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ABSTRACT 

 

A substantial amount of carbon flux between biosphere and atmosphere belongs to 

photosynthesis and respiration activities. During daytime, leaves are affected by sunlight, 

take up CO2 from the atmosphere and produce organic carbon for growth. A part of the 

carbon which is emitted by terrestrial vegetation as biogenic volatile organic compounds 

(VOC) contributes to the oxidative capacity of the atmosphere, to particle production and 

to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a 

release of these carbon compounds is regarded as a loss of photosynthetically fixed 

carbon. The significance of this loss for the regional and global carbon cycles is 

controversial. I estimated the amount of VOC carbon emitted in relation to the CO2 taken 

up, based on my own airborne and micrometeorological flux measurements of VOC 

concentrations and CO2 exchange, and on the literature and model data. During two 

measurement campaigns over the Siberian region a series of experiments was performed. 

While VOC flux estimates are small in relation to net primary productivity, the amount of 

carbon lost as VOC emissions might be highly significant relative to net ecosystem 

productivity. In fact, VOC losses are of the same order of magnitude as net biome 

productivity. Although it should be assumed that large amounts of these reemissions are 

recycled within the biosphere, a substantial part can be assumed to be lost into longer-

lived oxidation products that are lost from the terrestrial biosphere by transport. However, 

our current knowledge and measurement technique does not yet allow a reliable 

estimation of this carbon. 
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1.1 The Global Carbon Cycle 
 

Understanding the cycling of carbon, water and nitrogen is a key process in 

understanding the ecosystem, the biosphere and the entire Earth System. Human 

activities dramatically change cycles. Fossil fuel combustion has increased the emission 

of CO2, CO and other trace gases. These changes affect ecosystems from local, through 

regional and finally to global change. 

 

Photosynthetic uptake of carbon from the atmosphere and oceans provides the 

fuel for most biotic processes. The reduced carbon makes up about half of the mass of the 

Earth’s organic matter. Biological systems give off CO2 when they use organic carbon for 

growth and metabolism. The controls over the carbon cycle depend on the time scale, 

ranging from millions of years, by which cycling is controlled by movements of the 

Earth’s crust, to seconds, by which cycling is controlled by the photosynthetic rate and 

surface-air exchange. 

 

Carbon is distributed among the atmosphere, oceans, land (soils and vegetation), 

and sediments and rocks. Atmospheric carbon, which consists primarily of CO2, is the 

smallest but most dynamic of these pools. 

 

Sedimentary carbonates represent by far the planet’s largest carbon pool with 

persistent carbon stocks that account for more than 60000000 Pg (Falkowski et al., 2000). 

Fossil fuel reserves and the world’s oceans also represent huge carbon reservoirs that 

account for up to 10,000 and 39,000 Pg of carbon (Schlesinger, 2003). The ocean’s 

surface waters that interact with the atmosphere contain about 1,000 Pg carbon, similar to 

the quantity in the atmosphere, i.e. 780 Pg C (IPCC 1996, 2001, 2007). The capacity of 

the ocean to take up carbon is constrained by three categories of processes that operate at 

different time scales. In the short term, the surface exchange rate depends on wind speed, 

surface temperature, and the CO2 concentration of surface waters. The surface of water is 

a relatively small pool of water that exchanges comparatively slowly with deeper layers 

because the warm, low salinity layers of the surface water is less dense than deeper 
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layers. Carbon that enters the surface waters is transported slowly to the depths by two 

major mechanisms. Organic detritus and its calcium carbonate (CaCO3), skeletal content, 

which form in the euphotic zone, sink to deeper waters, a process termed the biological 

pump. Bottom-water formation in the polar seas transports dissolved carbon to the 

depths, a process termed the solubility pump. The terrestrial biosphere contains the 

largest biological reservoir of carbon, around 2,850 Pg. However, regardless of their 

small size, these reservoirs play a major part in the planet’s short-term circulation of 

carbon. Atmospheric carbon is primarily present in the form of the inorganic compound 

CO2. The amount of carbon represented by CH4, CO and Non-methane Organic Carbon 

(NMOCs) is less than 1% of the total atmospheric carbon (IPCC, 1996). Since CO and 

NMOCs are known to contribute predominantly to the methane and ozone budget (both 

known as greenhouse gases) they may influence the planet’s radiative balance as well 

(Seinfeld and Pandis, 1997; Atkinson, 2000; Finlayson-Pitts and Pitts, 2000). 

 

There is nearly as much carbon in terrestrial vegetation as in the atmosphere, and 

there is at least twice as much carbon in soils as in the atmosphere. The terrestrial net 

primary production (NPP) is slightly greater than that in the ocean, but due to the much 

larger plant biomass and land, terrestrial plant carbon has a turnover time of about 11 

years, compared to 2 to 3 weeks in the ocean. Photosynthetically fixed carbon in 

chloroplasts turns over on time scales of seconds through photorespiration. Leaves and 

roots are replaced over weeks to years, and wood is replaced over decades. Carbon in 

rocks and surface sediments accounts for well over 99% of the Earth’s carbon (107Pg) 

(Schlesinger, 1997; Reeburgh, 1997). 
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Fig. 1.1 Biogeochemical cycling of carbon within four major reservoirs: atmosphere, 

oceans, fossil fuels and terrestrial ecosystems (IPCC, 2001). 

 

 

NPP is about half the gross primary production (GPP; i.e. photosynthetic carbon gain) on 

land  60 Pg C yr-1 (Lloyd and Farquhar, 1996; Waring et al., 1998) out of 120 PgC yr-1 

(Ciais et al.,1997; Prentice et al. 2001). Around 10 Pg yr-1 is left within the ecosystem 

and is referred to as the net ecosystem production (IPCC 2001). Some part of the carbon 

is lost during the combustion process (fires), some part is dissolved in rivers and by the 

harvesting of forest. The ultimate residual of carbon emitted or deposited by an 

ecosystem is referred to as the net biome production. In accordance with the IPCC 2001 

report, during the time period of 1980-1989, the terrestrial sink was estimated at 0.2 (±0.7 

PgC yr-1). However, for the period 1989-1998, the terrestrial sink increased to 1.4 (±0.7 

PgC yr-1) (IPCC, 2001). On the other hand there are still large uncertainties surrounding 

the quantity of carbon which is stored and some pathways are not well understood for the 

carbon cycle. 

 

 

 



 
 

 
 - 10 - 

Some part of this carbon might be realized as Volatile Organic Compounds. 

According to Kesselmeier et al., 2002b, the emission of these compounds from an 

ecosystem might be highly significant in relation to net ecosystem productivity (NEP) 

and is in the same order of magnitude as the net biome productivity (NBP). Since the 

ultimate atmospheric fate of most of these compounds is oxidation to carbon dioxide, 

these CO2 precursors may need to be included in efforts to understand the processes 

controlling atmospheric global CO2 concentrations. 

 

In the following chapter a short overview is given on the implication of VOC, 

their process of emission and chemical pathways into the atmosphere. 

 

1.2 Objective of this work 

The main reason for this work was a step in understanding the atmospheric budget 

of carbon and processes that can predict the effects of pollution control and increasing 

CO2. These processes will require an understanding of the trace gas emission from plants. 

This information will focus on research and provide backgrounds for understanding 

atmospheric chemistry, the process of reactions and how changes in the atmosphere will 

affect the natural process. Volatile organic compounds (VOC) are important constituents 

of the atmosphere. They directly or indirectly affect the oxidative capacity of the 

atmosphere and thus influence the atmospheric abundance of many other important trace 

gases. Some VOC have a direct impact on the environment. However, the most important 

impact of VOC results from complex chemical reactions in the atmosphere. The relation 

between VOC emissions, atmospheric VOC concentrations and photo-oxidant levels is 

quite complex. The actual level of VOC and photo-oxidants in the atmosphere is the 

result of complex interactions between the atmospheric transport of emissions and 

chemical reactions. Reduction and control strategies for trace gases require a detailed 

understanding of the processes. 

 

As a consequence of the direct and indirect participation of VOC in most of the 

relevant reaction cycles it is impossible to understand the chemistry of the troposphere 

without a quantitative knowledge of the chemistry, distribution and budgets of VOC. For 
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similar reasons studies of atmospheric VOC can also be valuable for atmospheric 

chemical and transport processes. 

 

Chapter 2 provides an overview and background about biosphere-atmosphere 

exchange of non-methane organic carbon, a process present and understood in the 

atmosphere. This chapter also describes the chemical structure, biosynthesis processes 

and reaction of biogenic volatile organic compounds, as well as inventories of biogenic 

VOC emission on a global scale. 

 
Chapter 3 gives an overview about the respective experiments performed in the 

Siberian forest and will discuss the results obtained for BVOC in two measurement 

campaigns. As the Siberian forest is a large ecosystem which is still poorly understood, a 

series of aircraft and tower measurement campaigns were performed to gain knowledge 

of this ecosystem. Information about the process of land classification configuration and 

data analysis was given. The main achievement of Chapter 3 is information about the 

concentrations and composition of Biogenic Volatile Compounds over selected sites. The 

series of measurements were performed over the forest canopy.  

 

Chapter 4 also focuses on the measurements of BVOC, i.e. aircraft measurements 

in Russia. This chapter presents vertical profiles of VOC obtained by aircraft 

measurements during measurement campaigns in 2004 and 2005 and their relation to the 

budget of VOC over a regional scale. A simplified model and techniques have been used 

to determine fluxes and relation between GPP and BVOC.  

 

Chapter 5 focuses on the measurements in the lower troposphere over north-

eastern Poland by using light aircraft and long-term observation of the changes in the 

regional mixing ratio concentration of trace gases. The results obtained for seasonal 

changes of selected trace gases have been presented. As the regional observations are 

important for global changes, this series of experiments is important due to sparse 

information about the mixing ratios of trace gases over the eastern part of Europe.  



 
 

 
 - 12 - 

2. Volatile Organic Compounds and their atmospheric chemistry 
 

Most volatile organic compounds are emitted by the biosphere with a major 

impact on the chemistry of the atmospheric boundary layer (Guenther et al., 1995; 

Monson and Holland 2001; Kesselmeier and Staudt, 1999). In 1960, Went first proposed 

that natural emission of VOCs from trees and other vegetation could have a significant 

effect on the chemistry of the Earth’s atmosphere. Since that study, numerous researchers 

have investigated the composition of natural VOCs (Rasmusen and Went, 1965; 

Rasmussen 1970), their rate of emission (Tingey et al., 1991; Arnts and Meeks 1981; 

Guenther et al., 1995; Lamb et al. 1983, 1985, 1993) and the distribution of these 

compounds and their oxidation products in the atmosphere (Isidorov et al., 1985; 

Fehsenfeld et al., 1992; Montzka et al., 1993, 1995; Yokouchi, 1994). The impact of 

short-lived VOC extends over the entire troposphere. Due to their reactions with the 

hydroxyl radical (OH), ozone (O3), and nitrate (NO3), they form longer lived 

intermediates such as carbon monoxide, reactive nitrogen species, aerosols and various 

carbonyl and carboxyl compounds (e.g. Poisson et al., 2000), the last-named representing 

a large fraction of acidity in precipitation, particularly in remote tropical areas (Keene et 

al., 1983).  

 

The term biogenic volatile organic compounds (BVOC) includes organic 

atmospheric trace gases excluding carbon dioxide and monoxide. Focusing on 

hydrocarbons but excluding methane, the term non-methane hydrocarbons (NMHC) 

emerged, while VOCs without methane are termed non-methane VOC (NMVOC). 

Hence, large numbers of groups of saturated, unsaturated, and oxygenated derivatives are 

included within VOC. BVOC include the isoprenoids (isoprene and monoterpenes) as 

well as alkanes, alkenes, carbonyls, alcohols, esters, ethers, and acids. Emission 

inventories showed isoprene and monoterpenes as the most dominant compounds. 

Alcohols and carbonyls are the second groups of compounds after isoprenoids which are 

the most predominant groups (Kesselmeier et al. 1997) However, one of the 

consequences of the heterogeneity of VOC is the large number of acronyms in use, each 

defining a special class of VOC, such as BOVOC (biogenic oxygenated VOC), ORVOC 
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(other reactive VOC), BVOC (biogenic VOC), AVOC (anthropogenic VOC), and finally 

OVOC (other VOC) for the rest, usually defined by a different lifetime as the main 

criterion. The last acronym is still open for defining new criteria. The high diversity of 

VOC, sometimes also falsely summarized in the subgroup non-methane hydrocarbons 

(NMHC), points to one of the main problems in VOC research, e.g. the large number of 

different compounds coupled to an equivalent number. For a better knowledge of the 

concentration and emission of all these compounds in the atmosphere, we need a better 

description of the exchange processes on a local and regional scale (especially in the 

poorly investigated Siberian region) and a better understanding of the factors influencing 

the release of VOC from different biogenic sources (Kimmerer and Kozlowski, 1982; 

Kimmerer and MacDonald, 1987; Arey et al., 1991 ; Loreto and Sharkey, 1993a; Juuti et 

al., 1990; Parusel, 1996; Wedel, 1997; Bertin and Staudt, 1996; Staudt, 1997; 

Kesselmeier et al., 1998a). 

 

There have been a number of efforts to complete inventories of biogenic VOC 

emission (Lamb et al., 1987, 1993 and Guenther et al., 1995). Emission rate 

measurements from individual plant species are used with empirical algorithms that 

account for temperature and for isoprene, light effects to scale up entire geographical 

regions, based on land use data and biomass density factors. Uncertainties in these 

inventories are large (Lamb et al., 1993). The last estimated inventories of BVOC for the 

USA range from 29 to 51 Tg yr-1. However, as a result we have only an approximation, 

because mitochondrial respiration in leaves declines in the light, when much of the 

energy for metabolism comes directly from carbon fixation. 

 

On a global scale, the largest BVOC emissions occur in the tropics, with isoprene 

being the dominant compound emitted. These result from a combination of high 

temperatures and large biomass densities. On a global basis BVOC emissions far out-

traced those of anthropogenic VOC (see Table 2.1 and Table 2.2). 
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Sources Isoprene Monoterpenes ORVOC* ORVOC** Total VOC 
Woods 372 95 177 177 821 
Crops 24 6 45 45 120 
Shrubs 103 25 33 33 194 
Ocean 0 0 2.5 2.5 5 
Other 4 1 2 2 9 
Total 503 127 260 260 1150 

 

Table 2.1: Global Biogenic VOC emission rate estimates by source and class of 

compounds (Tg yr-1)1). 
*) Defined as having lifetimes <1 day under typical conditions; 
**) Defined as having lifetimes >1 day under typical conditions; 
1) Source: Guenther et al. (1995) 
 

Activity  Emission (Tg yr-1) 
Fuel production/distribution  
Petroleum 8 
Natural gas 2 
Oil refining 5 
Gasoline distribution 2,5 
Fuel consumption:  
Coal 3,5 
Wood 25 
Crop residues (including waste) 14.5 
Charcoal 2.5 
Dung cakes 3 
Road transport 36 
Chemical industry 2 
Solvent use 20 
Uncontrolled waste burning 8 
Other 10 
Total 142 

 

Table 2.2: Estimated Global Emissions of Anthropogenic VOC. 

 2) Source: Middleton et al. (1995)  
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BVOC are much more reactive than volatile organics that are emitted by 

anthropogenic activities (Atkinson and Arey, 2003). On a global scale, the emission of 

BVOC exceeds the emission from anthropogenic sources by a factor of 10 (WMO, 1995).  

 

Several thousands of different biogenic VOC and their oxidation products have 

been identified by analytical techniques (Isidorov et al., 1985; Montzka et al., 1993, 

1995; Helas et al., 1997; Yokouchi, 1994; Fall, 1999). 

 

Measurements in woods and agricultural areas coupled with emission studies 

from selected individual trees and crops have demonstrated the ubiquitous nature of 

biogenic emissions and the huge number of organic compounds that can be emitted into 

the atmosphere. 

 

The best known are ethene, isoprene and monoterpenes emitted by terrestrial 

plants. Each of the compounds is characterized by an olefin double bond that renders the 

molecule highly reactive in the atmosphere. The typical compound which is emitted by 

deciduous trees is isoprene C5H8. On the other hand, typical compounds that are emitted 

are terpenes such α-pinene and β-pinene (Rasmussen and Went, 1965). 
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Isoprene           α-Pinene     β-Pinene 

                                                            
Camphene            2-Carene              3-Carene 

                                                                           
Sabinene           α-Terpinene     Limonene       

                   
Myrcene                Terpinolene               cis-Ocimene 

        
α-Phellandrene                           β – Phellandrene 

 

Table 2.3 Examples of Biogenic Volatile Organic Compounds. 
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2.1 Monoterpenes and isoprene 

Isoprene and monoterpenes belong to the biochemical class of isoprenoids (or 

terpenoids), whose carbon skeletons are composed of characteristic C5 units (McGarvey 

and Croteau, 1995). 

  

Isoprene is the major hydrocarbon emitted into the atmosphere by vegetation and 

represents a major loss of carbon for plants which has an impact on tropospheric 

chemistry. It is emitted from a wide variety of mostly deciduous vegetation in the 

presence of photosynthetically active radiation (PAR), exhibiting a strong increase in 

emission as temperature increases. Some emission of isoprene is reported from conifer 

species. The biochemical and biophysical processes controlling the rate of these 

emissions also appear to be quite distinct. Isoprene emission is regarded as a 

photorespiration and is photosynthesis-dependent. It has a major role in regulating the 

oxidative capacity of the troposphere, due to high reaction with OH radical. Isoprene can 

potentially reduce the effectiveness of methane removal from the troposphere. Isoprene is 

never stored in plants after its production, but is rapidly lost by volatilization and 

emission into the atmosphere. Isoprene-emitting species occur in many plants, although 

out many functional type, but they are more often found in woody plant species than in 

herbs and crops. They are particularly common in the families Salicaceae, Fagaceae and 

Palmae, as well as in the genus Picea (spruces) and diverse ferns (Sharkey, 1996b; 

Tingey et al., 1987). However, there are also important exceptions. For example, within 

the group of evergreen oaks growing in the Mediterranean climate, some species 

(Quercus agrifolia, California live oak) emit exclusively isoprene and others 

(Quercusilex, the European holm oak; Quercuscoccifera, the European kermes oak) 

exclusively monoterpenes, whereas Quercussuber (European cork oak), ignoring some 

trace emissions, emits neither isoprene nor monoterpenes (Staudt et al., 1993; Pio et al., 

1993, 1996; Staudt and Seufert, 1995; Seufert et al., 1995; Hansen and Seufert, 1996; 

Steinbrecher et al., 1997; Kesselmeier et al., 1996, 1997b, 1998b; Bertin et al., 1997; 

Staudt and Bertin, 1998; Kesselmeier and Staudt, 1999). 
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2.1.1 Monoterpenes 

Emission of monoterpenes has been observed from a variety of plants, including 

pines (e.g. Juuti et al., 1990; Guenther et al., 1994; Street et al., 1997; Staudt et al., 1997), 

resin in pine forests (e.g. Pio and Valente, 1998) and in some deciduous trees, such as 

oaks (Benjamin et al., 1996; Street et al., 1997; Kesselmeier et al., 1997b). Monoterpene 

emission seems to be triggered by biophysical processes associated with the amount of 

monoterpene material present in the leaf oils and resin ducts or glands and the vapour 

pressure of the terpene compounds. Monoterpene emission depends strongly on the 

temperature of the ambient air, but is not dependent on light. The dependence of natural 

terpene emission on temperature can result in a large variation in the rate of production of 

biogenic VOC over the course of a growing season. Some analysis of terpene emission 

indicates an increase by a factor of 1.5 in ambient temperature from 25°C to 35°C for 

terpene-emitting species (Lamb et al., 1983). Interestingly, increased emissions have been 

observed when plants are stressed (Fall, 1999). For example, monoterpene emission rates 

for a Monotery pine increased by factors of 10-50 during rough handling.  The 

temperature dependence of monoterpene emission is often taken into account by 

multiplying the base emission rate at a reference temperature Ts by the factor e [β(T-Ts)] , 

where T is the leaf temperature and β is a coefficient that reflects the temperature 

sensitivity of emissions (Guenther et al., 1993).  
 

Other products such as diterpenes (number of carbon atoms C20), triterpenes (C30), 

tetraterpenes (C40) and polyterpenes (>C40) are important products of plant metabolism 

i.e. they act as phytoalexins, produce chemical defence compounds, gibberellin 

hormones, accessory pigments and electron carrier molecules. However, these 

compounds are non-volatile, so they have no impact on the chemistry of the atmosphere. 
 

2.1.2 Other NMVOC  

The atmospheric concentrations of ethane, propane, and butane range from 1 to 3 

ppb (Rudolph, 1995; Lindskog, 1997). Part of these compounds comes from natural gas 

sources in the range of 6 Tg yr−1. A biomass regarded as a further significant source can 

be burning with ethane emissions of 6.4 Tg yr−1 (Rudolph, 1995).  
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The main terrestrial biogenic sources of C2–C4 alkanes are trees, crops, grass and 

marshland (Altshuller, 1983) with a possible bidirectional exchange for ethane and 

propane (Hahn et al., 1991; Steinbrecher et al., 1992). Lichens, mosses, and heather are 

discussed as potentially relevant sources (Isidorov et al., 1994) and might be of 

importance for some remote areas without dominant higher vegetation.  

