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Abstract

Assembly line balancing problems (ALBP) consist of distributing the total workload for manufacturing
any unit of the products to be assembled among the work stations along a manufacturing line as used in
the automotive or the electronics industries. Usually, it is assumed that the production process is fixed,
i.e., has been determined in a preceding planning step. However, this sequential planning approach is
often suboptimal because the efficiency of the production process can not be evaluated definitely with-
out knowing the distribution of work. Instead, both decisions should be taken simultaneously. This has
led to the Alternative Subgraphs ALBP.

We give an alternative representation of the problem, formulate an improved mixed-integer program
and propose a solution approach based on SALOME, an effective branch&bound procedure for the
well-known Simple ALBP. Computational experiments indicate that the proposed procedure is success-
ful in finding optimal solutions for small- and medium-sized problem instances and rather good heuris-
tic solutions for large-scaled instances.
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1 Introduction

Assembly lines are flow-oriented production systems which are typical in the industrial produc-
tion of high quantity standardized but also customized commodities. Among the decision prob-
lems which arise in managing such systems, assembly line balancing problems are important
tasks in medium-term production planning (cf., e.g., Baybars,1986; Becker and Scholl 2006;
Boysen et al. 2007). 

An assembly line consists of (work) stations k=1,...,m arranged along a mechanical material
handling equipment. The workpieces are consecutively launched down the line and are moved
from station to station. At each station, certain operations are repeatedly performed regarding
the constant cycle time available per workcycle. The decision problem of optimally partitioning
the assembly work among the stations with respect to some objective is known as the Assembly
Line Balancing Problem (ALBP).

The total amount of work is divided into a set of tasks V = {1,...,n} which build the nodes of a
precedence graph. Performing a task i takes a task time (node weight) ti; the total production
time per product unit is . Technological and organizational conditions require
to observe precedence relations (i, j) between different tasks i and j, i.e., task i must be finished
before j is started. Non-redundant precedence relations are represented as arcs in the precedence
graph. To simplify the presentation, we assume that graph G = (V,E,t) is acyclical and num-
bered topologically. For each task , the precedence relations can be given by the set  of
direct predecessors and the set  of direct successors. Including indirect precedence relations,
the sets  and  of all predecessors and successors in the transitive closure E*, respectively,
are defined.

An ALBP generally consists of finding a feasible line balance, i.e., an assignment of each task
to a station such that the cycle time constraints, the precedence constraints and possible further
restrictions are fulfilled. The set Sk of tasks assigned to a station k constitutes its station load,
the station time  must not exceed the cycle time c. In case of t(Sk) < c, the sta-
tion k has an idle time of c – t(Sk) time units in each cycle.

The most popular ALBP is called Simple Assembly Line Balancing Problem (SALBP). It sim-
plifies the more general ALBP by introducing the following assumptions (cf. Baybars 1986;
Scholl 1999, ch. 2.2; Boysen et al. 2007): 

(S-1) Mass-production of one homogeneous product. 

(S-2) All tasks are processed in a predetermined mode (no processing alternatives exist). 

(S-3) Paced line with a fixed common cycle time according to a desired output quantity. 

(S-4) The line is considered to be serial with no feeder lines or parallel elements. 

(S-5) The processing sequence of tasks is subject to precedence restrictions. 

(S-6) Deterministic (and w.l.o.g. integral) task times.

(S-7) No assignment restrictions of tasks besides precedence constraints. 

(S-8) A task cannot be split among two or more stations. 

(S-9) All stations are equally equipped with respect to machines and workers.

ts V( ) tii V∈∑=

i V∈ Pi
Fi

Pi
∗ Fi

∗

t Sk( ) tii Sk∈∑=
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The main parameters m and c can be given as a constant or considered as a variable defining
several problem versions. The most relevant version referred to as SALBP-1 ([ | | m] in the
classification scheme of Boysen et al. 2007) is to minimize m given c. This problem and the
other versions are NP-hard. Recent surveys covering SALBP models and procedures are given
by Erel and Sarin (1998), Scholl (1999, ch. 2, 4, 5), Rekiek et al. (2002) as well as Scholl and
Becker (2006).

