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Abstract 

In this paper we present an overview of methods and components of formal economic models 

employing evolutionary approaches. This compromises two levels: (1) techniques of 

evolutionary modelling, including multi-agent modelling, evolutionary algorithms and 

evolutionary game theory; (2) building blocks or components of formal models classified into 

core processes and features of evolutionary systems - diversity, innovation and selection - and 

additional elements, such as bounded rationality, diffusion, path dependency and lock-in, co-

evolutionary dynamics, multilevel and group selection, and evolutionary growth. We focus 

our attention on the characteristics of models and techniques and their underlying 

assumptions.  

 

Key words: bounded rationality, evolutionary algorithms, evolutionary game theory, 

evolutionary growth, innovation, multilevel evolution, neo-Schumpeterian 
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1. Introduction 

Bibliometric evidence suggests that evolutionary economics is dominated by appreciative 

theorizing, while formal and empirical analysis is less common (Silva and Teixeira, 2006). 

Nevertheless, there are fairly many formal contributions to evolutionary economics. They 

vary markedly with respect to the economic phenomena studied and techniques applied. 

Moreover, they lack the methodological consistency necessary for a systematic comparison or 

validity test. This may be confusing for researchers who try to grasp the principles of 

evolutionary modelling. A comparative study that evaluates a variety of techniques is missing. 

To fill this gap, the current paper presents an overview of methods and components of formal 

economic models employing evolutionary approaches. 

The economy is generally recognized as a complex, hierarchical structure 

compromising various levels and subsystems, which are linked together through strong 

feedback mechanisms (Potts, 2000). Variation and selection processes occurring in any of 

these subsystems affect changes in the total environment. The global economy as an adaptive 

nonlinear network is a difficult subject for traditional formal modelling (Holland, 1988). The 

usual mathematical tools, as applied to economic analysis, exploit linearity, fixed points and 

convergence. These instruments are usually insufficient to deal with complexity of economic 

systems, path dependency, diversity and novelty. Evolutionary economics recognizes that the 

economy operates far from optimum (a global attractor) and that directions of economic 

changes depend on interactions of many elements that can act in parallel. It provides formal 

tools to capture these features. 

It is possible to identify distinct developments within evolutionary modelling, namely 

evolutionary game theory (Friedman, 1991; Weibull, 1995; Samuelson, 1997; Fudenberg and 

Levine, 1999; Gintis, 2000), evolutionary computation techniques (Fogel, 2000; Eiben and 

Smith, 2003), and multi-agent based modelling (Wooldridge, 2002; Weiss, 1999, Tesfatsion 

and Judd, 2006). Various mathematical techniques are used, such as non-linear dynamic 

analysis (difference or differential equations), stochastic processes and evolutionary 

algorithms. Evolutionary game theory is an appropriate method for carrying out analysis at 

the most aggregate level. Dynamics are focused here on selection and are predominantly 

formalized with replicator dynamics. Other stochastic and deterministic selection equations 

are available, such as imitation, best response, mutator and adaptive dynamics, but they are 

rarely used in economic applications.  

 To encompass principles of disaggregation and micro-foundations, multi-agent 

simulation techniques can be adopted. These allow for modelling large numbers of boundedly 

rational agents, capable to engage in interactions with other agents and the environment. 

During the last two decades, multi-agent approaches have been increasingly used to model 

dynamic, decentralized economic systems. We review recent contributions to multi-agent 
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modelling, ranging from models conforming to stylized facts (‘macro regularities’), through 

coevolutionary models of supply and demand, to ‘history friendly’ models.  

 Evolutionary computation offers concrete techniques, such as genetic algorithms, 

learning classifier systems and genetic programming to study adaptive learning. Here, 

selection and variation operators govern the changes in the frequencies of individuals hosting 

distinct strategies in a series of succeeding generations (Riechmann, 2001). Notably, single 

individual does not change over time, but instead a population of individuals evolves due to a 

process of selective replication. Evolutionary algorithms may also be employed to deal with 

multi-agent systems. In this case, each agent is endowed with a set of decision rules, while the 

algorithm evolves the optimal rule for each individual in response to a (changing) 

environment. 

Various formalisations of evolutionary-economic mechanisms have been proposed so 

far (Silverberg, 1988; Witt, 1993; Silverberg, 1997; Dosi and Winter, 2000; Kwasnicki, 2001, 

2003; van den Bergh, 2004; Windrum, 2004; Dopfer, 2005; Hanusch and Pyka, 2007). 

Nevertheless, a general agreement on a categorization of building blocks has not yet been 

achieved. Here, we propose a classification of building blocks of evolutionary-economic 

models into the core elements diversity, innovation and selection, and additional features, 

namely bounded rationality, diffusion, path dependency and lock-in, co-evolutionary 

dynamics, multilevel and group selection, and evolutionary growth. Some of these building 

blocks or components have received much attention in formal models while others are less 

common. In the conclusions of the paper, we indicate which of the components show some 

convergence to a standard approach and which are characterised by heterogeneity.  

In this paper we present a survey of formal modelling in evolutionary economics. We 

emphasize the assumptions of models and techniques without trying to be exhaustive in terms 

of applications and without systematically giving attention to specific insights of such 

applications. The organization of the reminder of the paper is as follows. In section 2, we 

discuss the main evolutionary modelling techniques. Next, in section 3 we examine the 

various components of evolutionary-economic models. Section 4 presents conclusions.  

 

2. Evolutionary modeling techniques 

2.1 Multi-agent simulations  

Multi-agent simulations enable studying coordination processes, self-organization, distributed 

processing, micro diversity and innovation through recombination, all in a way that is far 

beyond the capabilities of any representative agent model (Potts, 2000). In early studies, the 

approach was employed to model social processes (Schelling, 1978; Axelrod, 1984; Arthur 

1984). The most ambitious in this sense has been Epstein and Axtell’s (1996) multi-agent  

‘Sugarscape’ model, which integrates elements of demography, sociology, psychology and 
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economics. The model runs show how from spatio-temporal interactions of agents a number 

of social phenomena emerge: the transmission of culture, the rise of conflicts, the spread of a 

disease, and migration. In economics the method of multi-agent simulations became more 

widely known through the work of Andersen et al. (1988) and Holland and Miller (1991). 

These authors proposed to view the economy as a complex, dynamic, and adaptive system 

with a large number of autonomous agents. In this respect, multi-agent simulations offer a 

unique tool for addressing interactions of heterogeneous, boundedly rational agents 

characterised by learning, increasing returns and path dependence.  

Formally, agents can be defined as computational entities situated in some 

environment, capable of undertaking flexible autonomous actions with the objective of 

meeting their goals (Wooldridge, 1999). In particular, intelligent agents are characterised as 

capable of perceiving the environment and responding to it; of exhibiting goal-oriented 

behaviour, and of interacting with other agents. These interactions can take place indirectly 

through the environment in which agents are embedded, or in direct communication among 

agents (Weiss, 1999). Agents’ interactions as well as feedback from aggregate (macro) to 

disaggregate (micro) phenomena are the sources of nonlinear dynamics.  

There are no standard techniques for constructing and analysing agent-based models 

(see Epstein, 2007; Windrum et al., 2007). Weiss (1999) provides an overview of general 

attributes of a multi-agent system, listed in Table 1. The basic structure of such a system 

involves specifying: time, the number of agents, micro states (actions) that can be 

endogenously modified by agents, micro parameters containing information about agents’ 

behavioural and technological characteristics, time independent variables governing the 

technological and institutional setup, the structure of interactions and information flows 

among agents, micro decision rules, and aggregate macro variables (Pyka and Fagiolo, 2005). 

During the last two decades, the multi-agent approach has become a common way of 

modelling dynamic, decentralized economies. A number of models generating patterns 

consistent with empirical phenomena have been proposed (e.g., Gabriele, 2002; Fagiolo et al., 

2004; Dosi et al., 2006). For instance, Fagiolo et al. (2004) develop an agent-based model 

whose simulations confirm stylised facts of product and labour markets, such as Beveridge, 

Wage and Okun’s curve. The Beveridge curve predicts a negative relationship between rates 

of vacancies and unemployment, the Wage curve posits a negative correlation between levels 

of real wages and unemployment, and the Okun curve stipulates more than a proportional 

increase in a real GDP for every percentage-point of reduction in the unemployment rate. 

These macro regularities emerge in the model as an outcome of micro interactions among 

heterogeneous individuals (producers and workers). Agents’ interactions underlie vacancy 

and wage setting mechanisms, matching and barging processes, demand and prices formation. 
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The competitiveness of firms, which depends on firm-specific labour productivities, forms a 

basis for selection to operate. 

 

Table 1.  An overview of attributes of multi-agent systems 

 Attribute Range 

Agents Number Two or more 
 Goals Contradicting or complementary 
 Architecture Reactive (simple mapping of a signal into 

action) or deliberate response  
 Abilities Simple or advanced 
Interactions Frequency Low or high 
 Character From pure observation over signal 

passing to sophisticated exchange of 
information (dialogue and negotiations) 

 Persistence Short term or long term 
 Pattern (flow of data and control) Decentralised or hierarchical 
 Connections (structure of interactions)  Fixed or changeable  
 Purpose Competitive or cooperative 
Environment Changes in the environment  Foreseeable or unforeseeable 
 Information Uncertainty or full knowledge 
 Stability Static, dynamic, endogenous environment 
 Availability of resources Restricted or unrestricted 

 

Source: adapted from Weiss (1999, p.4). 

 

 Recently, multi-agent modelling has become a formal tool in a new generation of 

evolutionary-economic models, know as ‘history friendly’ models (e.g., Malerba et al., 1999; 

Malerba and Orsenigo, 2001; Elliason and Taymez, 2000; Eliasson et al., 2004). History 

friendly models aim to capture qualitative theories about mechanisms and factors driving 

industry evolution, technological advances or institutional change (Malerba and Orsenigo, 

2001). They rely on extensive analysis of empirical data and patterns of development in 

specific industries. For instance, Malerba et al. (1999, 2005) develop a multi-agent model of 

the evolution of the computer industry, and Malerba and Orsenigo (2001) of the 

pharmaceutical and biotechnology industry. In history friendly models, empirical data are 

used to calibrate parameters and behavioural rules while the evolvability of the resulting 

system is compared to the historical patterns of industry developments. Consequently, such 

models may be regarded as a method of validating results. Alternative approaches to 

empirical validation of multi-agent models include the indirect calibration approach and the 

Werker-Brenner approach (for a discussion on the strengths and weaknesses of each approach 

see Windrum et al., 2007). 

Multi-agent models have been applied to modelling a wide range of topics: agent 

learning (Arthur, 1991; Ishibuchi et al., 2001; Klos and Nooteboom, 2001), the evolution of 



  #0806 
 

 

 7

norms, and conventions (Axelrod, 1997; Thebaud and Locatelli, 2001; Hodgson and 

Knudsen, 2004), financial markets (Arthur et al., 1996; Caldarelli et al., 1998; LeBaron, 2001; 

Levy et al., 2000), diffusion of innovations and industry dynamics (Aversi et al., 1997; 

Gilbert et al., 2001; Windrum and Birchenhall, 1998, 2005; Saint-Jean, 2006; Schwoon, 

2006), land use and environmental management (Paker et al., 2003), labour economics 

(Tassier and Menczer, 2001; Gabriele, 2002; Fagiolo et al., 2004), and environmental policies 

(Janssen and Jager, 2002; Carrillo-Hermosilla, 2006). Multi-agent models have been also 

applied to various markets, including the textile market (Brannon et al., 1997), fish market 

(Kirman and Vriend, 2001), wholesale electricity market (Bower and Bunn, 2001), and 

agricultural practices in a developing country (Lansing and Miller, 2004). For a more 

extensive discussion of multi-agent modelling, see Tesfatsion, (2001a), Axelrod (2003), 

Windrum (2004), Dawid (2006), Vriend (2006), and Epstein (2007). We will discuss aspects 

of some of the aforementioned models in greater detail later on in the paper.  

