
Numerical methods for improved signal to noise ratios in

spatio-temporal biomedical data

Dissertation

Zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt der Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von Dipl.-Ing. Dania Di Pietro Paolo

geboren am 21. August 1978 in Teramo

Tag der Einreichung: 20. Oktober 2009

Tag der wissenschaftlichen Aussprache: 05. Mai 2010

Gutachter: 1. Prof. Dr.-Ing. Habil. Jens Haueisen

2. PD Dr. rer. medic. Peter van Leeuwen

3. Dir. u. Prof. Dr. Lutz Trahms

urn:nbn:de:gbv:ilm1-2010000179



To the memory of one of my best friends: Tony

ii



Contents

Abstract ix

Zusammenfassung xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to denoising techniques . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Materials and Methods 13

2.1 Basis of Magnetocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Physiological basis of MCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Technical basis for MCG detection . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 SQUID sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Magnetometer and Gradiometer . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Cryostat-Dewars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Magnetically Shielding Room . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 MCG System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Ergometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Acquisition Paradigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Rest Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 Stress Magnetocardiographic Data . . . . . . . . . . . . . . . . . . . . . 25



Numerical methods for improved SNRs in spatio-temporal biomedical data

2.7 Averaging procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Blind Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.2 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8.3 Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . 40

2.8.4 Overfitting: Bumbs and spikes . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.5 Singular Value Decomposition vs Independent Component Analysis . . 48

2.8.6 Finding the cardiac signals . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.7 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8.8 ICs validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Results 55

3.1 SNR improvement in averaged data using categorized data analysis . . . . . . . 55

3.1.1 Theoretical explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Noise Reduction using Blind Source Separation . . . . . . . . . . . . . . . . . . 61

3.2.1 Choosing the optimal BSS algorithm . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Identification Phase-Finding the cardiac components . . . . . . . . . . . 67

3.2.3 Validation Phase-Cleaned data . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Discussion 93

5 Conclusions 101

Acknowledgments 127

iv



Abbreviations

ABP auditory brain stem

ABR auditory brain stem responses

AC alternate current

BSE blind source extraction

BSPM body surface potential map

BSS blind source separation

CCA categorized cluster analysis

CHD coronary heart disease

CpT computation time

CRM cardiac rhythm management

CT correlation threshold

EA ensemble averaging

ECG electrocardiography / electrocardiogram

EEG electroencephalography

EI electric interference

EVD eigen value decomposition

fECG fetal electrocardiography



Numerical methods for improved SNRs in spatio-temporal biomedical data vi

fICA fast independent component analysis

fMCG fetal magnetocardiography

FT flux transformator

HCA hierarchical cluster analysis

HOS high order statistics

HR high resolution

HRECG high resolution ECG

HRV heart rate variability

ICA independent component analysis

ICD implanted cardiac defibrillator

JADE joint approximation diagonalization

JJ josephson junctions

KT kurtosis threshold

LVEF left ventricular ejection fraction

MCG magnetocardiography / magnetocardiogram

MEG magnetoencephalography

MF magnetic field

MI magnetic interference

MSR magnetic shielded room

NPA negative predictive accuracy

NS non stationarity

PCA principal component analysis

PDF probability density function



Abbreviations vii

PL power-line

PPA positive predictive accuracy

PPU patient position unit

PSMCG pharmacological stress magnetocardiography

RMS root mean square

SD standard deviation

SHIBBS shifted block blind separation

SMCG stress magnetocardiography

SNR signal to noise ratio

SOBI second-order blind identification

SOS second order statistics

SQUID super-conducting quantum interference device

SVD singular value decomposition

TDSEP temporal decorrelation source separation

VT ventricular tachycardia

WHO world health organization

WPW wolf parkinson white





Abstract

Magnetocardiography (MCG) is a non-invasive and side-effect-free cardiac diagnostic technique

allowing body-surface recording of the magnetic fields generated by the electrical activity of

the heart. The fields of interest are manifold; e.g., risk stratification of ventricular tachycardia,

fetal rhythm assessment, detection of ischemia etc. One problem is that the interpretation of

MCG signals is jeopardized by different kinds of disturbances and noise, making its analysis

difficult.

Several methods have been suggested for noise reduction in MCG data such as averaging,

pass or stop band filters, and statistical based methods, but a unified framework that takes into

account different typologies of MCG signals (rest MCG, stress MCG and rest MCG in patient

with an ICD -Implanted Cardioverter Defibrillator- implanted) using an adequate number of

recordings was still missing. Consequently, the main aim of the thesis was to develop methods

for noise and artifacts treatment.

Due to the non-stationarity (NS) of the noise and the per se variability of the cardiac signal,

the conventional ensemble averaging of the data, using en block all cardiac beats, did not yield

the theoretical improvement. In order to overcome this problem a new averaging procedure

has been applied, that ignored the noisiest beats and those with high variability. The results of

this averaging procedure have confirmed that in case of NS, the SNR (Signal to Noise Ratio)

reached a maximum after a certain number of selected beats. Although this behavior was

already described in the literature, a mathematical expression was up to now still missing. The

approach used to reach the formulation was to extend the SNR derivation after the averaging

procedure to the NS of the noise, or better the piecewise stationarity: In fact the optimum

SNR could be reached whenever the condition σ2
x+1 > 2σ2

avg was verified; in other words if

the variance σ calculated using x+ 1 beats was at least twice the averaged variance calculated

using x beats (where x is the number of averaged beats).
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The second part of the thesis has dealt with techniques based on Blind Source Separation

(BSS), used in case of low SNR. BSS were used, in this work, as preprocessing step in the aver-

aging procedure. Different BSS algorithms were compared in order to find the best one in terms

of noise reduction, separation, and computational time for each data typology. A drawback of

BSS techniques is the order of the independent components that is ambiguous and cannot be

determined a priori : the heart related sources have to be detected by visual inspection once all

sources are found. In order to overcome this problem three methods (kurtosis, correlation and

frequency analysis), based on different statistical principles, have been developed in order to

automatically retrieve the cardiac signals discarding the other ones. The approach used was to

separate the patients enrolled into two groups: one identification group where the thresholds

related to each of the aforementioned methods were calculated and a validation group where

these thresholds were tested.

The last part of the thesis studied the application of BSS methods to a category of signals

that was not yet analyzed: patients with ICD implanted. In fact, the presence of this device

in the thorax of the patient leads to very strong interferences, that are orders of magnitude

larger than the biomagnetic signal of the heart. For this reason, ICDs and pacemakers were

up to now among the exclusion criteria for studies concerning MCG. It was shown that it was

possible to extract the cardiac signal also in such noisy data, although not automatically.

The Temporal Decorrelation source SEParation (TDSEP) algorithm outperforms the other

BSS methods.

This thesis showed that, applying novel automatic routines for the removal of noise and

artifacts, MCG data can be used in clinical environments.



Zusammenfassung

Magnetokardiographie (MKG) ist eine nicht-invasive und belastungsfreie diagnostische Tech-

nik, die die Aufnahme des magnetischen Feldes, welches durch die elektrische Aktivität des

Herzens generiert wird, erlaubt. Die Anwendungsfelder dieser Technik sind vielfältig: Risikos-

tratifizierung bei ventrikulären Tachykardien, Ischämiedetektion, Analyse von fetalen Rhyth-

men usw. Die Analyse und Interpretation des MKG Signals wird jedoch durch verschiedene

Störungen und Rauschen erschwert.

In der Vergangenheit wurden einige Methoden zur Störsignalunterdrückung beim MKG

beschrieben. Dazu gehören Mittelungstechniken, Filter oder statistische Methoden. Jedoch

wurde bisher kein einheitliches Rahmenwerk vorgestellt, welches die unterschiedlichen Typen

von MKG Signalen (rest MKG, stress MKG und Patienten mit implantiertem ICD -Intrakardialer

Defibrillator) und adäquate Mittelungszahlen berücksichtigt. Daher war das Hauptziel der vor-

liegenden Arbeit die Entwicklung von generischen Methoden zur Behandlung von Artefakten

und Rauschen im MKG.

Auf Grund der Nichtstationarität des Rauschens und der per se Variabilität des Herzsignals

ist die Verbesserung des Signal-zu-Rausch-Verhältnisses (SNR) durch Mittelung aller einzel-

nen Herzschläge theoretisch limitiert. Zur Lösung dieses Problems wird eine neue Mittelung-

sherangehensweise vorgeschlagen, die stark verrauschte Schläge und solche mit hoher Vari-

abilität ignoriert. Das Ergebnis dieser neuen Mittelungstechnik zeigte ein Maximum im SNR

nach einer bestimmten Anzahl von ausgewählten Schlägen (oder Gruppen von Schlägen). Ob-

wohl dieses Verhalten bereits in der Literatur beschrieben wurde, gab es bisher keinen math-

ematischen Ausdruck dafür. Es wurde ein theoretisches Kriterium für das Optimum im SNR

abgeleitet. Dazu wurde das SNR stückweise (pro Block x, wobei ein Block aus einer bes-

timmten Auswahl von ähnlichen Schlägen besteht) unter der Annahme der Stationarität pro

Block betrachtet. Es wurde gefunden, dass unter der Bedingung σ2
x+1 > 2σ2

avg das optimale
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SNR erreicht wurde, wobei σ2
x+1 für die Varianz des Blockes x+ 1 und σ2

avg für die Varianz der

bis dahin ausgeführten Mittelung steht.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit dem Einsatz der Blind Source

Separation (BSS) als Vorverarbeitungsschritt vor der Mittelung bei sehr geringen SNRs. Es

wurden verschiedene BSS Algorithmen bezüglich ihrer Rauschunterdrückung, ihrer Separierung

und ihrer Rechenzeit bei verschieden Datentypen verglichen. Ein Nachteil der BSS Algorithmen

besteht in ihrer Mehrdeutigkeit und der nicht a priori feststellbaren Reihenfolge der zerlegten

Quellen. Oft werden die Quellen des Herzschlages durch eine visuelle Inspektion separiert.

Daher wurden drei Ansätze (Kurtosis, Korrelation und Frequenzanalyse), basierend auf ver-

schiedenen statistischen Prinzipien, entwickelt, die die Rückgewinnung des Herzsignals aus dem

zerlegten Multikanal-MKG realisieren. Die notwendigen Schwellwerte wurden dabei an einem

Trainingsset von Patienten bestimmt und anschlißend an einem Testset von Patienten getestet.

Im letzten Teil der vorliegenden Arbeit wurden die BSS Methoden auf Messungen an Pa-

tienten mit implantierten ICDs angewendet. Das Vorhanden sein der ICDs im Thorax der

Patienten führt zu starken Interferenzen, die um mehrere Größenordunungen größer sind als

das biomagnetische Signal des Herzens. Aus deisem Grund sind ICDs bis jetzt ein Auss-

chlusskriterium für MKG Studien. Die Ergebnisse zeigten, dass es möglich war das Herzsignal

zu extrahieren, wenn auch nicht mit einer automatischen Prozedur.

Der Temporal Decorrelation source SEParation (TDSEP) Algorithmus übertrifft die anderen

BSS Methoden.

Zusammenfassend konnte gezeigt werden, dass auch unter den schwierigen Bedingungen klin-

ischer Routine ein Einsatz von neu entwickelten und automatischen Routinen zur Verbesserung

des SNRs zur klinischen Nutzung des MKGs möglich ist.



Chapter 1

Introduction

1.1 Motivation

Biomedical signals arising from many sources including heart, brain and lungs pose a challenge

to researchers who may have to separate the signals arriving from multiple sources contami-

nated with stochastic and non-stochastic contributions (Widrow and Walach (1996); Jung et al.

(2000b)).

The information of interest contained in these signals is often a combination of features that

are either well localized temporally (e.g., spikes) or more diffuse (e.g., small oscillations). This

mix of properties requires the use of analysis methods that are sufficiently versatile to handle

events that can be at opposite extremes in terms of time-frequency localization. The main

difficulty in dealing with biomedical signal processing is the extreme variability of the signals

and the necessity to operate on a case by case basis (Unser and Aldroubi (1996)).

Each physiological process in a biomedical signal is associated with certain types of signals

that reflect their nature and activities. Such signals can be of different types:

• Biochemical: hormones and neurotransmitters;

• Electrical: potentials and currents;

• Mechanical: pressure and temperature.

The electrical activity generates a magnetic field (MF) that can be measured with magnetic

sensors. Biological MFs are very weak and the MF of a single human cell is below the de-

tectable threshold. Transient biomagnetic activity can only be measured if thousands of cells

are activated synchronously which is the case with focal pathological activity, whereas in the

propagation of activity mostly only nerve bundles of a few hundred nerve cells are involved. Yet,
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with the improvement of acquisition devices and signal-processing techniques, first attempts

to localize the propagation of electric activity have been made, e.g., the localization of very

prominent pathways of electrical excitation such as Atrio Ventricular (AV) - His activity in the

heart (Fenici et al. (1983); Patrick et al. (1983); Erne (1985)) and the localization of evoked

potentials sources in the brain (Romani et al. (1982a,b)). Since these first developments in the

late 1980s, many progresses have been made by the Superconducting Quantum Interference

Device (SQUID) technology.

Remarkable success is obtained applying these systems to Magnetoencephalography (MEG):

In fact 90% of all SQUIDs systems are related to neurological biomagnetic investigation, since

here basic research still plays a strong role and the users are more receptive to new technol-

ogy. For the same motivation, Magnetocardiography (MCG) is facing far more difficulties in

becoming an accepted diagnostic tool, but perspectives are increasing since the cause of death

for heart disease is the most common cause of mortality in industrialized countries (Figure 1.1)

(Koch (2001)) and a non-invasive diagnostic tool with great sensitivity and specificity is still

missing.

Figure 1.1: Percentage of death caused by heart disease: Heart disease is the first cause of death in USA

according to the National Center for Health Statistic. The trend is the same in almost all industrialized

countries (Anderson (2002))
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In this thesis the attention will be focused on the cardiac signal activity, recorded by means

of MCG. Magnetocardiography monitors the spontaneous activity of the heart by measuring the

weak MF variations associated with the primary ionic currents flowing through the myocardium

during the cardiac cycle (Siltanen (1989)). Such multi-channel acquisition is usually recorded

with a known spatial distribution of recording sensors with respect to the human thorax, hence

giving rise to a set of temporally and spatially correlated measurements.

1.2 Introduction to denoising techniques

Magnetocardiographic signals, as most of the biomedical signals, are contaminated by differ-

ent sources of noise that can be classified into two main categories: endogenic and exogenic

interferences, where the former are related to noise sources within the body and the latter are

caused by external noise sources. Endogenic noise sources are for example caused by muscular

activity whereas exogenic interferences are produced by equipment generating electrical charges

or electromagnetic fields. In a hospital for MCG recording, most of electrical and magnetic de-

vices must be properly shielded in order to minimize the influence of exogenic noise. Exogenic

noise sources can be further divided according to their origin:

• Electric interference (EI), arises from differing potentials in various parts of the body

and, as result, a current flows which interferes with the sensors. Electrical motors and

transformers may generate this kind of interference (Dawson et al. (2000));

• Magnetic interference (MI), has only a minor influence on the body. However, for unipolar

electrodes, the flux from the MF induces a current in the coil formed between the electrode

tip and a cardiac rhythm management (CRM) device;

• Electromagnetic Interference (EMI), arises from television transmitters, police radios, and

cellular phones. It can cause medical monitors and other hospital devices to malfunction.

Noise is often modeled as gaussian white noise, but this is not the reality: Noise is often

correlated (with itself or with the signal), it is not continuous, but it can be concentrated in

short time intervals, and it is not stationary: Its statistical properties change over time. Table

1.1 illustrates the range of signal contamination for a MCG signal according to the frequency

content and the time duration: There are continuous noise such as power-line interferences or

sensor noise and transient noise such as an airplane flying by, a slammed door etc.

Due to these different noise sources the signal to noise ratio (SNR) in MCG is quite low

and, for this reason, several epochs have to be recorded in different space-points: The result is
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Table 1.1: Possible contaminations of a MCG recording and their nature: for each of them the frequency

