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Abstract

Scheduling landings of aircrafts is an essential problem which is continuously
solved as part of the daily operations of an airport control tower. All planes
in the airspace of an airport are to be assigned to landing slots by the respon-
sible air-tra�c controller. The support of this decision problem with suited
optimization approaches has a long lasting tradition in operations research.
However, none of the former approaches investigates the impact of the landing
sequence on the workload of ground sta�. The paper on hand presents three
novel objectives for the aircraft landing problem, which aim at leveling the
workload of ground sta� by evenly spreading: (1) number of landed passen-
gers, (2) landings per airline, and (3) number of landed passengers per airline
over the planning horizon. Mathematical models along with complexity re-
sults are developed und exact and heuristic solution procedures are presented.

Keywords: Aviation; Aircraft Landing; Scheduling; Workload Balancing

1 Introduction

With increasing levels of air tra�c, an e�cient planning and execution of airport op-
erations becomes more and more important. An essential problem in this context is
the aircraft landing problem (ALP), which aims at supporting air-tra�c controllers in
scheduling landings of all planes in the airspace of an airport to its runway(s). For
each single plane a landing time within a prespeci�ed time window, which depends on
the remaining distance to be covered, the plane's maximum and minimum velocity and
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the remaining fuel, is to be determined such that landing separation criteria due to air
turbulence speci�ed for each pair of planes are observed. A detailed description of the
operational characteristics of ALP are provided by Beasley et al. (2000). Preceding
research on the ALP focuses on one of the following objectives:

• Minimize the remaining fuel costs of all planes to be landed by meeting their most
economic target landing times at preferred speed (Ernst et al., 1999; Beasley at al.,
2000; Pinol and Beasley, 2006).

• Minimize the deviation to target landing times, which are planned in a mid-term
horizon and published in the �ight schedule (Beasley et al., 2001; Bianco et al.,
2006; Pinol and Beasley, 2006).

• Minimize the completion time (makespan) of the schedule or maximize the through-
put (Psaraftis, 1980, Bianco et al., 1999; Bianco et al., 2006; Atkin et al., 2007).

• Reduce perturbation of successively determined plans in a rolling horizon (online
problem) by minimizing a displacement function (Beasley et al., 2004).

Thus far, none of the previous approaches considers the impact of the landing schedule
on the workload of ground sta�. In general, the ground sta� working at the airport
can be separated into two groups with regard to their a�liation. The �rst group are
airport employees which are, for instance, engaged with unloading baggage, the fueling
of planes and security checks. Whenever several big planes which carry plenty of pas-
sengers are assigned to landing slots in direct succession, workload of all operators can
increase dramatically leading to an increase in waiting queues of passengers (diminish-
ing customer satisfaction) or additional manpower and thus increasing wage costs. On
the other hand, a sequence of small aircrafts with only few passengers causes idle time.
The second group of airline employees is engaged with operations like cleaning planes,
re�lling of catering supply and maintenance checks. Here, successive landings of planes
of the same airline (especially those carrying plenty passengers) alternated with periods
without landings of the respective airline likewise cause high workload and idle time, re-
spectively. It thus seems suggestive to generate landing schedules which lead to balanced
workloads of ground sta�. Note that even if the services are subcontracted to third-party
service providers, the airport and airlines will also pro�t from balanced workloads, as the
resulting cost advantages should lower service prices at least in the mid-term. In order to
yield such balanced schedules, we de�ne a target rate, which is based on the assumption
that planned passenger arrivals and/or landings can be evenly spread over the planning
horizon, so that actual landings should approximate this rate as close as possible.
The basic idea of leveling is borrowed from the famous �Toyota Production System� (see

Monden, 1998), where a �level scheduling� (see Kubiak, 1993; Boysen et al., 2007a) of the
�nal production stage (here, the runway schedule) facilitates the Just-in-Time principle.
Subassemblies (here, ground sta� services) are smoothly �pulled� o� preceding (here, also
succeeding) production stages, so that enlarged safety stocks (here, additional manpower)
become obsolete. Three di�erent objectives minimizing the deviation of actual form ideal
schedules are investigated:
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• To level the workload of airport employees a runway schedule is to be determined,
such that the number of passengers carried by landing aircraft are evenly spread
over the planning horizon.

• Whenever the planes of an airline carry a comparable number of passengers, it is
su�cient to spread the landings per airline equally over the planning horizon to
achieve a leveling of airline sta�'s workload.

• If the number of passengers per plane diverges considerably, then, to balance the
workload of airline sta�, the number of passengers per airline are to be evenly
spread over time.

To establish this new class of leveling objectives and to derive basic insights on the
objectives' impact on the structure of the decision problem, we model the aircraft landing
problem in its very basic form. A given static set of planes is to be scheduled at a single
runway. The modi�cations necessary to run such a static model to solve the underlying
online problem is covered by Beasley et al. (2004). Moreover, as is a common premise in
ALP research we restrict our investigation to aircraft landings, although mixed schedules
incorporating take-o�s can be covered as well (see Beasley et al., 2000). The separation
time due to air turbulence between adjacent planes is assumed to be equidistant, which,
in the real world, only occurs when all aircrafts are of the same plane model. Otherwise,
it is a simplifying assumption, which reduces the scheduling problem to a sequencing
problem. Finally, earliest and latest landing times associated with each single plane
are not considered. With these reductions on hand, the core problem with regard to
these objectives is extracted, so that the isolated impact of the objectives, i.e. on the
complexity of the problem, can be investigated.
The paper is organized as follows. First, the landing problem covered in this paper

is formalized in Section 2. Subsequently all three objectives are addressed in a separate
section (Sections 3 to 5), each of which presents a mathematical model, states complexity,
and develops exact and heuristic solution procedures. Finally, Section 6 concludes the
paper with insights on how to relax some of the simplifying assumptions to solve real-
world aircraft landing problems.

2 Problem description

To extract the core problem of leveled aircraft landing we restrict the problem as follows:

• We assume that the set P of planes remains unaltered during processing a derived
plan. Thus, only the static version of ALP is considered.

• Only landings of aircraft (no take-o�s) at a single runway are considered.

• The separation time between all pairs of planes is assumed to be equidistant. In
the real world, this premise holds true if all aircraft P are of the same basic plane
model and is an approximation of reality otherwise.
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A set of airlines (index a)
P set plane (index p)
Pa subset of planes (Pa ⊂ P ) belonging to airline a (index p)
T number of time slots for landings (index t)
gp number of passengers in plane p
r ideal rate
xpt binary variable: 1, if plane p lands during slot t; 0, otherwise
y auxiliary integer variable

Table 1: Notation

• Earliest and latest landing times of planes are not considered. Thus, it is assumed
that no assignment restrictions between planes and slots exist.

