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Abstract

In a mixed-model assembly line di�erent models of a common base product
can be manufactured in intermixed production sequences. A famous solution
approach for the resulting short-term sequencing problem is the so called
level scheduling problem, which aims at evenly smoothing the material re-
quirements over time in order to facilitate a just-in-time supply. However, if
materials are delivered in discrete quantities, the resulting spreading of mate-
rial usages implies that issued cargo carriers of a respective material remain
at a station for a longer period of time. In practical applications with plenty
materials required per station, this procedure might lead to bottlenecks with
respect to the scarce storage space at stations. This paper investigates level
scheduling under the constraint that the induced part usage patterns may
not violate given storage constraints. The resulting sequencing problem is
formalized and solved by suited exact and heuristic solution approaches.

Keywords: Mixed-Model Assembly Lines; Sequencing; Dynamic Program-
ming; Simulated Annealing

1 Introduction

In mixed-model assembly systems di�erent product models are jointly manufactured on
the same line. The use of modern production technologies allows the reduction of setup
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times and costs between models to such an extent that they can be ignored and faculta-
tive, intermixed model sequences can be assembled (lot-size one). Typically, all models
are variations of the same base product and only di�er in speci�c customizable product
attributes, which results to an assembly of di�erent parts or modules. Although the
application of �exible machinery and cross-trained workers makes facultative model se-
quences technically possible, the sequence of models has nevertheless extensive economic
impacts. Thus, the sequencing of mixed-model assembly lines has attracted the attention
of research, which aims to support model sequencing with suited optimization approaches
for decades. A recent general survey on model sequencing is provided by Boysen et al.
(2007a).
The most wide-spread attention in research (see the surveys of Kubiak, 1993; Dahmala

and Kubiak, 2005; Boysen et al., 2006) and practical applications (e.g. Monden, 1998;
Duplaga et al., 1996; Mane et al., 2002) alike, received the so called �level scheduling�,
which constitutes a major cornerstone of the famous �Toyota Production System� (see
Monden, 1998). This approach aims at evenly smoothing the material requirements
induced by the model sequence over time, so that a just-in-time (JIT) supply of material
is facilitated and safety stocks are minimized. For that purpose, each material receives
a (theoretical) target consumption rate, which is determined by distributing its overall
demand evenly over the planning horizon. Hence, a sequence is sought where actual
consumption rates of materials are as close as possible to target rates. Kubiak (1993)
refers to this material oriented level scheduling as the Output Rate Variation (ORV)
problem, because materials constitute the outputs of preceding production levels, whose
actual demand rates are to be leveled.
However, pilot studies regarding the application of level scheduling for sequencing

car models at major German manufacturers brought forward that the resulting model
sequences and their associated material usage patterns often violate storage space restric-
tions. The space available at the stations can be extremely scarce, as new assembly lines
are often constructed in already existing factory buildings. Due to the decreasing verti-
cal integration, a large number of parts have to be delivered to and temporarily stored
near the line. Furthermore, additional product features are often introduced during the
lifetime of the assembly system, so that the total amount of required material tends to
steadily grow over time. The tremendous variety of car models o�ered by some manu-
facturers, e.g. 1032 theoretically possible models at German manufacturer BMW (Meyr,
2004), requires parts and modules to be handled in considerable numbers and versions
causing large space requirements. This general scarcity of storage space near the line
(limited space, but many parts to be stored) is, however, not an individual problem of
car manufacturers, but a general problem arising in many assembly systems (see Klamp�
et al., 2006).
Under scarce storage space, the part consumption patterns induced by level schedul-

ing can lead to con�icts as they do not consider how the material supply is typically
organized. Parts are usually stored and moved in some kinds of logistic handling units,
referred to as cargo carriers, and not unit by unit. An in-house or even a third party
logistic provider (3PL) cyclically delivers these carriers (e.g. a euro-pallet or special con-
tainer) to the line, so that parts arrive in discrete quantities larger than one. In the case
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of a 3PL, parts of a wide range of suppliers are consolidated and stored in a consignment
stock adjacent to the line, from which they are issued carrier by carrier by the manufac-
turer as soon as his own intermediate storage at the station is depleted and the part is
required again. Thus, parts once transferred from the 3PL's consignment stock are to be
stored directly near the line until all units are assembled and a new cargo carrier arrives.
But also if an in-house department organizes the supply, parts usually arrive in �xed
quantities as a unit by unit supply would simply require too many tours or expensive
transportation and handling equipment.
These two prerequisites: (i) scarce storage space at stations and (ii) a wide variety