 

2.2 Evolutionary computation  

Evolutionary computation offers algorithms based on the mechanisms of natural selection and 

genetics, such as genetic algorithms (Back, 1996; Mitchell, 1996; Goldberg, 1989), genetic 

programming (Banzhalf et al., 1989), evolutionary programming (Back, 1996), learning 

classifier systems (Lazi et al., 1998; Bull, 2004) and evolutionary strategies (Beyer and 

Schwefel, 2002).1 These techniques are increasingly applied to evolutionary-economic 

modeling (see Arifovic, 2000; Dawid, 1999). In evolutionary computation models2, 

individuals do not change over time but a population evolves due to selective replication and 

variation processes. Riechmann (1999) has proposed to interpret selective replication and 

variation operators in terms of socio-economic interactions, namely as learning by imitation 

(selective replication), learning by communication (crossover) and learning by 

experimentation (mutation). 

Central to all techniques in evolutionary computation is the search process for better 

solutions. The process involves generating new options with mutation and recombination 

operators. A mutation operator is always stochastic. It acts by changing a value of a random 

characteristic of an individual with some positive probability. Recombination (crossover) 

merges information (characteristics) from two parent codes into an offspring code. The 

important difference between mutation and recombination is that mutation is a unary operator; 

it requires one object as an input, while crossover is typically (i.e. in biology) a binary 

operator applied to two objects (parents). In addition, the possibility of recombination with 

                                                 
1 Since evolutionary programming and evolutionary strategies are rare in economic applications, we do 
not discuss them further here.  
2 Excluding multi-agent models, which employ evolutionary algorithms. 
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more than two parents is also possible in a socioeconomic or technological context (see 

Eiben, 2000). This creates a very wide spectrum of innovation outcomes. 

 The process of selective replication transfers a set of individuals hosting distinct 

strategies from one generation to the next. In evolutionary algorithms, selection consists of 

two processes: parent and survival selection (Eiben and Smith, 2003). The role of parent 

selection is to stimulate better individuals to become parents of the next generation. Parent 

selection is typically probabilistic: better quality individuals have a higher chance to 

reproduce. For instance, parents may be selected in proportion to their relative fitness (a 

quality measure assigned to each solution). The approach is also known as roulette wheel 

selection; the chance of selecting a particular parent may be envisaged as spinning a roulette 

wheel, where the size of each pocket is proportional to the parent’s fitness. Other types of 

selection mechanisms are linear sorting and tournament selection. According to the first, an 

algorithm sorts all individuals based on their fitness and then assigns a selection probability to 

each individual according to its rank. Alternatively, in tournament selection an algorithm 

chooses randomly two parents and creates an offspring of the fitter parent. Subsequently, 

parents are returned to the initial population. The process is repeated n times to create a 

succeeding population of n offsprings.  

 The second type of selection is survival selection (often deterministic). Here, 

offspring compete for a place in the next generation based on their fitness. Two options may 

be distinguished: a new population can be constructed from a set of parents and offspring, 

referred to as fitness bias selection, or solely from the offspring population known as age bias 

selection. 

It is worth mentioning that evolutionary algorithms may be employed to model 

individual learning in multi-agent systems. In such models, each agent observes a 

representation of the current state and undertakes an action according to a selected decision 

rule (from a finite set of rules). After all agents undertake their decisions, payoffs are 

revealed, and the effectiveness of rules is evaluated. The most effective rules have a higher 

chance to be selected in the future. Over time an evolutionary algorithm evolves the optimal 

rule or set of rules in response to a changing environment. 

  

Genetic algorithms 

Holland (1975, 1980, 1992), inspired by genetic processes, developed the Genetic Algorithm 

(GA) method. Initially, it was regarded as a means of studying adaptive behaviour. A simple 

genetic algorithm is characterised by a population of binary strings (of equal length), i.e. 

sequences of 0s and 1s, like {0,1,0,1,1}. Alternatively, a string can be presented as a sequence 

of real values. A GA operates as follows: from an initial parent population some strings are 

chosen with a probability proportionate to their fitness. Offspring are created by applying 
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variation operators to the selected parents: mutation ‘flips’ the value of any bit-string with 

some positive probability, while recombination (crossover) switches sequences of consecutive 

bits between two parents’ strings. A new generation is then created from parent and offspring 

populations (or only from the offspring population). The process is repeated a finite number 

of times until convergence occurs or some (other) stopping rule is satisfied. 

Arifovic (1994) proposes an augmented GA with an additional election operator. This 

operator tests newly generated offspring before they are permitted to become members of the 

succeeding population. It compares the fitness of a potential offspring with the fitness values 

of its parents: if the offspring has the higher fitness than one or both of its parents, it replaces 

the parent with the lowest fitness; otherwise both parents go to the next generation.  

Holland (1975) suggested that the analysis of the GA could be simplified with the use 

of the Schemata Theorem. The theorem provides a formula for assessing how a number of 

‘instances’ of certain schemas (strings) in a population varies over time as a result of fitness 

proportional selection, one-point crossover and point mutation (Eiben and Smith, 2003). A 

schema is a string built of elements {0,1,#}. The equivalence class is a set of strings that 

match a schema wherever it has 0s or 1s, and which can take any symbol 0 or 1 where the 

schema has “#” (Sargent, 1993; Birchenhall et al., 1997). An example of a schema could be 

{0,1,0,#,0,1} with the corresponding equivalence class [{0,1,0,1,0,1},{0,1,0,0,0,1}]. The 

theorem uses specific terminology: order - the number of defined positions i.e. 0s or 1s, for 

instance {0,1,0,#,0,1} has order 5; length - a distance between the first and the last defined 

position: in our example it is 6-1=5, and schema’s fitness – the average fitness across all 

strings in a schema’s equivalence class. Schemata Theorem then states that short, low order 

schemata of above average fitness increase their number of instances within a population 

from one generation to the next. 

Genetic algorithms are widely employed in evolutionary modelling. The string 

representation offers a convenient way to code: consumer preferences (Aversi et al. 1997), 

production designs (Windrum and Birchenhall, 1998, 2005), firm routines (Kwasnicka and 

Kwasnicki, 1992), production rules in cobweb model (Arifovic, 1994, 1995; Dawid and 

Kopel, 1998; Franke, 1998), production functions (Birchenhall, 1995; Birchenhall et al., 

1997); pricing strategies (Curzon Price, 1997), and strategies in a Prisoners Dilemma 

(Axelrod 1987, Miller, 1996). For instance, in the Cobweb model developed by Arifovic 

(1994) each binary string represents a single decision rule concerning the production quantity. 

The role of selection and variation operators is to update firms’ decision rules and ultimately 

to evolve the optimal rule. In particular, crossover and mutation generate new ideas by 

recombining and varying already existing rules.  

An example of the application of a genetic algorithm to the iterated Prisoner’s 

Dilemma tournaments is presented in Axelrod (1997, chapter 1). The author simulates 
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repeated tournaments played during a finite time by a population of evolving automata. Each 

individual player is endowed with a single string of the length of 70 bits (initially generated 

randomly), where bits correspond to strategies: cooperate (C) or defect (D) depending on the 

outcome of three previous moves.3 Individuals play the iterated Prisoner’s Dilemma in 

pairwise encounters and score the average payoff over all the games they participate in. The 

single iteration payoff is given by: 

 

  Table 2. Payoffs (row, column) in the Prisoner Dilemma 

Column Player                     

 

 
Cooperate Defect 

Cooperate 3,3 0,5 Row 

Player 
Defect 5,0 1,1 

                       

              Source: Axelrod (1997, p.16). 

 

Subsequently, the relatively successful strategies are randomly paired to produce offspring for 

the next generation with the use of crossover and mutation. Relatively fitter strategies produce 

more offspring per mating. Results reveal that the most successful strategies that evolved  

over generations resemble the Tit-for-Tat (TFT) strategy. The TFT cooperates on the first 

move and later it imitates the strategy played by the opponent in the previous move. Axelrod 

(1997, chapter 2) replicates the tournaments in the present of noise, where with 1 percent 

chance an opposite to intended strategy is implemented. In this context, the Generous TFT 

and the Contrite TFT turn out to be more effective than the simple TFT in restoring mutual 

cooperation after unintended defection by one of the players. The Generous TFT cooperates 

whenever the opponent cooperated in the previous move; if the opponent defected the GTFT 

cooperates with a certain percent probability, while the Contrite TFT does not respond to the 

other player’s defection after its own unintended defection. 

  

Learning classifier systems 

A classifier system was designed by Holland (1975) as an adaptive system where rules are 

activated depending on the state of the environment. Each rule consists of a condition-action 

part (for example ‘if X appears-then do Y’).  Classifier conditions are strings of symbols 

{0,1,#}, while actions are expressed as binary strings. Classifier systems work as follows. 

First, the state of the environment is coded on a binary string and transmitted to the system. If 

a condition part of a rule matches the message from the environment, the rule enters a 
                                                 
3 Each time step one of four possible outcomes is realised: (C,C), (D,D), (C,D), and (D,C).  
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competition with other rules that have satisfied this condition. The outcome of the process 

depends on strengths of rules, which indicates a rule’s past performance. The strengths are 

updated over time with a learning algorithm (e.g., the traditional bucket-bridge or Q-learning 

algorithm). In a second stage, a genetic algorithm is run on the population of rules to generate 

new and delete poorly performing rules with the use of one-point crossover and bitwise 

mutation. The purpose of employing classifier systems is to create a cooperative set of rules 

that together solve the problem (Bull, 2004).  

 Classifier systems are typically employed to model agent’s adaptive behaviour 

(Marimon et al., 1990, Arthur, 1991; Arthur et al., 1996; Vriend, 1995; Kirman and Vriend, 

2001). For instance, Arthur et al. (1996) develop a model in which a classifier system is used 

to simulate agents' behaviour in an artificial stock market. The model describes N agents 

choosing between investing in a stock and leaving money in the bank at a fixed interest rate. 

Agents make their investment decisions by attempting to forecast the future returns on the 

stock. Each agent is endowed with a set of M predictors, which are condition-forecast rules. 

An agent chooses H of the most accurate from active predictors, i.e. from predictors whose 

condition part matches a current state of the market. He computes the next period price and 

dividend by combining statistically the forecast parts of H selected predictors. Subsequently, 

he computes expected returns. Depending on his current holdings, an agent announces how 

many assets he wants to sell or buy. Under the condition that total asset demand meets supply 

(the number of shares issued) bids and offers are matched. After the market clears, the next 

period’s price and dividend are revealed, and the precisions of the forecast rules (in predicting 

prices) are updated.  

 

Genetic programming 

Genetic programming (GP) represents the youngest technique in the artificial intelligence and 

computational literature. It was developed by Koza (1992, 1994) and builds on the concept of 

functions applied to arguments; these functions are organized into trees, whose nodes are 

described with a set of basic functions (e.g., the arithmetic, Boolean, relation, if-then 

operators) plus some variables and constants {+,-,*,/,…..,OR, AND, NOT,>,<,=, 

…v1,v2,v3…c1,c2,c3…} (see Dosi et al., 1999). Operators have connections to other operators 

or variables. Variables, which have no further connection, constitute ‘leaves’ of the tree. 

