

Jena Research Papers in
Business and Economics

Scheduling freight trains in
rail-rail transshipment yards

Nils Boysen, Erwin Pesch

11/2008

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224757723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling freight trains in rail-rail transshipment

yards

Nils Boysen

Lehrstuhl für Allgemeine Betriebswirtschaftslehre / Operations Management

Friedrich-Schiller-Universität Jena, Carl-Zeiÿ-Straÿe 3, D-07743 Jena, Germany

nils.boysen@uni-jena.de

Erwin Pesch

Institut für Wirtschaftsinformatik, Universität Siegen, Hölderlinstraÿe 3, D-57068 Siegen, Germany

erwin.pesch@uni-siegen.de

May 22, 2008

Abstract

Transshipment yards, where gantry cranes allow for an e�cient transshipment of contain-
ers between di�erent freight trains, are important entities in modern railway systems and
facilitate the general shift from point-to-point transport to hub-and-spoke railway sys-
tems. Modern rail-rail transshipment yards accelerate container handling, so that multiple
smaller trains with equal destination can be consolidated to a reduced number of trains
without jeopardizing on time deliveries. An important problem continuously arising during
the daily operations of a transshipment yard is the train scheduling problem, which decides
on the succession of trains at the parallel railway tracks. This problem with a special focus
on resolving deadlocks and avoiding multiple crane picks per container move is investi-
gated within the paper on hand. A mathematical program along with a complexity proof
is provided and exact (Dynamic Programming) and heuristic (Beam Search) procedures
are described.

Keywords: Railway Systems; Transshipment Yard; Train Scheduling; Dynamic Program-
ming; Beam Search

1

1 Introduction

With increasing volume of rail cargo an e�cient operation of railway systems obviously
becomes more and more important. In this context, modern rail-rail transshipment yards
are an e�cient alternative to traditional classi�cation (or marshalling) yards, which both
allow for a consolidation of di�erent freight trains with equal destination. This way, hub-
and-spoke systems, like they are traditionally applied for road transport, become available
for railway systems, as well, and replace cost-intensive point-to-point transport of multiple
small freight trains. Whereas traditional classi�cation yards require a time-consuming
reshu�ing of railway cars via a system of track switches, in a modern transshipment yard
container handling is conducted by huge gantry cranes spanning the railway tracks. Figure
1 depicts a schematic representation of a transshipment yard.

Figure 1: Schematic representation of a transshipment yard

A transshipment yard consists of a number G of parallel tracks on which di�erent
freight trains carrying multiple containers are processed. Container transshipment between
freight trains is conducted by huge gantry cranes with a cantilever on both sides, which are
arranged across the tracks. For instance, the largest German transshipment yard in Köln-
Eifeltor consists of 9 parallel tracks and 6 successively arranged gantry cranes. Whereas
parallel railway tracks and cranes are mandatory elements of a transshipment yard, truck
lanes and a storage area are possible additional components:

(a) In a pure rail-rail system, which is exclusively dedicated to container transshipment be-
tween di�erent freight trains, a storage area to intermediately stock containers amend
the railway tracks. The storage area might also contain a sorting system, so that auto-
mated guided vehicles (Bostel and Dejax, 1998) or some rail-mounted vehicles (Alicke,
2002) are applied to pre-position containers. Such a pure rail-rail system labelled
Mega-Hub is, for instance, located in Hannover-Lehrte (Germany) and is described in
detail by Rotter (2004).

2

(b) A transshipment yard without a storage area, which is directly accessible by portal
cranes, primarily serves as an interface between rail and road in a rail-truck intermodal
system. These transhipment yards only consist of additional truck lanes (typically one
lane for parking and another one for driving, see Ballis and Golias, 2002). A storage
yard is often residing only near the yard and, thus, only accessible via additional truck
moves. Consequently, a time-consuming rail-rail transshipment of containers in such
a setting is only exceptionally applied. Such a system can be found, for instance, in
Hamburg-Billwerder (Germany).

(c) Typically, transshipment yards have both a storage area and truck lanes, so that the
yard serves as both a rail-rail transshipment yard and an interface for combined trans-
port (see Ballis and Golias, 2002).

In what follows, we will especially treat yard types (a) and (c) and, thus, concentrate
on rail-rail container transshipment. To allow for an e�cient operation of such complex
systems sophisticated and computerized scheduling procedures seem indispensable. How-
ever, the overall scheduling task seems far too complicated to allow for a simultaneous
solution, so that a hierarchical decomposition of the overall problem is recommendable:

(i) Schedule the service slots of trains.

(ii) Assign each train to a railway track.

(iii) Decide on the containers' positions on trains.

(iv) Assign container moves to portal cranes.

(v) Decide on the sequence of container moves per crane.

The paper on hand exclusively treats problem (i) and provides scheduling procedures
to assign trains to service slots. The problem can be characterized as follows: A given
set I of trains, each of which is either already waiting on holding tracks near the yard or
close to arrival, is to be assigned to di�erent service slots t = 1, . . . , T of G simultaneously
served trains. A transshipment yard is typically operated in distinct so-called pulses (Bostel
and Dejax, 1998) or bundles (Alicke, 2002; Rotter, 2004) of trains, which means that G
trains (one per track) are simultaneously served and jointly leave the system not before
all container moves are processed, which are required for the respective bundle of trains.
Then, another bundle of G trains enters the yard. Thus, for each train it is to be decided
in which of the successive t = 1, . . . , T service slots of size G it is to be served. This
assignment decision faces two important peculiarities:

Revisits: Each train stopping at the transshipment yard carries a given set of containers.
A subset of these containers is already dedicated to the �nal destination of the train and,
thus, remains untouched. The other part of containers is unloaded at the yard to be either
stacked on other trains or to leave the rail system, e.g., by truck. Afterwards, vacant

3

railway cars can be �lled with other containers (for the trains destination) either delivered
from the storage yard or directly by another freight train. Thus, when deciding on the
service slot of a train it is to be ensured that all containers to be loaded on this train have
already been delivered by respective predecessor trains.