2 The Alternative Subgraphs Assembly Line Balancing Problem (ASALBP)

In practice, there is usually a great flexibility in performing the work for manufacturing a prod-
uct such as a car or a washing machine. This might concern only a single operation, e.g., a part
might be connected to the workpiece by glueing, screwing or rivetting causing different execu-
tion times. Yet this might also span complete subgraphs of the precedence graph, e.g., a major
part like the cockpit of a car can be assembled piece-by-piece inside the car body or a complete
cockpit module can be inserted in a single operation. These examples show that prespecifying
the whole production process prior to balancing the line faces the risk of loss in efficiency.

The new problem ASALBP, introduced by Capacho and Pastor (2005), overcomes this draw-
back as it considers processing alternatives within the precedence graph such that selecting the
processes and assigning tasks to stations is done simultaneously. Up to now, the problem has
been defined and modelled in a restricted version (Capacho and Pastor 2005) and an extended
version (Capacho and Pastor 2006, 2007). Furthermore, constructive heuristic methods have
been developed and tested comprehensively by Capacho et al. (2006, 2007). A special case of
ASALBP which considers sequence-dependent task times is discussed by Scholl et al. (2006). 

Limited former research on connecting processing alternatives and line balancing is due to Pinto
et al. (1983). Another line of research indirectly considers processing alternatives by equipping
stations with different machinery and tools which have different abilities and speeds to perform
the tasks (e.g., see Bukchin and Tzur 2000 and the survey in Becker and Scholl 2006, Section 5).

The ASALBP1 extends SALBP by removing the assumption (S-2). Instead, it is assumed that
alternatives exist for parts of the production process. Each such part is called a variable sub-
process which results in alternative (disjunctive) subgraphs in the precedence graph of which
only one has to be chosen, respectively. 

Capacho and Pastor (2005, 2007) propose the usage of a so-called S-graph to illustrate the al-
ternatives by conventional arcs with a bracket indicating that only one of the arcs must be fol-
lowed. We propose a more formal and established presentation which clearly shows the unique-
ness of choosing a single out of several subgraphs and is necessary for presenting a compact
mathematical model in Section 3. This is achieved by using pairs of (X)OR-nodes enclosing the
alternative subgraphs and connecting them to the remaining  parts of the graph. The OR-nodes
get task time 0 and are represented by triangles. The subprocess is started with an entry OR-node
(visualized as a triangle with the peak at the left) and finalized with a terminal OR-node (triangle

1 In the usual nomenclature the problem has to be named ASALBP-1 (minimize m given c). Since other prob-
lem versions can be deduced in a simple manner (cf. Scholl 1999, ch. 2), we restrict to this version and omit
the "1" indicating the version to ease presentation.
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with the peak at the right). To keep the presentation lucid, it is moreover defined that each al-
ternative subgraph must have a unique start and end node. If this is not already the case, dummy
nodes with time 0 will be introduced. The (dummy) start nodes of all alternative subgraphs be-
come successors of the entry OR-node, while the (dummy) end nodes become predecessors of
the terminal OR-node. The respective arcs are called disjunctive (indicated by dashed lines) be-
cause they represent alternative branches. Furthermore, the predecessors of the subprocess are
linked to the entry OR-node and the terminal OR-node is linked to the successors of the sub-
process by normal arcs, respectively. 

For a more formal description, we introduce the following notation:

VS set of variable subprocesses

OR-node pair enclosing variable subprocess  

set of alternative subgraphs for subprocess 

SG set of all subgraphs; 

PN number of different production processes; 

set of tasks contained in subgraph g

g=0 fixed "subgraph" of all tasks outside variable subprocesses

/ v(j) subgraph/variable subprocess to which task j belongs (  if )

total task time of (sub)graph with node set J; 

Figure 1 shows an example with two variable subprocesses, i.e., . The first one
( ) is enclosed by the OR-node pair  and has three alternative subgraphs
with different task sets, task times and precedence relations, . The subgraph

 contains the four tasks in  one of which is a dummy start node. In the
second subgraph the number of operations is reduced, e.g., by using an advanced tool
( ), while the third consists of a single task which might be the installation of a pre-
mounted module as a whole ( ). The variable subprocess 2 with OR-node pair
<12,17> has two alternatives, i.e.,  with  and ,
and represents, e.g., sequence-dependent task times (13 and 16 as well as 14 and 15 might rep-
resent the same work content but require different times due to mutual impediment, respec-
tively). The remaining tasks are fixed, i.e., .