GP algorithm proceeds by evaluating each solution according to the fitness function 

and selecting the best solutions for ‘reproduction’. In order to generate new solutions, the 

fittest among the existing ones are modified and recombined. For example, crossover operates 

by selecting randomly two nodes in the parents’ trees and swapping the sub-trees, which have 

such nodes as roots. The idea of generating new, possibly better functions or trees in GP is 

similar to GA. 
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GP as a member of the evolutionary algorithm family shares some properties with 

GA. Formally, GP is a variant of GA characterised by a different data structure. In addition, 

the two approaches differ with respect to the application area: GP is used to seek models with 

maximum fit to the environment, while GA aims to find an optimal solution (Eiben and 

Smith, 2003). Working with GP allows for more flexibility: trees take a form of complex 

structures with nested components, while the size of trees may vary within a population. As 

opposed, a GA population consists of fixed-length binary strings. Nevertheless, the complex 

structures of GP may hinder their usefulness, in particular making interpretation of results 

difficult (Arifovic, 2000).  

Genetic programming has been employed in a number of economic applications, for 

instance, to evolve an optimal price-setting rule (Dosi et al., 1999) an optimal trading rule 

(Neely et. al., 1997; Allen and Karjalainen, 1999), and to model speculators’ adaptive 

behaviour (Chen and Yeh, 2000). Dosi et al. (1999) employ GP to model firms’ behaviour in 

a complex monopolistic environment where the parameters of the demand function and cost 

vary constantly. Every time step, each firm selects one pricing rule to maximise its profits. 

Firms set prices simultaneously and independently of each other. After every firm announces 

its price, the average price and the corresponding demand are computed. Initially, pricing 

rules are generated randomly. During consecutive iterations, the probability of each rule being 

chosen is proportional to the payoffs it cumulated in the past iterations. Learning takes a form 

not only of adaptive selection but also of a search process for more successful functions: the 

generation of new pricing rules emerges from recombination (crossover) of the most 

successful strategies. In simulations, a mark-up type of pricing turns out to dominate among 

emerging rules. 

 

2.3 Evolutionary game theory 

Evolutionary game theory studies the strategic behaviour of boundedly rational players. 

Individuals are drawn randomly from large populations and have little or no information 

about the game (Weibull, 1998). The finite set of strategies is given at the outset, while the 

equilibrium is defined in terms of these strategies (pure strategies) or their combinations 

(mixed strategies). Friedman (1991) identifies formal ingredients of evolutionary game 

models: 

- Spaces of states and strategies. First, interacting populations indexed k=1,..,K should 

be defined, where each member chooses a strategy from a finite number of possible 

actions. Any point rk of the N-simplex Sk:={x=(x1,x2,…xN): xi>0,Σixi=1)} represents 

the fractions of population k employing strategy i. 

- Fitness functions. This assigns payoffs to the strategy ri depending on the current state 

s. Formally, it can be denoted: f: S*S  RK with f(r,s):=(f1(r1,s)…fK(rK,s)). 
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- Systems of ordinary differential equations. The final element concerns the evolution 

of state s over time. The dynamic structure is defined in terms of time derivatives: 

s&=( s& 1,.. s& K) with s& K:=( s& K
1,.., s& K

N):=(dsk
1/dt,…dsK

N/dt). It can be simplified as 

F:S RNK: s&=F(s). 

Additional restrictions are required for F:S RNK to be admissible: 

- ΣNFk
i(s)=0 for all s ∈  S and k=1,..N 

- Sk
i=0 implies Fk

i(s)=0 

- F is continuous and differentiable on S 

Differential equations specifying dynamics can take the form of either deterministic or 

stochastic differential equations. Both types are discussed below. 

 

Replicator dynamics 

Evolutionary game dynamics describes how the frequencies of various strategies within a 

population change over time according to their payoffs (fitness). The payoffs depend on the 

strategies of other players, and thus on the frequencies of these strategies within a population. 

Since these frequencies change according to the payoffs, this creates a feedback loop 

mechanism (Samuelson, 1997). Replicator dynamics is often applied to capture this. It goes 

back to Fisher (1930), who claimed: ‘the rate of increase of fitness of any species is equal to 

the genetic variance in fitness’; and it was first formalized by Taylor and Jonker (1978). 

Replicator dynamics governs the selection process ensuring that units with above-average 

fitness increase their frequency in a population. It applies to any population divided into types 

E1 to En, with corresponding frequencies x1 to xn, space (Σixi=1). According to the replicator 

model, individuals meet each other in random encounters. Whenever an individual of i-type 

meets individual of j-type, the payoff to i is aij. The motion for the frequency of type i is 

governed by (Hofbauer and Sigmund, 1998): 

  ix& = xi((Ax)i-xTAx).  

where Axi is the expected payoff for an individual of type i given by an n x n payoff matrix 

A=(aij), and xTAx is the average payoff. The frequency of type i increases in the population if 

its payoff exceeds the average payoff in the population.  

A fitness function, as applied to model pairwise interactions, often takes a linear 

form. In the context of games with interactions occurring in groups with more than two 

members, fitness may be expressed as a nonlinear function of the frequencies (Nowak and 

Sigmund, 2004). Replicator dynamics is then re-written as: 

ix& = ))()(( xfxfx ii −  

where fi(x) is a fitness function and )(xf =Σixifi(x) is the average fitness. 
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Foster and Young (1990) were the first to introduce a stochastic term into replicator 

dynamics. They claim that the biological model on which replicator dynamics is based is 

inherently stochastic in nature so that not every encounter between i-type and j-type 

individuals must result in exactly the same change in fitness. Under the assumption of a large 

population size and frequent interactions, Foster and Young approximate any source of 

variability in the payoffs by a continuous-time Wiener process:  

ix& (t)=xi(t)[Ax(t)Δt - x(t)TAx(t)Δt + σ(Γ(x)ΔW(t))i ] 

where  x(t)=[x1(t),..xn(t)]T is the proportion of different strategies. W(t) is a continuous, white-

noise process with a zero mean and an unit rate covariance matrix; Γ(x) is continuous in x and 

has the property xTΓ(x)=[0,0,..,0]T
. The stochastic version of replicator dynamics is suitable 

for models where random perturbations constantly affect the selection process and thus 

system dynamics.  

 
Other selection dynamics 

Replicator dynamics describes one of many possible transmission mechanisms. Hofbauer and 

Sigmund (1998, 2003) suggest other selection dynamics, such as best response, Brown-von 

Neumann-Nash, imitation, mutator, and adaptive dynamics (see also Nowak and Sigmund, 

2004). For instance, best response dynamics requires certain cognitive capabilities: agents 

need to recognize a best reply to the mean population strategy. From this perspective, 

imitation of a rival’s strategy in pairwise comparisons offers more realistic accounts for 

modelling social interactions. On the other hand, in complex, uncertain and rapidly changing 

environments individuals often find it difficult to copy the desired behaviour. Mutator 

dynamics may be employed to depict selection occurring with errors. Finally, adaptive 

dynamics is useful for modelling adaptive learning in a homogenous population, where 

almost all individual use the same strategy and only a small number of agents (‘mutants’) use 

alternative strategies. The equation captures the process of myopic search, where mutants 

explore the immediate surrounding of the incumbent strategy (Hofbauer and Sigmund, 1998). 

These various selection dynamics are discussed in more details below.  

 

(1) Best response dynamic  

Best response dynamics may be applied to model myopic behaviour of rational agents. It is 

derived under the assumption that in large populations a small fraction of individuals revise 

their strategies and choose the best reply to the population mean strategy x: 

x& =β(x)-x 

where β(x) denotes the set of best replies b to strategy x such that zTAx≤ bTAx for any z, x, b 

∈  Sn.  The best reply does not have to be unique. 
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(2) Smoothed best replies 

Best reply dynamics can be approximated by smooth dynamics such as the logit dynamics (in 

order to ensure a unique solution) for ε>0: 

ix& = ixa
j

xa

x
e

e
j

i

−
∑ ε

ε

/)(

/)(

 

for ε→0, this converges to best response dynamics. 

 

(3) The Brown-von Neumann-Nash dynamics 

The Brown-von Neumann-Nash dynamics is defined as: 

ix&  =ki(x)-xi Σj kj(x) 

where ki(x)=max(0, ai(x)-xTa(x)) denotes the positive part of excess payoff for strategy i. This 

equation ensures that if there exists a strategy j with the excess payoff higher than i’s, the 

frequency of strategy i will decrease in a population. The equation defines innovative better 

reply dynamics. 

 

(4) Imitation dynamics 

The frequency of certain strategies can increase in a population through imitation. Imitation 

dynamics is derived under the assumption that an individual selects randomly another player 

in the population and decides whether to adopt his strategy. It takes a form: 

ix& =xi Σj [fij(x)-fji(x)]xj 

where fij is the rate at which a player of type j adopts type’s i strategy. 

The simplest rule, proposed by Hofbauer and Sigmund (2003), is ‘imitate the better’. In this 

case the rate depends only on the payoffs achieved by the two players: 

fij(x)=f(ai(x),aj(x)) =0 for  ai(x) <aj(x)  

                                        =1 for  ai(x) >aj(x) 

The frequency of strategy i increases if i’s payoff exceeds j’s (the term [fij(x)-fji(x)] is in this 

case equal to 1). Alternatively, the switching rate may depend on the payoff difference i.e. 

fij(x)=f(ai(x),aj(x))=φ[ai(x)-aj(x)] with a monotonically increasing function φ. The dynamics 

then follow: 

ix& = xiΣiψ[ai(x)-aj(x)]xj 

where ψ(.) is an increasing and odd function. The equation may be interpreted as players 

imitating strategies of other agents with a probability proportional to the expected gain from 

switching.  
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(5) Selection-mutation dynamics 

Replicator dynamics describes selection without any drift or mutation. To allow for errors to 

occur during the process models of selection-mutation can be employed, such as mutator and 

replicator-mutator dynamics. According to mutator dynamics the processes of replication and 

mutation take place one after another (sequentially), while a replicator-dynamic equation 

assumes that mutation occurs during the replication process. Fischer (2005) has proposed 

mutator dynamics of the form:   

ix& =xi((Ax)i-xTAx) + μ(1/n – xi)) 

where μ is a mutation probability, and n the number of strategies. The component μ/n depicts 

the rate at which individuals change their strategies ‘away’ from xi and μxi is the rate at which 

individuals change strategies to xi. 

 Mutator dynamics can be also expressed as (Helbing, 1995; Brenner, 1998): 

ix& =xi(Ax)i-xTAx)+ Σj[xj qji – xi qij] 

where qij is a mutation probability from strategy i to j, and qji from j to i. The first term on the 

right-hand side depicts replicator dynamics, and the second term describes the process of 

mutation as a sum of the probabilities of flow towards and away from the strategy xi. 

In population genetics, biochemistry, and models of language learning the replicator-

mutator equation is used: ix& =∑ − iijjjj xxfqxfx )()(  (Bürger, 1998; Komarowa, 2004; 

Nowak and Sigmund, 2004). The mutation matrix Q=[qij] is a stochastic matrix, where each 

entry is a probability that replication of i will result in j, with Σjqij=1. The replicator-mutator 

contains both replicator dynamics and quasi-species equations as special cases. If the matrix 

Q is an identity matrix, the equation reduces to replicator dynamics (perfect learning). Second 

special case of replicator-mutator dynamics is the quasi-species equation, which describes 

deterministic mutation-selection dynamics on a constant fitness landscape. The fitness values 

are independent here of the frequencies of other strategies in a population. Formally, the 

quasi-species equation takes a form: ix& = iijjj j xfqfx −∑ , where fi is a reproductive rate 

(fitness) of strategy i and ii i fxf ∑=  is the average fitness.  