The property of trains being inbound and outbound vehicle simultaneously might result in
deadlocks. Such a deadlock eventuates once all G tracks of a service slot are fully occupied
by trains waiting for additional containers loaded on a train, which was not yet processed.
Then, a deadlock can only be resolved by a subset of trains leaving the yard uncompleted,
waiting on holding tracks until the respective train was processed and revisiting the yard
in a later slot. Obviously, revisits delay shipment completion and are to be reduced to a
minimum.

Split moves: Picking and dropping of containers by gantry cranes is precision work and,
thus, very time-consuming (typically only 20-25 moves per crane and hour can be processed,
see Rotter, 2004). If train i, which carries a container dedicated to another train j, is served
in the same slot as train j, then the required container handling can be conducted by a
single crane move directly from train i to j. On the other hand, an assignment of train i to
a prior slot than train j requires that the container is intermediately stocked in the storage
yard. The container movement is interrupted and two separated and time-consuming crane
picks and drops are required, which we label as a split move. Hence, train scheduling aims
at avoiding split moves to accelerate container handling.

The paper on hand provides a train scheduling procedure which covers both pecu-
liarities. For this purpose, the remainder of the paper is structured as follows. Section 2
summarizes existing literature on transshipment yards. Then, Section 3 describes the train
scheduling problem in detail, formalizes the problem as a mathematical program and states
complexity. Section 4 presents exact (Dynamic Programming) and heuristic (myopic start
procedure and Beam Search) solution procedures, which are evaluated in a comprehensive
computational study (Section 5). Finally, Section 6 summarizes the paper and speci�es
future research challenges.

2 Literature review

Although there is a lot of attention paid to railway optimization (see, e.g., Cordeau et al.
1998) and intermodal transportation (see Crainic and Kim, 2007) in general, literature on
rail-rail transshipment yards is scarce. Current research on transshipment in rail systems
mainly focuses on traditional shunting yards. In these conventional yards, scheduling trains
and rearranging freight trains via shunting hills and a system of track switches is covered,
e.g., by Blasum et al. (2000), Dahlhaus et al. (2000), He et al. (2000), Winter and
Zimmermann (2000) and Freling et al. (2005). However, modern rail-rail transshipment
yards, where container transshipment is conducted by gantry cranes without rearranging
the railway cars by themselves (see Section 1), are an emerging technology in rail systems

4

(see the surveys by Bontekoning et al., 2004 as well as Macharis and Bontekoning, 2004)
and promise a more e�cient transshipment.

In-depth descriptions of structural properties and di�erent operational policies em-
ployed in rail-rail transshipment yards are provided by Ballis and Golias (2002) as well as
Rotter (2004). Meyer (1998) and Wiegmans et al. (2006) speci�cally address the design
process of an optimal terminal layout. However, only very few research papers deal with
the scheduling problems perpetually arising during the daily operations of a transship-
ment yards. According to the hierarchical decomposition scheme of the overall scheduling
problem (see Section 1) Bostel and Dejax (1998) as well as Corry and Kozan (2007) treat
problem (iii) and provide scheduling procedures to determine the optimal positions of con-
tainers on inbound and outbound trains so that crane moves at the yard are minimized.
Alicke (2002) provides a scheduling procedure to jointly cover problems (iv) and (v). Based
on constraint programming Alicke assigns container moves to cranes, which are not allowed
to interfere, and decides on the sequence of moves per crane. Related problems also occur
within container terminals (see, e.g., Zhu and Lim, 2006; Moccia et al., 2006; Lim et al.,
2007; Sammarra et al., 2007). Finally, problem (ii), the assignment of trains to tracks, can
be solved as a quadratic assignment problem, which is shown by Alicke and Arnold (1998),
if the schedule of trains (problem (i)) was previously solved.

Up to now, there exists no literature related to problem (i), which is in the focus of
the paper on hand. In what follows a detailed problem statement of how to schedule the
arrival and processing of trains at the available service slots is provided.

3 Problem statement

3.1 Mathematical program

The basic decision of the transshipment yard scheduling problem (TYSP) is to assign each
train i of a given train set I to a service slot t = 1, . . . , T . To each slot t at most G trains can
be assigned, because G is the number of parallel railway tracks of the transshipment yard.
Note that an assignment of trains to dedicated tracks is not part of TYSP (see Section 2),
so that the assignment decision can be recorded by binary variables xit, which receives the
value one, whenever train i is assigned to slot t (0, otherwise). The overall number T of

slots required to process the given set I of trains amounts to: T = d |I|
G
e. However to ease

the description, w.l.o.g. we assume that: |I| = G · T , which can be easily ensured for any
problem instance by inserting empty trains carrying no containers. Furthermore we assume
that no assignment restrictions between trains and slots exist. Required alterations, when
some trains arrive only after the �rst slots have already passed or need to be assigned to
earlier slots to meet timetable requirements, are discussed in Section 7.