of parts per station issued in discrete quantities larger than one, lead to the following
problem when applying level scheduling. The ORV spreads the part usage evenly over the
planning horizon, so that cycles in which the same part is assembled tend to be shifted
apart. As a consequence, the time span until all parts of a cargo carrier are completely
consumed is extended and average inventory per production cycle is increased, so that the
storage space per station might not be su�cient to maintain the plenty parts required
not to mention increased capital cost. In such a setting, manufacturers which aim at
model sequences in accordance with the JIT philosophy need to additionally observe the
limited storage space.
The remainder of the paper is organized as follows. In Section 2 a suited mathemat-

ical program is formulated which accounts for the aforementioned phenomenon. Then,
Sections 3 and 4 provide suited exact (Dynamic Programming) and heuristic solution
approaches (Simulated Annealing). A computational study, which evaluates the perfor-
mance of the proposed approaches is presented in Section 5. Finally, Section 6 concludes
the paper with a general discussion of level scheduling under these conditions.

2 Mathematical model

We formulate the mathematical program as an extension of the traditional ORV problem,
which can be described as follows: Consider a set M of models each of which having a
demand dm for copies of model m to be produced during a speci�c period (e.g. one
day or shift), which is further divided into T production cycles with

∑
m∈M dm = T .

Each model m consists of di�erent parts p (with p ∈ P ). The production coe�cients
apm specify the number of units of part p required for the assembly of one unit of model
m. The matrix of coe�cients A = (apm) is usually referred to as bill of material. By
means of the total demand for part p required by all copies of all models m throughout
the planning horizon, the target demand rates per production cycle rp are calculated as
follows:

rp =
∑

m∈M dm · apm

T
∀ p ∈ P (1)

Together with the integer variables xmt, which represent the total cumulative production
quantity of model m up to cycle t, the well-known ORV problem can be modeled as
follows (Joo and Wilhelm, 1993; Monden, 1998; Bautista et al., 1996):
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(ORV) Minimize Z =
T∑

t=1

∑
p∈P

Zpt (2)

0 ≤ xmt − xm,t−1 ≤ 1 ∀m ∈ M ; t = 2, ..., T (3)∑
m∈M

xmt = t ∀ t = 1, ..., T (4)

Zpt =

(∑
m∈M

xmt · apm − t · rp

)2

∀ p ∈ P ; t = 1, . . . , T (5)

xm0 = 0; xmT = dm ∀m ∈ M (6)

xmt ∈ N0 ∀m ∈ M ; t = 1, . . . , T − 1 (7)

Objective function (2) minimizes the squared deviation of actual material demands from
the equally distributed target demands accumulated over all cycles t and parts p. In (5),
the auxiliary variables Zpt are de�ned separately as they are used later on. Constraints
(3) ensure that cumulative production quantities increase monotonically throughout the
planning horizon. The production of exactly one copy of a single model in each cycle t
is ensured by constraints (4), whereas constraints (6) force the models to be produced in
the required quantities.
We restrict our discussion to the �sum of squared deviations�-case although other devi-

ation functions discussed in the literature, e.g. maximum of absolute deviations or sum
of Euclidean deviations (see Boysen et al., 2006, 2007a), could be utilized in a similar
fashion. As both the model formulation and all solution procedures presented simply
require a substitution of the respective objective function our argumentation holds for
these cases as well.
This basic model is now extended by storage constraints. To exactly cover the inven-

tories lpt of a part p during production cycle t, the following assumptions with regard to
the delivery of parts are introduced:

• The manufacturer issues a cargo carrier for a part p as soon as the model copy
requires a unit of p and his own inventory directly at the line is empty. Note,
that as the sequence is communicated to the logistics provider in advance, it is
not di�cult to exactly match this point in time in principle. If a model copy in
cycle t requires a part p and a cargo carrier with Gp units of part p is issued, it is
immediately accessible at the beginning of cycle t, so that Gp units reduced by the
amount of parts directly consumed by the current model copy remain in the part
inventory in cycle t.

• In our discussion we only consider parts which are issued in part-speci�c cargo
carriers of size Gp > 1, which turn out to be the vast majority of parts in real-
world applications. Parts which are made available unit-by-unit have no impact on
the inventory near the line and are thus not subject to the space restrictions. Such
parts can, however, be considered in the objective function.
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M set of models (index m)
T number of production cycles (index t)
S set of stations (index s)
P set of materials (index p)
Ps set of parts required for assembly operations in station s
apm demand coe�cient: number of units of part p required for

producing one unit of model m
dm demand for units of model m
rp target demand rate with respect to part p
Cs storage space available at station s
cp storage space required by a unit of part p
Gp capacity of the cargo carrier for part p
Lp quantity of part p initially stored in stock
ypt integer variable: number of cargo carriers for part p issued

up to cycle t
xmt integer variable: number of scheduled copies of model m up

to cycle t
lpt continuous variable: quantity of part p stored during cycle t
Zpt squared deviation of cumulated actual demand and target

demand of part type p in cycle t

Table 1: Notation

• As usual or even necessary in practice due to organizational and distance consider-
ations, each cargo carrier is exclusively assigned to the station where a respective
part is required. To simplify the model we additionally assume that the same part
is not required at multiple stations. Nevertheless, the model and the presented
algorithms could be readily extended to also cover this more general case.