Following these assumptions we can now deduce a general set of mathematical constraints
which are shared by all ALP versions covered in this paper. The notation is summarized
in Table 1.
The input data of ALP is a given set P of planes each of which is to be assigned to

a landing slot t = 1, . . . , T , where |P | = T . The assignment decision is represented by
binary variables xpt, which are 1, if plane p is scheduled to land during slot t and 0
otherwise:

xpt ∈ {0, 1} ∀ p ∈ P ; t = 1, . . . , T (1)

Each plane p is further assigned to exactly one landing slot t in the planning horizon:

T∑
t=1

xpt = 1 ∀ p ∈ P (2)

On the other hand, during each slot t exactly one plane is allowed to land:∑
p∈P

xpt = 1 ∀ t = 1, . . . , T (3)

For all problem versions, we will further determine a target rate by distributing the overall
number of passengers or landings evenly over the planning horizon. In order to balance
the number of arriving passengers, for instance, the respective target rate is obtained
by dividing the total number

∑
p∈P gp of passengers, where gp denotes the number of

passengers on plane p, by the number of slots T : r =
∑

p∈P gp

T . Hence, a landing sequence
is sought where actual landing rates of passengers are as close as possible to the target
rate, so that the deviation aggregated over all slots is minimized. Figure 1 exempli�es
the basic principle of leveled landing schedules.
In order to measure the overall deviation we �rst need to determine a metric which

quanti�es the actual deviation at a slot. Among the most prominent choices in the
literature are absolute (also known as Manhattan or rectilinear), Euclidean or squared
deviations (see Boysen et al., 2007a). In this paper, we will focus on absolute deviations,
although our results likewise hold for the other forms. The single deviations need to
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Figure 1: Basic principle of leveled ALP schedules

be further aggregated over all slots to a single objective value. Typically, either the
sum of deviations (min-sum objective) or the maximum deviation (min-max objective)
is minimized. In this work we will pursue the min-max objective, since it minimizes the
extent of the deviations while preventing that single deviations become extraordinarily
high, as might occur in the min-sum case. Thus, the min-max objective has a more direct
economic impact compared to min-sum, as it reduces workload peaks during a shift, so
that the number of permanent sta� and/or stand-by workers do not need to cover these
amplitudes during shift planning.
In the following three sections we will di�erentiate between three objectives and provide

solution procedures for each of the problems separately.

3 Balancing the number of landed passengers

3.1 Mathematical model

To level the workload of airport sta� we introduce the model ALP1, which aims at
evenly distributing the number of landed passengers over time. Therefore, a target rate

r is calculated as follows: r =
∑

p∈P gp

T . With the help of this target rate, model ALP1

can be formulated as a mathematical program with objective function (4) and constraints
(1)-(3) and (5):

ALP1: Minimize C(X, Y ) = maxt=1,...,T |yt − t · r| (4)

subject to (1)-(3) and

yt =
t∑

τ=1

∑
p∈P

xpτ · gp ∀ t = 1, . . . , T (5)

Equations (5) de�ne auxiliary integer variables yt to be the cumulative number of
passengers landed up to period t. This number yt minus the optimal number of landed
passengers (t · r) denotes the deviation of slot t. The maximum deviation over all slots t
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is to be minimized within objective function (4).

Note that this problem has not been covered by level scheduling research for mixed-model
assembly lines, thus far. However, it can be seen as a special version of the so called
Output Rate Variation problem (see Bautista et al., 1996). The problem corresponds
to a model sequencing problem, where the processing times (number of passengers gp)
of di�erent models (planes p ∈ P ) are to be evenly spread over the production cycles
(landing slots t = 1, . . . , T ) to balance the workload at an assembly line with a single
station. In its structure, the problem is also similar to the unconstrained maximum job
cost sequencing problem (e.g. see Monma, 1980), unlike the latter however, ALP1 is
NP-hard in the strong sense as is shown in the following section.

3.2 Complexity

In the following we will proof NP-hardness for ALP1. For this purpose we show how
to transform instances of the 3-Partition problem to aircraft landing. 3-Partition is well
known to be NP-hard in the strong sense (see Garey and Johnson, 1979) and can be
summarized as follows:

3-Partition Problem: Given 3q positive integers ap (p = 1, . . . , 3q) and a positive

integer B with B/4 < ap < B/2 and
∑3q

p=1 ap = qB, does there exist a partition of the
set {1, 2, . . . , 3q} into q sets {A1, A2, . . . , Aq} such that

∑
p∈Ai

ap = B ∀i = 1, . . . , q ?

Transformation of 3-Partition: Consider 4q + 2 aircrafts where the �rst 3q �small�
aircrafts have passenger numbers equal to gp = r − ap ∀ p = 1, . . . , 3q, the following q
�large� aircrafts carry gp = B + r ∀ p = 3q + 1, . . . , 4q and the last two aircrafts have
g4q+1 = r − B/2 and g4q+2 = r + B/2 passengers where ap and B are positive integers
with B/4 < ap < B/2 and r > B/2 is the desired integer target rate. The length of
such an instance is polynomially bounded in q, so that any instance of 3-Partition can
be transformed to such an instance of ALP1 in polynomial time. Note that in order to
ensure integer numbers of passengers in ALP1, B and all aj can be multiplied with a
given even constant in the transformation w.l.o.g. and further that r can be any number
greater than B/2 and will always result to the actual target rate for the given instance.
A simple lower bound C for ALP1 bases on the consideration that each plane p ∈ P

with gp > r (gp < r) cases least deviation, when the deviation at the previous sequence
position t− 1 is 1

2 · (r − gp) (1
2 · (gp − r)), because, then, scheduling plane p at position t

causes a deviation of 1
2 · (gp−r) (1

2 · (r−gp)). Any bigger or smaller deviation at position
t − 1 causes additional deviation at either slot t or t − 1. Obviously, the one plane with
maximum deviation from target rate r constitutes the lower bound:

C =
maxp∈P |gp − r|

2
(6)

Note that in the considered instances the maximum absolute deviation from the target
rate is B, so that C = B/2 constitutes a lower bound in this case. We will now show
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that �nding an answer to the question of whether a solution with an objective value of
B/2 actually exists is as hard as 3-Partition.
We can transform any solution to a YES-instance of 3-Partition to a solution of aircraft

landing by simply ordering the sets Ai arbitrarily and scheduling them in the following
fashion:

< 4q+1 3q+1 A1 3q+2 A2 3q+3 A3 . . . 4q Aq 4q+2 >

At the beginning and the end of the sequence the two aircrafts carrying r − B/2 and
r + B/2 passengers are assigned. In between a large aircraft is followed by a set of small
aircrafts in an alternating fashion. It can be easily veri�ed that such a sequence yields
an objective value of B/2.
Let us assume that there exists a feasible sequence with C ≤ B/2. In fact the existence
of such a sequence depends critically on the assignment of the large airplanes. A large
airplane can only be scheduled at a slot t if the previous slot has a deviation of dt−1 =
−B/2, where dt =

∑t
τ=1

∑
p∈P xpτ · gp − t · r denotes the actual deviation at slot t. Any

smaller value dt−1 < −B/2 would immediately lead to a contradiction with C ≤ B/2,
any larger value would lead to a deviation at t of dt = dt−1 + r + B − r > B/2 with
dt−1 > −B/2 and also contradict C ≤ B/2. We can thus conclude that the deviation after
the assignment of a large airplane at t is dt = B/2. As a consequence in between of any
two large airplanes there needs to be a subsequence of other airplanes whose cumulated
deviation is exactly −B. As there are q large airplanes, at least q − 1 subsequences of
airplanes with a cumulated deviation of −B are required. Note that before the �rst large
airplane and after the last large airplane is assigned, the cumulated deviation needs to
be brought from 0 to −B/2 and from B/2 to 0 respectively. It follows that the sequence
needs to begin and end with a subsequence of planes with a cumulated deviation of
−B/2.
It can be readily checked that a subsequence with a cumulative deviation of −B/2

cannot consist of small airplanes alone, as they show a deviation of −ap with B/4 <
ap < B/2, so that the deviation of any single small plane is strictly larger than −B/2
while any two small planes already have a cumulated deviation strictly smaller than
−B/2. It follows that plane 4q+1 has to be assigned to the beginning of a sequence with
C ≤ B/2, if 4q+2 is assigned to the end and vice versa. While 4q+1 immediately yields
a deviation of −B/2, plane 4q + 2 requires an additional subset of small airplanes whose
cumulated deviation is −B to yield a total cumulated deviation of −B/2. Together with
the q − 1 subsets of small planes with a cumulated deviation of B in between the large
planes this yields the required partition.
An instance of 3-Partition is thus a YES-instance if and only if there exists a solution

with C ≤ B/2 for the corresponding instance of ALP1, which means that ALP1 is NP-
hard in the strong sense.

