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Determining �xed Crane Areas in

Rail-Rail Transshipment Yards

Nils Boysen, Malte Fliedner, Michael Kellner

Friedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management,

Carl-Zeiÿ-Straÿe 3, D-07743 Jena, Germany,

{nils.boysen,malte.fliedner,michael.kellner}@uni-jena.de

Abstract

Rail-rail transshipment yards are an emerging and more e�cient alternative to
traditional shunting yards. Instead of a time-consuming reshu�ing of railcars
via shunting hills, in these modern yards, huge gantry cranes tranship con-
tainers between di�erent freight trains. As multiple cranes process the trains
in parallel, it is an important operational task to avoid interferences among
cranes. To ensure smooth crane operations, it is a widespread real-world pol-
icy to assign each crane to an exclusive yard area. In such a setting, each
crane's workload heavily depends on the length and location of its respective
yard area. The paper on hand provides an exact Dynamic Programming pro-
cedure with polynomial runtime, which determines crane areas, so that the
resulting workload is evenly spread among cranes and, thus, train processing
is accelerated. Furthermore, in a straightforward simulation of transshipment
yard operations, the e�ect of optimal crane areas versus equally sized areas
is studied, the latter being a common real-world policy. The results indicate
a remarkable speed-up of train processing if optimal crane areas are applied.

Keywords: Railway systems; Transshipment yards; Container handling; Crane
scheduling

1 Introduction

In spite of extraordinary support programs introduced by the European Union (EU) and
other national authorities, railway systems still face considerable disadvantages when
compared to freight tra�c by truck. Within the last 25 years the fraction of the overall
freight tra�c moved by train fell from 20% (1970) to 10% (2005) (EU, 2007). In addition
to reduced �exibility and reliability, e.g., caused by the general right of way of passenger
tra�c in many European countries, a major handicap of train tra�c are the high �xed
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cost. These cost make container transport only pro�table if large trains are moved over
long distances. However, with traditional point-to-point tra�c such high demands for
freight transport merely exist between large cities, so that areas of lower population den-
sity are excluded from freight transport by rail. Only recently, Hub-and-Spoke systems
(as they are applied in road and air tra�c since many years) have been identi�ed as a
possibility to pro�tably employ smaller freight trains (see Ballis and Golias, 2004). With
such a system, the freight of multiple smaller trains can be consolidated to few large
trains in a hub terminal, which are then moved on long-haul routes to realize economies
of transportation.
Traditional shunting (or classi�cation) yards have a notable share in the competitive

disadvantage of rail transport, since a reshu�ing of railcars via shunting hills is very
time-consuming. Instead, modern rail-rail transshipment yards are required, where huge
gantry cranes, which span over all railway tracks, transship containers between di�erent
freight trains more e�ciently. Some of these hub yards have already been constructed
in the EU (e.g., Port-Bou at the border between France and Spain, see Martinez et al.,
2004) and others are under construction (e.g., the German �Mega Hub� in Hannover-
Lehrte, see Alicke, 2002; Rotter, 2004). Figure 1 gives a schematic representation of such
a rail-rail transshipment yard.

Figure 1: Schematic representation of a rail-rail transshipment yard

A modern rail-rail transshipment yard consists of multiple parallel railway tracks,
where successive pulses (one train per track) of freight trains are processed. Container
transshipment among trains is conducted by multiple rail-borne gantry cranes, which
span over the railway tracks. Due to their size and the fact that they run on the same
tracks for horizontal movement, cranes cannot pass by one another, so that interferences
occur, whenever a crane A seeks to transport a container to a distant location which
is currently blocked by another crane B operating in between. In practice, such inter-
ferences are often ruled out by applying a simple organizational policy (see Boysen and
Fliedner, 2009): the total yard space is partitioned into distinct areas, to each of which
a single crane is assigned. As cranes are not allowed to overstep the left and right-hand
borders of their areas, they can never interfere with each other. To enable distant con-
tainer moves across multiple crane areas, such yards further make us of a sorting system,
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where automated guided vehicles (Bostel and Dejax, 1998) or some rail-mounted vehicles
(Alicke, 2002) take up the container from the emitting area and move it alongside the
yard to its dedicated area. There, it is picked up by the respective crane and �nally
loaded on the train. The sorting system typically comprises one or more moving lanes
and bu�er lanes (see Alicke, 2002), so that containers can overtake each other in the
sorting system.
An important decision problem in this context is to dimension the operating area