• We assume that the available storage space is limited in only one dimension, as
is the standard assumption of most inventory-oriented sequencing and scheduling
models. This assumption is su�cient in many real-world assembly lines facing
scarce storage space. In order to avoid a repacking of parts, manufacturers generally
aim at storing parts in the cargo carriers parts arrive in at the stations (Boysen
et al., 2007b). However, if the scarce storage space inhibits that all cargo carriers
of the stations' parts can be stored simultaneously near the line, this policy would
considerably restrict the model portfolio of the line. A model containing all parts
of a station could not be assembled, as this would require a cargo carrier of any
kind to be stored at the same time. As this is unacceptable, parts typically need
to be removed from their carriers and repacked into a mixed carrier like some kind
of rack or shelf next to the line. Thus, factor cp represents the shelf space occupied
by a unit of part p.

With these premises on hand, the part inventory lpt of a part p in cycle t resulting from a
model sequence can be exactly determined. Part inventory lpt can then be weighted with
the demand for storage space cp required of a unit of type p and compared to the total
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storage space Cs available at a station s ∈ S. The storage constrained level scheduling
problem ORV-S can now be formulated on the basis of the ORV by introducing the
following additional constraints:

∑
m∈M

xmt · apm + lpt = ypt ·Gp + Lp ∀ p ∈ P ; t = 1, . . . , T (8)∑
p∈Ps

lpt · cp ≤ Cs ∀ s ∈ S; t = 1, . . . , T (9)

0 ≤ ypt − ypt−1 ≤ 1 ∀ p ∈ P ; t = 2, . . . , T (10)

ypt ∈ N0; lpt ≥ 0 ∀ p ∈ P ; t = 1, . . . , T (11)

The balance equations (8) de�ne the quantity lpt stored per part p and cycle t as the
overall number of issued units (number of issued carriers ypt times carrier size Gp) plus
initial stock Lp minus the cumulative consumption of the part through previously sched-
uled model copies. Constraints (9) ensure that the available storage space Cs per station
s is not violated by part inventories lpt weighted with the respective demand for storage
space cp in neither cycle t. Constraints (10) enforce the integer variables ypt, which rep-
resent the number of cargo carriers for part type p issued up to cycle t, to monotonically
increase over time.

As the original ORV problem is well-known to be NP-hard (c.f. Zhu and Ding, 2000),
the modi�ed ORV-S problem, which contains the ORV as a subproblem, is also NP-hard.
Moreover, the storage constraints can complicate the model's solution considerably, as
the retrieval of a feasible solution is not trivial anymore and even deciding whether or
not a feasible solution exists might be hard.

Example: The con�icting principles of leveling part usage rates and observing storage
constraints shall be clari�ed by an example with the help of the data given in Table 2.
Three models m = 1, 2, 3 with demands dm are produced on the line. The coe�cients apm

specify the number of units of two parts p = 1, 2 required to produce one unit of model
m. Both parts are assembled at the one and only station of the assembly line (S = {1}),
whose storage space is assumed to be Cs = 3. The parts are supplied in containers each
of which contains Gp = 3 units. For storing a unit of part p, a storage space cp = 1 is
required for each part p. It is further supposed that the stock is completely empty at the
beginning of the shift (L1 = L2 = 0).
Table 2 displays two alternative model sequences π along with the resulting deviations