range and time duration are shown

````````````````````̀
Noise sources

Characteristics
Frequency Range Time Duration

earth field broad band continuous

power line narrow band:50-60 ±2 Hz continuous

urban noise broad/narrow band continuous

train narrow band: 16 ±2 Hz transient

airplane broad band transient

movement baseline narrow band: < 0.5Hz continuous/transient

wander

respiration narrow band: < 2.Hz continuous/transient

muscle activity broad band transient

sensor noise broad band continuous

a multidimensional time series, coming from the recording of such activities, highly redundant

and containing artifacts and noise. The difficulty in recording MCG is the weakness of the

signal if compared with the electrical counterpart (Electrocardiogram): The MF generated by

currents flowing in the heart is in the order of 10−10 to 10−12 Tesla, which is much weaker

than the earth’s MF and urban noise (refer to Chapter 2). As a consequence, special care is

required in obtaining MCG signals in order to reduce time disturbances, such as fluctuations

of the earth’s MF and those generated by electrical devices and power-lines.

Since superconducting multi-channel systems have become available, the cardiac MF can

be recorded with high sensitivity simultaneously from a number of positions over the chest

(Pasquarelli and Di Luzio (1993); Tavarozzi et al. (2002a)), hence allowing accurate field map-

ping during the cardiac cycle, useful for several clinical applications, particularly for arrhyth-

mias (Brockmeier et al. (1997); Hren et al. (1999); Kandori et al. (2001); Tavarozzi et al.

(2002b)) and for patients prone to ventricular tachycardia (Müller et al. (1999)).

Different methods can be used for improving the SNR in MCG: They can be divided into

different groups depending on whether they are frequency based (i.e. pass or stop band fil-

ter), statistical based (i.e. autocorrelation, autoregressive model, singular value decomposition
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(SVD) or based on blind source separation (BSS) methods) or a process of averaging.

In this work, different methods for reducing noise and artifacts in MCG data are pre-

sented. The first illustrated method is a modified averaging algorithm that considers the

spatio-temporal properties of the MCG data. Often a conventional ensemble averaging (EA)

of the data, using en block all cardiac beats is used. Unfortunately, the classical hypothesis

of cardiac signal embedded in random uncorrelated noise and same noise level in all epochs is

quite improbable. Nevertheless, in case all these requirements (random, stationary uncorre-

lated noise) were satisfied, the well-know improvement of the SNR with the square root of the

number of cardiac beats would be obtained. In reality, the stationarity is frequently violated

by muscular activity (artifacts), respiration, slow movements of the patient and heart rate

variability (HRV), to mention only endogenic noise.

Several average algorithms have been developed in order to examine these effects, but most

of them are related to brain activity (Riedel et al. (1999)), that is a quite different problem

when compared with the cardiac one. In fact, in brain activity several epochs are needed for

the average procedure since the SNR is very low and an estimation of the noise amplitude is

straightforward. If the average of brain stem response is analyzed, two methods are normally

used to minimize the undesirable effects of noise instability on the SNR. The former and most

common method is artifact rejection i.e., the elimination of realizations with signal amplitudes

exceeding a certain level from the averaging process, but this method has a drawback: The

threshold must be known a priori. The latter one is weighted averaging i.e., the weighting

of realizations or blocks of realizations inversely to the estimated power of background noise

(Hoke et al. (1984)), but in this case the underestimation of the signal amplitude is unavoidable

(Lutkenhoner et al. (1985)). Mühler and von Specht (1999) (Mühler and von Specht (1999))

have suggested the method of sorted averaging on a single sweep basis so as to determine the

sweeps entering an average a posteriori : This means that before averaging, the recorded epochs

are sorted according to their (estimated) contamination by noise. Only sweeps containing less

than a certain degree of noise are included in the average.

Heretofore, the amount of papers that have been published on MCG noise reduction is not

so high, since in MCG cardiac signal (if recorded inside a shielded room) the SNR is generally

quite high and normally an en block procedure seems to be sufficient. Unfortunately if MCG is

performed either in a slightly shielded or in an unshielded room, environments nearer to clinical

applications, an alternative averaging procedure is needed: In this case the SNR is much lower



Numerical methods for improved SNRs in spatio-temporal biomedical data 6

and the use of an en block algorithm is not optimal especially in those channels with the lowest

SNR (close to the zero line).

In 1999 Willemsen et al. (Willemsen et al. (1999)) published a paper concerning the signal

averaging of non-stationary noise applied to ECG using as parameters some weights that depend

on the variance of a beat. This method showed that the use of weighted averaging decreases

the number of complexes needed to achieve a predefined noise level, but no experiments on real

data were performed.

The main problem is that the procedure of averaging works well if the noise level is sufficient

small to correctly estimate the fiducial points (in general, a point in the QRS complex), as a

synchronization reference. In fact, it can happen that due to highly correlated noise (such as

residual 50 Hz) the R-peak (or any other fiducial point used for averaging, e.g., Q-onset) is

not well estimated, hampering in this way the averaging process. In order to eliminate this

problem a preprocessing is needed. The main source of electrical interference is the 50 Hz or

60 Hz superposition due to power-line (PL) AC interference (Huhta and Webster (1973)). The

pursuit of a convenient method for the elimination of such interference in biological signals

has been the topic of many papers (Glover (1987); McManus et al. (1993); Mortara (1977);

Ferdjallah and Barr (1990)). Unfortunately, PL-interference is not the only noise source: In

case of a stress acquisition the sources of noise increase.

The stress measurements are generally longer than their rest counterpart: This leads to a

higher probability of artifacts, patient movements, especially if an ergometer is used. In this

case the signals are very noisy, causing the averaging to be not effective as should and, for

this reason, a filtering on the raw data has to be performed (see section 3.2.3). Analog and

digital filters (such as Butterworth and Tchebyshev filters) are usually used to eliminate such

interferences, but the spectrum of some artifacts and disturbances overlaps with that of the

cardiac signal invalidating the usage of these filters (Thakor and Zhu (1991); Lander et al.

(1995)). Thus, not only the interference is removed, albeit non completely, but also part of

the signal of interest (Nolte and Curio (1999)). During denoising, care has to be practiced to

preserve the features contained in the original signal since they are often relevant and necessary

for appropriate diagnosis. In general, it is very difficult to differentiate between biologically

important characteristics of the signal and the noise contained in the signal: The biological

signals may not be consistent and may differ. Therefore, a reliable, robust, and versatile

denoising method applicable in different circumstances is needed.
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In the last few years, a bunch of new methodologies, based on Blind Source Separation

(BSS) and/or Blind Signal Processing (BSP), has been developed for solving this problem.

These methods are applied in several aspects of the signal processing in MEG, EEG, Elec-

tromyography (EMG) (Figure 1.2a) for denoising purpose.

Cichocki and Vorobyov (2000) (Cichocki and Vorobyov (2000)) have proposed several meth-

ods for signal detection such as kurtosis for detecting white (colored) gaussian noise, gradient

descendant techniques and Hurst exponent. Delorme et al. (2001, 2007) (Delorme et al. (2001,

2007)) have developed five different statistical signal processing methods for detecting artifac-

tual data epochs on Independent Component Analysis (ICA) decomposed sources, Greco et al.

(2005) (Greco et al. (2005)) have enhanced the techniques of Delorme et al. (2001) (Delorme

et al. (2001)) introducing the Renyi ’s entropy instead of the Shannon ’s entropy that showed

some failures.

In ECG and fECG, BSS is normally used for separating fetal and maternal activity (de Lath-

auwer et al. (1995); Zarzoso et al. (1997); de Lathauwer et al. (2000)) (Figure 1.2b), for the

analysis of atrial fibrillation (Rieta et al. (2000, 2004); Phlypo et al. (2007)), for the classifi-

cation of arrhythmia (Owis et al. (2002); Azemi et al. (2007)) and for denoising (Barros et al.

(1998); He et al. (2006)).

He et al. (2006) (He et al. (2006)) has proposed for ECG two different procedures for auto-

matically identify the sources after the application of the joint approximation diagonalization

(JADE) algorithm: kurtosis for detecting the continuous noise and an index based on the vari-

ance. The values of kurtosis have been found on 10s epochs of ECG and the variance has been

calculated after having divided the sources into 10 non overlapping blocks. These routines have

the disadvantage of being very sensitive to noise: In fact in the only example of low SNR, ICA

and the related automatic methods fail in removing the artifacts. Another possible problem

can be the variance method: it assumes that ECG signals have a heart rate of circa 1s and are

quasi periodic, but this is not the case if patients with arrhythmia are considered.

In MCG, BSS methods are mainly used for fetal cardiac extraction (Comani et al. (2004);

Hild et al. (2007); Comani et al. (2009)) even in twin gestation (Burghoff and VanLeeuwen

(2004)). In fMCG, BSS is also used as preprocessing step for the evaluation of key parameters

involving fetal arrhythmias, heart rate variability and autonomic control (Hoyer et al. (2009)):

Studying these pathologies could permit an earlier detection of developmental problems and

improved therapeutic strategies. On the contrary not so many papers are published dealing
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(a)

(b)

Figure 1.2: Examples of biomedical applications for Blind Signal Processing (BSP) such as biomedical

signals acquired with multi-electrode/channel devices: a) Enhancement of low-level ECG components,

noise reduction in EMG signals, separation of residual original heart signal from the transplanted heart

signal, separation of heart sounds from gastrointestinal acoustic phenomena, separation of heart sounds

from lung sounds, cancellation or reduction of artifacts; b) blind separation of the fetal electrocardiogram

(FECG) and maternal electrocardiogram from skin electrode signals recorded from a pregnant woman

(Cichocki and Amari (2002))
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with noise reduction at rest, under stress MCG (SMCG) and in general MCG in noisy conditions

(Kobayashi et al. (2005); Steinhoff (2005); Lee et al. (2004)).

Lee et al. (2004) (Lee et al. (2004)) have introduced a spatial filter method based on fast ICA

(fICA) for reducing magnetic noise in MCG: In this work the noise components are subjectively

chosen among the sources and the evaluation of the noise reduction performances is done using

the SNR of the MCG signal in the interval between the T-wave and the P-wave. As mentioned

in section 3.2.3 this interval is not very effectual in case the RR interval is too short.

Kobayashi et al. (2005) (Kobayashi et al. (2005)) have applied ICA on MCG signals, dis-

turbed by a wire fixed in the sternum, but the number of examinations is inadequate: In fact

only an acquisition with a volunteer was recorded with and without wire.

Steinhoff (2005) (Steinhoff (2005)) has published a paper where the temporal decorrelation

source separation method followed by joint diagonalization (TDSEP-JD) is applied to MCG

data for noise reduction (power-supply, breathing and patient movements), in fECG and for

separating atrial and ventricular activity in atrial flutter, but the number of subjects utilized is

unknown and the resulting independent components are automatically classified only according

to their spectral power in selected frequency bands.

The methods, that will be used in this PhD thesis are the following: a well known second

order method for noise reduction such as SVD and other 5 ICA/BSS (Vorobyov and Cichocki

(2002); Barros et al. (1998); James and Hesse (2005); Jung et al. (2000b,a); Rieta et al. (2002);

Noel et al. (2001); Cichocki and Amari (2002)) methods. These algorithms are applied to

different types of MCG signals, such as rest MCG, stress MCG etc.

Eventually, another important application of BSS methods is in patients with an already

implanted Implantable Cardioverter Defibrillator (ICD). Implantation rates of ICDs have been

rising to around 25 cases per million population in western European countries and North

America. The costs for one additional year of life in chronic heart failure range from US 34,000$

in older trials (CABG Patch, DINAMIT) up to US 70,200$ (Zipes et al. (2006); Buxton et al.

(2006)).

Because of this unprecedented expansion of ICD implantation, that only in few cases (be-

tween 21 to 35%) (Bardy et al. (2005)) leads to an appropriate therapy (arrhythmic events fol-

lowed by a shock), there is a renewed interest in a non-invasive predictor for risk-stratification.

For example the indication for an ICD implantation based on the parameter left ventricular

ejection fraction (LVEF%) has been ”coupled” in the MADIT II (Moss et al. (2004)) with the
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ECG-derived QRS duration and heart rate variability without success. In the last 10 years,

another risk stratifier has been applied: T-wave alternans (Hohnloser et al. (1998)), but the

results are controversial (Chow et al. (2007)).

Korhonen et al. (2006) (Korhonen et al. (2006)) have performed a pioneer clinical study

analyzing the intra QRS-fragmentation in averaged magnetocardiographic data (Link et al.

(1994); Müller et al. (1999)). The results show the superiority of the method in comparison

to signal averaged ECG and, in all-cause mortality, an abnormal MCG score together with

a LVEF < 30% had a positive predictive accuracy (PPA) of 50% and negative predictive

accuracy (NPA) of 91%. The population enrolled in that work is quite small (158 patients

after myocardial infarction- MI) and therefore a bigger perspective clinical study is needed for

validating the role of QRS-fragmentation as a risk stratificator. The problem is that this kind

of study is time consuming (in the order of years, if the follow-up phase is included in the

study). An alternative approach is to perform retrospective studies on patients with already

implanted ICDs.

So far, it has been not possible to perform MCG and succeeding QRS-fragmentation analysis

in such patients. In fact, the presence of an ICD in the thorax (usually it is located inside the

chest, close to the left shoulder) of the patient leads to very strong interferences in the MCG

measurements due to ferromagnetic components. The signal intensities of these interferences

are up to orders of magnitude higher than the biomagnetic signal of the heart. Since the ICDs

are normally placed on the left shoulder, the sensors are more influenced by this device close to

the head: This means that the spatio-temporal properties of the recording change in relation

to the position (Figure 1.3). For this reason, ICDs are still among the exclusion criteria for

studies concerning MCG. However, using dedicated algorithms based on BSS, the extraction

of these cardiac signals becomes possibles.

1.3 Aim of the thesis

MCG still plays a strong role in basic research, but it is facing more difficulties in becoming

an accepted diagnostic tool used in clinical environment. Difficult is the restricted SNR caused

by artifacts, disturbances and external noise.

Although several papers have been presented for noise reduction in MCG data, a study that

analyzes the different MCG data typologies in a unique framework with an adequate number

of data is still missing.



Introduction 11

Figure 1.3: A schematic representation of the position of the ICD in the patient torso. Overlapped the

sensor arrangement of a patient with ICD: Note the different properties of the signal according to the

relative position with the ICD

The goal of the thesis is to present a general strategy, how to cope with the different noise

sources in MCG signals in order to make MCG applicable in clinical use. To make it possible

the tools for the denoising have to be user-independent and the computational load has to be

low.

The first problem to be considered is the choice of a user-independent tool that is able to

denoise data with low SNR, for this reason BSS algorithms and a novel average procedure

will be evaluated. The BSS methods require that the users, after a visual inspection, select

the cardiac sources among the estimated components for the denoising: This approach, as

mentioned above, is too time demanding in case these algorithms have to be used in a clinical

environment. Aim of the thesis is to develop routines, based on different statistical properties,

for the automatic detection of cardiac signals in order to make the noise reduction procedure

a user-independent tool.

The second problem that will be addressed is the computational speed of the algorithms

that has to be reduced to use them also in clinical environment. Solutions for this problem

will be proposed, thanks to the new technology of workstations that makes it possible to scale
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the routines using multi processors and multi-threading approaches, in order to get an almost

on-line result.

1.4 Overview

In the following a summary of the thesis content is listed.

Chapter 2 gives an overview of the used MCG data, acquisition systems and methods: It

can be divided into more sections:

• a brief technical description of the MCG systems;

• the electrical conduction system of the heart;

• patient population;

• average procedure;

• BSS methods.

In Chapter 3 the results for the different types of signal are presented. First of all an example

of the theoretical findings in section 2.6.2 is shown: A mathematical explanation of why the

optimal average is reached only after averaging a selected number of beats (or group of beats)

is given, yielding as result the variance to not be exceeded during the average. In the second

part of the chapter the results concerning BSS and their computational load are indicated. The

methods used for the automatically selection of the sources are introduced.

In Chapter 4 a discussion of the thesis findings are analyzed thoroughly.

In Chapter 5 the conclusion about the relevance of methods for improving SNR in MCG

has been drawn .



Chapter 2

Materials and Methods

2.1 Basis of Magnetocardiography

Magnetocardiography is a non-invasive and risk-free technique allowing a contact-free recording

of the MFs generated by the electrical activity of the heart. The difficulty in recording MCG

is the weakness of the signal; indeed the MF generated by currents flowing in the heart is of

the order of 10−10 to 10−12 Tesla. As a consequence, special care is required in obtaining MCG

signals for reducing disturbances, such as fluctuations of the earth’s MF, MFs generated by

electrical devices and power-lines. Figure 2.1 shows the strength of the human heart MF when

compared to the environmental fields and the other biomagnetic fields produced by the body

(for comparison a car at 50 m distance produces a MF that is about 1000 times larger than

the heart signal).

Due to the closeness to the electrophysiology it is worthwhile to discuss the advantages of

MCG compared with non invasive electrical acquisitions, e.g., BSPM (Body Surface Potential

Map) and ECG. First of all, MCG is contact free, so all artifacts due to the skin-electrodes

interfaces are avoided: This is especially important for stress measurements, where often the

skin properties can change dramatically during the acquisitions jeopardizing them. The second

main difference is that the electrical potential distribution measured at the body surface is

governed by the geometry and the inhomogeneities of the different organs inside the torso. The

MF recorded is, in first approximation, independent from ”volume currents” affected by the

aforementioned conditions. The third difference is the higher spatial resolution of the sensors

that detect the MF compared with the lead field of the electrodes: In general the measuring

points (sensors) in MCG are more than the electrodes used in a normal ECG.



Numerical methods for improved SNRs in spatio-temporal biomedical data 14

Figure 2.1: Comparison of selected biomagnetic fields and environmental disturbances: Note the am-

plitude of the heart MF when compared to the earth magnetic field and urban noise (Vrba (1996))

Among all differences, the most important one consists in the capability of MCG to detect

vortex currents. According to the theoretical predictions of Wikswo (Wikswo et al. (1982);

Wikswo (1983)), due to the cyto-architecture of the myocardium, the current, flowing during

the excitation, has vortex components (Figure 2.2), that can be detected magnetically but not

electrically. In normal heart the main direction of the activation wave front is radial, from the

endocardium to the epicardium: Thus, MCG may show deviation from the normal activation

direction induced (Figure 2.2b), e.g., myocardial ischemia with better accuracy than ECG

(Siltanen (1989)).

More than one decade ago Brockmeier et al. (1997) (Brockmeier et al. (1997)) have been

able to confirm experimentally this theoretical prediction performing simultaneous magnetical

and electrical acquisitions under stress. This difference could be given by the vortical structure

of the generating current distribution as it has been discussed in Kosch et al. (2000) (Kosch

et al. (2000)). The influence of the active (Liehr et al. (2005)) and passive (Dutz et al. (2006))

vortex currents on the strength of magnetic signals was quantified with the help of a phantom

torso.

The first report of a human body MF dates back to the 1960s with Baule and McFee (Baule
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Figure 2.2: a) A uniform double-layer model of cardiac activity; b) Another double layer model of the

cardiac activity where also the tangential part of the current distribution is shown. These tangential

currents produce a MF, but their electrical field is silent (Wikswo et al. (1982))

.

and McFee (1963)) that used an induction coil magnetometer, made by winding two million

turns of copper wire around a ferrite core. The progress of this discipline has been hampered

by the fact that MFs produced by the biological activity are extremely weak, and at that time

conventional instruments had difficulties in resolving all but the strongest biomagnetic fields.

The breakthrough came in the 1970s with the development in low temperature physics

laboratories of a field sensor, known as the Superconducting Quantum Interference Device

(SQUID), with dramatically improved sensitivity. This instrument provides the possibility

to measure the MFs from many organs of the body. As these fields are much weaker than

the magnetic noise of the environment, the earliest applications have been limited to type of

acquisitions that could be recorded in either a remote location or in an elaborately shielded

chamber.

The first magnetic shielded room (MSR) consisted of two layers of ferromagnetic shielding

and one layer of aluminium (Cohen et al. (1970)). This room required a large space for

installation and the working space was very small.

More recently built MSRs have fewer shells, provide more working space, and yield accept-

able shielding for most purposes (Nakaya and Mori (1992)).
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2.2 Physiological basis of MCG