Reduction rule: Note that a problem instance of ALP1 can be reduced by all planes
carrying a number of passengers gp which equals target rate r because, independent of
their landing position, these planes only restore the previous deviation and can, thus, not
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lead to an increased maximum absolute deviation. After having determined an optimal
solution with the reduced input data these planes can be scheduled at arbitrary sequence
position without altering the objective value.

3.3 Solution Algorithms

In this section we develop an exact Dynamic Programming approach and two heuristic
start procedures for solving instances of ALP1.

3.3.1 Dynamic Programming approach

The Dynamic Programming (DP) approach to solve ALP1 is based on an acyclic digraph
G = (V,E, w) with a node set V divided into T + 1 stages, a set E of arcs connecting
nodes of adjacent stages and a node weighting function w : V → R (see Bautista et al.,
1996; Boysen et al., 2007b, for related approaches to scheduling mixed-model assembly
lines). Each position t of the landing sequence is represented by a stage which contains a
subset Vt ⊂ V of nodes representing states of the partial landing sequence up to position
t. Additionally, a start level 0 is introduced. Each index i ∈ Vt identi�es a state (t, i)
de�ned by the vector Xti of binary indicators Xtip of all planes p ∈ P already scheduled
up to sequence position t. It is su�cient to store the numbers of planes already landed
instead of their exact partial sequence, because the actual number of landed passengers
at sequence position t and, thus, the deviation from the ideal number only depends on
the aircraft scheduled up to position t irrespective of their order.
The following conditions de�ne all feasible states to be represented as nodes of the

graph: ∑
p∈P

Xtip = t ∀ t = 0, . . . , T ; i ∈ Vt (7)

Xtip ∈ {0, 1} ∀ p ∈ P ; t = 0, . . . , T ; i ∈ Vt (8)

Obviously, the node set V0 contains only a single node (initial state (0, 1)) corresponding
to the vector X01 = [0, 0, . . . , 0]. Similarly, the node set VT contains a single node (�nal
state (T, 1)) with XT1 = [1, 1, . . . , 1]. The remaining stages have a variable number of
nodes depending on the number of di�erent plane vectors Xti possible.
Two nodes (t, i) and (t + 1, j) of two consecutive stages t and t + 1 are connected by

an arc if the associated vectors Xti and Xt+1j di�er only in one element, i.e., exactly one
plane is additionally scheduled in position t + 1. This is true if Xtip ≤ Xt+1jp holds for
all p ∈ P , because both states are feasible according to (7) and (8). The overall arc set
is de�ned as follows:

E = {((t, i), (t + 1, j)) | t = 0, . . . , T − 1; i ∈ Vt; j ∈ Vt+1 : Xtip ≤ Xt+1jp ∀p ∈ P} (9)

Finally, node weights wti assign the actual deviation of the partial sequence presented
by state (t, i). For this purpose, the cumulative number of landed passengers

∑
p∈P Xtip ·

8



Figure 2: Example graph of DP for ALP1

gp are to be compared with the ideal number (t · r), so that node weights are calculated
as follows:

wti =

∣∣∣∣∣∣
∑
p∈P

Xtip · gp − t · r

∣∣∣∣∣∣ ∀ t = 0, . . . , T ; i ∈ Vt (10)

With this graph on hand, the problem reduces to �nding a path from the source
node at level 0 to the unique sink note at level T , which minimizes the maximum node
weight (min-max weight path). This path can be easily determined during the stage-
wise construction of the graph by updating the min-max weight wmm

ti utilized up to the
actual node according to the following recursion formula, where Pti denotes the set of
predecessor nodes of node (t, i):

wmm
ti = max

{
min(t−1,j)∈Pti

{wt−1j}; wti

}
∀ t = 1, . . . , T ; i ∈ Vt (11)

The DP-approach does not need to store the complete graph but only the reference to
a predecessor node (t − 1, j) ∈ Pti with minimum min-max weight wmm

t−1j for each single
node (t, i) of actual stage t. Any other node of the previous stage can be deleted. The
optimal objective value corresponds to the min-max weight wmm

T1 of sink node (T, 1). The
respective optimal landing sequence can be determined by backwards recursion along the
stored predecessor nodes (along the optimal path). The plane to be assigned at sequence
position t + 1 is the only one for which Xt+1jp − Ytip = 1 holds.

Example: Given a set P of planes consisting of |P | = 4 aircrafts, which are supposed to
carry 7, 10, 2 and 5 passengers, respectively. Thus, target rate r amounts to r = 6. The
resulting graph along with a bold-faced optimal path is depicted in Figure 2. The corre-
sponding optimal landing sequence is π = {1, 3, 2, 4} resulting to a minimum maximum
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absolute deviation of C∗ = 3.

To further speed-up the procedure two extensions of basic DP are applied. The �rst
extension employs a global upper bound, which is calculated upfront by some heuristic
procedure(s), to decide whether an actual node can be fathomed or needs to be stored in
the graph. Whenever a node weight wmm

ti equals or exceeds upper bound C the node can
not be part of a solution with a better objective value than the incumbent upper bound
and can, thus, be discarded. Such an extension of DP is also know as Bounded Dynamic

Programming, which was introduced by Morin and Marsten (1976), Marsten and Morin
(1978) and later on successfully applied, e.g., by Carraway and Schmidt (1991), Bautista
et al. (1996) as well as Boysen et al. (2007b). Additionally, we apply a global lower
bound to check whether optimality of the upper bound solution can be proven prior to

constructing the graph. In Section 3.2 we showed that C = maxp∈P |gp−r|
2 constitutes a

possible lower bound for ALP1.
The second extension of our basic DP approach utilizes the symmetry of landing se-

quences. It can be shown (see appendix) that any partial sequence leads to the same
maximum deviation as its reverted counterpart. Furthermore a uni�cation of two subse-
quences π and π′ with landings slots t = 1, . . . , t′ and t = t′ + 1, . . . , T �lled with plane
of sets P ∗ ⊂ P and P ′ = P \ P ∗, respectively, leads to maximum deviation that is equal
to the maximum objective values of both subsequences. Consequently, the DP-graph
merely needs to be constructed to its half, because for any node (tm, i) in medium stage
tm = dT

2 e a complementary node (tm, i)c of complementary stage tc = bT
2 c covering all

planes not in (t, i) has already been generated, so that both subsequences can be uni�ed
to a complete solution. Note that for an even slot number T medium stage tm and com-
plementary stage tc are identical (tm = tc = T

2 ), whereas an odd T results to diverging
stages with tm = tc + 1. For each node i ∈ Vtm the complementary node (tm, i)c can be
determined as follows:

(tm, i)c = {j ∈ Vtc : Xtmip + Xtcjp = 1∀ p ∈ P} (12)

Thus, the optimal objective value C∗ amounts to:

C∗ = mini∈Vtm

{
max

{
wmm

(tm,i); wmm
(tm,i)c

}}
(13)

It further holds that whenever the complement of a node i ∈ Vtm has already been
fathomed on the basis of an upper bound, it follows that also node (tm, i) leads to an
objective value higher than the upper bound and can be discarded.