 

(6) Adaptive dynamics 

Adaptive dynamics requires a population, in which almost all individuals use a strategy p. The 

population can be invaded by a strategy q if a payoff for an individual playing the strategy q 

while all other play p exceeds the payoff he would receive from playing the strategy p. 

Adaptive dynamics takes a form: 

  
pqq

pqfp =∂
∂

=
),(

&  
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The function f(q,p) denotes the payoff for an individual playing the strategy q in a 

homogenous population with the strategy p. The derivative of this function determines the 

direction of the mutant’s advantage. 

 

Stochastic dynamics 

Stochastic dynamics provide an alternative approach to model economic phenomena. While 

evolutionary dynamics concerns the evolution of strategies (frequencies), stochastic equations 

(e.g., Markov processes, a master equation, the Polya urn- see below) deal with the evolution 

of probabilities of states. For instance, according to a Markov process, a probability of 

transition from state x to y at time t is conditional on all past states, but it can be reduced to a 

probability that is conditional only on the state visited in the previous time t-1:   

  Pr(Xt=y│X t-1=x,..,X0=x0)=Pr(Xt=y│Xt-1=x) 

Economic variables modeled as Markov processes are ‘memory-less’: their values depend 

solely on the values in the previous period. For instance, in Nelson and Winter (1982, chapter 

6) describe changes in the industry as being generated by probabilistic transition rules: search 

and investment rules applied to each individual firm. The transition rules are mostly implicit; 

a firm’s current state (defined in terms of production techniques and capacity utilization) and 

values of environmental variables are mapped into the new industry state. Wheeler et al. 

(2006) offer another application of a discrete-time Markov chain to model adaptive learning 

in the context of the Cobweb model. 

A master equation is a special case of a Markov chain (in a finite time space). It may 

be employed to model agents’ discrete choices. The equation describes transition probability 

based on probabilities of flows into and out of the set of states. Formally, it can be written 

down as (Aoki, 1996; 117): 

  ∑∑
≠≠

−=∂∂
''

),'(),'(),'(),(/),'(
xxxx

txxtxPtxxtxPttxP ωω  

where P(x, t) denotes a probability of being in state x at time t, while ω(x’|x,t) a transition rate 

from state x to x’. The first term is the sum of probability of flows into state x’, while the 

second is the probability of flow out of state x’. Weidlich and Braun (1992) employed the 

master equation to model competition among firms. They assume a number of firms 

producing a single commodity differentiated with respect to quality. Transition rates govern 

the unit changes of variables, such as supplied quantities, price, and quality. On the demand 

side, a population of consumers consists of homogenous individuals. Each consumer may 

own either none or one of the commodities. Here, the transition rate determines changes 

between states: ‘owner’ and ‘nonowner’.   

Alternatively, the Polya urn may be employed for modelling system dynamics. This 

approach refers to an urn that is filled with balls of two colours. Each time one ball is drawn 
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randomly: the selected ball is returned to the urn, while an additional ball of the same colour 

is added. The probability of adding a ball of a particular colour equals exactly the proportion 

of balls of this colour in the urn. Alternatively, Arthur et al. (1987) propose a framework, 

where a probability of adding a ball of type j is an arbitrary function of the colour frequencies. 

It augments the standard Polya urn with a perturbation component. Formally, the urn consists 

of w balls of n colour, where a vector Xn={ 1
nX  , 2

nX ,.., N
nX  } describes the proportions of 

balls of colours 1 to N respectively. At each time, one ball is added; the probability that it is a 

ball of a colour i is equal to )( n
i
n Xq . The frequency of the i-colour ball is: 

i
nX 1+ = i

nX  + 1/(w+n)[ qn
i(Xn) - i

nX ]+ 1/(w+n) )( n
i
n Xμ  

Here, )()()( n
i
nn

i
nn

i
n XqXX −= βμ , while )( n

i
n Xβ equals 1 with a probability )( n

i
n Xq and 0 

otherwise. The Polya urn mechanism as described refers to a non-linear Polya process (Arthur 

et al., 1987). Dosi et al. (1994a) apply the general urn scheme to modelling technology 

choice, and Fagiolo (2005) to coordination games.  

 
 2.4 The Price equation   

A model often used in evolutionary analysis is the Price equation (Price, 1970). It provides a 

complete description of evolutionary change under any condition (Frank, 1995). The model 

requires a population of heterogonous individuals index by i.  It takes the form of: 

w Δ z  = Cov(wi,zi) + E(wi,Δzi) 

Here, Δ z  depicts a change in the average characteristic (trait) over generations according to 

Δ z =Σqi’zi’ - Σqizi, where qi is the frequency of the type i with the characteristic zi in the 

parent population, and qi’ the frequency of the type i with the characteristic zi’ in a descendant 

(offspring) population; Δzi measures the change in the trait value for the type i as Δzi =zi’-zi. In 

addition, the frequency of type i in the offspring population is proportional to the relative 

fitness of the type i in the parent population: qi’=qiwi/ w , where wi stands for the fitness of i 

type and w  denotes the average fitness of the population. In the Price Equation the 

covariance term depicts a change in the character due to successful reproduction, while the 

expectation term measures the fitness weighted by a change in the character over generations.  

The Price equation is often mistaken for being a generally applicable analytical tool, 

while its role is solely to decompose evolutionary change. Ultimately, the equation is an 

identity or mathematical tautology (Grafen, 2000). Van Veelen (2005) suggests to clearly 

distinguish between statistical and probability (stochastic) analysis. He claims that the Price 

equation can be employed to address two types of questions. First, it can be used to assess a 

possibility (likelihood) of certain modelling assumptions being correct. Alternatively, one 

may employ the equation to make interferences given a set of assumptions and mechanisms 

underlying a theoretical (evolutionary) model. 
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The components of the Price equation are open to a wide variety of interpretations 

(Frank, 1995). For instance, the equation may decompose the evolutionary process into 

selection and transmission. Alternatively, the covariance and expectation terms can be 

construed as effects of between- and within- group selection on average trait frequency in a 

population. Metcalfe (2002) notes that many authors in evolutionary economics have carried 

out analyses of economic change consistent with the Price equation without even realizing. 

Using the Price equation, Andersen (2004) decomposes a change in the mean productivity in 

the Nelson and Winter’s (1982) model into selection Cov(wi,zi) and innovation E(wi,Δzi). 

Here, zi is interpreted in terms of productivity of a firm i’s capital stock, Δzi as the change in 

productivity between two periods, and wi as the reproduction coefficient defined in terms of 

firm i’s growth rate. 

 The Price equation describes the selection process assuming that it acts on a single 

trait (characteristic). Thus, the analysis requires isolating the effect of this trait from multiple 

of other effects on the fitness. Alternatively, the conceptual analysis is a method for analyzing 

selection acting on multiple characters. It integrates the covariance approach (Price, 1972) and 

the selection-gradient method (Lande and Arnold, 1983). The conceptual analysis involves 

multiple regressions in which both individual and group characters, including aggregate 

characters denoting group means and quantifiable group properties that cannot be obtained 

solely from measurements of group members, are treated as individual traits and are included 

as independent variables (Heisler and Damuth, 1987). 

 

3.  Building blocks of evolutionary-economic models 
In this section we present an overview of components of formal models in evolutionary 

economics. The following categorization is employed: (1) diversity, (2) bounded rationality, 

(3) innovation, (4) selection, (5) diffusion, (6) path dependence and lock-in, (7) co-

evolutionary dynamics, (8) multi-level and group selection, and (9) evolutionary growth.  

 

3.1 Diversity 

Central to any evolutionary model is a heterogeneous population i.e. a population 

characterised by internal diversity. Diversity relates to progress through Fisher’s principle: 

‘The greater the genetic variability upon which selection for fitness may act, the greater the 

expected improvement in fitness’ (Fisher 1930). In evolutionary-economic frameworks, 

diversity is formalised in a number of different ways. In evolutionary computation models, 

populations consist of individuals hosting distinct strategies. Here, each individual can 

produce a single type of behaviour only, but yet different individuals may produce different 

behaviours, referred to as ‘developmental coin flipping’ (Bergstrom and Godfrey-Smith, 
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1998). Alternatively, individuals may do different things on different occasions. An individual 

exhibiting a variety of behaviour within his lifetime has been referred to as the ‘individual 

behaviour mixing’ (Bergstrom and Godfrey-Smith, 1998). The latter approach is used 

extensively in evolutionary game settings, where it is formalised with the notion of mixed 

strategies. Finally, in multi-agent systems, agents may differ with respect to behavioral rules, 

knowledge, goals, physiological features (e.g., vision and energetic efficiency in the 

Sugarscape model, Epstein and Axtell, 1996) or signals. This creates a wide spectrum of 

opportunities to realize heterogeneity.  

The concept of diversity can be elaborated as having three properties: variety, 

balance, and disparity (Stirling, 2004, 2007). Variety is defined as the number of categories 

into which a population can be partitioned; the greater the number of options in a portfolio, 

the greater its diversity. Balance relates to the distribution of shares of each category in a 

portfolio; for a particular portfolio of a given variety, the more equal are the fractional 

contributions of each option, the more even is the distribution and the greater is diversity. 

Finally, disparity refers to the degree to which options differ; it captures the distance between 

categories. Disparity is a qualitative property, which represents a rather subjective and 

context-dependent aspect of diversity. 

 Stirling suggests a simple diversity measure that combines these components. It takes 

the form of multiplicative function, representing an integrated diversity heuristic measure D 

(Stirling, 2007): 

D = ∑
≠ )(, jiji

dij
α

 (pipj)β   

Here dij is the distance in a Euclidean disparity-space between options i and j, and pk is the 

frequency of element k in the population.  The α and β may take any of possible permutations 

of 0 and 1. In the reference case, if α and β are both equal to 1 the measure captures balance- 

and disparity-weighted variety. If α=0 and β=1 the index reduces to balance-weighted 

variety, while if β=0 and α=1 to disparity-weighted variety. For α=0 and β=0 the measure 

depicts scaled variety.  

For the purpose of statistical analysis, a number of other diversity measures have been 

proposed (Theil, 1967; Weitzman, 1992, 1998a; Önal, 1997; Frenken et al., 1999; Saviotti, 

2001). However, Stirling (2007) claims that most of these measures are not very balanced. 

For instance, an entropy-based index is a dual measure combining diversity and balance, 

while the Weitzman index is limited to disparity. Entropy-based measures, such as the 

Shannon and the Simpson indexes, compute the statistical variety on the basis of the 

frequency distribution of discrete variables. The Shannon index is defined as H= -

∑=

n

i ii pp
1

)ln( , where n is the number of species, and pi is the share of the ith species. H=0 
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indicates the lowest diversity (Önal, 1997). The Simpson index takes the form of the sum of 

the squared shares of each option in the portfolio: H=Σi pi
2. A related entropy measure was 

proposed by Önal (1997) for the purpose of creating a more operationally and 

computationally convenient index. It defines the structural diversity index as: V(x)=1-

)1(2
1
−n

Σi,j ji ss −  (n is the number of species, and si, sj are shares of i and j species 

respectively). For a given pair of groups i and j ji ss − measures the relative diversity 

between the two groups. Maximum diversity occurs when all groups in an assembly have 

equal numbers of elements, while a minimum value is realized if one group contains all of the 

elements. 