A typical MCG tracing of a normal heartbeat (or cardiac cycle) consists of a P-wave, a QRS

complex and a T-wave (a small U-wave is normally visible). The frequency of the cardiac cycle

is the heart rate. Every single beat of the heart involves three major stages: atrial systole,

ventricular systole and complete cardiac diastole.

The term diastole is synonymous with relaxation of a muscle. The cardiac cycle is co-

ordinated by a series of electrical impulses that are produced by specialized heart cells found

within the sinus node (S node) and the atrio-ventricular node (AV node). The electrical

impulses in the S node pass through the atria using as conduction medium the myocardial

tissue; the region between the atria and the ventricles is basically not conducting; only the AV-

node and the following His bundle, as part of the specific conduction system, provide a mean

for further propagation of the excitation toward the ventricles. The His bundle consists of

Purkinje fibers with a fast conduction velocity, therefore the time between the activation of the

His Bundle and the onset of ventricular activation is circa 40 ms. For a better understanding

in Figure 2.3 the development of the MCG trace is shown in parallel with the schematic

representation of the progress of the excitation in the heart: At the time corresponding to the

maximum of P-wave, the excitation of the atria is almost completed, during the PQ interval,

the atrial excitation is completed and the His-Purkinje system activated. In correspondence

to the Q wave, the apex of the ventricle is activate and with the R-peak (corresponding to

the maximum of the heart beat) the heart activation extends to the total septum and in the

large part of the ventricles. During the S and the ST segment the excitation of the ventricles is

completed. During the T-wave the depolarization of the ventricles is ongoing, and at the end of

the beat (post T) the MCG signal goes theoretically to 0, and the heart is at rest (Rosendorff

(2005)).

2.3 Technical basis for MCG detection

2.3.1 SQUID sensor

Superconducting quantum interference device is the most sensitive detector of magnetic

flux available, made of superconducting material. The traditional superconducting materials

for SQUIDs are pure niobium or a lead alloy with 10% gold or indium, as pure lead is unstable

when its temperature is repeatedly changed. To maintain superconductivity (zero resistance)
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Figure 2.3: Electrophysiology of the heart: the relationship between the spread of cardiac electrical

activation represented at various time instants by a summing vector and the genesis of the MCG/ECG

is shown (Webster (1992))

the entire device needs to operate within a few degrees above the absolute zero, below a certain

temperature, the so called critical temperature Tc (4,2 K with liquid helium or 77 K with

nitrogen).

The SQUID, at critical temperature Tc using quantum-mechanical effects, provides a transfer

from magnetic flux to electrical-impedance variations.

The basic phenomena governing the operation of SQUID devices are flux quantization in

superconducting loops and the Josephson effect. A SQUID sensor consists of one (r.f. SQUID)

or two (d.c. SQUID) Josephson Junctions (JJ). In the first case a single JJ interrupts the

current flow around a superconducting loop and the r.f. SQUID is operated with a radio

frequency flux bias. In the second case, d.c. SQUIDs, the two JJs are connected in parallel in

a superconducting loop and are called in this way since they can be operated with a steady

current bias.

To use the SQUID in practical instrumentation, a linearization circuit is necessary to mini-

mize the non linearity; for this reason the SQUID is normally used as zero detector in a feedback

loop. SQUID can operate in two different modalities according to what is kept constant: either
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the flux or the current Isc (Andrä and Nowak (2007)).

2.3.2 Magnetometer and Gradiometer

The most direct way of connecting the SQUID with the external world is to use a so called

flux transformer (FT) consisting of a single coil system connected inductively to a SQUID

sensor or combined in software or firmware. The simplest FT is the magnometer that measures

the projection of the MF Bz along the coil. In this case the pick-up coil should be designed so

that the inductance Li = L (Figure 2.4).

Figure 2.4: Schematic illustration of the coupling with a magnetometer, Li inductance of the antenna

and L inductance of the SQUID loop (Andrä and Nowak (2007))

The magnetometer configuration provides the best field sensitivity achievable when a FT is

coupled to a SQUID. Nevertheless it can be used only inside an MSR. In case the examinations

have to be carried out in an unshielded environment or in a moderate shielding the magne-

tometer is not appropriate. For this reason other FT configurations have been developed: At a

distance of about 5-6 cm (SQUID baseline) from the pick-up coil another coil, defined reference

coil, is added: This coil has the same area and the same number of turns as the pick-up coil,

but it is wound in opposite sense. This configuration is insensitive to spatially uniform fields

(the field is canceled out) and it is sensitive to any field having spatial gradient. A detection

coil with these properties is called gradiometer (Figure 2.5). There are different types of gra-

diometers: They differentiate for order, symmetry, spacing among the turns etc (Figure 2.6).
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Figure 2.5: Schematic illustration of the coupling with a first order gradiometer, Li inductance of the

antenna and L inductance of the SQUID loop (Andrä and Nowak (2007))

Figure 2.6: a) Magnetometer (detection of Bz) and different types of gradiometers: b) symmetric

gradiometer of the first order (detection of δBz/δz), c) asymmetric gradiometer of the first order (de-

tection of δBz/δz), and d) planar gradiometer of the first order (detection of δBz/δx) (Andrä and

Nowak (2007))
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2.3.3 Cryostat-Dewars

In order to maintain the temperature below the critical temperature Tc, it is necessary to

use a device that maintains a steady low-temperature environment and simultaneously fixes

the positioning of the sensors. Dewars or cryostats are used. Criterion for a good cryostat is a

proper isolation. Cryostats are almost entirely built of electrically non-conducting materials,

such as glass and plastics, for three reasons:

• eliminating interference associated with radio frequency disturbances;

• reducing magnetic Nyquist noise associated with metallic enclosure;

• minimizing the helium evaporation rate.

Furthermore, the dewar is assembled so that the distance between the sensors (bottom of the

dewar) and sources is as close as possible.

2.3.4 Magnetically Shielding Room

The amplitude of bio-magnetic signals is between femtotesla (fT) and picotesla (pT). Al-

though SQUIDs sensors that are able to work in a not completely shielded environment exist,

normally, in order to prevent external noise and artifacts, an MSR is used. There are different

types of MSR, but generally the way how the MSR works can be summarized in active or

passive shielding. In this work, MSRs with passive shielding are used. In order to shield the

room against low frequency fields, layers of µ-metal, an alloy made of nickel and iron, are used.

The µ-metal layers have such a high magnetic permeability that the MF lines prefer to flow

through these metal layers instead of through the magnetically shielded room itself. The layer

of aluminum is used to shield against the higher frequencies by means of eddy currents induced

in the layer.

2.4 Equipment

2.4.1 MCG System

In the following paragraph the multichannel instrumentation is briefly described. The ac-

quisitions are carried out in 4 different bio-magnetic systems (Table 2.1) 1:

1in the following list, the number of channels is related to the sensing sensors, the reference sensors are not

counted
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• 55-channel magnetometer system developed at the University of Ulm (Erne et al. (1998));

• 55-channel magnetometer system placed at the clinic of Hoyerswerda;

• 55-channel commercial gradiometer system developed by BMDsys GmbH and placed at

the University of Jena (Figure 2.7);

• 168-channel vector-magnetometer system placed at the University of Jena and built by

AtB (Pescara, Italy).

Since the above listed sensor systems have almost the same structure they will not be described

singularly, but a general description will be done: What it is changing in the systems is the

typology of sensing coils, their dimension and the number of channels.

A sensor system consists of a planar dewar, containing a complex structure with sensors

distributed over two, three or more levels (a measurement level plus one, two or more refer-

ence levels). The first level, i.e., the primary measurement plane holds 55/168 SQUID sen-

sors. The sensing elements are integrated magnetometers/gradiometers with a square shape of

12.7/15.5mm in diagonal. The sensors are uniformly distributed over the inner surface of the

dewar, according to a hexagonal geometry, covering a circular surface of about 230/260mm in

diameter. The measurement plane is 18mm from the outer dewar bottom. Additional SQUIDs

are mounted on the second level and are used as reference channels. The second level (parallel

to the first one) is circa 70/100mm far away from the measurement plane. On the third level

there is a magnetometer or a set of magnetometers located 70mm from the reference plane to

control the active shielding system. A fourth level can be also used (Table 2.2).

Table 2.1: Biomagnetic acquisition systems with name, location and number of channels

Name Typology Year Channels Sensors array Location

ARGOS 55 M1 1998-2004 77 55 Ulm

ARGOS 55 M1 2005 77 55 Hoyerswerda

ARGOS 200 VM2 from 2003 195 168 Jena

APOLLO CXS G3 from 2008 73 55 Jena
1Magnetometer;2Vector-Magnetometer;3Gradiometer

All MCG systems operate in a shielded environment and according to the type of shielding

there is a different shielding factor; the system shows different white noise levels on all chan-

nels. The on-line software-gradiometer set-up is performed by subtracting the background MF

recorded by selected reference channels (on the second level and third level) from the signal of
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Table 2.2: Biomagnetic system acquisitions: Dimensions

System Name diameter- cm1 distance a-cm2 distance b-cm distance c-cm

ARGOS 50 23.0 7.0 14.0 n.a.3

ARGOS 50 23.0 7.0 14.0 n.a.

ARGOS 200 23.0 9.8 19.6 25.4

APOLLO CXS 26.0 9.5 20.0 n.a.

1with diameter is meant the circular planar surface of the sensor array

2with distance is meant the position of the first (a) second (b) and third (c) level of SQUID sensors in relation

to the measurement plane

3 not available

each primary channel (in the first level). The patient handling set-up is made of non magnetic

materials emulating the standard set-up for clinical cardiac electrophysiology.

The signal sensitivity is sufficient to allow the operator to have a first sight of the heart

beats during the acquisition. The signals are then sampled at 8.2 kHz, digitally filtered and

down sampled to a final sampling frequency of 1025 Hz and a bandwidth between DC and 250

Hz.

2.4.2 Ergometer

The exercise device is basically a supine bicycle ergometer (Figure 2.8), targeting compact

size and limited weight for the purpose of quick installation on the measurement bed. The

ergometer has been designed as a fully coaxial system, with a multiplying gearbox in order to

achieve high inertia using a light flywheel. The transmission from pedals to flywheel consists

of a two-stage planetary gearbox followed by a freewheeling joint to the flywheel. Each stage

has a transfer ratio of 3, for a total multiplication ratio of 9. The flywheel has a perimetric

cavity where a textile belt acts as brake. This belt is fixed at one end to the frame and is

held at the other end, under tension, by a weight. In this way, it is possible to set the proper

workload by adjusting the weight. By varying the weight, the operator can change the workload

during the measurement, so that protocols with different load stages can be performed. The

ergometer has been built making exclusive use of non-magnetic materials, the gears are out

of nylon and their shafts are out of brass; frame, pedals, flywheel and mounting brackets are
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Figure 2.7: Biomagnetic system at the University of Jena: View from the preparation room into the

acquisition room with patient support and sensor system
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Figure 2.8: Ergometer used for stress acquisitions at the University of Ulm

made of aluminium, pedals’ linings are made out of PVC, and the adjustable weight consists of

a telescopic aluminium lever. Magnetic recordings performed with almost no load have shown

no significant artifacts or noise introduced by the ergometer (Pasquarelli et al. (2002)).

A typical measurement protocol is described in section 2.6.1.

2.5 Patients

Seventy-three rest MCG examinations (65 healthy and 8 pathological) and 52 stress MCG (12

healthy ergometer SMCG and 40 pathological pharmacological SMCG) have been used. Eight

patients out of 73 rest acquisitions are patients with an already implanted ICD. Twenty-five out

of the remaining 65 acquisitions are used in the identification phase in order to find a unified

threshold for the automatic selection of the heart related components (section 3.2.2) and the

other 40 rest MCG together with the 12 ergometer SMCG are applied during validation.

For the pharmacological stress MCG (PSMCG), 15 patients were used as identification group

and 25 in the validation phase.

All volunteers and patients have signed a written informed consent before undergoing MCG

investigation, which has been approved by the Ethics Committee of the respective local hospital.
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2.6 Acquisition Paradigma

2.6.1 Rest Data

The patient is led into the shielded room on a wheeled non-magnetic bed till his chest is

positioned under the dewar bottom. At the beginning of the recording, the position of the

patient in relation to the sensor array is calculated using a patient position unit (PPU), if any

available. The data collection lasts between 3 and 5 minutes. The measurements are carried

out mainly at the University of Ulm.

The MCG recordings for the eight ICD patients last 3 minutes and are carried out at the

Biomagnetic Centre of the University of Jena under resting conditions using the 168 measur-

ing channels vector-magnetometer (AtB, Pescara, Italy). The vertical component of the MF,

calculated as vectorial sum of the three components, is considered: The final number of 56

channels is used in order to achieve comparability with the work of (Müller et al. (1999)). The

ICD patients had all an idiosyncratic heart rhythm and those either with paced rhythm or

atrial fibrillation are excluded. Two patients have been excluded from the data analysis, since

the data recording failed: Due to interferences with ICD components, the biomagnetic signal

once saturated whereas the second time the SNR was so small that was impossible to apply

successfully the BSS methods.

2.6.2 Stress Magnetocardiographic Data

Ergometer stress testing

Twelve volunteers have undergone the examination protocol. The standard ergometer stress

testing protocol starts with an up to 5 minutes lasting acquisition at rest. Then, the volunteer

starts a warm-up stage of several minutes, which progressively reaches a steady exercise stage.

According to the World Health Organization (WHO) scheme the initial workload is usually

50W and the increments are in steps of 25W every two minutes up to a final load of 125W to

150W depending on the degree of fitness. The heart activity gradually rises up to the target

endpoint at 85% of age-predicted maximal heart beat rate, which is calculated by the formula:

f = 0.85 (200− a)Beat/min (2.1)

where a is the life patient age in years.
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At this point a second acquisition is performed while the exercise is still running with a

duration of one to two minutes. The exercise is then discontinued and then a third recording

at rest is started. Since abnormal heart wall motion normalizes rapidly after discontinuing the

exercise, stress specific information must be acquired within the next one to two minutes.

The exercise is immediately stopped if any of the following conditions occurs:

• dyspnoea;

• angina;

• fatigue;

• SA-block or AV-block;

• ST-shift < 0.2mV;

• ventricular extra-systole;

• ventricular or supra-ventricular tachycardia.

Data are acquired over the entire heart relaxation time, for a total duration ranging between

2 and 5 minutes, according to the degree of fitness of the patient (Table 2.3).

Table 2.3: Ergometer stress data acquisition: protocol

PPPPPPPPPPPPP
Acquisition

Phase
rest warm-up exercise rest

Yes x x x

No x

Pharmacological stress testing

PSMCG recordings (carried out in the hospital of Hoyerswerda) last either about 10 or

12 minutes using adenosine or dobutamine, respectively. During the stress test at least one

experienced cardiologist continuously monitors the 12-lead ECG and has to decide about a

premature termination of the stress-test according to the conditions mentioned above (section

2.6.2).

Pharmacological agents are used to intensify cardiac work or to cause coronary arterial

vaso-dilatation in order to increase myocardial blood flow. Patients unable to undergo exercise

testing for reasons such as de-conditioning, peripheral vascular disease, orthopedic disability,

neurological disease, or concomitant illnesses can benefit from pharmacological stress testing.
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Adrenergic agents such as dobutamine and adenosine are applied to challenge flow in stenosed

vessels, and the functional consequences can be analyzed. The protocol recording for PSMCG

Table 2.4: Protocol of pharmacological stress data acquisition: In bold the acquisition intervals used in

the data analysis

(a) Protocol for adenosine

PPPPPPPPPPPPP
Time(s)

Phase

0-120 Rest

120-540
Adenosine Infusion

120-max Rest

max-520 Stress

520-640 Rest

(b) Protocol for dobutamine

PPPPPPPPPPPPP
Time(s)

Phase

0-120 Rest

120 First Dobutamine Infusion

240 Second Dobutamine Infusion

360 Third Dobutamine Infusion

480 Fourth Dobutamine Infusion

480-720 Rest

varies according to the adrenergic agent. In case adenosine is used (144 µg/Kg body weight),

the drug is continually infused over 6-8 minutes (if the maximum rate in eq. 2.1 is not reached)

or it is stopped if the maximum is reached (Table 2.4a). Dobutamine is infused intravenously

over 2 minutes from 10 g/kg/min to 40 g/kg/min. The infusion is stopped at any dose ad-

ministered so far the 85% of the age-adjusted maximum heart rate is reached. The highest

dose of dobutamine, however, is continued and supplemented with 0.5 mg of atropinsulfate,

administered intravenously as a slow bolus, if less than 85% of the age-adjusted maximum

heart rate is achieved (Table 2.4b).

Finally, the protocol is the following: rest MCG (around 2 minutes), MCG during pharmaco-
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logical stress (injection of the adrenergic agents), second stage of rest (around 2 minutes). The

nomenclature for the following paragraphs will be: rest acquisition (the first 2 minutes of the

recording) and stress acquisition (second rest acquisition after infusion or part of the recording

at maximum stress during the infusion if dobutamine or adenosine, are used, respectively).

2.7 Averaging procedure

2.7.1 Overview

Averaging of data (Rompelman and Ros (1986a,b); Jane et al. (1991); Craelius et al. (1986))

is one of the most used methods to determine the tendency of a data set and improve the SNR.

In fact, it has been used for studying various kinds of biological signals, e.g., ECG, MCG,

event-related potentials (ERP) and auditory brain stem responses (ABR).

In this section, a novel approach for averaging the data is presented. In the specific case the

procedure is applied to the averaging of multichannel MCG recorded heart beats. Nevertheless,

due to its intrinsic properties, this technique and all the consequences concerning SNR can be

applied, with some suitable corrections, to any of the signals cited above. A broad variety of

MCG analysis methods for the detection of the sundry heart beat properties and cardiovascular

diseases requires a spatio-temporal averaging of cardiac signals. An important application is

the detection of magnetic signals that are associated with ventricular arrhythmias in patients

with ischemic heart disease or coronary heart disease (CHD). Such abnormalities, called late

fields, appear in the MCG signal as low amplitude, high frequency deflections following the

QRS (Erne et al. (1983); Stroink et al. (1989); Mäkijärvi et al. (1993); Achenbach et al. (1996);

Montonen et al. (1995); Montonen (1995)). Signal averaging is further used in the MCG

analysis of the intra-QRS fractionated activation, which indicates inhomogeneities of ventricular

depolarization and therefore it is used as a tool for risk stratification (Endt et al. (1998); Oeff

et al. (1995); Müller et al. (1999); Leder. et al. (2000)). Last, but not least, signal averaging

is a prerequisite for all localization applications in biomagnetism, e.g. the localization of the

accessory pathways (Uchikawa and Erne (1987)) in Wolf-Parkinson-White (WPW) syndrome

patients (Fenici et al. (1989); Oeff et al. (1993); Weissmüller et al. (1992b)) and the localization

of the origin of ventricular tachycardia (VT) from single ectopic beats of identical morphology

(Weissmüller et al. (1992a); Moshage et al. (1995)). An overview of the different applications of

the signal-averaged multichannel MCG is given in Stroink et al. (1998) (Stroink et al. (1998)).
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Signal averaging is not trivial: In fact, the following requirements have to be fulfilled for

temporal averaging to work effectively:

• The averaged data only represent the stationary part of the signal (in this case the heart

beat), thus the signal of interest has to be repetitive and invariable;

• The signal of interest must be time-locked to a fiducial point (in general the R-peak, but

in this work the Q-onset);

• The signal of interest and the noise must be independent and remain independent during

the averaging (Cain et al. (1996)).

However, the problem is that signal averaging has to deal not only with the usual disturbances

as white noise, non-white noise, and artifacts from the environment, but also with the biological

variability of the signal in itself and with isolated signals, such as ectopic or premature beats in

cardiology. Disturbances are also caused by respiration, digestion and small patient movements.

These disturbances and artifacts cause a decrease of SNR during the averaging procedure and

must be eliminated.

The first impression is that the optimal performances in averaging are obtained averaging

en bloc the spatio-temporal data of the signal, but the experience shows that a disadvantage

of this method is its low selectivity, i.e., QRS complexes of various amplitudes and shapes

are averaged. Better results could be obtained by performing a selected averaging channel

by channel using only the beats with better SNR. In fact, the noise sources could affect the

sensors(, and a single channel as well) in different ways: Therefore an improvement of the

SNR could occur by discharging, according to the estimated channel noise level, beats with

the lowest SNR. This advantage compensates for the loss of strict coherence of the data. It is

therefore appropriate to handle the averaging for each MCG channel separately.

2.7.2 Segmentation

Nomenclature

In averaging, the first preprocessing step is the choice of a trigger: In electroencephalography

(EEG) and magnetoencephalography (MEG) this is realized by means of any trigger signal (e.g.,

auditory, visual, electromyographic) whereas in ECG and MCG by means of QRS detection.

In the remainder of the text, the following notation is used:

Si (t): measured output signal of i-th heart beat, containing noise components;
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Ai (t): heart beat signal;

n (t) : random noise from the environment, additive and uncorrelated with the heart beat;

S (t) : averaged heart beat signal.

Beat Detection from 3-Lead High Resolution (HRECG): Cardiac Beat Segmenta-

tion

The pre-detection and segmentation of the beats for the categorized clustering analysis

(CCA) and averaging are based on either HRECG or on the magnetic signals with better SNR

(in the following, this kind of signals will be called, in general, reference signals) ensuring, in

this way, the detection of biological events (selection of activations eliminating disturbances and

artifacts), that occur in all channels of the MCG simultaneously but with different intensity.

During this phase, a rough estimation of suspected ventricular activations (not necessarily

heart beats) is done: This means that all extrema higher than a determined threshold are

detected. In order to avoid that the results are biased by a few big artifacts, the procedure

described below is performed dividing the signal into time intervals, whom number depends on

the recording time.

From the 3 reference channels ( i = 1, 2, 3), all ventricular activations are detected using the

second derivative of the signal amplitude Si(t) so to obtain a first guess of the beats number

N0 ( eq. 2.2):

e (t) =

(
3∑
i=1

d2Si (i)
dt2

)2

(2.2)

The quantity e (t) is assumed to have its maxima during QRS. The N0 local maxima are

searched for values of e (tn) > 5erms where erms is the root mean square (RMS) value of e (t).

Hereby, N0 (0 < n ≤ N0) defines the number of suspected ventricular activations (at this stage

not necessarily heart beats). The average of the N0 signals in a defined time range (tn ± 150)

reveals the template T0 (t) with a time duration of 300 ms (Figure 2.9).

Trigger Refinement

The definition of normal beats is implemented with 3 iterative trigger refinements. For each

beat, a scanning range of ±30ms is set and, subsequently, a deviation error E (n) is calculated

to get an optimum matching to the template beat T0 (t). This provides a refurbished list of

the beats activity positions. Then, a new improved beat template T1 (t) is calculated, on the
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Figure 2.9: Graphical representation of the first steps of the beat detection procedure: In blue the

quantity e(t) is drawn, in red a cardiac heart beat S(t) rescaled to e(t). The two vertical lines represent

the beginning and the end of the first template T0(t)

basis not only of more precise fiducial points, but also of the noise level: In fact the segments

where the optimum error exceeded the threshold (eq. 2.3) were eliminated:

Ethreshold = 〈E (n)〉 ± 3Erms (2.3)

where Erms is the standard deviation of E (n) and 〈E (n)〉 its average. With this template,

the procedure is repeated resulting in a third up-to-date template T2 (t) for the final trigger

refinement.

Rejection of Artifacts

First of all, three intuitive parameters are defined to determine which signal segments should

be included in the cluster analysis. This procedure is executed to avoid performing the cluster

analysis on those segments that are dominated by disturbances. In each epoch j and channel

n these values are defined: the baseline drift dn, the signal sweep an and the signal RMS rn
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(eq. 2.4).

rn =

√√√√ 1
toff − ton

toff∑
t=ton

(Sj,n (t))2

an = max (Sj,n (t))−min (Sj,n (t)) (2.4)

dn = |Son − Soff |

where Son and Soff are the averaged amplitudes of the first and the last 60 ms of the current

beat. Beats with these huge values can be eliminated a priori. The value of RMS is calculated

three times in three different time intervals analyzing the phases in the heart beat where the

SNR is quite low: ton and toff are the starting and the ending points in these three gaps. The

used intervals are: the interval between T-end and P-onset, the interval between Q-onset and

P-end, and finally the beginning of the ST segment.

Then, the average and the standard deviation over all beats are performed in order to get

a threshold for each parameter (eq. 2.5):

rthr = 〈rn〉+ 3σr

athr = 〈an〉+ 3σa (2.5)

dthr = 〈dn〉+ 3σd

The beats with values above the thresholds are eliminated: A graphical view is shown in Figure

2.10 where the red vertical lines correspond to beats that are excluded and the green ones to

those put in the average process.

The categorized cluster analysis is used to get a one-dimensional scale in analogy to the

noise amplitude.

2.7.3 Cluster Analysis

Preliminary note

Many papers have been published to overcome the problem of non-stationary in biological

signals and many efforts have been made to obtain an optimal averaging method to increase the

SNR using only selected data segments (Hoke et al. (1984); Riedel et al. (1999); Mühler and von

Specht (1999, 1996)). For data sets dominated by noise, an estimation of the noise amplitude

is straightforward and can be used to improve the averaging process, as proposed by Mühler

(Mühler and von Specht (1999, 1996)). The Mühler’s case is, however, very singular: Generally
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Figure 2.10: Time series of the heart beat signal in 3 out of the 55 channels: The markers in green

correspond to the beat suitable for the average, the red ones to the beats that are not used since too noisy,

or with a big drift

the recorded biological signals are perhaps of insufficient quality but surely not dominated by

noise. In this case, especially in cardiology, an estimation of the amplitude of the noise is

impracticable.

With cluster analysis, a workaround for this situation becomes feasible.

Categorized Cluster Analysis

Cluster analysis is a well-known procedure used in partitioning observations into subsets or

”clusters”, such that those within each cluster are more closely related to each other than those

belonging to different clusters. Here, the clustering analysis is used in somewhat of an improper

way and a hierarchical procedure is only applied to generate a dendrogram that assembles all

elements in a single tree, associating to each element an increasing dissimilarity level (Erne

et al. (1987)). In this way, starting from a distance (= dissimilarity) matrix a 1-dimensional

dissimilarity scale is generated that can be used to govern the averaging process.
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Hierarchical Cluster Analysis (HCA) produces a series of overlapping groups or clusters

on different levels ranging from separate individual data segments (heart beats) to one single

cluster. In order to obtain this unique tree the following steps are needed: As a prerequisite an

upper-diagonal distance matrix D (defined 1 - correlation function between two beats) of size

Z2(where Z is the total number of beats, each beat at the beginning is a one-element cluster)

has to be built.

D = 1−
∑L

t=1 Si,n (t)Sj,n (t)∑L
t=1 (Si,n (t))2

∑L
t=1 (Sj,n (t))2

(2.6)

where n is the MCG channel under process, i and j two any beats and L the length of the

segment of interest. The elements of the distance matrix D represent the dissimilarity of the

Figure 2.11: Schematic illustration of a dendrogram which is the graphical representation of the cluster

analysis. Following the arrows at each node, the largest group of beats with the smallest similarity

distance is found and thus the starting point for function SNR. The horizontal axis represents the

observations (beats), the vertical axis gives the distance (or dissimilarity measure)

beats on the basis of the dissimilarity of the time courses of the beats. By means of the distance

matrix D, the agglomerative clustering method produces a hierarchical tree starting with single

beats, and then, at each of Z − 1 stages, merging two clusters to form a larger cluster, so as

to have, in the end, a 1-dimensional description of the quality of the signal. This process is

represented by a so-called dendrogram that shows at which distance the clusters merge (see
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Figure 2.11).

Among the different methodologies used to determine at which level the clusters should

merge, the Average Group Linkage Method (AGLM) is used for its computational efficiency as

well as its robustness against the noisiness. Single linkage and complete linkage are relatively

much more susceptible to noise as they only calculate a single distance (either minimum o

maximum) when comparing clusters 2. At each stage the joined closest clusters form a new

group and a new distance matrix D′ is computed for the reduced number of clusters. The end

of the clustering process is only reached when one single cluster is left. Following the path

that sets the direction with more beats (follow the arrows in the dendrogram in Figure 2.11), a

sequence of beats is defined with monotonically increasing ”noise” (actually dissimilarity, but,

as mentioned before, the ”noise” is summarized to all biological variability, disturbances and

noise).

Theoretical SNR improvement for white noise

Consider first the well-known case of coherent averaging. Hereby, no biological beat alter-

ation and no biological noise are assumed, so that the noise has the following properties:

• Additive and uncorrelated with the signal;

• Stationary;

• Normally distributed with zero mean and variance σ2.

The signal Ai (t) is assumed to have:

• Independent and identically distributed samples so that it is invariant with the time.

Si (t) = Ai (t) + ni (t) (2.8)

Coherent averaging can be expressed by

S (t) =
1
N

N∑
i=1

Ai (t) +
1
N

N∑
i=1

ni (t) = A (t) +
1
N

N∑
i=1

ni (t) (2.9)

2The method of Average Group Linkage Method is based on the average distance among the objects. The

linkage function specifying the distance between two any clusters is computed as the distance between the

average values (the mean vectors or centroids) of the two clusters. Mathematically the linkage function - the

distance between clusters X and Y - is described by the following expression:

L(X ,Y ) = ρ (x̄ȳ) (2.7)

where x̄ and ȳ are the mean vectors of the first and the second clusters, respectively and X and Y are two sets

of objects (clusters).
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In order to estimate the SNR, it is necessary to estimate the statistics of any sample and then

of a sample average. In a sequence of N samples Si (t) the mean µ and the variance σ2 of any

of them are by definition:

µ = E [Si (t)] = A (t) (2.10)

and

σ2 = Var [Si (t)] (2.11)

Consider, now the statistics of the averaged signal S (t).

Denote the mean of the average µavg and the standard deviation σavg. Since Ai (t) and

ni (t) are stationary, µavg = µ and Var [S (t)] = σ2
avg = σ2

N , σavg = σ√
N

. Before the averaging

procedure the variance was Var [Si (t)] = Var [ni (t)], whereas after the averaging procedure

the variance has been reduced of a factor N, and the amplitude of SNR improved of a factor

of
√
N , as expected.

In section 3.1, a mathematical extension of Mühler’s approach (Mühler and von Specht

(1999, 1996)) that utilizes this sequence is described. The extension is necessary because in the

original Mühler’s work at any step only one segment is added to the average; on the contrary

in this work the segment/segments to be added to the average is/are either a single segment

(the cluster is constituted by one epoch) or a cluster of segments (more epochs form a cluster).

2.8 Blind Source Separation

2.8.1 Introduction

The term Blind Source Separation (BSS) refers to a wide class of problems in signal and

image processing, where one needs to extract the underlying sources from a set of mixtures

without knowing anything about the sources. This method is called blind, because little infor-

mation is available, i.e., both the mixture and the sources are unknown.

In recent years, BSS techniques based on Independent Component Analysis (ICA) have

been applied to several different fields and to biomedical applications. Independent Compo-

nent Analysis is a particular branch of BSS that aims to separate a combined data set into

independent components. In the following sections the terms BSS and ICA will be used without

distinction, although the forementioned difference has to be addressed.

The independence assumption means that the joint probability density function (PDF) is
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the product of all densities for all the sources.

P (S) =
∏

(pi) (2.12)

where (pi) is the PDF of the source i and P (S) is the joint density function.

Figure 2.12: Cocktail party example: Two persons are talking simultaneously in a room (like at a

cocktail party), a third person is trying to follow one of the discussions. The human brain can handle

this sort of auditory source separation problem, but it is a very tricky problem in digital signal processing.

In case the number of microphones is equal or larger than the people speaking, ICA is able to extract the

source signals from any set of two or more measured signal mixtures (Stone (2004))

The most common example for illustrating ICA refers to the so-called cocktail party problem

(Figure 2.12): Image a cocktail party where there are a number of people speaking in the same

room. Assume further that there are several microphones in different positions, so that each

records a combination of the speech signals with slightly different weights. In this situation a

BSS is required, since the aim is the retrieval of the different sound sources from the recordings

without any a priori information. ICA is the technique able to do it if there are at least as

many microphones in the room as there are different simultaneous sound sources.

In this work BSS/ICA is applied to MCG data. The support that ICA can give to the

clinical practice in this field is manifold: Fetal MCG (fMCG) extraction from maternal MCG,

analysis of atrial fibrillation (AF), MCG denoising and removal of ICD artifacts.

In this chapter, a brief overview of BSS algorithms is presented addressing their differences.

Although many algorithms are available, they can be grouped into four approaches (Figure

2.13):
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Figure 2.13: The four basic approaches of blind source separation; each approach exploits a particular

property of the source: ICA (orange) exploits the independence among sources using the mutual inde-

pendence; the methods based on the second order use the temporal structure of the data (green); in case

the data are not stationary the time-varying variance is used if it does not change fast (blue); the fourth

approach exploits the various diversities (yellow). The arrows indicate the possibility of combining or

integrating the all above approaches in order to separate or extract sources with various statistical prop-

erties and to reduce the influence of noise and undesirable interferences (Cichocki and Amari (2002))

• The most important approach and also the most widely used is based on the principle

of independence among the sources. In this case a cost function that estimates the

independence or the non-Gaussianity of the data is minimized. When the sources are

assumed to be independent the use of High Order Statistics (HOS) is fundamental for

resolving the problem of BSS. Example of this approach is Fast Independent Component

Analysis (fastICA).

• If the sources have a temporal structure, then each source has no vanishing temporal

autocorrelation matrix, and less restrictive conditions than independence can be used:

It is sufficient to estimate the Second Order Statistics (SOS) for finding the sources.

Molgedey and Schulder (1994) and Ziehe et al. (2000) (Molgedey and Schulder (1994);

Ziehe et al. (2000)) used for example, autocorrelation functions to separate temporal

correlated signals (Second order blind identification-SOBI, TDSEP).

• A third possible criterion for performing ICA is to utilize the non-stationarity (NS) of

the source signals and SOS. This is typically achieved by inspecting the variances of the

sources (Matsuoka et al. (1995)). If they vary slowly, it is possible to separate sources

with Gaussian marginals and equal autocorrelations, which is not possible with any other

method: The NS information based methods allow the separation of colored Gaussian
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sources with identical power spectra shape. However, they can not separate sources with

identical non stationary property.

• The fourth approach exploits the various diversities (different characteristics) of signals;

typically time, frequency, or more generally joint-space time frequency diversity. The

signals can be separated easily if they do not overlap in either -time (TDMA), -frequency

(FDMA) or time frequency domain. More sophisticated algorithms foresee a combination

of two or more approaches.

An alternative way of dividing the different BSS methods is examining how the sources are

found: whether evaluating directly the data or just using some statistics made on them. In

the former, successive linear transformations are applied to the data until an independence

criterion is maximized. In the latter, the information on the data is summarized into a smaller

set of statistics (i.e., cumulant or auto correlation matrix): The mixture is searched using the

information available on the matrices without analyzing the data themselves. It is possible to

have algorithms combining the two approaches, as well.

In this thesis five out all the possible BBS methods are presented:

• fICA: Data based approach; it looks for sources as independent as possible maximizing

some non-gaussian criterion;

• TDSEP: Statistics (temporal structure of the data) based approach;

• JADE: Statistics (cumulant matrices) based approach;

• Shifted Block Blind Separation (SHIBBS): Combination of statistics and data based

approach;

• SVD: Statistics (covariance matrix) based approach.

For further information refer to (Cichocki and Amari (2002); Hyvärinen et al. (2001); Joliffe

(1986); Stone (2004)).

2.8.2 Singular Value Decomposition

Singular Value Decomposition is a technique used to solve sets of linear algebraic equations

and has found application in many fields of biomedical engineering. Singular Value Decom-

position/Principal Component Analysis (PCA) reduces the data dimension by finding a few

orthogonal linear combinations of the original variables (with known characteristics) with the

largest variance retaining as much information as possible from the original data. The ob-

served data matrix (zero-mean) X = [x1, x2, x3 . . . xm], xi with i = 0, i ≤ n, where n is the
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time samples and m the number of sensors, can be written (eq. 2.13) as the product of an

n×m column-orthogonal matrix D, an m×m diagonal matrix L with positive or zero elements

(singular values), and the transpose of a m×m orthogonal matrix U (the Eigenvector matrix)

(Deprettere (1988)).

X = DLUT (2.13)

The order of the eigenvalues is according to the variance of the signal, with the highest value

in the upper left index of the L matrix. The signals associated to the high variance are deemed

more important than those with low variance.

A procedure for calculating the SVD is to first calculate the Eigenvector matrix UT and the

Eigenvalues L by diagonalizing the covariance matrix Cx = XTX. The easiest approach is to

use the Eigenvalue Decomposition (EVD) since (eq. 2.14):

XTX = UL2UT (2.14)

where L2 is the Eigenvalues matrix. D can then be calculated as (eq. 2.15):

D = XUL−1 (2.15)

Since the eigenvalues are in descending order, the last components in the matrix D correspond

to the signals that give negligible information and for this reason are rejected. In fact the signal

information is mostly concentrated within a certain number of singular values with related

singular vectors due to the strong inter beat correlation among MCG cycles when compared

with the other sources. As first step of noise reduction the eigenvalues that exceed the below

formula 2.16 are excluded. ∑λmax
i=1 λi∑N
i=1 λi

> 0.95 (2.16)

where λmax is the last eigenvalue to be taken into account.

2.8.3 Independent Component Analysis

Overview

Independent Component Analysis (Comon (1994); Bell and Sejnowski (1995); Hyvärinen

et al. (2001); Hyvärinen (1999)) is a technique for separating a combined data set into inde-

pendent components. Generally the generative model can be written as eq. 2.17.

X = f {S}+N (2.17)
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where X is the observed zero-mean data, f a any unknown function applied to the sources S

and N the additive noise that is corrupting the measurement X.

However, if ICA is applied to the MF produced by the heart, the foregoing model can

be simplified; in fact in this case the observed data are those coming from the heart and

the transmission through the mixing medium (lungs, fat, skin etc) can be assumed to be

instantaneous and the observed signals (at the measurements points) are only considered a

linear combination of (attenuated) sources. For this reason the eq. 2.17 can be replaced by:

X = AS +N (2.18)

where A is the weights matrix.

Another assumption normally done in order to facilitate the problem solution computation

is to define the model as noiseless (eq. 2.19); this precondition is actually less realistic than

the first one, since it is assumed that there is no sensor noise. Anyway defining the noise as a

source allows for a simplified ICA model and still gives good results.

Furthermore, the statistics of the mixing matrix A does not change with time, i.e., the

assumption of stationarity of the mixing matrix: This means that the physics of the mixing of

the sources as measured by the sensors is not changing during the recording. This assumption

can be sometimes a little bit too restrictive, but in case of MCG measurements still applicable.

X = AS (2.19)

In order to recover the sources, it is necessary that the number of sources is equal or

smaller than the number of observations, although in the last years some algorithms for the

under-determined case have been developed with the assumption that all sources have sparse

distribution (De Lathauwer et al. (2003)). The number of sources is assumed to be equal to the

number of observations, even though from a biomedical signal analysis perspective this is less

likely. For this reason many researchers apply data-reduction techniques to the data (during

the whitening process) prior to ICA although this may be ill advised in certain situations,

where the SNR is very low.

The goal of ICA is to calculate the original sources S from the mixture (Figure 2.14): Thus,

to find a de-mixing matrix W ≈ A−1 that gives eq. 2.20.

Ŝ = WX (2.20)
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Figure 2.14: General ICA model: The matrix S represents m independent sources, the constant matrix

A [m×m] the linear mixing of the sources, and X [m× n], with m ≤ n a linear mixture of the sources,

i.e., the observations. ICA produces an unmixing matrix W, which unmixes the measurements in order

to yield an estimation of the found components ŝ(t) (James and Hesse (2005))

Both the unmixing matrix W and the estimated sources Ŝ are found from the observations

matrix X; unfortunately without some a priori information it is not possible to estimate

uniquely the original sources signals. However, it is possible estimate them up to certain

indeterminacies:

• arbitrary scaling (eq. 2.21): Since the mixing matrix A and the source S are unknown

it is always possible that a source has an amplitude α that can be canceled out from a

scale factor of the matrix A ( i is the number of sources).

X =
∑
i

(
1
αi

ai

)
(siαi) (2.21)

• order of the sources (eq. 2.22): It is not possible to determine the order of the ICA

components (disadvantage respect to SVD) since a permutation matrix P and its inverse

can always be added to the model so that the observations remain the same.

X = AP−1PS (2.22)

• delay of the estimated sources.

These indeterminacies preserve, anyway, the sources waveform and only influence their ampli-

tude and order. In order to overcome these inconveniences in general the sources are assumed

to be with zero-mean and one-variance so that the amplitude of the signal is irrelevant.