This assignment decision aims at realizing two (partially con�icting) objectives: The
number of revisits of trains (objective 1) and the number of split moves of containers
(objective 2) are to be minimized. To operationalize the simultaneous optimization of both
objectives we assume that a linear combinations of the single objectives is to be minimized

5

I set of trains (indices i and j)
Li set trains carrying containers dedicated to train i
T number of time slots for (un-)loading trains (index t)
G number of parallel tracks within transshipment yard
Aij number of containers train i receives from train j
M big integer (e.g., M = T − 1)
α1, α2 given weights for objectives 1 and 2 with α1, α2 ≥ 0
xit binary variable: 1, if train i is assigned to slot t; 0, oth-

erwise
yi binary variable: 1, if train i has to revisit the yard; 0,

otherwise
zij binary variable: 1, if trains i and j are served during

di�erent slots; 0, otherwise

Table 1: Notation

and weights α1 and α2 can be assigned to each objective. For instance, whenever a revisit
of a train delays an overall transshipment schedule more than a few additional split moves,
it might be a reasonable choice to bring both objectives in lexicographic order by choosing
the weights as follows: α1 =

∑
i∈I

∑
j∈Li

Aij and α2 = 1, where Li is the set of trains a
train i receives a number Aij of containers from. Another possibility is to derive a set of
Pareto optimal solutions using representative data. Based on the obtained Pareto frontier
and the experience of yard managers weights can be chosen in the most suitable way. In
the following, we presuppose that suited weights already exist.

With the help of the notation summarized in Table 1 TYSP consists of objective func-
tion (1) and constraints (2) to (6):

(TYSP) Minimize C(X, Y, Z) = α1

∑
i∈I

yi + α2

∑
i∈I

∑
j∈Li

zij · Aij (1)

subject to

T∑
t=1

xit = 1 ∀ i ∈ I (2)∑
i∈I

xit ≤ G ∀ t = 1, . . . , T (3)

T∑
t=1

xit · t + yi ·M ≥
T∑

t=1

xjt · t ∀ i ∈ I; j ∈ Li (4)∣∣∣∣∣
T∑

t=1

xit · t−
T∑

t=1

xjt · t

∣∣∣∣∣ ≤ zij ·M ∀ i ∈ I; j ∈ Li (5)

xit; yi; zij ∈ {0, 1} ∀ i ∈ I; t = 1, . . . , T ; j ∈ Li (6)

6

Figure 2: Example data

Objective function (1) minimizes a linear combination of objectives 1 (number of re-
visits) and 2 (number of split moves) weighted by α1 and α2, respectively. The number of
revisits is calculated by summing binary variables yi, which record whether train i has to
revisit (yi = 1) or not (yi = 0). The calculation of split moves relies on the consideration,
that once a train j carries a number Aij of containers dedicated to train i all of these
Aij containers must be picked and dropped twice and, thus, require split moves, whenever
trains i and j are not assigned to the same slot (zij = 1). Equalities (2) ensure that each
train is assigned to exactly one slot, whereas constraints (3) force the number of trains per
slot to not exceed the given number G of tracks. Constraints (4) force binary variable yi

to receive the value one, whenever a train j, which carries containers dedicated to train i,
is assigned to a later slot than train i. In a similar fashion, constraints (5) ensure, that
binary variables zij receive the value one, whenever trains i and j are assigned to di�erent
slots (0, otherwise). Big integer M , applied in both constraints (4) and (5), can be set to
T −1. Note that constraints (5) can be easily linearized, however, for means of conciseness
we abstain from a detailed description.

Example: The input data for a TYSP-instance can be represented by a digraph G =
(I, E,A). A vertex is introduced for each train i ∈ I. An arc from vertex (train) j to i
indicates that train j carries containers dedicated to train i, so that j belongs to the set Li

of predecessor trains of train i. Finally, the number Aij of containers to be moved from j
to i are used as arc weights. Figure 2 displays such an input graph for an example with 4
trains, which are to be assigned to T = 2 slots at a transshipment yard with G = 2 tracks.

Consider a solution where trains 2 and 3 are assigned to the �rst and trains 1 and 4 to
the second slot. Then, train 3 has to revisit because the 3 and 5 containers to be received
from trains 1 and 4, respectively, have not yet arrived. Moreover, 15 split moves have to
be processed because out of overall 16 container moves required only the single container
transshipped from train 4 to 1 can be directly processed. Consequently, the overall solution
value amounts to C = α1 + 15α2.

7

3.2 Complexity

In the following we will proof NP-completeness for TY SP by a reduction from Acyclic
Partition which is well known to be NP-complete in the strong sense (see Garey and John-
son, 1979) and can be summarized as follows:

Acylic Partition: An instance of the Acyclic Partition problem consists of a digraph
Γ = (V, A) with vertex set V and arc set A. Additionally given are two positive integers
B and K as well as weights w(v) ∈ N for each vertex v ∈ V . Finally, to each arc a ∈ A
costs c(a) ∈ N are assigned.
Is there a partition of V into disjoint sets V1, V2, ..., Vm such that the derived directed graph
Γ′ = (V ′, A′) is acyclic, where a vertex is inserted for any subset of nodes: V ′ = V1, ..., Vm,
and an arc (Vi, Vj) whenever there exists an arc (vi, vj) ∈ A for some pair of vertices vi ∈ Vi

and vj ∈ Vj? Furthermore it must hold that (i) the sum of vertex weights in each subset
Vi does not exceed B and (ii) the sum of the costs of all those arcs having their de�ning
vertices in di�erent sets does not exceed K.

Comment: The problem remains NP-complete even if all vertex weights and all arc weights
of Γ are equal to 1.