Figure 1. Example of a disjunctive precedence graph representing an ASALBP-instance
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The problem, which is characterized as [pasubgraph | | m] in the classification scheme of Boysen
et al. (2007), can now be stated as follows: For each variable subprocess exactly one of the al-
ternative subgraphs is to be chosen, i.e., exactly one of the dashed arcs emerging from each en-
try node must be followed (the corresponding dashed arc entering the terminal node is reached
automatically), while the other arcs and the enclosed subgraphs are to be ignored. All tasks ac-
tivated in such a manner have to be assigned to a minimal number of stations such that the cycle
time and the precedence constraints (relating activated tasks) are observed.

In our example,  (complete) production processes can be obtained by combining the
three alternatives of  and the two alternatives of . Given the cycle time , the
combination of the subgraphs 1 and 4 (production process p=1) is optimal. The station loads
S1 = {1, 4}, S2 = {5, 6, 11, 13}, S3 =  {14, 18}, and S4 = {19, 20, 21} constitute the optimal line
balance with  stations (OR-nodes, dummy tasks and deactivated tasks are omitted). 

An equivalent presentation of the prob-
lem is obtained by merging all variable
subgraphs to form a single OR-node
pair enclosing the whole graph. This is
achieved by combining the different al-
ternatives of all variable subprocesses
as described before. Figure 2 shows this
transformed graph for our example. In
order to ease presentation, the terminal
nodes (overall and per processing alter-
native) are omitted and the original node
numbers are preserved. Generally, it is
always possible to give different equiv-
alent representations of the same prob-
lem instance. However, in case of many
processing alternatives it is recommend-
able to use a node and space sparing
precedence graph by using many OR-
node pairs. It is even possible and some-
times useful to nest them, i.e., one vari-
able subgraph is part of an alternative of
an enclosing variable subgraph.

Remarks: 

• If there exists a task j with  in
any alternative subgraph, this sub-
graph cannot be part of a feasible
solution and is discarded. However,
if a task time of any task in V(0)
exceeds the cycle time or all alterna-
tive subgraphs of the same variable
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subprocess have been discarded, no feasible solution exists at all. In the following, we
assume that no cycle time exceeding tasks exist (anymore).

• The example shows that it is not necessarily optimal to choose the producion process with
minimal total task time as is usually recommended (cf. Capacho and Pastor 2006). 

3 Mathematical model for ASALBP

Capacho and Pastor (2005, 2007) have formulated two binary programs for ASALBP. We
present a modified model with significantly less binary variables. It is an extension of the stand-
ard formulation for SALBP (cf. Bowman 1960; White 1961; Thangavelu and Shetty 1971; Pat-
terson and Albracht 1975; Scholl 1999, p. 29).

We assume that a node saving representation of the problem is given and that the graph has sin-
gle start node 1 and terminal node n (both real or dummy tasks, if necessary). The set of nodes
V = {1,...,n} consists of four disjunctive subsets for the different node types:

Vr set of real tasks Vs set of entry nodes

Vt set of terminal nodes Vd set of dummy tasks with duration 0

The model only requires binary assignment variables  defined as follows (  is an upper
bound on the number of stations; ):

for  and (1)

In order to reduce the number of variables, earliest and latest stations are computed. However,
the traditional approach for SALBP (cf. Saltzman and Baybars 1987) must be modified due to
disjunctive parts of the precedence graph. Thus, a previous step is necessary to compute for each
task j a lower bound on the total task time of all predecessors and successors, respectively. This
is achieved as follows:

(1) For each variable subprocess , a lower bound on the total task time is computed as
. 

(2) For each task  temporarily modify the precedence graph such that all subprocesses
 are substituted by a single task with task time  which inherits the prece-

dence relations to predecessors from e(v) and the relations to successors from t(v). From
this modifed graph retrieve the set  of all predecessors and  of all successors.
Based on relative task times , compute earliest stations Ej and latest station Lj:

, (2)

Task j can only be assigned to one of the stations in the station interval . So, only
a subset  of the tasks are potentially assignable to the stations k =  1,..., .
Using the station intervals the number of the variables can be reduced, because  has only to
be defined for  and .

