeast Peptone Dextrose Agar (YPDA) (Sigma, 

Steinheim, Germany) and incubating the plates at 30oC for 10 days. After surface disinfection, 

root tissue was cut and titrated in distilled water; appropriate dilutions were plated onto half-

strength YPDA and incubated at 30oC for 2-10 days. After incubation, distinct colonies were 

picked from the plates. Pure cultures were inoculated on half-strength YPDA slant tubes, 

incubated at 30oC for 2 days and stored at 4oC. Additionally, each culture was suspended in a 

20% glycerol solution and stored at -80oC for long-term preservation. 

 

5.4. 16S rDNA sequencing 

Immediately after the establishment of pure bacterial cultures, genomic DNA was 

isolated from one-day-old cultures grown on half-strength YPDA plates. Single colonies were 

suspended in water to obtain suspensions of approximately 105 cfu ml-1. 0.5 µl of suspension was 
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mixed with 4.5 µl extraction buffer (10 mM Tris-HCl pH 7.6; 50 mM KCl; 0.1% Tween 20). 

Then the mixture was heated at 100oC for 10 min and immediately placed on ice. After 

centrifugation at 6000xg for 5 min, the supernatant was used for PCR. Amplification of 16S 

rDNA was performed in a 10 µl final volume containing 1 µl of genomic DNA, 10 µM of primer 

F27 (5’-AGAGTTTATCMTGGCTCAG-3’) (Edwards et al., 1989) and R1492 (5’-

GRTACCTTGTTACGACTT-3’) (Lane, 1991), 10 mM of each dNTP, 5 mM MgCl2 and 0.05U 

of Taq DNA polymerase (Eppendorf, Hamburg, Germany). A negative control (PCR mixture 

without DNA template) was included in all PCR experiments. The reaction conditions were as 

follows: 95oC for 2 min followed by 30 cycles of denaturation at 95oC for 15 s, annealing at 

55oC for 20 s and primer extension at 72oC for 1 min, followed by a final extension at 72oC for 5 

min. The quality of the PCR reaction was examined by running an aliquot of the PCR mixture in 

1.2% (w/v) agarose containing ethidium bromide. 

PCR products were purified using QIAquickTM Gel Extraction Kit (QIAGEN, Hilden, 

Germany) following the manufacturer’s manual. Direct sequencing using the primer R1492 with 

expected size approximately 600bp was conducted in Big Dye Mix (Applied Biosystems, Foster 

City, CA, USA) and purification of sequencing reactions was performed using NucleoSEQ Kit 

(Macherey-Nagel, Duren, Germany) and sequenced on a ABI310 sequencer (Applied 

Biosystems; http://www.appliedbiosystems.com). The editing of sequences was performed with 

EditSeq and SeqMan (DNAStar Lasergene 7, DNASTAR Inc.). Analysis of sequences was 

carried out with basic sequence alignment BLAST program (Altschul et al., 1997) run against 

the database from National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/BLAST).  

 

5.5. Bacterial ACC deaminase, IAA and phosphate solubilization assay 

ACC deaminase (ACCd) activity was determined as described by Glick, (1995) by 

measuring the amount of α-ketobutyrate produced when the enzyme ACCd cleaves ACC. The 

nmoles of α-ketobutyrate produced by this reaction were determined by comparing the 

absorbance at 540 nm of a sample to a standard curve of α-ketobutyrate ranging between 0.1 and 

1.0 nmol.  
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IAA production was determined as described by Bric et al., (1991) using the colormetric 

method.  

An inorganic phosphate solubilization assay was carried out as described by Verma et al., 

(2001): inoculating bacterial isolates on Pikovskaya (PVK) medium containing (g/l): glucose, 10 

g; Ca3(PO4)2, 5 g; (NH4)2SO4, 0.5 g; NaCl, 0.2 g; MgSO4.7H2O, 0.1 g; KCl, 0.2 g; yeast extract, 

0.5 g; MnSO4.H2O, 0.002 g; and FeSO4.7H2O, 0.002 g supplemented with 1.5% Bacto-agar 

(Difco Laboratories, Detroit, MI, USA). Four plates were stabbed using sterile toothpicks. The 

halo and colony diameters were measured 14 days after the plates were incubated at 30oC. 

 

5.6. Data analysis 

Analysis of the data was carried out using StatView software package (SAS Institute) 

with a completely randomized analysis of variance (P<0.05). One-way and two-way ANOVA 

followed by Fisher’s PLSD test was used to compare significant differences among treatments. 

Correlation analysis was done with simple regression test. 
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10. Supplementary materials 

10.1. Chapter I. Native bacterial endophytes promote host growth in a species-specific 

manner; phytohormone manipulations do not result in common growth responses. 

 
Table S1. Seedling root colonization by endophytic bacterial isolates from S. nigrum. Bacterial re-
isolation from seedling roots 7 days after inoculation with each bacterial isolate.  

Sample Seedling colonization (cfu g-1 FW) 
SSR4 2.3x106 
SSR5-1 9.8x105 
SSR5-2 4.0x106 
SSR8-1 4.8x106 
SSR8-2 3.2x106 
BGCR2-8(1) 3.3x106 
DR5 3.2x106 
BGCR2-6 4.4x106 

 

 
 

Figure S1. Effects of exogenous IAA application on root growth of S. nigrum seedlings. Asterisks 
indicate significant differences (Fisher’s PLSD test; P<0.05 (*) and P<0.0001 (***)). 
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10.2. Chapter II. The structure of the culturable root bacterial endophyte community of 

Nicotiana attenuata is organized by soil composition and host plant ethylene production 

and perception. 

 

Table S1. ANOVA table comparing effects of plant genotype and soil type on the total bacterial 
community 

 DF Sum of Squares Mean Square F-Value P-Value Lambda Power 
Soil type 3 17.469 5.823 5.446 0.0035 16.337 0.918 
Plant genotype 2 9.117 4.559 4.263 0.0220 8.526 0.708 
Soil type*  
Plant genotype 

6 16.382 2.730 2.553 0.0371 15.320 0.774 

Residual 35 37.425 1.069     
 

Table S2. ANOVA table comparing effects of plant genotype and soil type on the number of ACCd 
producing bacteria  

 DF Sum of Squares Mean Square F-Value P-Value Lamda Power 
Soil type 3 140.503 46.834 8.511 0.0003 25.534 0.991 
Plant genotype 2 4.681 2.341 0.425 0.6572 0.851 0.111 
Soil type* Plant 
genotype 

6 52.428 8.738 1.588 0.1828 9.528 0.519 

Residual 32 176.083 5.503     
 

Table S3. ANOVA table comparing effects of plant genotype and soil type on the number of IAA 
producing bacteria  

 DF Sum of Squares Mean Square F-Value P-Value Lamda Power 
Soil type 3 178.995 59.665 8.011 0.0004 24.033 0.987 
Plant genotype 2 2.369 1.184 0.159 0.8537 0.318 0.072 
Soil type* Plant 
genotype 

6 18.347 3.058 0.411 0.8665 2.463 0.148 

Residual 32 238.333 7.448     
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Figure S1. Dendrogram showing the OTUs (operational taxonomic units) of the culturable endophytic 
bacterial isolates with HinfI and MspI. 
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Figure S2. The second independent experiment of in vitro colonization of different genotypes by 
bacterial endophytes from (A) single inoculum and (B) mixed inoculum treatment. 
 

 

 