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The order of the independent components still remains ambiguous; for this reason numerous

efforts are made in order to automatically find the sources of interest discarding the other ones,

as in this thesis. In case the sources have some a priori information and some specific statistical

properties it is possible using an autoregressive model to extract the sources of interest: This

field is called Blind Source Extraction (BSE).

In order to simplify the computation of W and to diminish the number of unknowns, a

preprocessing is necessary: the whitening or sphering of the data. A variable is said to be

white if its elements are uncorrelated and its variance is 1. Whitening can be seen as a process

of decorrelation followed by a suitable scaling and the EVD can be used for achieving the result

(eq. 2.23 and eq. 2.24):

Cy = E
{
Y Y T

}
= I (2.23)

where E indicates the expectation, U the orthogonal matrix of Eigenvectors and L2 the diagonal

matrix of its Eigenvalues.

Cx = E
{
XXT

}
= UL2UT (2.24)

Whitening is then performed by eq. 2.25 or eq. 2.26:

Y = UL−1UTX = MX (2.25)

or

Y = UL−1UTAS = ÃS (2.26)

The purpose of whitening resides in the fact that the new mixing matrix Ã is orthogonal

(unmixing matrix F= ÃT ): The number of parameters to be estimated is not m2 anymore (see

the dimension of the A matrix), but only m(m− 1)/2 (Hyvärinen (2000)).

The procedure of whitening is the same for all the used BSS.

Fast Independent Component Analysis (FICA)

Hyvärinen has introduced a family of algorithms that are grouped under the name of fixed-

point algorithms. Since the details of this algorithm are discussed in Hyvärinen et al. (2001)

(Hyvärinen et al. (2001)), only a brief summary of this method is introduced here.

Let the differential entropy H of a random vector y = (y1, y2, y3, . . . , yn) with PDF p (.) be

defined as

H(y) = −
∫
dyp(y) ln(y) (2.27)



Numerical methods for improved SNRs in spatio-temporal biomedical data 44

The neg-entropy J can be interpreted as a measurement of non-gaussianity and can be defined

as:

J (y) = H
(
yg
)
−H (y) (2.28)

where yg is a gaussian random variable of the same covariance matrix as y. Neg-entropy

is always non-negative and it is zero if and only if y has a gaussian distribution. Another

approach for ICA estimation is inspired to the information theory by minimizing the mutual

information. It can be proved that there is a strong relationship between mutual information

and neg-entropy as shown in eq. 2.29. The mutual information I among the n scalar random

variables yi is a natural measure of the dependence among random variables that can be defined

as

I (y1, y2, y3, . . . , yn) = J (y)−
∑
i

J (yi) (2.29)

where

J (yi) = H (yig)−H (yi) (2.30)

since yi is a scalar random variable.

The ICA of a random vector y can now be defined as the invertible transformation S =

FY chosen in such a way that I (s1, s2, s3 . . . , sn) is minimized. The new de-mixing matrix

F is found by optimizing a cost function which decreases if the estimated sources become

more independent. Since several different cost functions can be used for performing ICA (e.g.

kurtosis, neg-entropy, etc), different methods to calculate F exist.

For finding the independent components different types of functions that approximate the

neg-entropy can be used. The most general form of these approximations is any non linear

function that does not grow so fast (i.e. the exponential, the hyperbolic tangent). In practice,

however, there are criteria to be followed:

• the computational simplicity: The polynomial function is faster to compute than the

hyperbolic tangent;

• the order in which the components are found (in case one by one estimation is used)

depends on the type of function used: An ordinary method of optimization tends to first

find maxima that have large basins of attraction.

The iterative solution for each vector subsequently is :

~f+ = E
{
~yg
(
~fT~y

)}
− E

{
~yg′
(
~fT~y

)}
~f (2.31)
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where g is any suitable non-quadratic contrast function, with g′ its derivative. The choice for

the contrast function falls on the following contrast functions:

g1(u) =
1
a1
logcosh(a1u), g′1(u) = tanh(a1u) (2.32)

g2(u) = − 1
a2
e−a2u2/2, g′2(u) = ue−a2u2/2

g3(u) = −1
4
u4, g′3(u) = u3 (2.33)

where 1 ≤ a ≤ 2.

The first function is a good general-purpose contrast function, whereas the second one has

to be applied when the robustness and the distribution of the components are highly super-

gaussian and the third one is generally used for estimating sub-gaussian components.

After every iteration step the new vector of the un-mixing matrix needs to be normalized

and, for each vector (except the first), orthogonalized with respect to the previously calculated

vectors (2.34 and 2.35).

~fp+1 = ~fp+1 −
∑

~fTp+1
~fj ~fj (2.34)

~fp+1 → /
√
~f
p+1T ~fp+1

(2.35)

After calculating all the unmixed data, the task is to identify properly the components.

Ideally, all data available should be used, but this is often not a good idea because the

computations may become too demanding. The averages can be estimated using a smaller

sample, whose size may have a considerable effect on the accuracy of the final estimates.

TDSEP

The TDSEP (Ziehe et al. (2000)) algorithm only uses second order information in the form

of time-delayed covariance matrices (see eq. 2.36). In this way, the unmixing matrix W and

the independent components S result from the simultaneous diagonalization of these matrices

taking care that they are positive definite (this is not always guaranteed for all time delays).

The time lags τ1..τNm are chosen so that the selected time instants maximally carry different

information. The optimal choice is to use time delays in a way that the signals have strong

autocorrelations at the selected time-lags and small cross-correlation. For example, if a 10

Hz tone and a 20 Hz tone have to be separated, the time lags τ1 = 1/f1 = 0.1 seconds

and τ2 = 1/f2 = 0.05 seconds (Gomez-Herrero and Huupponen (2004)) have to be chosen.
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For those selected lags, the autocorrelations of the two source signals are maximal in absolute

value and the cross correlations are minimal yielding two almost completely diagonal covariance

matrices. However, the optimal choice for time delays is, in general, unknown. The performance

of TDSEP can decrease drastically if the wrong time delays are chosen. For overcoming this

problem many time delays are used that provide a good performance, but not optimal.

Two different sets (Nm = 100 for ICD patients and Nm = 13 for rest and stress acquisitions)

of time-delayed correlation matrices are used that at most correspond to the properties of the

signal (i.e., noise, disturbances and cardiac signal characteristics). The generalized cost function

to be minimized is eq. 2.36.

T (K)ij =
∑
i 6=j

(yi (t) yj (t))2 +
N∑
k=0

∑
i 6=j

(yi (t) yj (t+ τk))
2 (2.36)

The matrices for ICD patients have the following time delays:

τ0 = 1, τNm−1 = 5600, τNm−2 = 4500, τNm−3 = 3000, τNm−1 = 2000, τNm−1 = 1200,

and the remaining ones are calculated as:

τi = τi−1 + 3, ∀i = 0, i < Nm − 5

For stress and rest measurements the time-delayed covariance matrices are set up with 13

different values: following 1, 5, 10, 50, 100, 150, 200, 300, 500, 700, 900, 1.200, 1.500. These

values are chosen because they are the time-delays that at most correspond to the signal auto

terms.

This method is more stable than using a unique delay because in that case the delay param-

eter τ should be chosen carefully in order to have two matrices that maximally carry different

information. After the pre-whitening step, any time delayed correlation matrix of the trans-

formed signal should be approximately a diagonal matrix up to a transformation matrix Q.

The rotation matrix Q is computed either by means of a simultaneous Jacobi diagonalization

(Cardoso and Souloumiac (1996)) of these matrices (see eq. 2.37) where Tk (φk) represents

an elementary rotation or by taking a linear combination (for example the average) of these

covariance matrices (see eq. 2.38) and after applying standard EVD (eq. 2.14).

Q =
∏
k

Tk (φk) (2.37)
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T =
1
N

N∑
k=1

Ti (2.38)

The concatenation of the whitening matrixM and the rotation matrixQ yields an estimation

of the mixing matrix: A = M−1Q or of the un-mixing matrix W = QTM .

JADE

The JADE algorithm, developed by Cardoso (1999), presents a substantial difference in

comparison with the fICA algorithm. In this method the unmixed data are not found consid-

ering the whole data set (whitened data) Y but some statistics calculated on them. In this

case statistics is given by the cumulant matrices: All information contained in the measure can

be calculated by operations on cumulants, i.e. variance and kurtosis are the second and fourth

cumulants. A side effect of this algorithm is in the estimation of the whole set of fourth-order

cross-cumulants that requires the storage of n4 cumulants matrices (the number of fourth-order

cumulants grows as O(n4)) and this can be computationally prohibitive in case the number of

observations is high.

The JADE contrast function is the sum of squared fourth order cross cumulants defined as:

φJADE (Y )def =
∑

ijkl 6=iikl

(
ĈYijkl

)2
(2.39)

where the notation indicates a sum over all the quadruples (ijkl) of indexes with i 6= j. Then a

joint diagonalization using the Jacobi technique is performed so that a matrix rotation Q that

makes the cumulants as diagonal as possible (the sum of the elements Off diagonal has to be

minimized) is found

Q = arg min
∑
i

Off
(
QT
)
ĈYi Q (2.40)

and hereby the mixing matrix

A = QM−1 (2.41)

In calculating the joint diagonalization (Cardoso and Souloumiac (1996)), the givens angles at

each step can be computed in closed form even in case of possibly complex matrices.

SHIBBS

The SHIBBS algorithm has an intermediate character between the all data based algorithms,

as fICA, and the all statistics based algorithm, as JADE. The set of cumulant matrices to
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be estimated is not anymore the maximal set which contains O(n2) matrices, but only n:

iteratively SHIBBS recomputes a number of O(n3) matrices. The SHIBBS criterion is defined

as:

φSH (Y )def =
∑

ijkl 6=iikk

(
ĈYijkl

)2
(2.42)

A set of m cumulants matrix
{
ĈY (Mm) |1 ≤ p ≤ m

}
is estimated and a joint diagonalizer Q

of it (eq. 2.40) is calculated. If Q ≈ I the algorithm stops and the mixing matrix is (eq. 2.41),

otherwise, the whitened data Y are rotated using the rotation matrix Q : Y = QTY and a

new set of cumulant matrices C using the new transformed data set with the respective joint

diagonalizer Q calculated.

2.8.4 Overfitting: Bumbs and spikes

One problem with ICA that has recently been addressed is over-learning or over-fitting that

can occur in the ICA algorithms, especially when the independent sources underlie temporal

dependencies (Hyvärinen et al. (1999)). Over-learning can lead to spikes or bumps in the

computed sources, which have no significance to the data being examined and may be defined

artifacts. Over-learning in ICA algorithms is caused by either the insufficient number of samples

if compared to the observations or to the considerable amount of noise present. There are two

methods for solving this problem, one is to apply a reduction of the observation points (applying

before the PCA, for example), the other one is to increase the sample size: A rule of the tube

is having a sample size at least the same size as the unmixing matrix.

2.8.5 Singular Value Decomposition vs Independent Component Analysis

The main difference between SVD and ICA is that the former method finds source signals

that are gaussian and uncorrelated whereas the latter is able to retrieve signals that are non-

gaussian and independent. For a better understanding please refer to Figure 2.15: Here a

geometrical interpretation of the difference between uncorrelatness (SVD) and independence

(ICA) is shown. In case two signals are gaussian it is enough to make them uncorrelated, since

in case of gaussian signals uncorrelatedness is equal to independence.

Two random zero-mean variables x and b are said to be uncorrelated if they satisfy the

following relation:

Cxb = E {xb} = E {x} {b} = 0 (2.43)
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Figure 2.15: Geometrical interpretation of the difference between ICA and SVD: a) Original ran-

dom sources, b) sources after a linear mixture, c) after the process of uncorrelatness, d) sources after

application of ICA

where E {x} and E {b} are the expected values of the variable x and b, respectively and Cxb

their cross-correlation. On the contrary two random zero-mean variables x and b are said to

be independent if they satisfy the following relation:

E {xpbq} = E {xp} {bq} = 0 (2.44)

where p and q are two any natural numbers. Note that in case p = q = 1 this formula is equal

to eq. 2.43.

Summarizing, the uncorrelatedness is a special case of independence where the relation

between the expectations is linear. Thus, ICA is more restrictive since the sources have to be

independent, not only orthogonal.

2.8.6 Finding the cardiac signals

Overview

The order of the unmixed data/sources can not be determined a priori. Therefore, a visual

inspection of the source matrix S, for the identification of the noise related and cardiac related

components, is necessary. However, this kind of procedure is not desiderable in the clinical use,
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where a user-independent tool is needed. Here, different methods for automatically detecting

the components representing artifacts and disturbances from those containing heart information

are described. These methods are:

• A statistical method with no a priori knowledge: kurtosis. In this way the unmixed data

with no deterministic contribution are detected;

• A statistical method with a priori knowledge: correlation and reference channels. Using

this method based on the a priori knowledge on the properties of the signal the unmixed

data related to the components are detected;

• The power-spectra. In this way the a priori known spectral contribution of the noise is

examined.

Kurtosis

The kurtosis is the fourth order cumulant. For a zero-mean signal s, the kurtosis is defined

as:

Kurt (s) = E
(
s4
)
− 3

[
E
(
s2
)2] (2.45)

The gaussian noise/continuous noise has a value close to zero, whereas the time series with

spikes have a value of kurtosis different from 03.

The main reason for choosing kurtosis is its simplicity. In fact, computationally, kurtosis

can be estimated by using the fourth moment of the sample data. However, it also has some

drawbacks. The main problem is the sensitivity to outliers or abrupt changes: Its value can

strongly depend on only a few observations in the distribution tails, which may be erroneous

or irrelevant observations. This means that unmixed data with abrupt changes and artifacts

cannot be differentiated in MCG measurements by using this method. In section 3.2.2 the use

of an histogram will be introduced as a workaround and a threshold to be used in the validation

phase will be provided.

Correlation

The identification of heart related components among the remaining unmixed data has been

performed by taking advantage of the reference data (HRECG or MCG) and the derived trigger

3Distributions with zero excess kurtosis are called mesokurtic, with positive excess kurtosis leptokurtic and

with negative excess kurtosis platykurtic
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points list. Three different correlation methods have been compared in order to find the most

suitable for our problem.

The sources/unmixed data have been found using the TDSEP algorithm followed by joint

diagonalization. In general the number of unmixed data related to the cardiac activity is circa

7.

1. The cross-correlation of the averaged odd and even beats in each unmixed data has been

calculated (CM1). First of all, the mean signals Seven (t) and Sodd (t) of the N/2 even and

N/2 odd beats respectively (according to the trigger points list) have been computed:

Seven (t) =
2
N

N∑
i=0

S2i (t) , t1 < t < t2 (2.46)

and

Sodd (t) =
2
N

N∑
i=0

S2i+1 (t) , t1 < t < t2 (2.47)

Then the cross-correlation c between them is calculated by:

c =

∑t2
t=−t1 Seven (t)Sodd (t)√∑t2

t=−t1 S
2
even (t)

√∑t2
t=−t1 S

2
odd (t)

(2.48)

2. The template S (t) (eq. 2.49), built for each channel averaging all the time instants in

correspondence of the QRS complexes, has been scanned in correspondence of each beat

yielding the following value of the correlation c (CM2):

S (t) =
1
N

N∑
i=0

Si (t) , t1 < t < t2 (2.49)

c =
1
N

N∑
i=0

∑t2
t=−t1 S (t)Si (t)√∑t2

t=−t1 S
2 (t)

√∑t2
t=−t1 S

2
i (t)

(2.50)

3. The cross correlation of odd and even beats in each unmixed data is evaluated in order

to reckon the value of correlation for that channel (eq. 2.51) (CM3):

c =
1
N

N∑
i=0

∑t2
t=−t1 S2i (t)S2i+1 (t)√∑t2

t=−t1 S
2
2i (t)

√∑t2
t=−t1 S

2
2i+1 (t)

(2.51)

The chosen range in all cases has been 180 ms (in correspondence of the QRS complex), i.e.,

t1 is 60 ms before and t2 is 120 ms after the R-peak.

In section 3.2.2 the three methods will be compared and the most suitable one will be used

for providing a threshold to be applied in the validation phase.
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FFT

In the last step, the remaining components have been FFT transformed and those with a

maximum power spectrum Pmax between 49 and 51 Hz are filtered to eliminate the residual

power line interference (Figure 2.16). The procedure is as follow: The power spectrum, calcu-

Figure 2.16: Averaged unmixed data before (in blue) and after the application of the 50 Hz filter (red)

lated into the interval of interest (49-51 Hz) Ppl, has been compared to the total one Pt. In

case the ratio Ppl

Pt
is bigger than a determined value (set to 0.06), that component is defined to

be a good pretended for the net filtering.

Furthermore, in SMCG, in addition to the noise, unexpected disturbances and artifacts

related to the movements of the patient occur: These movements are connected not only to

the ergometer vibrations, but to patient muscular movements as well. For this reason, an

alternative way for eliminating these disturbances is the use of FFT: The components with

a maximum in the power spectrum between 8 and 10 Hz (Figure 2.17), related to the high

frequency ergometer disturbances, are eliminated (Müller et al. (2006)). The power spectrum is

recalculated after the PL-filtering and the value stored at each frequency. In case the maximum

value, calculated as in eq. 2.52 is in the range of 8-10 Hz, that component is rejected.

Pmax = maxPowk, Powk =
√
A2
k +B2

k (2.52)

where Ak and Bk are the coefficients of the FFT.
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Figure 2.17: Three unmixed data/sources with different values of frequency: The first picture represents

the ergometer noise with a frequency peak of 8.5Hz modulated with a lower frequency signal, the second

one corresponding to the QRS complex circa 35 Hz and the last one circa 1Hz. The labels N and NV

correspond to the QRS activity

2.8.7 Reconstruction

Using the rules in section 3.2.2, the rows of the matrix S∗ related to noises and disturbances

were set to 0 and a cleaned signal XR reconstructed.

XR = WS∗ = W



s1,1 s1,2 . . . s1,n

0 0 . . . 0

s3,1 s3,2 . . . s3,n

0 0 . . . 0
...

...
...

...

sm,1 sm,2 . . . sm,n


(2.53)

2.8.8 ICs validations

The manual classification of all extracted components is performed by an expert investigator

for each dataset and for each sensor configuration; two signal categories (cardiac activity and

noise) are used, and the number Nman of components belonging to each category is calculated.
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Then, the automatic procedure is used, and the number Naut of components classified for each

signal category is obtained; the number Ncorr of components that are correctly identified is

evaluated comparing Naut with Nman. For each signal category, two numerical indexes are

used to quantify the performance of the automatic method with respect to the investigator

categorization: A first index is the percentage of found sources (FS), which represents the

number of components that are correctly classified (true positive) 4 -TP- that is defined as

FS = 100[
Ncorr

Nman
] (2.54)

A second index based on the percentage of incorrectly classified sources (ICS), which corre-

sponds to false positives 5 (FP) is given by

ICS = 100[
Naut −Ncorr

Naut
] (2.55)

The third value to be estimated is the number of heart related components that are identify

as noise related: False Negative (FN).

Using these three values, the sensitivity and the specificity of the methods can be calculated.

The sensitivity is the fraction (in % ) of the true matches that actually are corrected pre-

dicted as matches by the pattern. If the pattern is too stringent (to avoid noise and distur-

bances), then too few of the true matches will be identified by it.

The specificity is the fraction of the sequences predicted as matches that really are true

matches. If the pattern is too inclusive (to catch as many as possible), then much noise will

also be falsely identified by it.

The specificity is computed as TP/(TP + FP) where TP is true positive and FP is false

positive. The sensitivity is computed as TP/ (TP + FN) where TP is true positive and FN

is false negative 6. These two values are the most widely used statistics used to describe a

diagnostic test.

4components that are correctly classified in the automatic recognition
5components that are identified heart related but they are not
6in the medical context (diagnosis), specificity is defined differently = TN/(FP+TN)



Chapter 3

Results

3.1 SNR improvement in averaged data using categorized data

analysis

3.1.1 Theoretical explanation

The clustering procedure is performed for each MCG-channel separately since the noise

influences the cardiac signal differently according to the sensor position. Thus, for each channel,

the maximum SNR improvement is reached. Of course, the number of averaged beats differs

from channel to channel and depends on the local noise level.

Since the raw cardiac signal recorded by MCG is of poor quality, but it is generally not

ruled by noise, an evaluation of the noise is impossible; for this reason the SNR estimation

and its improvement is precluded (section 2.7.3). The theoretical proof to obtain the optimum

SNR is given in the next section (eq. 3.13).

The standard SNR improvement (section 2.7.3) is not valid in reality since the noise is

often non-stationary (Willemsen et al. (1999)). In fact, it cannot be assumed for a typical

MCG recording that all biological heart signals are identical and that the noise is normally

distributed for each heart beat with the same variance: during the acquisition the subject can

move, a door can be closed, a train can go by, causing non-stationarity. In this case, the signal

model for coherent averaging is:

Si (t) = Ai (t) + σini (t) (3.1)

where Ai (t) is the signal of interest, which is assumed to have an invariant morphology and to

be uncorrelated with ni (t); σi is the noise level in the ith interval (single-event related data or
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block of similar data: clusters), generally with σi 6= σj , ∀i, j, and ni (t) that can be assumed to

have zero mean and unity variance, without losing generality. It is also assumed that in each

interval (cluster or cluster constituted by a single element) the noise level is stationary and

independent from another cluster. Due to biological alterations of the heart beat, artifacts and

biological noise (respiration, digestion, little movements etc.), the optimum SNR is reached by

averaging only certain heart beats (Figure 3.1). The optimum choice of heart beats has to be

found by selection processes that optimize the SNR. The selection process is done in this case

Figure 3.1: Schematic illustration of the SNR function R(S/N). The values in the ordinate represent

the ratio (R) between the signal (S) and the noise (N) according to the number of epochs: (a) the

function R(S/N) grows with the square root of the epochs/clusters, reaching its maximum at the extreme