 

Significant biogenic sources are known for ethene, propene, and butene, released 

at rates of 2.63 and 1.13 and 0.41*1010 molecules cm-2s-1 respectively, from a forest 

(Goldstein et al., 1996). These values suggest that biogenic emissions of propene and 

butene exceed anthropogenic ones in the North-east of the U.S.A. and, in addition, that 

biogenic ethene is equivalent to 50% of the anthropogenic contribution. Hakola et al. 

(1998) have reported seasonal fluctuations of ethene, propene, and butane emissions by 

two boreal tree species in the range of 0.5–2 µgg−1h-1 (LDW, leaf dry weight). Such data 

point to terrestrial vegetation as the most important source, where agriculturally used 

crops obviously show a higher percentage of ethane and propene emissions of the total 

non-methane hydrocarbon emissions than forest trees of a large amount of isoprenoids 

(Parusel, 1996). Soils are also regarded as sources of ethene (Hahn et al., 1991, 1992; 

Smith and Cook, 1979). Another significant source of C2–C4 alkenes is the oceans. In this 

case alkenes are not directly produced by marine organisms, but are formed by the 

photochemical degradation of dissolved organic carbon. Depending on the biochemical 

process, emission of alkenes from the ocean can reach a level of 5 Tg yr-1 (Rudolph, 

1997). Sufficient understanding of the plant physiological production is, however, only 

available for the synthesis of ethene. Global extrapolation of emissions from vegetation is 

a matter of debate (Kesselmeier et al., 2001). 
 

2.2 Atmospheric chemistry of Biogenic Volatile Organic Compounds (BVOC) 

Some of the biogenic VOC are relatively simple compounds such as ethane, but 

most of them are compounds quite complex in structure. Furthermore, they tend to be 

unsaturated, often with multiple bonds. As a result they are very sensitive to light and 

highly reactive. They react easily with OH, O3 and NO3 (Atkinson et al., 1995). VOC are 
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quite large and of relatively low volatility, and their polar products are even less volatile. 

This makes elucidating reaction mechanisms and quantifying product yields quite 

difficult.   
 

The tropospheric lifetimes of organic compounds due to reaction with OH, NO3 

and O3 can be estimated by combining the rate constant data with estimated ambient 

tropospheric concentrations of OH, NO3 and O3. The resulting tropospheric lifetimes of a 

number of organic species, including several biogenic hydrocarbons, are given below. In 

comparison with other organic species, it should be noted that the atmospheric 

hydrocarbon lifetimes are relatively short. During the daytime, reactions with OH and O3 

are generally important. On the other hand, the NO3 radical reaction is dominant during 

the night-time.   
 

Estimated tropospheric lifetimes of Organic Compounds due to reaction with OH, O3, NO3. 

 OH a O3 b NO3 c 
n-Butane 5.7 days - 2.8 yr 
Propane 6.6 h 1.6 days 4.9 days 
Benzene 12 days - - 
Toluene 2.4 days - 1.9 yr 

m-Xylene 7.4 days - 200 yr 
Formaldehyde 1.5 days - 80 yr 
Acetealdehyde 11 h - 17 days 

Acetone 66 days - - 
Isoprene 1.7 h 1.3 days 0.8 h 
α-Pinene 3.4 h 4.6 days 2.0 h 
β-Pinene 2.3 h 1.1 days 4.9 h 

Camphene 3.5 h 18 days 1.5 days 
2-Carene 2.3 h 1.7 h 36 min 
3-Carene 2.1 h 10 h 1.1 h 

d-Limonene 1.1 h 1.9 h 53 min 
Terpinolene 49 min 17 min 7 min 

 

Table 2.4 

a) 12 hour daytime OH concentration of 1.5*106 molecules cm-3 (0.06 ppt)  

b) 24 hour average O3 concentration of 7*1011 molecules cm-3 ( 30 ppb) 

c) 12 hour NO3 concentration of 2.4*107 molecules -3 (1ppt) 

Adapted from Seinfeld  and Pandies, 1998 
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A detailed description including several reaction mechanisms for the process of 

degradation of volatile organic compounds can be found in Seinfeld and Pandies (1997), 

Finlayson-Pitts (2000), Atkinson 2000, Atkinson and Arrey (2003). 

 

The initial reactions of OH radicals, NO3 radicals and O3 with NMOC (including 

BVOC) have been elucidated over the past two decades (see, for example, Atkinson, 

1997, 2000; Calvert et al., 2000) and the reactions of BVOC have been previously 

reviewed by Atkinson and Arey (1998) and Calogirou et al. (1999).  
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Oxidation of biogenic compounds initiated by reactions with OH, NO3 or O3 

leads to the formation of oxygenated or nitrated products with vapour pressures lower 

than those of starting reactants.  Due to their complex molecular structure with double 

bonds, BVOC are very reactive compounds. Generally we can say that the process of 

reaction with OH radicals is representative for the major decomposition of BVOC 

present in the atmosphere. For isoprene, which represents BVOC, there are two 

general reaction mechanisms listed in Fig. 2.1:  

 

(1) Addition to C=C bonds by OH radicals, NO3 radicals and O3,  

(2) H-atom abstraction from C–H bonds (and to a much lesser extent, from O–

H bonds) by OH radicals and NO3 radicals. 

 

The H-atom abstraction reactions lead to the formation of alkyl or substituted 

alkyl radicals. After the reactions to the addition of OH and NO3 to C=C bonds, the 

organic peroxy (RO2) or alkoxy (RO) are formed. In the atmosphere, alkoxy radicals 

can decompose by C-C bond scission, isomerize by 1,5-H shift through a six-

membered transition state or react easily with O2 (Atkinson, 2000). In Fig. 2.1a the 

reactions are followed for only one of the six possible hydroxyalkyl radicals 

(Atkinson, 1997); note that for OH radical addition at the 1-position the initially 

formed allylic radical HOCH2C˙(CH3)CH=CH2 is in resonance with 

HOCH2C(CH3)=CHCֹH  (an analogous situation occurs for OH radical addition at the 

4-position), and that isomerization of the 1,4-hydroxyalkoxy radical 

HOCH2C(CH3)=CHCH˙ passed through a six-membered transition state (as shown). 

In Fig. 2b the reaction of NO3 radicals with isoprene is shown under conditions where 

RO2+HO2 and RO2˙+RO2˙ reactions dominate over the RO+NO reactions (note that 

when NO3 radicals are present at appreciable concentrations then NO is not, because 

of the rapid reactions of NO with NO3 radicals and with O3). The reactions of O3 with 

BVOCs containing C=C bonds proceed by an initial O3 addition to the C=C bond, to 

form a primary ozonide which rapidly decomposes via two pathways to a carbonyl 

plus a ‘‘Criegee intermediate’’ as shown in Fig. 2.1 for isoprene [pathways (1) and 

(2)]. Note that for cyclic alkenes with an internal double bond (such as a-pinene and 2- 

and 3-carene), a carbonyl-substituted Criegee intermediate is formed from each 

primary ozonide decomposition pathway. The initially energy-rich Criegee 
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intermediates react by a number of routes including (a) collisional stabilization to a 

thermalized Criegee intermediate for dialkyl- and syn-monoalkyl-substituted Criegee 

intermediates, isomerization to a “hot” hydroperoxide followed by decomposition to 

an OH radical plus a substituted alkyl radical rearrangement to a “hot” ester followed 

by decomposition (for example, to CO2+CH3CHQCH2 for the Criegee intermediate of 

structure [CH2=C(CH3)CHOO]* formed after initial O3 addition to the other (3,4-

double bond in isoprene). The reactions of O3 with BVOC and anthropogenic NMOC 

containing C=C bonds may then be an additional source of OH radicals in the 

troposphere, including during the night-time (Paulson and Orlando, 1996). Obviously, 

the importance of a particular BVOC to OH radical production depends on its ambient 

concentration, its OH radical formation yield, the rate constant for its reaction with O3, 

and the O3 concentration (Paulson and Orlando, 1996). The products observed from 

the reactions of OH radicals, NO3 radicals and O3 with BVOCs are generally 

consistent with Fig. 2.1, and the individual studies should be consulted for details of 

the experimental methods and results obtained. The identification and, especially, 

quantification of many of the products observed or expected to be formed from these 

reactions (in particular, hydroxycarbonyls, dihydroxycarbonyls, hydroxynitrates, and 

carbonyl nitrates) have been and continue to be a challenging problem, as evidenced 

by the lack of a product mass balance for most of the BVOC reactions studied to date. 

 

Generally the main products of isoprene reaction at atmospheric pressure of 

air, with OH radicals (in the presence of NO), O3 (in the presence of an OH radical 

scavenger), and NO3 radicals are formaldehyde, Methyl vinyl ketone (MVK), 

Methacrolein (MACR), organic nitrates and 3-Methylfuran. 

 

As a comparison, with the reaction of the monoterpene compounds, for 

example a-pinene with O3, 30 different reaction products can be formed. However, 

these products are less volatile than their precursors, which is why monoterpenes are 

known to promote the formation of secondary organic aerosol (SOA) particles in the 

atmosphere. Claeys et al., 2004 postulated that also degradation of isoprene by OH 

radicals might be a significant source of the SOA formation in tropical environments.  

 

BVOC in combination with anthropogenic NOx have a major influence on the 

formation of photochemical air pollution which exists in many urban areas. A high 
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concentration of NOx and VOC (primary pollutants) is leading to the formation of 

secondary pollutants such as PAN (peroxyacetyl nitrate) and O3. Generally, the net 

photochemical formation of O3 depends on the actual NOx mixing ratio. In low 

polluted areas alkyl peroxy radicals (RO2) will react with ozone and lead to the 

formation of alkoxy radicals (RO) and oxygen. 

 
 
Fig 2.2 Scheme of isoprene reaction with OH radicals in urban air and rural areas. 
 
 
 
2.3 Biosynthesis of  isoprene  

Isoprene emitted from plants is formed from DMAPP by isoprene synthase. 

This enzyme has a relatively high pH optimum and a requirement for Mg2+, consistent 

with its location inside the chloroplasts. The molecular weight of isoprene synthase 

has been reported at 95 KDa  Quercus robur (Schnitzler et al.,1996), 73 KDa in Salix 

discolor and a doublet of 58 and 62 KDa in aspen (Sharkey and Yeh, 2001). 

Wildermuth, 1997 showed that thylakoid-bound isoprene synthase activity could be 

stimulated threefold by the addition of GTP and palmitoyl CoA. Isoprene emission 

seems to be directly controlled by the activity of isoprene synthase: this activity is 

correlated with pH in cell plastid. During the night-time, there is no proton increase in 

the plastid (pH ~ 7). Under the conditions of light, an increase of protons in the 

tylakoid lumen can be observed. The process causing a pH increase in the stoma to ~8 
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is optimum for isoprene synthase activity. However, enzymatic activity is also 

measurable at pH~7, so this process is still not well understood. 

  

2.4 Biosynthesis of terpenes 

Terpenes arise from the fundamental precursor isopentenyl diphosphate, which 

in plants occurs at one of two subcellular locations. The classic acetate/mevalonate 

pathway (Chappell, 1995) operates in the cytosol compartment in which 

sesquiterpenes and triterpenes are formed, whereas the mevalonate independent 

pathway (initiated from pyruvate and glyceraldehyde 3-phosphate) operates in the 

plastids to provide the monoterpenes, diterpenes, and tetraterpenes (Eisenreichet et al., 

1998). Following production of isopentenyl diphosphate and its isomerization to 

dimethylallyl diphosphate by isopentenyl diphosphate isomerase, the last is condensed 

with one, two, or three units of isopentenyl diphosphate by specific prenyltransferases 

at the corresponding subcellular locales to give the respective precursors of the 

monoterpenes (geranyl diphosphate), sesquiterpenes (farnesyl diphosphate), and 

diterpenes (geranylgeranyl diphosphate). The terpenoid synthases next convert the 

respective acyclic precursors, geranyl, farnesyl, and geranyl diphosphate, to the 

various parent structural derivatives of the different terpene families and so represent 

the committed enzymes of these pathways (Davis et al., 2000). These enzymes are 

often called cyclases because most of the products derived from the three central 

acyclic precursors are cyclic. Terpenoid synthases have been isolated and 

characterized from several conifer species, but the bulk of this work has been carried 

out with grand fir (A. grandis), a common and widespread species in the Pacific 

Northwest. The monoterpene synthases of grand fir are very similar to each other 

(Gijzen et al., 1991), and they differ little in their properties from their counterparts 

isolated from pine species (Savage et al., 1994). All are operationally soluble proteins 

with native (monomeric) sizes in the 50–70 kDa range, pI values around pH 6, and pH 

optima in the pH 6.8 to 7.8 range (generally higher than angiosperm synthases) 

(Bohlmann et al., 1998; Davis et al., 2000; Wise et al., 1999). They require a divalent 

metal ion for catalysis (Mg2+, Mn2+, or Fe2+), and activity is stimulated by monovalent 

cations (Savage et al., 1994); this latter property is not shared by angiosperm 

synthases. As described in detail by Croteau et al. (2000), an interesting characteristic 

of monoterpene synthases is their ability to produce more than only one enzymatic 

product (e.g. pinene synthase may produce either α- or β-pinene). However, all 
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monoterpene synthases use a similar reaction mechanism. The simplest monoterpene 

synthase reaction is catalysed by limonene synthase, where limonene biosynthesis 

proceeds via the initial ionisation of GPP by divalent metal ions. The latter ionisation 

leads to the formation of several rotameric forms of linalyldiphosphate which are then 

transformed via an α-terpinylcation to limonene. 
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3. Tower mesurements of VOC over Siberian region. 
 
ABSTRACT 
 
During the EU project, TCOS-Siberia, two measurement campaigns were performed 

to determine the atmospheric mixing ratios of different species of VOC at the tower 

stations at Fyodorovskoje and Zotino in Russia. The station Fyodorovskoje is located 

about 300 km NW of Moscow in European Russia (56 28' N; 32 56' E) and Zotino 

about 30 km west of the Yenisei River at the eastern edge of the West Siberian Plain 

(60 45' N; 89 23' N). The most dominant VOC species present in air were isoprene 

(range 0.5 ppb-1.5 ppb) and monoterpenes such as: α-pinene, camphene, limonene, 

and β-pinene. Concentration of isoprene oxidation products, i.e. methyl vinyl ketone 

(MVK) and methacroleine (MACR) were lower than 1 ppb, which indicated the low 

oxidation capacity of the atmosphere. The ozone data confirmed these subsections 

(ozone concentration was lower than 30 ppb). Monoterpenes mean concentration was 

higher than 1 ppb. 

 
      
3.1 INTRODUCTION 
 

Biogenic volatile organic compounds play an important role in atmospheric 

chemistry controlling the oxidizing power of the troposphere by affecting sources and 

sink of O3 and OH as well as aerosol production (Ketseridis et al., 1976; Atkinson, 

1990; Pandis et al. 1991; Fehsenfeld et al., 1992; Andreae and Cruztzen, 1997; 

Kavouras et al., 1998, 1999; Christoffersen at al., 1998; Calogirou, 1999). Therefore it 

is of high interest to understand their biogenic production, emission and concentration. 

A large number of biogenic VOC species is emitted into the atmosphere from the 

terrestrial vegetation (Warneck, 1998; Guenther et al., 1995; Kesselmeier and Staudt, 

1999). Thus, the emission of biogenic VOC plays a central role in the atmosphere, 

influencing its oxidative capacity. Furthermore, the emission process of VOC may 

represent a substantial loss of carbon for the biosphere (Guenther, 2002; Kesselmeier 

et al., 2002b). The specific direct or indirect vegetative sources of these compounds 

are not well known. Also, the processes of sampling and analysis need the application 

of considerable techniques for the VOC specification. Therefore there is great interest 

in the emission pattern and quality of plant species from the boreal zone, especially in 

the Siberian region which is regarded as a sink of carbon. Bearing in mind the 
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important role of VOC, a description of the atmospheric concentrations and the 

exchange process on local and regional scales, the biological process and the chemical 

fate of all these compounds is needed, especially in regions poorly investigated. 

Several papers describe measurements around boreal forests (Hakola et al., 2000; 

Rinne et al., 2000).  There have been several studies of European boreal ecosystem 

studies which were the object of intensive research efforts.  Biogenic VOC emissions 

and photochemistry in the boreal regions of Europe were the objective of the 

BIPHOREP project study, aimed at quantifying the biogenic VOC emissions from 

boreal forests (e.g. Laurila et al.,1997). However, there are still large gaps in the 

emission factor data available for detailed emission inventories, especially in remote 

ecosystems where the species distribution may differ considerably from typical 

American or Central European vegetation. 

 

The dominant sources of VOC are forests world-wide, one of the most 

important among them being the Siberian forest. Our knowledge of VOC emission 

from Siberian forests is still insufficient. Only a few publications describing VOC 

measurements in Russia are available (Isidorov and Povarov, 2000). 

 

Due to an inadequate database, we still depend on model extrapolation to 

discuss the chemical process (Guenther et al., 1995). However, some extrapolations 

which were developed for tropical plants may not accurately simulate emission (Keller 

and Lerdau, 1999). In addition, biogenic emissions of VOC are affected by a number 

of factors including temperature, light intensity, plant phenology, injury, stress, etc. 

(Kesselmeier and Staudt, 1999). Therefore to understand the atmospheric process 

which is present in nature, data of atmospheric speciation of BVOC and biogenic 

released under filed conditions are needed. This will increase our knowledge 

significantly, as atmospheric BVOC concentrations are the product of diverse factors 

such as biological sources and sinks, meteorology, chemical reaction processes and 

deposition.      

   

Within the TCOS-Siberia project (Terrestrial Carbon Observation System) we 

performed field measurements during two intensive field campaigns in the summer of 

2004 and 2005 in order to investigate the primary emission of volatile organic 

compounds from the naturally growing Siberian ecosystem. 
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We measured the concentrations of a large number of VOC species, such as 

isoprene and monoterpenes at the tower stations Fyodorovskoje and Zotino. 

 
3.2 TCOS Project Strategy 

The principal objective of the project was the implementation of the first 

components of a continental scale observing system to help determine the net carbon 

balance of Siberia and its variation from year to year. The complexity of this goal 

necessitates an integrated top-down and bottom-up approach. In brief, continuous 

surface flux measurements in key ecosystems at four locations and regular vertical 

profile measurements from aircraft in the lower troposphere at seven locations will be 

merged with similar observations at the boundaries of the study domain. These surface 

and atmospheric observations will then be combined to provide the basis of a 

continental scale meteorological and biogeochemical modelling framework.  

 

TCOS-Siberia builds on the experience gained in a study evaluating the 

feasibility of determining the carbon balance of Eastern Europe and Western Siberia 

by means of atmospheric and surface measurements combined with local process 

studies (EU project EUROSIBERIAN CARBONFLUX, EV5V-CT95-0116, Heimann, 

2000). In that pilot study, a first set of monitoring sites was successfully established. 

These sites have now been operating for almost several years, providing the basis for a 

first estimate of the carbon balance of Western Siberia and European Russia. 
 

 
Fig. 3.1 TCOS project sites over the Siberian study region.  
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The objectives of the proposed TCOS project included, inter alia, the addition 

of VOC analyses on the tower measurements and in the airborne measurements. The 

measurements in the boundary layer and the overlying free troposphere within years 

two and three of the project and determination of their contribution to the atmosphere-

canopy carbon fluctuates within the target study area. Those activities were realized 

by measurement campaigns in 2004 and 2005.  
 

Important aspects of the TCOS project are providing a refined assessment of 

the carbon balance and its variability in the northern Eurasian continent consisting of 

the Russian boreal forest zones, the Siberian and European Russian arctic tundra 

regions and the southern Siberian steppe grasslands. 
 

The focus of this study was the addition of VOC measurements and analyses 

during two summer campaigns. The regional quantification of the carbon balance by 

surface flux measurements and by the top-down approach with inverse methods is 

classically based on concentration measurements of CO2. Moreover, CO2 is the 

climatologically most relevant atmospheric trace gas; there exist several other carbon-

containing compounds such as CH4, CO and Volatile Organic Compounds (VOC), 

which are also emitted by terrestrial ecosystems in a non-negligible amount. In the 

atmosphere most of these compounds are rapidly oxidized with lifetimes ranging from 

hours to a few days (VOC), to several months (CO) and up to a decade (CH4). These 

species bypass the flux measurements made with the eddy covariance technique 

(which determines only the local canopy-atmosphere CO2 flux), and they are usually 

not included in inverse atmospheric concentration calculations to infer regional 

surface carbon balances. In particular, the emissions of VOC (mostly isoprene and 

monoterpenes, emitted primarily by forests) have recently been shown to constitute a 

significant contribution to the net carbon balance of the vegetation in selected 

locations in the tropical area basin (Kesselmeier and Staudt, 1999; Guenther, 2002; 

Kesselmeier et al., 2002a). A preliminary extrapolation to the globe based on existing 

measurements in Amazonia and Mediterranean forests yields VOC fluxes that are of 

the same order of magnitude as the net biome productivity of the global terrestrial 

biosphere (Kesselmeier et al., 2002a). Simpson et al. (1999) pointed out that present 

BVOC emission inventories are quite uncertain and some of the tabulated emission 

rates may differ from actual rates by a factor of 10. One reason for this high 
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uncertainty is the lack of emission data for key species in ecosystems covering a large 

area, such as tropical and boreal systems. 
 

Within TCOS-Siberia, CO and CH4 concentrations were routinely analysed 

from all flasks collected in the aircraft-sampling programme. As a novel measurement 

component, in TCOS-Siberia additional measurements of VOC were taken on the 

aircraft-sampling campaigns and directly within and above the canopy during selected 

periods in summer at the surface flux measuring sites of the TCOS-Siberia project. 