Example (cont.): The potential of the aforementioned extensions of basic DP to reduce
the graph is depicted in Figure 3 for our example. The graph merely needs to be con-
structed up to stage tm = 2 with only 6 nodes remaining (instead of 16 with basic DP).
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Figure 3: Example graph of DP with extensions for ALP1

3.3.2 Heuristic start procedures

In spite of the considered extensions, the number of states in the DP approaches raises ex-
ponentially with the number of planes |P |, so that two heuristic start procedures (HSP )
is developed to solve large ALP1-instances and/or to derive upper bounds. The �rst
method, called HSP1 simply �lls the solution vector π of elements πt (t = 1, . . . , T ) from
left to right by �xing an unscheduled plane p ∈ OUT at the actual decision point t. Each
myopic sequencing decisions aims at avoiding an increase of the maximum absolute devi-
ation, which especially impends from those planes whose passenger number gp deviates
from target rate r, considerably. It seems desirable to minimize additional deviations
caused by these planes, which is the easier the earlier these planes are scheduled. At
the beginning of the sequence the degrees of freedom are higher to �nd preceding planes,
which enable an e�cient scheduling of high deviation planes. Thus, we consecutively
determine target planes tp ordered by decreasing deviation from the ideal rate: |gp − r|,
which are pre�xed by respective planes (determined by myopic choice) until an e�cient
sequence position for the actual target plane tp is found. A formal description of HSP1

is as follows:

(0) Initialize the following data: OUT := P ; t := 1; maxdev := 0; actdev := 0

(1) Determine the actual target plane tp, which is the one out of remaining planes
p ∈ OUT deviating most from target rate r:

tp := argmaxp∈OUT |gp − r| (14)

(2) If scheduling target plane tp does not exceed the actual maximum deviation: |actdev+
gtp − r| ≤ maxdev, then select the target plane to be scheduled next: sel := tp and
go to step (5).

(3) Select a preceding plane sel, which if scheduled at actual position t and target plane
tp in position t + 1 causes least actual deviation:

sel := argminp∈OUT\{tp} {max{|actdev + gp − r|, |actdev + gp + gtp − 2r|}} (15)

(4) If the selected plane sel causes more deviation at the actual position than target
plane tp: |actdev + gsel − r| > |actdev + gtp − r|, then select target plane: sel := tp.
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(5) OUT\{sel}; πt := sel; actdev := actdev+gsel−r; maxdev := max{maxdev, |actdev|};
t := t + 1

(6) If all planes are assigned then end the procedure, else proceed with step (1).

Example (cont.): For our example, the �rst target plane tp is the one carrying 10 pas-
sengers (deviation from target rate +4). The best preceding plane is the one with 5
passengers, so that scheduling both planes at the �rst two slots leaves behind an actual
deviation of actdev = 3. The next target plane tp with 2 passengers can be directly sched-
uled without increasing maximum deviation, so that scheduling the remaining plane at
the last position results to landing sequence π = {4, 2, 3, 1}, which is an optimal solution
with C = maxdev = 3.

The second heuristic is based on a similar consideration, but more directly focuses
on target planes. Note that according to the lower bound argumentation, the desired
deviation before sequencing the target plane is exactly equal to

gtp−r
2 . Any deviation from

this value will result in an increased maximum deviation. Once a target plane has been
identi�ed, we could thus solve a special subset sum problem, which aims at identifying the
subset of planes which comes as close as possible to this target deviation. Unfortunately
the subset sum problem is well-known to be NP-hard, so that in the following heuristic
HSP2, we will once again aim for a greedy solution. HSP2 starts out the total set of
planes identi�es the target plane. The set is then subdivided into a set of predecessors,
whose cumulated deviation is as close as possible to the target deviation and a set of
successors which contains all remaining planes. This process is then repeated for all
generated sets until the total set of planes has been divided into an ordered 1-partition,
which provides the sequence.

(0) Initialize the following data: A list L :=< P > containing the set of planes P , an
empty list LNew,

(1) For all k = 1, ...,K elements of list L do set OUT := Lk, if |OUT | = 1 then chose
next k else set PREV :=

⋃k
j=1 Lj and do the following

(2) Determine the target plane tp in OUT according to:

tp := argmaxp∈OUT |gp − r| (16)

(3) Set OUT := OUT \ {tp}, BEST := ∅,ACT := ∅, bestDiff := 0 and calculate the
targeted di�erence according to

tarDiff := −
(

gtp − r

2

)
−

∑
j∈PREV

gj − r (17)

(4) Retrieve the plane sel that comes as close as possible to the targeted di�erence

sel := argminp∈OUT\ACT

|tarDiff − gp + r −
∑

j∈ACT

gj − r|

 (18)
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and add this plane to the current set ACT := ACT ∪ {sel}

(5) If the current set ACT comes closest to the targeted di�erence tarDiff−
∑

j∈ACT gj−
r| < tarDiff−bestDiff then save the set as new best set: BEST := ACT , bestDiff :=∑

j∈ACT gj − r

(6) If |ACT | < |OUT | proceed with (3) else append the following sets to the new list in
the fashion LNew :=< LNew, BEST, {tp}, OUT \BEST > while empty sets are ignored.

(7) If k < K proceed with (1) else set L := LNew

(8) If list L contains |P | elements then end procedure, else proceed with step (1).

The heuristic returns an ordered list of |P | sets each containing one plane, which yields
the required sequence.

3.4 Computational study

The computational study shall evaluate the maximum size of input data up to which the
DP approach can be reasonably applied as well as the solution quality of the heuristic
approaches HSP1 and HSP2 to solve ALP1. As there exists no established test bed for
ALP1, we �rst elaborate on the generation of test instances:
As input parameter for instance generation, we vary the number of planes given: |P | ∈

{5, 6, . . . , 22}. Per instance, each plane p in set P receives its number of passengers gp by
randomly drawing an equally distributed integer number out of the interval [1; 1000]. For
each set size |P | this procedure is repeated 20 times, so that in total 360 test instances
are derived.
The results of the computational study are listed in Table 2. For the optimal DP

approach we report CPU-seconds (avg cpu) averaged over all 20 instances with equal
number of planes |P |. Results of the heuristic HSP approaches consist of the average gap
(avg gap) and maximum gap (max gap) from the optimum, where each single deviation

is de�ned by: C(HSP )−C(DP )
C(DP ) , and C(HSP ) (C(DP )) denotes the objective value of

the HSP approach (DP). The minimum objective value (min{HSP1;HSP2}) of both
HSP approaches is utilized as the upper bound solution for DP. All methods have been
implemented in C# (Visual Studio 2003) and run on a Pentium IV, 1800 MHz PC, with
512 MB of memory.
The results show that DP solves all 360 instances to optimality within a given time

frame of 300 CPU-seconds with an average of only 13.4 CPU-seconds. |P | = 22 can
be seen as an upper limit for reasonably applying DP, as with 23 planes no instance
can be solved within the given time frame. On the other hand, the pure DP approach
without the aforementioned extensions, i.e., bounded dynamic programming and graph
reduction, can only solve instances with up to 18 planes within 300 CPU-seconds. Our
heuristic HSP approaches perform satisfactorily as HSP1 and HSP2 result in an average
(maximum) gap of 8.0% (42.5%) and 5.5% (38.8%), respectively. Interestingly, the per-
formances of both heuristics are supplementary in the sense that the average gap can be
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DP HSP1 HSP2 min{HSP1; HSP2}
|P | avg cpu avg gap max gap avg gap max gap avg gap max gap

5 <0.1 10.3 39.7 0.0 0.0 0.0 0.0
6 <0.1 3.4 15.0 0.1 0.8 0.1 0.8
7 <0.1 9.1 27.1 3.6 27.1 3.6 27.1
8 <0.1 5.9 15.9 1.1 4.1 1.1 4.1
9 <0.1 11.0 42.5 5.2 14.9 4.7 10.1
10 <0.1 5.4 15.0 3.6 15.0 3.6 15.0
11 <0.1 8.3 29.0 5.5 17.1 4.2 17.1
12 <0.1 7.8 24.1 6.1 29.1 3.4 10.2
13 <0.1 10.0 21.3 3.8 16.7 3.8 16.7
14 0.1 9.3 21.4 5.5 20.5 5.0 16.0
15 0.1 11.9 34.5 7.9 29.8 5.1 25.4
16 0.3 7.5 18.2 10.7 38.8 5.8 18.2
17 0.9 6.8 17.5 8.7 33.5 3.9 7.9
18 1.5 7.2 20.4 5.7 24.1 3.3 20.4
19 7.2 7.0 20.3 6.0 25.9 2.4 6.8
20 14.7 9.4 22.6 8.5 35.0 5.3 14.2
21 55.5 9.6 23.6 11.7 28.4 7.7 20.0
22 161.0 4.2 10.6 6.1 38.5 2.2 7.5

total 13.4 8.0 42.5 5.5 38.8 3.6 27.1

Table 2: Results for ALP1

decreased to merely 3.6% by choosing the better heuristic objective value per instance
(min{HSP1; HSP2}). Moreover, the computational time is near to nothing for both
HSP approaches as it falls below 0.1 CPU-seconds for any instance.

