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Abstract: Assembly line balancing problems (ALBP) arise whenever an assembly line is con-
figured, redesigned or adjusted. An ALBP consists of distributing the total workload for manu-
facturing any unit of the products to be assembled among the work stations along the line sub-
ject to a strict or average cycle time. Traditionally, stations are considered to be manned by one
operator, respectively, or duplicated in form of identical parallel stations, each also manned by
a single operator. In practice, this assumption is usually too restrictive. This is particularly true
for large products like cars, trucks, busses and machines, which can be handled by several op-
erators performing different tasks at the same time. Only restricted research has been done on
such parallel workplaces within the same station though they have significant relevance in real-
world assembly line settings. 

In this paper, we consider an extension of the basic ALBP to the case of flexible parallel work-
places (VWALBP) as they typically occur in the automobile and other industries assembling
large products. The problem is defined and modelled as an integer linear program. As a solution
approach a branch-and-bound procedure is proposed which also can be applied as a heuristic.
Finally, computational experiments documenting the solution capabilities of the procedure are
reported.

Keywords:  Assembly line balancing – Mass-production – Combinatorial optimization – Sequencing
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1 Introduction and literature review

Assembly lines are flow-oriented production systems which are typical in the industrial produc-
tion of high quantity standardized commodities and even gain importance in low volume produc-
tion of customized products. Among the decision problems which arise in managing such systems,
assembly line balancing problems are important tasks in medium-term production planning (cf.,
e.g., Baybars,1986; Becker and Scholl 2006; Boysen et al. 2007). 

An assembly line consists of (work) stations k=1,...,m arranged along a conveyor belt or a similar
mechanical material handling equipment. The workpieces are consecutively launched down the
line and are moved from station to station. At each station, certain operations are repeatedly per-
formed regarding the cycle time (maximum or average time available for each workcycle). The
decision problem of optimally partitioning (balancing) the assembly work among the stations with
respect to some objective is known as the Assembly Line Balancing Problem (ALBP).

Manufacturing a product on an assembly line requires partitioning the total amount of work into
a set V = {1,...,n} of tasks which constitute the nodes of a precedence graph. Performing a task i
takes a task time (node weight) ti. A precedence relation (i, j) means that task i must be finished
before task j can be started and is contained in the arc set E of the precedence graph. Within the
acyclical and topologically numbered graph redundant arcs are omitted.

The following sets are useful to describe the precedence relations:

• set of direct predecessors of task 

• set of direct successors (followers) of task 

Assuming  to be the transitive closure of E, we further define:

• set of all predecessors of task 

• set of all successors of task 

Any type of ALBP consists in finding a feasible line balance, i.e., an assignment of tasks to sta-
tions such that precedence constraints and possible further restrictions are fulfilled. The set Sk of
tasks assigned to a station k (=1,...,m) constitutes its station load, the cumulated task time =

 is called station time. When a fixed common cycle time c is given, a line balance is fea-
sible only if the station time of neither station exceeds c. In case of t(Sk) < c, the station k has an
idle time of c – t(Sk) time units in each cycle, i.e., it is repeatedly unproductive for this time span.

The most popular ALBP is called Simple Assembly Line Balancing Problem (SALBP). It has the
following characteristics (cf. Baybars 1986; Scholl and Becker 2006; Boysen et al. 2007): 

(S-1) Mass-production of one homogeneous product.

(S-2) All tasks are processed in a predetermined mode (no processing alternatives exist).

(S-3) Paced line with a fixed common cycle time according to a desired output quantity.

(S-4) The line is considered to be serial with no feeder lines or parallel elements.

(S-5) The processing sequence of tasks is subject to precedence restrictions.

(S-6) Deterministic (and integral) task times tj with .

(S-7) No assignment restrictions of tasks besides precedence constraints.

(S-8) A task cannot be split among two or more stations.

(S-9) All stations are equally equipped with respect to machines and workers.

Pi h V ∈  h i,( ) E∈{ }= i V∈

Fi j V ∈  i j,( ) E∈{ }= i V∈

E∗

Pi
∗ h V ∈  h i,( ) E∗∈{ }= i V∈

Fi
∗ j V ∈  i j,( ) E∗∈{ }= i V∈

t Sk( )
tjj Sk∈∑

tj c≤
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The general objective consists of maximizing the line efficiency

 with total task time . Several
problem versions arise from varying the objective as shown in
Table 1. The tuple-notations specify the characterizations of the
problem versions within the recent classification scheme of
Boysen et al. (2007). All versions of SALBP and, thus, all ge-
neralizations like the new problem VWALBP, are NP-hard (cf.
Wee and Magazine 1982; Scholl 1999, ch. 2.2.1.5). 

The basic SALBP has been extended and generalized in many research papers constituting a large
number of generalized assembly line balancing problems (GALBP). For recent surveys and clas-
sifications of those problems see Becker and Scholl (2006) and Boysen et al. (2007). 

Among these generalizations, the following are particularly relevant for the problem discussed
here or helpful to explain what is different in the new problem. To focus on the problem itself, we
only discuss assumptions and real-world backgrounds rather than algorithmic developments.

• Parallel stations: Two or more stations are arranged in parallel to allow for increased local
cycle times (if p parallel stations are installed, the local cycle time amounts to ). Then, it is
possible to assign tasks with operation times larger than the cycle time. Because each  copy of
the station performs the same set of tasks in an alternating manner, it has exclusive access to
the workpiece currently within its station area (cf. Buxey 1974; Pinto et al. 1975, 1981; Sarker
and Shanthikumar 1983; Bard 1989).

• Assignment restrictions: In practice, there are usually constraints which restrict the assign-
ment of tasks to stations in addition to the cycle time constraint and the precedence relations
(cf. Scholl 1999, ch. 1.3.4; Boysen et al. 2007; Scholl et al. 2008). 
Regularly, there are restrictions on assigning tasks to certain stations. Such station restrictions

are particularly relevant when the line is already installed and should be rebalanced without
rearranging all the equipment (cf. Tonge 1960; Boguschewski et al. 1990), only certain station
types are capable of performing some task (Johnson 1983) or the workpiece is required in a
certain position (Lapierre and Ruiz 2004).
Furthermore, there are often incompatible tasks that must not be assigned to the same station,
e.g. due to the danger of soiling the seats of a car if the same worker has to handle the seats
and to lubricate movable parts (cf. Agnetis et al. 1995; Johnson 1983; Rachamadugu 1991).
Another reason for setting tasks incompatible is due to different mounting positions at a large
workpiece (like cars, trucks, washing machines). In order to reduce walking distances of
workers, certain combinations of mounting position and, thus, the corresponding tasks are
defined to be incompatible (cf. Johnson 1983). 

• When large workpieces are assembled, it is possible that different operators work at the same
product unit simultaneously (cf. Kilbridge and Wester 1962; Akagi et al. 1983). That is, sev-
eral workplaces are installed at the same station. Each worker (workplace) gets an own set of
tasks at individual mounting positions. It has to be ensured that the workers do not interfere
with each other by exclusively assigning each mounting position required to a single work-
place. In case of a two-sided line (2ALBP), each station consists of (up to) two workplaces,
one at the right and one at the left side of the line (Bartholdi 1993; Kim et al. 2000; Lee et al.
2001; Lapierre and Ruiz 2004; Lapierre et al. 2006). All tasks that have to be performed at the

cycle time c
given minimize

no
. m

 o
f

st
at

io
ns

given
SALBP-F

[  |  |  ]
SALBP-2

[  |  | c]

mini-
mize

SALBP-1
[  |  | m]

SALBP-E
[  |  | E]

Table 1. Versions of SALBP

Eff tsum / m c⋅( )= tsum tjj 1=
n∑=

p c⋅
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left (right) side of the workpiece must be assigned to a left (right) workplace. Remaining tasks
can be assigned either to a left or a right workplace. Thus, the workpiece can be considered as
being subdivided into two incompatible mounting positions (left and right), or alternatively,
each pair of tasks which have to be performed on opposite sides is set incompatible. The two-
sided line can be generalized to a multi-sided line (NALBP) by increasing the maximal
number of workplaces per station (cf. Gehring and Boguschewski 1990), e.g. a car can be sub-
divided into 4 exclusive mounting positions (front left, front right, back left, back right).

In Section 2, we generalize the concept of stations with multiple workplaces in a flexible manner
as to consider real-world conditions as accurately as possible. The resulting problem VWALBP
is formulated as an integer linear program in Section 3. Lower bounds and reduction rules are de-
veloped in Section 4. A branch-and-bound procedure for optimally solving this problem, which
can also be applied as a heuristic, is presented in Sections 5 and 6. Computational experiments
that evaluate the performance of the solution methods are reported in Section 7. The paper ends
with conclusions and remarks on future research challenges in Section 8.

2 The assembly line balancing problem with variable workplaces (VWALBP)

As mentioned before, many products manufactured on assembly lines are large enough to be
worked at by several workers simultaneously. As a major example, we focus on the final assembly
of cars in the automobile industry where up to five workplaces are installed within a single station
on a paced assembly line. Other examples of products assembled in such a manner are trucks,
busses, large machines and even helicopters (Bartholdi 1993; Lee et al. 2001).

2.1 Problem description

In the following, we define a new decision problem which is intended to model the situation of
such car assembly lines (and related production systems as mentioned before) as realistically as
possible. However, in order to define a basic problem, we do not include all conditions which
might occur at a real line but focus on the most important ones giving structure to the problem.
The new problem is called Assembly Line Balancing Problem with Variable Workplaces
(VWALBP) and is an extension of SALBP characterized by the SALBP assumptions (S-1) to (S-
5) and modifications of (S-6) to (S-9):

(V-6) Task times: Deterministic and integral1 task times tj some of which might exceed the cycle
time. Such extra-long tasks (collected in set EL) occur, e.g., when mounting large pieces
like cockpits or examining the electrical devices already installed (see (V-8)).

(V-7) Assignment restrictions: Station restrictions fixing certain tasks to a specific station (e.g.
automatic station for installing the front windows) or a certain station interval (e.g., seg-
ment of the line) and two types of incompatibilities have to be considered. Tasks are called
station incompatible to each other if they must not be assigned to the same station (e.g. due
to different mounting conditions required). Tasks are called workplace incompatible to
each other if they can be assigned to the same station but not to the same workplace (e.g.

1 From a practical point of view this is no relevant restriction, because non-integral task times can be easily trans-
formed into integer values by changing the scale, e.g., from minutes to seconds.
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incompatible working positions due to long walking distance). All pairs of station incom-
patible tasks are collected in the set SI, while the pairs of workplace incompatible tasks are
contained in another set WI.2 Furthermore, assignment restrictions implicitly result from
the fact that each mounting position can only be assigned to a single workplace per station.

(V-8) Task indivisibility: Tasks are not split up between two or more stations except for extra-
long tasks. Such a task  is spread over successive stations but performed by the same
workplace (Arcus 1966, Falkenauer 2005). Such a multi-station workplace, thus, covers

 stations and requires  operators which alternately assemble the workpieces,
each for  successive cycles (Inman and Leon 1994). At the end of the last cycle involved,
remaining idle time (if ) can be used to perform other tasks. That is, any extra-
long task starts at the beginning of the cycle in its first station and is performed without
break until it is terminated. 

(V-9) Station configuration and equipment: Usually, each workplace covers a single station and
is manned by one operator (for the only exception see V-8). Each station (segment of the
line) might contain 0 to wmax parallel workplaces. Depending on the product and the con-
ditions at the line, the maximum number of workplaces is typically restricted to .
Particular equipment fixed at certain (automated) stations leads to station restrictions as
described in (V-7).