Proof: TYSP is obviously in NP. Furthermore, we can polynomially transform Acyclic
Partition to TYSP, which is shown in the following. For a given instance I(AP) of the
Acyclic Partition problem with w(v) = 1∀ v ∈ V we construct an instance I(T) of TYSP:
De�ne G := B; α1 := K + 1; α2 := 1 and T := m. The set of trains I corresponds to the
vertex set V of graph Γ and for each arc a ∈ A connecting vertices vi and vj the number Aij

of containers (delivered from train i to train j) corresponds to the arc cost, i.e., Aij := c(a).
We will show that I(AP) has a solution if and only if there exists a train schedule for I(T)
with an objective value not exceeding K.

If I(AP) has a solution, vertex set V can be partitioned into disjoint subsets V ′ =
V1, ..., Vm such that | Vi |≤ B = G ∀ i = 1, ...,m and Γ′ = (V ′, A′) is acyclic. Γ′ may be
topologically ordered where all trains represented by vertices in Vi are assigned to time slot
t = i and any arc connecting Vj to Vi in Γ′ implies i > j. Thus, there are no revisits and
yi = 0∀ i ∈ I. Let (Vi, Vj) be an arc in Γ′ then zij = 1∀ (vi, vj) ∈ A. Hence the objective
function value of I(T) is 0 +

∑
i

∑
j zij · Aij =

∑
{a∈A|a=(vi,vj),vi∈Vi,vj∈Vj :i6=j} c(a) ≤ K.

Consider a train schedule for I(T) with objective of at most K. As an immediate con-
sequence all variables yi = 0 and

∑
i∈I

∑
j∈Li

zij ·Aij ≤ K. Let V1, ..., Vm be the number of
vertices corresponding to trains assigned to time slots t = 1, ..., T = m. Obviously every
Vi contains at most B elements and the total number of containers carried between trains
assigned to di�erent time slots equals the total weight of arcs connecting vertices from
di�erent sets Vi which is at most K. As there are no revisits I(AP) has a solution.

Note that a special case of TYSP for an acyclic directed input graph can be solved in
polynomial time. Under these prerequisites, the problem reduces to a topological ordering

8

of vertices, which is solvable in O(|I|2) time (see Lawler, 1976, p. 30). The slots can simply
be �lled in chronological order according to the obtained numbering of vertices.

4 Algorithms

In this section three solution procedures for TYSP are presented: an exact Dynamic Pro-
gramming approach (Section 4.1), a myopic start procedure (Section 4.2) and a Beam
Search procedure.

4.1 An exact Dynamic Programming approach

The Dynamic Programming (DP) approach is based on an acyclic digraph H = (V, E, r)
with a vertex set V divided into T +1 stages, a set E of arcs connecting vertices of adjacent
stages and an arc weighting function r : E → R (see Boysen et al., 2007, for a related
approach to sequencing mixed-model assembly lines). Each service slot t is represented by
a stage which contains a subset Vt ⊂ V of vertices representing states of the partial train
schedule up to slot t. The �rst stage, t = 0, represents the empty set. Each vertex j ∈ Vt

identi�es a state (t, j) de�ned by a set Itj, which contains all freight trains i ∈ I already
scheduled up to service slot t. It is su�cient to store the scheduled trains instead of their
exact partial slot assignment, because the contribution to the overall objective value of a
train set actually served at service slot t + 1 only depends on the trains scheduled before
(stored in Itj) irrespective of their exact order.

The following conditions de�ne all feasible states to be represented as vertices of the
graph:

|Itj| = t ·G ∀ t = 0, . . . , T ; j ∈ Vt (7)

Itj ⊆ I ∀ t = 0, . . . , T ; j ∈ Vt (8)

Obviously, the vertex set V0 contains only a single vertex (initial state (0, 1)) corresponding
to the train set I01 = ∅. Similarly, vertex set VT contains a single vertx (�nal state (T, 1))
with IT1 = I. The remaining stages have a variable number of vertices depending on the
number of di�erent train sets Itj possible.

Two vertices (t, j) and (t + 1, k) of two consecutive stages t and t + 1 are connected by
an arc if the associated train sets Itj and It+1k di�er only in G elements, i.e., exactly G
freight trains are additionally scheduled in position t + 1. This is true if Itj ⊂ It+1k holds,
because both states are feasible according to (7) and (8). By Itjk we denote the set of
trains associated with the arc between a vertex pair (t, j) and (t + 1, k). The overall arc
set is de�ned as follows:

E = {((t, j), (t + 1, k)) | t = 0, . . . , T − 1; j ∈ Vt; k ∈ Vt+1 : Itj ⊂ It+1k} (9)

Finally, arc weights r((t,j),(t+1,k)) assign the contribution to the overall objective value to
each arc (and the scheduling decision represented by the arc). This weight is a linear

9

Figure 3: Example graph for Dynamic Programming

combination of minimizing the number of revisits (�rst term) and of minimizing the number
of split moves (second term) and is calculated as follows:

r((t,j),(t+1,k)) = α1 ·
∑

i∈Itjk

min {1; |Li \ It+1k|}+ α2 ·
∑

i∈Itjk

∑
τ∈{Li\Itjk}

Aiτ (10)

Any train i ∈ Itjk processed during slots t + 1 (and, thus, associated with the respective
arc) has to revisit, when any of its predecessors Li has not been assigned up to actual slot
t + 1 (and is, thus, not in set It+1k), so that the relative complement of It+1k in Li is not
the empty set. The minimum function ensures that only a single revisit is required even if
more than one predecessor train has not yet been scheduled. Furthermore, all containers
Aiτ dedicated to a actually scheduled train i ∈ Itjk to be delivered by predecessor train
τ ∈ Li are to be processed by a split move, if these two trains are not jointly served in the
actual slot t + 1.