4 Balancing of landings per airline

4.1 Mathematical model

To balance the workload of airline ground sta�, the passengers of the respective airline
need to be evenly distributed over the planning horizon. Assumed that all planes of an
airline are approximately of the same size and the number of carried passengers is compa-
rable, it is su�cient to level the landings per airline over time. The individual target rate
ra per airline a is hence ra = |Pa|

T ∀a ∈ A. The following mathematical program ALP2

with objective function (19) and constraints (1)-(3) and (20) hence minimizes target rate
deviations:

ALP2: Minimize Z(X, Y ) = maxt=1,...,T ;a∈A |yat − t · ra| (19)

subject to (1)-(3) and

yat =
t∑

τ=1

∑
p∈Pa

xpτ ∀ a ∈ A; t = 1, . . . , T (20)
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The auxiliary integer variables yat in equations (20) denote the number of landings per
airline a up to slot t. The maximum absolute di�erence between the actual number of
landings per airline and the ideal number (t · ra) per slot t and airline a is minimized by
objective function (19).

4.2 Solution Algorithm

ALP2 can be shown to be equivalent to the well known product rate variation problem
(PRV), which deals with evenly spreading the copies of di�erent models over the produc-
tion cycles of a mixed-model assembly line. This problem was introduced by Miltenburg
(1989), further prominent contributions stem from Inman and Bul�n (1991), Kubiak and
Sethi (1991, 1994) as well as Steiner and Yeomans (1993) and detailed reviews can be
found at Kubiak (1993) and Boysen et al. (2007a). The equivalence between the PRV
and ALP2 becomes immediately obvious by exchanging the following terms: Instead of
evenly distributing the landings per airline over landing slots the PRV aims at leveling
the copies of models to be produced over production cycles, so that the terms �planes�
are to be replaced by �copies�, �airlines� by �models� and �landing slots� by �production
cycles�. For the PRV with min-sum objective and absolute as well as squared deviations
Kubiak and Sethi (1991, 1994) introduce an exact solution procedure, which is based on
a transformation to a linear assignment problem, with a runtime complexity of O(T 3).
For the min-max objective with absolute deviations, which is also investigated within
the paper on hand, Steiner and Yeomans (1993) develop an exact procedure with run-
time complexity O(T log T ). Note that the runtime of both procedures for the PRV is
only polynomially bounded in the number of slots T , which is by itself only pseudo-
polynomially bounded in the length of a reasonably encoded input. Consequently, just
as for many high-multiplicity problems (see Grigoriev and van de Klundert, 2006) the
complexity of ALP2 remains open, as it is unclear whether it belongs to NP.
The Steiner and Yeomans procedure decomposes the overall problem into a set of

feasibility problems, each of which answering the question of whether there exists a
landing sequence whose maximum deviation does not exceed a given maximum deviation
level D. With a given D, for the i-th plane (with i = 1, . . . , |Pa|) of airline a the set of
feasible landing slots Tai can be determined by:

Tai = {t = 1, . . . , T | |i− t · ra| ≤ D and |i− 1− (t− 1) · ra| ≤ D} ∀ a ∈ A; i = 1, . . . , |Pa|
(21)

To take up slot t in set Tai the i-th plane scheduled in slot t may not exceed the
given maximum deviation D (�rst term of the condition) furthermore the postponement
of this plane must be possible without causing an infeasible deviation of the preceding
plane i−1 in the preceding slot t−1 (second term of the condition). If these sets Tai are
determined the feasibility problem reduces to a perfect matching problem in a bipartite
graph (see Hopcraft and Karp, 1973). The two node sets are represented by the planes
i = 1, . . . , |Pa| of the airlines a ∈ A and the landing slots t = 1, . . . , T , respectively. A
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Figure 4: Perfect matching to solve the feasibility version of ALP2

node representing plane i of airline a is connected to a landing slot t with an arc, if t ∈ Tai

holds. If a perfect matching exists, the respective feasibility problem is a yes-instance
and the edges chosen in the perfect matching represent the landing sequence of airlines.
Furthermore, Steiner and Yeomans (1993) prove the so called order preserving property,
which means that in a perfect matching the i-th plane can never be scheduled in a period
ahead of plane i−1, which indeed proves equivalence between the matching problem and
the feasibility version of ALP2.
By deriving upper and lower bounds for the optimization version of the problem,

Steiner and Yeomans show that it is su�cient to restrict the search for the optimal
deviation level D? to the following set DD:

DD =
{
D ∈ R : 1−maxa∈A{ra} ≤ D ≤ 1 ∧D · T ∈ Z+

}
(22)

Closer bounds are introduced by Kubiak (2004). The lowest D ∈ DD for which the
feasibility problem holds true is the minimum maximum deviation D? and the optimal
objective value of ALP2.

Example: Given |P | = 4 airlines (P = {1, 2, 3, 4}) with 3, 2, 1 and 1 planes to be landed,
respectively. The resulting bipartite graph for a given maximum deviation of D = 4/7
is depicted in Figure 4 along with a bold faced perfect matching. The corresponding
succession of airlines is π = {1, 2, 3, 1, 4, 2, 1}. The set of deviations DD, for which a
matching problem is to be solved is DD = {4/7, 5/7, 6/7, 1}. As there exists a perfect
matching for the minimum maximum deviation of D = 4/7 it is also the optimal solution
value D? = 4/7.

5 Balancing the number of landed passengers per airline

5.1 Mathematical model

Finally, we aim at leveling the workload of airline sta� if the planes per airline carry
di�erent numbers of passengers. In such a setting the individual target rate ra per

airline a amounts to: ra =
∑

p∈Pa
gp

T ∀a ∈ A. The resulting mathematical program ALP3
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consists of objective function (23) and is subject to constraints (1)-(3) and (24):

ALP3: Minimize Z(X, Y ) = maxt=1,...,T ;a∈A |yat − t · ra| (23)

subject to (1)-(3) and

yat =
t∑

τ=1

∑
p∈Pa

xpτ · gp ∀ a ∈ A; t = 1, . . . , T (24)

The auxiliary variable yat of equations (24) denote the cumulated number of passen-
gers of planes of airline a assigned up to slot t. This airline speci�c number of passengers
should approximate the ideal number of passengers per airline (t · ra) as is expressed in
objective function (23).

ALP3 can be seen as a special version of a multi-output rate variation problem. Since
ALP3 further contains ALP1 as a special case, the problem is likewise NP-hard in the
strong sense.