This information will provide the observational basis to infer the potential corrections 

quantitatively that have to be applied to the carbon balance estimated by the classical 

CO2 only approaches, since VOC are also highly important for the tropospheric 

chemistry and precursors of aerosols (Andreae and Crutzen, 1997). 
 

3.3 Field Campaigns 
 

During 2004 and 2005, combined airborne and ground-based measurements 

were performed in selected locations. In 2004, airborne and ground measurements 

were taken in Fyodorovskoje and Zotino, and in 2005, in Zotino in Central Siberia. 

Measurements were performed continuously at the area of the flux tower and above 

the canopy of the forest. 

The activities included: 

o CBL vertical profile airborne measurements with cartridge sampling, 
flask sampling and continuous measurements; 

o continuous eddy covariance measurements and meteorological 
parameters recording from the local tower. 

 

Region Latitude; 
Longtitude 

Land type Date of campaigns 

Fyodorovskoje 56 28' N; 32 56' E Forest 81 % 19-20.07.2004  
(airborne measurements)  
22-25.07.2004  
(tower measurements) 

Zotino 60 45' N; 89 23' N  Forest 80 % 30-31.07.2004  
(airborne measurements) 
01-05.08.2004  
(tower measurements) 
12-13.07.2005  
(airborne measurements) 
15-22.07.2005  
(tower measurements) 

 
Table 3.1 Data about land type. Adapted from Glebov, 1969 and Stakanov, 2000. 
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3.4 Tower measurements  
Tower measurements were performed on the eddy covariance tower at two 

sites, Fyodorovskoje and Zotino. The sampling process usually started between 7-8 

a.m. local time and finished between 8-9 p.m. local time, except for two occasions in 

2005 during which overnight measurements were performed. 

 

3.4.1 Land Use Classification 

The Euro-Siberian region covers the area between 53° and 67° N from the 

Atlantic coast of Norway at 5° E to the Pacific coast at 170° E. The boreal zone is one 

of the world’s largest forest areas, covering a land surface of 15.8x 106 km2. The 

region is relatively uniform with respect to species cover. Picea abies of Europe is 

replaced by Picea obovata in Finland and NE of European Russia, which then 

dominates together with Abies alba in the dark coniferous taiga of European Russia 

and Abies sibrica in Siberia. Dark coniferous taiga occurs with a different set of 

species again in the Amur region. Pinus sylvestris is the tree species with the largest 

range of global distribution for any tree species. This is an early successional species 

along the whole region and dominates on nutrient-poor sandy soils and in bogs. In 

contrast, Pinus sibrica is a central Siberian late successional species forming 

monotypic stands mainly in wet sites. The genus Larix occurs with a range of species 

in a region almost as broad as that of P. sylvestris, but it dominates forests mainly on 

permafrost soils and in the continental climate of East Siberia (Walter, 1974). The 

deciduous trees of Betula and Populus are important throughout the boreal forest belt 

depending on disturbance. Betula pendula and B. pubescens are early successional 

species in many regions of European Russia and Siberia. Populus tremula follows 

disturbance on nutrient-rich and drained soils (Schulze et al., 2002). 

 

The Fyodorovskoje experimental site is located in the Central Forest Reserve 

(CFR) near the town of Nelidovo (Tver region), about 300 km NW of Moscow in 

European Russia. The reserve was established in 1931. The eddy tower was mounted 

in a 150-year-old forest of spruce. The stand is approximately 27 m high, consisting of 

about 86% Picea abies trees and about 14% Betula spp. with a total live tree density 

of 565 ha-1 in 2000 (Vygodskaya et al., 2002). This is a widespread forest type in the 

northern, central-southern taiga, but is mostly limited to the middle and lower parts of 

soft slopes and shallow depressions. The territory around the tower is fairly 
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heterogeneous. The dominant spruce stand is limited in extent, and within 200-300 m 

from the tower there are birch and aspen forests as well as windfall of different ages. 

A comprehensive footprint analysis was made of the area around the tower, taking into 

account the heterogeneous nature of the vegetation beyond the spruce stand (Sogachev 

et al., 2002). These authors suggested that 80% of the measured flux comes from 

within a 200 m radius during the day, with the effective footprint being somewhat 

larger at night.  

 

 
 

Fig. 3.2 Forest inventory data for the Fyodorovskoje site. 

 

The Zotino site is located near to the village of Zotino, about 30 km west of the 

Yenisei River at the eastern edge of the West Siberian Plain.  The tower was 

established in a succession pine forest (Pinus sylvestris) with a lichen understorey 

(Wirth et al., 1999). The stand was 200 years old, extending at least 0.5 km in all 

directions. As with most of the P. sylvestris forests in the area, the stand was located 

on gently undulating, alluvial sand without underlying permafrost. The stand structure 

was relatively homogeneous with a steam density of 478 ha-1; the basal area was 30 

m2ha -1, LAI 1.5 m2 and biomass (dry weight) was 10.7 kg m-2 (Wirth et al., 1999).                                   
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Fig. 3.3 Zotino land cover map. Land cover classification based on LANDSAT ETM+ 

images of 25.06.2000 and 11.07.2000. Map by Danilo Mollicione, Global Vegetation 

Monitoring Unit, European Union JRC.   
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3.4.2 Climatology of the Fyodorovskoje region 

Vyshnii Volchek, the oldest weather station in the region, located 100 km 

north of the study site, shows climatic conditions very similar to those at 

Fyodorovskoje, the weather station at the central forest reserve (CFR).  The station has 

a long meteorological data record, more than 100 years. There is a slight increase in 

the annual average temperatures over the last 100 years (0.005 °C yr-1). Temperatures 

average 20.91±6.4 °C for the period above 10°C average daily temperature. 

Precipitation may be as low as 400 mm in a dry year (1963) and exceed 800 mm in a 

wet year (1953), with mainly high summer rainfall in wet years. There is no obvious 

trend in precipitation. The variation of precipitation is greater in summer, while the 

variation of temperature is greatest in winter. There is no correlation between annual 

or summer precipitation and temperature. Summer precipitation (days > 10°C) is 

about half the total precipitation. The growing season (T > 5°C) lasts on average 172 

days (Vygodskaya, 2002). 

At Fyodorovskoje the mean wind speed was 3.2 ms-1 (1995-1999) with SW to SE, 

being the prevailing wind direction for 58 % of the time. High wind speeds (4.55 ms-1) 

come from the SW.  

 

3.4.3 Climatology of the Zotino region 

Bor station has been used as a reference station for Zotino. The station is 

located 80 km to the north, on an inlet of Podkamieniaya Tunguska in the Yenisei 

River. The climate of the Zotino region is continental, with -26°C average January 

temperatures and a temperature minimum of <-56°C. The daily maximum temperature 

can reach 36°C (1999). The monthly average minimum  in temperature is -36°C 

(1969). The annual precipitation in Fyodorovskoje is also the result of a local water 

cycle of evaporation and convective storms. The absolute maximum precipitation 

reached 745 mm (1986), while the lowest minimum was recorded in 1938, at 364 mm.     

 

3.5 System Configuration and Data Analysis 
Detailed protocols with all observations that might be useful during the process 

of data analysis were kept in the activity campaign diary.  
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3.5.1 Measurement equipment. VOC sampling system 

For the campaign purposes a new sampling unit was established at the Max 

Planck Institute for Biogeochemistry in Jena. No commercial unit was available for 

the purpose. Major effort had to be given to its design and construction. The same 

kind of sampling unit was used for tower and airborne measurements. The sampling 

unit can be divided into: 

 

 -   the inlet part with special tubes and ozone scrubber (MnO2), to prevent 

  reactions inside the tubes and on the absorbent into the cartridge; 

 -  the pump system (type ETO341FC003, Ansyco, Karlsruhe, Germany), 

  electronic mass flow controller, particle filters (Zeflon); 

 -  the sampling cartridges (Silico steel). 

 

The inlet of the tube was localized at the top of the tower, above the canopy of 

the forest. For the measurements of volatile organic compounds at ambient air 

temperature, it is obligatory to remove oxidants from the enrichment step. In 

particular, interference from the co-trapping of ozone on adsorbent materials and also 

the reaction of these oxidants with compounds on the adsorbents, may lead to the 

formation of artifacts. However, an artifact may also be present due to formation from 

reactions with trapped volatile organics (e.g. Hoffmann et al. 1993; Peters et al., 1994; 

Hoffmann, 1995; Calogirou et al., 1996). According to Pellizzari and Krost (1984) and 

Calogirou et al. (1996), the degree of decomposition of adsorbed volatile organics is a 

function of their molecular structure. However, the sensitivity towards an interference 

of ozone to trapped volatile organics also depends on the type of adsorbent material 

that is used (carbon type adsorbent material seems to be less sensitive to ozone 

interferences; Larsen et al., 1997). A detailed overview on these different scrubber 

techniques is given by Helmig (1997). 

 

From the inlet of the ozone scrubber, the air was pumped by a membrane 

pump going through a Zeflon filter before entering the system unit. Afterwards, the 

sampling air can enter the cartridge or go through the outlet via a by-pass. The system 

was prepared with a special protection part to prevent the cartridge from double filling 

with air. For sampling, the air flushed the cartridge and VOCs were trapped on the 

adsorbent. The flow range was from 100-250 ml/min.  
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Fig. 3.4 VOC sampling unit used for VOC sampling process. 

 

 

3.5.1 Eddy covariance measurements 

Water vapour, heat and momentum fluxes were measured at a height of 27 m 

(about 5 m above the average tree height and 4 m above the highest nearby trees). The 

measurement system consisted of a triaxial sonic anemometer (model Solent R3, Gill 

Instruments, UK) and a fast response CO2/H2O non-dispersive infrared response gas 

analyzer (model 6262-3, Li-Cor Inc., Lincoln, NB, USA). The air was drawn from an 

inlet at the top of the tower, 10 cm below the sonic measurement height through BEV-

A-Line tubing and two aerosol filters at a flow rate of 5.8 L/min. The fluxes were 

calculated off-line as a simple covariance of 30 min high-frequency time series of 
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vertical wind velocity with temperature or water vapour density. The time lag between 

measurements of vertical and solar density due to transport in the tube was estimated 

by cross-correlation between both time series to be approximately equal at 4.8 s for 

water vapour. The data were corrected by shifting the time series by the estimated 

time lag. 

 

3.5.2 Supporting meteorological measurements  

Radiative flux measurements included total downward and upward radiation 

using a pyradiometer (LXG055), and shortwave downward and upward radiation 

using a Kipp and Zonen pyranometer (CM 14, Kipp and Zonen, Delft, Holland). 

Additional measurements included air temperature and humidity (HMP 35 D, Vaisala, 

Helsinki, Finland), and wind velocity (A 100 R, Vector Instruments, USA). These 

sensors were installed below the sonic anemometer on a boom. At ground level a rain 

gauge was also installed (Young Instruments, Traverse City, MI, U.S.A.) located in 

close proximity to the eddy flux tower. At both sites the environmental data were 

stored as 30 min averages. 

 

3.5.3 Sampling of VOC 

VOC were collected on sequential adsorbent beds packed into fused-silica-

lined stainless steel cartridges (Perkin–Elmer (U.S.A.)). Sampling of isoprene and 

monoterpenes was performed by the use of graphitized carbon blacks (GCB). The 

availability of a graphitic carbon with adsorption features comparable to those of some 

carbon molecular sieve adsorbents has made it possible to widen the range of polar 

and non-polar VOCs that can be collected at any relative humidity. Multi-layer traps 

containing combinations of Carbograph 5 and other hydrophobic sorbents provide a 

better sensitivity alternative than existing methods. In combination with a stronger 

adsorbent, traps filled with Carbograph 5 provide results equivalent to those obtained 

by canister sampling. 

 

The following adsorbents were used for the sampling, 130 mg of Carbograph 1 

(90m2/g) followed by 130mg of Carbograph 5 (560m2/g). The size of the Carbograph 

particles was in the range of 20–40 mesh. Carbographs 1 and 5 were provided by Lara 

s.r.l. (Rome, Italy). Sampling flow rates were 100-250 mL min-1. The adsorption 
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cartridges that were used for VOC measurements during the present study were 

prepared in 2003 by the MPI-BGC laboratory. 

 

3.5.4 Analysis of VOCs 

Desorption and analysis by GC-FID of the trapped samples as well as 

chromatographic peak evaluation was performed by GC-laboratory group of the MPI 

for Chemistry in Mainz. For subsequent analyses, the adsorbent cartridges were 

thermally desorbed under a helium flow at 260°C for 10min (using a Perkin Elmer 

ATD 400). As described by Kesselmeier et al. (2002a) cartridges filled with 

Carbograph 1 and 5 were desorbed thermally using a two-step desorption system 

[Model ATD400, Perkin Elmer, Germany] that was connected to a GC-FID [Model 

AutoSystem XL, Perkin Elmer, Germany]. 

 

 In this instrument, desorbed species are refocused on a small quartz tube 

packed with 20 mg Carbograph 1 and held at 30°C. The quartz tube was then rapidly 

heated to 280°C and the desorbed compounds were transferred through a heated line 

to the GC for separation and FID detection (Perkin Elmer Auto system XL GC / FID). 

Separations were accomplished on two capillary columns connected in series: 

(Supelco SPB-5,30m 0.25 mm I.D., 0.25 mm film thickness, followed by Hewlett 

Packard HP-1.30 m 0.25 mm I.D, 0.25 mm film thickness). The temperature 

programme used for analysis ranged between -10°C and 220°C (-10°C to 40°C at 

20°C min-1, 40°C to 145°C at 1.5°C min-1, and 145°C to 220°C at 30°C min-1). 

Chromatographic separation of one sample was performed within 90 min. Peak 

detection was accomplished by using a flame ionisation detector (FID). 

 

According to Gottwald (1995), the current produced in the detector is 

proportional to the mass of volatiles that are detected in this process. In general, the 

detector consists of a burner that burns a mixture of high purity hydrogen (purity 6.0) 

(H2) and synthetic air and an ion collector electrode kept at about -200 V 

(manufacturer specifications, Perkin Elmer, 1997). For detection of volatiles the H2 

gas flow is mixed with carrier gas derived from the chromatographic column. 

 

As described by Holm (1999), formylium ions (CHO+) and electrons (e-) are 

formed by chemi-ionisation at a yield of approximately one ion per 106 carbon atoms 
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if hydrocarbons are present. In general, the formylium ions are formed by the reaction 

of hydrocarbon-radicals with oxygen radicals (originating from synthetic air). The 

hydrocarbon-radicals are derived from methane produced from the hydrogenolysis of 

VOC inside the flame. Since every 106th carbon atom finally produces a formylium 

ion, the FID signal derived from hydrocarbons is proportional to the number of 

carbons present in the original molecule (rule of equal response per carbon). On the 

other hand, some chemical structures are less sensitive to hydrogenolysis. Holm 

(1999) reported that a carbon atom bonded to a hetero-atom may or may not be 

converted to methane, resulting in a lower signal response from the detector. This 

theory gave the development of the empirical “effective carbon number concept” that 

defines the relative contribution of different functional groups to the signal response. 

According to Sternberg et al. (1962), the contribution of different functional groups to 

the number of “effective carbon atoms” in a molecule varies between zero and 1.0 (see 

also the studies of Ackmann (1964) and Blades (1976). As described in the publication 

by Sternberg et al. (1962) for aliphatic, aromatic, and approximately also for olefinic 

molecules (0.95), the “effective carbon number” is equal to the real carbon number of 

the molecule. Carbonyl groups on the other hand have no contribution to the effective 

carbon number. For them the contribution is equal to 0. 

 

As accordance with the procedure described by Komenda (2001), a process of 

calibration for volatile organics containing no hetero-atoms was obtained by using a 

gaseous standards mixture containing n-alkenes C5-C10 (n-pentane, n-hexane, n-

heptane, n-octane, n-nonane and n-decane) and isoprene, yielding a detector response 

signal which is proportional to the real carbon number.  

 

Organic compounds evaluated by these analyses are summarized in Table 3.2 

For the process of peak identification and integration a commercially available 

software was used, Turbochrom 4 [Perkin Elmer, Germany]. The identification of 

compounds was made by their respective retention times.  
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  Volatile organic 
compound 

Retention time 
[min] 

 
Alkenes n-pentane ~14.5 
  n-hexane ~18.8 
  n-heptane ~26.1 
  n-octane ~36.2 
  n-nonane ~47.9 
  n-decane ~59.9 
Hemiterpenes isoprene ~14.8 
Monoterpenes α-pinene ~52.5 
  camphene ~54.3 
  sabinene ~56.6 
  β-pinene ~58.2 
  ∆-3-carene ~61.4 
  α-terpinene ~61.8 
 p-cymene ~62.1 
  limonene ~63.3 
  γ-terpinene ~66.4 
 Carbonyl compounds MVK ~17.2 
 MACR ~16.5 

 

 Table 3.2 Volatile Organic Compounds evaluated by GC-FID analysis. 

 

 

3.5.5 Calculation of Volatile Organic Compound mixing ratios 

The calibration of the GC-FID system was performed by the MPI–Ch GC 

laboratory group. The process of the preparation of calibration standards is a major 

error source in the analysis of organic compounds. In accordance with the concept of 

“effective carbon number” and based on the experiments performed by Apel et al. 

(1994, 2003a, 2003b) and Komenda (2001), the mixing ratios of volatile organic 

compounds were calculated using a gaseous purity nitrogen standard of stable C5-C10 

n-alkenes and isoprene manufactured by Apel-Reimer, Denver, CO, USA]. The 

mixing ratio of the standard used for GC-FID calibration ranged between 9 and 16 

ppb. The standard mixture was sampled from the calibration cylinder under laboratory 

conditions on adsorbent cartridges resulting in normalized standards ranging between 

2 and 75 ng per cartridge (standard conditions 25°C, standards injection number 11 

and 29, respectively). After analysis by GC-FID, calibration factors were calculated 

from the slope of linear regression according to Formula 3.1  
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dards

dardS

Amount
AreaCalFactor

tan

tan=                  Formula 3.1 

 

 Formula 3.1: Cal Factor- calibration factor [µ Vs ng-1], 

      Area standard – area of the standards [µVs ng-1], 

       Amount standard - amount of the standards [ng].  

 

The calibration standard curves are shown respectively in Figure 3.7 and 3.8 

for two standards analysed by GC-FID in the years 2004 and 2005. Calibration factors 

were calculated for all compounds present in the standards mixture. Correlation 

coefficients (r2) range between values of 0.97-0.98 for all data obtained in 2004 and 

values of 0.89-0.99 for standard compounds in 2005. 
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Fig. 3.7 Calibration of n-pentane by use of a gaseous standard mixture [Apel-Riemer, 
USA] in the years 2004 (left side) and 2005 (right side). Standards of n-pentane were 
collected on adsorbent traps that were analysed by GC-FID. The slope and intercept 
of linear regression analysis (grey line) are indicated in the relevant graph for the 
respective compounds and years. 
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Table 3.3 shows calibration factors calculated for all standards in 2004 and 

2005. However, to obtain better results of the calibration factor, it was decided to do a 

single calculation of a calibration factor only for all n-alkane standards measured by 

GC-FID in 2004 and 2005. For 2004 the calculated factor was 4328 µ Vs ng-1 and for 

2005 it was 4480 µVs ng-1. Differences in the individual n-alkane calibration factors 

obtained a calibration factor for all compounds for the corresponding year, with a 

range of ±15% for 2004 and ±10% for 2005. 

 

 

Volatile organic 
compound 

(standard mixture) 

 
year 2004 

 
r2 

 
year 2005 

 
r2 

n-pentane 4454 0.97 4464 0.98 
isoprene 4946 0.97 4622 0.89 
n-hexane 4448 0.97 4828 0.99 
n-heptane 4376 0.97 4775 0.98 
n-octane 4314 0.98 4270 0.92 
n-nonane 4300 0.98 4307 0.97 
n-decane 4075 0.99 4037 0.99 

 

Table 3.3 Calibration factors (µ Vs ng-1) of hydrocarbons and regression factors (r2) 

for the years 2004 and 2005. 

 

 

3.5.5.1 Calculation of VOC mixing ratios 

For GC-FID analysis the calculation of the VOC mixing ratios were in units of ppb in 

accordance with formula 3.2. The calibration factor was given in units µVs ng-1.  

 

Mixing ratio =
SVFactorCal

MV AreaArea Blanksample )( −
•            Formula 3.2 

 

Formula 3.2 Area sample = peak area of the sample [µ Vs], Area blank= peak area of 

the blank [µ Vs], Cal factor = calibration factor [µ Vs ng-1], MV= mole volume of an 

ideal gas [22.41mol-1, 25°C, 1013hPa], SV= air volume sampled on the respective 

cartridge [L], Mixing ratio= mixing ratio of the respective compound [ppb]. 
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3.5.6 Applied  statistics  

The measured data were evaluated using several statistical procedures. The following 

paragraph will focus on the statistical techniques that were applied. 

 

3.5.6.1 Average, standard deviation and empirical variance 

The arithmetic average and the standard deviation of a group of symmetrically 

distributed data points were calculated by application of the formulae 3.3 and 3.4. 

Considering the calculation of the standard deviation, the formulae calculate the 

deviation of random samples from their arithmetic mean. The empirical variance is 

given as the square of the standard deviation: 

 

     X=
n

xi∑                                            Formula 3.3 

                                                     S=
( )

)1(

22

−
−∑ ∑

nn
xxn ii                          Formula 3.4 

 

Formula 3.3 and 3.4: n=number of data points, s= standard deviation, x= arithmetic 

mean xi=single value. 