With this graph on hand, the optimal solution of our train scheduling problem reduces
to �nding the shortest path from the unique source vertex at level 0 to the unique sink
vertex at level T , where the length of the path is given by the sum of weights of the
arcs contained. The minimum objective value corresponds to the length of the shortest
path. The G freight trains to be assigned to service slot t+1 equal those contained in train
set Itjk associated with any arc ((t, j), (t+1, k)) for t = 0, ..., T−1 on the shortest path SP .

Example (cont.): The resulting DP graph for our example is depicted in Figure 3. The
optimal solution is to assign trains 2 and 4 to the �rst slot and trains 1 and 3 to the second.
Note that in this example the optimal solution does not depend on the choice of objective
weights α1 and α2. The resulting objective value is C = α1 + 7α2.

Instead of constructing the complete graph before computing the shortest path, the more
e�cient DP approach consists of determining the shortest path from the initial state to
each vertex stage-by-stage (t = 0, ..., T − 1). In order to do so, only two stages of the
graph have to be stored simultaneously, because the shortest path to a vertex (t + 1, j) in

10

stage t + 1 is composed of a shortest path to a vertex (t, i) in stage t (already determined
and stored) and the connecting arc ((t, i), (t + 1, j)). Among all such paths to (t + 1, j)
one with minimal sum of arc weights (length of path to (t, i) plus r((t,i),(t+1,j))) is to be
selected. The length-minimizing vertex (t, i) is stored as the predecessor in the shortest
path to (t+1, j) together with the length of this path. After reaching the �nal state (T, 1)
in stage T , the optimal path can be retrieved in backward direction stage-by-stage using
the stored predecessor vertices.

4.2 A myopic start procedure

As the problem was shown to be NP-complete in the strong sense, heuristic solution ap-
proaches are required to solve problem instances of real-world size. First, a simple myopic
start procedure (MSP) is presented, which simply �lls available time slots t = 1, . . . , T
and g = 1, . . . , G tracks in increasing order until all trains are scheduled. The actual choice
at a decision point is the train i ∈ POS (where POS is the set of trains not yet scheduled),
which increases the objective value least. A formal description of MSP is as follows:

(0) Initialize the following data: POS := I; t := 1.

(1) Initialize train set INt of trains already scheduled within time slot t: INt := ∅ and
track counter: g := 1.

(2) Determine the actual train sel to be assigned at the actual decision point:

sel := argmini∈POS

α1 ·min {1; |Li \ {I \ POS}|}+ α2 ·
∑

τ∈{Li\INt}

Aiτ

 (11)

(3) Update the trains sets: INt := INt ∪ {sel} and POS := POS \ {sel}.

(4) Increase track counter: g := g + 1 and decide on the advancement of the procedure:
If all tracks of the actual time slot are �lled with trains (g > G), then increase the time
slot: t := t+1 and proceed with step (1) (or goto �nal step (5) if all time slots are �lled
with trains (t > T)), else goto step (2).

(5) Determine the objective value C of the solution stored in sets INt.

Example (cont.): Table 2 displays the successive train assignment of MSP for our example,
resulting in a train schedule where trains 1 and 2 are served in time slot 1 and trains 3
and 4 in slot 2. Note that the minimum train number is applied to break ties. In this
example, the solution process is independent of the objective weights α1 and α2 and the
overall objective value amounts to C = α1 + 10α2.

11

POS(t = 1; g = 1) POS(t = 1; g = 2) POS(t = 2; g = 1) POS(t = 2; g = 2)
1 → α1 + α2 1 → α1 + α2 3 → α1 + 5α2 3 → 0
2 → 0 3 → α1 + 8α2 4 → α1 + α2

3 → α1 + 8α2 4 → α1 + α2

4 → α1 + 7α2

Table 2: Solution process of MSP

Figure 4: Schematic representation of Beam Search

4.3 A heuristic Beam Search approach

4.3.1 General description

Beam Search is a truncated breadth-�rst search heuristic and was �rst applied to speech
recognition systems by Lowerre (1976). Ow and Morton (1988) were the �rst to system-
atically study the performance of Beam Search compared to other well-known heuristics
for two scheduling problems. Since then, Beam Search was applied within multiple �elds
of application and many extensions have been developed, e.g., stochastic vertex choice
(Wang and Lim, 2007) or hybridization with other meta-heuristics (Blum, 2005), so that
Beam Search turns out to be a powerful meta-heuristic applicable to many real-world op-
timization problems. A review on these developments is provided by Sabuncuoglu et al.
(2008).

Like other breadth-�rst search procedures Beam Search bases on a tree representation
of the solution process. However, unlike a breadth-�rst version of Branch&Bound, Beam
Search also excludes vertices, which might contain optimal solutions, and restricts the
number of vertices per stage to be further branched to a promising subset. This subset of
nodes is determined by heuristic choice in a �ltering process. A schematic representation
of Beam Search is depicted in Figure 4.

Starting with the root vertex of stage 0, all vertices (set V 1) of stage 1 are constructed

12

and form the set B1 of branched vertices. Then, the �ltering process of Beam Search
starts to identify promising vertices of stage 1. Such a measure can, for instance, be
obtained by a simple priority value, a lower bound procedure or even an upper bound,
solutions constructed by completing partial solutions, e.g., with a simple myopic priority
rule based heuristic (see Ow and Morton, 1988). Moreover, a multi-stage �ltering procedure
can be applied, where �ltering procedures are ordered from rough to detailed �ltering (see
Sabuncuoglu et al., 2008). By applying one of these alternatives a priority value is assigned
to each vertex within set B1. With regard to this priority value the �rst BW vertices are
chosen to form the set E1 of size |E1| = BW , where BW is a control parameter called beam
width. Only the selected vertices contained in set E1 are expended and branched to build
the set B2 of branched vertices in stage 2, which is only a subset of all possible vertices V 2.
These steps are repeated until the �nal stage T is reached, where the best solution out of
the set BT of constructed vertices is returned as the result of the Beam Search procedure.