 Alternatively, Weitzman’s index (1992, 1998a) emphasises distance between entities. 

The measure can be applied to both discrete and continuous variables. It classifies entities in 

groups based on their dissimilarity through a distance measure d. Formally, diversity V(S) is 

the solution of the recursion: V(S)=max Sy∈  (V(S\y)+d(S\y,y)), where S\y stands for a set S 

without a member y and d(S\y,y) captures the distance between this set and y. The Weitzman’s 

index addresses disparity alone; it does not account for the relative abundance of different 

options within a population.  

Several studies have employed these diversity measures: Saviotti and Trickett (1992) 

in a study of helicopters, Bourgeois et al. (2005) for refinery processing, Frenken and 

Nuvolari (2004) for the steam engine, and Frenken and Windrum (2005) for microcomputers 

and laptops. Frenken et al. (1999) use both the entropy and Weitzman’s diversity measure to 

analyze the evolution of technology in four industries: aircrafts, helicopters, motorcycles and 

microcomputers. They define a population of products in terms of the distribution of product 

characteristics. Changes of variety in each particular industry are investigated as changes in 

the composition of the population structure over time (measured with diversity indexes). The 

results reveal a tendency for decreasing variety towards product standardization for 

helicopters and microcomputers and increasing variety for aircrafts and motorcycles.  

 

3.2 Innovation 

Innovation is an inherent feature of any evolutionary system. It is essential for diversity 

creation. Although it is intrinsically uncertain, and for this reason in most evolutionary 

economic models treated as stochastic, it would be incorrect to consider the process as totally 

random. Innovations may be expected to occur in a systematic manner, namely preceded by 

the cumulativeness of relevant technical advances. In addition, some view the innovative 

processes as following relatively ordered technological pathways, for instance: Nelson and 
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Winter’s (1977) natural trajectories; Sahal’s (1985) technological guidepoints, and Dosi’s 

(1982) technological paradigms (see Silverberg and Verspagen, 2003).  

Technological evolution may be brought about by a series of incremental 

improvements in already existing designs or by the introduction of a design radically different 

from the latest technological achievement. Mokyr (1990) distinguishes in this respect between 

micro and macro inventions. The former refers to small and incremental steps to improve a 

design in line with artifacts developed under the current paradigm. Macro-inventions concern 

the introduction of radically new ideas without a clear precedent, which disturb the existing 

economic structures and dependencies. Formally, incremental innovations may be seen as 

continuous changes in product characteristics (incremental improvements in technical or 

service attributes), while radical innovations are discontinuous changes (Savotti and Meltcafe, 

1984). 

A number of studies examine the notion of recombinant innovation (Weitzman 

1998b, Olson and Frey, 2002; Tsur and Zemel, 2006, Van den Bergh 2008). Weitzman 

presents a formal model in which the number of new combinations is a function of the 

number of existing ideas. He shows that if this number is the only limiting factor in 

knowledge production, super-exponential growth may result. Olson and Frey (2002) connect 

Weitzman’s recombinant growth with Schumpeter’s view of the entrepreneur, who innovates 

by combining existing ideas or technologies in a convex way. They demonstrate that the 

resulting combinatory process is constrained by following factors: convexity implies 

exhaustion of technological opportunities; the cost of combining ideas increases with distance 

(disparity) between them and thus profit maximization requires combining ideas that are 

technologically close; social acceptance constrains or prohibits certain combinations; and a 

ruling technological paradigm limits the scope for recombinant growth. In line with this, van 

den Bergh (2008) develops a model to derive optimal diversity in the presence of the trade-off 

between increasing returns to scale and benefits of recombinant innovation.  

 Evolutionary models emphasise the importance of innovative activities in driving 

industry dynamics. In evolutionary game theoretical settings, innovation typically transforms 

a firm as a whole. For instance, each innovation may be associated with a new vintage of 

capital (e.g., Iwai, 1984 a,b; Silverberg and Lehnert 1993; Silverberg and Verspagen, 1994a,b, 

1995a). In this context, Iwai (1984a) develops a capital vintage model to examine how 

dynamic interactions between the equilibrating force of imitation and the disequilibrating 

force of innovation shape the evolutionary pattern of an industry. The market consists of M 

firms (active and potential producers) and n production methods with corresponding unit costs 

ci (cn>..>c1). Firms face two alternatives, namely innovate or imitate the technology 

exhibiting a lower than their current cost of production. It is assumed that each firm has a 

small but equal chance of successful innovation at every point at time. If innovation occurs, it 
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creates a new cumulative frequency Ft(CN)=1/M, where CN denotes the unit cost of the best 

production method that is technologically possible at time t. The relative frequency of firms 

with the unit cost equal to c or lower than c changes according to:  

ΔFt(c)={μ Ft(c)(1- Ft(c)) +vM(1-Ft(c))(1/M)} Δt 

where μ and v are indices of the effectiveness of firm’s imitation and innovation activities, 

respectively; vΔtM denotes the probability that an innovation is carried out successfully by 

one of the firms over a small time period Δt. 

In micro-simulation models of industry dynamics, each firm is engaged in the search 

process for better solutions. In Nelson and Winter’s (1982) pioneering model search is 

modeled as a two-stage random process: in the first stage, imitation and innovation draws 

determine the firm’s probability of undertaking R&D activities (0 or 1). If a firm i gets an 

imitation draw, then in the second stage it copies the industry’s best practice. If it gets an 

innovation draw, it samples productivity A from a distribution of technological opportunities 

F(A; t, Ait), where Ait is firm i’s current productivity level. Finally, if a firm obtains a 

combination of imitation and innovation draws, its new productivity level is determined by: A 

i(t+1)=Max(Ait, tA , itA ), where Ait is firm i’s current productivity level, tA is the best practice 

productivity level at time t, and itA is a random variable resulting from the innovation draw. 

In Nelson and Winter’s model firms are treated as a single unit of selection. 

Alternatively, a firm can be treated as a multi-operation unit (e.g., Kwasnicki and Kwasnicka 

1992; Chiaromonte and Dosi, 1993; Dosi et al., 1994b; Dosi et al., 2006). For instance, in 

Kwasnicki and Kwasnicka (1992) model of industry dynamics, each firm is characterised by 

two types of routines: active ones employed in everyday practice, and latent ones stored but 

not actually applied. Each set of routines is divided into separate segments, consisting of 

similar routines employed by firms in different domains of their activities. New routines 

evolve due to recombination, mutation, transition or transposition. With a certain probability 

the lth routine in the kth sector changes (mutation) or the segment k of a firm-unit i is 

recombined with the segment k of a firm-unit j (recombination). Alternatively, a single 

routine may be transmitted from another firm (transition) or within a single firm a latent 

routine can be transposed from a latent into an active state (transposition).   

To model a myopic search for better solutions in a technology context an NK-model 

may be employed (Altenberg, 1997; Auerswald et al., 2000; Frenken and Nuvolari, 2004).  

Here, N stands for the number of elements, while K denotes complexity of the system 

(interdependence of dimensions). Each element has its own sub-function(s) within the system. 

It is assigned a fitness value wn drawn randomly from the uniform distribution [0,1]. Elements 

in NK system are interdependent; these dependencies are often referred to as ‘epistatic 

relations’. If a value of a particular element changes, the change affects both the fitness (and 
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functioning) of this element and the fitness (and functioning) of elements that are interlinked 

with it. The total fitness of the system changes according to the average fitness of its 

elements:  

  W(s)=
N
1

 )(
1

swN

n n∑ =
 

where wn denotes fitness of n element. In this context, search is modelled as a trail and error 

process. Each time step a value of one of elements is mutated and the fitness of the system 

before and after mutation is compared. If the average fitness has increased, mutation 

continues, otherwise the state of the system is brought back to the previous configuration. The 

process is repeated until an optimum (local or global) is reached.  

Modelling innovations on the supply side is well established in the evolutionary 

economics’ literature. On the contrary, conceptualising innovations on the demand side has 

not led to a common approach. An interesting attempt to formalise evolving preferences in an 

abstract model has been undertaken by Potts (2000).4 The author sketches eight ways in 

which the schematic preferences, coded on a string, may evolve with the use of a genetic 

algorithm. In the context of an agent choosing a set of goods from the available set 

{a,b,c,d,…}, the change in his preferences may be captured with (# has the meaning ‘I do not 

care’): 

1. Point mutation: <aaab> → <aaaa>  

2. Cross over:  <aabc><bbcc> → <aacc> 

3. Inversion <abca> →  <acba> 

4. Slide <##aabbcc##> →  <aaaabb####> 

5. Reclustering  <abcabcaabc> →  <aaabbbccc> 

6. Emergence/Closure <aaaaa###> →  <aaaaa> 

7. Higher or lower specification: <aabb##>→  <aabbc#>; <aabb##> →  <aab###> 

8. Birth or death:  <...> →  <aabbc#>;   <aabb##> →  <…> 

The list can be augmented with other mechanisms corresponding to genetic processes. 

In addition to the point mutation and recombination, insertion and deletion are distinguished 

(in genetics). Insertion implies adding a string to the existing sequence of code. Deletions 

characterize the reverse process, the loss of a string of code (Nowak, 2006). New solutions 

may also result from hybridization of existing ideas, a process know as multi-parent 

recombination in evolutionary computation, or modular evolution in biology. In particular, 

modular evolution is the source of radical innovations in both natural and social-technological 

                                                 
4 For a model of endogenous preference change see, for instance, Aversi et al. (1997).  
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history, and Watson (2006) theoretically supports this by formally showing that modular 

evolution can realize more complex systems than gradual evolution.  

 

3.3 Bounded rationality 

The notion of bounded rationality originated in the 1950’s from Herbert Simon’s critique of 

‘economic man’. Simon (1955, 1956) proposed the concept of bounded rationality which 

applies to the conditions of extensiveness, complexity and uncertainty (Hodgson, 1997). 

Under extensiveness, information may be readily accessible and comprehensible, even though 

time and other resources are required to obtain it. Complexity stipulates the existence of a gap 

between the computational capacity of an agent and the complexity of his environment. Under 

uncertainty, agents have difficulties in acquiring crucial information and assessing the 

probabilities over the future events. In these cases, individuals are likely to exhibit habits and 

rule-driven behaviour. The assumption of bounded rationality prevails in evolutionary game 

theory. Agents are assumed here to have little or no knowledge about the game. They are 

incapable to anticipate actions of other agent or consequences of their own decisions. They 

may engage in myopic search for better solutions, imitate the most frequent behaviour. 

Various forms of replicator dynamic equations have been proposed to model boundedly 

rational behaviour in section 2.3. Conlisk (1996) offers an extensive overview of different 

types of bounded rationality in economic models.  

 In standard economics, the analysis of choice under uncertainty relies on expected 

utility theory, which goes back to Von Neumann and Morgenstern (1944). The theory is based 

on three axioms on preferences: ordering, continuity and independence. It has been shown 

that in certain applications, individual decisions are inconsistent with these axioms. 