of each crane in such a way that the workload is evenly spread among cranes. As all
cranes process the same pulse of trains in parallel, cranes which executed all moves
in their area have to wait idle until the last container is processed. A yard partition
which minimizes the maximum workload of cranes also minimizes the total makespan of
train processing. In a rail-rail transshipment yard, the actual partition of areas directly
e�ects the total workload required to process all containers. Whenever the start and
the target position of a container lie in the same crane area, the container can directly
be transshipped by the respective crane (direct move). If, however, start and target
positions fall into di�erent areas, two cranes (and the sorter) are required to process
the move. Such a double handling of containers, referred to as split move (see Boysen
and Pesch, 2008), considerably extends train processing as the time-consuming pick and
drop operations need to be executed twice for each split move. Especially, locating the
spreader is precision work so that on average merely 20-25 moves per crane and hour
can be processed (see Rotter, 2004). Thus, split moves and their impact on the cranes'
workload are to be considered while determining crane areas.
The paper on hand presents a Dynamic Programming procedure for the aforemen-

tioned problem with polynomial runtime. Furthermore, we compare optimally sized
yard areas with equally sized ones, the latter being a widespread policy in real-world
transshipment yards (see Boysen and Fliedner, 2009). The results of a straightforward
simulation of transshipment yard operations reveal a tremendous potential for processing
time reduction by applying optimal crane areas.
The remainder of the paper is structured as follows. Section 2 provides a literature

review, whereas Section 3 gives a detailed description of the yard partition problem. An
exact Dynamic Programming procedure is presented in Section 4. Then, optimally and
equally sized crane areas are compared in a yard simulation (Section 5). Finally, Section
6 concludes the paper.

2 Literature Review

Although there is a lot of attention paid to railway optimization (see, e.g., Cordeau et al.,
1998) and intermodal transportation (see Crainic and Kim, 2007) in general, literature
on rail-rail transshipment yards is scarce. This is astounding, as these yards are an
emerging technology in railway systems (see the surveys by Bontekoning et al., 2004 as
well as Macharis and Bontekoning, 2004).
In-depth descriptions of structural properties and di�erent operational policies em-

ployed in transshipment yards are provided by Ballis and Golias (2002) as well as Rotter
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(2004). Meyer (1998), Abacoumkin and Ballis (2004), Ballis and Golias (2004) as well
as Wiegmans et al. (2006) speci�cally address the design process of an optimal termi-
nal layout. However, only very few research papers deal with the scheduling problems
perpetually arising during the daily operations of a transshipment yards. As the overall
scheduling task seems far too complicated to allow a simultaneous solution, a hierarchical
decomposition of the overall problem is recommendable (see Boysen and Pesch, 2008):

(i) Schedule the service slots of trains by assigning them to pulses.

(ii) Decide on the containers' positions on trains.

(iii) Assign each train to a railway track.

(iv) Assign container moves to cranes.

(v) Decide on the sequence of container moves per crane.

Problem (i) is treated by Boysen and Pesch (2008). Here, a given set of trains to
be processed is to be assigned to di�erent pulses. In such a setting, revisits of trains
in a later period to receive remaining containers not delivered up to the train's �rst
stay in the yard and double handling of containers are to be avoided. Bostel and Dejax
(1998) as well as Corry and Kozan (2006, 2008) treat problem (ii) and provide scheduling
procedures to determine the optimal positions of containers on freight trains so that
crane moves are minimized. Additionally, multiple restriction, e.g., dangerous goods
separations, maximum gross wagon mass and train height, need to be considered while
determining container positions. Problem (iii), the assignment of trains to tracks, can be
solved as a quadratic assignment problem, which is shown by Alicke and Arnold (1998),
if the schedule of trains (problem (i)) and container positions (problem (ii)) are already
determined.
Container moves to cranes (problem (iv)) can either be assigned in a static or dynamic