xjk m
m n≤

xjk
1

0⎩
⎨
⎧

=
if task j is assigned to station k

otherwise
j V∈ k 1 … m, ,=

v VS∈
ts v( ) min ts V g( )( )  g SG v( )∈{ }=

j V∈
v VS v j( )–∈ ts v( )

P∗ j( ) F∗ j( )
τj tj / c=

Ej τj τh
h P∗ j( )∈

∑+= Lj m 1 τj τi
i F∗ j( )∈

∑+–+=

SIj Ej Lj,[ ]=
Bk j V ∈  k SIj∈{ }= m

xjk
j V∈ k SIj∈
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Only in order to improve the readability and the comprehensiveness of the model, we addition-
ally introduce auxiliary variables  replacing a more complex term that determines the index
of the station to which task j is assigned:

for (3)

The binary program for ASALBP is given by objective (4) and constraints (5)-(15). The as-
sumption that n is a single sink node of the precedence graph allows for a simple determination
of the number of stations actually required such that minimizing  is sufficient instead of the
more complex term and the additional binary station indicators used by Capacho and Pastor
(2005, 2006).

Minimize (4)

subject to

(5)

for all (6)

        for k = 1,..., (7)

for all (8)

for all ,  | (9)

for all ,  | (10)

for all  and (11)

for all (12)

for all (13)

for  and (14)

for (15)

As an initialization, constraints (5) assure that the overall start node (real, dummy or even entry
OR-node) gets assigned to exactly one station. For the other tasks it is, due to (11)-(13), suffi-
cient to guarantee that they are assigned to at most one station as formulated in (6). The cycle
time constraints are given in (7), the auxiliary variables are defined in (8). The precedence con-
straints (except for the disjunctive arcs emerging from entry OR-nodes) are represented by (9).
Concerning a disjunctive arc , the precedence constraint  must be fulfilled only if the

zj

zj := k xjk⋅
k SIj∈∑ j V∈

zn

m x z,( ) zn=

x1k
k SI1∈
∑ 1=

xjk
k SIj∈
∑ 1≤ j V 1{ }–∈

tj xjk⋅
j Bk∈
∑  c≤ m

zj k xjk⋅
k SIj∈
∑= j V∈

zi zj 0≤– i V Vs–∈ j Fi∈ SIi SIj  [ ]≠∩

zi zj–   m 1 xjk
k SIj∈
∑–

⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅≤ i Vs∈ j Fi∈ SIi SIj  [ ]≠∩

xik
k SIi∈
∑ xjk

k SIj∈
∑– 0≥ j V Vt–∈ i Pj∈

 xjk 
k SIj∈
∑

j Fi∈
∑ xik

k SIi∈
∑– 0= i Vs∈

 xik 
k SIi∈
∑

i Pj∈
∑ xjk

k SIj∈
∑– 0= j Vt∈

xjk 0 1,{ }∈ j V∈ k SIj∈

zj 0≥ j V∈

i Vs∈ i j,( )
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subgraph  is selected. This is achieved by (10), which is activated only if task j is assigned
to a station.

By (11) it is ensured that a task j (except for terminal OR-nodes) with an unassigned predecessor
cannot be assigned to a station, because it is not in an activated part of the graph in such a case.
Equations (12) state that exactly one of the immediate successors (one of the disjunctive arcs)
is chosen for each reached entry OR-node and that none is chosen if the entry OR-node is not
in an active part of the graph. Similarly, (13) enforce that the terminal OR-node is only assigned
if the corresponding subprocess is activated, i.e., one of the nodes terminating the contained
subgraphs is assigned. By propagating the activation status of nodes through the graph in the
manner described, the model gets by without binary variables indicating the activation status of
subgraphs as used by Capacho and Pastor (2006). 

Compared to the model CP of Capacho and Pastor
(2006), the numbers of binary variables are reduced
significantly, because CP includes (up to)2 
assignment variables,  station indicators (LB is
a lower bound on the number of stations) and  sub-
graph selection variables while the new model gets by with (up to)  assignment var-
iables. Similarly, CP needs more restrictions. Using the O-notation, the order of magnitudes are
as given in Table 1. Utilizing the relations  and , CP has  variables and con-
straints, while the new model only requires  variables and constraints.