4.3.2 A Beam Search procedure for TYSP

To apply the general procedure of Beam Search in a speci�c domain the following two
components must be speci�ed with regard to the respective problem: (i) graph structure
and (ii) �ltering. In the following, we describe these speci�cations for TYSP:

Graph structure: As graph structure required for a Beam Search application to TYSP,
the acyclic digraph H = (V, E, r) already speci�ed for the Dynamic Programming proce-
dure (Section 4.1) can directly be utilized.

Filtering: To select a number of BW (beam width) vertices out of the set Bt into vertex
set Et per stage t, we apply the most simple �ltering process, which is to simply calculate
the actual objective value of the respective partial solution. This value amounts to the
sum of arc weights along the shortest path leading to the actual vertex. Note that Beam
Search does not construct the complete graph as speci�ed in Section 4.1 but only a sub-
graph, so that merely the shortest path within the resulting subgraph is employed. We
abstain from more sophisticated �ltering procedures as these procedures require additional
computational e�ort and our computational study of Section 5 reveals a promising solution
quality of basic Beam Search.

With these domain speci�c choices on hand, our Beam Search approach stage-wise
identi�es a subset of promising vertices. Finally, when the last stage is reached the best
solution value is returned as the solution of the Beam Search approach.

5 Computational study

Thus far, there is no established test-bed available for the train scheduling problem treated
in this paper. Therefore, we �rst elaborate on the instances that are used in our computa-
tional study. Then, numerical results on the performance of the proposed algorithms are
discussed.

13

5.1 Instance generation

To derive test instances the input parameters listed in Table 3 are used to produce the sets
Li of trains carrying containers dedicated to train i and the number Aij of containers to
be moved between trains i and j de�ning a TYSP instance. We di�erentiate between case
A (6-15 trains on 3 tracks) and case B instances (24-36 trains on 4 tracks), where the size
of case A instances is reduced so that all instances can be solved to optimality.

symbol description case A case B
|I| number of trains 6, 9, 12, 15 24, 28, 32, 36
G number of tracks 3 4
Prob probability of train j carrying

containers for trains i
0.2, 0.4, 0.6, 0.8

Table 3: Parameters for instance generation

In both test cases, these parameters are combined in a full-factorial design and in each
parameter constellation instance generation is repeated 20 times, so that 2 · 4 · 4 · 20 =
640 di�erent instances were obtained. On the basis of a given set of parameters each
single instance is generated as follows: For each single possible relationship between trains
i ∈ I and j ∈ I according to parameter Prob it is randomly drawn whether train j
carries containers dedicated to train i or not. If so, the number Aij of containers to be
transshipped is randomly drawn (with equal distribution) out of the interval [1, 10]. Finally,
both objective weights are set to one: α1 = α2 = 1.

5.2 Computational results

All methods have been implemented in C# (Visual Studio 2003) and run on a Pentium
IV, 1800 MHz PC, with 512 MB of memory. First, the performance of Beam Search
(BS) in dependency of control parameter BW is evaluated. Figure 5 displays solution
performance and solution time, where solution performance is represented by the relative
deviation from optimum averaged over all case A instances (labeled avg gap and measured

by C(BS)−C(DP)
C(DP)

· 100, where C(BS) and C(DP) are the objective values of heuristic Beam

Search and exact Dynamic Programming, respectively). Solution time is measured by the
average CPU-seconds per instance (labeled avg cpu).

Figure 5 depicts a linear increase of solution time with increasing beam width BW . This
result is not astounding as the number of vertices to be inspected in the graph increases
linear with BW . On the other hand, solution quality increases (indicated by an decrease
of avg gap) subproportionally with increasing BW . This result is also plausible, because
the probability of vertices being part of a good overall solution more and more decreases
the farther a vertex's shortest path deviates from the best value of the respective stage.

In a second experiment, performance of all procedures is compared for case A instances.
All of these instances can be solved to optimality with the Dynamic Programming (DP)
approach, so that the solution performance of our myopic start procedure (MSP) and Beam

14

Figure 5: Solution time and solution quality of Beam Search with varying beam width BW

Search (BS) can be compared in relation to optimal solutions. BS is executed with a given
control parameter of BW = 30. Table 4 lists the results of this comparison. In addition to
the aforementioned quality measures, max gap is reported, which denotes the maximum
relative deviation from the optimal solution over all instances per parameter constellation.

With regard to DP it can be stated, that solution time increases exponentially, so that
no instance with |I| = 18 trains could be solved to optimality within a given time frame of
300 CPU-seconds. On the other hand, MSP requires negligible solution time of less than 0.1
CPU-seconds per instance, but produces a considerable gap compared to optimal solutions,
which is the broader the less containers are to be moved between trains (indicated by lower
Prob). This coherency results from the fact that any misled myopic choice preponderates
if the overall objective value is on a lower level. The same �nding also holds for BS, but
with a much smaller deviation from optimum. BS results in a total avg gap of merely 0.7%
with a average solution time of only 0.4 CPU-seconds, so that near optimal solutions can
be obtained in a very short time frame.