Zpt(π) =
(∑t

τ=1 aπτ p − t · rp

)2
for all t = 1, . . . , T , p ∈ P . Additionally, the quantities

lpt of part p stored in each cycle t = 1, . . . , 5 are given. Solution A is the optimal
ORV solution, which leads to an objective value of Z(π) = 0.8, but violates the storage
constraint in the �rst cycle (l11 + l21 = 4 > 3). Solution B is the optimal ORV-S solution
getting by with the storage space available and an objective function value of Z(π) = 1.0.
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m
apm 1 2 3 Gp cp

p 1 1 1 0 3 1
2 1 0 1 3 1

dm 2 1 2

Table 2: Example data

t 1 2 3 4 5 1 2 3 4 5

π 1 3 2 3 1 3 1 2 3 1

a1πt 1 0 1 0 1 0 1 1 0 1
a2πt 1 1 0 1 1 1 1 0 1 1

l1t 2 2 1 1 0 0 2 1 1 0
l2t 2 1 1 0 2 2 1 1 0 2

Z1t(π) 0.16 0.04 0.04 0.16 0 0.36 0.04 0.04 0.16 0
Z2t(π) 0.04 0.16 0.16 0.04 0 0.04 0.16 0.16 0.04 0

solution A solution B

Table 3: Impact of the model sequence on inventory and part usages

3 Dynamic Programming approach

The �rst solution approach presented, is an exact Dynamic Programming (DP) approach
and an extension of the DP approach provided by Bautista et al. (1996) for the basic
ORV problem. Like their approach our modi�ed procedure is based on an acyclic digraph
G = (V,E, r) with a node set V divided into T +1 stages, a set E of arcs connecting nodes
of adjacent stages and a node weighting function r : V → R. Each sequence position t
is represented by a stage which contains a subset Vt ⊂ V of nodes representing states

of the production system in cycle t. Additionally, a start level 0 is introduced. Each
index i ∈ Vt identi�es a state (t, i) de�ned by the vector Xti of cumulated quantities
Xtim of all models m ∈ M produced up to cycle t. It is su�cient to store the cumulated
quantities instead of the partial sequence up to cycle t, because the objective function
is separable with respect to cycles. The values Zp,t+1 only depend on the cumulated
production quantities Xtim and the model produced in t + 1 (cf. (5)).
The following conditions de�ne all feasible states to be represented as nodes of the

graph: ∑
m∈M

Xtim = t ∀ t = 0, . . . , T ; i ∈ Vt (12)

0 ≤ Xtim ≤ dm ∀m ∈ M ; t = 0, . . . , T ; i ∈ Vt (13)

Obviously, the node set V0 contains only a single node (initial state (0, 1)) corresponding
to the vector X01 = [0, 0, . . . , 0]. Similarly, the node set VT contains a single node (�nal
state (T, 1)) with XT1 = [d1, d2, . . . , d|M |]. The remaining stages have a variable number
of nodes depending on the number of feasible model vectors Xti.
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Two nodes (t, i) and (t + 1, j) of two consecutive stages t and t + 1 are connected by
an arc if the associated vectors Xti and Xt+1j di�er only in one element, i.e., a copy of
exactly one model is additionally produced in cycle t + 1. This is true if Xtim ≤ Xt+1jm

holds for all m ∈ M , because both states are feasible according to (12) and (13). The
overall arc set is de�ned as follows:

E = {((t, i), (t + 1, j)) | t = 0, . . . , T − 1; i ∈ Vt; j ∈ Vt+1 and Xtim ≤ Xt+1jm ∀m ∈ M}
(14)

The produced quantities of all models up to cycle t in a state (t, i) directly determine
the cumulative demands Dtip for all parts p of the respective partial schedule:

Dtip =
∑

m∈M

Xtim · apm ∀ p ∈ P (15)

Now, to each node corresponding to a state (t, i) a unique node weight rti is assigned,
which is equal to the sum of squared deviations from the target rates in cycle t and
calculated as follows:

rti =
∑
p∈P

(Dtip − t · rp)
2 ∀ t = 0, . . . , T ; i ∈ Vt (16)

With this graph on hand, the optimal solution of the ORV problem reduces to �nding
the shortest path from the unique source node at level 0 to the unique sink node at level
T , where the length of the path is given by the sum of weights of the nodes contained.
The length of the shortest path is equal to the minimum sum of squared deviations of
the material demands induced by the optimal model sequence. The corresponding model
sequence π can be deduced by considering each arc ((t, i), (t + 1, j)) with t = 0, ..., T − 1
on the shortest path SP . The model to be assigned at sequence position t+1 is the only
one for which Xt+1jm −Xtim = 1 holds.

In order to account for the storage constraints of the modi�ed ORV-S problem in this
basic DP approach, each single state can be examined to determine whether or not the
induced part inventories violate storage constraints. For this purpose it is to be checked
if the actual stock level at a station weighted with its respective space coe�cients cp

exceeds the given storage capacity Cs. The inventories Itip of the parts p ∈ P during a
cycle t in state (t, i) are easily derived by (17), because they are either units from initial
stock Lp not consumed by cumulated demand Dtip or residual units out of newly issued
cargo carriers of size Gp. The special case Itip = 0 arises when the carrier has been
emptied at the beginning of t or was already empty and no unit of p has been required
in cycle t.