5.2 Solution Algorithms

To solve ALP3, we �rst show how to adopt the Dynamic Programming (DP) approach of
ALP1 and then discuss some heuristic procedures, which are based on a decomposition
of ALP3 into the both versions of ALP (ALP1 and ALP2) previously considered.

5.2.1 Dynamic Programming approach

To solve ALP3 to optimality, the DP approach developed for ALP1 can be applied nearly
unmodi�ed. The structure of the graph remains identical, only the weighting function
(10) to calculate the resulting deviation for each node (t, i) needs to be adopted:

wti = maxa∈A

∣∣∣∣∣∣
∑
p∈Pa

Xtip · gp − t · ra

∣∣∣∣∣∣ ∀ t = 0, . . . , T ; i ∈ Vt (25)

Furthermore, both extension of basic DP designed for ALP1 can be applied to ALP3,
as well. An upper bound can be derived, e.g. by the heuristic approaches described in
Section 5.2.2, which serves as a standard of comparison to exclude nodes with higher
weights from the graph. since the symmetry property proven for ALP1, likewise holds
for ALP3, the same principles for a graph reduction can be applied.

Example: Given are |A| = 2 airlines with |Pa| = 3 planes each to be landed. The number
of passengers on the planes 1, 2 and 3 of airline a = 1 are 3, 8 and 7, respectively. Planes
4, 5 and 6 belong to airline a = 2 with passenger numbers 3, 2 and 7, respectively. For
these given input data the target rates result to r1 = 3 and r2 = 2. The belonging
DP-graph is depicted in Figure 5. An upper bound value of UB = 4 is assumed, which is
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Figure 5: Example graph of DP with extensions for ALP3

applied to reduce the number of nodes to be constructed. A bold faced optimal solution
with objective value C∗ = 3 represents the landing sequence π = {5, 3, 6, 1, 2, 4}.

5.2.2 Decomposition approach

To derive a heuristic start procedure, ALP3 can be decomposed into |A| ALP1 problems
to determine the sequence of planes for each airline separately (�rst step) and a single
ALP2 problem to assign the landing slots to airlines (second step). For both steps two
slightly di�erent alternatives exist, which are described in the following:

Step 1: For each airline a separate sequence of planes is determined by solving |A|
ALP1 problems with the heuristic start procedures HSP introduced in Section 3.3.2.
Note that determining exact solutions for the ALP1 problems, for instance by our DP
approach, is no serious alternative, as |A| NP-hard problems need to be solved. However,
there are two alternatives of how to derive the respective input data for ALP1 from a
given ALP3 instance:

• An ALP1 instance for any airline a ∈ A can be extracted by considering exclusively
the planes Pa of the respective airline. Consequently, the number of possible landing
slots T is reduced to the number |Pa| of actual planes. This advancement, which we
label as time-reduced (abbreviated by ALP TR

1 ), requires the following preparation

of data: P (a) := Pa, T (a) := |Pa| and r(a) :=
∑

p∈Pa
gp

|Pa| .

Example (cont.): The target rates for the two time-reduced ALP TR
1 instances result

to r(1) = 6 (airline 1) and r(2) = 4 (airline 2), respectively. If the HSP2-heuristic is
applied the resulting landing sequences are π(1) = {2, 1, 3} (airline 1) and π(2) =
{4, 6, 5} (airline 2).

• As can be shown by example, an optimal solution of ALP TR
1 is not order-preserving,

if empty slots, i.e., further landings of other airlines, are inserted. This means that
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an insertion of empty planes (with gp = 0) may alter the original optimal landing
sequence of planes (with gp > 0) within the modi�ed instance. Note that the
optimal solution is only order-preserving when adding the neutral element with
gp = r (see Section 3.2). Thus, there might be a considerable di�erence between
optimal landing sequences of two ALP1 instances, which either operate on a reduced
planning horizon (see alternative 1 above) or preserve the number of landing slots
of the original ALP3 instance. The latter alternative is labeled as time-preserving

(abbreviated by ALP TP
1 ) and bases on the following preparation of ALP3 input

data for any airline a: any input data of ALP3 is transferred to ALP1, except for
passenger numbers of all planes not belonging to airline a, which are overwritten by
zero, so that gp = 0∀ p /∈ Pa.

Example (cont.): The target rates of both time-preserving ALP TP
1 instances are

r(1) = 3 (airline 1) and r(2) = 2 (airline 2), respectively. For airline 1, the solution
obtained by HSP2 is {0, 2, 0, 3, 0, 1}, which is to be reduced to the respective
landing sequence π(1) of airline 1: π(1) = {2, 3, 1}. The ALP1 solution for airline
2 amounts to {0, 6, 0, 0, 4, 5} and a landing sequence π(2) = {6, 4, 5}.

Step 2: Furthermore, there are also two alternatives of how to solve the remaining
problem, which allocates landing slots to airlines:

• The problem can be solved independent of the airlines' landing sequences obtained
�rst step, which means that an original ALP2 problem is extracted from an ALP3

instance. This requires the preparation of the following input data: A := A, T := T
and ra := |Pa|

T ∀a ∈ A. This advancement is labeled as ALP I
2 .

Example (cont.): An independent ALP2 instance solved to optimality with the
matching based approach of Steiner and Yeomans (1993) (see Section 4.2) leads to
a succession of airlines 1 and 2 of π = {1, 2, 1, 2, 1, 2}.

• The remaining problem of slot allocation can also be solved by considering the de-
termined landing sequences of any airline a (denoted by vectors πa with elements
πai storing the i-th plane landing of airline a) as additional input data. This prob-
lem can be solved by an adoption of the matching based procedure of Steiner and
Yeomans (1993) for ALP2 described in Section 4.2:

Again, the procedure bases on a decomposition into a set of feasibility problems
with diverging maximum deviations D given. The bipartite graph, for which it is
to be decided of whether a perfect matching exists, contains of two node sets on the
one hand representing the planes in the given sequence πa for any airline a and on
the other hand the landing slots. The set of edges connecting both node sets can
be determined with the help of a modi�ed formula (21), which derives the sets Tai

of feasible landing slots for the i-th plane in sequence πa of airline a:

Tai =
{

t = 1, . . . , T :
∣∣∣∑i

τ=1 gπaτ − t · ra

∣∣∣ ≤ D and
∣∣∣∑i−1

τ=1 gπaτ − (t− 1) · ra

∣∣∣ ≤ D
}

∀ a ∈ A; i = 1, . . . , |Pa|
(26)
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Whenever there exists a perfect matching for the aforementioned graph, the re-
spective feasibility problem is a yes-instance, so that there exists an assignment of
slots to airlines in the given landing sequence πa per airline a not exceeding given
maximum deviation D. Furthermore, we need to adopt the calculation of lower and
upper bounds of possible deviation levels. Lower bound D is set to the minimum
deviation possible, when �xing the �rst plane:

D = mina∈A

{
max{|gπa1 − ra|; maxa′∈A\{a}{ra′}}

}
(27)

The actual deviation at slot t = 1, when assigning the �rst plane πa1 out of the given
landing sequence of airline a amounts to the maximum of the deviations directly
caused by scheduling the �rst plane of airline a and the deviations arising by not
scheduling a plane of the other airlines a′ ∈ A \ {a}. The minimum over all airlines
a ∈ A determines lower bound D.