4 A SALBP-based search procedure for ASALBP

Though the improved model presented in Section 3 should considerably reduce the solution
times of standard MIP solvers, it is also not able to solve problem instances of real-world size
to optimality in reasonable computation times. This has been detected by preliminary tests con-
firming the fundamental results of Capacho and Pastor (2006). Only small instances with up to
about 50 instances are solvable somewhat efficiently.

As a consequence, it is necessary to construct adequated solution procedures. In the following,
we present and discuss an approach to solve ASALBP without developing highly specialized
procedures. Instead, we show how to use existing solution procedures for SALBP in an effective
manner. The resulting solution method can be used as an exactly optimizing and as an heuristic
procedure as well, thus offering valuable support in all decision situations.

The solution approach extends the one proposed for the ALBP with sequence-dependent task
times (SDALBP) of Scholl et al. (2006) and is based on the relationships between ASALBP and
SALBP. In order to keep the paper short, we only shortly describe the theoretical basics and fea-
tures of the procedure which can be taken over from this former approach and concentrate on
aspects to be modified.

Recalling the transformed precedence graph in Figure 2, it becomes obvious that ASALBP con-
sists of PN disjunctive production processes (= included SALBP instances) one of which is to

2 Note that in both cases the number of assignment variables is reduced by means of station intervals. Moreover
note that the auxiliary variables  can be simply eliminated.

g j( )

# variables # constraints

CP

new

Table 1. Comparison of model sizes

O m n SG⋅ ⋅( ) O n2 SG m+⋅( )

O m n SG+( )⋅( ) O n SG+( )2 m+( )m n SG⋅ ⋅

zj

m LB–
SG

m n SG+( )⋅

m n≤ SG n≤ O n3( )
O n2( )
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be selected (cf. Capacho and Pastor 2006). As a consequence, a simple solution approach for
ASALBP is to build and solve all included SALBP instances and take (one of) the SALBP so-
lution(s) with minimal number of stations. Of course, this approach can be rather inefficient, be-
cause SALBP is an NP-hard problem itself and PN might be very large as it requires completely
combining all possible subgraphs. Facing this fact, Capacho and Pastor (2005) take it for
granted that solving ASALBP by iteratively solving the underlying SALBP instances is not use-
ful at all. This assumption might be justified for the just mentioned uninformed solution ap-
proach. However, by using an intelligent search method, the SALBP-based approach can be en-
hanced considerably. Furthermore, it has to be considered that the derived SALBP instances are
much smaller than the entire graph, because all deactivated subgraphs are eliminated.

As solution method for solving the included SALBP instances, we apply the branch-and-bound
procedure SALOME of Scholl and Klein (1997) which is supposably the best exact solution
method available for SALBP (cf. Sprecher 1999; Scholl and Klein 1999, Scholl 1999). 

4.1 Bound computation

A lower bound on the number of stations can be computed by constructing a SALBP instance
as described in Section 3 in the context of computing station intervals: Each variable subprocess

 is substituted by a single task with task time  such that the modified graph repre-
sents the overall minimum time requirement. Applying the well-known capacity bound for
SALBP (cf. Baybars 1986), we get the lower bound:

(16)

Additionally, we may compute lower bound values  for all included SALBP instances p
(using the complete arsenal of bound arguments for SALBP in each case; cf. Scholl and Becker
2006). The minimum of these values serves as a second lower bound for ASALBP:

 (17)

Since LB1 refers to one of the included instances, where the time minimizing subgraph is cho-
sen in each variable subprocess, the relation  holds. However, computing LB2 is
much more expensive such that LB1 may serve as a reasonable start value.

The best (maximal) lower bound value known in a certain process step is called global lower
bound LB.

Upper bounds on the number of stations are given by feasible solutions to any included SALBP
instance. As global upper bound UB we denominate the best known (minimal) upper bound. As
initial value, we might use , because a tri-
vial solution is obtained by choosing the subgraph with least number of tasks for each variable
subprocess and assigning each task to an own station. The solution that corresponds to UB is
called incumbent solution. 

Bounding rules: The bounds can be used to accelerate the search process in several manners:

• BR1: Each included SALBP instance p with  is discarded, because its optimal
solution cannot provide an overall improvement.

v VS∈ ts v( )

LB1 ts 0( ) ts v( )
v VS∈
∑+=

LB p( )

LB2 min LB p( )  p=1,...,PN{ }=

LB2 LB1≥

UB1 V 0( ) min V g( ) Vr∩    g SG v( )∈{ }v VS∈∑+=

LB p( ) UB≥
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• BR2: Whenever a feasible solution with objective value  is obtained for any
SALBP instance p, the global upper bound is improved by .