Itip =


Lp −Dtip, if Lp ≥ Dtip

0, else if (Dtip − Lp) mod Gp = 0
Gp − (Dtip − Lp) mod Gp, otherwise

∀ p ∈ P (17)
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Figure 1: Example graph of the Dynamic Programming procedure

By de�ning the required storage capacity per station CRtis =
∑

p∈Ps
Itip · cp, the state

(t, i) can be de�ned as being feasible, i� the following condition holds:

CRtis ≤ Cs ∀ s ∈ S (18)

If this condition does not hold for a station s, then the state is infeasible and the corre-
sponding node is excluded from the graph.

Instead of constructing the complete graph before computing the shortest path, the more
e�cient DP approach consists of determining the shortest path from the initial state to
each node stage-by-stage (t = 0, ..., T −1). In order to do so, only two stages of the graph
have to be stored simultaneously, because the shortest path to a node (t + 1, j) in stage
t + 1 is composed of a shortest path to a node (t, i) in stage t (already determined and
stored) and the connecting arc ((t, i), (t + 1, j)). Among all such paths to (t + 1, j) one
with minimal sum of node weights (length of path to (t, i) plus rt+1j) is to be selected.
The length-minimizing node (t, i) is stored as the predecessor in the shortest path to
(t + 1, j) together with the length of this path. After reaching the �nal state (T, 1) in
stage T , the optimal path can be retrieved in backward direction stage-by-stage using
the stored predecessor nodes.

Example (cont.): The resulting DP-graph along with the (bold-faced) shortest path for
our example is depicted in Figure 1. This path corresponds to the optimal model se-
quence π = {3, 1, 2, 3, 1} with minimal total deviation Z = 1.0. Nodes representing
infeasible states are colored light grey.
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4 A Simulated Annealing approach

As within the DP approach the number of states to be inspected raises exponentially with
the number of cycles T and models |M |, problem instances of real-world size are barely
solvable to optimality. Hence, a Simulated Annealing (SA) approach is presented in the
following. SA is a stochastic local search meta-heuristic, which bases the acceptance of
a modi�ed neighboring solution on a probabilistic scheme inspired by thermal processes
for obtaining low-energy states in heat baths (e.g. Kirkpatrick et al., 1983; Aarts et al.,
1997).
Preliminary tests with simple priority rule based start heuristics, where the model

sequence is simply �lled from left to right and actual choices are guided by a priority
value, revealed that those approaches predominantly lead to infeasible solutions. Thus,
a meta-heuristic seems much more promising to guide the search into feasible regions
of the solution space. Although other meta-heuristics like tabu search are possible, we
decided for SA as it is a quite simple yet powerful approach, which is successfully applied
to real-world sequencing problems, e.g. at the French car manufacturer Renault (see
Solnon et al., 2006).
Our SA approach operates on a vector π with elements πt (with t = 1, . . . , T ), storing

the model actually assigned to the respective sequence position t. As a neighborhood-
function we apply a simple swapping move, where two models at randomly determined
sequence positions are interchanged. The initial solution vector is randomly �lled with
models m in accordance with their demands dm. For a given sequence vector π the
respective objective function value can be determined as follows:

Z(π) =
T∑

t=1

∑
p∈P

Zpt(π) (19)

If the acceptance decision for a solution in the neighborhood is taken on the basis of this
value only, the procedure might return too many infeasible solutions. As simple repair
mechanisms are not on hand, we apply the idea of penalty costs to penalize solutions,
which violate the storage constraints in proportion to the degree of violation.
Thus, a modi�ed objective function ZSA(π) is applied to guide the acceptance of neigh-
borhood solutions on the basis of a given penalty value PV :

ZSA(π) = Z(π) + PV ·

∑
s∈S

T∑
t=1

max

∑
p∈Ps

Ipt · cp − Cs; 0


 (20)

Each unit of the actual inventory Ipt of all parts assigned to a station in excess of the
available storage capacity Cs is weighted with the penalty value PV . The actual inventory
Ipt of part p in cycle t induced by sequence π is calculated in accordance with equation
(17).
A proper determination of the penalty value PV turns out to be a very critical task