On the other hand, upper bound D bases on the consideration that in the worst
case all planes p ∈ P+

a of an airline a, whose passenger number gp exceed target
rate ra, follow directly one after another alternated by all other planes with gp < ra.
The plane sets P+

a are de�ned as follows: P+
a = {p ∈ Pa|gp > ra} ∀ a ∈ A. In this

worst-case scheduling pattern the maximum deviation always occurs in the |P+
a |-th

position irrespective of the actual sequence of the planes in P+
a , so that upper bound

D can be determined as follows:

D = maxa∈A

 ∑
p∈P+

a

gp − |P+
a | · ra

 (28)

Within interval [D; D] a binary search is performed and for each actual maximum
deviation D a perfect matching problem is solved. The procedure is aborted, when
the di�erence between actual upper bound (for which no perfect matching exists)
and the actual lower bound (for which a perfect matching exists) of the binary search
procedure falls below a prede�ned parameter V , for which we choose V = 0.1. This
procedure solves ALP2 in dependence of the landing sequences determined in the
�rst step of the decomposition approach in is, thus, abbreviated by ALPD

2 .

Example (cont.): If the airline speci�c succession of planes obtained by ALP TR
1

are passed over to the second step, ALPD
2 determines the following succession of

airlines π = {2, 1, 1, 2, 1, 2}.

Finally, the results of both algorithmic steps of the decomposition approach must be
uni�ed to the overall landing sequence π, which is to be evaluated with the objective
function (23) of ALP3 to determine the respective objective value. Our decomposition
approach can be executed in four di�erent modes: ALP TR

1 + ALP I
2 , ALP TR

1 + ALPD
2 ,

ALP TP
1 +ALP I

2 and ALP TP
1 +ALPD

2 . All four settings are to be evaluated with regard
to their solution performance by the following computational study.
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decomposition approach sequence objective value

ALPTR
1 + ALP I

2 {2, 4, 1, 6, 3, 5} 5
ALPTR

1 + ALPD
2 {4, 2, 1, 6, 3, 5} 3

ALPTP
1 + ALP I

2 {2, 6, 3, 4, 1, 5} 6
ALPTP

1 + ALPD
2 {2, 6, 4, 3, 1, 5} 5

Table 3: Example for ALP3 - results of the decomposition approach

Example (cont.): Table 3 summarizes the resulting landing sequences and the belonging
objective values for all four settings of our decomposition approach.

5.3 Computational study

To generate test instances, we varied the number of planes |P | = {5, 6, . . . , 22} as an
input parameter to determine the number of airlines |A|, the number of passengers gp

per plane p and the assignment of planes to airlines as output, altogether de�ning an
ALP3 instance. For each di�erent plane number |P | given, the procedure is repeated 20
times so that in total 360 instances emerge. For a given |P |, instance generation iterates
through the following steps: First, the number |A| of airlines is determined by randomly
drawing an integer number out of interval [2; 1

2 |P |]. Then, by randomly drawing an
integer number per plane p out of interval [1; 1000] the number of passenger gp is set.
Finally, we assign planes to airlines by randomly determining the airline number per
plane. For all random numbers equal distribution is chosen.

The results are listed in Table 4. We only report the results of DP and both ALPD
2

based settings of the decomposition approach , because an allocation of slots to airlines
independent (ALP I

2 ) of the results obtained by the �rst step of the decomposition ap-
proach shows not competitive. Their average relative deviation over all 360 test instances
amounts to 78.9% (ALP TP

1 +ALP I
2 )) and 110.3% (ALP TR

1 +ALP I
2 )), respectively. Thus,

results are reported for DP, ALP TR
1 + ALPD

2 , ALP TP
1 + ALPD

2 and the minimum ob-
jective value obtained by both settings of the decomposition approach (min{(1); (2)}).
The employed evaluation criteria are described in Section 3.4.
Just like for ALP1, the DP approach can solve all instances up tp |P | = 22 within a

given time-frame of 300 CPU-seconds. In total the DP approach performs slightly worse
for ALP3 than for APL1, which is explained by the less tight upper bounds for this
problem. We apply the minimum objective value of the decomposition approaches as
the upper bound for DP (min{(1); (2)}). Both settings of the heuristic decomposition
approach perform satisfactorily with an average gap of 11.8% (ALP TR

1 + ALPD
2 ) and

18.2% (ALP TP
1 +ALPD

2 ). When applying the minimum objective value of both heuristic
approaches (min{(1); (2)}) per instance the average gap decreases to 6.3%, which can
be interpreted as a promising result the more so as both heuristic approaches require
negligible computational time (< 0.1 CPU-seconds in any instance).

21



DP (1): ALPTR
1 + ALPD

2 (2): ALPTP
1 + ALPD

2 min{(1); (2)}
|P | avg cpu avg gap max gap avg gap max gap avg gap max gap

5 <0.1 23.7 73.5 2.3 23.4 2.3 23.4
6 <0.1 8.5 23.8 5.6 53.9 0.2 1.6
7 <0.1 16.4 43.7 10.5 66.7 7.1 31.9
8 <0.1 7.0 28.3 9.4 58.9 2.1 17.5
9 <0.1 20.3 52.2 18.8 53.6 11.2 52.2
10 <0.1 15.2 37.6 12.6 51.8 5.9 30.9
11 <0.1 11.1 59.8 12.4 37.9 5.0 18.0
12 <0.1 9.3 30.5 10.3 53.8 4.7 25.9
13 <0.1 9.8 35.2 21.4 83.2 6.0 35.2
14 0.1 9.4 39.3 27.4 122.2 8.8 39.3
15 0.2 6.4 27.1 14.6 38.4 6.0 27.1
16 0.4 14.3 42.3 29.6 116.3 10.8 40.6
17 1.2 12.2 56.6 31.6 163.0 11.1 56.6
18 2.0 12.7 40.2 38.6 115.5 11.4 40.2
19 10.4 6.7 18.9 20.2 70.4 6.3 18.9
20 19.1 15.1 72.0 42.5 216.6 6.0 18.8
21 70.6 8.7 64.5 8.5 50.8 6.4 50.8
22 202.0 5.1 12.5 10.5 48.5 2.6 10.0

total 17.0 11.8 73.5 18.2 216.6 6.3 56.6

Table 4: Results for ALP3

6 Conclusions

The paper on hand investigates a novel class of objective functions for ALP, which aims
at balancing the workload of ground sta� at airports. Three di�erent objective functions
are considered, for each of which complexity results and exact as well as heuristic solution
procedures are presented. However, the �ndings rest on a set of simplifying assumptions
which limit a direct application to real-world settings. This is discussed in more detail
in the following:

• In real-world landing problems, planes are bound to earliest and latest landing
times. Earliest landing times ep can be calculated on the basis of the remaining
distance to be covered by a plane p and its maximum velocity. Latest landing
times lp are determined on the basis of the fuel level and the most fuel-e�cient
speed the plane can take while circling in the airspace of the airport. Earliest and
latest landing times can be easily incorporated in the models for ALP1 to ALP3

by adding the following constraint:

ep ≤
∑

t=1,...,T

xpt · t ≤ lp ∀ p ∈ P (29)

To solve the resulting problems, our exact DP approach can be easily extended.
As each arc represents a scheduling of a plane at a speci�c landing slots, all arcs,
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which would result in an untimely landing, merely need to be excluded from the
graph with the eligible side e�ect of reducing the graph structure and accelerating
the solution process.

• Furthermore, the controllers typically need to consider minimum separation times
between consecutive aircrafts to account for air turbulences and ensure save land-
ings. These separation times are sequence-dependent as the extent of evoked (by
predecessors) and tolerable (by successors) turbulence depends on the dimensions
of the respective planes. In such a setting, ALP is no longer a sequencing problem
but becomes a scheduling problem, where the length T of the schedule depends
on the succession of planes. Consequently, the target rates r can not be calcu-
lated prior to determining a solution. This complicates the solution process as it
is impossible to exactly quantify the contribution of solution parts to the objective
value, so that the consequences of single scheduling decisions while constructing
a solution can not be exactly valuated. Thus, it is a challenging task for future
research to combine leveling objectives with sequence-dependent separation times.