• BR3: The complete procedure is immediately terminated whenever  is obtained,
because the incumbent solution is optimal, i.e., .

• BR4: When SALOME is applied to an instance p, it almost immediately finds a first feasi-
ble solution and, thus, a first upper bound UB(p) due to the depth-first search performed.
Furthermore, it successively strengthens the lower bound LB(p) due to the local lower
bound method contained. In many cases, SALOME can terminate before finding the opti-
mal objective value  of instance p. This is possible whenever  holds.

4.2 Search procedure

Using the bounding options and the power of SALOME as discussed before, an versatile search
procedure has been constructed by adapting the (advanced) search procedure of Scholl et al.
(2006). In order to keep the presentation short, we give a tightened description without specify-
ing each termination condition in detail. As a rule, the entire search procedure or the application
of SALOME to an instance p is always stopped whenever one of the bounding rules described
above applies. The following steps have to be performed; for details see Scholl et al. (2006):

(1) Initialize the search by computing the initial global bounds LB := LB1 and UB :=UB1.

(2) Generate the solvable instances p = 1,...,PN in a systematic (lexicographic) manner. For
each just generated instance p, apply SALOME for a very short time limit TL1 but at least
until it has found a first feasible solution. This provides a lower bound LB(p) and an upper
bound UB(p). If instance p is not discarded by applying the bounding rules BR1 to BR4, it
is stored in a list L, together with the current bound values LB(p) andUB(p).

(3) Adjust the list L through BR1. If the remaining L is empty, then terminate the complete
procedure. Otherwise, sort the list according to non-decreasing lower bound values LB(p)
with ties broken in favour of instances with smaller total task times (second level tie
breaker: original instance numbers).

(4) Work through the list instance-per-instance, let p be the current instance. If ,
then increase LB to LB(p), because p has the smallest lower bound value of all remaining
instances due to the sorting of the list. If BR3 does not hold, apply SALOME to p starting
with the stored LB(p) and UB(p). Apply BR2 and BR3 and remove p from L.

Result: Optimal solution to ASALBP with m* := UB and the task assignments stored as incum-
bent solution. If the procedure has stopped due to a time limit, it has only found a feasible (in-
cumbent) solution with UB stations and a lower bound LB.

5 Computational experiments

In order to examine the performance of the search procedure described in Section 4, we perform
computational experiments based on systematically constructed benchmark test instances. 

UB p( ) UB<
UB:=UB p( )

LB UB=
m∗ UB=

m∗ p( ) LB p( ) UB≥

LB LB p( )<
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5.1 Test data generation

As a basis for generating test instances for ASALBP we use the well-known data set for SALBP
with 269 instances based on 25 precedence graphs having 8 to 297 nodes each connected to se-
veral cycle times. For a detailed description of the SALBP data set and the characteristics of the
underlying precedence graphs see Scholl (1999, ch. 7.1) and the "homepage for assembly line
optimization research" www.assembly-line-balancing.de, where the corresponding data files
can be downloaded from.

To generate different classes of instances, we use the parameter pr which defines the portion of
variable subprocesses on the number of original tasks (in percent). Due to the combinatorial ex-
plosion, not more than 20 subprocesses are allowed such that .3

Four data sets are generated by setting pr to 2, 5, 7, and 10. This amounts to 1,076 instances.

To define a variable subprocess v, a task j with  ( ) is chosen randomly. This
task is thought to represent a high-level task integrating several elementary operations. It is used
as the first subgraph of v. Alternative subgraphs are built by using the building blocks depicted
in Figure 3. The grey nodes without indexes are dummy nodes with zero task time.

A further assumption concerns the task times in the alternative subgraphs. It is based on the ob-
servation that a single task will be never chosen if its task time is not smaller than the total task
time of an alternative subgraph with several tasks, because assigning smaller tasks to stations is
easier than assigning large ones. Thus, it is assumed that a subgraph replacing a single task must
have a larger total time. This assumption is rather realistic, because operations are integrated
into a single task just for the reason of time reduction (e.g., installing a module instead of build-
ing the module while mounting its parts). Additionally, it must be controlled that the total time
of a subgraph is not much larger than the single task to avoid the reverse domination problem.
Furthermore, it seems to be reasonable that the types of building blocks chosen as alternative
subgraph should depend on the value of . 