The modified assumptions describe most aspects of the new problem VWALBP. Only some fur-
ther explanations are necessary which will be supported by examples:

Each task is uniquely assigned to a workplace, i.e., the set of tasks is partioned into disjoint subsets
called WP loads such that the local cycle time of the workplace is observed (c for normal and 
for multi-station workplaces that contain an extra-long task ). The WP loads and, thus, the
workplaces are assigned to stations such that the precedence constraints and the maximal number
of parallel workplaces are observed. Since all operators assigned to the workplaces installed at the
same station simultaneously perform different tasks at the same workpiece, it must be avoided that
they obstruct each other. This is achieved by subdividing the workpiece into mounting positions
each of which can be used by a single workplace only.

Figure 1 shows a subdivision of some workpiece into Q
mounting positions. Here,  is chosen which is a typi-
cal setting for a car body in the automobile industry (cf.
Hildebrand 2006).

As is the case with SALBP, the objective consists of maxi-
mizing the line efficiency which has to be defined somewhat
different for VWALBP, because stations, workplaces and op-
erators do not mean the same anymore. Each station may contain no, one or many workplaces and
each workplace is manned by one or many operators (normal and multi-station workplaces, re-
spectively). Thus, the productive capacity provided by the line is neither defined by the number
of stations nor the number of workplaces but the number of operators required. To differentiate
between these terms, we now use the following notation:

2 By  and  we denote the set of tasks to which task j is workplace and station incompatible, respectively. WIj SIj

j EL∈

pj tj / c= pj
pj

pj c tj–⋅ 0>

W 2 5,[ ]∈

pj c⋅
j EL∈
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Figure 1. 
Mounting positions at a car body

Q 24=
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m number of operators (workers)

K maximal number of stations (restricted by available space, installed conveyor belt)

W maximal number of workplaces per station (restricted by size of workpiece, station space)

By analogy with SALBP, we get dif-
ferent versions of VWALBP as docu-
mented in Table 2 which additionally
shows the classification tuples accord-
ing to the scheme of Boysen et al.
(2007). Extra-long tasks are the only
aspect which cannot be modelled in
the classification scheme in a direct manner. Thus, we include a further value  for the
topic assignment restrictions which expresses that a chain of tasks must be assigned to a subse-
quence of successive stations (cf. Section 3). Notice that this chain restrictions could also be mod-
elled in a more complicated way by minimal and maximal distances ( ).

In the following, we concentrate on VWALBP-1 (minimize the number of workers given the cycle
time) because this problem version reflects the regular situation in automobile plants as the cycle
time is usually deduced from required output quantities (actual orders and sales forecasts) and the
manpower requirements have to be minimized. However, if other problem versions (VWALBP-
F, -2, -E) are required in a certain problem situation, the results obtained when analyzing
VWALBP-1 can easily be transferred following the well-known relationships between the corre-
sponding SALBP problem types (cf. Scholl 1999, ch. 2.2.1.3, 4.2.2, and 4.3.2).

Three issues need further explanations: the assignment of mounting positions to workplaces, the
detailed scheduling within stations and extra-long tasks causing multiple-station workplaces.

2.2 Assigning mounting positions to workplaces

Let Qj denote the set of (compatible) mounting positions required to perform a task j. When as-
signing task j to a workplace w, also the mounting positions in Qj are exclusively assigned to w
(in all stations covered by w) in order to avoid mutual obstruction of workers. Concerning a WP
load  for w, we get the set Q(w) of positions occupied by workplace w: .

Mounting position related tasks: As a consequence, tasks that require at least one joint mounting
position have to be assigned to the same workplace provided that they should be performed in the
same station. Pairs of such mounting position related tasks h and j are stored in the set MR.

Incompatible mounting positions: In assumption (V-7), it is mentioned that some pairs of mount-
ing positions are incompatible with respect to a single workplace due to long walking distances.
These pairs are stored in the set IMP. As a consequence, two tasks h and j are workplace incom-
patible if there exists a pair  such that . Due to this relationship,
incompatible mounting positions can be transferred into workplace incompatible task pairs, addi-
tionally to those already contained in WI, in a preprocessing step.

Figure 2 illustrates the different meanings of stations and workplaces and the assumptions on
mounting positions in different problem types. In SALBP, each station consists of a single work-
place each of which is manned by a single operator. All mounting positions are assumed to be
available irrespective of walking distances. 

cycle time c
given minimize

no
. m

 o
f

op
er

at
or

s given VWALBP-F
[inc,fix,type,ch|pwork| ]

VWALBP-2
[inc,fix,type,ch|pwork| c]

mini-
mize

VWALBP-1
[inc,fix,type,ch|pwork|m ]

VWALBP-E
[inc,fix,type,ch|pwork|E]

Table 2. Versions of VWALBP

α5 ch=

α5 min max,=

WL Q w( ) Qjj WL∈∪=

p1 p2,( ) IMP∈ p1 p2,{ } Qh⊆ Qj∪
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In case of the two-sided line (2ALBP),
each station contains up to two work-
places which are arranged at the left
and/or the right side of the line. Each
workplace is manned by one operator
and restricted to left and right mounting
positions, respectively, but walking dis-
tances or further reasons for incompati-
bility are not considered. In VWALBP,
each station contains up to, e.g., 
workplaces which are arranged in a
flexible manner only constrained by the
requirement to assign mounting posi-
tions uniquely and to observe incompatibilities. Each workplace is manned by one operator except
for the multi-station workplace WP3 which needs two workers to perform an extra-long task al-
ternately. Notice that multi-station workplaces reserve all mounting positions required by the ex-
tra-long task in all stations covered but the positions required by additional (normal) tasks only in
the last station (see Section 2.4). 

2.3 Detailed scheduling

Besides the assignment part of the problem (tasks to workplaces, workplaces to stations), an ad-
ditional subproblem needs to be solved due to the flexibility of arranging workplaces within a sta-
tion. It consists of assigning actual starting times (relative to the start of the line) for all tasks as-
signed to a station, i.e., a scheduling problem has to be solved for each station (Falkenauer 2005).

Consider the example instance with nine tasks presented in Figure 3. In addition to the traditional
precedence diagram, the set of mounting positions Qj is specified for each task j. As presented,
the workpieces are subdivided into eight mounting positions. Furthermore, the following set of
incompatible mounting positions is to be considered: IMP = {(1,5), (1,6), (2,5), (2,6), (3,7), (3,8),
(4,7), (4,8)}. Given a cycle time , we get an optimal solution with two stations and five
workplaces and operators, respectively, as illustrated in the Gantt chart of Figure 3. In station 1,
three workplaces are installed, while two workplaces are set into station 2. The mounting positions
occupied by the workplaces are illustrated in the rightmost picture.

While in SALBP it is easy to schedule tasks by assigning them earliest starting times in an arbi-
trary precedence-feasible sequence in each station (thus shifting idle time towards the end of the
station), it is necessary to consider all workplaces simultaneously in VWALBP (and 2ALBP; cf.
Bartholdi 1993). Here, task 4 in WP3 has to wait until is predecessors 1 (also in WP3) and 2 (in

Station 1 Station 2 Station 3
WP1 WP2 WP3

WP4WP2

WP1 WP5

WP2

WP1

WP7

WP6

W
P 5

W
P 4

W
P 3

W
P 3

WP8

WP9

Figure 2. Stations and workplaces in SALBP, 2ALBP, VWALBP
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Figure 3. Example instance of VWALBP
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WP2) are finished. Because task 2 is longer than task 1, an idle time of  is necessary be-
tween tasks 1 and 4. This is why it is not ensured that a feasible solution exists for a certain station
load and a given number of workplaces even if each WP load observes the cycle time individually.
For this so-called station problem and its solution see Section 6.

2.4 Extra-long tasks and multiple-station workplaces

Figure 4 shows a problem instance containing an extra-long task
1 with time  exceeding the cycle time . The Gantt
chart illustrates the optimal solution with the two-station work-
place 2 which has available twice the cycle time and requires two
workers each of which has access to a workpiece for 20 time
units. In the last station of such a multi-station workplace remain-
ing idle time can be used to assign additional tasks. Here, task 6
is additionally performed in station 2 of workplace 1. So, the
workers perform the WP loads {1,6} with remaining idle time of 1 time unit on successive work-
pieces in an alternating manner. In station 1, the multi-station workplace occupies only the mount-
ing position 1, while it requires positions 1 and 2 in station 2 due to the additional task 6.

3 Mathematical model

For SALBP, there is a number of integer linear programs available (cf. Scholl 1999, ch. 2.2;
Peeters and Degraeve 2006). Following the basic lines of these models, we develop a mixed-inte-
ger program (MIP) for VWALBP-1 which reflects all modifications discussed in Section 2. No-
tice that the model can easily be adapted to the other problem versions (cf. Scholl 1999, ch. 2.2). 

In order to do without explicitly considering stations, we number the potential workplaces in a
consecutive manner from 1 to . By an easy transformation, the station k(i) to which a
particular workplace i belongs can be retrieved:  for i = 1,..., .

Each workpiece is launched down the line and enters
station 1 at time  and leaves the last station at time

. The workplaces i = 1,..., , belonging to sta-
tion k(i), start operating each workpiece at time

 after having launched this work-
piece. Figure 5 shows a profile of potential workplaces
for  and . The first 4 workplaces are as-
signed to S1, the next four to S2 and so on. The binary
variables  indicate whether or not workplace i is installed. Here, 12 workplaces are in use dis-
tributed over the stations as indicated by gray areas.

In order to include extra-long tasks into the model without defining a more complex workplace
profile, it is assumed that each task  with  is subdivided into a chain of tasks (each task
connected to the next by an arc in the precedence graph) having task time c and a final task with
task time  as described in Section 2. All tasks of the chain have the same mounting
positions in set Qj and share the same incompatibilities with other tasks. As a matter of conven-
ience, the first task of the chain gets the original number j, while the others get yet unused numbers

t2 t1– 2=

Figure 4. Extra-long task
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increasing n accordingly. The final task of the resulting chain is referenced by f(j); the original
task time is saved in . A further convention simplifies presentation: Multiple station workplaces
are simply considered as a sequence of workplaces belonging to successive stations such that the
numbers of installed workplaces and employed operators are equal. After having replaced all ex-
tra-long tasks by chains, the graph is reordered in a topological manner, i.e., each task gets a
smaller number than each of ist successors.

Task 1 of the example in Figure 4 is replaced by the modified
task 1 with  and an additional task 7 with =
5. The predecessors of original j remain predecessors of the
modified j, while the successors of original j become successors
of f(j) now. Finally, the tasks 6 and 7 exchange numbers to get
the topologically ordered graph in Figure 6.

Assuming that these preliminary steps have been done, we develop a mixed integer program based
on the following decision variables (using the indices h,j = 1,...,n for tasks (including chains re-
placing extra-long tasks), i = 1,...,  for workplaces and p = 1,...,Q for mounting positions):

    for all i and j

    for all i

for all  and all i

for all  

sj starting time of task j (relative to the launch time) for all j

The mathematical model for ALBP-VWP-1 is to 

minimize (1)

such that the constraints (2)–(16) are fulfilled.