Behavioural economics seek to provide a more realistic account of decision-making by 

incorporating psychological insights into the theory of choice. The contributions to 

behavioural economics are numerous. Crucial ones include: prospect theory (Kahnemann and 

Tversky, 1979), quasi-hyperbolic discounting as an alternative to traditional exponential 

discounting (Thaler, 1981, Prelec and Lowenstein, 1992, Frederick et al., 2002) social 

preferences (Guth et al., 1982), regret theory (Bell, 1985; Loomes and Sugden, 1986), and 

case-based theory (Gilboa and Schmeidler, 1995). In particular, prospect theory of 

Kahnemann and Tversky (1972) has received much attention. It builds upon the premise that 

individuals evaluate differently losses and gains relatively to a situation-specific reference 

point. The theory of social preferences is inspired by the evidence that players tend to 

sacrifice to reduce inequality of payoffs and are likely to reciprocate behaviours that have 

benefited them. Regret theory assumes that whenever the outcome of the prospect is worse 

than expected a sense of disappointment is generated, while in case the outcome of the 
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prospect is good, a person experiences elation. Finally, case based theory suggests that people 

choose acts based on their performance in similar problems in the past. It provides insights 

into habit formation. In short, theories in behavioural economics offer interesting alternatives 

to formalise bounded rationality of individuals. However, there is little or no guidance when 

to use each of these models (Fudenberg, 2006). Most theories are derived for a specific 

context, relying on unobservable data (e.g., mental states, reference points in prospect theory). 

This makes their application not straightforward (Pesendorfer, 2006).  

In the context of studies of firm and organizational behaviour, bounded rationality has 

taken the form of rules and routines. Nelson and Winter (1982) claim that firms operate, to a 

large extent, according to decisions rules that are not consistent with profit maximization but 

instead take the form of complex patterns of routinised behaviour. Heuristics, cognitive and 

learning processes are crucial for decision-making. In particular, imitation is an important 

mechanism underlying firms’ behaviour in models of technology diffusion. It allows saving 

on costs of individual learning, experimentation or searching by exploiting information 

already acquired by others (horizontal and vertical transmission). In the context of social 

interactions, imitation can take a form of either copying the’ the most successful’ or ‘the 

majority’ strategy. Copying ‘the most successful’ is also known as prestigious-bias 

transmission; it occurs, when individuals seek to copy the most influential, knowledgeable or 

skillful behaviour (Henrich et al., 1999). Copying the majority strategy has been termed by 

Boyd and Richardson (1985) as conformist transmission. It refers to a propensity of an 

individual to adopt cultural traits that are most frequent in the population. 

Imitating the most successful or majority strategy in a population requires the 

assumption of common knowledge. One way to deal with this rather unrealistic setting is to 

limit the environment in which agents operate (Kirman, 1997). This can be achieved by 

assuming that individual interact with a limited number of agents, for instance through 

networks. Networks play an important role in facilitating communication, specialisation of 

competences, standardization of complementary technologies, and flow of knowledge. In this 

context, a number of studies have been devoted to the analysis of firms and industries as 

networks and to organizational and strategic arrangements within specific networks (see, 

Malerba, 2006).  

Networks have been increasing applied to model a broad array of socio-economic 

phenomena, such as social interactions (Axelrod, 1997; Jansen and Jager, 2002; Morone and 

Taylor, 2004), technological innovation and diffusion (Silverberg and Verspagen, 2003, 

Cowan and Jonard, 2004, Cowan et al., 2006). Network structures range from percolation 

models (Antonelli, 1996; Solomon, 2000; Conlisk et. al., 2001; Silverberg and Verspagen, 

2003), network neutral nets (Plourabove et. al., 1998), to graphs (Watts and Strogatz, 1998; 

Cowan, 2004, see Frenken, 2006). These models are referred to as static: the analysis is 
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carried out for a given network structure, which does not change over time. In particular, 

graphs are popular in evolutionary-economic modelling. They compromise Ising models, 

small world models and random graphs. In Ising models agents are located at fixed points in a 

regular integer space, and they are connected to their n-nearest neighbours only. In small 

world models some agents can interact with farther than neighbouring sites. The network 

structure in small world models is characterised by high cliquishness i.e. high density of 

agents’ interactions, and short average path lengths between agents (Cowan and Jonard, 

2000). Alternatively, in random graph models agents are connected with some positive 

probability regardless of their location; the networks have no explicit psychical space. Watts 

and Strogatz’s (1998) proposed a one-parameter random graph model compromising these 

three approaches. A parameter p, reflecting a probability of connecting a random agent to 

each link within the network, is used to scale between the regular and random graph (e.g., 

p=0 the Ising model, p=1 for the random graph).  

Finally, dynamic network models may be employed to study the process of networks 

formation (pioneering contributions by Jackson and Wolinsky, 1996 and Bala and Goyal, 

2000a). They are generally classified into directed and non-directed graphs. In directed graphs 

one player may be connected to a second without the second being connected to the first, 

while in non-directed graphs links are necessarily reciprocal (Jackson, 2005). Consequently, 

in non-directed graphs creation of a new link requires mutual agreement between two agents. 

For instance, Bala and Goyal (2000b) develop a noncooperative model of network formation, 

where communication between agents is costly and not fully reliable. A pair of individuals 

decides whether to create a mutual link, in which case both agents can share information. In 

this context, authors analyse which configurations ensure stable and efficient networks (i.e. 

Nash networks).  

 

3.4 Selection  

Selection in the most simple form can be understood in terms of picking a subset from a 

certain set of elements according to a criterion of preference, referred to as subset selection 

(Price, 1995). Alternatively, selection can be seen by analogy with natural selection as the 

outcome of two independent processes, namely replication of an encoded instruction set, and 

interaction of entities with their environment5 causing differential replication (Knudsen, 

2002). If the second process applies, a population of offspring is not a subset of parents but 

consists of new entities. Similar to Price (1995), we can describe a general selection process 

that unifies subset and natural selection as follows. Formally, a set P includes wi units of 

entities with value xi (for all i) for some characteristics x. A set P’ is composed of new entities 

                                                 
5 Or with other entities in case of selection in social and economic systems.  
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corresponding to entities of P. Selection on the set P in relation to the property x can then be 

defined as a process of producing the corresponding set P’ such that wi’ is a function of xi. 

According to subset selection wi’ ≤  wi, while xi = xi’. These assumptions are not required in 

the case of natural selection.  

An early discussion in evolutionary economics focused on firms being selected by the 

market, in the sense of surviving competition, with possible effects on profit seeking or even 

maximizing behavior (Alchian, 1950, Friedman, 1953, Winter, 1964). In later models of 

industry dynamics, selection was formalized with replicator dynamics by analogy with natural 

selection. Here, technology diffusion is treated as an outcome of selective competition 

between rival technologies, where selection covers both traditional types of competitiveness 

e.g., price competition and product differentiation (e.g., Nelson and Winter, 1982; Iwai, 

1984a,b; Soete and Turner, 1984; Silverberg et al., 1988; Metcalfe, 1988). The second type of 

competition may be referred to as Schumpeterian; firms compete by offering new, improved 

product characteristics or services, which enable them to capture some temporary monopoly 

rents (Savotti and Pyka, 2004). Replicator types of dynamics, however, ignore the possibility 

of mistakes, imperfect learning, and costly experimentations to occur during the selection and 

replication processes. Alternative models of selection dynamic exist (discussed in section 

2.3), although these have seen little application to economic phenomena. Important 

exceptions are Foster and Young (1990), Canning (1992), Young (1993), and Kandori et al. 

(1993), who propose models of adaptive learning in the context of repeated 2x2 games. Here, 

mistakes by players constantly disturb the process of learning and thus selection dynamics.  

 The fundamental and secondary theorems of natural selection offer complementary 

perspectives to replicator dynamics approaches to analyze the aggregate patterns of change in 

the industry structure (Meltcafe, 1994, 1998). Both theorems are special cases of the more 

general Fisher’s principle (e.g., Edwards, 1990; Findley 1990, 1992; see also section 3.1). The 

fundamental theorem claims that the rate of improvement in the mean characteristic in a 

population is proportional to the variance of this characteristic. It may be applied to capture 

the structural change in an industry, whose average growth rate evolves according to 

(Meltcafe, 1998): 

dt
dg =Σisi(gi-g)gi=Vs(g)  

The average growth of the industry equals to the weighted average of firm growth rates:  

g=∑
i

ii gs , where si and gi are firm’s i market share and growth rate. 

 The secondary theorem is an extension of the fundamental theorem, where the 

variance is replaced by a covariance term. The rate of change in the mean characteristic 

equals here the covariance between this characteristic and the population mean fitness 
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(Robertson, 1968). With the use of this theorem the evolution of the average unit cost can be 

expressed as (Meltcafe, 1998):  

dt
hd s =Σi si(gi-g)hi=Cs(gi,hi) 

Here hi is firm’s i unit cost of production, and h s is the average cost. This equation assures 

that the rate of change of the mean characteristic is equal to the covariance between growth 

rates and unit costs at the firm level. The secondary theorem can be reduced to the 

fundamental theorem, by assuming that the trait is the fitness itself (Meltcafe, 1998). 

 Note that although selection environments are often modeled as being constant, this 

does not need to be the case. For example, the dynamics of consumer preferences may alter 

the selection environment for firms, leading to demand-supply coevolution (see section 3.7). 

Alternatively, selection may be modeled as a two-stage or a multi-level process: internal and 

external to the firm. Internal selection concerns selection of routines at the level of a firm, 

while external selection is typically understood in terms of market selection (Kwasnicki and 

Kwasnicka, 1992; Lazaric and Raybaut, 2005). For instance, in Kwasnicki and Kwasnicka 

(1992) each firm searches for new routines (or new combinations) to increase its overall 

competitiveness. After a firm has made decisions concerning the production process, its 

performance is subject to external (market) selection. As a result, a firm’s market share 

depends on relative prices, relative values of products, and the market saturation level. For 

more general discussion on multi-level evolution see section 3.8.  

 

3.5. Diffusion  

Diffusion of a technology, product or behaviour over time typically follows a sigmoid (S) 

curve: the diffusion rate first rises, at initially low but increasing adoption rates, leading to a 

period of relatively rapid adoptions. Later, the diffusion rate starts to decline, slowly 

approaching satiation. In general, models of technology diffusion aim at explaining the 

logistic patterns of the diffusion process. For overviews see Metcalfe (1988), Silverberg et al. 

(1988), Geroski (2000), and Manfredi et al. (2004). 

The diffusion process in the context of demand dynamics is driven by the progressive 

dissemination of information about technical and economic characteristics of products within 

a population of potential adopters (Silverberg et al., 1988). The minimal structure of such a 

model requires distinguishing between mutually exclusive sub-groups of users and non-users, 

while the analysis of model dynamics focuses on the spread of information from adopters to 

non-users. Within this category, several types of models can be distinguished.  

According to the epidemic model (the seminal work is by Mansfied, 1961), 

technology spreads like a disease. An individual adopts a particular technology after having 

had contact with the ‘infected population’ i.e. individuals who already have adopted the 



  #0806 
 

 

 30

innovation. The framework explains patterns of innovation diffusion from the date of its first 

implementation (not invention) by some percentage of users. The evolution of the number of 

adopters follows the pattern given by: y(t)=N(1–exp[-αt]), where: N is the number of potential 

adopters, while α denotes the percentage of the population that has learned about a new 

technology. The model applies to a situation in which information spreads from a central 

source. 

Alternatively, ‘word of mouth models’ account for direct communication between 

users: they independently contact non-users with a positive probability β. The process of 

diffusion follows an S-curve over time: the rate of infection increases as a population of users 

gradually rises (increasing the aggregate source of information) until it reaches the maximum. 

Then it starts declining as non-users become more hard to find and therefore to infect. 

Mixed information source models combine the epidemic and the word of mouth 

approaches. The information spreads with a probability equal to a constant rate at which an 

individual learns about new technology from the central source plus a flexible rate at which 

an individual learns about novelty from other users: α+ βy(t) (see Bass, 1969).   