case of all clusters used (single-element cluster). This happens in case identical signals and stationary,

normally distributed noise are used; (b) For non stationary noise, the function R(S/N) can have its

maximum either at the maximum number of epochs (single-element cluster)(a) or at cmax: number of

epochs/clusters, the maximum SNR is achieved

by means of the CCA: The data segments to be averaged are ordered according to their noise

level: σi < σj ∀i, j. Thus, the optimum SNR is now reached by:

• sorting the time segments according to the noise level;

• finding the criterion according to groups of time segments have to be averaged to reach

the optimum SNR.

Consider the statistics of the averaged signal: The improvement is seen in the decreasing of
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the variance when comparing a single event with an averaged one over N events.

S (t) =
1
N

N∑
i=1

Ai (t) +
1
N

N∑
i=1

σini (t) = A (t) +
1
N

N∑
i=1

σini (t) (3.2)

where S is the observed signal, N the total number of samples, A the signal of interest, σ the

noise level in the i− th interval.

Since A(t) is deterministic, all variance is assumed to be contained in the noise.

Var [Si (t)] = σ2
avg = E

( 1
N

N∑
i=1

σini (t)

)2
 = (3.3)

E

( 1
N

N∑
i=1

σini (t)

) 1
N

N∑
j=1

σjnj (t)

 = E

 1
N2

N∑
i=1

N∑
j=1

σini (t)σjnj (t)


Since N is a constant:

1
N2

N∑
i=1

N∑
j=1

E [σini (t)σjnj (t)] =
1
N2
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As the variance is assumed to be piecewise constant over time:

1
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i E
[
ni (t)2

]
+

1
N2

N∑
i=1

N∑
i 6=j

σiσjE [ni (t)nj (t)] = (3.4)

The variance of the noise is in σ, so it is possible to write:

1
N2

N∑
i=1

σ2
i E
[
ni (t)2

]
=

1
N2

N∑
i=1

σ2
i (3.5)

Now from the hypothesis σi < σj ∀i, j, exists a point x such that, adding a further block of

data-segments, the SNR does not improve anymore, but becomes worse: i.e, the variance till

the block x+ 1 is higher than the variance till block x.∑x+1
i=0 σ

2
i

(x+ 1)2
>

∑x
i=0 σ

2
i

x2
(3.6)

The left part of the inequality 3.6 can be divided into two parts: The former is the variance

till the block x and the latter is the variance at the block x+ 1∑x
i=0 σ

2
i + σ2

x+1

(x2 + 2x+ 1)
>

∑x
i=0 σ

2
i

x2
(3.7)
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Developing the expression:

x2
x∑
i=0

σ2
i + x2σ2

x+1 > x2
x∑
i=0

σ2
i + 2x

x∑
i=0

σ2
i +

x∑
i=0

σ2
i (3.8)

x2σ2
x+1 > 2x

x∑
i=0

σ2
i +

x∑
i=0

σ2
i (3.9)

σ2
x+1 >

2x+ 1
x2

x∑
i=0

σ2
i =

2x+ 1
x

∑x
i=0 σ

2
i

x
(3.10)

Since x is the number of data groups, the existence conditions x 6= 0 and x 6= -1 are always

verified. The inequality can be so rewritten in this way:

σ2
x+1 >

2x+ 1
x

σ2
avg (3.11)

where σ2
avg =

∑x
i=0 σ

2
i

x can be defined as the noise level until the previous node.

Since x >> 1,
2x+ 1
x

≈ 2 (3.12)

therefore

σ2
x+1 > 2σ2

avg (3.13)

Finally, as long as the beat noise level is less than twice the mean noise level of the previous

node, an improvement of the SNR is reached, otherwise it is necessary to stop as the data are

not good candidates for averaging (Di Pietro Paolo et al. (2005)).

3.1.2 Examples

Figure 3.2 shows two spatio temporal dendrograms based on the averaged data: Figure

3.2a shows a typical dendrogram of data from a subject with homogeneous noise level and

low variability among the beats. The dendrogram is almost symmetric: the number of beats

belonging to the main two branches is very similar (146 vs 150). On the contrary Figure 3.2b

shows an example of data with different noise levels and with higher variability (when compared

to Figure 3.2a): In this case the two main branches have a different number of beats (49 vs

127).

An example of results obtained averaging over a few beats the two different branches in

Figure 3.2b is given in Figure 3.3. Figure 3.3a shows the average calculated on 4 beats from

the left branch of the dendrogram, whereas Figure 3.3b shows the average of 4 beats from

the right branch. The resulting figures show a different shape: Figure 3.3a has got a T-wave
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(a) (b)

Figure 3.2: Two representative dendrograms of two patients with different characteristics are shown.

The knots indicate where two clusters or group of clusters merge: a) Dendrogram of a measurement

where the noise is homogeneous and there is not so much variability among the beats: The dendrogram

is in fact almost symmetric; b) Dendrogram coming from a measurement where the beats have a higher

level of variability: It is possible to see two main branches, one that contains almost all beats and the

other one containing the beats with either more variability or with different shape

with higher amplitude and different baseline when compared to Figure 3.3b. This difference in

baseline can be caused by the different influence of the breath on the sensors placed in different

positions.

Figure 3.4 shows the raw data in 2 out of the 55 channels of an acquisition recorded in a

moderate shielding environment: The first row reveals a channel with low SNR whereas in the

second row a channel with higher SNR (when compared to the figure in the first row) is shown.

These two representative MCG channels are then averaged (Figure 3.5) using either classical

averaging (red line) or averaging preceded by the cluster analysis (blue line). In Figure 3.5a a

channel with low SNR is displayed (compare to the first row in Figure 3.4): Although during

the process of averaging with the cluster analysis only 118 beats out of 273 recorded activations

are averaged, the signal amplitude is higher than in the classical procedure (thus averaging all

activations). In case the SNR is high the signal amplitude after averaging, with or without

the application of the CCA, is very similar: the two signals almost overlap. This result can be

explained pointing out that in this second case the condition 3.13 is not fulfilled (see Figure

3.5b).

This procedure of averaging has been tested in some hundred MCG measurements of patients
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(a)

(b)

Figure 3.3: Two representative overlay plots of 56 averaged signals from the same data set, but with

different noise characteristics: a) average calculated over 4 beats shown in the Figure 3.2b, using the

left smaller branch b) average calculated over 4 out of the beats shown in the Figure 3.2b using the right

bigger branch. The vertical green lines show the markers calculated on the averaged signals: Q-onset,

R-peak, Q-end, T-wave, and T-end are visible
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Figure 3.4: Raw data of an examination in moderate shielding room: in the first row a channel with

low SNR, in the second row a channel with high SNR. The label N stands for Normal beats, the label

Nv for normal visual beats

and healthy subjects providing satisfactory results and execution time-performances (less than

2 seconds in a 5 minutes acquisition). As the procedure is done channel by channel, the

algorithm becomes scalable and can be parallelized for a multiprocessor system, drastically

reducing the computation time.

3.2 Noise Reduction using Blind Source Separation

3.2.1 Choosing the optimal BSS algorithm

Five BSS methods are compared using nine examinations having different SNR: Two ac-

quisitions are carried out at the University of Jena with a gradiometer system and moderate

shielding, four of them at the hospital of Hoyerswerda using a magnetometer system and three

at the University of Ulm with a magnetometer system (see section 2.3).

The manual classification of all extracted components is performed by an expert investigator

for each data set and each sensor configuration (one or two groups). Two different signal

categories for this first test are used and the number of cardiac components calculated.

Table 3.1 shows the results. Among the methods, the algorithm that gives the worst results is

TDSEP-EVD: It is impossible to separate noise and heart signal in all examinations. The other
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(a)

(b)

Figure 3.5: Two representative averaged channels with (blue line) and without cluster analysis (red

line): a) Channel with low SNR: the signal amplitude after the selection procedure (118 beats out of 273)

is greater than in the conventional averaging (all 274 beats); b) Channel with high SNR is shown: using

all beats or a subset of them does not make almost any difference
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methods perform better: They could differentiate between noise and heart related components

with similar results (first and second column in the Table 3.1). The number of sources is

different, depending on the noise level in the acquisitions: If an acquisition with low SNR is

analyzed the number of components is lower than in one with high SNR.

The third and fourth columns show the computational load results: ”1 Group” means that

all 55 sensors are used simultaneously, ”2 Groups” that the sensors are divided into two groups

and two unmixed data and sources are calculated separately. Among the methods the best

results are achieved by TDSEP followed by joint diagonalization (TDSEP-JD). For further

information see section 3.3.

The typology of sources got using either HOS (Higher-Order Statistics) or SOS (Second-

Order Statistics) is different: Applying the first family of algorithms it is possible to separate

the cardiac sources into their components: the atrial and ventricular activity (Figure 3.6). On

the contrary, the differentiation between the two activities is not always reached in the methods

based on SOS although a good separation between heart components and noise is shown: In

fact, it is still possible to find the activity of the T-wave, but not that of the P-wave.

The aim of this work is not feature extraction, but noise reduction: This means that,

although the best performances from a point of view of separation are given by HOS methods,

importance is given to the computational load as well. In fact, in this procedure, components

of heart origin are not required to be separated from each other exactly, because they are mixed

again by back projection after removing artifact-related components. Furthermore, with the

same procedure, it is possible to filter off the noise also in wider sense, improving the relative

amount of any types of useful information in the signal.

Finally, TDSEP-JD is preferred. This method is compared with a standard de-noising

algorithm such as SVD in case of rest measurement.

In section 3.2.2 methods for the automatic detection of hearth activity are described and

the optimal threshold in case of rest MCG is determined.
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Figure 3.6: Five out 55 sources detected by fICA from a 300s measurement (The label N is in corre-

spondence of the QRS-complexes): There are different kinds of sources related to the cardiac activity:

In the first panel the P-wave is clearly visible, in the second and fourth panels the QRS-complex, in the

third panel the unmixed data related to T-wave. In the last panel, gaussian noise. The number on the

left in each panel corresponds to the channel where the source was found
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Table 3.1: Number of components and time necessary to get the unmixed data in 9 patients using

five BSS algorithms: G means that the measurement is performed with a gradiometer system, M a

magnetometer system is used. One group: All the channels are used simultaneously; two groups: The

channels are divided into two groups

1 Group 2 Groups 1 Group 2 Groups

Number of Components Time (hh:mm:ss)

Subject 1- M

JADE 10 21 01:45:57 00:02:47

fICA 14 19 00:55:21 00:08:29

TDSEP-EVD No good separation

TDSEP-JD 11 17 00:00:55 00:00:25

SHIBBS 10 20 01:27:20 00:02:41

Subject 2 - G

JADE 2 3 01:30:14 00:02:47

fICA 2 2 00:16:06 00:02:44

TDSEP-EVD 3 No good separation

TDSEP-JD 3 3 00:00:52s 00:00:20

SHIBBS 2 2 03:31:50 00:08:20

Subject 3 - G

JADE 3 3 01:28:33 00:01:51

fICA 1 5 00:13:16 00:02:33

TDSEP-EVD No good separation

TDSEP-JD 3 2 00:00:48 00:00:20

SHIBBS 3 3 00:03:46 00:01:09

Subject 4 - M

JADE 8 15 00:55:48 00:05:07

fICA 7 13 00:16:23 00:01:45

TDSEP-EVD No good separation

TDSEP-JD 9 14 00:00:23 00:00:12

SHIBBS 9 15 00:32:15 00:04:31

Continued on next page
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Table 3.1 – continued from previous page

Number of Components Time (hh:mm:ss)

Subject 5 - M

JADE 9 16 01:53:12 00:04:24

fICA 8 14 00:09:17 00:01:58

TDSEP-EVD No good separation

TDSEP-JD 8 13 00:00:21 00:00:11

SHIBBS 9 14 00:31:58 00:04:19

Subject 6 - M

JADE 17 28 02:20:14 00:02:33

fICA 15 26 00:33:41 00:06:20

TDSEP-EVD No good separation

TDSEP-JD 13 25 00:00:53 00:00:27

SHIBBS 16 27 00:39:36 00:04:43

Subject 7 - M

JADE 6 13 01:51:43 00:03:38

fICA 6 17 00:10:43 00:04:38

TDSEP-EVD No good separation

TDSEP-JD 6 13 00:00:57 00:00:33

SHIBBS 5 12 00:52:28 00:20:19

Subject 8 - M

JADE 11 18 03:46:23 00:01:14

fICA 8 14 00:12:59 00:02:12

TDSEP-EVD No good separation

TDSEP-JD 11 15 00:00:18 00:00:11

SHIBBS 12 18 00:34:07 00:00:58

Subject 9 - M

JADE 13 24 02:04:29 00:02:38

fICA 12 21 00:53:12 00:05:53

TDSEP-EVD No good separation

TDSEP-JD 11 20 00:00:43 00:00:23

Continued on next page
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Table 3.1 – continued from previous page

Number of Components Time (hh:mm:ss)

SHIBBS 15 26 00:41:14 00:03:33

3.2.2 Identification Phase-Finding the cardiac components

Kurtosis

In order to overcome the problem of outliers the value of kurtosis is calculated on time

intervals of ten seconds in each unmixed data. The number of intervals depends on the length

of the unmixed data (time acquisition). The kurtosis values calculated in each period are given

as input to a histogram procedure where the number of bins is between 8 and 20, according to

the acquisition time.

The histogram is here used as a form of data binning, that is a pre-processing technique

applied to reduce the effects of minor observation errors: In fact the averaged value of kurtosis

(calculated over the intervals) is substituted by the most frequent one.

In the Table 3.2 is shown that, by using the histogram, the kurtosis values are less biased

by artifacts that instead appear a few times in the unmixed data.

Table 3.2: Kurtosis in five different sources computed with (second column) and without (first column)

histogram

Sources Kurtosis Kurtosis + Histogram

Heart-1 11.20 11.26

Noise 94.11 0.23

Heart-2 90.41 37.70

Noise 20.36 9.35

Gaussian Noise 0.11 0.13

The value of kurtosis for the unmixed data related to the heart (Figure 3.7a and c) and

to the continuous noise (Figure 3.7e) remains leptokurtic and mesokurtic, respectively, apart

from the fact that the histogram is used for computing the kurtosis value or all data samples

are used. This occurs as in these sources the value of the 4th order moment remains constant
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Figure 3.7: Sources with different values of kurtosis: a) and c) Heart related components; b) and d)

non gaussian distribution noise; e) continuous noise
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over the time intervals. In the first source of noise (Figure 3.7b) (kurtosis 94.11 and 0.23 using

the procedure without and with histogram, respectively) the drawback of the usual kurtosis is

clear: Its high value without the histogram procedure is given by the abrupt artifact occurred

around the 298th second since the value of kurtosis (94.11) has been calculated using a normal

average procedure instead of using the histogram result.

Twenty-five examinations of volunteers have been used to determine the kurtosis threshold

(KT) which may discriminate continuous noise from the other components, after the application

of SVD or TDSEP-JD. Using the values displayed in Figure 3.8 two thresholds have been defined

for kurtosis, after eliminating those values lower or greater than avg ∓ 2σ (σ is the standard

deviation (SD) and avg the mean value, calculated over the examinations). The values are

then validated in the 40 remaining patients.

Figure 3.8: Minimum kurtosis value related to cardiac activity in 25 volunteers: The red color is related

to the kurtosis values after computing SVD and its error bars, the blue color to the kurtosis values after

computing TDSEP and its error bar, the magenta color is TKTDSEP , the green color TKSV D

The thresholds are 0.33 for SVD (TKSV D) and 0.78 for TDSEP (TKTDSEP ): The unmixed

data having a modulus of Kurtosis below these thresholds are defined as continuous noise.
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Correlation

The methods described in section 2.8.6 are applied to eight examinations in order to verify

which of them is more suited for a user-independent noise reduction.

In Figure 3.9 an example of unmixed data related to the cardiac activity with the corre-

sponding correlation values is shown.

All three methods (CM1, CM2, CM3) succeed in the recognition of cardiac sources, but

among them CM1 has demonstrated to be the best indicator for heart activity in the unmixed

channels. In fact the correlation values obtained with this algorithm on the unmixed data, after

the application of TDSEP-JD, have the minimum σ across the examinations when compared

to CM2 and CM3. The SD σ in the three methods CM1, CM2 and CM3 is 0.01, 0.14 and 0.15,

respectively (i.e., the SD derived by the application of either CM2 or CM3 is 10 times higher

than applying CM1). Due to their elevated variability, CM2 and CM3 are not good pretender

for determining a threshold.

A summary of the values obtained is displayed in Table 3.3.

Table 3.3: Minimum value of correlation with cardiac activity in the sources: CM1 (avg = 0.99 and

σ = 0.01), CM2 (avg = 0.61 and σ = 0.14), CM3 (avg = 0.51 and σ = 0.15). The correlation values

with CM1 have lower variability (10 times lower) than the ones obtained by CM2 and CM3. The subject

4 is highlighted since this examination is used for the Figure 3.9

Examinations CM1 CM2 CM3

Subject 1 0.998 0.741 0.741

Subject 2 0.995 0.784 0.718

Subject 3 0.996 0.626 0.556

Subject 4 0.981 0.594 0.400

Subject 5 0.993 0.383 0.505

Subject 6 0.966 0.580 0.380

Subject 7 0.993 0.680 0.392

Subject 8 0.992 0.460 0.370

The bigger stability of the first algorithm (CM1) when compared to CM2 and CM3 is due

to the values of correlation, calculated on the averaged beats: Using averaged beats a part of

the variability that depends on the noise vanishes.
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Figure 3.9: Cardiac sources of the subject 4 in Table 3.3 with different correlations in an examination

carried out in noisy environment: a) Correlation value: 1.00 b) Correlation value: 0.981 (this is the

minimum correlation value associated with cardiac activity) and c) Correlation value: 0.994

Figure 3.10: Minimum correlation value related to cardiac activity in 25 volunteers: The red curve is

related to the correlation value after computing SVD and its error bar, the blue curve to the correlation

value after computing TDSEP and its error bar, the magenta curve to the CTtdsep, the green curve to

the CTsvd
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The twenty-five examinations analyzed in paragraph 2.8.6 are used to determine the correla-

tion threshold (CT) which can discriminate the cardiac activity from the remaining components

after the application of kurtosis. The CT will be then validated in the 40 remaining patients.

Using the identification group (Figure 3.10) the CTs, CTtdesp = 0.99 (TDSEP) and CTsvd =

0.982 (SVD), are calculated using the same procedure as in the definition of KTSV D and

KTTDSEP . If the correlation in a source is less than CT, that source has been removed since

it is defined to contain more noise than cardiac activity.

Fifteen CHD patients that have undergone pharmacological stress MCG, are also used for

determining the correlation and kurtosis thresholds. Two different thresholds are estimated for

each methodology (one to be applied during rest and the other one during stress) for a total

of 8 values. Among these values, only the two correlation thresholds CTrest and CTstress, after

the application of TDSEP can be used.

The value of kurtosis (Figure 3.11 and Figure 3.12) cannot be applied to the validation data

since the value of SD in all cases is very high, in a case even higher than the average (Table

3.4, average = 1.59 vs SD = 1.60).

Figure 3.11: Minimum kurtosis value (with error bar) related to the cardiac activity after the appli-

cation of SVD in 15 patients: The red line is related to the kurtosis value at rest, the blue one to the

kurtosis value after stress. The values of SD (error bars) are high, especially when considering the stress

case (0.58 vs 0.40)

The values of CT for SVD cannot defined since the correlation of the last heart-related
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Figure 3.12: Minimum kurtosis value (with error bar) related to the cardiac activity after the appli-

cation of TDSEP in 15 patients: The red line is related to the kurtosis value at rest, the blue one to

the kurtosis value after stress. The values of SD (error bars) are high, in case of rest MCG even higher

than the mean value

Table 3.4: Kurtosis thresholds in PSMCG with SDs

Methods TDSEP-rest TDSEP-stress SVD-rest SVD-stress

Average 1.59 0.82 0.86 1.01

SD 1.60 0.63 0.41 0.58

components had a large variance, especially when the variance in the stress phase (0.22 and

0.35, rest and stress respectively) was estimated (Figure 3.13).

On the contrary when TDSEP-JD is applied, the value of correlation in the last cardiac-

related component is much more reliable: The value of SD is 0.025 during rest and 0.013 under

stress so that it is possible to calculate a unified threshold for the validation. The values of

correlation are different during rest and under stress: CTt−rest = 0.973 and CTt−stress = 0.987,

respectively (Figure 3.14).

After having found the components to be rejected, the cleaned signals are calculated ac-

cording to section 2.8.7.

The different thresholds (KTsvd,KTtdsep,CTsvd,CTtdsep,CTt−rest,CTt−stress) are then applied

to the remaining data sets: rest MCG, stress MCG and patients with already ICD implanted.
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Figure 3.13: Minimum Correlation value (with error bar) related to the cardiac activity after the

application of SVD in 15 volunteers: The red line is related to the correlation value at rest, the blue one

to the correlation value during stress. The values of SD (error bars) are high, especially when considering

the stress case (0.35)

Figure 3.14: Minimum Correlation value related to cardiac activity in 15 volunteers with error bar

after the application of TDSEP: The red curve is related to the correlation value at rest, the blue one to

the correlation value during stress. The values of SD are much lower than in SVD (see Figure 3.13):

0.025 and 0.013 at rest and during stress, respectively
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3.2.3 Validation Phase-Cleaned data

Rest Data

SVD and TDSEP are applied to the residual 40 RMCG. An example for each typology of

data is given. To display the results of the different separation techniques, the following scheme

is used (Di Pietro Paolo et al. (2006a)):

• The two channels with maximum and minimum amplitude at R-peak in two data sets

with different SNR and their related spatio temporal representation using the MF with

related color bar (Figure 3.15),

• Three selected unmixed data determined applying SVD: noise, component with high

correlation and one component with a special disturbance or feature related to the ex-

amination (Figure 3.16a: acquisition with low SNR; Figure 3.16b: acquisition with high

SNR),

• Three selected unmixed data estimated applying TDSEP: noise, component with high

correlation and one component with a special disturbance or feature related to the ex-

amination (Figure 3.17a: acquisition with low SNR; and 3.17b: acquisition with high

SNR),

• The two cleaned channels with maximum and minimum amplitude at R-peak using the

SVD algorithm: Figure 3.18a shows the results of the denoising process in an examination

with low SNR (compare to Figure 3.15b). Figure 3.18b shows the results of noise reduction