 

3.5.6.2 Slope, intercept and Pearson product moment correlation coefficient 

The slope of the linear regression from a group pair (xi, yi) was calculated by formula 

3.5. 

The y-axis intercept was calculated by use of the linear slope b according to 

the formula with representing the respective average of all x and y values (formula 

3.6). 

 

     b=
( )( )

( )22 ∑∑
∑ ∑∑

−
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xxn

yxyxn
     Formula 3.5    

 

      a=y-bx       Formula 3.6 
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To give a measure of linear correlation between two datasets (xi, yi) the 

Pearson product moment correlation coefficient was calculated according to formula 

3.7, yielding a coefficient ranging between +1 and -1, with +1 and -1 giving the best 

correction between two data sets.  

 

   r=
( )( )

( )( ) ( )( )2222 ∑∑∑∑
∑ ∑∑

−−

−

iiii

iiii

yynxxn

yxyxn
   Formula 3.7 

 

Formula 3.7 a = intercept of y axis, b- slope of linear regression, n-number of 

data points or data pairs, r= Pearson product correlation coefficient, x = arithmetic 

average of all x values, xi=single value, y = arithmetic average of all y values, yi = 

single value, y- axis. 

 

3.5.6.3 T-test 

The T-test is an objective measure of whether two averages may be combined 

in one common one, i.e. both single averages are equal to each other. The T-test is 

applied by calculation of a test statistic t* that is compared to a tabular value of t. The 

test statistic t* is calculated according to the formulae 3.8 and 3.9. If t*<t, both 

average values are equal to each other with the respective likelihood of (95.00% to 

99.99%). 

 

    t*=
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             Formula 3.8 

 

   Sd= 1
)1()1(

21

2
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nn
snsn                            Formula 3.9 

 

Formula 3.8 and 3.9: n1= number of data points in data group 1, n2= number of 

data group 2, s1= standard deviation data group 1, s2= standard deviation data group 2, 

x1= arithmetic average data group 1, x2= arithmetic average data group 2. 
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3.5.6.4 Uncertainty of calculated Volatile Organic Compound concentrations 

 Accuracy, precision and reproducibility are measures for the uncertainty of 

calculated mixing ratios of volatile organic compounds. Under the assumption that 

errors were not correlated with each other and are distributed normally, precision can 

be calculated by error propagation for a single measurement. Reproducibility can be 

calculated from the average and standard deviation of a series of samples of the same 

quantity. Since precision and reproducibility are a measure of the repeatability for 

individual measurements, they will be influenced by random errors. On the other 

hand, accuracy is a measure of agreement of the calculated and the real concentration 

and will be influenced by systematic errors. 

 

3.5.6.5 Accuracy of Volatile Organic Compound concentrations 

Accuracy is influenced only by systematic errors and is a measure of the 

deviation between the real and the measured value. An example of systematic errors 

that will lead to a decreased accuracy of VOC determination is e.g. the application of 

wrong calibration standard concentrations that may lead to a systematic under- or 

over-estimation of present VOC mixing ratios. In the following paragraphs, accuracy 

will be specified by the percentage difference between the measured VOC 

concentration and the reference VOC concentrations that were set by the permeation 

device. 

 

3.5.6.6 Precision of VOC concentrations  

The precision of all mixing ratios was calculated by Gaussian error 

propagation and gives the sum of uncertainty of all components used for the 

calculation of these mixing ratios (calibration factor, sample flow, blank values). 
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Formula 3.10  Area sample-blank= difference of sample and average blank 

area [e.g. µ Vs] , Cal Fact= calibration factor [e.g. µ Vs ng-1], MR= missing ratio[e.g. 

ppb] , Pflow= relative uncertainty of flow and volume measurement [%], P analyt= 

precision of analysis [e.g. ng], Precision MR= precision of VOC mixing ratio [e.g. 

ppb], SAreaBlank =standard deviation of blank values on an area basis [e.g. µ Vs ng-1]. 

  

For terms that were linked by multiplication or division during the calculation 

of the mixing ratios, relative uncertainties were used for error propagation. For terms 

that were linked by addition or subtraction, absolute uncertainties were used. Formula 

3.10 gives an example of precision for the calculation of precision of mixing ratios for 

the GC-FID analysis. It combines the calculated precision of analysis, flow and the 

standard deviation of blank values with the factor of calibration and the difference of 

sample and blank area. Due to the above-mentioned context the precision of analysis 

and flow were inserted in Formula 3.11 on the basis of relative uncertainties (the 

relative precision is given by the term: Panalyt CalFactor /AreaSample-Blank ). On the other 

hand, the precision of blank values (standard deviation) was added as absolute 

uncertainty on an area basis. 

 

3.5.6.7 Precision of analysis 

The analytical precision can be calculated as an uncertainty of the calibration 

factor from the linear regression of standard concentrations (x-axis) and the associated 

standard chromatographic peak areas (y-axis) by formulas 3.11, 3.12 and 3.13. 

 

The terms So and Sb that are included in formula 3.13 were calculated 

according to formulae 3.11 and 3.12 with xi representing the standard amounts and yi 

representing the standard areas. The factor Yi represents the calculated standard 

amount form from regression analysis following  Yi=a + bx. 
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Formula 3.11, 312, 3.13: 

a= intercept of the linear regression (calibration curve) [µ Vs], Area sample-

blank = difference of sample and average blank area[µ Vs], Area standard =area of the 

standard used for calibration[µ Vs], b=slope of the linear regression (calibration 

curve)[ e.g. µ Vs ng-1], n=number of paired values (i.e. number of standards and 

associated areas), xi = standard amount or concentration (x-axis)[e.g. ng], yi= standard 

area ( y-axis) [µ Vs], Yi= calculated standard amount or concentration from regression 

analysis (Yi=a+bx) [e.g. ng]. 

 

The precision for this instrument using the same condition of analysis for isoprene is 

reported in Table 3.4.  

 

 

Compound Precision of mixing ratios 
of isoprene 

 1ppb 10ppb 
isoprene 17% 2% 

 

Table 3.4 Precision of mixing ratios of isoprene. 

 

 

3.5.6.8 Precision of volume and flow 

The sampling of air volume was performed by the use of mass flow control 

flow controller units [size 500 sccm, MKS Instruments, U.S.A.] with a relative 

precision specified by the manufacturer to 3% of the maximum flow rate; the absolute 

precision of sampling volume and flow was calculated to 15 ml min-1. 
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3.5.6.9 Precision of blank values 

The average blank values of volatile organic compounds were subtracted from 

the respective samples on an area basis. Therefore the standard deviation of these 

average values was used for the calculation of the precision of sample analysis. 

 

3.6 RESULTS 
Diurnal fluctuations of ozone (only for the 2005 campaign), light, PAR, 

temperature, humidity, wind speed and wind directions were measured at the top of 

the tower above the canopy of the forest at the Fyodorovskoje and Zotino sites 

(Figures 3.6, 3.7 and 3.8). In 2005, temperature, light and wind speed ratios were 

similar to those observed in 2004. The main wind direction for the Fyodorovskoje site 

was from the South-West (SW) and South (S). For the Zotino site the main wind 

direction was from the North-West (NW) and South (S). The figures presented (3.6-

3.8) give an overview of meteorological conditions during the measurement periods.  
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There are two factors which strongly influence the atmospheric composition and 

chemical process over the Central Siberian region. First, the large forest areas provide the 

lower atmosphere with reactive compounds of biogenic origin, while also acting as an 

effective sink for many chemical species e.g. ozone, by dry deposition. Second, the 

strong seasonal cycle of solar radiation gives rise to a photochemically active summer 

when the biogenic emissions are most intense.   

 

3.6.1 Ozone concentrations 

According to Penkett and Brice (1986), Laurila and Hakola (1996), in the high 

northern latitude there is a spring maximum of background tropospheric ozone due to the 

high ozone concentrations in the lower stratosphere and to the photochemical oxidation 

of ozone precursors which have accumulated in the northern atmosphere during winter. 

The photochemical oxidation processes are driven by the strong seasonal cycle of the 

UV-A and UV-B radiation. Unfortunately, the record of ozone concentration 

measurements is only available for the period of the second campaign in 2005 at the 

Zotino site (Fig. 3.9). 
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Fig. 3.9 30 min daily ozone concentration averages during the campaign in 2005 at the 
Zotino site. 
 
 

Elevated ozone concentrations have detrimental effects on the vegetation process. 

However, in the Zotino region, 30 minutes daily ozone concentrations were less than 40 

ppb. The ozone concentration was not stable and did not show a stable value, but the 

range of ozone was from 8 ppb to 39 ppb. 
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 3.6.2 Concentrations of biogenic VOCs 

The boreal forest is characterized by high foliar biomass densities, which makes it 

an important source of biogenic VOC. All dominant boreal tree species, Scots pine (Pinus 

sylvestris), Norway spruce (Picea abies), and birch (Betula pendula) are significant 

monoterpene emitters (e.g. Simpson et al.,1999; Hakola et al., 1998). α-pinene and β-

pinene are the principal emitted compounds emitted, but the monoterpene emission 

profiles vary considerably between the tree species as well as seasonally.  

 

The biogenic VOC are emitted during the vegetation period. However, some 

VOC are stored in the needles and can be released at any time. A variety of factors 

influence isoprene emission rates. Although the mechanism controlling isoprene 

production is not well known, some studies have correlated long-term and short-term 

variations in isoprene synthase activity (Kuzma and Fall et al., 1993). Isoprene emissions 

are coupled to the rate of biosynthesis and are therefore both temperature- and light-

dependent (Guenther et al., 1993). Monoterpene emissions are reported to be mainly 

temperature-dependent (Tingey et al., 1981; Lamb et al., 1985; Juuti et al., 1990). These 

compounds are stored in the resin ducts of needles, and their emission is regarded as the 

result of evaporation out of from these storage pools (Dement et al., 1975; Tingey et al., 

1980, 1991).           

 

An algorithm to describe monoterpene emissions from plants was established by 

Tingey et al. (1991), in which the monoterpene emission rates are expressed as a product 

of a temperature- dependent term and a temperature-normalized standard emission rate. 

However, this standard emission rate is not a constant but varies because of unknown 

dependencies of the emissions. (Komenda and Koppmann, 2002).  

 

A good approximation for the growing season in the Siberian region is the period 

when daily average air temperatures constantly exceed 5ºC. On average, all campaigns 

were performed during these periods. 
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Results of VOC levels in the air samples that have been collected are given in 

Figures 3.10-3.19 and Tables 3.5-3.8. During the two campaigns of the TCOS project, 

ambient air samples were collected. Monoterpenes were the dominant compound of the 

VOC species identified by GC/FID, whereas isoprene was present in a lower 

concentration. However, this composition was not constant for all sites, due to different 

ecosystem type, different temperature condition and humidity. 
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Fig. 3.10 Compilation of daily and diurnal cycles for the isoprenoids and their oxidation 

products during the campaign in 2004 at the Fyodorovskoje site. MVK= methyl vinyl 

ketone; MACR=methacrolein. 
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Fig. 3.11 Atmospheric mixing ratios of monoterpenes: α-pinene, camphene, sabinene,              
β-pinene, myrcene, α-phellandrene, 3-carene, α- terpinene, limonene, γ-terpinene for 
Fyodorovskoje site and standard deviation in concentrations for the compounds 
presented. 
 

VOCs Mean 
concentrations 

[ppb] 

Maximum 
concentrations [ppb] 

Minimum 
concentrations 

[ppb] 
isoprene 1.54 3.21 0.36 
MVK 0.34 1.16 0.05 
MACR 0.73 2.42 0.08 
α-pinene 0.47 1.69 0.15 
camphene 0.07 0.25 0.01 
sabinene 0.08 0.14 0.01 
β-pinene 0.17 0.89 0.03 
myrcene 0.06 0.33 0.01 
α-phellandrene 0.03 0.18 0.01 
3-carene 0.07 0.21 0.01 
α- terpinene 0.07 0.16 0.03 
limonene 0.19 0.46 0.06 
γ-terpinene 0.02 0.15 0.01 
 

Table 3.5 Mean concentrations, maximum and minimum concentrations of isoprene and 
its oxidation products, i.e. MVK and MACR, and monoterpenes at the Fyodorovskoje site 
in 2004. 
 

 

A large number of monoterpene species were identified during measurements with α-

pinene, β-pinene, limonene and 3-carene as dominating species for the Fyodorovskoje 

site. The highest mean concentration was detected for isoprene 1.56 ppb (maximum 3.21 



 
 

 
 - 59 - 

ppb). Higher isoprene values at Fyodorovskoje might be explained by more isoprene-

emitting broad leaf species as well as by spruce, which is reported to release isoprene 

(Street et al., 1996). Some highly reactive monoterpenes were detected, such as myrcene, 

α-terpinene and α-phellandrene. Of the monoterpenes observed limonene is the most 

reactive towards the OH-radical and ozone.  
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Fig. 3.12 Compilation of daily and diurnal cycles for the isoprenoids and their oxidation 
products during the campaign in 2004 at the Zotino site. MVK= methyl vinyl ketone; 
MACR=methacrolein. 
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Fig. 3.13 Atmospheric mixing ratios of monoterpenes: α-pinene, camphene, sabinene, β-
pinene, myrcene, α-phellandrene, 3-carene, α- terpinene, limonene, γ-terpinene for 
Zotino site.  
 
 
 
VOCs Mean 

concentration 
[ppb] 

Maximum 
concentration [ppb] 

Minimum 
concentration [ppb] 

isoprene 0.56 0.86 0.29 
MVK 0.98 1.39 0.02 
MACR 0.82 1.70 0.09 
α-pinene 0.44 1.06 0.18 
camphene 0.11 0.37 0.01 
sabinene 0.08 0.25 0.01 
β-pinene 0.05 0.14 0.01 
myrcene 0.02 0.06 0.01 
α-phellandrene 0.01 0.01 0.01 
3-carene 0.15 0.39 0.01 
α- terpinene 0.07 0.13 0.01 
limonene 0.13 0.49 0.03 
γ-terpinene 0.05 0.18 0.01 
 
Table 3.6 Mean concentrations, maximum and minimum concentrations of isoprene and 
its oxidation products i.e. MVK and MACR, and monoterpenes at the Zotino site in 2004. 
 

 

The Zotino site is a site with a different tree species composition. For the 

Fyodorovskoje site, spruce is the dominant species as is the pine species for the Zotino 

site. An interesting situation was observed in the morning when the mixing processes of 
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advection and convective transport are low. This gives a chance for the accumulation 

process of VOC and high concentrations in the mixed layer. 

 

However, the reason for the low concentrations of some monoterpene species 

might be their low emission or fast decomposition process. On the other hand, the low 

ozone concentration (<30 ppb) might suggest that these compounds are emitted in low 

amounts due to low decomposition after emission. 

 

The differences obtained between the two sites may be caused by the different 

ecosystem composition. Both sites are located in a mixed forest with dominant coniferous 

tree species, however with different species.       
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Fig. 3.14 Compilation of daily and diurnal cycles for the isoprenoids and their oxidation 
products during the campaign in 2005 at the Zotino site. MVK= methyl vinyl ketone; 
MACR=methacrolein. 
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Fig. 3.15 Atmospheric mixing ratios of monoterpenes: α-pinene, camphene, sabinene,             
β-pinene, myrcene, α-phellandrene, 3-carene, α- terpinene, limonene, γ-terpinene for the 
Zotino site.  
 
 
 
VOC Mean concentration 

[ppb] 
Maximum concentration 
[ppb] 

Minimum 
concentration [ppb] 

isoprene 0.56 2.56 0.01 
MVK 0.32 1.78 0.01 
MACR 0.25 1.93 0.01 
α-pinene 0.42 1.57 0.08 
camphene 0.09 0.79 0.01 
sabinene 0.03 0.32 0.01 
β-pinene 0.06 0.57 0.00 
myrcene 0.02 0.08 0.00 
α-phellandrene 0.05 0.08 0.01 
3-carene 0.09 0.40 0.01 
α- terpinene 0.04 0.31 0.00 
limonene 0.04 0.41 0.04 
γ-terpinene 0.01 0.02 0.01 
 
 
Table 3.7 Mean concentrations, maximum and minimum concentrations of isoprene and 
its oxidation products, i.e. MVK and MACR, and monoterpenes at the Zotino site in 2005. 
 
  
 During the campaigns in 2004 and 2005 (with overnight measurements), the total 

monoterpene concentration exhibits a closer relation to temperature than isoprene 

concentration. On the other hand, an isoprene concentration correlates with PAR. This 

process is seen well in the overnight measurements in 2005, where isoprene 

concentrations are very low during the night time, whereas monoterpene concentration is 
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still over 0. On the other hand, isoprene and monoterpene emissions do not depend only 

on light, but also on temperature (Kesselmeier et al., 1996; Kesselmeier and Staudt, 

1999). This behaviour is in close accordance with the source descriptions, isoprene being 

produced and emitted in the light and the monoterpenes in this special case of dominating 

coniferous forests being released from storage pools in the needles and trunks.   

 

 Fig 3.16 contains the data on diurnal and daily cycles for isoprene and for the sum 

of monoterpenes. In 2004 isoprene reached a maximum of 3.2 ppb around noon at the 

Fyodorovskoje site, whereas for the Zotino site (in 2004 and 2005), 2.5 ppb was the 

highest observed value. The higher isoprene values at the Fyodorovskoje site might be 

explained by more isoprene-emitting broad leaf species or by spruce, which is reported to 

release a spectrum of emissions. These emissions are strongly correlated with light and 

temperature. Current investigation shows that the emission factor for spruce can be as 

high as 24 ug-1h-1, suggesting that previous reports on isoprene emissions from coniferous 

species are significantly underestimated (Hayward et al., 2004). Monoterpenes showed 

concentrations of 2-2.5 ppb for the Fyodorovskoje site and around 2 ppb for the Zotino 

site. The most prominent OVOC were MACR and methyl vinyl ketone MVK which are 

isoprene oxidation products. The concentrations of MVK and MACR reached 2.0-2.5 

ppb. However, most of the values were in the range of 0.3-0.5 ppb. The daily fluctuation 

of monoterpenes and isoprene were observed. It should be kept in mind that all samples 

were collected above the canopy of the forest where the highest source of emission exists.  

 

The pattern according to which resources in plants are allocated to the production 

of monoterpenes is the subject of ecological theories, namely the carbon-nutrient balance 

and growth-differentiation balance hypotheses. Monoterpenes are the species produced in 

highly specialized organs, i.e. the resin ducts, whose construction and maintenance entail 

large metabolic costs beyond those of monoterpene synthesis alone (Lerdau and 

Gershenzon, 1997). Monoterpene emission rates increase with temperature and when the 

temperatures are high enough, they can also exist during night-time (Schween et al., 

1997; Drewitt et al., 1998). Confirmation of this process was also noted during the Zotino 

campaign in 2005, whereas during the night-time, detectable concentrations of 
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monoterpenes were observed. In contrast, the concentration of isoprene during the night-

time was rather low. This can be explained by the process of isoprene production. 

Isoprene does not accumulate in secretory organs, but is formed inside the chloroplasts of 

the leaf mesophyll. It is synthesized from a recent process whose potential ecological 

function is not well understood (Fall and Wildermuth, 1998).  

 

The diurnal cycle of monoterpene concentrations was a result of the diurnal cycle 

of temperature. Monoterpene emissions from coniferous plants are known to increase 

exponentially with temperature (e.g. Tingey et al., 1980; Lamb et al., 1985; Juuti et al., 

1990). Tingey et al. (1991) explained the emissions of monoterpenes as a result of the 

diffusion from storage pools in conifer needles. Increasing needle temperatures result in 

increasing vapour pressures and thus lead to higher emission.  

 
3.6.3 VOC species comparison during the campaigns in 2004 and 2005  

For a good comparison, the results obtained were sorted. To receive more 

information about monoterpenes, isoprene and its decomposition, certain products, i.e. 

MVK and MACR, were plotted for each site (Figure 3.16).  
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Fig. 3.16 Overview of the mean values of isoprene, MVK, MACR and monoterpenes 
investigated at the Fyodorovskoje and Zotino sites (n=number of samples). 
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As seen in Fig 3.16, the m=mean concentration isoprene for the Fyodorovskoje site is 

higher than for the Zotino site during the same year. The main reason for this is caused by 

the species composition. Isoprene is mainly emitted by deciduous trees, whereas 

coniferous trees emit mostly monoterpenes. At the Fyodorovskoje site, isoprene 

dominates the composition of measured VOC. 

 

However, the sum of MVK and MACR is higher then the concentration of 

isoprene. The same situation was observed at the Zotino site in 2004, but the ratio of 

monoterpenes and isoprene was equal to 1. In 2005 the situation was different. 

Interestingly, the isoprene mean concentration was lower than the sum of the mean 

monoterpenes value.   

 

3.6.4 Isoprene, MVK and MACR 

In the remote environmental area, the source of MVK and MACR is the processes 

of isoprene oxidation. Information about oxidation properties of the atmosphere can be 

determined by the ratio of (MVK+MACR)/isoprene. The average mean values of these 

ratios found in the study are listed in Table 3.8. 

 

Site Year of 
campaign 

MVK/MACR Std. dev. (MVK+MACR)/Isoprene Std. dev. 