In a last experiment, the heuristic procedures are compared for case B instances, which
cannot be solved to optimality. Instead, we compare BS, which is executed with a control
parameter BW = 5, and MSP with a �rst-come-�rst-serve policy (FCFS), which is often
applied in real-world transshipment yards to solve the train scheduling problem. The results
of FCFS are emulated for our test instances by assigning trains to tracks and slots according
to increasing train number. Consequently, average and maximum gaps reported in Table 5
rely on deviations per instance calculated as follows: C(FCFS)−C(x)

C(FCFS)
· 100∀x ∈ {MSP,BS}.

With regard to solution quality BS clearly outperforms the other procedures, MSP
and FCFS. BS increases the FCFS solution by 41.5% on average and results in a superior
objective value for each single instance. However, solution time increases considerably
to 376.6 CPU-seconds on average for |I| = 36 trains, so that MSP might be a reasonable
choice for larger instances. Here solution time exceeds 0.1 CPU-seconds in neither instance
and FCFS-solution are still improved by 14.9% on average up to a maximum of 60%.

15

DP MSP BS
|I| Prob avg cpu avg gap max gap avg gap max gap avg cpu
6 0.2 <0.01 62.5 133.3 0.0 0.0 <0.1

0.4 <0.01 46.8 93.3 0.0 0.0 <0.1
0.6 <0.01 31.9 85.7 0.0 0.0 <0.1
0.8 <0.01 22.4 45.3 0.0 0.0 <0.1

9 0.2 0.03 63.9 100.0 0.0 0.0 <0.1
0.4 0.06 43.6 83.7 0.1 2.3 <0.1
0.6 0.07 31.9 57.6 0.4 3.4 <0.1
0.8 0.08 21.2 39.1 0.0 0.7 <0.1

12 0.2 1.38 71.3 100.0 0.8 16.7 0.3
0.4 2.20 49.5 80.2 2.2 5.6 0.3
0.6 2.30 26.8 40.0 0.6 1.4 0.3
0.8 2.41 18.6 26.4 0.4 2.3 0.3

15 0.2 61.99 72.7 96.7 2.7 17.6 1.1
0.4 73.41 44.4 69.1 2.4 8.9 1.2
0.6 73.54 27.7 35.5 1.4 3.3 1.2
0.8 75.54 18.2 25.9 0.9 2.8 1.7
total 18.31 39.8 133.3 0.7 17.6 0.4

Table 4: Performance of procedures for case A instances

MSP BS
|I| Prob avg gap max gap avg gap max gap avg cpu
24 0.2 36.9 53.2 79.8 91.7 15.0

0.4 14.6 32.3 47.4 72.5 15.0
0.6 10.3 17.0 29.5 34.8 15.4
0.8 5.2 8.8 18,2 21.7 16.0

28 0.2 35.1 60.0 80.3 92.9 49.4
0.4 15.2 28.9 45.5 53.5 50.1
0.6 8.4 12.4 28.0 31.2 51.0
0.8 5.0 7.8 18.2 20.7 51.4

32 0.2 30.1 46.6 78.2 91.4 140.9
0.4 13.9 22.2 41.9 51.2 142.1
0.6 7.2 11.4 25.1 29.1 146.7
0.8 3.9 8.4 16.6 19.5 145.8

36 0.2 30.6 43.1 74.6 87.2 378.1
0.4 11.9 21.1 39.9 48.6 372.4
0.6 7.2 10.5 24.9 28.2 377.7
0.8 3.5 6.0 16.1 19.0 378.1
total 14.9 60.0 41.5 92.9 146.6

Table 5: Performance of procedures for case B instances

16

6 Conclusions

This paper investigates a novel train scheduling problem, which arises during container
transshipment at modern rail-rail transshipment yards. Trains need to be uni�ed to jointly
processed bundles of G trains (each track receives a single train), which are to be assigned
to service slots. This assignment decision aims at avoiding revisits of trains, which are
inevitable whenever a train is processed in a slot prior to the arrival of all containers
dedicated to this train, and the minimization of split moves, which require multiple time-
consuming crane picks and drops for a single container move between two trains. Di�erent
exact (Dynamic Programming) and heuristic (myopic start procedure and Beam Search)
solution procedures are presented. The computational tests indicate the appropriateness
of the developed procedures to considerably improve a �rst-come-�rst-serve policy, which
is a traditional choice in real-world transshipment yards. However, there remains some
future research to be done.

Typically, trains are bound to time tables, which restrict the slots to which a train is
assignable. A train must not be assigned to a slot ahead of its arrival. Just as well, trains
are to be supplied with all its required containers, so that an on time departure according
to the time table of the superordinate railway system is assured. In this case, TYSP has
to consider time table requirements by incorporating earliest ei and latest li service slots
per train i:

ei ≤
T∑

t=1

xit · t ≤ li ∀ i ∈ I (12)

Note that within TYSP the duration of slots is not explicitly calculated, so that histor-
ical data is to be applied to estimate a representative time span. These earliest and latest
processing times can be easily incorporated into the graph structure, DP and Beam Search
rely on. As an arc captures the processing of a dedicated bundle of trains in a speci�c
service slot, those arcs which lead to untimely train assignments just need to be excluded
from the graph. Consequently, the graph structure is reduced with the eligible side e�ect
of accelerating the solution process.

Additionally, time tables might also be bound to changes like canceled or additional
trains. In this case, TYSP becomes an online problem, where the set of trains to be sched-
uled continuously changes during processing a once derived plan. If an already scheduled
train fails to appear or additional unplanned trains arrive these changes need to be consid-
ered appropriately in a rolling planning horizon. However, in the real-world TYSP is often
indeed a static problem. Because of their lower speed, in many European countries, freight
trains are only allowed to travel overnight. As a result of this policy, commercial trains,
typically, arrive at a transshipment yard in the early morning, are served during the day
and leave the yard for their �nal destinations the other night (see Ballis and Golias, 2002).
Thus, TYSP predominantly faces a static set of trains, which is to be processed during the
day.