• Operational workplaces: Tasks can only be assigned to installed workplaces.

for all i = 1,..., (2)

• Station assignment: Each task j must be started and finished in the time span covered by that
station where the workplace is located to which j is assigned.

for all j = 1,...,n (3)

for all j = 1,...,n (4)

• Precedence relations require that a task j can only be started if all predecessors are finished:

for all j = 1,...,n and (5)

tj

Figure 6. Transformation
of extra-long task 1
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• For each task j, a station interval  is given explicitly if assignment is restricted to a
fixed station (  with ) or a segment of the line ( ) and implicitly due
to precedence constraints based on earliest and latest starting times (see Section 4.2). In any
case, a basic interval is given due to the inequality . The station interval restricts
the workplaces to which task j can be assigned in the following manner:3

for all j = 1,...,n (6)

• The binary variables gijh indicate whether or not two tasks h and j are assigned to the same

workplace i. This is achieved by the following two restrictions:

for all i = 1,..., ; j, h = 1,...,n and (7)

for all i = 1,..., ; j, h = 1,...,n and (8)

• Exclusive operation: Two tasks j and h assigned to the same workplace i must not overlap.
Either j must be finished before h is started ( ) or vice versa ( ). The disjunctive
constraints (9) and (10) use a sufficiently large number  to ensure that one of the two
cases is selected while the other is represented by a redundant constraint. Furthermore, both
restrictions are automatically fulfilled when the tasks j and h are not jointly assigned to work-
place i ( ). By (11) it is ensured that  is zero if the tasks j and h do not share the
same workplace.

for all i = 1,..., ; j, h = 1,...,n and (9)

for all i = 1,..., ; j, h = 1,...,n and (10)

for all j, h = 1,...,n (11)

• If two tasks j and h are related by mounting position, they must be assigned to the same work-
place or to different stations:

for all k = 1,...,K; (12)

• All pairs  of workplace incompatible tasks must not share the same workplace:

for all i = 1,..., ; (13)

• All pairs  of station incompatible tasks must not share the same station:

for all k = 1,...,K; (14)

• Chains for an extra-long task j must be executed without a break:

for all (15)

• Definition of binary variables:

for all i = 1,..., ; j, h = 1,...,n (16)

Modelling is an important milestone in understanding a problem’s structure and complexity.  Fur-
thermore, it always holds some capability for solving the problem directly. However, preliminary
experiments show that standard optimization software is not able to solve instances of VWALBP-
1 of real-world size in a satisfying manner. Sometimes, they do not find a feasible solution at all.

3 Notice that the variables xij with  and  can be set to zero or eliminated from the model.

Ej Lj,[ ]
α5 fix= Ej Lj= α5 type=

1 Ej Lj K≤ ≤ ≤

i Ej 1–( ) W⋅≤ i Lj W⋅>

xiji Ej 1–( ) W⋅ 1+=
Lj W⋅∑ 1=

gijh xij xih 1–+≥ w j h≠

gijh xij≤ w j h≠

vjh 1= vjh 0=
M c m⋅≥

gijh 0= vjh

sj tj+ sh 2 gijh vjh––( ) M⋅+≤ w j h≠

sh th+ sj 1 gijh vjh+–( ) M⋅+≤ w j h≠

vjh gijhi 1=
w∑≤

xij xih gijh–+( )
i k 1–( ) W⋅ 1+=
k W⋅∑ 1≤ j h,( ) MR∈

j h,( )
gijh 0= w j h,( ) WI∈

j h,( )

xij xih+( )
i k 1–( ) W⋅ 1+=
k W⋅∑ 1≤ j h,( ) SI∈

sf j( ) tf j( ) sj–+ tj= j EL∈

yi xij gijh vjh, , , 0 1;{ }∈ w
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This negative finding is due to the NP-hardness of VWALBP-1. Additionally, deciding whether
or not a feasible solution exists (and finding a feasible solution) is NP-hard, too, because the
number of stations is restricted from above by K and, thus, the number of workplaces must not
exceed . Due to this restriction, finding a feasible solution is as hard as solving
VWALBP-F with prespecified  which is NP-hard as a generalization of SALBP-F.

4 Problem analysis and reduction procedures

Due to the complexity it is helpful for finding good or even optimal solutions to analyze the prob-
lem’s structure and to reduce search effort by applying lower bound arguments and logical tests.
In the following, we describe such approaches which can be applied to VWALBP-1 independent
of the solution procedure used afterwards. In order to go without special cases for extra-long tasks,
we assume that they are already transformed into chains as described in Section 3.

4.1 Lower bounds

Though SALBP-1 is a special
case of the new problem
VWALBP-1 (for  and
no assignment restrictions), it
is not a relaxation, because the assumption of strictly serial work in SALBP is an additional re-
striction. Thus, special bounds for SALBP-1 that are based on the property that tasks are never
performed in parallel (e.g., the one-machine bound proposed by Johnson 1988) are not applicable
to VWALBP-1 (and 2ALBP-1 as well; cf. Bartholdi 1993; Becker 2007, ch. 2.3.2.2). An example
is given in Figure 7. The optimal VWALBP-1 solution in the left Gantt chart requires two work-
places while the optimal SALBP-1 solution in the right chart requires three workplaces due to task
4 having to wait until both predecessors (which cannot share a workplace) are finished.

Other bounds for SALBP-1 are based on the binpacking problem BPP-1 which is to minimize the
number of equal-sized bins (stations) necessary to pack a set of items (tasks) with given sizes (task
times) and, thus, constitutes a relaxation of SALBP-1 by omitting precedence constraints (cf.
Scholl 1999, ch. 2.2.1.5). Binpacking based bounds are also valid for VWALBP-1, because BPP-
1 relaxes the SALBP restriction of serial work. 

We use only inexpensive binpacking bounds (for further bounds we refer to Martello and Toth
1990, Scholl et al. 1997, Fekete and Schepers 2001). 

• The capacity bound LB1 utilizes that the total task time  must be subdivided among
workplaces each of which has a capacity of c time units and that the number of workplaces is
integral (cf. Baybars 1986; Martello and Toth 1990, pp. 224): 

• The counting bound LB2 counts the number of tasks j with tj > c/2, because all of those tasks
have to be assigned to different workplaces. LB2 can be strengthened by adding half of the
number of tasks (rounded up to the next integer if necessary) with task time c/2, because two
of them may share one workplace (Johnson 1988; Scholl 1999, ch. 2.2.2.1). 

• The counting bound LB3 generalizes LB2 with respect to thirds of c and is computed by add-
ing up weights: All tasks j with tj > 2c/3 are given the weight 1, because they cannot be com-
bined with any other of the tasks considered. Tasks with  get the weight 1/2,

w K W⋅=
m w=

1

Figure 7. Saving a workplace by parallel work ( )c 10=
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because two of them may share a station. The tasks with  and  are weighted
with 1/3 and 2/3, respectively (Johnson 1988; Scholl 1999, ch. 2.2.2.1). 

• Extended bin packing bounds: The logic behind the simple counting bounds is combined and
extended in several manners in order to define more sophisticated bound arguments (cf. Mar-
tello and Toth 1990, Berger et al. 1992, Scholl et al. 1997). 

4.2 Station intervals and time windows

Due to precedence relations, indivisibility of tasks and integrality of task times, the set of stations
to which a task can be assigned is reduced in addition to pre-specified station restrictions. In the
following, we describe how to compute earliest and latest stations based on earliest and latest
starting times of tasks. In order to simplify description, we do without including station restric-
tions in the formulae presented, because they can be additionally considered by reducing the re-
sulting intervals accordingly.

In case of SALBP-1, earliest stations Ej and latest stations Lj are computed by applying the logic
of LB1 (cf. Section 4.1) to predecessors and successors, respectively (cf. Scholl 1999, ch. 2.2.1.1):

   and            for j = 1,...,n

These values are not valid for VWALBP-1, because each station can have up to W workplaces
and, thus, a maximal capacity of  time units. However, replacing c by  in the above for-
mulae leads to very weak station intervals  that do not account for the precedence relations
among the predecessors and successors, respectively.

To get smaller station intervals, we apply the logic of critical path analysis from project schedul-
ing (cf. Demeulemeester and Herroelen 2002, ch. 1.2.1; Klein 2000, ch. 2.2.1) to compute earliest
starting times  and latest starting times  which finally allow for computing earliest and latest
stations. In order to compute tight values in a single run, the tasks are considered following their
topological numbering, i.e., the earliest starting times  of all predecessors  are already
known, when task j is considered. The procedure starts with  for all tasks with .

A first lower bound on the starting time of task j is based on the critical path of the precedence
graph interpreted as a project network:   for j = 1,...,n

Another bound utilizes the logic of the capacity bound of the resource constrained project sched-
uling problem (RCPSP; cf. Klein 2000, ch. 4.1.1.1). In each period of its execution, any task re-
quires one unit of a renewable resource which is available with W units (workers) per period: 

for j = 1,...,n

A third bound is based on station incompatibilities. If task j must not be assigned to the same sta-
tion as any predecessor h, then it must start in a later station than h:

for j = 1,...,n

If an earliest station  is pre-specified due to station restrictions, an additional bound is given by
. If none is specified, then  is to be set. The largest of these bounds defines

an earliest starting time of task j:     for j = 1,...,n

tj c 3⁄= tj 2c 3⁄=

Ej tj thh Pj
*∈∑+⎝ ⎠

⎛ ⎞ c⁄= Lj K 1 tj thh Fj
*∈∑+⎝ ⎠

⎛ ⎞ c⁄–+=

W c⋅ W c⋅
Ej Lj,[ ]

esj lsj

esh h Pj
*∈

esj 0= Pj { }=

τj
1 max 0  esh; th+ h Pj∈{ }=

τj
2 thh Pj

*∈∑⎝ ⎠
⎛ ⎞  / W=

τj
3 max 0  Eh; c⋅ h Pj

* p  p j,( ) SI∈{ }∩( )∈{ }=

Ej'
τj

4 = Ej' 1–( ) c⋅ Ej' 1=
τj max τj

1  τj
2  τj

3  τj
4;;;{ }=
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Additionally, it has to be considered that a task must be finished in the same station where it
started. This results in a feasible earliest starting time and a corresponding earliest station (the left-
hand side of the inequality indicates the station to which the starting time  corresponds, while
the right-hand side represents the station where j would end):4

   ; for j = 1,...,n (17)

For the precedence graph in Figure 8 with  and , we get  for j = 1,...,3 and
. If at most  workplaces are available at any station, we have an increased

earliest starting time  while  remains unchanged. From  it follows
that  and . The same results would be obtained if task 4 were station incompatible
to one of the other tasks ( ).

Latest starting times and stations are computed in an analogous manner. We get
the following upper bounds on the latest starting time by applying the same prin-
ciples as before (  is a pre-specified latest station, if none is given, then ):

, 

, 

The minimum value defines a valid upper bound on the latest starting time:

 for all j = 1,...,n

A feasible latest station time and the latest station are computed as follows:

; for j = 1,...,n (18)

A necessary condition for the existence of a feasible solution obviously is  for all tasks
j = 1,...,n. If this condition is not fulfilled, the number of stations K, the cycle time c and/or the
maximal number of parallel workplaces W are too restrictive and must be increased.

4.3 Strengthening incompatibilities

Station incompatibility: In addition to prespecified task pairs that must not be assigned to the same
station due to technological or organizational reasons, a task pair (j, h) can be added to the set SI
if at least one of the following easily checked conditions holds:

• The tasks are related by mounting position but do not jointly fit into one workplace, i.e.,
 and .

• Task j is a follower of h and the duration of the
longest path from the start of h to the end of j
exceeds the cycle time. This situation is illustrated
in the right part of Figure 9, where the task pair

4 For all tasks with time 0 having predecessors the formula has to be changed to . Similar modifica-
tions are necessary for latest stations but will be omitted to simplify presentation.
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(1,4) can be added to SI if . Notice that this condition is always true for all task pairs of
a chain replacing an extra-long task. 