      
Fyodorovskoje 2004 0.43 0.24 0.68 0.32
      
Zotino 2004 0.38 0.17 1.10 0.43
      
Zotino 2005 1.76 0.47 1.22 0.55
 
Table 3.8 Ratios ppb/ppb Methyl Vinyl Ketone versus Methacrolein (MVK/MACR) and 
Isoprene oxidation products versus Isoprene (MVK+MACR)/Isoprene during 
measurement campaigns in 2004 and 2005.  
 
 

Generally, in 2004 the ratio of MVK/MACR was higher than in 2005 for the 

Zotino site. However, the ratio oxidation product of isoprene (MVK and MACR) over 

isoprene was lower in 2004 than in 2005.  
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According to Montzka et al. (1995), the ratio of (MVK+MACR)/isoprene is not 

purely photochemically driven, as it is expected to be influenced by the isoprene emission 

rate and the proximity to emission sources as well as atmospheric mixing. A remarkable 

situation occurred in 2004, a constancy ratio between two different sites and between 

different ecosystems. The reason for this situation can be determined by the amount of 

available NOx, which is non-linearly related to OH concentrations and is a key variable in 

the efficient production of MVK and MACR from isoprene concentrations. A similar 

situation was observed for campaigns in Rondonia, Brazil (for details see Kesselmeier et 

al., 2002a). 

 

The overall diurnal course of the (MVK+MACR)/isoprene ratios is shown in 

Figures 3.17-3.19 for each site and campaign, respectively. The relatively higher ratios in 

the early morning hours are probably caused by factors such as an accumulation in the 

PBL (wind speed, oxidation process) which serve to remove isoprene preferentially over 

longer-lived oxidation products (e.g. OH from alkene ozonolysis, NO3 radical chemistry, 

dynamic process effects and ozonolysis (Hurst et al., 2001). The ratio MVK/MACR is 

also a useful parameter in examining the oxidant conditions during the day. 

 

The ratio depends on yields of MVK and MACR from the oxidation process of 

isoprene and on the relative reaction rates of isoprene, with both MVK and MACR with 

ozone. Oxidation of isoprene by OH and in the presence of NOx produces MVK and 

MACR with respective yields of 32% ad 23% (Tuazon and Atkinson, 1990). In the 

situation where MVK and MACR did not undergo further oxidation, the ratio of 

MVK/MACR would consequently be ~1.4. However, MACR is removed through OH 

radical oxidation more quickly than MVK, which serves to drive up the ambient ratio 

MVK/MACR. For the process of ozonolysis, relative yields and reaction rates in both 

cases, isoprene yields and reaction rates are reversed in both cases: 

1) isoprene yields more MACR than MVK; 

2) MVK reacts more quickly with O3 than MACR, both of which  

  result in a lower MVK/MACR ratio.  
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The average daytime values of MVK/MACR for all sites are presented in Table 

3.5 and also in Figure 3.17. In 2004 for the Zotino site, daytime ratios were typically 1.16 

(±0.34), which is quite close to relative OH production yields of 1.4. In accordance with 

results obtained by model MESSy by MPICH Mainz, Germany (Jöckel, 2005), values 

obtained suggest a relatively high O3/OH ratio, i.e. a relatively low oxidation capacity 

due to low OH concentrations. With low OH concentrations, subsequent oxidation of 

longer-lived MVK and MACR is hindered, with the result that the observed, tends to be 

closer to production yield ratios. The ratio of MVK/MACR was on average much more 

scattered due to the higher individual uncertainties of MVK and MACR.    
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Fig. 3.17 Diurnal cycles of MVK and MACR versus isoprene and MVK/MACR ratios 

indicating the oxidation capacity during two campaigns in 2004. Data obtained for 2004 

were grouped for sampling intervals of 30-80 min and presented as the mean values 

(±S.D) of data (n=1-4).  
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Fig. 3.18 Diurnal cycles of MVK and MACR versus isoprene and MVK/MACR ratios 

indicating the oxidation capacity during two campaigns in 2004. Data obtained for 2004 

were grouped for sampling intervals of 30-80 minutes and presented as the mean values 

(±S.D) of the data (n=1-4).  
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Zotino 2005
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Fig 3.19 Diurnal cycles of MVK and MACR versus isoprene and MVK/MACR ratios 

indicating the oxidation capacity during two campaigns in 2005. Data obtained for 2005 

were grouped for sampling intervals of 40 minutes and presented as the mean values 

(±S.D) of data (n=2-6).  

  

3.7 Conclusions and discussion 
In this study, isoprene and monoterpene concentrations have been measured using 

sampling cartridges and GC/FID analyses. Biogenic VOC have been measured during 

two campaigns in 2004 and 2005 in Russia. The data presented give an overview of two 

measurement campaigns of different VOC species measured in the Siberian forest. 

Isoprene and monoterpenes were the dominating compounds with different mean 

concentrations during two campaigns. In 2004 at the Zotino site, the concentration of 
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isoprene was more or less equal to the sum of the concentrations of monoterpenes, 

whereas in 2005 at the same site, mean values of isoprene were lower than the sum of 

monoterpenes. The concentrations of α-pinene, β-pinene and camphene were also of a 

high value. α-Pinene and isoprene were the most abundant compounds throughout the 

measuring period. Biogenic hydrocarbons contribute significantly to the total reactivity 

towards the OH radical. During summer months they compromise almost all the 

measured OH reactivity. Monoterpenes and isoprene concentrations are dependent on the 

ambient temperature. 

 

There were only small differences between the measurement campaigns in 2004 

and 2005 in isoprene and monoterpene concentrations for the Zotino site. Of major 

importance were the results obtained for the VOC concentrations, which will be used in 

the modelling process in further studies. Variation in isoprene and monoterpene 

concentrations caused by different light and temperature have been observed, as far as 

different ecosystem types are concerned, these variations might also be explained by 

stresses of plant influence. The high concentration of isoprene at the Fyodorovskoje site 

might be caused by spruce which was reported to emit isoprene (Street et al., 1996, 

Lindfors et al., 2000). 

 

The maximum concentration of monoterpenes reached a level of 1.69 for α-

pinene. Ambient biogenic VOC measurements from European boreal forests have been 

reported by Hov et al. (1983) and Janson (1993). Hove et al. found terpene concentration 

in a forest in Norway varying from 0.8 ppb to 7.1 ppb. Janson reported similar terpene 

concentrations in a pine forest in Sweden, maximum concentrations being ~ 8 ppb. 

Hakola et al. 2000 performed measurements of ambient biogenic VOC concentration in a 

northern part of Europe at a boreal site in Finland with mainly conifer tree species Pinus 

sylvestris and Picea abies, as well as  some deciduous trees: Betula pendula and Betula 

pubescens. The monthly average summer concentrations of isoprene were 0.3 ppb-1.7 

ppb and monoterpenes 1.6-3.2 ppb. For detailed comparison see Table 3.9. 
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ppb Ilomantsi 
1997 1) 

Ilomantsi 
1998 1) 

Fyodorovskoje 
2004 

Zotino 2004 Zotino 2005 

isoprene 0.228 0.35 1.54 0.56 0.56 
α-pinene 0.141 0.12 0.47 0.44 0.42 

camphene 0.35 0.09 0.07 0.11 0.09 
sabinene 0.43 0.24 0.08 0.08 0.03 
β-pinene 0.28 0.22 0.17 0.05 0.06 
3-carene 0.39 0.26 0.07 0.15 0.09 
limonene 0.12 0.08 0.19 0.13 0.04 

1) For detailed reference see Hakola et al. (2000). 

Table 3.9 Comparison of monthly means of isoprene and monoterpene concentrations 

obtained during measurements at Ilomantsi (July 1997 and July 1998) with mean 

isoprene and monoterpene from measurement campaigns in 2004 and 2005. 

 

Results obtained from comparison showed a difference in biogenic VOC 

concentrations. This difference shows that many factors affect emissions such as 

temperature, light intensity, plant phenology, injury, stress, etc. (Kesselmeier and Staudt, 

1999), making emission inventory difficult. Ambient measurements of biogenic 

compounds in different environments can help in estimating the performance of such 

inventories. All the compounds detected, i.e. isoprene and monoterpenes, can be regarded 

as species which have an impact on aerosol formation as well as being targets for 

oxidants, and hence can end up in source compounds for organic aerosol particles. 

Without a better understanding of the processes leading to the emission of isoprene and 

monoterpenes, estimations of emissions remain uncertain. The data obtained provided 

information on the natural variability of isoprene and monoterpene concentrations from 

the Siberian region. 
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4. Airborne measurements of VOC and calculation of fluxes. 
 
ABSTRACT 
 
Flight measurement campaigns by means of different aircraft were carried out over 

Siberia region in 2004 and 2005 in two locations: Fyodorovskoje, 300 km to the west of 

Moscow and Zotino, 500 km to the north of Krasnojarsk in the central Siberian region. 

Vertical profiles of Biogenic Volatile Organic Compounds (BVOCs), ozone, CO2, 

humidity and temperature were obtained. This chapter describes a series of flight 

campaigns using aircraft to measure BVOC in the atmospheric boundary layer and in a 

free troposphere. These experiments have been done as part of the TCOS project 

campaign over poorly investigated Siberian regions. Results of VOC concentration 

measurements and BVOC flux calculations by a simplified budget approach method are 

discussed. The range of fluxes obtained varies between 1.39-4.99 mgCm-2h-1 for isoprene 

and 0.49-4.97 mgCm-2h-1 for the sum of monoterpenes. 

 
      
4.1 INTRODUCTION 

The composition of the atmosphere system is largely a product of biological 

activity at the surface. Over 90% of the total volatile organic compounds (VOC) entering 

the atmosphere are biogenic (Guenther et al 1995). Most of the BVOC entering the 

atmosphere as a result of emissions from terrestrial ecosystems are highly reactive. 

Among the major biogenic emissions isoprene and terpenes, especially monoterpenes, are 

the most abundant. They react easily with ozone, OH and NO3 radicals.  

 

Most of the BVOC measurements have been performed at the surface or above 

the canopy of the forests. These may be biased by nearby emission and deposition 

processes. However, to judge the impact of BVOC, one important part of the information 

is the quantification of their fluxes. It is desirable to verify larger scale fluxes with 

measurements as well (Spirig et al., 2004).  

  

About 2.4 PgC of the BVOC per year is emitted into the atmosphere and most of 

them are oxidized to CO or CO2. This carbon is regarded as a loss of carbon 
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photosynthetically. The importance of this loss is controversial. The impact of the 

oxidation of biogenic hydrocarbons on the atmosphere was first noted by Went, 1960. 

This carbon contributes several percent of the total flow of carbon between landscapes 

and atmosphere (Went, 1960) but the carbon was mentioned as a potentially significant 

term in analyses of carbon budgets (Clark 2001, Kesselmeier et al., 2002b). On the other 

hand, the global average for vegetative surfaces (NPP) is about 7 gC m-2 per year but 

could exceed 100 gm-2 per year at some tropical locations. The magnitude of these fluxes 

on both the landscape and global scales are small relative to the total carbon emission or 

deposition, but are significant relative to the net fluxes (Guenther, 2002). However, it 

should be keep in mind that hydrocarbon fluxes are very sensitive to biosphere changes 

and may vary significantly due to future perturbations.  

 

4.2 Land ecosystems and carbon cycle 
Land ecosystems are regarded as the most substantial global carbon sink besides 

the ocean. Higher plants acquire CO2 by diffusion through tiny pores (stomata) into 

leaves and thus to the sites of photosynthesis. The total amount of CO2 that dissolves in 

leaf water is about 270 PgC/yr, i.e., more than one-third of all the CO2 in the atmosphere 

(Farquhar et al., 1993; Ciais et al., 1997). Around 120 PgC/yr is fixed by the 

photosynthesis carbon dioxide assimilation of green vegetation (Ciais et al. 1997; 

Prentice et al. 2001). The amount that is “fixed” from the atmosphere, i.e., converted 

from CO2 to carbohydrate during photosynthesis, is known as gross primary production 

(GPP). This is also the approximate value necessary to support observed plant growth, 

assuming that about half the GPP is incorporated into new plant tissues such as leaves, 

roots and wood, and the other half is converted back into the atmosphere. About half of 

this total carbon is released back to the atmosphere through plant respiration (autotrophic 

respiration, Ra), leaving about 60 Pg C/yr. This annual plant growth, which is the 

difference between photosynthesis and autotrophic respiration, is referred to as net 

primary production (NPP). About 50 Pg C/yr of NPP returns to the atmosphere via 

decomposition of plant matter and soils. Estimates from remote sensing and atmospheric 

CO2 data (Ruimy et al., 1994; Knorr and Heimann, 1995) concur with this value, 

although there are large uncertainties in all methods. Eventually, virtually all the carbon 
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fixed in NPP is returned to the atmospheric CO2 pool through two processes: 

heterotrophic respiration (Rh) by decomposers (bacteria and fungi feeding on dead tissue 

and exudates) and herbivores; and combustion in natural or human-started fires (Figure 

4.1), which ultimately results in the net land uptake of carbon, termed the net biome 

production (NBP). NBP is estimated to range around 0.2 ± 0.7 Pg C/yr for 1980–1989 

and 1.4 ± 0.7 Pg C/yr for 1989–1998. Due to the small ultimate residual sink, each flux of 

carbon into and out of terrestrial ecosystems should be investigated and accounted for to 

allow estimates for the processes involved in carbon sequestration in the biosphere. A 

substantial amount of carbon is re-emitted as volatile organic compounds (VOC) by 

terrestrial vegetation (Fehsenfeld et al., 1992; Guenther et al., 1995; Kesselmeier and 

Staudt 1999, Kesselmeier 2002b). The amount of carbon emitted by plants as isoprene, 

probably the most substantial fraction of isoprenoid emission, accounts for up to 2% of 

NPP in most cases, but can reach higher values (15–50%) under special conditions 

(Sharkey et al., 1991a, 1991b, 1996; Sharkey and Loreto, 1993; Harley et al., 1999) 

 

 
 
 
Fig 4.1 Terrestrial ecosystems and their carbon sinks. 
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4.2.1 Forests 

Deforestation has been responsible for almost 90% of the estimated emissions due 

to land-use change since 1850, with a 20% decrease in the global forest area (Houghton, 

1999). Deforestation appears to be slowing slightly in tropical countries (FAO, 1997; 

Houghton, 2000), and some deforested areas in Europe and North America have been 

reforested in recent decades (FAO, 1997). Managed or regenerated forests generally store 

less carbon than natural forests, even at maturity. New trees take up carbon rapidly, but 

this slows down towards maturity when forests can be slight sources or sinks (Buchmann 

and Schulze, 1999). To use land continuously in order to take up carbon, the wood must 

be harvested and turned into long-lived products and trees must be re-planted. The trees 

may also be used for biomass energy to avoid future fossil fuel emissions (Hall et al., 

2000). Analysis of scenarios for future development show that expanded use of biomass 

energy could reduce the rate of atmospheric CO2 increase (IPCC 1996; Leemans et al., 

1996; Edmonds et al., 1996; Ishitani et al., 1996; IPCC, 2000). IPCC (1996) estimated 

that slowing deforestation and promoting natural forest regeneration and afforestation 

could increase carbon stocks by about 60 to 87 PgC over the period 1995 to 2050, mostly 

in the tropics (Brown et al., 1996). 

 

4.2.2 Net Ecosystem Production 
Net ecosystem production (NEP) is the net accumulation of carbon by the 

ecosystem. It is the balance between carbon which enters and leaves the ecosystem. Most 

of the carbon enters the ecosystem as gross primary production and leaves through other 

processes (heterotrophic respiration, leaching, plant volatile emissions, methane flux and 

disturbance. NEP is an important representative parameter, which explains to us the 

increment of carbon stored by the ecosystem. NEP determines the impact of the 

biosphere on their quantity of CO2 in the atmosphere. NEP is determined by factors that 

cause an imbalance between carbon gain and loss. NEP varies with season, time since 

disturbance, inter-annual variation in weather, and long term in the environment. High-

latitude ecosystems are a net carbon source and carbon sink in cool years. The direct 

components of NEP show large temporal variation. Disturbances such as fires and forest 

harvesting are less important at other times. In ecosystems that have not recently 
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experienced disturbance, NEP is a small net difference between two large fluxes: 

photosynthetic carbon gain and carbon loss through respiration and leaching. During the 

season of peak plant growth, NEP is positive because photosynthesis exceeds respiration. 

In winter, when photosynthesis is low, NEP is negative and it is mainly due to 

heterotrophic respiration.  There is a necessary functional linkage between NPP and 

heterotrophic respiration. NPP provides the organic material that fuels heterotrophic 

respiration, and heterotrophic releases the minerals that support NPP. At a steady state, 

NEP equals zero, regardless of carbon input or climate. Leaching of dissolved organic 

carbon (DOC) and dissolved inorganic carbon (DIC) to ground water and streams is a 

quantitatively important avenue of carbon loss from some ecosystems. Lateral transfer of 

carbon into or out of ecosystems can be important to long-term carbon budgets of 

ecosystems. Carbon can move laterally in ecosystems through erosion, deposition by 

wind, and in water. Disturbance is an episodic cause of carbon loss from many 

ecosystems. Disturbances such as fires, harvesting of plants or peat can be a major way of 

carbon losses from ecosystems at the time when they occur. 

 

Because of the sensitivity of NEP to succession status, NEP estimated on the 

regional scale depends on the relative abundance of stands of different ages. NEP on the 

regional scales is termed Net Biome Production (NBP) (Schulze et al. 2000). At times of 

increasing disturbance frequency, NBP is likely to be negative. Conversely, areas that 

have experienced widespread abandonment of agricultural lands in the last century, as in 

Europe, may experience a positive NBP. 

 
4.2.3 Net ecosystem exchange (NEE) 

Net ecosystem exchange (NEE) provides a direct measure of the net CO2 

exchanged between ecosystems and the atmosphere. One of the main problems in NEE 

measurements is that we cannot measure most of the component processes directly. Only 

some components of the ecosystems can be measured, such as accumulation of plant 

biomass. An important tool in improving our estimates of NEP has been an enhanced 

ability to measure NEE, which is the net exchange of CO2 between the ecosystem and the 

atmosphere. For long period measurements such as intervals of 30 minutes, NEE is equal 

to NEP. We can estimate that NEE is the balance between GPP and ecosystem respiration 



 
 

 
 - 80 - 

(Reco), which is the sum of plant respiration (R plant) and heterotrophic respiration (R 

hetero). 

NEE= GPP – (R hetero + R  plant)= GPP – R eco        Formula 4.1 

 

NEE which excludes flux associated with disturbance and leaching is the largest 

component of NEP in most ecosystems. GPP (net photosynthesis) is zero in the dark, so 

NEE is a direct measure of ecosystem respiration (R ecosyst) under these conditions. 

 

NEE dark= -R eco                      Formula 4.2 

 

The total diurnal R ecosyst can be estimated from simple models of R ecosyt as 

an exponential function of temperature. During the day, NEE is approximately equal to 

the sum of GPP and ecosystem respiration. 

 

NEE light =GPP –R eco       Formula 4.3  

or  

GPP= NEE light + R eco       Formula 4.4 

 

As a result we are obtaining only an approximation, because mitochondrial 

respiration in leaves declines in the light, when much of the energy for metabolism comes 

directly from carbon fixation. 

 

4.2.4 Net ecosystem balance (NECB) 

Accordance to the suggestion of Lovett et al. (2006), NEP can be defined as GPP 

minus R eco. Defined in this way, NEP is conceptually simple and analogous to NPP 

(photosynthesis minus the respiration of primary producers). It can therefore be 

unambiguously incorporated into biogeochemical models and is independent of the 

continually evolving technology of measuring the components of ecosystem C budgets. It 

was proposed that the term net ecosystem carbon balance (NECB) be applied to the net 

rate of C accumulation in (or loss from [negative sign]) ecosystems. NECB represents the 
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overall ecosystem C balance from all sources and sinks, physical, biological, and 

anthropogenic: 

 
NECB = dC/dt 
 
Net fluxes of several forms of C contribute to NECB: 
 
 
NECB=-NEE+FCO+FCH4+FVOC+FDIC+FDOC+FPC       Formula 4.5 
 
Where 

NEE is the net ecosystem exchange (the net CO2 flux from the ecosystem to the 

atmosphere (or net CO2 uptake [positive sign]), 

FCO is net carbon monoxide (CO) absorption (or efflux [negative sign]);  

FCH4 is net methane (CH4) consumption (or efflux [negative sign]);  

FVOC is net volatile organic C (VOC) absorption (or efflux [negative sign]);  

FDIC is net dissolved inorganic C (DIC) input to the ecosystem (or net DIC leaching loss 

[negative sign]);  

FDOC is net dissolved organic C (DOC) input (or net DOC leaching loss [negative sign]);  

FPC is the net lateral transfer of particulate (non-dissolved, non-gaseous) C into the 

ecosystem (or out of [negative sign]) by processes such as animal movement, soot 

emission during fires, water and wind deposition and erosion, and anthropogenic 

transport or harvest. Extrapolation of NECB to larger spatial scales has been termed “net 

biome productivity” (NBP) (Schulze and Heimann, 1998). 

 
4.3 Experiment 

The experiment was performed during two measurement campaigns in 2004 and 

2005. More information about characterization of the meteorology, site location (maps) 

and biosphere composition can be found in Chapter 3. 

 

4.3.1 Measurements 

During the years 2004 and 2005, two measurement campaigns with cartridge 

sampling, flask sampling and in-situ CO2 measurements, as well as meteorological 

parameters, were performed using an Antonov 2 (AN- 2) aircraft. The measurements 
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were performed at selected locations. In 2004 airborne and ground measurements were 

taken in Fyodorovskoje and Zotino, and in 2005 in Zotino in Central Siberia. 