with regard to the performance of the SA. On the one hand, it is to be avoided that
the SA gets stuck in less promising regions of the solution space (feasible solutions with
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poor objective values or even infeasible solutions surrounded by neighboring solutions
violating even more storage constraints), which cannot be left due to only marginal
acceptance probabilities of infeasible solutions. On the other hand, local optima might
be missed if the search enters infeasible regions of the solution space too readily. It thus
seems recommendable to employ variable penalty values in terms of a diversi�cation-
intensi�cation strategy. For this purpose, penalty value PV is initialized with PV start =
Z(π)start ·10, where Z(π)start is the objective value of the �rst random solution (may it be
feasible or not). Then, with each improvement of the modi�ed objective value ZSA(π)
the search towards a local optimum is intensi�ed by increasing the penalty value by
PV := PV · 1.2. If within the last 30 swap moves (in direct succession) no improvement
of ZSA(π) is obtained, PV is reduced by PV := PV · 0.5 to direct the search into other
regions of the solution space (diversi�cation).
A neighborhood solution π′ obtained by a swap move is accepted to replace the ac-

tual solution π as the starting point for the next iteration on the basis of the following
traditional probability scheme (e.g. Aarts et al., 1997):

Prob(π′ replacing π) =

{
1, if ZSA(π′) ≤ ZSA(π)

exp
(

ZSA(π)−ZSA(π′)
C

)
, otherwise

(21)

Our SA is guided by a simple static cooling schedule (see Kirkpatrick et al., 1983). The
initial value for control parameter C = PV start · 10 is chosen, which is continuously
decreased in the course of the procedure by multiplying it with factor 0.995 in each
iteration. If the penalty value PV falls below PV start

10 , the procedure is restarted with
a new random sequence and a re-initialized control parameter C. A total of 10,000
neighboring solutions are evaluated by our SA approach and the feasible solution (if
obtained) with the minimum objective function value Z(π) is returned. Within our
computational study, we only report results for the values of the control parameters
described above, as preliminary studies indicated these parameter values to be most
promising.

5 Computational study

As no established test-bed is available for a computational study, we �rst elaborate on
the instance generation. Then, a sensitivity analysis is presented in order to examine
the in�uence of storage constraints on the ability of �nding leveled sequences. Finally,
numerical results on the performance of the proposed algorithms are discussed.

5.1 Instance generation

In our computational study, we distinguish between two classes of test instances: case A
(sensitivity analysis) and case B (algorithmic performance) instances.
To derive these instance classes the input parameters listed in Table 4 are used to

produce the demand coe�cients for parts apm, model demands dm, sizes of cargo carriers
Gp, and storage space per station Cs de�ning an ORV-S instance.
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values
symbol description case A case B

T number of production cycles 15 10, 15, 20, 25
|M | number of models 5, 7, 9
|P | number of parts 4, 6, 8 4, 6, 8, 10
|S| number of stations 2
cp demand for storage space per

part unit
1

MSC maximum size of cargo carrier
(in part units)

2, 3,. . . , 9 3, 5, 7

PROB probability of a model m con-
taining part p

0.3, 0.5, 0.7

B parameter to �x storage space
per station

0.4, 0.45,. . . , 0.9 0.5, 0.7, 0.9

Table 4: Parameters for instance generation

Within each test case, the parameters are combined in a full-factorial design, so that
2376 (1296) di�erent case A (case B) instances were obtained. On the basis of a given
set of parameters each single instance is generated as follows:

• Demand coe�cient matrix: For each individual demand coe�cient apm a [0, 1]-
random number rnd is drawn and compared to the probability PROB of a model
containing the respective part, so that coe�cients can be �xed with regard to the
following formula:

apm =
{

1, if rnd ≤ PROB
0, otherwise

∀m ∈ M ; p ∈ P (22)

• Demand for models: At �rst, each model demand dm is initialized to one unit.
Then, demands of randomly drawn (equally distributed) models are increased by
one unit, until the overall model demand (

∑
m∈M dm) equals the given number of

production cycles T .

• Size of cargo carrier: The number of units Gp of parts p to be stocked on a cargo
carrier are randomly drawn by an equally distributed integer random number out
of the interval [2,MSC].

• Material-station-assignment: To derive the set of parts Ps assigned to a station s,
each station receives P

|S| arbitrarily chosen distinct parts.

• Storage space: The storage space constraints at the stations s ∈ S are generated
by summing up the sizes of the cargo carriers Gp of assigned parts p ∈ Ps times
parameter B:

Cs =
∑
p∈Ps

Gp ·B ∀ s ∈ S (23)
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Figure 2: Relative deviation between ORV and ORV-S in dependency of restrictiveness
of storage constraints of case A instances

Thus, parameter B is an indicator for the scarcity of storage space at the stations.

All generated instances can be downloaded from the internet (www.assembly-line-balancing.de).