• Task j is an indirect follower of task h and the maximal capacity of a station is not sufficient to
perform h and j and all tasks in-between them. This is obviously true if the condition

 is fulfilled. An example is given by the left part of Figure 9,
where tasks 1 and 5 are station incompatible in case of  and .

• Task j is an indirect follower of task h and on any path connecting them there is a task which is
station incompatible to h or j.

• The tasks j and h are related by common mounting positions, i.e., , but are also
workplace incompatible, i.e., , due to other incompatible positions. For example,
consider two tasks 1 and 2 with  and  in case of .

• The station intervals of task h and j do not overlap, i.e., .

Workplace incompatibility: A task pair  is in WI if it is not allowed to perform the tasks j and
h at the same workplace. This is true if at least one of the following simple conditions holds:

• The task pair is station incompatible, i.e., .

• The tasks jointly exceed the cycle time, i.e., .

• The tasks are to be executed at incompatible mounting positions, i.e., there exist a 
and a  such that .

If  as in case of SALBP, we get . In general, it is obviously true that .

4.4 Task time incrementing

In order to improve bound values and problem reduction, it is
helpful to increase task times based on unavoidable idle times. 

We adapt the extended duration augmentation rule (EDAR) proposed by Fleszar and Hindi (2003)
for SALBP-1 which is shortly described as follows: For each task j, it computes a lower bound for
the idle time  unavoidable in any WP load which contains task j. This is achieved by solving
a modified subset sum problem (SSP; cf. Martello and Toth 1990, ch. 4). This SSP consists of se-
lecting a set of items (tasks that can be combined with task j, collected in a set of compatible tasks

) with maximal sum of task times such that the resulting sum does not exceed the (remaining)
capacity  and all tasks are compatible with each other. Though SSP is also an NP-hard opti-
mization problem, it usually can be solved very quickly by a specialized branch&bound procedure
(Fleszar and Hindi 2003). Figure 10 shows an example with c = 10. Task 2 can only be combined
with task 3, i.e., . Thus, at least an idle time  occurs  in each load containing task
2.  For task 3, we get  and . Task 4 has  and .

Now, the time of some task j can be increased to  without changing the set of feasible
solutions. However, this increase can reduce unavoidable idle times of tasks in  which, thus,
have to be corrected. For example, by increasing the time of task 4 to , we get

.  The sequence of considering tasks for a possible increase of their task times influeneces
the resulting times considerably. For example, starting with tasks 2 or 4, we get t2 = t4 = 6 and
t3 = 4, while t2 = t3 = t4 = 5 results when task 3 is considered first. Fleszar and Hindi (2003) con-
sider the tasks according to monotonically decreasing task times. Since determining the set of (re-
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ally) compatible tasks  is non-trivial, Fleszar and Hindi (2003) include each task h with
 in Kj, the time window of which does overlap with the time window of task j.

In order to extend EDAR to VWALBP-1, a difference has to be made between station incompat-
ible and workplace incompatible task pairs as illustrated by an example. Figure 11 contains an in-
stance of VWALBP-1 and its optimal solution for c = 10, K = 1, W = 2 and IMP = {1,2}. 

Task 1 is workplace incompatible to both other tasks, i.e., WI =
{(1,2), (1,3)}, while no station incompatible pairs exist, i.e.,
SI = {}. When task 1 is scheduled, an unavoidable idle time =
5 time units occurs and  is possible. If the additional
precedence relation (1,3) is to be considered, the same optimal so-
lution and the same unavoidable idle time  are obtained.
Nevertheless, the task time  must not be increased to 10, because
this would exclude the optimal solution (task 3 could not be assigned to station 1 anymore). This
example shows that it is not always feasible to increase task times by unavoidable idle times if
they are caused by workplace incompatibility. However, if only station incompatible task pairs
are responsible for an unavoidable idle time, the task time can be incremented feasibly in any case. 

Let  and  be the task sets which are
compatible to j concerning the same workplace and station, resp. ( ). In Figure 11, we
get  and . To compute the unavoidable idle time  of a task j, the mod-
ified SSP is solved using the set , while it is necessary to solve another instance of the mod-
ified SSP with the set  to compute a lower bound on the feasible time increment . 

If a task j considered by EDAR is not related by precedence to any of the station compatible but
workplace incompatible tasks, i.e.,  for all , then the task time is in-
creased by the unavoidable idle time, i.e., . If this condition is not fulfilled, then only
the increase to  is feasible. If the task time has changed, the unavoidable idle times and
minimal increments of station and workplace compatible tasks need an update. In the example,
we get  and . If the precedence relation (1,3) is valid, the task time may be increased
only by  to . Without this relation, yet an increase by  to  is feasible.

Since binpacking bounds ignore precedence relations, the difficulty mentioned above does not oc-
cur. So, alternative task times  can be used for all tasks j.

4.5 Relationships between related VWALBP-1 instances

Consider two instances A and B of VWALBP-1 which are identical except for the number of
available stations with . Because A is less restrictive, each feasible solution of B is
also feasible for A. Thus, the minimal number of workplaces m*(A) provides a lower bound on
the minimal number of workplaces m*(B). Furthermore, a known optimal solution of B can serve
as a feasible start solution when solving A.

Figure 12 illustrates this relationship.
Instance A with K(A)=2 requires two
workplaces, while three workplaces are
necessary for instance B with K(B)=1.

The same relationships are valid if A and
B only differ in the maximal number of

Kj
th c tj–≤

Figure 11. 
Workplace incompatible tasks

3

1

2

10

time1

2

workplaces

S1
0

3
41

2

5

6
{1}

{2}
{2}

LI1
t1' 5 5+ 10= =

LI1 5=
t1

KWj h  h V j{ } WIj∪( )–∈{ }= KSj h  h V j{ } SIj∪( )–∈{ }=
KWj KSj⊆

KW1  { }= KS1 2 3,{ }= LIj
KWj

KSj ∆tj LIj≤

h Fj
∗ Pj

∗∪( )∉ h KSj KWj–∈
tj' tj LIj+=

tj' tj ∆tj+=

LI1 5= ∆t1 1=
∆t1 t1' 6= LI1 t1' 10=

tj'' tj LIj+=

K A( ) K B( )>

Figure 12. Instances A and B (c=10)

3

1 4

2

3 41 2

10

time1

2

workplaces

S1

10 20

time1

K(A)=2

S1 S2

1
6

2

3

2

3

4
4

3

0

0

workplaces

K(B)=1



15

parallel workplaces with W(A)>W(B). An example is given in Figure 7. These relationships
might be useful as they facilitate solving problems differing only in one parameter in the context
of sensitivity analyses.

5 Branch&bound procedure VWSolver

As the new problem VWALBP-1 cannot be solved efficiently by standard software, we develop
a branch&bound procedure named VWSolver which might be applied in an optimum-seeking as
well as an heuristic version.

5.1 Preprocessing

Before the enumeration is started, the following preprocessing steps have to be performed:

• A dummy sink node n (after increasing n by 1) is added to the graph which becomes successor
of all tasks without real successors. This additional task gets task time zero, is set compatible
to all tasks and does not require a mounting position. Whenever it is assigned to a station, a
complete solution has been found.

• Initialize the sets MR (mounting position related task pairs), SI and WI (incompatible task
pairs; Section 2 & 4.3). Compute earliest and latest starting times and stations (Section 4.2).

• Apply the modified EDAR to compute unavoidable idle times, increased and alternative task
times (cf. Section 4.4).

• Based on alternative task times compute the lower bounds LB1 to LB3 (vgl. Section 4.1). The
largest one is used as initial global lower bound LB.

• Compute potential dominances for the modified Jackson dominance rule (cf. Section 5.3).

• Renumber the tasks such that potentially dominating tasks get smaller numbers than domi-
nated ones while maintaining a topological ordering. First level ties are broken in favor of the
smallest value of the latest station, second level ties, in favor of the largest task time and third
level ties, in favor of the smaller original number.

• For each task j and each station  determine the list of tasks that are compatible to j
in station k. This list facilitates enumerating station loads.

• Set the global upper bound to  to indicate that no feasible solution is known.

5.2 Branching scheme and bounding

Branching: Similar to SALOME for SALBP-1, the branching is organized as a laser search
(depth-first search) in a stationoriented manner (cf. Scholl and Klein 1997). In each branching
step at a level k (k= 1,...,K) of the enumeration tree, a load Sk for station k is generated. Whenever
the task n (dummy sink node) is assigned, the solution (task-station assignments) is examined and
stored as incumbent solution with updated UB if the number of workplaces is lower than the
former UB. In either case, a backward step is performed to consider another load for the current
station k. If all loads for k (based on the current branching path on the levels 1,..., ) have been
examined, a backward step to level (station)  is made. This is continued until all loads have
been examined in level 1. Since then all solutions of the VWALBP-1 instance have been exam-
ined explicitly or implicitly, the search is finished and the current incumbent solution is optimal,
i.e., UB is equal to the minimal number of workplaces.

k Ej Lj,[ ]∈

UB W K 1+⋅=

k 1–
k 1–
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Each node h (with h being a consecutive number following the depth-first search) at a level k of
the enumeration tree represents a partial solution Th with station loads ,...,  and a residual
problem Rh which consists of the subgraph with all yet unassigned tasks and has the same struc-
ture as the original problem. Each arc from level k to k+1 represents a station load Sk generated
by branching. The (locally optimal) objective function value of the partial solution  is given
by the number of workplaces required up to station k. This value results from the (optimal) objec-
tive value  of the ancestor node p plus the minimal number of workplaces required for sta-
tion k (see the station problem described below). 

Bounding: For the residual problem Rh, a lower bound  is computed by LB1 based on al-
ternative (increased) task times (cf. Section 4.1 and 4.4). In the first node 0 at level 1, the partial
solution  is empty and the residual problem  is equal to the original overall problem, i.e.,

. In each node h, a local lower bound on the minimal number of workplaces re-
quired in a complete solution is given by = +  (cf. Scholl 1999, ch. 4.1.2.1). 

Figure 13 shows an example instance and
the resulting enumeration tree.5 Above the
nodes, the cumulative number  of
workplaces required and the lower bound

 is noted. The load ={1,2,3,4}
leading to node 1 requires two workplaces
with WP loads {1,3} and {2,4} (optimum
of the station problem) such that =

=2. The residual problem ,
consisting of task 5 only, requires (at least)

 additional workplace(s). So,
we get the lower bound = .
In node 2, a first feasible solution is found and stored as incumbent solution, because the initial

 is improved to . Due to this improved global upper bound all nodes h with
 are fathomed (nodes 3 to 5, here). In node 7, a further improvement to UB=2 is

reached. Due to LB=UB, the complete procedure can be stopped with the optimal solution
,  getting along with 2 workplaces (workers).

In order to describe how station loads Sk are built and analysed, the following issues have to be
discussed in more detail:

A task j is assignable to a temporary load  if station k is in its station interval ( ), all
predecessors are already assigned (  for all ), task j is not station incompatible
to any task already assigned to station k (  for all ), and there is sufficient capacity
left ( ).

Feasibility of station loads: In contrast to SALBP, where successively
including assignable tasks automatically leads to feasible station loads,
this is not generally true for VWALBP-1 with . The aggregated
capacity condition considered in the definition of "assignable" is nec-
essary but not sufficient, because the cycle time must additionally be

5 All sets Qj only have a single element. So, we specify these elements rather than the sets to ease presentation.
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observed in each workplace (disaggregated condition  for each WP load  in sta-
tion k). However, even this is not sufficient for the existence of a feasible solution, because prec-
edence constraints might require to introduce additional idle time into the schedule (cf. Section
2.3). For example, consider the instance in Figure 14 with  and . The station load

 fulfills the aggregated and the WP loads  and 
fulfill the disaggregated capacity conditions. Nevertheless, it is not possible to schedule these
loads feasibly, because task 5 must wait for task 3 and, thus, cannot start before time 10. As a re-
sult,  is not feasible for station 1.