Measurements were performed during midday and late afternoon in the area of eddy 

covariance flux towers with cartridge sampling on the selected levels. 

 

 

Region Latitude; Longtitudes Date of campaigns 
Fyodorovskoje 56 28' N; 32 56' E 19-20.07.2004 

 
 
 

Zotino 60 45' N; 89 23' N  30-31.07.2004 
12-13.07.2005 

 
 

Table 4.1 Location and date of campaigns performed. 
 

 

Measurement flights were performed twice per day, i.e. one midday flight and one late 

afternoon flight. During each flight steel cartridges were sampled at different levels of 

altitude.  In the area of Fyodorovskoje, because of the limitation of the flight duration, 

cartridges were sampled only at three different altitudes. In the area of Zotino cartridges 

were sampled at four altitudes.  

 

The flight measurements are highly dependent on weather conditions. All flights were 

performed during high pressure weather conditions. In addition, the flights were affected 

by the fixed operational hours of the local operator and the availability of flight areas to 

the place of the measurements (military area). 

4.3.2.1 Atmospheric Boundary Layer  

The atmospheric boundary layer is defined as the part of the troposphere that is directly 

influenced by the presence of the earth’s surface, and responds to surface forcing with a 

time scale of about an hour or less (Stull, 1999). The typical height of the boundary layer 

top varies between 100 and 3000m. The process of boundary layer formation is 
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connected with solar heating. The solar heating causes thermal plumes to rise, 

transporting moisture, heat and aerosols. The plumes rise and expand adiabatically until a 

thermodynamic equilibrium is reached at the top of the atmospheric boundary layer. The 

moisture transferred by the thermal plumes forms convective clouds. Thereby the shallow 

night-time “stable boundary layer” (ABL), growing during daytime because of thermal 

conversion, converts into the “convective boundary layer” (CBL). 

 

 

Fig.4.2 Scheme of the CO2 fluxes and CBL behaviour on a summer day, showing CBL 

development from the nocturnal/stable boundary layer until the establishment of the next 

night-time boundary layer. 

 

After this process drier air from the free troposphere penetrates down, replacing rising air 

parcels. The part of the troposphere between the highest thermal plume tops and deepest 

parts of the sinking free air is called the entrainment zone. The convective air motions 

generate intense turbulent mixing. This tends to generate a mixed layer, which has 

potential temperature and humidity nearly constant with height. When buoyant 

turbulence generation dominates the mixed layer, it is called a convective boundary layer 
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(CBL). The lowest part of the boundary layer is called the surface layer. In windy 

conditions, the surface layer is characterized by a strong wind shear caused by friction.  

The boundary layer from sunset to sunrise is called the nocturnal boundary layer. 

It is often characterized by a stable layer, which forms when the solar heating ends and 

the radiative cooling and surface friction stabilize the lowest part of the CBL. Above that, 

the remnants of the daytime CBL form a residual layer. The nocturnal boundary layer 

may also be convective when cold air adverts over a warm surface. The atmospheric 

boundary layer can be used for the description of large areas (Rupach et al. 1993, Rupach 

1995, 1998, Cleugh et al. 2003).   

Based on this approach, several scientific groups started to measure parameters 

such as energy fluxes or fluxes of climatic relevant trace gases, by aircraft measurements 

on a larger scale (Lloyd et al. 2001, 2002; Levin et al. 2002, Ramonet et al. 2002). These 

investigations have been performed over large areas such as Siberia and the Amazon.  

4.3.3 Continuous Flight Measurements  

4.3.3.1 Airborne measurements 
For the accurate vertical profiling of VOC mixing ratios from 100 to 3000m 

above the canopy, an aircraft (Antonov-2) was employed equipped with the VOC 

sampler as used for the tower measurements. The twelve profiles reported here were 

obtained during the period of July-August 2004 and July 2005, just in advance of the 

intensive tower-based flux measurements. Six of these profile measurements were made 

around midday (10:00–12:00 local time, LT), and six profile measurements were 

conducted in the late afternoon (16:00–18:00 LT). For each of the 12 respective flights, a 

similar flight path and schedule were used. The measurements were performed in two 

locations. In the first location, after take-off at the airport of Tver and transfer at an 

altitude of 200 m to the Fyodorovskoje tower site, the profile flight schedule consisted of 

a continuous profile upwards, from 100m to altitudes of 3000m above the canopy, 

followed by 2–4 samples collected within the CBL for MLG flux calculations on each 

flight. The GPS system tracked the aircraft position in longitude, latitude, and altitude. 

However, transfer of GPS data abroad from Russia was strictly forbidden. In the second 
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location, the plane took off from the Podkamiennaja Tunguska airport, flying according 

to the same scheme as in the first location. Each of these flight legs allowed for a 20 min 

cartridge sampling interval (at flow rates of 200 ml min−1). Each flight path covered a 

length of ca. 25 km to provide sufficient integration time to average spatially over at least 

several eddies, in order to obtain representative mean CBL concentration profiles. The 

VOC sampler for solid sorbent cartridges provided the collection of samples on selected 

types of adsorbents that were analysed by GC-FID to cross-check identification and 

quantification of VOC species. The CO2 mixing ratio was measured by an infrared gas 

analyser (Licor 6251) setup according to Lloyd et al. (2002). After take-off, ambient air 

from outside the aircraft was continuously drawn through a ca. 5m long 1/4” Teflon tube. 

The inlet end was forward of all engines in a selected position to minimalize the 

possibility of sampling exhaust gases, and was equipped with a Teflon filter of 2 μm pore 

size that was replaced prior to each flight. To avoid possible ozone interference, an ozone 

scrubber consisting of multiples layers of MnO2-coated copper mesh (Type 

TO341FC003, Ansyco, Karlsruhe, Germany) was mounted in the sample line ahead of 

the VOC sampler. 

 

4.3.3.2 Trace gas collection and analysis 

For all the measurements, ambient air samples were collected on solid adsorbents 

for off-line analysis in the lab. The airborne samples were collected on 2-bed graphite 

carbon adsorbents and analysed using a thermal desorption gas chromatograph with a 

flame ionization detector (GC-FID) as described in Kuhn et al. (2002; 2004). For the GC-

FID technique, calibration was accomplished by use of different gaseous standards 

containing isoprene, several n-alkanes, methyl vinyl ketone (MVK), and methacrolein 

(MACR). The detection limit of the method was estimated as the greater of the variability 

in the blank levels (at the 95% confidence level) or a chromatographic peak three times 

the noise for each compound, and was typically 25-30 ppt for isoprene and 10 ppt for 

monoterpenes. Hence, typical uncertainties reached 10% for isoprene at 1 ppb and ranged 

from 5 to 30% at 100 ppt for monoterpenes, depending on the individual monoterpene 

peak resolution and blank variability. 
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Retention features and a selection of biogenic VOCs, their degradation products, 

calibration and quality assurance procedures are described in detail in Ciccioli et al. 

(2002). Dominant monoterpene species detected by solid adsorbent analytical systems 

(CG-FID) were isoprene, α-pinene, camphene and limonene. 

 

Deviations from an ideal atmospheric gradient may be observed if the sample 

collection period is shorter than the average convective turnover time, i.e., if sampling 

times do not integrate over several large eddies. With typical horizontal wind speeds of 3 

m s−1, and the scale of some convective eddies being as large as the CBL depth, 

minimum sample times of 15–30 min, or a length of several hundred meters are needed to 

be integrated over a representative air mass (Lenschow et al., 1980; Lenschow and 

Stankov 1986).  

 

4.4. Flux estimation by box model method. 

For flux estimation a simplified mixed-layer scalar conservation equation was used which 

can be written as: 
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      Formula 4.6 

 

where C is the mean scalar mixing ratio, U is the mean horizontal wind, t is time, x is the 

horizontal axis aligned with the mean wind, zi is the height of the mixed layer capping 

inversion, (wc)zi and (wc)o are the turbulent vertical fluxes of scalar C at the inversion and 

the surface, respectively, and S is a source or sink of the scalar in the mixed layer. This 

simplified form assumes that turbulent horizontal fluxes and mean vertical advection are 

negligible and that the vertical flux profile in the mixed layer is linear. These assumptions 

are all commonly satisfied in a well-mixed convective boundary layer. 
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In this simple box model (BM) estimate of the biogenic hydrocarbon emissions, 

we assume that the mean mixing ratio has reached a steady state and is homogeneous in 

space, entrainment flux (wc)zi is negligible and the hydrocarbons are oxidized primarily 

by OH and O3 so that the oxidation rate L(s-1) is defined as ][][ 303OkOHkOH + where kOH, 

k
3O  are reaction rate constants and OH and O3 are mixing ratios of hydroxyl radical and 

ozone, respectively. Given these assumptions, it becomes 

 

ziLCwc o =)(           Formula 4.8 

 

where C is interpretive, as a mixed layer average. 

 

However, there are limitations to these simplifying assumptions. We can evaluate 

the errors in the fluxes which stem from neglecting the entrainment flux (wc)zi, time rate 

change zi( ∂ C/ ∂ t) and advection ziU( ∂ C/ ∂ x) terms. Estimation entrainment was done 

using a simple jump model [Lilly, 1968]. Since the lifetime of biogenic VOC is fairly 

short, it was assumed that their mixing ratio is zero above the boundary layer. The jump 

in VOC mixing ratio across the planetary boundary layer top is then roughly the mean 

boundary layer mixing ratio. The entrainment flux is given by the product of the jump in 

mixing ratio and the mixed layer growth rate (typically 0.05 ms-1 during the day). Since 

entrainment dilutes the mixed layer, neglecting entrainment in the box model causes a 

systematic underestimate of the surface flux. The underestimate is at most about 1 mg C 

m-2h-1 for isoprene, 0.2  mg C m-2h-1 for α-pinene, 0.1 mg C m-2h-1 for β-pinene.  

 

The mixing ratio time rate of change zi( ∂ C/ ∂ t) from advection ziU( ∂ C/ ∂ x) 

using these observations cannot be distinguished, but can be estimated as the magnitude 

of the sum of them by observing the evolution in the mean mixing ratio profile. The 

mixing should increase over the course of the day, neglecting advection. This would 

mean that the box model, which assumes a steady state, again underestimates the surface 

fluxes. The observations show significant but random trends in the mixed layer over the 

course of the day. This indicates that the steady state approximation is on the average 
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reasonable and that advection random in sign is the dominant term. The mean time rate of 

change in mixing ratio is about 0± 1 ppbC h-1 for isoprene and 0± 0.5 ppbC h-1 for α- and 

β-pinene. Multiplied by a typical zi, this implies an uncertainty of ± 0.4 mg C m-2h-1 

isoprene and 0.2 mg C m-2h-1 for α- and β-pinene in the box model surface flux estimates. 

 
Fig. 4.3 Mixed box technique used for VOCs flux calculation 

 

The next point was an analysis of the uncertainty in the inputs to our box model 

flux estimate. The largest source of uncertainty is the OH concentration needed to 

estimate the chemical loss L. An estimation of the chemical loss rate L, OH and ozone 

rate a coefficient was used (reported by Atkinson, 1990) and the ozone mixing ratios 

which were measured. 

 

The uncertainty of OH concentration at these sites is caused by lack of 

measurement data. However, OH concentration data for measurement periods were 

obtained from a model ECHAM 5. Jacobs et al. 1996 note that direct measurements of 

OH concentrations in rural areas tend to be lower than those computed from 

photochemical models. This is most probably because the models underestimate OH 

sinks which come from oxygenated VOC. 

  

][][]([)( 303 OkOHkVOCziwc OHo +=  Formula 4.9 
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4.4.1 OH radical concentration and coefficients  

As there are as yet no direct measurements of OH radical concentrations 

published for typical CBL, an attempt to infer concentrations was done using model 

Model ECHAM5/ MESSY (Jöckel et al. 2005). Results obtained from the model 

calculations were used in a further calculation of VOC fluxes. 
 

For the calculation of BVOC flux rate coefficients, as for isoprene and selected 

monoterpenes at 298° K temperature were used and are presented in Table 4.2 

 
 

  OH Ozone NO3 
  1012k 1018k 1012k 
  (cm3 molecule -1 s-1) (cm3 molecule -1 s-1) (cm3 molecule -1 s-1) 
Isoprene 101 12.8 0.68 
a-Pinene 53.7 86.6 6.16 
Camphene 53 0.9 0.66 
Sabinene 117 86 10 

 
Table 4.2.Rate constants k for the reactions with isoprene and selected monoterpenes 
with NO3 radical, OH radical and ozone (Atkinson et al., 2003, 2005) 
 
 
4.5 Results and discussion 

Two measurement campaigns in 2004 and 2005 were carried out in the middle of 

the summer season. Airborne profile measurements were carried out on two days during 

July 2004 at the Fyodorovskoje location, and four days in the period between July 2004 

and August 2005. In the first location weather conditions were mostly dry and sunny, 

with foggy mornings. In the second one the weather was mostly dry and very sunny with 

cumulus clouds from time to time. Back trajectories calculated using the Hybrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) model showed a consistent flow of 

air masses from the North-West (NW) in 2004 for Fyodorovskoje and South-West (SW) 

for Zotino in the measurement site throughout the experimental period. The air parcel 

back trajectories for the frame of the individual flights are shown in Figures 4.4, 4.5 and 

4.6, respectively. The trajectories showed no evidence of air having passed over the area 

of the city, nor over the area of large deforestation. 
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Figs 4.4, 4.5, 4.6 Backward trajectories calculated for selected flights (19.07.2004, 

20.07.2004 and 12.07.2005) by Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (NOAA/CMDL) 
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The selected site was chosen as representative of the forest ecosystem in a selected 

location. The CBL heights, calculated from direct measurements of temperature and 

humidity (see: Fig. 4.7.2-4.18.2), ranged between 1400 and 2200 m above ground level 

and were typical mixed layer gradient heights that are expected over Siberian forests. 

Isoprene and monoterpenes were observed and dominant biogenic VOC observed in 

ambient air. The mixing ratios of α-pinene, camphene and limonene were more or less at 

the same range and comprised the detected sum of monoterpene species. Other 

monoterpenes were detected at the detection limit and were not used in further 

calculations. The VOC species composition was very similar throughout the boundary 

layer, when a comparison was made between: 

 

(i) values from the tower-based measurements in the surface layer versus the data 

observed within the Convective boundary layer, and  

(ii) midday versus afternoon values.  

 

Figures 4.7.3-4.18.3 and 4.7.4-4.18.4 show vertical plots of the isoprene, α-

pinene, camphene and limonene mixing ratios observed above the canopy during aircraft 

measurements, which was inferred from surface layer profiles measured simultaneously 

at four different heights. Isoprene, α-pinene, camphene and limonene mixing ratios 

followed a clear diel pattern as a function of light and temperature (see also Rinne et al., 

2002; Kuhn et al., 2002, 2007). Mixing ratios for isoprene and the sum of three main 

detected monoterpenes (α-pinene, camphene and limonene) reached a maximum 3.7 

ppbC and 3.2 ppbC respectively. 
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4.5.1 Implications for the local carbon budget 

The total number of twelve VOC profiles between 100 and 3000m above the canopy 

level were obtained by airborne measurements. Table 4.1 gives an overview of all VOC 

measurements analysed by GC-FID.  

 

Region Date of 
campaigns 

Technique of analysis BVOCs detected  

Fyodorovskoje 19-20.07.2004 
 
 
 

GC-FID Isoprene and the sum of 
monoterpenes (α –pinene, 
camphene and limonene) 

Zotino 30-31.07.2004 
12-13.07.2005 

 

GC-FID Isoprene and the sum of 
monoterpenes (α –pinene, 
camphene and limonene) 

 

Table 4.3 Overview of technique used for VOC determination and BVOC detected 

 

The mean profiles of isoprene and α-pinene, camphene and limonene are plotted 

in Figs. 4.7.3-4.18.3 and 4.8.4-4.18.4; isoprene and monoterpenes showed similar 

characteristics, both declining strongly with altitude, ranging from 3.7 ppbC for 

isoprene and 3.2 ppbC for α-pinene to below the detection limit for both compounds 

above the CBL. The deviation from the mean values is attributable to the day-to-day 

variability in meteorological conditions, rather than to differences in the general trend 

of vertical profiles. The strongest concentration gradients were observed close to the 

surface source (forest canopy) where the sources of emission of VOC exist. The small 

amounts of isoprene and monoterpenes observed in the free troposphere above the CBL 

might be caused by the residual layer from the previous day. Another reason might be 

deep convection penetrating the CBL. The quasi-exponential attenuation during their 

upward transport within the CBL is controlled by the relative rates of chemical 

destruction and turbulent mixing of CBL. The similar patterns of isoprene and 

monoterpenes in the shape of vertical profiles demonstrate the similarities of:  

 

(i)       the environmental functions that are driving the emissions 

                 and 

(ii)       the atmospheric lifetimes under the prevailing oxidation regime.  
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In general the gradients during the afternoon flights were somewhat less pronounced 

compared to the midday flights. Meteorological conditions affected both CBL dynamics 

(processes of mixing), and emission rates. Smaller vertical gradients in the late afternoon 

may be explained by a reduction of VOC emission due to low radiation intensities close 

to sunset, rather than by enhanced convective mixing. 

 

4.5.2 VOC fluxes calculation by box model method (BM) 
 

VOC fluxes were calculated by the BM approach using the concentrations 

obtained in direct vertical profile measurements. All VOC measurements were 

accompanied by simultaneous (synchronized in time and sampling period) instruments 

such as humidity and temperature. The latter was assumed to have the least degree of 25 

uncertainties of the flux method applied in this study. Figures 4.19.1-4.19.3 show a 

comparison of the mean cycle of isoprene and monoterpenes obtained for all campaigns. 

Mean fluxes measured during the three campaigns using the BM approach are presented 

in Table 4.4  

 

sites Isoprene 
[mgCm−2h−1] 

SD Sum of monoterpenes 
[mgCm−2h−1] 

SD 

 
Fyodorovskoje 
(19-20.07.2004) 

 
2.01 

 
±0.64 

 
1.09 

 
±0.48 

 
Zotino 
(30-31.07.2004) 

 
3.13 

 
±0.85 

 
3.17 

 
±1.28 

 
Zotino 
(12-13.07.2005) 

 
3.80 

 
±1.02 

 
4.09 

 
±0.72 

 

Table 4.4 Mean fluxes and standard deviations (SD) measured during the three 

campaigns using the BM approach 

 

The maximum fluxes that were calculated with BM were 4.99 mgCm−2 h−1 for 

isoprene 4.97 mgCm−2 h−1 for the sum of monoterpenes. In general, flux estimates by BM 
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approaches were in reasonable agreement. The canopy scale fluxes, with an estimated 

footprint area of 50–100 km2, are assumed to be representative of the combination of the 

characteristic local-scale landscape elements in this area, including plateaus, rivers, 

slopes and valleys. The range of VOC flux values observed are difficult to compare due 

to unavailable data of fluxes for the Siberian region and were not reported previously in 

the literature. Measured vertical fluxes were roughly proportional to mixing ratios within 

the boundary layer, as expected for compounds whose atmospheric lifetime is 

substantially less than one day. Like isoprene, the monoterpenes were also emitted by the 

vegetation in a light-dependent manner. In agreement with previous studies, there is now 

increasing evidence that light dependence of monoterpene emissions can be generalized 

for deciduous tree species in temperate ecosystems (Staudt and Seufert, 1995; Ciccioli et 

al., 1997; Kesselmeier et al., 1996; Spirig et al., 2005; Dindorf et al., 2006). 
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Fig 4.19.1 
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Zotino 2004 

Fig 4.19.2 
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Zotino 2005 

Fig 4.19.3 

 

Figs 4.19.1-4.19.3 show isoprene (green rectangle) and the sum of monoterpenes (red 

rectangle.) flux rate [mg C m-2 h-1] (mean value with standard deviation of the 

measurements); triangles represent the calculation for a single flight during the 

measurement campaign.  
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4.5.3 Comparison with tower-based measurements and NEP, GPP and NEE 

4.5.3.1  Eddy covariance measurements and NEE 

BVOC flux measurements for two sites have been compared. Results obtained 

from eddy covariance measurements of CO2 (Fig 4.20.1-4.20.3) during the day and night 

generally showed a diurnal cycle. The final goal of any eddy covariance NEE flux 

partitioning algorithm is to estimate R eco and gross primary production (GPP) from the 

NEE according to the definition in Formula 4.1. These flux-partitioning algorithms can 

be classified as those that use only (filtered) night-time data for the estimation of 

ecosystem respiration. These general approaches have been compared by Falge et al. 