in the examination with high SNR (compare to Figure 3.15a),

• The two cleaned channels with maximum and minimum amplitude at R-peak using the

TDSEP algorithm: Figure 3.19a shows the results of the denoising process in an exami-

nation with high SNR (compare to Figure 3.15 a). Figure 3.19b shows the results of noise

reduction in the examination with low SNR (compare to Figure 3.15 b).

The separation into noise and cardiac components in RMCG works well both for SVD

and TDSEP-JD according to the percentage of automatically recognized sources: In fact, the

correlation threshold CTSV D determined using SVD (0.982) is successful (FC) with a percentage

of 92%. This percentage is calculated as the ratio between the automatically recognized heart

related components (TP) and all the heart related components (visual inspection) multiplied

then by 100 (see section 2.8.8).
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(a)

(b)

(c) (d) (e) (f)

Figure 3.15: Time display of the two channels with maximum (upper row) and minimum amplitude

(lower low) at R-peak: a) signal with high SNR; b) signal with low SNR; c) Spatio-Temporal repre-

sentation of the averaged 55 channels in Figure 3.15a: The MF map corresponds to the time instant

Q-max (i.e. red line in Figure 3.15a); d) color bar of the MF amplitude related to Figure c); e) MF

map corresponding to the time instant Q-max (i.e. red line in Figure 3.15b); f) color bar of the MF

amplitude related to Figure e). Note that the MF amplitude in the signal with high SNR is 10 times

higher than the MF in the signal with low SNR
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(a) (b)

Figure 3.16: Three out of the 55 sources using SVD in two examinations a) unmixed data coming

from a measurement with low SNR. Upper row: cardiac signal; middle panel: sources with both cardiac

and noise signals; lower panel: gaussian noise b) unmixed data coming from a measurement with high

SNR. Upper row: gaussian noise; middle panel: cardiac signal; lower panel: cardiac signal

In 24 out of the 40 validation measurements 1 up to 4 components are not recognized, but

the unmixed data are more related to the noise than to the cardiac signal (very low SNR); on

the contrary the components with only cardiac components (high SNR) are always detected.

Concerning TKsvd = 0.33, the threshold has a success rate (FC) of 91%. In determining

this percentage only the FN defined as heart related components exchanged with noise have

been included, since kurtosis can only differenciate between continuous noise and signals with

distribution different from the gaussian one. In the second stage of the denoising process the

FP (noise confused with heart cardiac signal) can be easily detected by using the correlation

matching routine. Considering both methods together (kurtosis before for eliminating the

continuous noise followed by CM1 for detecting the cardiac sources), the method has a successful

rate of 88%. This percentage depends on the fact that the 91% successful rate using kurtosis

and 92% successful rate using correlation do not always have the same population.

The results concerning the automatic recognition of cardiac components obtained with TD-

SEP for the RMCG are better than with SVD in terms of automatic separation. The kurtosis

value for eliminating the continuous noise TKtdsep = 0.78 (using only the FN) is successful in

98.0% of cases: As in the case of kurtosis, the false positive (FP) can be easily eliminated with

the method based on the correlation. The correlation threshold produces good results in the

97% of cases. Joining the two methods a 93% success rate has been reached.The sensitivity

and specificity (section 2.8.8) are also used. The kurtosis method has got a good sensitivity,
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(a) (b)

Figure 3.17: Three out of the 55 sources using TDSEP in two examinations a) unmixed data coming

from a measurement with low SNR. Upper row: disturbances; middle panel:cardiac signal; lower panel:

gaussian noise; b) unmixed data coming from a measurement with high SNR. Upper row: cardiac signal

(T-wave); middle panel: cardiac signal (R-peak); lower panel: gaussian noise

but not a good specificity especially with TDSEP-JD since kurtosis can only be used for recog-

nizing continuous noise related components with a distribution very close to the gaussian one:

artifacts, non-gaussian noise and cardiac components cannot be identified. If only components

with cardiac activity are used, kurtosis has shown to be very sensitive (100% in both cases,

SVD and TDSEP): In fact only a few sources related to the cardiac signal are misinterpreted:

1 and 7, respectively. Problems occur in the unmixed data both heart and noise related: In

this case the sensitivity decreases (84% in case of SVD and 96% for TDSEP) in terms of num-

ber of componentes 65 vs 45. The method based on the correlation provides good sensitivity

and specificity. In fact it differentiates noise related components and cardiac related with

good results (100% sensitivity if components with only cardiac components are considered).

A summary of the results is in the Tables 3.5 and 3.6. SVD outperforms TDSEP in case

Table 3.5: Sensitivity and specificity for Kurtosis: (C) The sensitivity is computed on cardiac related

components, (M) the sensitivity is computed on mixed related components

SVD (%) TDSEP (%)

Specificity 74 63

Sensitivity (C) 100 100

Sensitivity (M) 84 96
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(a) (b)

Figure 3.18: a) Cleaned signals (SVD) in an examination with low SNR (compare to Figure 3.15b) b)

Cleaned signals (SVD) in an examination with high SNR (compare to Figure 3.15a)

(a) (b)

Figure 3.19: a) Cleaned signals (TDSEP) in an examinations with low SNR (compare to Figure 3.15b)

b) Cleaned signals (TDSEP) in an examination with high SNR (compare to Figure 3.15a)

Table 3.6: Sensitivity and specificity for correlation: (C) The sensitivity is computed on cardiac related

components, (M) the sensitivity is computed on mixed related components

SVD (%) TDSEP (%)

Specificity 97 100

Sensitivity (C) 100 100

Sensitivity (M) 96 77
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of measurements with high SNR, on the contrary if the acquisition has a low SNR TDSEP

performs better. This result can be explained evaluating the number of cardiac components

not correctly classified using kurtosis (1 for SVD and 10 for TDSEP).

Pharmacological Stress MCG

The two thresholds CTtrest and CTtstress estimated by the application of TDSEP-JD on the

identification population are applied to the 25 CHD patients. The goodness of the methods is

estimated using the sensitivity and the specificity after the automatic recognition of the heart

related components (Di Pietro Paolo et al. (2006c)). Table 3.7 shows that the specificity of

the correlation method is very high (100% in both cases, rest and stress measurements), the

sensitivity, if the components with low SNR are considered, is 89% at rest and 90% under

stress.

Table 3.7: Sensitivity and specificity for Correlation at rest and during stress

TDSEP rest (%) TDSEP stress (%)

Specificity 100 100

sensitivity (M) 89 90

Examples of data cleaning in RMCG and SMCG are shown in Figures 3.20 and 3.21. Both

(a) (b)

Figure 3.20: a) Raw RMCG: in the upper panel a channel with low SNR: Patients artifacts and drifts

are displayed; the lower panel displays the channel with maximum amplitude b) Cleaned RMCG signal

using TDSEP: the disturbances in 3.20a (upper panel) are vanished, in the channel with maximum

amplitude an improvement of the SNR is evident
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figures show 4 seconds of raw data in a rest and under stress measurement before a) and after

b) application of TDSEP: The channels represented in the pictures portray a signal with large

disturbances and a channel with the maximum of amplitude of the QRS-complex. After the

application of TDSEP the noise, especially in the channel with lower SNR (compare Figure

3.20a upper panel with the corresponding panel in Figure 3.20b) has greatly decreased (circa

a factor of 10): The disturbances caused by artifacts, large drifts etc are almost disappeared

so that it has been possible to depict the heart cardiac signal. In SMCG, TDSEP has intro-

duced some noise in the channel with higher SNR (compare Figure 3.21a lower panel with the

corresponding panel in Figure 3.21b).

(a) (b)

Figure 3.21: a) Raw SMCG: in the upper panel a channel with low SNR: Patients artifacts, drifts are

displayed; the lower panel displays the channel with maximum amplitude b) Cleaned SMCG signal using

TDSEP: the disturbances in 3.21a (upper panel) are vanished, in the channel with maximum amplitude

the application of TDSEP caused a droop of the SNR

Ergometer Stress MCG

The value of threshold CTtdsep = 0.99 has a success rate of 95.0%. The elimination of er-

gonomic disturbances around 8-10 Hz gives good results using the FFT transformed sources.

Figure 3.22a shows the power spectrum of a channel before and after the application of TDSEP.

The black dots represent the power spectrum of a channel dominated by two disturbances at

high frequency (around 8-10 Hz) and at low frequency (around 1 Hz). The green curve rep-

resents the power spectrum of the same channel after the application of TDSEP: The distur-

bances at high and low frequencies disappear Di Pietro Paolo et al. (2006b). To have a direct

comparison, the Figure 3.22b shows the power spectrum of the same channel but at rest.
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(a)

(b)

Figure 3.22: a) Spectrum of SMCG data before (green) and after (black dots) ICA cleaning in the

channel with maximum R-peak amplitude. The arrow indicates the vanishing of the peak between 8 and

9 Hz and below 1 Hz b) Spectrum of rest measurement (rescaled for direct comparison to (a))
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In order to quantify the performances of the four algorithms for stress measurements, the

RMS before and after the application of the BSS methods are computed on the averaged

magnetic signals in the segment [Q-onset-30ms, Q-onset] since in this region, under normal

condition, the signal amplitude is very low: It is not used as region the Tend-P-onset segment

since, especially in measurements under stress, the two waves can overlap.

Table 3.8 shows the percentage of noise reduction: The analysis with ergometer disturbances

shows that all BSS methods give a significant SNR improvement (although the results in terms

of SNR and morphology of the cleaned signals are different) compared to the SNR before the

application of these methods. Singular Value Decomposition is not included since it fails in all

subjects: it could not separate the disturbances coming from the ergometer and the cardiac

activity (Figure 3.23c). Figure 3.23 shows an example of denoising: The drawings are based

on the data of the subject no. 9, highlighted in Table 3.8. Fast ICA using as contrast function

2.32 gives the worse results in terms of noise reduction (Table 3.8). When compared to the

other methods, fICA results in a deformed QRS wave, and furthermore power-line disturbances

appear. The other BSS methods (TDSEP-JD, SHIBBS and JADE) have better results and

similar each other: The only difference is in the reconstruction of the T-wave. Using SHIBBS

and JADE some information of the repolarization phase are lost (see the difference in the

T-wave amplitude among JADE, SHIBBS and TDSEP-JD).

Table 3.8: Percentage of noise reduction in the 12 subjects: The label ”No” for subject 8 means that for

that subject data the algorithm did not converge. The highlighted column indicates the noise reduction

values for the data drawn in Figure 3.23

Subject 1 2 3 4 5 6 7 8 9 10 11 12

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

fICA 86 78 50 93 96 83 90 73 88 96 92 96

JADE 87 95 95 98 97 93 91 No 93 98 95 99

SHIBBS 90 95 93 98 94 89 92 79 94 98 94 98

TDSEP 96 97 97 98 91 95 96 84 96 99 97 99

Figure 3.24 displays the results of noise reduction in 3 out of the 55 channels of subject no.

9 (Table 3.8): In Figure 3.24a a channel with very low SNR is shown, Figure 3.24b displays

the channel with maximum positive R-peak and Figure 3.24c displays the channel with the
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Figure 3.23: Differences in noise reduction in an ergometer SMCG (patient no. 9) using a overlay

display: a) Averaged stress measurement with ergometer movement; b) Averaged stress examination

after the application of SHIBBS: Note the lower amplitude of T-wave when compared to Figure e);

c) Averaged stress examination after the application of SVD: The high frequency disturbances are still

present; d)Averaged stress examination after the application of JADE: Note the lower amplitude of

T-wave when compared to Figure e); e) Averaged stress examination after the application of TDSEP,

f) Averaged stress examination after the application of fICA (using as contrast function the hyperbolic

tangent): In this case not only the T-wave has a lower amplitude, but the noise level is higher and

power-line noise has been introduced
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maximum negative R-peak.

Figure 3.24: Differences in noise reduction in an ergometer stress data set in 3 out of the 55 channels.

The original averaged raw measurement (green) is compared with the results of the cleaning procedure

by applying the BSS and SVD (cyan) methods: a) channel with low SNR ); b) channel with maximum

positive R-peak; c) channel with maximum negative R-peak

Data from patients with Implanted Cardiac Device

Until now, it has not been possible to perform biomagnetic measurements in patients with

ICDs. In fact, the presence of this device in the thorax (normally located inside the chest

on the left shoulder) of the patient leads to very strong interferences (Figure 3.25), that are

orders of magnitude larger than the biomagnetic signal of the heart. For this reason, ICDs and

pacemakers are among the exclusion criteria for studies concerning MCG. Contrarily to the

other data typology (rest and stress data), the CM1 and KT procedures failed in separating

between ICD disturbances and cardiac signals. For this reason visual inspection of the averaged

unmixed data S is used to discriminate between noise and signal of interest (Figure 3.26). For

selecting the un-mixed channels to be used for heart signal recovery, averaging of the time

intervals corresponding to the heart beats has to be performed. In order to obtain the averaged

un-mixed data, the HRECG data are recorded simultaneously. The details of the averaging

process are described in section 3.1.
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Figure 3.25: Representative channel showing the interferences caused by the batteries contained in the

ICD

Figure 3.26: Average time signal display of 4 out of the 56 unmixed data components from measurement

of patient number six: a) and b) sources representing ICD disturbances, c) the main heart related

component d) gaussian noise
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In order to quantify the performances of the six algorithms, the RMS before and after the

application of BSS is used (see section 3.2.3)(Figure 3.27). Figure 3.27 shows the averaged signal

(a)

(b)

Figure 3.27: Averaged signal before and after the application of TDSEP-Joint: Note the difference in

the interval [Q-onset-30, Q-onset] between the two averaged signals: The interval of interest is zoomed

of the patient in Figure 1.3 before and after application of TDSEP-JD; the zoom in the pictures

represents the interval where the RMS is calculated. As expected, SVD is hardly capable of

separating ICD disturbances and cardiac signal, that is why the method is not included in

Table 3.9. TDSEP-EVD cannot separate the cardiac source from the ICD disturbances in 4

out of 6 cases; contrarily TDSEP-JD performs the best so to yield a cleaned signal applicable
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Table 3.9: Percentage of noise reduction in the 6 subjects: The label No indicates those algorithms

where the separation was not successful

Subject 1 2 3 4 5 6

(%) (%) (%) (%) (%) (%))

fICA 88 No 78 No 56 26

JADE 27 83 92 94 50 No

SHIBBS No 88 92 97 61 58

TDSEP-Joint 87 98 98 92 94 60

TDSEP-EVD No 95 No 95 No No

to QRS-fragmentation.

The BSS methods based on higher order statistics (fastICA, JADE and SHIBBS) fall in

the middle in terms of separation successful rate: They have worse results in terms of noise

reduction than TDSEP-JD in all subjects but two cases where SHIBBS and fICA perform

slightly better (97% versus 92% and 88% versus 87% in the considered interval, respectively);

on the contrary the successful rate in terms of reconstructed signal after noise reduction is higher

than in TDSEP-EVD. The sensor arrangement of the patient number 6 after the application of

TDSEP-Joint is shown in Figure 3.28: The disturbances related to the ICD disappear (compare

to Figure 1.3). Figure 3.29 shows the results of the application of TDSEP-JD in the six patients

analyzing a representative channel: The low frequencies disturbances caused by ICD (in green

in the pictures) diminish in all patients although in some channels it is impossible to extract

the T-wave (Di Pietro Paolo et al. (2009)). Nevertheless, the reconstructed heart signal is to

our opinion good enough for performing QRS-fragmentation analysis (Di Pietro Paolo et al.

(2008))(Figure 3.30).

3.3 Computation time

The problem of most BSS methods, in application on data sets with many sensors and a

long recording time, is the computation time (CpT): In fact, especially in methods based on

HOS the computational load raises exponentially with the number of acquisition points. Since

nowadays, it is common that the workstations used to analyze the data have two or more CPUs,

physical or logical, it was possible to optimize the different components and makes it possible

the use of paralyzed and scalable algorithms in order to exploit the presence of these additional
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Figure 3.28: Averaged Signal: sensors arrangement

processors. In order to use these features, the data are divided into 2 groups (not in case of

ICD patients) homogeneously distributed over the sensor area. Then the BSS methods are

independently applied at each group so that two unmixing matrices and two sources matrices

are calculated separately. The computational load has been measured on a four processors

AMD Opteron (2 GHz and 3.5 GB RAM). The routines are written in C++ language and

compiled using gcc.

The methods show very different results: Those based on SOS have better performances

than HOS methods: For one sensor group the convergence speed has been of the order of some

minutes (3-5 minutes) whereas that of JADE and SHIBBS of the order of hours (2-3 hours)

(ICD patients). Fast ICA shows, from this point of view, intermediate CpT. The performances

of the algorithms depend on the number of observation (number of channels) especially in the

JADE and SHIBBS algorithms since, in those cases, the number of calculations to be performed

grows exponentially with the number of channels.

Tables 3.10 and 3.11 show the results of the algorithms application in a 100s and 300s
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Figure 3.29: Averaged Signals: In green are shown the cleaned signals, in red the signals with ICD

interferences: the disturbances caused by the ICD disappear
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Figure 3.30: Illustration of QRS fragmentation in two patients: a) QRS fragmentation of a shocked

patient, b) QRS fragmentation of a patients that did not shock: Note the difference in the fragmentation

level into the two cases

Table 3.10: Computation time of 5 algorithms: SVD and TDSEP have lower CpT compared to HOS

methods. FICA show intermediate CpT. SHIBBS and JADE need more than one hour for extracting

the sources

SVD TDSEP SHIBBS JADE fICA

(mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc)

1 processor 00:05.78 01:16.32 > 1 hour > 1 hour 06:43.77

2 processor 00:03.17 00:39.79 > 1 hour > 1 hour 06:23.08

4 processor 00:01.93 00:22.69 > 1 hour > 1 hour 06:46.78

Table 3.11: Computation time of the 5 algorithms: see table 3.10. In this case a 300s examination is

used: The computational time is circa tripled when compared to the results of the 100s measurement

SVD TDSEP SHIBBS JADE fICA

(mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc)

1 processor 00:18.70 03:45.87 > 1 hour > 1 hour 06:43.77

2 processor 00:03.17 01:54.69 > 1 hour > 1 hour 06:23.08

4 processor 00:01.93 01:03.84 > 1 hour > 1 hour 06:46.78
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Table 3.12: Computation time of the two algorithms, note that a 5 min measurement (300 s) is

performed within 2 min

SVD TDSEP SHIBBS JADE fICA

(mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc)

1 processor 00:10.38 01:51.09 38:52.58 10:27.17 06:36.52

2 processor 00:05.38 00:55.06 19:38.46 07:04.00 03:36.38

4 processor 00:03.37 00:30.04 11:50.89 05:17.04 02:18.69

Table 3.13: Computation time of the 5 algorithms with different processors. SVD and TDSEP had the

better results. HOS methods, specially the ones based on the cumulants have dramatically reduced the

computational load when comparing this results with the one in table 3.11

SVD TDSEP SHIBBS JADE fICA

(mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc) (mm:ss.cc)

1 processor 00:03.38 00:37.93 11:54.98 03:31.68 02:15.57

2 processor 00:01.85 00:18.22 06:54.54 01:53.22 01:18.96

4 processor 00:01.25 00:09.95 06:21.63 02:07.21 01:22.37

examination, respectively. Since the parallelization in the HOS methods is related to the

division into 2 groups, the time necessary for unmixing the data is very similar when comparing

1, 2 or four processors.

Tables 3.13 and 3.12 show the results of the algorithms application in a 100s and 300s

examination. In these tables the sensors are divided into two groups. Also in this case the

algorithm with lowest CpT is SVD, followed by TDSEP-JD. Contrarily at what expected, the

JADE algorithm gives better results than SHIBBS, although the number of cumulant matrices

is higher. The fact that the computational load in the HOS methods is increasing when the

number of processor is four is due to the fact that the algorithms are threaded considering the

division in group. TDSEP has been parallelized calculating independently from each other the

delayed matrices.



Chapter 4

Discussion

The most used method for increasing the SNR of the MCG signals (as well as for most of

biological signals: ECG, EEG, MEG, ABR) is the classical technique of EA in time domain.

However, many requirements must be fulfilled to obtain the well-known improvement of the

SNR with the square root of the number of samples: In reality, the stationarity is often violated

and many efforts have been made for obtaining an optimum method. The work of Hoke et al.

(1984) (Hoke et al. (1984)) showed how the highest SNR could be obtained if the inverse power

of the noise σ2
i of one epoch was assigned as weighting wi to sweep the signal, but it is possible

that when the σi are determined from the same data-set as the signal S(t), this estimator,

which included σi, is not bias free, and the signal could be underestimated (Lutkenhoner et al.

(1985)). Furthermore, Mühler and von Specht (1999, 1996) (Mühler and von Specht (1999,

1996)) proved how the maximum SNR could be obtained ordering the epochs according to

their noise level; however this could be done only if a good measurement of noise is possible.

As mentioned in section 2.7.3 in case of MCG this estimation was faulty, for this reason a

workaround to the noise calculation was applied.

In this work, an alternative method for averaging MCG signals was presented: Using estab-

lished ventricular activation detection techniques applied on the reference data, disturbances

and artifacts that appeared in the MCG channels with different amplitudes were eliminated.

Two methods were used to take care of the effects of noise instability (non-stationarity, vari-

ability etc.) on SNR: The former one was the common method to reject the beats exceeding

a certain level of parameters classified as artifacts from the averaging process, the latter was

the CCA that was used to sort the beats according to their estimated global noise including