The difficulty discussed before is called station problem. It consists of determining the minimal
number of parallel workplaces required and the corresponding WP loads for a given station load

, if this is possible. If more than W workplaces are required, any task cannot be finished within
the single station considered or station incompatible task pairs are contained in , then the load

 is identified as being infeasible. The station problem is an (NP-hard) optimization problem by
itself and, thus, is solved by a suited exact (branch&bound) procedure described in Section 6. 

Load generation: The loads  required for branching a node h, are generated by systematically
combining all tasks that are assignable to station k. In a first step, all tasks j with  are as-
signed (prefixing), because they must not be executed at a later station. In particular, this is true
for elements of the chain representing an extra-long task. Whenever the first subtask has been as-
signed to a station, the subsequent subtasks are immediately prefixed to the successive stations
without break. The prefixing is valid for all loads  emerging from the current node h of the tree.
If already the prefixed load is identified to be infeasible (see above), node h is fathomed. Other-
wise, the prefixed load is appended to form different station loads  by assigning assignable
tasks in a lexicographic manner based on the renumbering (cf. Section 5.1). After adding each
task, feasibility is checked. If the partial load is found to be infeasible, the task is removed and the
next one examined. Otherwise, the load is extended further. This is repeated until no task can be
assigned feasibly. The resulting load  is branched by an arc emerging from node h to built a
new node in the tree which is considered next within the laser search. After having examined this
node and its complete subtree (laser search), the task added to  the latest is removed and re-
placed by the next (higher-numbered) task and the enumeration process is continued as described
above. This is repeated until no further tasks can replace a just removed task. Then, this reduced
load is branched also. The tree in Figure 13 shows that by this procedure loads are built in a lexi-
cographic order with subsets built later than their supersets. By doing so, the procedure tries to use
as many as possible parallel workplaces first in order to find a feasible solution early and to use
the advantages of parallelism as completely as possible.

5.3 Dominance rules

Dominance rules are used to reduce the size of the enumeration tree and speed up the solution pro-
cedure. A (currently considered) partial solution  is considered as being dominated by another
(already or still not considered) partial solution  if it is guaranteed that solving the residual prob-
lem  does not lead to a better overall solution than solving the residual problem . Then, the
partial solution  and the complete subtree following the node h can be excluded from further
search because only one optimal solution is searched for (cf. Scholl and Becker 2006). The fol-
lowing dominance rules, generalizing respective rules for SALBP-1, are applied in VWSolver:
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Maximum load rule

For SALBP-1, Jackson (1956) proposed the so-called maximum load rule (furthermore, see Scholl
1999, ch. 2.2.2.2). A station load  is maximal if no unassigned task can be added feasibly. Each
partial solution  that contains a non-maximal station load is dominated because there always
exists another partial solution  that only contains maximal loads and requires the same or a
lower number of stations.

In case of VWALBP-1, the definition of maximiality must be modified, because additionally as-
signing a task to a load might increase the number of workplaces required. Thus, a station load is
defined to be maximal here, if no assignable task can be added without increasing the minimal
number of workplaces required (cf. the station problem in Section 6). Non-maximal loads are ex-
cluded from branching.

In Figure 13, the nodes 3, 4, and 5 are fathomed due to bounding. Additionally, they are dominated
according to the maximum load rule. Even if task 2 can be assigned to  (node 6) fea-
sibly, this load is maximal, because the number of workplaces would increase from 1 to 2. 

Feasible set dominance rule

Enumeration regularly generates partial solutions that contain the same set of tasks but differ in
the way the tasks are assigned to stations. By construction, these sets are feasible in the respect
that they also contain all predecessors of each task included. In case of SALBP-1, a partial solution

 corresponding to a feasible set of tasks  which is equal to (or a subset of) the feasible set
 of another partial solution  already considered is dominated if it does not require less sta-

tions. In order to apply this dominance concept, the already generated feasible sets and informa-
tion on the best solution so far have to be stored. This can be done in an efficient manner by means
of a tree structure as proposed by Nourie and Venta (1991). An extended version is described by
Scholl and Klein (1999). 

For VWALBP-1, the dominance definition must be modified to cope with additional constraints.
The following conditions are required to constitute a dominance of partial solution  over : 

• All tasks already assigned in  are also assigned in , i.e., the sets of assigned tasks have
the subset relationship .

• Partial solution  requires at most as many workplaces as , i.e., .

• The partial solution  does not distribute the workplaces among more stations than , i.e.,
 with  denoting the number of stations required for . 

While the first two condi-
tions are also required for
SALBP-1, the latter one is
necessary due to the re-
stricted number of stations
K and the station restric-
tions in VWALBP-1. Con-
sider the instance of Figure 15 with c = 10. The partial solutions T1 and T2 contain the same tasks
and  requires one workplace less. Nevertheless, there is no dominance relationship between
both partial solutions, because it is not sure that the residual problem  has a feasible solution.
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For example, assume that task 6 is fixed to station 3. Then, only  leads to a feasible solution.
So, there is a tradeoff between number of workplaces and number of stations such that partial so-
lutions are efficient and, thus, not dominated even if additional workplaces are required provided
that they are compensated by a reduced number of stations.

To apply the feasible set dominance rule in an efficient manner, the partial solutions are stored in
a dynamic tree structure which is a generalization of the structure proposed by Nourie and Venta
(1991) and the dominance relationships are reduced to the case J(Th)=J(Ti). For each set of as-
signed tasks, the tasks contained are encoded by a path in this dynamic tree (for details see Nourie
and Venta 1991 as well as Becker 2007, ch. 4.1.3.2) which terminates in a memory node that
stores the minimum number of workplaces and the corresponding number of stations required by
the best partial solution with this task set so far. If several efficient combinations of both numbers
exist (see above), further memory nodes are appended in a list.

Whenever a partial solution  has been built (before branching it), the tree structure is used to
retrieve the memory node(s) which correspond to . If such a node does not exist, this task
set has been considered first and a new memory node is inserted into the structure and filled with
the information of . If at least one such memory node already exists and one of the partial so-
lutions  stored there dominates , the partial solution  is not used for branching. Otherwise,
if  dominates a stored , then the information of  is overwritten by that of  in the respec-
tive memory node. If  represents an additional efficient solution for , a further memory
node is appended in the list for . 

Jackson dominance rule

The Jackson dominance rule (Jackson 1956, strengthened by Scholl and Klein 1997) is applied to
reduce the number of alternative loads which have to be considered for a certain station k. It is
based on potential dominance. In case of SALBP-1, a task h potentially dominates another task j
that is not related to h by precedence, if  and  hold. The rule excludes a maximal sta-
tion load Sk from being branched if at least one task  can be replaced feasibly by a still un-
assigned task h which potentially dominates j. This rule utilizes the fact that all successors of task
j are successors of h as well and cannot start before h is finished. Hence, the sequence of j and h
is not important for the successors of j such that replacing j by h does not exclude later task assign-
ments which would be possible when j remained. The condition  guarantees that the station
utilization will not decrease if h replaces j in Sk.

For VWALBP-1, the definition of the potential dominance must be extended. In addition to the
above-mentioned conditions, the following ones must be fulfilled to constitute a potential domi-
nance of task h over task j: 

• The latest station of h is not smaller than that of task j, i.e., .

• The task j is also workplace compatible to all tasks to which h is workplace compatible, i.e.,
with respect to incompatibility the inclusion  must hold.

• The task h is mounting position related to all tasks that are mounting position related to task j,
i.e., .

The modified rule excludes each station load which contains a task j that can be replaced feasibly
by a potentially dominating task h without increasing the number of workplaces required. If all
conditions are fulfilled as equations, the lower-numbered task is defined to be dominating.
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Figure 16 shows an instance
with unspecified mounting po-
sitions for task 2. If Q2={1},
task 1 potentially dominates
task 2 and task 4. The station
load S1={1,3,4} (first chart)
dominates the alternative load
{2,3,4} (second chart). Both completed solutions shown are optimal but only one must be consid-
ered. If Q2 = {1,2} is given, task 1 does not potentially dominate task 2 anymore, because task 2
is mounting position related to task 6 which is not the case for task 1. Now, the first solution based
on  is infeasible such that dominating  would exclude the optimal solution.

Empty-station rule

Due to pre-specified earliest stations, it can be necessary to leave stations empty, i.e., no work-
place is installed at this segment of the line. This is typical in practical applications, because empty
stations are systematically provided in order to have buffers for future extensions.

Consider the instance in
Figure 17 with task 4 fixed to
station 3, where the required
immotile machine is installed.
An optimal solution is given by
S1={1,3}, S2={}, S3={2,4,5}
with two workplaces (work-
ers). Thus, an empty load must
be assigned to station 2 in the
enumeration tree. In general, an empty station is always generated (as the last load considered) for
branching , if there exists an unassigned task j with . Immediately after building an empty
load , the feasible set dominance rule must not be applied. In the example, this rule would
fathom  because it seems to be dominated by .

5.4 Heuristic version of VWSolver

The branch&bound procedure VWSolver described above can easily be modified to a heuristic
procedure (called VWSolv-H) by two simple modifications:

• The computation time for solving the station problem (as described in Section 6) is restricted
to a limit of  sec each. In case of a time-out, corresponding station loads  are considered
infeasible and, thus, are not branched in VWSolver.

• Another time limit  is set for the branching process of VWSolver. After having found an
initial feasible solution, the procedure is enforced to (heuristically) fathom all nodes on the
current branching path and to return to the root node of the tree always after  sec. This ena-
bles the procedure to examine further loads for station 1 and all further stations in order to
diversify the search. By doing so, a main disadvantage of laser search is overcome, because
the search will never return to the first levels of the tree in case of large instances and
restricted computation time.
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6 Solving the station problem

To evaluate a station load  within the procedure VWSolver, the station problem mentioned in
Section 5.2 has to be solved. This is done by the exact branch&bound procedure WPA (Work-
Place Assignment) described in the following. 

6.1 Refined problem statement and solution idea

The station problem consists of assigning the tasks j of a given load  to workplaces i=1,...,W
and determining starting times  from the intervals [0, ] such that the number of opened
workplaces is minimized. If it is not possible to assign all tasks  to at most W workplaces in
a feasible manner, the station problem has no feasible solution and the station load must not be
used for branching in VWSolver. The station problem is a special case of VWALBP-1 with 
and the task set  which is NP-hard, too. Thus, BPP-1 is a relaxation of the station problem and
binpacking bounds (cf. Section 4.1) are valid also.

Furthermore, the station problem is equivalent to a special type of resource constrained project
scheduling problem with given due date (equal to the cycle time c). Each task corresponds to a job
of the project and each workplace represents a unit of a single renewable resource which is avail-
able in W units per period. The objective consists in minimizing the resource level required (max-
imal resource usage in any period) such that the due date is fulfilled. Due to this relationship to
resource constraint project scheduling, the serial scheduling scheme (cf. Kelley 1963; Kolisch
1995, ch. 5.2.1) is adapted to the station problem in order to additionally observe workplace in-
compatible task pairs and mounting position related task pairs.