Finally, the probit model was developed for the analysis of individual adoptions. A 

simplified version of this approach assumes that individuals differ in some characteristic x, 

which are randomly distributed in a population according to a function f(x). Only individuals 

whose characteristic value exceeds a threshold level x* adopt the innovation. Over time 

technology gets cheaper and the threshold value falls. As a consequence, more people have a 

chance to adopt it. If the distribution underlying f(x) is normal the gradual movement of the 

threshold level across the distribution generates the S-shaped diffusion curve. 

The aforementioned models have been criticized for lacking a description of 

individual decision-making. They do not provide insight into how the possible saturation level 

is reached or determined. In addition, adopters are exposed homogenously to the source of 

information. Recent models put the emphasis on the behavioural aspects of consumers’ 

decision-making processes, in particular on the role of imitation. Agents may imitate 

behaviour of other individuals (e.g., the information cascades), of the neighbouring sites if a 

game has a spatial dimension (agents are located on a grid), or of individuals that belong to 

their social network (e.g., Jansen and Jager, 2002; Alkemand and Castaldi, 2005; Delre et al., 

2006). For instance, Delre et al. (2006) develop a multi-agent model, where adoption 

decisions depend on agents’ personal networks and external marketing efforts. The results 

suggested that the speed of diffusion is highly sensitive to the network structure and the 

degree of consumer heterogeneity. See also section 3.3. for discussion on networks in 

economics. 

Evolutionary graph theory may provide interesting insights for studying the effect of 

the population structure on diffusion. Individuals are placed here on the vertices of the graph 
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and are connected by edges. Edges denote reproductive rates at which individuals place 

offspring into adjacent vertices.  The analysis of the fixation probability indicates how likely 

is that a single mutant (placed randomly within the network) may take over a whole 

population (Nowak, 2006, chapter 8). In this context, some graphs act as suppressors or 

amplifiers of selection. In particular, amplifiers structures increase the probability of fixation 

of advantageous mutants (with high relative fitness) and reduce the probability of fixation of 

disadvantageous mutants. The superstar, funnel and metafunnel are examples of such 

amplifier structures (Lieberman et. al., 2005). Evolutionary dynamics on graphs have been 

applied to study social games (e.g., Prisoner Dilemma, Dove and Hawk) in spatially 

structured populations.  

 

3.6 Path-dependency and lock-in  

Economic systems are characterised by various reinforcement and feedback mechanisms that 

explain why after a system moves on a particular path of development, it may be difficult to 

change the direction of a process. Feedback mechanisms associated with increasing returns 

may arise from economies of scale, learning by doing, technological interrelatedness, the 

accumulation of knowledge and experience, and agglomeration or spillover effects (see 

Arrow, 1962; Arthur, 1988; Meltcafe, 1994). These are typically mechanisms associated with 

supply-side dynamics. In addition, increasing returns on the demand side play a role, in 

particular network externalities, informational increasing returns, imitation and bandwagon 

effects, learning-by-interacting, and external influences like advertising, education (Katz and 

Shapiro, 1985; Lundvall, 1988).  

Increasing returns are the sources of lock-in and path dependence. A simple model 

illustrating dynamics in the presence of increasing returns was developed by Arthur (1989). 

This model considers two technologies, A and B, competing for adoption by two types of 

economic agents: an agent R, who has a natural or intrinsic preference for technology A, and 

an agent S having a natural inclination to chose technology B. Choices are made sequentially; 

each time a randomly drawn type of agent (either R or S) decides which technology to adopt 

by comparing payoffs from two technology variants. The returns from adoption of a particular 

technology depend on the number of its previous adopters. This causes increasing returns to 

scale: the more adopted, the more attractive is a technology. It is a self-reinforcing 

mechanism, which may be the source of lock-in: once a certain technology becomes 

dominant; subsequent adoptions will most likely be of the same type enhancing its leading 

position.  

Witt (1997) notes that the resulting lock-in is critically dependent on the assumption 

of an infinitely growing population of adopters. This, together with the presence of only two 

types of agents and specific interactions between adopters (imitation), prevents model 
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dynamics from exhibiting cyclic or more complex behaviour. If a finite or constant population 

is assumed, an unstable fixed point rather than an inescapable state of lock-in results. Arthur 

and Lane (1993), Kirman (1993) and Dosi et al. (1994a) show that lock-in is not a necessary 

outcome if interactions between agents take a different form than in the basic Arthur model. 

For instance, Dosi et al. (1994a) reformulate Arthur’s model with the generalised Polya urn 

schemes approach. Here, new adopters choose the technology used by the majority of a 

sample m of other adopters with probability α, while with probability 1-α they adopt the 

technology used by the minority. Due to the presence of a stochastic factor, technology shares 

never converge to either 0 or 1, ensuring co-existence of variety. In addition, Leydesdorff and 

Besselaar (1998) use Arthur’s model to demonstrate that under the assumption of limited 

cognitive capabilities of individuals, i.e. agents being unable to perceive small differences in 

the adoption rate below a certain threshold, lock-in disappears. 

Path dependence and lock-in are important features of technological change in the 

context of environmental regulation. Problems of lock-in and unlocking policy are closely 

related to the difficulty of making a transition to sustainable systems in energy, transport and 

agriculture (Unruh, 2000; van den Bergh et al., 2006, van den Bergh, 2007). Lock-in does not 

need to be permanent. Assuming that everyone switches, the change from an inferior state is 

possible (Arthur, 1994). For instance, actors might coordinate their decision to adopt a new 

technology when they recognize that coordinated action yields special benefits (Foray, 1997). 

In line with the above remarks, Witt (1997) argues that the capacity to pass a “critical mass 

threshold” in terms of the number of potential adopters of a market alternative is the key to 

the success of unlocking the market. He notes that in fact governments and innovating firms 

take account of the critical mass phenomenon. For instance, with promotion campaigns firms 

undertake efforts to convince potential adopters that others are already about to adopt the new 

variant in order to stimulate coordinated adoption decisions. 

Since the seminal work by David (1985) and Arthur (1988, 1989), lock-in and path 

dependence have received increasing attention in the context of policy studies in multi-agent 

models (Janssen and Jager, 2002; Carrillo-Hermosilla, 2006, Schwoon, 2006). For instance, 

Carrillo-Hermosilla (2006) develops a framework in which a public authority representing the 

collective interest of society tries to guide the market (individual decisions) by supporting the 

socially preferable technology with a subsidy. The conditions are investigated under which 

escaping a lock-in of environmentally unstable practices is possible. It is further examined 

whether a system can move between equilibria (i.e. be un-locked) without a need for public 

intervention, and if the timing and the direction of these spontaneous transitions would be 

socially optimal. 
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3.7 Coevolution 

The term coevolution refers to a situation when two or more evolutionary systems are linked 

together in such a way that each influences the evolutionary trajectory of the others. It is 

achieved through reciprocal selective pressures among evolving populations. Notably, linking 

an evolutionary to a non-evolutionary system does not produce strict co-evolutionary 

dynamics but co-dynamics of sub-systems (Winder et al., 2005).  

Coevolutionary dynamics underlie the process of change in the economic system. 

Different sub-systems (market, technology, institutions, scientific knowledge, etc.) and within 

them different groups of entities (producers, consumers, policymakers, universities, etc.) co-

evolve leading to irreversible changes in socio-technological trajectories (see van den Bergh 

and Stagl, 2004; Geels, 2005; Loorbach and Rotmans, 2006). Nevertheless, there are 

relatively few contributions to coevolutionary modelling available. Most formal applications 

focus on demand-supply coevolution (Janssen and Jager, 2002; Windrum and Birchenhall, 

1998, 2005; Saint-Jean, 2006; Schwoon, 2006, Safarzynska and van den Bergh, 2007). 

Models of other types of coevolutionary dynamics exist, but are rare. For instance, Noailly 

(2003, chapter 5) develop a formal coevolutionary framework to analyze the effect of human 

activity (total pesticide use) on the size and the composition of pest, while Malerba et al. 

(2005) propose a history friendly model that captures coevolution of computer and 

semiconductor industries. 

A simple evolutionary model of industry dynamics reduces the consumer side to the 

selection environment, while it assumes processes of innovation creation and selection to be 

independent (Schot, 1994). As opposed, a coevolutionary model accounts for the process of 

reciprocal developments and adaptations between heterogeneous groups of consumers and 

producers. For instance, in a coevolutionary model developed by Saint-Jean (2006), the 

probability that a consumer adopts a particular good depends on the distinct product 

characteristics and the relative weights a consumer assigns to each of them. Characteristics to 

which consumers assign relatively high weights are considered as their priorities. Every 

period firms invest in quality improvements. Each firm reallocates R&D budget towards 

characteristics that are priorities for consumers and in which a firm has reached a 

(sufficiently) high performance level. On the other hand, consumers’ preferences evolve over 

time in response to technological advances and changes in the industry structure. These 

mechanisms create strong feedbacks between supply and demand. In this context, Saint-Jean 

discusses policy lessons for innovation diffusions. 

In a coevolutionary model by Windrum and Birchenhall (1998, 2005), each firm aims 

to offer a product design maximizing the average utility of a randomly selected consumer 

class. The notion of consumer classes is crucial for the emergence of distinct niches. 

Consumers can move between classes, depending on how well they are served by the 
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incumbent firms. In order to improve its competitiveness, each firm engages in product 

innovations. It implements a new design only if it yields a higher utility of its target class than 

the current design. Evolving consumer preferences influence the direction of such product 

innovations. Formally, firms compete by offering distinct designs or different points in a 

multi-dimensional (service characteristic, price) space. Their success depends on realizing a 

utility of the target consumer class i above the average level:  

φ i, t+1 = φit * (wit: Wt) 

where φit=Git/G ; G is the total number of consumers; Git is the number of consumers in class 

i at time t; wit denotes the average utility in the i class in time t; and Wt is the average level of 

utility across classes. Consequently, technological change (product succession) is modelled 

here as an outcome of coevolutionary process involving interactions between consumers and 

producers.  

Building upon Windrum and Birchenhall (1998, 2005), Safarzynska and van den 

Bergh (2007) propose an agent-based model of demand-supply coevolution to assess the 

probability of market lock-in depending on various increasing returns to scale. A 

technological trajectory arises from the interplay of incremental and radical innovations. 

Evolving consumer preferences affect the direction of innovative activities of firms. For 

instance, the introduction of a new design is preceded by marketing research to evaluate the 

consumers’ capacity to adopt a novelty. The impact of alternative demand side specifications 

on the direction of innovative activities of firms is examined and turns out to be important for 

overall system dynamics. 

 

3.8 Multi-level evolution and group selection 

The economy can be seen as a complex, hierarchical structure compromising various levels 

and subsystems linked together through strong feedback mechanisms Norgaard, (1984), for 

instance identifies the subsystems: knowledge, values, organization, technology and 

environment. The micro-interactions among heterogeneous elements lead to the emergence of 

a higher structure, while variation and selection processes occurring in any of the subsystems 

affect changes in the total environment. In this context, Potts (2000) has called for a new 

evolutionary microeconomics based on the technique of discrete, combinatorial mathematics 

of graph theory. A standard graph theory model is described by the elements S=(V,E) S-

system, V-elements, E-connections. According to Potts, connections are crucial for the 

analysis of dynamics, complexity and system change. Due to the introduction of connections, 

the notions of emergence and hierarchy can be combined into a single construct, namely a 

hyperstructure. Formally, this requires recognizing that a system itself can be an element of a 

higher-level system while an element may itself be a system at a lower level (Sn=Vn+1). 
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Gunderson and Holling (2001) develop an alternative complexity model build upon 

the notion of resilience: panarchy. The idea of panarchy combines the concept of space/time 

hierarchies with the notion of the adaptive structures. Here, elements of a complex adaptive 

system, which emerge through local interactions among various components, are nested in 

one another in a hierarchy. The framework may be applied to evolving systems: economic, 

ecological or social. For instance, nature (forests, lakes) and humans (cultures, governance 

structures) can be interlinked through the panarchy in never-ending adaptive cycles of growth, 

accumulation, restructuring, and renewal. The approach has seen formalisation through multi-

agent evolutionary models (e.g., Jansen and Carpenter, 1999).  