Finally, an appropriate integration of related scheduling problems (see Section 1), i.e.,

17

track assignment and crane scheduling, which are highly interdependent with train schedul-
ing, in a hierarchical planning approach is another challenging task for future research.

References

[1] Alicke, K., 2002. Modeling and optimization of the intermodal terminal Mega Hub,
OR Spectrum 24, 1�17.

[2] Alicke, K., Arnold, D., 1998. Optimierung von mehrstu�gen Umschlagsystemen,
Fördern und Heben 8, 769�772.

[3] Ballis, A., Golias, J., 2002. Comparative evaluation of existing and innovative rail-road
freight transport terminals, Transportation Research Part A 26, 593�611.

[4] Blasum, U., Bussieck, M.R., Hochstättler, W., Moll, C., Scheel, H.-H., Winter, T.,
2000. Scheduling trams in the morning, Mathematical Methods of Operations Research
49, 137�148.

[5] Blum, C., 2005. Beam-ACO � Hybridizing ant colony optimization with beam serach:
An application to open shop scheduling, Computers & Operations Research 32, 1565�
1591.

[6] Bontekoning, Y.M., Macharis, C, Trip, J.J., 2004. Is a new applied transportation
research �ied emerging? A review of intermodal rail-truck freight transport literature,
Transportation Research Part A 38, 1�24.

[7] Bostel, N., Dejax, P., 1998. Models and algorithms for container allocation problems
on trains in a rapid transshipment shunting yard, Transportation Science 32, 370�379.

[8] Boysen, N., Fliedner, M., Scholl, A., 2007. Sequencing mixed-model assembly lines to
minimize part inventory cost, OR Spectrum (to appear).

[9] Cordeau, J.-F., Toth, P., Vigo, D., 1998. A survey of optimization models for train
routing and scheduling, Transportation Science 32, 380�404.

[10] Corry, P., Kozan, E., 2007. Optimised loading patterns for intermodal trains, OR
Spectrum (to appear).

[11] Crainic, T.G., Kim, K.H., 2007. Intermodal transport, In: Barnhart, C., Laporte, G.
(eds.) Transportaion, Handbooks in Operations Research and Management Science 14,
467�538.

[12] Dahlhaus, E., Horak, P., Miller, M., Ryan, J.F., 2000. The train marshalling problem,
Discrete Applied Mathematics 103, 41�54.

18

[13] Freling, R., Lentink, R.M., Kroon, L.G., Huisman, D., 2005. Shunting of passenger
train units in a railway station, Transportation Science 39, 261�272.

[14] Garey, M.R., Johnson, D.S., 1979. Computers and intractability: A guide to the
theory of NP-completeness, Freeman, New York.

[15] He, S., Song, R., Chaudhry, S.S., 2000. Fuzzy dispatching model and genetic algo-
rithms for railyards operations, European Journal of Operational Research 124, 307�331.

[16] Lawler, E., 1976. Combinatorial optimization: Networks and matroids, New York.

[17] Lim, A., Rodrigues, B., Xu, Z., 2007. A m-parallel crane scheduling problem with a
non-crossing constraint, Naval Research Logistics 54, 115�235.

[18] Lowerre, B.T., 1976. The HARPY speech recognition system, Ph.D. thesis, Carnegie-
Mellon University, U.S.A., April.

[19] Macharis, C., Bontekoning, Y.M., 2004. Opportunities for OR in intermodal freight
transport research: A review, European Journal of Operational Research 153, 400�416.

[20] Meyer, P., 1998. Entwicklung eines Simulationsprogramms für Umschlagterminals des
Kombinierten Verkehrs, Ph.D. thesis, Universität Hannover.

[21] Moccia, L., Cordeau, J.F., Gaudioso, M., Laporte, G., 2006. A branch-and-cut al-
gorithm for the quay crane scheduling problem in a container terminal, Naval Research
Logistics 53, 45�59.

[22] Ow, P.S., Morton, T.E., 1988. Filtered beam search in scheduling, International Jour-
nal of Production Research 26, 297�307.

[23] Rotter, H., 2004. New operating concepts for intermodal transport: The Mega Hub
in Hanover/Lehrte in Germany, Transportation Planning and Technology 27, 347�365.

[24] Sabuncuoglu, I., Gocgun, Y., Erel, E., 2008. Backtracking and exchange of infor-
mation: Methods to enhance a beam search algorithm for assembly line scheduling,
European Journal of Operational Research 186, 915�930.

[25] Sammarra, M., Cordeau, J.F., Laporte, G., Monaco, M.F., 2007. A tabu search
heuristic for the quay crane scheduling problem, Journal of Scheduling 10, 327�336.

[26] Wang, F., Lim, A., 2007. A stochastic beam search for the berth allocation problem,
Decision Support Systems 42, 2186�2196.

[27] Wiegmans, B.W., Stekelenburg, D.T., Versteegt, C., Bontekoning, Y.M., 2006. Mod-
eling rail-rail exchange operations: An analysis of conventional and new-generation ter-
minals, Transportation Journal 2006(3), 5�20.

19

[28] Winter, T., Zimmermann, U.T., 2000. Real-time dispatch of trams in storage yards,
Annals of Operations Research 96, 287�315.

[29] Zhu, Y., Lim, A., 2006. Crane scheduling with non-crossing constraints, Journal of
Operational Research Society 57, 1472�1481.

20

	ADP50.tmp
	Nils Boysen, Erwin Pesch