6.2 Preprocessing

Before the enumeration starts, all tasks that are related by mounting position
are grouped together. Initially, each task j defines a group  for ist own. In the
next step, any two groups  and  are united if there is at least one task pair

 with  and . This process is repeated until no further
grouping is possible and ends up with groups Gg (with consecutive group numbers g). Thus, if the
sum of task times t(Gg) of any group Gg exceeds the cycle time, no feasible solution exists for
station load  and WPA terminates immediately. The same is true if a group contains tasks that
are workplace incompatible to each other. In the example of Figure 18 with  and

, we get two groups G1 = {1} and G2 =  {2,3,4}. Though tasks 3 and 4 are not directly re-
lated they belong to the same group because they are both related by mounting position to task 2.
The group G2 has a time of t(G2) = 11 time units such that no feasible solution exists.

Two groups Gg and Gp are incompatible to each other and must not be assigned to the same work-
place if one of the following conditions is true:

• The total task time exceeds the cycle time, i.e., .

• There exists a workplace incomptaible pair  with  and .

All pairs of incompatible groups are computed and stored in GI.

Due to the fact that the workplaces are identical, at least one group can initially be assigned to
workplace 1. Furthermore, it might be possible to assign a further group which is incompatible to
the first one, to another workplace and so on. This technique is called forward checking and ex-
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plained in Section 6.4. In particular, subtasks of an extra-long task (except for the last) are incom-
patible to each other task and require a workplace for their own. In Figure 19, we get the groups
G1 = {1,4}, G2 = {2} and G3 = {3,5}. Initially, w.l.o.g.,  can be assigned to workplace 1 and

 to workplace 2, because these groups are incompatible to each other.

An initial lower bound on the number of workplaces is computed by
means of LB1. Another lower bound is given by the number of work-
places already installed by forward checking. In the example, both
bound arguments result in two workplaces (workers).

In the branching scheme of VWSolver the load  is built to extend a
partial solution  to a partial solution  (see Section 5.2). If

 holds, it is not necessary to solve the
station problem at all and WPA terminates immediately, because a solution improvement is not
possible by branching the load  irrespective of the number of workplaces.

For each task, a time window  of starting times is com-
puted based on the formulae in Section 4.2 applied to the set  ignoring
all other tasks. In order to consider promising solutions first, the tasks are
reindexed in non-decreasing order of earliest starting times esj. Table 3
contains the time windows for the example of Figure 19, where the task numbering remains valid. 

Based on time windows, additional precedence relations may be deduced. If , the ad-
ditional arc  can be included. Though additional arcs do not exclude feasible solutions they
restrict the search effort. Furthermore, they allow for further strengthening of time windows.
Thus, the procedure iterates on updating time windows and adding arcs until no additional arc can
be found. In the example, the arcs (2,4) and (3,4) can be added. 

Frequently, the station problem has no feasible solution. To identify such instances quickly, a log-
ical test is applied to each group  with more than one task. This test is based on two polynomi-
ally solvable makespan-minimizing one-machine problems (cf.  Lawler 1973). Both problems
consider the members of  as jobs which have to be performed one after the other such that the
makespan is not larger than the cycle time. In the first problem, heads  are considered for
all jobs . The minimal makespan is obtained by scheduling the jobs in non-decreasing order
of heads as early as possible. In the second problem, tails  are considered instead of
heads and the optimal solution is computed by scheduling the jobs in non-increasing order of tails
as early as possible. If at least one of the minimal makespans exceeds the cycle time, no feasible
solution exists for the station problem of  and this load is not used for branching in VWSolver. 

Consider the example in Figure 20 with ,  and ,
, = . Due to  and , job 4 is scheduled at

 and job 3 at . Since the makespan results to , the
station problem has no feasible solution.

6.3 Branching

WPA applies an adaptation of the serial scheduling scheme to all precedence-feasible task se-
quences and systematically enumerated task-workplace assignments. This is an extension of the
approach of Patterson et al. (1989) for the resource constrained project scheduling problem.
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In order to explain the branching process in more detail, two values have to be considered for each
workplace, both initially set to zero:

blocked capacity of workplace i with ; capacity is used for executing assigned
tasks, irrespective if a starting time is already fixed or not, and by unavoidable idle times

current schedule time of workplace i (finishing time of the latest task scheduled for i so far);
 with  denoting the shortest time of a task in 

In each branching step, an assignable task  (all predecessors are already scheduled) is as-
signed to a workplace  to build a new subproblem (node). If j is a member of a group
and another of the members has already been assigned to a workplace before, this decision is pre-
determined. If j is considered as the first member of its group G(j), its assignment increases the
blocked capacity to .

Following the logic of the serial scheduling scheme, the just assigned task j is scheduled as early
as possible at time . If , then task j cannot be scheduled
feasibly and the subproblem is fathomed. Otherwise, if , then an idle time results between j
and the former last task in workplace i such that the additional capacity is blocked, i.e.,

. The new schedule time is set to the ending time of j, i.e., .

In each node of the enumeration tree, branching alternatives emerge from the set of assignable
tasks and their feasible workplace assignments. These alternatives are enumerated by selecting the
tasks in order of non-decreasing earliest starting times esj. If the group G(j) containing the chosen
task j is already assigned to a workplace, only one subproblem is built. Otherwise, several sub-
problems are constructed by alternatively assigning j and, thus, G(j) to all workplaces i (in increas-
ing order of their numbers) where this is feasible with respect to the following assignment rules: 

• The workplace i must not contain a group which is incompatible to G(j).

• The remaining capacity of i must be sufficient for the complete group, i.e., .

• The current schedule time of i must not exceed the latest starting time of any task h in G(j),
i.e.,  must hold for all .

• If in a node more than one workplaces are still uninstalled (no task has been assigned so far),
only one subproblem is built by assigning task j to the lowest-numbered one, because all
(empty) workplaces are identical and, thus, still exchangeable. 

Branching is organised as a laser search, i.e., in each node only one subproblem is built at a time
and immediately followed. Further subproblems are generated each time the procedure returns.

Figure 22 repeats the instance of Figure 19 and the results of the preprocessing including addi-
tional arcs (dashed). At the arcs of the enumeration tree, branching decisions are noted. The nodes
are numbered consecutively, node weights are the number w of already installed workplaces and
the lower bound . In the root node 0, the first subproblem (node 1) is obtained by sched-
uling task 1, which has been assigned to workplace 1 together with task 4 by preprocessing, at time
0. In node 1, forward checking (see Section 6.4) reveals that WP3 is the only feasible workplace
for task 2 (in WP1 task 2 cannot be scheduled at its latest time ls2 and t(G2) + tc2 > c excludes
WP2). The remaining branching decisions in the nodes 2 to 4 are predetermined due to already
having assigned all tasks to workplaces. The tasks are scheduled as early as possible in each case.
In node 5, a first feasible solution with UB=3 workplaces is obtained (see the first Gantt chart).
Since no alternative subproblems exist, the search traces back to node 0, where task 2 is to be con-
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sidered next. It can be assigned to WP1 or WP3 defining two subproblems while t(G2) + tc2 > c
excludes WP2. Having task 2 assigned to WP1 and scheduled at  leads over further
predetermined branching decisions to an improved feasible solution with UB=2 workplaces (sec-
ond Gantt chart). After tracing back to node 0, the remaining subproblems (task 2 assigned to and
scheduled in WP3 and task 3 scheduled in WP2) need not be built anymore, because UB is equal
to the global lower bound LB(0)=2 and, thus, the second feasible solution proven to be optimal. 

6.4 Logical tests and reduction rules

The effort of enumerating is drastically reduced by applying several logical tests and reduction
rules (for details see Becker 2007, ch. 4.2).

• As already mentioned, forward checking is a projection approach which tries to reduce the
domains of free variables in order to avoid unneccessary branching decisions which would not
result in feasible or improved solutions (cf. Klein 2002). 
Always after scheduling a task, forward checking examines, if unassigned groups can be
excluded from some of the workplaces now. To be more specific, a workplace i is removed
from the set of possible workplaces of some unassigned group Gg, if at least one of the assign-
ment rules described in Section 6.3 (with  replacing ), is violated. If no possible work-
place remains for any unassigned group, the current node is fathomed. If only one workplace
remains for a group Gg, this group is immediately assigned to the respective workplace. This
includes that if only uninstalled workplaces remain in the set, the group is fixed to the lowest-
numbered one because those are still identical. Always after having fixed a task, forward
checking is started again in order to possibly find further domain reductions.
Furthermore, forward checking is used to examine whether already assigned but still unsched-
uled tasks j can be scheduled in a future step. This requires  to hold for each such task j.
If this is not the case, the node is fathomed.

• Reduction of double enumeration: Applied to different task sequences, the serial scheme
frequently leads to identical (partial) solutions (cf. Klein 2000, ch. 6.4.2). A simple mecha-
nism to reduce (a part of) the resulting double enumeration works as follows: If task h imme-
diately follows task j in the task sequence and the resulting start time sh is lower than sj (or

 and ), the node can be fathomed. 
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• Simplified branching: If all tasks in Sk are not related by precedence, only a single task
sequence must be considered, the station problem reduces to a bin packing problem with item
incompatibilities. If a feasible packing can be found, starting times can be assigned in an arbi-
trary manner. Thus, only a single task is considered in each stage of the enumeration tree,
branching alternatives only stem from alternative workplace assignments of this task.

• Storing solutions: In order to avoid solving a station problem twice (in different nodes of
VWSolver), the solutions of already obtained station loads Sk are stored together with the
optimal number of workplaces F*(Sk). The storage is organized in a dynamic tree structure
similar to the one used for the feasible set dominance rule (cf. Section 5.3). Whenever a sta-
tion problem is considered for some load Sk, it is checked if a solution has already been found
and stored. Only when it cannot be found, it has to be solved and the resulting solution has to
be stored in the structure. If no feasible solution exists, this information is also stored. In case
of extra-long task the mechanism can be strengthened because its parts except the last are
identical in size and incompatibilities.

• Extending solutions: When generating station loads in VWSolver, tasks are added to the trial
load step-by-step. To avoid generating infeasible loads, the corresponding station problem is
solved in parallel. In some cases, the optimal solution obtained for a trial load  can easily
be extended to an optimal solution for  or utilized to prove that no feasible solution
exists without resolving the enlarged station problem. If task j additionally fits into one of the
already installed workplaces without rearranging the schedule, the optimal values F*(Sk) and
F*  are obviously identical. If the time sum of task j and all tasks that share mount-
ing positions with j is larger than c it is clear that no feasible solution exists. If task j is the first
part of an extra-long task, it requires a workplace for its own such that F* =
F*(Sk)+1 is known. The same result is obtained if  holds. In both
cases this leads to the optimal solution for the enlarged problem or indicates infeasibility for
F*(Sk)=W. In all other cases, the station problem must be solved explicitly by applying WPA.

7 Computational experiments

We perform computational experiments to examine the effectivity of VWSolver in solving
VWALBP and its special cases. Besides data sets from the literature, a real-world case study is
used to define a test bed. The procedure VWSolver and its heuristic version VWSolv-H have been
programmed as a console application with Borland Delphi 7.0. The used personal computer con-
tains an Intel Pentium 4 processor with 3.2 GHz clock rate and 1 GB of RAM. The maximal com-
putation time is set to 500 sec. If the optimal solution cannot be found by VWSolver within this
time span, the procedure is terminated and the incumbent solution with objective function value
UB is used as a heuristic solution. Within VWSolv-H the time limits are = 0.4 and = 12
sec (vgl. Section 5.4), because these limits gave the best results in a preliminary test series.

There is no benchmark data set available for VWALBP, but literature contains some instances of
special problem types like 2ALBP and NALBP. Additionally, we have recorded a real-world
problem instance from the automotive industry and vary it systematically. Table 4 summarizes all
precedence graphs and assigns them to different problem versions. In each case, the number n of
tasks, the number Q of mounting positions and the maximal task time are specified. Different in-
stances are obtained by defining several cycle times per graph (see detailed results below). 