(2002), resulting in generally good agreement, except in ecosystems where large soil 

carbon pools exist. Under those conditions, the light-curves derived from daytime data 

may not well represent the respiratory processes during night-time. Moreover, regressions 

of light-response curves sometimes tend to yield unstable parameters . The starting point 

of this analysis was half-hourly eddy covariance CO2 flux data from sites and vegetation 

types listed in Chapter 2. Only original data were used in this analysis. All night-time 

data with non-turbulent conditions were dismissed based on the u*-threshold criterion 

(Aubinet et al., 2000). The u*-threshold was derived specifically for each site using a 

criterion similar to the 95% threshold of Reischstein et al. 2002. For five selected days of 

the month during which measurements were performed, NEE plots were prepared (see 

Fig 4.20.1-4.20.3). In accordance with formula 4.2, where NEE is a direct measure of 

ecosystem respiration (R ecosyst) under these night-time conditions, a calculation of NEE 

for all sites was done. Night-time data were selected according to a global radiation 

threshold of 20Wm-2, cross-checked against sunrise and sunset data derived from the 

local time and standard sun-geometrical routines, and defined as Reco for Fyodorovskoje 

NEE as 120.63±49.68 mgCm−2h−1, whereas for the Zotino site they were 59.44±23.14 

mgCm−2h−1, 52.68±20.31 mgCm−2h−1 in 2004 and 2005 respectively. 
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Fyodorovskoje 2004 

Fig. 4.20.1 
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Fig. 4.20.2 
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Fig. 4.20.3 

Figs 4.19.1-4.19.3 NEE calculations for 5 day period. 
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4.5.3.2 Gross Primary Production (GPP) and VOC fluxes 

In accordance with Formula 4.4 and GPP, the procedure for flux calculations was 

applied. The main point of this calculation was the question about reactive carbon 

released in the form of VOC, which also corresponds to gross primary production (GPP). 

BVOC were shown to account for as much as several per cent of the GPP, i.e. in case of 

isoprene: 1.07% for Fyodorovskoje in 2004, 1.77 and 2.1% for Zotino in 2004 and 2005 

and, in the case of monoterpenes, 0.58% for Fyodorovskoje in 2004, 1.79 and 2.15% for 

Zotino in 2004 and 2005 respectively. 
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Fig. 4.21.1 
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Fig. 4.21.3 

 

Figs 4.21.1-4.21.3 Comparison of GPP and isoprene and monoterpenes fluxes. 

Please note different scales on the left and right y-axes 
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4.6 Conclusion 

For understanding the effect of spatial and environmental gradients and the 

ecosystem NEE from eddy data and their relation with VOC, it is essential to estimate 

their main components, Reco, isoprene and monoterpene fluxes. At the moment a number 

of studies have been started using a novel technique such as PTR-MS (see Karl et al., 

2004 Ruuskanen 2006, Rinne, J., 2007). A quantitative understanding of the processes 

governing the release of BVOC (e.g. diurnal, seasonal changes) remains a major 

challenge, and future leaf and canopy level studies will be needed for realistic 

parameterizations/predictions that can readily be incorporated in existing emission 

models. The proposed studies will provide key information on the amount of atmospheric 

carbon sequestered by an important forest ecosystem. This information is crucial to 

understanding how ecosystems mitigate recent increases in atmospheric carbon dioxide 

concentration, and the potential of this mitigation to annual variation in climate and 

future climate change.  

 

The data obtained in this study bring together observations with computer models 

to provide better tools for analysing future trends in forest growth and carbon uptake. In 

particular, we will focus on how the process of VOCs mission influences the carbon 

cycle and how processes in the forest are affected by carbon that is realized as VOC. 
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5. Trace gas measurements by means of small aircraft in Poland. 
 
Abstract 
 
During the years 2002-2006 a series of regular long-lived trace gas measurements were 

performed in the lower troposphere over north-eastern Poland by means of small aircraft, 

as part of the EU-projects AEROCARB, TCOS-Siberia and CarboEurope-IP. The 

measurements were made about 60 km to the north of Bialystok (53°31’N, 22°40’E) in 

the area of the Biebrza National Park at intervals of 2-3 weeks. Continuous vertical 

profiles of temperature, humidity, pressure and CO2 mixing ratios were obtained, as well 

as mixing ratios of CO2, CH4, CO, H2, N2O and SF6 from flask analyses, which were 

sampled at altitudes of 300, 500, 1000, 1500, 2000, 2500 metres above ground level. The 

peak-to-peak amplitude of the seasonal cycle of atmosphere CO2 within the atmospheric 

boundary layer (ABL) of 19 ppm is about twice that which was observed in the free 

troposphere (11.2 ppm). ABL mixing ratios are larger than free troposphere values during 

winter time, and lower during the summer, reflecting the change of the continental 

biosphere from its source to a sink. CH4 mixing ratios do not show a seasonal variability, 

with the highest values in the ABL during winter. N2O, CO and H2 also show a slight 

seasonal cycle with similar phasing. In contrast, the measured mixing ratios of SF6 have 

exhibited a linear increase of 29% since the beginning of 2002 without any significant 

seasonal variations. The data obtained will be used in the process of trace gas change 

modelling. 

 

5.1 Introduction 
As described in Chapter 3, the main objective of the Aerocarb, TCOS and 

CarboEurope-IP projects was the development of methodologies and techniques to assess 

qualitatively and quantitatively the carbon budget on regional scales. One of the 

fundamental parts of the projects was the provision of data.  

 

During the last few years several theoretical studies have proposed the idea of 

using the atmospheric boundary layer for the description of larger areas (Klaassen, 1992; 

Raupach et al., 1993 and 1995; Denmead et al., 1996). Based on these studies several 
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scientific groups started to investigate trace gas ratios and their fluxes using aircraft 

(Crawford et al., 1996; Langenfelds et al., 1996; Desjardins et al., 1997; Nakazawa et al., 

1997; Lloyd et al., 2001 and 2002; Ramonet et al., 2002; Schumacher, 2005).  

 

The drawback of measurements from in-service aircraft such as MOZAIC 

(Thouret et al., 1998); NOXAR (Brunner et al., 1998) and CARIBIC (Zahn et al., 2002) 

is that trace gas profiles are often restricted to the vicinity of heavy-duty airports and are 

thus not representative of the background atmosphere (Fischer et al., 2006). On the other 

hand, campaign-based data sets (for recent compilation see Emmons et al., 2000) usually 

provide limited information about seasonal cycles and spatial variations. Here, a series of 

long-term observations by means of small aircraft are presented, which gives an overview 

of the seasonal change in trace gases. 

 

The existing and potential feedbacks between the terrestrial ecosystem processes 

and atmospheric CO2 concentrations remain a major uncertainty in our understanding of 

the global carbon cycle. The balance of photosynthesis and ecosystem respiration appears 

to be strongly influenced by inter-annual variability in climate with discernible effects on 

the CO2 concentration.  

 

 In the atmosphere the gases are characterized by different mixing ratios as well as 

different contributions to the greenhouse effect. The amount of the individual gas species 

is dependent on time and space. The major force of trace gas mixing ratios in the 

atmosphere is the balance between sources and sink. This balance is highly dependent on 

biological and chemical activity, the potential reaction of reactive species present in the 

atmosphere, and the synoptic pattern. The occurrence of trace gases in the atmosphere is 

mainly dependent on three factors (Vickers and Mahrt, 1997): 

-     the nature of the sinks and sources, 

- their magnitude and persistence, 

- their distribution. 
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Of all the gas species observed, CO2 is the one which is present in the atmosphere 

with the highest mixing ratio and which shows the most pronounced periodicity. For the 

year 2000 the global average of the volume mixing ratio was calculated to be 368 ppm 

(Keeling et al., 2005), with higher absolute values and a bigger seasonal variation in the 

northern hemisphere. These changes are caused by the fact that the strongest sources and 

sinks are located in the continental landmass of the northern hemisphere (Ciais et al., 

1995; Prentice et al., 2000).   

 

The main significant terrestrial sources are the respiration of autotrophic and 

heterotrophic organisms, use of fossil fuels by the transport industry and households               

(Wittenberg et al., 1998; Anders et al., 1999). Today, we know that CO
2 
has increased from 

its preindustrial level of 280 ppm to more than 380 ppm today. This increase has been 

demonstrated by Keeling’s measurements of carbon dioxide starting in 1958 at Mauna Loa, 

Hawaii and by the first CO
2 

measurements on air bubbles entrapped in Antarctic ice analyzed 

in the early 1980s at the Climate and Environmental Physics in Bern (Neftel et al. 1985). This 

data set forms perhaps the most important geophysical record of the century. Meanwhile, the 

CO
2 
increase has been confirmed by other laboratories analyzing several different ice cores.  

 

Besides, for CO2, air samples were analysed for the mixing ratios of five 

additional gases: CO, CH4, N2O, H2 and SF6, which have direct and indirect greenhouse 

warming potential. Brief characteristics for atmospheric trace gases i.e. sources and sinks, 

mixing ratio, average change and lifetime are presented in Table 5.1. 
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Mixing ratio  
 

      

before 
industrial 
revolution 

'1750' 

Present 
 
 

Average 
change 

rate 3 (yr-1) 
 
 

Lifetime in the 
atmosphere 

(yr-1) 
 
 

sources 
 
 
 

sink 
 
 

 

CO2 

 
 

280 ppm 
 
 

268 ppm 
 
 

1,6 ppm 
 
 

50-200 
 
 

-combustion, 
-respiration, 
-CO oxidation. 
 

 
-assimilation/ 
organic material, 
-carbonates. 
 

CO 
 
  

95 ppb 
 
 

0.4 ppb 
 
 

0.2 
 
 

 
-combustion, 
-oxidation of CH4 and 
VOC, 
-soils 
 

-oxidation to CO2, 
-uptake by soils. 
 
 

CH4 

 

 
 

700 ppb 
 
 
 

1784 ppb 
 
 
 

8 ppb 
 
 
 

7.9 
 
 
 

 
-bacteria (swamps, 
bogs, landfills, rice 
fields), 
-ruminants, biomass  
burning 
 
 

-oxidation to CO 
and H2. 
 
 
 
 

N2O 
 

270 ppb 
 

314 ppb 
 

1 ppb 
 

122 
 

 
-nitrification and 
denitrification in soils 
 

-only stratosphere. 
 

H2 

 
  

531 ppb 
 
  

1.9 
 
 

 
-CH4 oxidation, 
-combustion of fossil 
fuels 
 

-uptake by soils. 
 
 

SF6 

 

 
 

0 ppt 
 
 
 

4.2 ppt 
 
 
 

0.25 ppt 
 
 
 

3200 
 
 
 

 
-anthropogenic: 
insulation for glass 
filling, 
-high voltage plants, 
aluminum production 
 

-chemically inert. 
 
 
 

 

Table 5.1. Characterization of measured trace gases. 

 

5.2 Isotopic signatures in Carbon Dioxide 
 Stable isotopes can be used to distinguish and estimate the contribution of 

different sources of spatially and temporally varying quantities such as CO2 (Trumbore, 

1999). By the implementation of isotope analyses a difference between contributions by 

vegetation and by insertion of anthropogenic material might be achieved (Ciais et al., 

1995; Zondervan & Meijer, 1996; Bakwin et al., 1998). 
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The standards which were used during this study are the V-PDB (Vienna 

PeeDeeBelemnite) for delta 13C and the V-SMOW (Vienna Standard Mean Ocean Water) 

for delta 18O. 

5.2.1 13C in Carbon Dioxide 
Under normal conditions plants tend to assimilate the lighter CO2 molecules more 

easily than those containing the heavier 13C isotope. By this process the ratio of the 

carbon isotopes changes, compared to the original air. Plants contain more of the 12C 

isotope, whereas the concentration of the heavier 13C isotope increases in the ambient air 

(Lloyd & Farquhar, 1994; Flanagan, 1996).  A less negative delta 13C value indicates the 

assimilation rate of the plant (Trolier et al., 1996; Trudinger et al., 1999). On the other 

hand CO2 in respired air from plants is depleted in 13C relative to the atmospheric CO2, 

which leads to a dilution resulting in a more negative delta 13C 

value (Levin et al., 1995; Kaplan et al., 2002). 

 

CO2 in baseline air has a delta 13C value about -80/00 with a seasonal cycle 

amplitude of 0.05 in the southern hemisphere and 0.80/00 in the northern hemisphere. 

For 13C a direct relationship is reflected by the CO2 mixing ratio: a reduction of 

the CO2 mixing ratio with a simultaneous enrichment in 13C indicates an uptake by 

vegetation. On the other hand an increase in the CO2 mixing ratio and a depletion of 13C 

can be attributed to the consumption of organic material. 

   

The basic Keeling plot approach is used for determination of the carbon isotope 

composition of the source. The atmospheric concentration of a gas in the canopy and 

adjacent boundary layer reflects the combination of some background atmospheric 

concentration and variable amounts of that gas added by sources in the ecosystem, 

ca=cb + cs                formula 5.1 

 

where ca,cb and cs are the atmospheric CO2 concentrations measured in the ecosystem, the 

background CO2 concentration, and the additional concentration component produced by 

the source, respectively. 
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For the isotopic ratio, giving a conservation of mass: 

 

δ13 Ca ca = δ13Cb cb+ δ13Cs cs    formula 5.2 

 

where δ13C represents the carbon isotope ratio of each CO2 component respectively. 

Combining formulae 5.1 and 5.2 

 

δ13Ca= cb(δ13Cb-δ13Cs)(1/ca)+ δ13Cs   formula 5.3 

 

where δ13Cs is the integrated value of the CO2 source in the ecosystem. 

 

The background should be represented by the tropospheric δ13C ratio (global 

average -80/00), while the ground source/sink can be characterized by its specific carbon 

isotope discrimination, which can be easily calculated from the intercept of the linear 

regression between the carbon isotope ratios and the inverse of CO2 mixing ratio 

(Keeling 1958, 1961; Pataki et al., 2003).     

5.2.2 18O isotopes in CO2 
Changes of δ18O in the atmospheric CO2 are induced by plants, similar to the carbon 

isotopes. There exist three main sources of 18O in atmospheric CO2: 

 

- oxygen from soil water taken up by plants, 

- oxygen that exchanges with the CO2 of the ambient air,  

- oxygen from CO2  released by photorespiration. 

 

During the formation of precipitation more 18O condenses, hence the remaining 

water vapour becomes lighter, whereas the δ18O of the cloud water increases during 

ageing   (Ciais et al., 1997). Atmospheric CO2 enters the plants through the stomata. The 

uptake is restricted by a diffusive kinetic isotope effect, but on the other hand only a few 

of the oxygen atoms are fixed via photosynthesis (Flanagan et al., 1997).   
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Plant activity and also soil-respired 18O contributes to the δ18O ratio of the 

atmospheric CO2. Therefore estimates of this rate have to be taken into account when 

calculating the fraction of plant activity (Miller et al., 1999).  

5.3 Material and methods 
Measurements were taken near Bialystok, about 60 km to the north in the area of 

the Biebrza National Park, which is situated in the north-eastern part of Poland, in the 

Podlaskie Region. The north-eastern border of the park is situated close to the Belarusian 

border and to the south, the boundary of the park is the confluence of the Narew and 

Biebrza rivers. The Biebrza National Park was established in 1993 and with a total area 

of 59,223 ha. is the largest of the Polish national parks. The Park area includes 5,075 ha. 

under strict protection because of marshes and peat lands, unique in Europe, as well as its 

highly diversified fauna. The main type of ecosystem is forest, agricultural land and 

wetlands. With the exception of the mountains, this area has a reputation for being the 

coldest region in Poland. Its climate can be characterized as a combination of continental 

and sub-boreal. These overlapping characteristics are due to the wide marshy areas that 

condense moisture on a very large scale and the valley`s unique geological formation. 

The Biebrza valley is characterized by long winters and a short vegetation growth period. 

The average year-round temperature is one of the coldest of this type of lowland, the 

coldest month being February, with temperatures dropping to as low as -50C. Winters can 

last up to 117 days with average maximum temperatures below zero. Snow cover can last 

up to 140 days in the upper basin with a slightly lower timespan in the southern basin. 

During the spring and autumn, a range of 57 to 66 frosty days is average. July is the 

hottest month in the Biebrza valley with temperatures averaging out at 17.80C. The length 

of the summer ranges from 77 to 85 days, with daytime temperatures averaging 150C. 

Foggy nights and misty mornings are quite common and can be seen up to 70 days a year, 

and usually twice that in the peaty areas of the valley. The cool air of the surrounding 

uplands flows and touches the warm waters of the Biebrza, which is a quick catalyst for 

the condensation of water steam which givens the appearance of ground fog. 



 
 

 
 - 120 - 

 
 

 Fig. 5.1 Bialystok station location 

(Picture adapted from DFD: http://www.caf.dlr.de/caf/satellitendaten/bildergalerie/) 

 

5.4 Flight protocol   
Flask sampling and in-situ CO2 measurements were performed using a small 

aircraft Wilga (type: PZL-104). With an intended frequency of about 2-3 weeks, a local 

aircraft from Aeroclub Bialystok was employed for atmospheric measurements, flying 

out of the city of Bialystok. The flights took place at around noon or in the early 

afternoon during high pressure weather conditions. The plane was equipped with two 

independent systems, the first for air gas sampling (flask sampling unit) and the second 

for CO2 in-situ measurements with instruments for temperature, humidity (probe HMP 45 

D from Vaisala) and pressure monitoring (pressure transducer Bricon 411). The inlets of 

decarbon tubes (polyethylene-coated aluminium-6 mm diameter) were localized at the 

end of the wing. In this position it was considered that the chances of contamination from 

the exhaust pipe, located under the body of the aircraft at an angle of 35°, were minimal. 

Both lines were about 10 m in length. Only a few profiles are available for wintertime. 

The plane is not prepared for wintertime flights, due to lack of an anti-icing system.  
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5.5 CO2 in-situ measurements 

Atmospheric CO2 dry air mixing ratios were continuously analysed by a NDIR 

analyser system designed at the Max-Planck Institute for Biogeochemistry, Jena, and 

described in Lloyd et al., 2002. The system is based on a LICOR-6251 infrared gas 

analyser. The airflow through the LICOR was regulated at 1.5 L/min. The CO2 mixing 

ratio was calculated using the customized LiCor software, using the pressure and 

temperature of the cell. Two calibration gases and one zero gas, nitrogen, all in high-

pressure cylinders, were used to recalibrate the data regularly. Calibration gases of 360 

ppm and 380 ppm were prepared from ambient air and calibrated by the Institute für 

Umwelt Physik in Heidelberg. During each flight, calibration gases and nitrogen were 

used to flow through the LICOR at each flask sampling altitude. The flow amount was 

1.5 min for each calibration gas. 

 

5.6 Flask sampling 
At each flight altitude (300, 500, 1000, 1500, 2000 and 2500 metres), duplicate 

flasks were sampled. Flushing and filling each flask took six to seven minutes with the 

plane circling at a constant altitude in a square (2 km x 2 km) during this time. The air 

was sucked from the inlets at a rate of about 3-4 L min-1. Whole air samples were pre-

dried by passage through a stainless steel cartridge (diameter 1 cm, length 12 cm) filled 
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with magnesium perchlorate-Mg(ClO4)2 at ambient atmospheric pressure. The sample air 

was pumped into Duran glass flasks, 1L volume with Teflon PFA O-ring values (Glass 

Expansion P/L, Melbourne-Australia). A 1 mm filter PTFE was added at the end of the 

cartridge to avoid loss of material inside the sampling unit. All flasks were pressurized to 

0.9 atm above the ambient air (pump KNF-Neuberger, Germany, N86KNDC with EPDM 

membrane). 

 
5.6.1 Flask analysis 

Trace gas concentration analysis is done using two gas chromatography systems. 

The Gas Analysing Unit 1 (Fig. 5.2) covers the analysis of CO2, CH4 and N2O, whereas 

the Gas Analysing Unit 2 (Fig. 5.3) has been set up for quantification of SF6, H2 and CO. 

Both systems share an integrated flask analysis system allowing continuous, unattended 

operation with a flask throughput of 30 air-in-flask samples per day for dual analysis of 

all species covered. The sample gas is flushed through a ¼ inch tube (l=10 cm) filled with 

magnesium perchlorate to eliminate residual humidity from ineffectively dried samples. 

After flushing, the pressure inside the sample loops is equal with the to equilibrate to 

ambient air before the samples are injected on to the respective precolumns. After the 

analytes have passed their precolumns and entered their main columns, the Valco 10 port 

valves are switched back to back-flush the precolumns. After complete detection of CH4 

using GC Agilent 6890 with an FID detector, a valve is switched for directing the column 

effluent through a hot nickel catalyst. Here CO2 is converted to CH4 using hydrogen 

before detection with the FID.  
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Fig. 5.2 Gas Analysing Unit 1-MPI-BGC Jena. 

 

 

 N2O was separated from other air constituents in a parallel pre- and main column 

line and detected on ECD. The trace gas concentrations of unknown samples were 

inferred from intermittent measurements of precisely calibrated reference gases. Long-

term precision was controlled by routinely measuring a quality control standard air. The 

approach achieved average relative precisions of 0.07% for CH4 (1.3 ppb at atmospheric 

mixing ratio levels), 0.02 % for CO2 (0.08 ppm), 0.04% for N2O (0.13 ppb).  

 

For SF6, H2 and CO quantification, a GC Agilent 6890 with ECD detector was 

used for SF6 analysing and a trace Analytical RGA 3HgO detector for CO and H2. 

Average recording precisions were 0.3 % for CO (0.5 ppb), 0.5% for SF6 (0.03 ppt) and 

0.4% for H2 (2 ppb). Details of the instrumentation and experimental procedures are 

described in detail elsewhere (Jordan and Brand, 2001).  