biological variability and the non-stationarity of the noise. Categorized cluster analysis was
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applied in an improper way and it was used to generate a dendrogram that assembled all el-

ements in a single tree, associating to each element an increasing dissimilarity starting with

low-noise beats (- more similar beats) and then adding, at each step, a different block of beats

or cluster. The resulting curve, representing the SNR (as a function of the number of samples,

in this case one beat or a group of similar beats), could be modeled as in Figure 3.1, curve

b. Due to the non-stationarity of the signal the SNR function did not behave like in Figure

3.1 curve a, where the well-know SNR was shown (SNR increased with the square root of

the number of samples), but by averaging more and more clusters, the dependency reached a

maximum in Figure 3.1, curve b. This behavior was explained mathematically in section 3.1

where the known derivation of the SNR after the average was extended in order to consider

the non-stationarity of the noise, or better a piecewise stationarity.

In fact, analyzing the noise level in each MCG channel and in each cluster of beats added,

the goal of optimum SNR was reached whenever the condition in eq. 3.13 was verified; i.e., if

the increase of noise power (represented in this case by the signal variance in each ”block”),

caused by the inclusion of a new cluster, overbalanced the increase of the denominator caused

by raising the number of blocks by one, then a maximum could be obtained (eq. 3.6). In other

words, a maximum was reached if the variance calculated at the ”block” x + 1 was at least

twice the averaged variance calculated till the ”block” x.

The main problem was that the procedure of a coherent or quasi-coherent averaging tech-

nique worked well if the noise level was small enough so that the fiducial points (in general

a point in the QRS complex), as a synchronization reference, could be correctly estimated.

As the locking to these fiducial points was not always exact, jitters of the signal, related to

these points, occurred and introduced, in the averaging procedure, a low pass filter with a time

constant τ = 1
σ where σ was the square root of the jitter variance.

Furthermore, in case the SNR was very low, the fiducial points to be estimated were not

exactly positioned, leading to an incorrect average. For this reason a preprocessing (BSS

methods) for reducing the noise level was necessary before the average procedure.

As already mentioned BSS methods were already successfully applied in MEG and EEG

recording. Since, especially in neurophysiology, time series and not observations from a certain

distribution are treated, an attractive framework is the simultaneously diagonalization of ap-

propriately defined matrices: in case of TDSEP-JD these matrices are time-delayed correlation

matrices. In fact using TDSEP-JD it was possible to solve the problem of the inadequate
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separation of more than one Gaussian signal, present in the ICA methods (Ziehe et al. (2000)).

The results in chapter 3.2, where TDSEP-JD outperformed the other methods, confirmed

the statement aforementioned: In fact the electrophysiology in the heart involves several sources

(cells) that are rather related by a temporal pattern than independent.

Many efforts were devoted to artifact cancellation and to make it an automatic procedure.

Despite the large number of existing methods (see section 1.2) used for artifacts removal, few

algorithms were tested with a sufficient number of subjects and exhaustive studies were made

only on simulated/synthetic data.

Although a comprehensive study on the application of ICA to EEG/MEG noise and artifacts

rejection has been carried out extensively, there was no general approach for ECG/MCG. Thus

a systematic BSS noise reduction procedure was still missing and an adequate number of

subjects had still to be enrolled.

In fact He et al. (2006) (He et al. (2006)), that applied kurtosis and a method based on the

variance for detecting the continuous noise and artifacts in the ECG data, only used 10 data

set from healthy subjects. Furthermore, the paper did not analyze the case of RR-interval less

that 1 s and non periodic signals. In that situation problems could rise since the interval for

the variance-based method was fix, and it did not depend on the RR-interval of the subject

under examination.

In this thesis this problem was avoided using as reference for the calculation of the correlation

the reference data (ECG/MCG data): In this way the variability and the length of the RR-

interval were taken into account.

Moreover, in comparison to the other studies aforementioned, where the number of real data

set estimated was very limited, here a higher number of examinations was analyzed.

In this thesis 5 BSS algorithms were first applied to 9 RMCG examinations in order to find

the method to be the best in terms of cardiac signal separation and computation time. They

were based on different assumptions: SOS methods (TDSEP-EVD and TDSEP-JD) were able

to separate the observations that had a temporal structure even in presence of gaussian sources,

whereas the other three methods (based on HOS) were able to separate sources without tem-

poral structure, but independent and with at most one gaussian source. Another substantial

difference among the algorithms was the number of parameters that had to be optimized to

obtain good separation in terms of performances. Achieving a good separation was highly

dependent on tuning the many parameters. Temporal Decorrelation Source Separation had
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several parameters to be set: The time delays of the matrices, whose number depended on the

properties of the signal to be detected. This could make the use of SOS algorithms problem-

atic in clinical applications since changing the surrounding environment or even examination

would mean to continuously update the parameters: Anyway the use of many time delays

corresponding to the main characteristics yielded good performances, although not optimal

(Section 2.8.3). JADE and SHIBBS could run without any parameters to be set and fICA only

had two or three to be chosen (the type of approach, the step size, the possibility to have or

not a fine-tune).

The key to assuring that the BSS components cleanly captured the artifact signals and

separated them from the components of cardiac activity was to choose a BSS algorithm whose

underlying assumptions most closely matched the physical properties of the problem at hand.

Such considerations are necessary because BSS solutions could not be validated by directly

measuring the cardiac activity.

Among the different methods (TDSEP-EVD, JADE, SHIBBS, fICA, TDSEP-JD), the al-

gorithm to be compared with the standard de-noising algorithm (SVD/PCA) resulted to be

TDSEP-JD. The method based on the average of the time-delayed covariance matrices and

symmetric EVD (TDSEP-EVD) gave the worse results in terms of noise reduction: Its robust-

ness with respect to the noise was poor, especially when the additive noise was large (case of

ICD patients) or it was not possible to estimate precisely the covariance matrix of the noise.

Furthermore, the resulting averaged matrix had to be symmetric positive definite, but this

property did not always hold after averaging. The alternative approach to EVD was applying

the approximate JD procedure on the time delayed matrices. This method gave better results

in terms of noise reduction especially for data with low SNR.

Singular Value Decomposition and TDSEP-JD were compared. In RMCG examinations

recorded in shielding room, the SNR was sufficiently high: Under this assumption there was

a clear distinction between large and small eigenvalues. Since the small eigenvalues in SVD

were defined to be related to the noise, the associated eigenvectors could be zeroed. As in

TDSEP-JD there was no order in the unmixed data, it was impossible to a priori eliminate

the last components as in SVD.

To resolve this problem and to further improve the SNR in SVD, methods for automatically

detecting the heart signal were developed: kurtosis, beat-to-beat correlation and power spec-

trum of the Fourier transformed signals (Section 3.2.2). The cardiac detection procedure was
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composed in several steps:

1. identification of the continuous or almost continuous noise using kurtosis, already suc-

cessful for eliminating continuous noise in EEG,MEG, and ECG (Cichocki and Vorobyov

(2000); Greco et al. (2005));

2. the detection of the heart beats by means of the correlation in the remaining components;

3. frequency based technique for eliminating residual mains interferences, if any.

Using the thresholds TKsvd = 0.33, TKtdsep = 0.78 (for kurtosis) and CTtdsep = 0.99, CTsvd =

0.982 (for the correlation), found in the identification group, good results were achieved in terms

of noise reduction and automatic selection of the heart related components: The sensitivity

(Table 3.5 and Table 3.6) had 100% rate successfull applying the thresholds defined above when

analyzing the components only related to the cardiac activity. In case the unmixed data with

mixed signals were examined, the sensitivity decreased: SVD sensitivity lowered till to 84%

whereas TDSEP-JD to 96% after the application of kurtosis; if correlation was used TDSEP had

a successfull rate of 77% (96% SVD). Briefly, in case the unmixed data were considered SVD

had a better successfull rate than TDSEP if kurtosis was applied, but worse if the correlation

was used.

Finally, for RMCG acquisitions with high SNR, SVD performed better than TDSEP al-

though the sensitivity and the specificity related to the automatic recognition of noise and

heart related components worked slightly better with TDSEP.

When applying SVD and TDSEP to SMCG the results were different in case of PSMCG or

ergometer SMCG. In the former case (PSMCG) it was impossible to find a reliable threshold

for the automatic identification of heart related components in SVD: This was due to SVD

that was not able to completely separate cardiac signals and disturbances at high (muscular

activity) and low frequency (breath, for example). For this reason, the cardiac beats (cardiac

sources with low SNR) were still mixed with these extra activities, hampering the correct

retrieval of the threshold and a cleaned measurement, as well. On the other hand, applying the

TDSEP-JD algorithm to the 15 examinations of the identification group in PSMCG gave two

different values of CT (for the rest and stress phase) with low variance. The threshold value

estimated during the stress phase was higher than the one during rest (CTt−rest = 0.973 and

CTt−stress = 0.987, respectively): The explanation could be that the number of averaged QRS

complexes to be averaged in the stress phase was higher since the RR interval decreased.
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In the latter case (ergometer SMCG) SVD was not able to separate the cardiac beats

and the noise from the ergonomic disturbances: The orthogonality requirement for signal and

noise subspaces (as in SVD) was not sufficient. Apparently, the forces applied to operate

the ergometer under typical workloads produced movements and vibrations which somehow

transferred to the patient bed, reaching perhaps the structure of the magnetically shielded

room and the dewar gantry, thus leading to the generation of vibrations. Two dominant

disturbances occurred: one at higher frequency (around 8-10 Hz) and one at lower frequency

(lower than 1 Hz). In ergometer SMCG, kurtosis was not used since the number of gaussian

noise sources was paltry: For this reason after the correlation procedure a further method

based on the frequency was needed to eliminate the frequency-dependent disturbances, in case

the first method did not succeed.

Four (TDSEP-JD, JADE, fICA, SHIBBS) out of the 5 BSS algorithms had been tested in

ergometer SMCG. All methods succeeded in separating the disturbances caused by the ergome-

ter treatment in almost all acquisitions. Among them, TDSEP-JD and SHIBBS outperformed

the other methods with regard to separation quality.

The HOS methods lost some components related to T-wave since the T-wave was covered

by the noise in the unmixed data and not detected by the automatic routine.

Finally in case of SMCG (PSMCG and ergometer SMCG) and RMCG (the RMCG during

the PRMCG could be considered as a normal rest acquisition, that in this case had a low SNR),

TDSEP-JD outperformed the other methods in terms of noise reduction and computing time.

The last application of BSS was related to patients with an already implanted ICD. Because

of the properties of the ICD disturbances (partial correlation to the heart beat and respira-

tion), the separation methods by means of correlation and kurtosis, could not be applied for

completely detecting the cardiac activity in the unmixed data. Therefore, operator dependent

inspection of the arithmetically averaged source signals (or unmixed data) was used to dis-

criminate between the cardiac components and the ICD disturbances. The outcomes of the

study clearly indicated that not all BSS methods were able to separate cardiac signal and dis-

turbances from all ICD patients. The TDSEP-JD gave the better results in terms of quality

of reconstruction and computational time. The success of the TDSEP-JD method compared

with other methods could be due to the ICD disturbances. These might not be completely

independent from the heart signal, but having a different spectrum when compared with all

other sources. The TDSEP algorithm followed by EVD performed very poorly when compared



Discussion 99

to TDSEP-JD. The bad TDSEP-EVD performance was given by the high variance of the set

of matrices around the averaged time-delayed correlation matrix. The SVD performed the

worst; this result had confirmed that SVD succeeded in case the SNR was not very low and the

signal and noise subspace were orthogonal. The methods based on higher order statistics per-

formed with similar results. The method validation should be performed with a higher patient

population, although consistent results were already proved (Di Pietro Paolo et al. (2008)).

Figure 4.1: Three out of the 55 sources with different SNR. a) and c): Sources with a very low SNR,

almost noise overlooked; b) sources with high SNR: in this case the sources is clearly a cardiac sources

This approach however has some limitations. One primary obstacle is that the separation

between heart related and noise related data in some unmixed data after applying BSS is not

very clear: There were components where it was very difficult to understand whether they were

noise dominated, even by the visual inspection of the expert (Figure 4.1).

This question was addressed by the correlation-based method. As a result of applying a low

threshold, the identification of these components was more accurate. However, as a side effect

the specificity decreased. So the question is: How important are the the components which

have been removed with noise or how much noise should be left?

The second limitation to this approach is that the important physiologic information may

potentially be lost if an ergometer SMCG examination is analyzed on a patient affected by atrial
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flutter or atrial fibrillation. This happens because when using FFT, the important components

of the signal around 5 Hz are eliminated by the filter.

Additionally, the references to detect the heart related components, such as the simultane-

ously recording of ECG data or the MCG data, have to be incorporated to the acquisition in

order to get more precise signal interpretation.

Another issue is that the application of SVD and ICA does not imply the existence of

neighborhood relationships: Close channels are treated during the analysis as random channels,

without considering the distance among them.

Furthermore, the thresholds are estimated according to the SNR of the recorded data: Their

value may change if another MCG system with other characteristics is used. In this thesis, a 55

recording channels MCG system has been used: The results obtained were different if another

system with other properties was used. In fact if the system does only have 8/9 channels the

result would deteriorate since there are too few observations to be evaluated. On the contrary,

if a system with a higher number of channels is taken into consideration, the BSS methods will

have very similar results or even better to the ones got in this thesis.



Chapter 5

Conclusions

This PhD thesis set out to develop new techniques for improving the SNR in the context of

MCG data.

The techniques (based on BSS and averaging procedure) were first discussed and fundamen-

tal assumptions, for having a more tractable problem, were made. Two scenarios have been

examined:

• MCG data with high SNR where a novel average procedure has been used;

• MCG data with low SNR where BSS methods have been applied.

In the former case, it was for the first time mathematically proved that the SNR in averaged

real data does not behave as expected, but reaches a maximum after a selected number of

beats.

In the latter case, it was proved that among the the different BSS methods, the more

suitable for noise reduction in MCG data was TDSEP. This can be explained pointing out that

the MCG data have a significant temporal (and spectral) structure: a high autocorrelation

among the sources. Furthermore, the use of spatial, time dependency based techniques made

for the extraction of information from underlying set of measurements even in ICD patients,

who hitherto could not be analyzed due to the strong disturbances.

The problem of TDSEP was that the order of the sources could not determined a priori :

the noise related components had to be rejected by visual inspection.

In this thesis new algorithms have been developed for the automatic detection of heart

related and noise related sources. The algorithms have been thoroughly tested and validated

using a data base of more than 100 subjects in different noise environments.
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Moreover, it was observed that separating the channels into 2 groups (each of them homo-

geneously distributed over the sensor area) sufficiently stabilized the estimates. Furthermore,

this division of data into 2 subgroups provided as side-effect the huge improvement of the

computation speed of the algorithm (last two columns of Table 3.13).

Finally, the use of synergistic methodologies such as the division of the channels into two

groups (for reducing the computational time) and the application of new user-independent

routines for noise reduction could be very helpful in case MCG would be used in clinical

routine. In fact, in clinical environments such methods could enhance the quality of the MCG

and simplify the inspection of the MCG recordings for the physicians.

It would be an interesting goal for future research to incorporate prior knowledge into the

BSS models. In some preliminary studies (Barros and Cichocki (2001)), it has been observed

that, when at the beginning statistically based assumptions are considered, a decomposition

of electromagnetic cardiac signals into physiologically meaningful information can be reached.

On the other hand, fitting cardiac sources in a classical framework, may be problematic if

some temporal overlap is present in their activations. This limitation has to be addressed since

patients with cardiac pathologies should be included in the study. In fact, the hypothesis of

strict periodicity of the heart signal may influence the performances. Hence, a well balanced

use of both, the model and appropriate a priori information, will yield a powerful exploratory

decomposition technique that is able to extract meaningful information from high-dimensional

biomedical data.
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Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic

events and mortality in patients with cardiac dysfunction after myocardial infarction. J

Cardiovasc Electr, 17(4):396–401, 2006.

O. Kosch, P. Meindl, U. Steinhoff, and L. Trahms. Physical aspects of cardiac magnetic fields

and electric potentials. In Proc. of the 12th int. conf. on Biomagnetism, pages 553–556,

August 2000.

P. Lander, E. J. Berbari, and R. Lazzara. Optimal filtering and quality control of signal-

averaged ECG. Circulation, 91(5):1495–1505, 1995.



Numerical methods for improved SNRs in spatio-temporal biomedical data 120

U. Leder., L. Frankenstein, J. Haas, V. Baier, J. Haueisen, H. Nowak, and H. R. Figulla.

Temporal properties of high frequency intra-QRS signals in myocardial infarction and healthy

hearts. Biomed Tech, 45:243–247, 2000.

H. N. Lee, T. S. Park, S. Y. Lee, and Y. Huh. Spatial filters based on independent component

analysis for magnetic noise reduction in the magnetocardiogram. Med. Biol. Eng. Comput.,

42:532–534, 2004.

M. Liehr, J. Haueisen, M. Görnig, P. Seidel, J. Nenonen, and T. Katila. Vortex shaped current

sources in a physical torso phantom. Ann Biomed Eng, 33(2):240–247, 2005.

A. Link, L. Trahms, R. Zimmermann, and M. Oeff. Complex binomial bandpass filters for

analysis phase and envelope of high frequency components in cardiac signals. Computer in

Cardiology, pages 617–629, 1994.

B. Lutkenhoner, M. Hoke, and C. Pantev. Possibilities and limitations of weighted averaging.

Biol Cybern, 52:409–416, 1985.
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Magnetocardiography (MCG) is a technique to detect the magnetic fields related to the

electrical activity of the heart using extremely sensitive devices such as the Superconducting

Quantum Interference Device (SQUIDs). The heart magnetic field is very small compared

to the earth magnetic field; therefore, the interpretation of the signal is jeopardized by

different kinds of disturbances and noise, causing difficulties during its analysis.

The goal of the thesis is to present a general strategy, how to cope with the different noise

sources in MCG signals in order to make MCG applicable in clinical use. Two different

noise reduction procedures are applied according to the SNR of the signal:

1. an optimized averaging approach

2. a method based on the blind source separation (BSS) techniques

In the optimized average approach, the main assumption is that the cardiac signal and the

noise are uncorrelated and that the noise is piecewise stationary. The Signal to Noise ratio

(SNR) can be optimized to a maximum value by using a selected number of beats. Herefore,

a mathematical prove is given.

Five BSS methods are applied to different types of MCG examinations in order to find the

most suitable method for each typology of measurement. Hereby, Temporal decorrelation

source separation (TDSEP) is found to be the most effective in terms of separation and

time performances.

The problem of the BSS methods is that the order of the components cannot be determined

a priori. Routines for the automatic detection of cardiac and noise related components are

developed. The validity of the algorithms is proved separating the patients enrolled into two

groups: one identification group where the thresholds are calculated and a validation group

where these thresholds are tested. In order to have a quantitative result the sensitivity and

specificity of the methods are calculated.

BSS methods are applied to patients with an implanted ICD, as well. TDSEP is the most

effective method, but no automatic extraction of the heart related components is possible.
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Moreover, good performances are achieved in terms of computation load. It can be observed

that separating the channels into 2 groups (each of them homogeneously distributed over

the sensor area) provides a huge improvement of the computation speed of the algorithm.

The use and the development of the spatial, time dependency based techniques (kurto-

sis, correlation and frequency) make for a more flexible set of tools available to extract

information from underlying set of measurements.

In clinical environments such methods could enhance the quality of the MCG and simplify

the inspection of the MCG recordings for the physicians.
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