Sk
Sk j{ }∪

Sk j{ }∪( )

Sk j{ }∪( )
LB1 Sk j{ }∪( ) F∗ Sk( )>

∆1 ∆2
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The "Becker" graphs map a segment of a real
assembly line of a German car maker. In the
real setting, 45 workers perform the 115 tasks
at 25 stations using a cycle time of 110 time
units (TU). The maximal number of parallel
workplaces is . Some tasks exceed the
cycle time such that multi-station workplaces
are to be installed. The remaining precedence
graphs are taken from the literature.

Table 5 summarizes the results obtained for
"Becker1" with different realistic cycle times
c, maximal numbers K of stations and maxi-
mal number W of parallel workplaces. Nei-
ther procedure can solve any of these large in-
stances to optimality within the time limit of
500 sec, considerable gaps between the re-
sulting upper bound UB and the global lower
bound LB1 remain.6 

The results for W=2 are best though the min-
imal total number of workplaces monotoni-
cally decreases with increasing W. 

This is due to the limited computation time,
because the solution space is smaller and a greater part can be
considered for small W. Another reason is the branching proc-
ess which is organized (in order to apply the maximum load rule
efficiently) such that large station loads requiring W work-
places are considered before small ones with fewer parallel
workplaces. This consumes a lot of time in early branching
stages due to more complex station problems. Partly, this is
overcome by the diversification mechanism of VWSolv-H
leading to better solutions, in particular for W= 4. Compared to
the current real-world solution for c=110 and K=25 with 45 workplaces, a considerable improve-
ment is obtained by solutions with 40 and 41 workplaces (highlighted).

Because the large instances could not be solved exactly, the modified precedence graph "Becker2"
has been built by restricting to the first 50 tasks. Table 6 contains the results with F* denoting the
minimal number of workplaces (computed by VWSolver in up to 7 hours) and cpu denoting the
computation times in full seconds. Some instances could be solved within the time limit (bold-
faced), mostly optimality is proven even by VWSolv-H due to UB=LB. In other cases, the opti-
mum has been found (UB=F*) but could not be proven. For the remaining instances an additional
workplace is required. The performance of VWSolver and VWSolv-H is very similar with redu-
ced computation times for the latter.

6 The ’+’  indicates that the lower bound based on alternative task times is larger than the bound based on original
task times. In each case, the bound is increased by one workplace.

name  n Q tmax reference and description

VWALBP-1
Becker1 115 24 290 original real-world instance
Becker2 50 24 290 tasks 1 to 50 from Becker1
NALBP with assignment restrictions
Bogusch1 46 4 171 Gehring/Boguschewski (1990, V9)
2ALBP with assignment restrictions
Bartholdi2 148 2 383 Bartholdi (1993)
Bartholdi3 148 2 170 Bartholdi2 modified by Kim et al. 

(2000)
Bogusch2 46 2 171 Gehring/Boguschewski (1990, V6)
Kim1 9 2 3 Kim et al. (2000, P9)
Kim2 12 2 3 Kim et al. (2000, P12, K = 3)
Kim3 12 2 3 Kim et al. (2000, P12, K = 4)
Kim4 24 2 9 Kim et al. (2000, P24)
Kim5 65 2 272 Kim et al. (2000, P65)
2ALBP without assignment restrictions
Bartholdi1 148 2 383 Bartholdi (1993); Bartholdi2 with-

out assignment restrictions
Bartholdi4 148 2 170 Bartholdi2 modified by Lee et al. 

(2001)
Lee1 16 2 9 Lee et al. (2001, figure 2)
Lee2 205 2 944 Lee et al. (2001, table A2)
SALBP
well-known collection of 25 precedence graphs; Scholl (1999, 
ch. 7.2.2.1); www.assembly-line-balancing.de

Table 4. Overview of used precedence graphs

W 4=

VWSolver VWSolv-H
UB for W= UB for W=

c K LB1 2 3 4 2 3 4
80 30 51+ 55 58 59 55 57 59
90 30 45 49 52 54 49 51 52

100 30 41+ 44 45 47 44 45 47
110 25 37 41 41 43 40 41 41
130 25 31 34 37 37 35 36 37
150 25 27 31 32 33 31 32 32
175 25 24+ 26 28 30 27 27 27
200 25 21+ 23 26 27 23 24 25

Table 5. Results for "Becker1"
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Kim et al. (2000) applied their genetic algorithm (GA)
for 2ALBP with assignment restrictions (special case of
VWALBP) to the test instances of Table 7. As bench-
mark they used exact solutions for "Kim1" to "Kim3"
computed by the model solver CPLEX (CP) and heuris-
tic solutions from the first fit heuristic (FFH) of Bar-
tholdi (1993) for the larger instances where CP failed.
While the computation times of FFH were neligible, the
times required for exactly solving the small instances
with 12 tasks by CP were considerable (up to an hour). 

Table 7 contrasts the results of those procedures and the
new ones. The computation times specified for GA
must be taken with care, because Kim et al. used a Pen-
tium CPU with only 166 MHz. However, the compari-
son shows that the new procedures (designed for a more
general problem) compute optimal solutions and out-
perform GA for small and medium-sized instances with
low computation times. For three of the 148-task in-
stances "Bartholdi2" with large cycle times VWSolver
fails even in finding feasible solutions which is due to
the complex station problems. VWSolv-H succeeds in
finding feasible solutions which are, however, worse
than those of GA. As a summary it can be stated that the
new procedures perform well for small and medium-
sized problems and are competitive for large-sized
problems if  cycle times are small.

Table 8 compares our new procedures with the ant al-
gorithm (AA) of Baykasoglu and Dereli (2008) and the
procedures of Lee et al. (2001) for 2ALBP instances
with and without assignment restrictions (cf. Table 4).
Lee et al. propose a traditional (Prio) and a group based
(GP) priority rule based procedure. The latter one
groups tasks in a first step and assigns the groups to sta-
tions in the second step.

VWSolver VWSolv-H
W 2 3 4 2 3 4

c LB1 F* UB cpu UB cpu UB cpu UB cpu UB cpu UB cpu
80 27+ 27 27 27 27 121 27 286 27 65 27 49 27 82
90 24+ 24 24 117 24 207 25 500 24 121 25 500 25 500
100 22+ 22 22 0 22 0 22 0 22 0 22 0 22 0
110 20+ 20 21 500 21 500 21 500 21 494 21 500 21 500
130 17+ 18 18 500 18 500 19 500 18 292 18 500 18 500
150 15+ 16 16 500 16 500 16 500 16 412 16 500 16 500
175 14+ 14 14 0 14 10 14 369 14 0 14 11 14 251
200 12+ 13 13 500 13 500 13 500 13 500 13 500 13 500

Table 6. Results for "Becker2" (K=15)

instance GA CP/
FFH

VW-
Solver

VW-
Solv-H

c K UB cpu UB UB cpu UB cpu 

K
im

1

3 3 6 0 6 6 0 6 0
4 3 5 0 5 5 0 5 0
5 3 4 0 4 4 0 4 0
6 3 3 0 3 3 0 3 0

K
im

2 5 3 6 0 6 6 0 6 0
6 3 5 0 5 5 0 5 0
7 3 4 0 4 4 0 4 0

K
im

3

4 4 8 0 8 8 0 8 0
5 4 6 0 6 6 0 6 0
6 4 5 0 5 5 0 5 0
7 4 4 0 4 4 0 4 0

K
im

4

20 4 8 4 8 8 0 8 0
25 4 6 4 7 6 0 6 0
30 4 5 4 7 5 0 5 0
35 4 5 4 6 5 0 5 0
40 4 4 4 6 4 0 4 0

K
im

5

275 10 20 15 20 19 3 19 4
300 10 18 15 19 18 0 18 0
325 10 17 15 18 16 0 16 0
350 10 15 15 16 15 0 15 0
375 10 15 15 16 14 0 14 0
400 10 13 15 16 13 2 13 2
425 10 13 15 16 12 9 12 10
450 10 12 15 15 12 0 12 0
475 10 11 15 14 11 0 11 0
500 10 11 15 14 11 0 11 0

B
ar

th
ol

di
3

171 16 31 60 - 30 4 30 5
200 16 26 60 - 26 0 26 0
225 16 24 60 - 23 1 23 1
250 16 21 60 24 22 500 21 10
275 16 19 60 22 19 11 19 8
300 16 18 60 22 18 1 18 8
325 16 16 60 20 18 500 16 25
350 16 15 60 19 - 500 16 500
375 16 14 60 18 - 500 16 500
400 16 13 60 18 - 500 16 500

Table 7. Comparison to Kim et al. (2000)

instance GP Prio AA VW-
Solver

VW-
Solv-H

c K UB UB UB cpu UB cpu UB cpu

K
im

5

326 10 17 17 17 <1 16 0 16 0
381 10 15 15 15 <1 14 0 14 0
435 10 13 14 13 <1 12 0 12 0
490 10 12 12 12 <1 11 0 11 0
544 10 10 11 10 3 10 0 10 0

B
ar

th
ol

di
4

204 16 27 27 26 4 26 0 26 0
255 16 21 22 21 16 21 49 21 6
306 16 18 19 18 51 17 21 18 500
357 16 15 16 15 4 15 10 15 8
408 16 14 14 14 2 - 500 14 500
459 16 13 12 12 181 - 500 12 16
510 16 11 12 11 15 - 500 11 312

Le
e2

1133 15 23 24 24 451 - 500 21 31
1322 15 20 21 22 449 - 500 18 6
1510 15 20 18 18 288 - 500 17 301
1699 15 16 16 18 448 - 500 15 152
1888 15 16 15 15 178 - 500 14 112
2077 15 14 14 14 7 - 500 13 46
2266 15 13 12 12 131 - 500 13 94
2454 15 12 12 12 7 - 500 12 500
2643 15 12 11 11 68 - 500 12 84
2832 15 10 10 10 303 - 500 11 500

Table 8. Comparison to Lee et al. (2001) and
Baykasoglu and Dereli (2008)
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Table 8 shows similar re-
sults as before: VWSolver
fails for large-sized prob-
lems at least for large cycle
times, while VWSolv-H
finds competitive solutions
in all cases. In particular
when cycle times are small,
VWSolv-H computes better
solutions than the reference
procedures. Concerning the
computation times, it has to
be observed again that very
different computers have
been used (Lee et al. 2001:
Pentium, 166 MHz; Bayka-
soglu and Dereli 2008: Pen-
tium III, 1.3 GHz).

In Table 9, results of applying the new procedures to untested instances from literature (cf.
Table 4) are summarized. Only for "Bogusch1" and "Bogusch2" with c=245, solutions with 14
and 10 workplaces, respectively, are reported by Gehring and Boguschewski (1990). Bartholdi
(1993) provides a solution for "Bartholdi1" with c = 400 using 15 workplaces.

The results confirm the ones reported before. VWSolver is useful for rather small instances and
fails for large ones, but the heuristic version always provides reasonable solutions.  

In a final test, we apply the new procedures
to the benchmark data set for SALBP-1 with
269 instances and compare to SALOME-1
(cf. Scholl and Klein 1997), one of the best
procedures for SALBP-1. The results of
SALOME-1 have been obtained at a similar computer also using a time limit of 500 sec and can
be downloaded together with the data files from www.assembly-line-balancing.de. Table 10 sum-
marizes the results. Taking into account that VWSolver is a procedure for a much more compli-
cating problem and, thus, contains a lot of overhead, it performs rather well. It finds about 85%
optimal solutions and on average only 1/6 superfluous workplace is planned. Concerning the
number of proven optima the exact procedure outperforms the heuristic version as expected. 