 



 
 

 
 - 124 - 

For isotopic analysis, a customized CO2 extraction unit (BGC-AirTrap) was 

connected directly to an isotope ratio mass spectrometer (MAT 252, Finnigan MAT, 

Bremen, Germany). Gas samples were connected to the trapping line with a water trap 

(dry ice/ethanol) and a CO2 trap at -196°C in series. CO2 gas was measured directly from 

the volume of corresponding line via a capillary to the changeover valve of the mass 

spectrometer. About 600 mL of sample air was consumed. A correction for the 

contribution of N2O to the ion currents of CO2 were applied in the form of a mass balance 

calculation using the measured concentration of CO2 and N2O in the sample and 

reference air. Since the start of the measurements in October 2000, the precision of the 

values used between the working gas tank and the QA air standard on 'Matty' were 

0.013‰ (δ13C) and 0.023‰ (δ18O). In March 2002, the 2nd MAT252 ('Cora') started with 

routine measurements. The precision of both machines was very close. The absolute δ13C 

value of the QA reference gas on the VPDB scale was identical on both machines. This 

difference vanished over time. The overall agreement between the two independent 

machines was achieved without any machine-specific scale adjustmnt.  

 
Fig. 5.3 Gas Analysing Unit 2 MPI-BGC Jena 

 

 



 
 

 
 - 125 - 

5.7 Results and discussion 

5.7.1 Data selection 
The flasks were sampled during all flights. Part of those sampled from November 2002-

January 2003 and April-June 2003 were rejected from further anlysis. For those flasks a 

leakage in the transfer line was detected and an extremely high concentration of CO, CH4 

and H2 in flasks was observed. Results for those flights were rejected. 

year

2002 2003 2004 2005 2006 2007

BIA (Bialystok)

 
Fig. 5.4. Sampling frequency at the Bialystok measurement site. 

 

 

5.7.2 Vertical profiles of CO2, temperature and humidity 
Vertical profiles are shown in Figs. 5.5.1-5.5.8 respectively during autumn/winter 

time and in Figs. 5.6.1-5.6.8 during spring/summer time. On the virtual potential 

temperature a rapid increase in the potential temperature can be observed, which 

indicates the end of the BL (boundary layer). The end of the BL was also confirmed by a 

fast decrease in relative humidity. The relative humidity profiles show an increase in 

humidity until the end of the BL, then a decrease in relative humidity in the free 

troposphere. 
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5.7.2.1 Autumn/winter profiles 

Four vertical profiles, showing typical variability observed during late autumn 

and winter time (January) are presented in Fig. 5.5.1. In winter time, the top of the BL 

lies on an average lower than in summer. The profiles presented show that the top of PBL 

is usually about 500-800 m. The CO2 observed values for the profiles depends on the 

month of the year when the flight took place. On 24th January 2004 we observed high 

CO2 concentration, which systematically decrease up to the top of the BL. Then the CO2 

concentration seems to be quite stable to an altitude of 2100 m, then again increases. Two 

other profiles seem to be similar, first a quite stable concentration of CO2 can be 

observed, and then a tendency for CO2 to decrease with altitude was observed. 

 

Vertical profiles of the CO mixing ratio showed a tendency for a decrease in CO 

with altitude. An interesting point can be observed on the 24th January 2004 flight. We 

observed a high concentration of CO at an altitude of 2500 m, which is different from the 

pattern of the profile. This observation was accompanied by an increase in CO2 

concentration from an altitude of 2100 m. We suppose that the reason for this may be due 

to long-term transport.  

 

For the winter/autumn flights the profiles look very similar schematically. With 

the exception of this one flight on 24th January 2004 we observed an increase in values 

with altitude. The same pattern can be observed for 18CO2. 

 

Generally profiles for CH4 show the same tendency as profiles of H2. Profiles of 

H2 are shown in Fig. 5.5.5. The lowest concentration of H2 was observed on 17th October 

2003 at an altitude of 300 metres.     

 

5.7.2.2 Spring/summer 

Four vertical profiles represent those typically observed in the late spring and 

summer period, presented in Fig. 5.6.1. We can observe a lower, stable concentration of 

CO2 to the end of BL on the profiles, then a fast increase of CO2 at the beginning of the 

free troposphere and stabilization of CO2 concentration up to 2500 m. The lower mean 
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CO2 mixing ratio inside BL reflects the strong photosynthetic activity of plants during the 

summer months. In the profile from the flight on 12th August 2003, the atmosphere 

seems to be stratified. Generally, with the exception of a few flights, a good agreement 

between the profile structure of CO2 concentration and the flask results was observed. 

 

Vertical profiles of CO concentrations showed the structure for a higher 

concentration of CO in free troposphere, and then in BL.  

 

Spring/summer 13CO2 concentrations are shown in Fig. 5.6.7. Generally, this 

tendency shows an increase in values with altitude to more negatives. Variations in the 
18O of CO2 with altitudes are not as schematic as 13CO2. 

 

The CH4 concentration for summer/spring flights shows an accumulation of 

methane in the BL. For some profiles a similar concentration of CH4 can be observed for 

each altitude. 

 

Figure 5.6.4 shows the vertical structure of hydrogen concentration. Generally, 

concentration increases linearly with altitude. 
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Figs. 5.5.1-5.5.8. Typical profiles for autumn/winter time. For the continuous and flask 

profiles: red =17.10.2003 , green=03.11.2003, brown=24.01.2004, blue =09.02.2005. 
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Figs. 5.6.1-5.6.8. Typical profiles for spring/summer time. For the continuous and flask 

profiles: red =24.09.2002, green=12.08.2003, brown=12.05.2003, blue =12.05.2004. 
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5.8 Boundary layer 
 The convective boundary layer height depends on many factors. Generally, it 

depends on the time of year, day and synoptic condition. We tried to estimate the 

boundary layer heights for our flights, which are presented in Fig. 5.7. Our flights were 

made during good weather conditions at around noon or in the afternoon. The boundary 

layer was detected from profiles of temperature, water vapour and CO2. This 

calculation is necessary for separating each profile into PBL and free troposphere 

components. Typically for wintertime, the top of the boundary lies between 400-600 m, 

whereas for summer time the situation is more flexible. We can say that the boundary 

layer is between 1500m (1512 above ground level the lowest value observed) and 2300 

m (the highest value observed 2302 above ground level) for the summer period.   
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Fig. 5.7 Noon and afternoon boundary layer height vs. function time of year. Some 

flights are not presented because of difficulties with the estimation of CBL height. 

 

5.9 CO2 peak-to-peak amplitude 
 

For the Bialystok site the CO
2 

seasonal cycle peak-to-peak amplitudes have been 

calculated within the atmospheric boundary layer (CBL: 19 ppm) and the free 

troposphere (FT: 11.2 ppm). From these signals a calculation between CBL and FT was 

made, known as the CO
2 

'jump', which will be compared to the simulations from 

atmospheric transport models. An interesting point which should be noted is that the 
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‘jump’ of CO2 for CBL is faster after the winter season than the FT cycle and drops 

before the FT cycle. That process is connected with an accumulation of CO2 in the  

biosphere. 

 
 

 

 

 

 

 

 
 
 
 
Fig. 5.8 Seasonal CO2 jump calculated for Free Troposphere (FT) and Convective 
Boundary Layer (CBL). 
 
 

5.10 CO2 concentrations and comparison with other greenhouse gases 
 The data obtained were divided into two data sets. First, the results for the 

boundary layer and then for the results for the free troposphere.  

year
2002 2003 2004 2005 2006 2007

C
O

2[
pp

m
]

360

370

380

390

400

410

 
                Fig. 5.9.1 
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Fig.5.9.2 
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Fig. 5.9.5 
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Fig.5.9.6 
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Figs 5.9.1-5.9.8 Concentrations of CO2, CH4, N2O, CO, H2, SF6, δ13C, δ18O derived from 

collected flask samples.  
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 All components show distinct seasonal cycles except for SF6. In the case of CO2, 

regular seasonal changes of CO2 were observed associated with photosynthetic activity 

during the vegetation period, seasonal CO2 exchange and possible influence from 

anthropogenic emission. The lowest CO2 concentration was observed during the summer 

of 2002 (August 2002) and the mixing ratio was equal to 357 ppm, and for the maximum 

values we observed in the winter of 2002 (December 2002), the mixing ratio of CO2 was 

392 ppm. 
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Fig. 5.10 Mean CO2 concentration observed in the BL and FT at the Bialystok site for all 

flights. 
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Fig. 5.11 CO2 trend line (FT) calculated for the Bialystok site and comparison with the 

MBL reference line Mace Head (NOAA,CMDL). 

 

5.10.1 Seasonal variability of stable isotope ratios of carbon and oxygen in CO2 

The annual mean value mixing ratios show an increase in the CO2 mixing ratio 

and a corresponding decrease in δ13C. The δ13C source signature of this flux is calculated 

to have a value of -24.65 ‰±0.6‰, similar to other stations (Fyodorovskoje -26‰±1‰ 

Syktyvkar -27.8‰±0.3‰ and Zotino -27.1‰±0.4‰) (Levin I. et al., 2002). More 

positive of δ13C isotopes in flask samples in the BL than in the FT were observed during 

the summer months.  
                                                           1/CO2 

                            
 

Fig. 5.12 Seasonal variability of oxygen in CO2 (Keeling plot)( δ13C vs. 1/CO2) 
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This situation represents the enrichment of isotope concentration by 

photosynthesis. The reverse situation is characteristic in the winter months, when the 

CO2 mixing ratio is higher in BL than in FT.  

 

δ18O in CO2 data for BL and FT show a small depletion. A minimum of δ18O 

occurs in November 2003, whereas the maximum of δ18O is characteristic for the 

beginning of the growing period in May. 

 

 5.10.2 Seasonal variability of CO, CH4  
The trend of the seasonal cycle of CH4 with a maximum in the FT, was 

observed in winter and a minimum in the summer months. We noticed that for all 

flights the concentration of methane is higher in BL than in FT. In our opinion the 

situation is caused by local emissions from the marshland. An extreme situation in BL 

was observed during the winter flight (December 2003), when the concentration of CH4 

was 1951 ppb. Anthropogenic emission due to using a coal as the main source for 

heating of houses may be one of the main reasons responsible for this. 

 

5.10.3 Seasonal variability of N2O and SF6 

Our observations show a seasonal cycle of N2O with a maximum concentration 

during autumn time and a minimum in late spring. N2O natural and anthropogenic 

emissions from soils are generally at their maximum level in spring and early summer 

(Flessa et al., 1995; Schmidt et al., 2001). This process gives an increasing 

concentration of N2O in summer due to the atmospheric mixing process. 

 

SF6 is chemically a very stable and purely anthropogenic greenhouse gas, with 

about 80% of the global SF6 release presumably from leakage in insulation and 

switching, and 20% from degassing and the purifying of molten reactive metals (Maiss 

and Brenninkmeijer, 1998). Since the 1970s, atmospheric SF6 has been increasing 

globally at a rate of more than 6% per year (Maiss et al., 1996). At the Bialystok 

measurement station the concentration of SF6 increased to around 29% from the 
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beginning of 2002. For backward trajectories the analyses show that an increase in the 

SF6 concentration is observed during the transport of air masses from the Ukraine. 

5.11 Conclusions 
 

This study has demonstrated the appropriateness of multiple tracer analyses and 

proposed further perspectives for regional experimental investigation. There exist only 

a few measurements points in Poland for trace gas monitoring. Still, there are some 

uncertainties which require further observation. These are currently in progress as part 

of the CarboEurope atmospheric component project with high frequency observations, 

i.e. one flight per week. 
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Conclusion 

The present dissertation has focused on the measurement of volatile organic carbon 

compounds and their exchange through biosphere-atmosphere interactions, as well as 

their concentrations in the atmosphere. Also, a series of experiments to quantify local 

trace gas concentrations by using small aircraft was performed. 
 

In the case of VOC, the measurement and analysis of biogenic volatiles is a complex task 

in terms of qualitative and quantitative aspects, and a great variety of analytical 

techniques has been developed in the past few years. All measurements and analyses 

were performed with high accuracy, precision, and reproducibility of VOC. To 

investigate the atmospheric concentrations of VOC a new sampling instrument was 

developed. During two intensive measurement campaigns a series of sampling was 

performed over the poorly investigated Siberian region. These experiments comprised the 

sampling evaluation of VOC over the forest canopy and a series of airborne 

measurements. Sampling of volatile organics on graphitized carbon blacks, followed by 

thermal desorption and analysis by gas chromatography coupled to flame ionization 

detection was the approved method and confirmed the good choice of the method 

selected. The assessment of data on VOC concentrations is particularly crucial for the 

evaluation of biosphere-atmosphere exchange processes. As part of the experiments, 

consecutive field studies in the summers of 2004 and 2005 were performed. In the case of 

the first location, Fyodorovskoje, located at about 300 km NW of Moscow in European 

Russia, station measurements over the canopy of the forest showed that the isoprene was 

the dominant specie with an ambient concentration range of 0.4-3.2 ppb. Mean 

concentrations of isoprene oxidation products, i.e. methyl vinyl ketone (MVK) and 

methacroleine (MACR) were lower than 1 ppb. In the case of the second station, Zotino, 

located to the west of the Yenisei River, the dominant VOC species present in the air was 

isoprene (range 0.1 ppb-2.5 ppb) and monoterpenes such as α -pinene, camphene, 

limonene, and β-pinene with the mean concentrations around 1 ppb, which indicated the 

low oxidation capacity of the atmosphere. Results obtained from comparison showed a 

difference in biogenic VOC concentrations. This difference shows that many factors 

affect emissions such as temperature, light intensity, plant phenology, injury and stress, 
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making emission inventory difficult. Ambient measurements of biogenic compounds in 

different environments can help in estimating the performance of such inventories.  

 

In the case of all the airborne VOC studies, the atmosphere exchange of volatile organics 

and the results obtained from VOC fluxes showed the importance and relation of VOC to 

carbon studies. The proposed studies provided key information on the amount of 

atmospheric carbon sequestered by an important forest ecosystem. The range of fluxes 

obtained obtained by using a simple Box Model Technique varies between                  

1.39-4.99 mgCm-2h-1 for isoprene and 0.49-4.97 mgCm-2h-1 for the sum of monoterpenes 

and their relation to GPP showed that a crucial point is to include VOC in atmospheric 

carbon studies. 

 

The observed fluxes showed that VOC may be a substantial and integral part of the 

regional carbon cycle. Critical limitations in the quest for quantifying the role of VOC in 

the regional and global carbon budget were found in the uncertainties of both, VOC and 

CO2 flux estimates. 
 

BM flux estimates are influenced by the assumptions made on boundary layer turbulence 

dynamics and atmospheric chemistry, and the oxidation and transport time scales were 

found to be of similar magnitude. This leads to a coupling between CBL atmospheric 

chemistry and transport issues, ultimately generating conceptual and practical difficulties 

in estimating fluxes of reactive scalars such as biogenic VOC. 

 

The airborne approach, using CBL vertical profiles to infer VOC fluxes, included the 

footprint of the tower-based measurements, but was representative of a significantly 

larger surface area of several hundred km2. 

 

According to these promising results, the improvement in knowledge about the Siberian 

region should result in contributions for the investigation of biosphere-atmosphere 

exchange processes of volatile organic compounds and their relation to atmospheric 

carbon. 



 
 

 
 - 143 - 

 

With a new station in Poland it was proved that local carbon studies are important for 

regional observations of carbon balance. A series of experiments with small aircraft 

showed differences between seasonal changes of trace gases in the FT and BL, as well as 

seasonal changes of trace gas mixing ratios. The aircraft program, started in 2002, has 

provided a unique set of trace gas observations over the eastern part of the European 

continent which will serve as an invaluable source of information by investigating 

quantitatively the associated biogeochemical cycles with these entities. From the first 

results presented here we can conclude that the gradients observed in CO2 and stable 

isotopic ratios in the vertical and across the eastern part of Europe continent are small. As 

expected, the seasonal amplitudes of CO2 concentration and stable isotope ratios in CO2 

increase towards more continental sites due to large seasonal CO2 exchange fluxes with 

the continental biosphere. 

 

However, the largest changes calculated for Bialystok aircraft measurements with double 

peaks in the winter trend line for the Bialystok site in CO2 might be caused by 

heterotropic respiration from soils. In the case of CH4, seasonal variation in mixing ratios 

was observed, with an increase of CH4 concentrations during winter time. However the 

seasonal concentration of CH4 during the summer time stayed the same more or less at 

the same level. N2O shows small seasonal cycles over Poland which must be associated 

with the transport pattern in the air masses and the good mixing process due to the time 

of sampling. In the case of CO, I observed systematic degrees of CO mixing ratios in the 

FT and BL. This situation might be caused by the CO uptake by soils and the lower 

number combustion of fossil fuel in Poland. SF6 does not show any seasonal cycle, only a 

linear increase of around 6% per year. 

 

The small atmospheric signals observed make high demands on measurement accuracy 

and, as in our case of a concerted program, with high precision based on inter-laboratory 

comparability. In fact, the data are a component of a cooperative network and these data 

will be used successfully in model inversion estimates to derive net European trace gas 

fluxes. 
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Outlook 

While obviously many questions remain open, this comparison of the VOC emission 

fluxes with GPP and the discussion of the potential fate of the carbon within the 

atmosphere makes it clear that VOC emission must be regarded as a substantial loss of 

biologically fixed carbon from the terrestrial biosphere, significant in relation to GPP and 

of the same order of magnitude when compared to NBP. To obtain a more reliable 

estimate of this important term in the carbon budget, more broadly representative 

measurements of VOC fluxes in relation to CO2 fluxes, biological process studies, and 

detailed model calculations on the fate of the emitted VOC are urgently needed. 

 

Newly available techniques might be used for measurements such as PTR-MS. This 

technique is able to measure compounds with a proton affinity higher than water with a 

high time resolution of 1 per second compound. This might be of use for obtaining VOC 

vertical profiles and receiving in-situ measurements of VOC. Hence nearly all VOC can 

be detected on-line. We could clearly identify the emission of methanol, acetaldehyde, 

ethanol, acetone, acetic acid, isoprene, monoterpenes and toluene. Such disagreements 

may have several reasons, such as unclear identification of compounds by the PTR-MS 

which, however, can be excluded in the case of monoterpenes and some other 

compounds. Other reasons may involve the use of different tree individuals and different 

seasonal developmental stages, an explanation which is supported by the enhanced CO2 

assimilation observed. The overall PTR-MS study on VOC emissions looks reliable as it 

is supported by the relation between carbon assimilated (measured by an infrared gas 

analyser) and carbon emitted as VOC. 

 

In the case of the Bialystok aircraft measurements, much longer observational records are 

definitely needed to provide reliable answers to the urgent questions of the role of the 

great land masses that targeting Europe from the eastern part of the continent in relation 

to global budgets of atmospheric greenhouse gases. A "footprint" analysis is necessary to 

find sources of anthropogenic air masses that are targeting Bialystok station. 
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Abreviations list 
 
AcetylCoA 

Activated acetic acid, an acetic acid-residual that is bound to Coenzyme  

AVOC  

Anthropogenic volatile organic compound, a volatile organic released from 

anthropogenic sources 

BL 

Boundary layer 

BOVOC  

Biogenic oxygenated volatile organic compound, an oxygenated volatile organic 

released from natural sources such as terrestrial vegetation 

BVOC  

Biogenic volatile organic compound, a volatile organic released from natural 

sources such as terrestrial vegetation 

CBL 

Convective boundary layer 

CFR 

Central Forest Reserve  

CH4  

Methane 

CMDL 

Climate Monitoring & Diagnostics Laboratory 

CO 

Carbon monoxide 

CO2  

Carbon dioxide 

DIC 

Dissolved Inorganic Carbon  

DMAPP  

Dimethylallyl-diphosphate, isomer of isopentenyldiphosphate 
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DOC 

Dissolved Organic Carbon  

FID 

Flame ionisation detector 

FT 

Free troposphere 

GCB 

Graphitized carbon blacks  

GC 

Gas chromatography 

GPP  

Gross Primary Production 

GTP 

guanosine-triphosphate, energy-rich compound, consisting of guanosine that is 

linked to ribose which has a chain of three phosphate groups attached 

H2  

Hydrogen 

LDW  

leaf dry weight 

LT 

local time 

MACR 

Methacrolein, one of the major products of the atmospheric decomposition of 

isoprene 

MVK 

Methylvinylketone, C4H6O, one of the major products of the atmospheric 

decomposition of isoprene 

N2O  

Nitrous oxide 

NBP 

Net Biome Production 
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NECB 

Net ecosystem balance 

NEE 

Net Ecosystem Emission 

NEP 

Net ecosystem production 

NMHC  

Non methane hydrocarbon, organic compounds that consist from carbon and 

hydrogen atoms with exception of methane 

NMOC  

Non methane organic carbon, organic compounds that consist from carbon, 

hydrogen, and other heteroatoms with exception of methane 

NMVOC 

Non methane volatile organic compound, volatile organic compounds that consist 

from carbon, hydrogen,and other hetero- atoms with exception of methane 

NOAA 

National Oceanic and Atmospheric Administration 

NPP 

Net primary production 

OVOC 

Other reactive volatile organic compound, volatile organic compounds that 

consist from carbon, hydrogen, with exception of methane 

PAN 

peroxyacetyl nitrate  

PAR 

Photosynthetic Active Radiation  

PFA 

Paraformaldehyde 

Pg 

Peta gram, 1015 
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ppbC 

Parts per billion carbon, 10-9, nmol mol-1 

ppb 

Parts per billion, 10-9, nmol mol-1 

ppm 

Parts per million, 10-6, μmol mol-1 

ppt 

Parts per trillion, 10-12, pmol mol-1 

PTFE 

Politetrafluoroetylen 

SF6 

Sulfur hexafluoride 

SOA  

secondary organic aerosol  

Tg 

Tera gram, 1012 

VOC 

Volatile organic compound 

 
 

 

 

 
 

 

 
 