A multilevel theory of evolution that is receiving much attention presently is built on 

combination of individual and group selection (Wilson and Sober, 1994; Wilson, 2002; 

Wilson, 2006; van den Bergh and Gowdy, 2008).  Group selection theory tries to elucidate 

emerging phenomena by taking into account individual and group level processes framed in a 

multi-level model. There are many relevant models available now (see Bergstrom, 2002; 

Garcia and van den Bergh, 2007). The minimal structure of a group selection model requires 

defining a reproducing population composed of groups characterised by more intense or 

regular interactions among members than with outsiders. Two main approaches can be 

identified to attain a group formation for the next generation. In a haystack or migration pool 

type of models, after reproducing, groups are pooled together and then randomly sampled. 

Alternatively, in propagule pool types of models, groups are formed solely on the basis of a 

single parent group; in this case offspring are continuously added to the parent group that 

splits into two after reaching a certain size (Bowles et al., 2004; Trauslen and Nowak, 2006). 

The second approach makes selection more effective. To further increase the effectiveness of 

group selection, non-random assortment typical of cultural and economic systems may be 

included (Bergstrom, 2003).  

A wide range of techniques can be used to build a group selection model, such as 

difference and differential equations, deterministic and stochastic models, spatial models and 

multi-agent frameworks. For instance, Henrich (2004) decomposes mechanisms underlying a 

spread of altruistic genes into between-group and within-group components with the use of 

the Price equation (see section 2.4). Alternatively, Trauslen and Nowak (2006) employ a 

multi-agent simulation technique. They assume a large population of individuals divided into 

groups. Within each group, individuals meet in pairwise encounters and play a Prisoner 

Dilemma game. The realized payoffs determine their fitness and the speed at which 

individuals reproduce. If a group reaches a certain size, it can split into two. Conditions are 

then derived for cooperation (altruism) to prevail in such a setting.  

Group selection has not been employed in many economic applications. Nevertheless, 

it may provide the basis for explaining the emergence and evolution of all sorts of institutions. 
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For instance, selection on the group level may contribute to better understanding of the 

processes of replication of successful and extinction of ineffective institutions.  
 

3.9 Evolutionary growth   

Endogenous growth theories (e.g., Romer 1986, 1990, Grossman and Helpman 1991a,b) try to 

explain the rate of technological progress referring to human capital or a ratio of skilled 

labour devoted to R&D research. New growth theories devote more attention to the 

importance of creativity and innovations in the process. For instance, as a consequence of 

research activities, new types of capital goods may emerge. From this perspective, long term 

growth relies on the increasing variety of intermediate products (e.g., Romer, 1990). Under 

the assumption of diminishing returns of capital, an increase in the variety raises the 

economy’s production potential as the initial capital stock is spread over a larger number of 

products (see, Aghion and Hovitt, 2006). Alternatively, the driving force behind long term 

growth may be innovations in productive efficiency or incremental quality improvements. For 

instance, Aghion and Howitt (1992) develop a model embedding Schumpeter’s idea of 

creative destruction, where the expected growth rate of the economy depends upon the 

economy-wide amount of research. Each innovation is regarded here as an act of creation 

aimed at capturing monopoly rents, but which simultaneously destroys rents that motivated 

the previous discovery. The model relies on a temporal equilibrium, a representative agent 

and rational expectations, so that it cannot be categorised as an evolutionary-economic 

approach.  

Evolutionary economics instead calls for micro-foundations of growth theories. 

Models developed in an evolutionary spirit describe diversity of production techniques at the 

level of individual firms. Opportunities of innovation can be brought about any time, as 

entities (agents, firms) are constantly involved in search activities. The analysis focuses on 

structural change and differential growth of a population of firms. In the classic evolutionary 

model of growth by Nelson and Winter (1982, chapter 12), heterogeneous firms produce the 

same homogenous product but with different techniques. Dynamics are driven by investment 

rules and search processes applied to each individual firm. Firm i’s desired expansion or 

contraction (of the capital stock K) at time t is determined by gross investment I(.), the output 

per unit capital Ait, price Pt, profit on capital Πit, the depreciation rate of the capital δ, the 

production cost c, and the market share Qit/Qt:  

   Ki(t+1)=I(PtAi(t+1)/c , Qit/Qt, Πit, δ) Kit +(1- δ)Kit 

Industry output results from aggregations over individual firms’ production levels: Qt=ΣiQit. 

  Nelson and Winter built their evolutionary growth model from the bottom-up. They 

carried out simulations of micro data, which generated patterns consistent with observed 

macro aggregates. The model initiated a new phase in evolutionary growth theorizing. Later 
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contributions to evolutionary growth theory can be categorised into models following the 

Nelson and Winter’s perspective of micro foundations and evolutionary growth theories 

formulated at the macro level (Silverberg and Verspagen, 2005). Within modeling in the spirit 

of micro foundations, two distinct approaches can be identified: (1) Silversberg and 

Verspagen capital-vintage type of models (e.g., Silverberg and Verspagen, 1994a,b; 1995; 

Iwai, 2000); and (2) Dosi-type of models (Chiaromonte and Dosi, 1993; Dosi et al., 1994b, 

Fagiolo and Dosi, 2003), where the single economy is divided into two sectors: the industry 

fabricating inputs for production and the industry manufacturing final goods. In these models, 

dynamics at the firm level underlie the growth rate of aggregate output. The common 

modelling technique is computer simulations. Models differ in the degree of complexity, 

technology representation, firm behaviour rules. In addition, an extension to a multi-country 

framework is possible. For instance, Silverberg and Verspagen (1995) develop an 

evolutionary framework of endogenous growth to explain the convergence between countries’ 

productivity levels. In each country there are q firms producing a homogenous good from a 

variable number of different types of capital goods. Technological progress is due to 

stochastic innovation processes: a probability of a successful innovation depends on firm i’s 

research specific R&D level hi. The firm’s specific R&D level is augmented by its distance 

from the world best practice frontier to allow for cross-county knowledge spillovers: 

 h’i=hi(1+κ ln(a*/ai
*)) 

where a* denotes the best world-wide practice technology in terms of labour productivity, ai
* 

is the best technology of firm i, and κ is a parameter. Consequently, firms’ R&D potential 

depend on the catch-up term to the world best practice. During model simulations, the 

convergence among countries productivity levels has been observed.  

Contributions to the macro approach to evolutionary growth do not include micro 

foundations explicitly. Here, dynamics are analysed at the sector or industry level. Different 

techniques are employed: analytical methods and computer simulations (Silverberg and 

Verspagen, 2005). The aggregate growth rate of output may be driven by an increase in 

labour productivity (Conlinsk, 1989; Silverberg and Lehnert, 1993, Meltcafe et al. 2006) or 

by a growing variety of the economic system (Saviotti and Pyka, 2004, 2008). For instance, 

Saviotti and Pyka (2004) develop a model in which the emergence of new products and 

services allows for a continuation of economic development. Here, an industry is defined as a 

collection of firms producing variants of goods with different characteristics along the same 

dimensions of the characteristics space. The growth rate of the number of firms in each 

industry depends on firms’ entry and exit, and thus on the size of the potential market, 

financial availability, the intensity of competition, and a number of mergers and acquisitions. 

For each industry there exists a saturation level: once it is reached, firms search for new 
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niches, i.e. they innovate radically by offering a new product in the characteristic space. As a 

result, new sectors emerge and old ones disappear. 

 To conclude, the list of feasible assumptions and modelling techniques in 

evolutionary growth theory have not been yet exhausted. In particular, recent models of 

growth through variety suggest interesting directions for further research.  

 

4. Conclusions 

This paper has reviewed techniques and components of evolutionary modelling in economics. 

The main techniques, namely multi-agent simulations, evolutionary computation, and 

evolutionary game theory have been described in some detail. In addition, an overview of 

components or theoretical building blocks of evolutionary economic models has been 

provided.  

The number of evolutionary contributions to multi-agent modeling has increased 

significantly in recent years. However, establishing a common rule of model specification, 

conducting simulations and validating results have not yet been achieved. In addition, 

evolutionary algorithms to study population learning have become increasingly popular. They 

are predominantly being used to generate innovations, namely through the use of variation 

operators (mutation and crossover). Finally, within evolutionary game theory, replicator 

dynamics is the most popular variant of dynamic equations. Others, such as best response, 

imitation dynamics are less frequently used. Here, selection may dominate system dynamics 

rendering convergence to a single strategy, since no mechanism generating diversity (the 

emergence of new strategies) is required. Among evolutionary dynamic equations, only 

mutator, mutation-replicator and adaptive dynamics allow for errors to occur during the 

process of replication.  

In this paper we have discussed components of formal models like diversity, bounded 

rationality, innovation and selection, and additional elements, such as diffusion, path 

dependency and lock-in, co-evolutionary dynamics, multilevel and group selection, and 

evolutionary growth. There is no agreement on how to conceptualise and formalise 

(dimensions of) diversity and bounded rationality; concepts are often tailored to the 

application context or they are determined by pragmatic reasons such as computational 

convenience. Most of the identified diversity measures fail to account for variety, balance and 

disparity. Stirling (2007) measure seems to provide the most general framework thus far.   

Building blocks like innovations, diffusion and evolutionary growth are well 

established in evolutionary economics. Innovation is essential for attaining diversity within a 

population. The specific approaches for modelling innovative activities of firms depend on 

the formal technique applied, and whether a firm is treated as a single unit or as multiple units 

of selection. Diffusion is crucial for the information flow and dissemination of a new good or 
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technology into a population. It relates closely to path dependence and lock-in. In this context, 

various models have been developed to study un-locking policies. Finally, evolutionary 

growth theory tries to illuminate the economic progress based on stochastic technical change, 

recombinant selection and capital accumulation. This approach contributes markedly to 

opening the ‘black-box’ of standard growth theories, providing more realistic micro 

foundations and offering a tool for complex system simulations.  

In short, evolutionary models of industry (supply side) dynamics have converged to a 

certain standard. Such a standard is missing for the demand side. However, a full 

understanding of economy as a complex evolving system requires accounting for 

interdependencies among various groups and entities, including consumers. This can be only 

achieved if consumer and producers attain equal balance, especially in the context of 

coevolutionary interaction models. These, are however still very uncommon. In addition, a 

group selection approach has been rarely applied to modelling economic phenomena, 

although it potentially provides a concrete formal theory of selection at multiple levels 

(individual and group). This could enhance an understanding of the emergence and evolution 

of human organizations and institutions.  

All in all, we can conclude that many concepts still remain in an immature stage of 

conceptualisation. To foster their development, an attempt to adopt well established theories 

from other (sub)disciplines (physics, complexity science, psychology, behavioural 

economics) has been undertaken. However, this process is far from complete. Formalizing the 

abstract concept of multi-level transition, incorporating results from behavioural economics 

and translating self-organization and network frameworks to an economic context are the 

important challenges ahead.  
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