8 Conclusions and future research

For the first time, we propose a description of an assembly line balancing problem typically for
the automotive and other industries producing large products, formulate it as a mixed-integer pro-
gram and develop an exact solution procedure based on the branch&bound principle and contain-
ing a lot of versatile bounding and dominance rules. In particular, the problem considers important
real-world issues like parallel workplaces in a flexible manner, extra-long tasks exceeding the cy-
cle time, mounting positions, and other assignment restrictions. In computational experiments the

instance VW-
Solver

VW-
Solv-H instance VW-

Solver
VW-

Solv-H
c K LB1 UB cpu UB cpu c K LB1 UB cpu UB cpu

B
ar

th
ol

di
1

383 16 15  - 500 16 500

B
og

us
ch

1

171 12 14+ 15 500 15 396
400 16 15 - 500 15 7 180 12 14+ 14 1 14 1
403 16 14 - 500 14 14 190 12 13+ 14 500 14 500
434 16 13 - 500 14 500 200 12 12 13 500 13 149
470 16 12 - 500 13 500 210 12 12+ 13 500 13 500
513 16 11 - 500 12 500 220 12 11 12 500 12 368
564 16 10 - 500 11 500 230 12 11+ 12 500 12 500
626 16 9 - 500 10 500 245 12 10+ 11 500 11 348
705 16 8 - 500 9 500 275 12 9 10 141 10 155
805 16 7 - 500 8 500 300 12 8 10 500 10 500

B
ar

th
ol

di
2

459 34 13 - 500 15 500

B
og

us
ch

2

171 12 14+ 15 500 15 500
470 34 12 - 500 14 500 180 12 13 14 244 14 12
513 34 11 - 500 14 500 190 12 13+ 13 0 13 0
564 34 10 - 500 13 500 200 12 12 13 500 13 500
626 34 9 - 500 12 500 210 12 11 11 0 11 0
705 34 8 - 500 12 500 220 12 11 12 500 12 500
805 34 7 - 500 11 500 230 12 10 10 0 10 0

Le
e1

15 4 6 6 0 6 0 245 12 9 11 500 11 500
18 4 5 5 0 5 0 275 12 9 9 0 9 0
20 4 5 5 0 5 0 300 12 8 8 0 8 0
22 4 4 4 0 4 0

Le
e2

950 15 25  - 500 25 28
1000 15 24 - 500 24 17
1100 15 22 - 500 22 7

Table 9. Results for still untested instances

SALOME-1 VWSolver VWSolv-H
# found optima 260 (97 %) 225 (84 %) 228 (85 %)
# proven optima 257 (96 %) 218 (81 %) 175 (65 %)

av. abs. dev. 0.04 0.17 0.16

Table 10. Comparison for SALBP data set
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new procedure VWSolver shows to be competitive to solve small and medium-sized problem in-
stances to optimality, at least for small cycle times typical in the automotive industries. For large-
sized instances with many tasks and/or large cycle times, a heuristic version of the procedure
proofs to be superior. However, in real-world situations it is usually not necessary to balance an
entire line with several hundreds or thousands of tasks but segments of the line with much smaller
task numbers. So even applying the exact procedure can be a realistic alternative.

Based on these fundamental developments, it will be possible to give better decision support to
assembly line planners in the future. Nevertheless, further developments are necessary. At first, it
is required to include additional practical conditions and restrictions like different workpiece po-
sitions (up, down; upright, raked etc.) and further types of assignment restrictions. Second, better
support for creating and maintaining precedence graphs is necessary, because planners are often
afraid of the additional expense of acquiring and keeping up-to-date the required precedence in-
formation. Third, improved algorithms for large instances with large cycle times are should be de-
veloped and integrated into the standard software used by the firms. Finally, further test instances
form practice and systematically constructed test beds are required.

References

Agnetis, A.; Ciancimino, A.; Lucertini, M.; Pizzichella, M. (1995): Balancing flexible lines for car components
assembly. International Journal of Production Research 33, 333–350.

Akagi, F.; Osaki, H.; Kikuchi, S. (1983): A method for assembly line balancing with more than one worker in each
station. International Journal of Production Research 21, 755–770.

Arcus, A.L. (1966): COMSOAL: A computer method of sequencing operations for assembly lines. International
Journal of Production Research 4, 259–277.

Bard, J.F. (1989): Assembly line balancing with parallel workstations and dead time. International Journal of Pro-
duction Research 27, 1005-1018.

Bartholdi, J. (1993): Balancing two-sided assembly lines: A case study. International Journal of Production Research
31, 2447-2461.

Baybars, I. (1986): A survey of exact algorithms for the simple assembly line balancing problem. Management Sci-
ence 32, 909-932.

Baykasoglu, A.; Dereli, T. (2008): Two-sided assembly line balancing using an ant-colony-based heuristic. Interna-
tional Journal of Advanced Manufacturing Technology 36, 582-588.

Becker, C. (2007): Abstimmung flexibler Endmontagefließbänder in der Automobilindustrie. Books on Demand,
Norderstedt.

Becker, C.; Scholl, A. (2006): A survey on problems and methods in generalized assembly line balancing. European
Journal of Operational Research 168, 694-715.

Berger, I.; Bourjolly, J.; Laporte, G. (1992): Branch-and-bound algorithms for the multi-product assembly line bal-
ancing problem. European Journal of Operational Research 58, 215-222.

Boguschewski, A.; Gehring, H.; Köstermann, K. (1990): Montagelinien in der Pkw-Montage abstimmen. Die Arbe-
itsvorbereitung 27, 130-133.

Boysen, N., Fliedner, M., Scholl, A. (2007): A classification of assembly line balancing problems. European Journal
of Operational Research 183, 674-693.

Buxey, G. (1974): Assembly line balancing with multiple stations. Management Science 20, 1010-1021.

Demeulemeester, E.L.; Herroelen, W.S. (2002): Project scheduling: A research handbook. Kluwer, Boston.

Falkenauer, E. (2005): Line balancing in the real world. In: Proceedings of the International Conference on Product
Lifecycle Management PLM 05, Lumiere University of Lyon, France, 2005 (on cd-rom).

Fekete, S.P.; Schepers, J. (2001): New classes of fast lower bounds for bin packing problems. Mathematical Pro-
gramming 91, 11–31.

Fleszar, K.; Hindi, K.S. (2003): An enumerative heuristic and reduction methods for the assembly line balancing
problem. European Journal of Operational Research 145, 606–620.

Gehring, H.; Boguschewski, A. (1990): Leistungsabstimmung von Montagelinien unter Berücksichtigung prakti-
scher Restriktionen. Working Paper 3/1990, Faculty for Economics, Freie Universität Berlin.



30

Hildebrand, S. (2006): Interaktive Montagelinienaustaktung in der Automobilindustrie. OR News, 38-39.

Inman, R.R.; Leon, M. (1994): Scheduling duplicate serial stations in transfer lines. International Journal of Produc-
tion Research 32, 2631–2644.

Jackson, J.R. (1956): A computing procedure for a line balancing problem. Management Science, 261-271.

Johnson, R.V. (1983): A branch and bound algorithm for assembly line balancing problems with formulation irregu-
larities. Management Science 29, 1309-1324.

Johnson, R.V. (1988): Optimally balancing large assembly lines with "FABLE". Management Science 34, 240-253. 

Kelley, J.E. (1963): The critical-path method: Resources planning and scheduling. In: Muth, J.F.; Thompson, G.L.
(eds.): Industrial scheduling. Prentice Hall, Englewood Cliffs, 347-365.

Kilbridge, M.D.; Wester, L. (1962): A review of analytical systems of line balancing. Operations Research 10, 626-
638.

Kim, Y.K.; Kim, Y.; Kim, Y.J. (2000): Two-sided assembly line balancing: A genetic algorithm approach. Produc-
tion Planning & Control 11, 44-53.

Klein, R. (2000): Scheduling of resource-constrained projects. Kluwer, Boston.

Klein, R. (2002): Constraint programming. In: Stadtler, H. and Kilger, C. (eds.): Supply chain management and
advanced planning. 2nd ed., Springer, Berlin, S. 411-418.

Kolisch, R. (1995): Project scheduling under resource constraints - Efficient heuristics for several problem classes.
Physica, Heidelberg.

Lapierre, S.D.; Ruiz, A.B. (2004): Balancing assembly lines: An industrial case study. Journal of the Operational
Research Society 55, 589-597.

Lapierre, S.D.; Ruiz, A.; Soriano, P. (2006): Balancing assembly lines with tabu search. European Journal of Opera-
tional Research 168, 826-837.

Lawler, E.L. (1973): Optimal sequencing of a single machine subject to precedence constraints, Management Sci-
ence 19, 544-546.

Lee, T.O.; Kim, Y.; Kim, Y.K. (2001): Two-sided assembly line balancing to maximize work relatedness and slack-
ness. Computers and Industrial Engineering 40, 273–292.

Martello, S.; Toth, P. (1990): Knapsack problems: Algorithms and computer implementations. Wiley, Chichester.

Nourie, F.J.; Venta, E.R. (1991): Finding optimal line balances with OptPack. Operations Research Letter 10, 165-
171.

Patterson, J.H.; Slowinski, R.; Talbot, F.B.; Weglarz, J. (1989): An algorithm for a general class of precedence and
resource constrained project scheduling problems. In: Slowinski, R.; Weglarz, J. (eds.): Advances in project
scheduling. Elsevier, Amsterdam, 3-29.

Peeters, M.; Degraeve, Z. (2006): An linear programming based lower bound for the simple assembly line balancing
problem. European Journal of Operational Research 168, 716-731.

Pinto, P.; Dannenbring, D.G.; Khumawala, B.M. (1975): A branch and bound algorithm for assembly line balancing
with paralleling. International Journal of Production Research 13, 183-196.

Pinto, P.A.; Dannenbring, D.G.; Khumawala; B.M. (1981): Branch and bound and heuristic procedure for assembly
line balancing with paralleling of stations. International Journal of Production Research 19, 565-576.

Rachamadugu, R. (1991): Assembly line design with incompatible task assignments. Journal of Operations Manage-
ment 10, 469-487.

Sarker, B.R.; Shanthikumar, J.G. (1983): A generalized approach for serial or parallel line balancing. International
Journal of Production Research 21, 109-133.

Scholl, A. (1999): Balancing and sequencing of assembly lines. 2nd ed., Physica, Heidelberg.

Scholl, A.; Becker, C. (2006): State-of-the-art exact and heuristic solution procedures for simple assembly line bal-
ancing. European Journal of Operational Research 168, 666-693.

Scholl, A.; Fliedner, M.; Boysen, N. (2008): ABSALOM: Balancing assembly lines with assignment restrictions.
Jena Research Papers in Business and Economics (JBE) 2/2008, FSU Jena.

Scholl, A.; Klein, R. (1997): SALOME: A bidirectional branch and bound procedure for assembly line balancing.
INFORMS Journal on Computing 9, 319-334. 

Scholl, A.; Klein, R. (1999): Balancing assembly lines effectively - A computational comparison. European Journal
of Operational Research 114, 50-58.

Scholl, A.; Klein, R.; Jürgens, C. (1997): BISON: A fast hybrid procedure for exactly solving the one-dimensional
bin packing problem. Computers & Operations Research 24, 627-645.

Tonge, F.M. (1960): Summary of a heuristic line balancing procedure. Management Science 7, 21-39.

Wee, T.; Magazine, M. (1982): Assembly line balancing as generalized bin packing. Operations Research Letters 1,
56-58.


	ADP21.tmp
	Christian Becker, Armin Scholl



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