5.2 Computational results

The methods described above have been implemented in Visual Basic.NET (Visual Studio
2003) and run on a Pentium IV, 1800 MHz PC, with 512 MB of memory. First, case A
instances are evaluated to explore to what extent storage constraints (ORV-S) restrict
smooth part consumption (ORV) and, vice versa, how often storage constraints (ORV-
S) are violated by leveled ORV solutions. Therefore, case A instances are solved to
optimality (i) by our DP-approach to the ORV-S and (ii) by the same DP-approach but
with in�nite storage spaces, which leads to the optimal ORV solution. The results in
dependency of the restrictiveness of storage constraints, which is mainly in�uenced by
parameter B and the amount of storage demand evoked by the size of the cargo carriers
(parameter MSC), are depicted in Figure 2 and listed in Table 5.
Figure 2 relates the average relative deviation of both optimal solutions (measured

by Z(ORV −S)−Z(ORV )
Z(ORV ) ) to the parameters used for instance generation MSC and B.

On average, storage requirements grow with increasing MSC, as the average size of
cargo carriers and, thus, the space required to store the parts contained in the carrier is
increased. Parameter B is applied to calculate available storage capacity. Smaller values
of B indicate less storage capacity at the stations and, hence, more restrictive capacity
situations.
Figure 2 reveals that with increased restrictiveness deviations of ORV and ORV-S so-

lutions increase considerably. In less restricted problems (smaller MSC and/or higher
B), the optimal ORV solution often violates no storage constraint at all and is, hence,
optimal for the ORV-S as well. With increasing restrictiveness (higher MSC and/or
smaller B) optimal ORV and ORV-S solutions more and more deviate up to a maximum
average relative deviation of 278% between ORV-S and ORV objective function values
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MSC
B 2 3 4 5 6 7 8 9 avg.

0.4 9/58 45/83 119/88 58/67 135/100 202/63 131/100 164/89 82/76
0.45 7/52 17/72 97/94 42/73 205/100 42/43 173/100 102/83 65/75
0.5 0/0 14/70 36/88 87/67 124/91 153/75 182/89 278/86 84/64
0.55 0/0 13/69 24/95 68/78 211/90 86/77 153/100 115/85 74/70
0.6 0/0 10/41 38/80 51/68 67/94 57/78 119/95 138/94 54/64
0.65 0/0 4/23 12/62 21/54 35/96 32/80 90/86 45/89 28/58
0.7 0/0 0/0 8/44 6/46 23/64 35/61 52/77 41/83 19/45
0.75 0/0 0/0 0/0 2/19 6/44 31/54 15/39 31/67 10/27
0.8 0/0 0/0 0/0 0/0 2/19 3/30 5/37 8/54 2/17
0.85 0/0 0/0 0/0 0/0 0/0 0/0 0/7 1/19 0/3
0.9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

avg. 1/9 8/30 24/45 24/53 53/53 39/45 56/54 62/60 31/40

legend: average relative deviation
Z(ORV−S)−Z(ORV )

Z(ORV ) [percent]/fraction of infeasible ORV-S solutions by ORV [percent]

Table 5: Comparison of ORV and ORV-S solutions in dependency of restrictiveness of
storage constraints of case A instances

and an infeasibility of optimal ORV solutions for ORV-S of 100% (see Table 5). Hence,
to meet storage constraints in our problem setting, it gets the more important to apply
the ORV-S approach for model sequencing, the more part units are contained in cargo
carriers and the less space is available at the stations. On the other hand, very scarce
storage space at the line results to model sequences which fail to re�ect the JIT philoso-
phy of leveled part usages.

In the following, the case B instances are evaluated to explore the performance of algo-
rithms (DP and SA) in solving the ORV-S problem. Average results are summarized in
Table 6. The computational test reveals that out of the 1296 instances generated only
1140 are feasible, so that the test bed is reduced accordingly. The SA is able to �nd feasi-
ble solutions for all of these instances except for two. Moreover, 479 instances are solved
to optimality. Overall, the SA approach yields an average relative deviation of 12.1%
(measured by: Z(SA)−Z(DP )

Z(DP ) ), which mainly stems from highly constrained instances (see

Table 7). With regard to computation times SA clearly outperforms DP (see Table 6)
and can, hence, be appropriately applied to larger problem instances of real-world size.
Finally, the performance of algorithms is evaluated according to the restrictiveness of

the storage constraints. Table 7 lists the results for the SA-approach. With increasing
restrictiveness (indicated by smaller values of parameter B and higher values of parameter
MSC) average relative deviations of the SA-approach compared to optimal solutions
increase considerably. This is explained by the fact that with increased restrictiveness,
promising solutions, i.e. feasible solutions with near optimal objective function value,
are more likely separated by regions of infeasibility, which cannot be bridged by the
swap moves of the SA directly. In spite of the dynamic penalty values, the SA still
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measure DP SA

number of feasible instances 1140 1140
number of feasible solutions found 1140 1138
number of optimal solutions 1140 479
average relative deviation from optimum in % 0 12.1
maximum relative deviation from optimum in % 0 994
average absolute deviation from optimum 0 3.0
maximum absolute deviation from optimum 0 544
average CPU-seconds 28.7 1.7

Table 6: Performance of algorithms aggregated over all case B-instances

MSC
B 3 5 7 avg.