As was presented in Section 1, there are other very important objectives to be regarded
in ALP. Thus, especially multi-objective optimization approaches seem an important
contribution of future research, in which the leveling objectives presented within the
paper on hand should be a valuable component to facilitate e�cient airport operations.

Appendix

Symmetry of Solution Sequences

In the following we will investigate the symmetry of obtained sequences and point out
consequences with regard to employed solution methods. The results are shown to hold
for ALP1, but can be easily shown to hold for ALP3 with just minor modi�cations. We
will di�erentiate between �complete� sequences which have a length of T and represent
an ordered assingment of all planes in P and �partial� sequences of length t∗ < T , which
only contain a subset of planes P ∗ ⊂ P . For simplicity, we will denote all sequences
with the same symbol π. We can now rede�ne dt as the deviation at slot t of sequence
π recursively as

dt = dt−1 + gπt − r for t = 1, . . . , T (30)

so that the deviation at a slot t is the result of the deviation at the previous slot
increased by the di�erence between the passengers of the plane at slot t and the target
rate r. The equation requires the determination of a starting deviation d0, which will be
useful in the following argumentation. Note, however, that a starting deviation can also
be of practical relevance whenever the model is employed as part of a sequential rolling
horizons approach.
In the proposed model formulation of Section (3.1) it is assumed that the starting

deviation is zero, so that the objective of ALP1 is equal to minimizing maxt=0,...,T |dt|
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with d0 = 0. We can now make some observances regarding the symmetry of solutions.
Note that due to the structure of the model formulation, it holds for any complete
sequence π that the observed deviation is zero at the last slot

dT = d0 +
T∑

τ=1

gπτ − r · T =
∑
p∈P

gp −
∑

p∈P gp

T
· T = 0 (31)

which follows directly from the determination of the target rate r. Now, consider two
complete sequences π and π′, where π′ is the inverted sequence of π, so that πt =
π′

T−t+1 for t = 1, . . . , T . It holds that

−dt = d′T−t for t = 0, . . . , T (32)

where d′t is the deviation of sequence π′ at slot t. By considering (31) equation (32)
certainly holds for t = 0 and t = T with d0 = d′0 = 0, but it also holds for all other cases
as is easily shown by insertion

d′T−t = d′0 +
T−t∑
τ=1

gπ′τ − r · (T − t)

=
∑
p∈P

gp −
t∑

τ=1

gπτ − r · T + r · t

= −
t∑

τ=1

gπτ + r · t

= −dt

It directly follows from (32) that |dt| =
∣∣d′T−t

∣∣ for t = 0, . . . , T , so that also maxt=0,...,T |dt| =
maxt=0,...,T |d′t|, which means that both sequences π and π′ have the same objective value.
An interesting consequence of (32) is thus, that there are always at least two optimal
solution sequences for non-trivial problems. Once an optimal solution has been found, a
second optimal solution can be readily generated by simply inverting the corresponding
sequence.
The symmetry is, however, also valid for partial sequences as we will show in the

following. Consider a partial sequence π with length t∗ to which only a subset of planes
P ∗ ⊂ P has been assigned. Irrespective of the order of planes in the sequence, the
deviation at the last slot will amount to dt∗ =

∑
p∈P ∗ gp − r · t∗ which is not necessarily

zero. Based on (32) we can conclude for such a partial sequence π with d0 = 0 and its
reverted counterpart π′ that

−dt = d′t∗−t for t = 0, . . . , t∗ (33)

with d′0 = r · t∗ −
∑

p∈P ∗ gp for π′. Again the relationship obviously holds for t = 0 and
t = t∗, but likewise holds also for all other slots as
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d′t∗−t = d′0 +
t∗−t∑
τ=1

gπ′τ − r · (t∗ − t)

= r · t∗ −
∑
p∈P ∗

gp +
∑
p∈P ∗

gp −
t∑

τ=1

gπτ − r · t∗ + r · t

= −
t∑

τ=1

gπτ + r · t

= −dt

which in turn means that both partial sequences will yield the same objective values. We
can thus conclude that a partial sequence which is optimal for a given subset of planes
and a starting deviation of zero, can be inverted to yield the optimal sequence for the
corresponding problem of optimally sequencing the same subset with a starting deviation
of r · t∗ −

∑
p∈P ∗ .

This insight has direct consequences for the determination of optimal sequences as
part of the dynamic programming approach. Each node of the presented graph yields
the optimal partial sequence π for a particular subset of planes P ∗ with a length t∗ and a
deviation at this slot of dt∗ =

∑
p∈P ∗ gp−r·t∗. In order to obtain a solution, the remaining

subproblem constitutes in constructing an optimal partial sequence π′ of length T − t∗

of the remaining planes P \ P ∗ with a starting deviation of d0 =
∑

p∈P ∗ gp − r · t∗.
Once this partial sequence π′ is found it can be appended to π to yield a solution.
Obviously, this solution is not necessarily optimal for the overall problem, since there is
no compelling reason why sequencing the subset of P ∗ planes �rst should result to an
optimal overall sequence. As the dynamic program, however, ensures that all subsets of
planes are considered at every stage, the best determined sequence over all pairs needs
to be optimal.
Now, consider a problem with an even number of planes TE . We pick a random

node N at stage t∗ = TE/2 of the graph with a sequence π of planes P ∗ a deviation
at slot dT E/2 =

∑
p∈P ∗ gp − r · TE/2 and an objective value of Cπ. At the same stage

of the graph we can �nd a corresponding node N ′ with an optimal partial sequence
π′ of planes P \ P ∗ with an objective value of Cπ′ . This sequence has a deviation of
d′

T E/2
=

∑
p∈P\P ∗ gp − r · TE/2. Due to (33) sequence π′ can be reverted to yield

the optimal partial sequence for the corresponding subproblem of sequencing the same
planes with a starting deviation of −d′

T E/2
. We can use this information to determince

the optimal objective value of any solution which starts with a partial sequence of π. In
fact it holds that −d′

T E/2
= dT E/2 as is easily shown by insertion:
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d′T E/2 =
∑

p∈P\P ∗

gp − r · TE/2

=
∑
p∈P

gp −
∑
p∈P ∗

gp − r · TE/2

=
∑
p∈P

gp −
∑
p∈P ∗

gp −
∑

p∈P gp

TE
· TE/2

= −
∑
p∈P ∗

gp +

∑
p∈P gp

2

= −
∑
p∈P ∗

gp + r · TE/2

= −dT E/2

It follows that the inversion of pi′ directly yields the optimal solution to the subproblem
of node N . Due to the symmetry, the inversion of π likewise yields the optimal solution
of the subproblem of N ′. N and N ′ can thus be seen as partner nodes, since their
partial sequences can be combined to yield two solutions of the same objective value.
Since both partial sequences are optimal regarding their corresponding subproblems, the
best objective value of any possible solution which begins with a partial sequence of π
or π′, respectively, is simply determined by Max{Cπ, Cπ′}. Instead of continuing the
generation of nodes, we can abort the procedure at this stage and determine the solution
values by �nding the corresponding partner node to each node N . The optimal solution
for the overall problem is hence retrieved by �nding the combination of partner nodes,
which yields the lowest objective value.
Elaborated search techniques, such as hash tables, allow an inspection of a vast amount

of nodes in short computation times. Over more, if a corresponding partner node has
already been fathomed on the basis of a lower bound and can thus not be found in the
stage, the node on hand can be discarded as well.
If the number of planes is uneven TU , the graph can be constructed until stage 1 +

bTU/2c and the partner nodes are found in stage bTU/2c. With the help of this method
the e�ort for node construction can be considerably reduced which should speed up the
procedure signi�cantly.
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