These reflections lead to a generation procedure which repeats the following steps for
: 

(1) Randomly select a task  with  which has not been chosen before.4 In the pre-
cedence graph, replace j  by an OR-node pair  with zero task times. As the first
alternative in SG(v), task j is set between the OR-nodes. Determine the number of alternati-
ves a(v) (including j) by randomly drawing from {2,3,4}. 

3 The restriction to 20 subprocesses only applies for the largest precedence graph with 297 tasks and .

4 This and all other random choices are based on uniformly distributed standard random numbers. Subgraph
types are randomly chosen with repetition. 

VS min 20 pr n⋅( ) / 100,{ }=

pr 0.7≥

tj 0.2 c⋅> τj 0.2>

i

h i

h

i

b

h

a

i

h

a

i

b

h

type 1 type 2 type 3 type 4 type 5

Figure 3. Building blocks for generating alternative subgraphs

tj

v 1 … VS, ,=

j Vr∈ τj 0.2>
e v( ) t v( ),〈 〉
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(2) Construct  alternative subgraphs each of which is placed in parallel to task j. The
available types and the restrictions on task times depend on the value of . The individual
task times are chosen such that they belong to the interval . Each added node
gets the number .

(a) If , then for each subgraph randomly select type 1 or 2 (two tasks h and i;

Figure 3) and randomly generate task times  and  such that  holds.

(b) If , then for each subgraph randomly select type 1 to 4 (two or three tasks)

and randomly generate task times such that their sum falls into the interval .

(c) If , then for each subgraph randomly select type 1 to 5 (two to four tasks) and

randomly generate task times such that their sum falls into the interval . 

(3) After having generated all subprocesses, the graph is re-numbered in a topological order.

In step (1) it is possible to select a task which has been added in an iteration before such that
nested variable subprocesses are generated and, thus, larger subgraphs with more than four tasks
can occur. 

The resulting four data sets can be downloaded from www.assembly-line-balancing.de.

5.2 Comparing the advanced search procedure with other approaches

We compare the developed advanced search procedure (AS) with two other approaches:

• Sequential planning (SP): Select the SALBP instance with minimal total task time in the
first step and solve this instance in the second step (applying SALOME with the same time
limit as is given to the other procedures). This represents the usual managerial approach
when the production process is determined before balancing.

• Basic search method (BS): The SALBP instances are generated and solved one after the
other using SALOME. To restrict the search, only the simple lower bound LB1 can be used
as a global lower bound. No individual time limit is given to SALOME per SALBP
instance, i.e., each instance is solved to optimality (starting with ). The com-
plete process is stopped when the time limit is reached.

All approaches were coded in Borland Delphi 7.0. The experiments were run on a personal com-
puter with an AMD Athlon processor of 1.4 GHz clock speed and 768 MByte of RAM. For each
instance a time limit of 1,800 seconds was imposed. 

Table 2 summarizes the results based on the following measures:

average number of tasks (including OR-nodes and dummy nodes)

average number of real tasks

#prov number of optima found and proven (out of 269 instances)

#opt number of (known) optima found (out of 269 instances) 

average relative deviation from minimal number of stations (or best known lower 
bound if the optimum is still unknown) in %

average relative gap between upper and (procedure specific) lower bound in %

average computation time (contains a value of 1,800 seconds for time out cases)

a v( ) 1–
τj1

5
--- tj

4
5
--- tj⋅,⋅

n:=n 1+

τj 0.35≤
th ti tj ti th

5
4
--- tj⋅≤+≤

0.35 τj 0.5≤<
tj

4
3
--- tj⋅,

τj 0.5>
tj

3
2
--- tj⋅,

UB p( ) UB=

∅n

∅nt

∅dev

∅gap

∅cpu
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Due to the systematic construction of the test instances, the original SALBP instance is contai-
ned in each derived ASALBP instance and shows minimal total task time among all included
instances. Thus, the sequential planning approach (SP) has to solve the same (the original)
SALBP instance in all four data sets. Because it cannot obtain another global lower bound than
LB1, the average gap between upper and lower bound is rather large such that no useful infor-
mation on the solution quality can be derived from applying this procedure alone. Compared to
the search procedures the solution quality is considerably lower. While all procedures optimally
solve the small-sized and easy instances quickly, the search procedures solve much more diffi-
cult instances of real-world size to optimality. This result demonstrates the necessity to consider
processing alternatives and balancing in a simultaneous decision. It is expected that the effect
is even larger if real-world instances are considered, because the generated instances have a
well-defined structure with rather small alternatives and moderate differences in task times.