0.5 13.2 27.5 53.7 27.4
0.7 3.0 14.7 12.0 9.7
0.9 3.8 3.6 3.9 3.8

avg. 6.5 13.6 17.4 21.1

Table 7: Average relative deviation from optimum in % by SA for case B-instances in
dependency of the di�culty to �nd feasible solutions

considerably punishes moves from a feasible to an infeasible solution in the modi�ed
objective function value ZSA. Thus, long trajectories of moves through infeasible regions
receive low acceptance probabilities, so that the SA tends to get stuck in feasible but
often unleveled solutions and the solution performance is low.
The opposite �nding holds for the exact DP approach. Here, increasing di�culty to

�nd feasible solutions considerably accelerates the determination of optimal solutions
(see Table 8). Increasing di�culty results in an enlarged number of infeasible states,
which can be excluded from the procedure. The graph contains less nodes and optimal
solutions are found considerably faster.

MSC
B 3 5 7 avg.

0.5 30.3 19.8 14.5 21.5
0.7 33.1 32.0 29.2 31.4
0.9 33.1 33.2 33.1 33.2

avg. 32.2 28.3 25.6 28.7

Table 8: Average CPU-seconds required by DP for case B-instances in dependency of the
di�culty to �nd feasible solutions
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6 Discussion

The paper on hand presents solutions approaches which aim at leveled part usages in
accordance with the JIT principle. At the same time, storage constraints are observed
which can considerably restrict the smoothing of part usages induced by traditional level
scheduling at the stations of the line. For the solution of this novel sequencing problem an
exact Dynamic Programming approach and a heuristic Simulated Annealing procedure
are presented.
The computational study shows that with increasing restrictiveness, storage constraints

more and more enforce deviations from leveled part usages. Ultimately, highly constraint
storage space leads to totally unleveled solutions. This observation is based on the fact
that smoothed part usages (ORV) are directly opposed to a fast consumption of part
inventories to meet storage constraints (ORV-S). This coherency questions the idea of
level scheduling for assembly lines facing storage constraints. However, if parts are jointly
delivered in cargo carriers in discrete time intervals, which turns out to be the majority
of parts at least in the automobile industry (c.f. Boysen et al., 2007a), the whole idea
of leveling part usages over the whole planning horizon seems questionable. The ORV
seems especially adequate whenever material demands are directly pulled throughout the
whole production system. This assumption is generally ful�lled if preceding production
levels are located in immediate vicinity of the �nal assembly and are directly coupled
via a Kanban system or feeder lines. If parts are delivered in discrete time intervals, not
a leveling of all part usage seems relevant, but �rst and foremost a leveling of delivery
quantities and intervals (c.f. Pleschberger and Hutomi, 1993; Aigbedo, 2004). Of course,
a smooth part usage also allows the construction of more or less equal delivery quantities
and intervals. Nevertheless, the objective of traditional level scheduling models can be
far to restrictive. Only the sum of part consumptions between the deliveries within
the planning horizon is actually to be leveled, whereas the succession of part usages
within a delivery interval is irrelevant (at least if storage space is not scarce). With
these additional degrees of freedom on hand, storage constraints can be met much easier
without jeopardizing the JIT principle.
To derive a model for such a modi�ed level scheduling supporting discrete part deliv-

eries, the target demand rate rp is to be modi�ed as follows:

r′p =

⌈∑
m∈M dm·apm

Gp

⌉
T

(24)

Here, the total number of deliveries necessary per part is evenly spread over the planning
horizon. With this modi�ed target demand rate r′p on hand, a level scheduling model for
discrete part deliveries is obtained by substituting equations (5) with:

Zpt =
(
ypt − t · r′p

)2 ∀ p ∈ P ; t = 1, . . . , T (25)

The resulting model evenly distributes the occurrence of part deliveries over time. Our
solutions approaches presented could be easily modi�ed to account for this delivery ori-
ented level scheduling model. It remains up to future research to empirically test the
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e�ciency of such a new level scheduling model to ease JIT supply in real-world settings
with discrete part deliveries and scarce storage space.
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