A comparison of the search procedures reveals that already the basic procedure BS provides
good results but often fails in closing the bound gap, because it cannot enlarge the global lower
bound in a systematic manner like the improved search procedure AS. Moreover, it requires
more computation time.

Concercing parameter pr, it becomes obvious that solving ASALBP instances with more varia-
ble subprocesses is considerably more complex though the number of real nodes is not enlarged
considerably. However, the number of subgraphs to be selected and, thus, the number of
SALBP instances to be solved grows exponentially with increasing pr. As a consequence, the
differences between the procedures decline as only a small subset of SALBP instances can be
considered in the time available. While BS finds almost the same number of optimal solutions
as SP for pr=7 and pr=10, AS finds some additional optima. Considering the average deviation
from optimum shows that both search procedures find near-optimal solutions also in time-out
cases while SP frequently comes out with inferior solutions.

Finally, to support the supposition that solving ASALBP instances with standard MIP solvers
is not recommendable, we performed some limited tests. For example, an instance with 48 task
was solved by XPress MP in 135 seconds while it took only 0.07 seconds with AS. Similar re-
sults are obtained for other small- and medium-sized instances. For large-sized instances, even
a feasible solution could not be obtained in a reasonable time span.

SP BS AS
pr #opt #prov #opt #prov #opt
2 111 95 232 0.39 5.05 103.8 251 251 0.18 0.34 129.5 256 256 0.13 0.13 101.6
5 135 97 226 0.62 5.05 103.8 235 235 0.36 0.42 245.8 234 234 0.37 0.37 245.7
7 150 99 224 0.90 5.05 103.8 225 225 0.51 0.61 311.6 233 234 0.38 0.39 247.4

10 165 101 216 1.25 5.05 103.8 216 216 0.60 0.65 437.9 220 222 0.54 0.57 395.8
total 140 98 898 0.79 5.05 103.8 927 927 0.41 0.51 281.2 943 946 0.36 0.37 247.6

Table 2. Summary of the results

∅n ∅nt ∅dev ∅gap ∅cpu ∅dev ∅gap ∅cpu ∅dev ∅gap ∅cpu
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6 Conclusions and future research

In this paper, we have considered the alternative subgraphs assembly line balancing problem
which simultaneously decides on used production processes and assigns task to stations to op-
timize line efficiency. It has been demonstrated that the simultaneous consideration is superior
to the traditional sequential planning approach. Furthermore, the problem has been formalized
and an improved mathematical model has been given. For solving the problem, a search proce-
dure which is based on iteratively solving instances of the simple assembly line balancing prob-
lem has been developed.

A computational experiment indicates that even problem instances of real-world size can be
solved to optimality or at least near optimal solutions are found by using the effective solution
procedures available for SALBP, like SALOME, while standard MIP solvers are very ineffi-
cient.

The SALBP-based approach has a further interesting advantage, because it can be used for sol-
ving ASALBP versions with cost objectives in a straightforward manner by computing lower
and upper bounds of included SALBP instances using the cost objective instead of the capacity
based one. This extension is very relevant for practice, because processing alternatives will not
only cause different operation times but also differ with respect to cost. As an example, moun-
ting a complete module instead of combining its parts on the line reduces task times but will
increase cost as it requires a pre-assembly outside the line or must be bought from a supplier.

We believe that a lot of further practice-relevant ALB extensions can be tackled by flexible
search procedures based on the repeated solution of SALBP-instances. In the light of the high
performance of existing solution procedures for SALBP, an identification of further ALB exten-
sions with similar characteristics promises to be fruitful. It is very likely that the solution quality
of such approaches will easily surpass standard MIP solvers and simple priority rule based pro-
cedures usually proposed for new problems, while the effort of implementation is reduced in
comparison to more specialized solution procedures.
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