way. Under a static assignment, borders of crane areas are �xes and a crane exclusively
processes containers within its area. A dynamic assignment policy allows cranes to move
freely alongside the yard, however, crane movements need to be coordinated in real-time,
so that interferences are minimized. Obviously, a dynamic assignment leaves more degrees
of freedom since cranes can support each other and, thus, promises a more e�cient train
processing. On the other hand, an information system containing complex scheduling
procedures is required. Such a centralized online control of cranes becomes super�uous
with exclusive areas. Here, container moves inside each area can simply be scheduled
in a decentralized manner by the crane operators, who can �exibly adjust operations to
unforseen events (delayed truck or train arrivals, prolonged container moves etc.). Thus,
a static assignment of crane areas is a widespread policy in real-world transshipment
yards (see Boysen and Fliedner, 2009).
Existing literature mainly investigates a dynamic crane assignment. Alicke (2002) pro-

vides a scheduling procedure to jointly cover problems (iv) and (v). Based on constraint
programming Alicke dynamically assigns container moves to cranes and decides on the
sequence of moves per crane. Related problems also occur in the hinterland of seaport
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container terminals (see, e.g., Ng, 2005; Zhu and Lim, 2006; Moccia et al., 2006; Lim et
al., 2007; Sammarra et al., 2007). Up to now, a static assignment with �xed crane areas
is only considered by Boysen and Fliedner (2009) for a conventional rail-truck trans-
shipment yard. However, in such a yard container moves across areas do not occur, so
that split moves do not need to be considered. Thus, the paper on hand is the �rst to
exclusively treats problem (iv) with �xed crane areas in rail-rail transshipment yards.
Note that our solution procedure (for the static case) can also be helpful for a dynamic
container assignment, e.g., to determine a �rst feasible start solution.

3 Detailed Problem Description

A rail-rail transshipment yard is typically operated in distinct so-called pulses (Bostel
and Dejax, 1998) or bundles (Alicke, 2002; Rotter, 2004) of trains, which means that T
trains (one per track) are simultaneously served and jointly leave the system not before
all container moves are processed, which are required for the respective bundle of trains.
Container moves are processed in parallel by the given number n of gantry cranes available
on the yard. Typically, at the point in time a train arrives it is already speci�ed which
containers to move (problem (ii) in Section 2), so that some containers are declared to
be transhipped between given railcars, whereas others � already dedicated to the train's
next destination � remain untouched. Thus, we presuppose that a pulse of trains, for
which all container moves are speci�ed, is already located on the tracks of a yard. Note
that this train set might be an actual pulse of trains already waiting or being expected.
In this case, crane areas are newly determined for any pulse of trains, which can easily
be executed in a real-world terminal by loading only container moves of the respective
area in the actual schedule list on a crane operator's computer monitor inside the steeple
cap. However, a pulse can also be a representative average train set, if crane areas are
to be �xed over a mid-term horizon.
To ease orientation for crane operators a transshipment yard is subdivided into smaller

line segments labeled �slots�, whose numbers and borders are drawn on the ground along
the horizontal spread of the yard. These slots are adjusted to the length of standardized
railcars. For instance in German transshipment yards, the typical slot length is 14
meters to exactly cover a railcar labeled �Lgs580� which carries one forty feet (FEU)
or two twenty feet containers (TEU). A typical yard length is 700 meters, so that such a
representative transshipment yard would be subdivided into S = 50 slots. We presuppose
that freight trains are parked and adjusted so that each container exactly falls into one
slot.
With these input parameters, it is the aim of the yard partition problem to divide

the slots s = 1, . . . , S of a transshipment yard into n disjunct and consecutive crane
areas, so that the maximum workload over all cranes i = 1, . . . , n induced by respective
container moves falling into each crane's area is minimized. Cranes process a given pulse
of trains in parallel, so that all cranes have to wait idle until the last crane �nished
container processing. Thus, the min-max objective balances the workload among cranes
and minimizes the makespan of train processing.
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In order to estimate the resulting workload of a speci�c crane area, split moves need
to be considered. If start and target position of a container move fall into the same
area, the move can directly be processed by the respective crane, so that a single pick
and drop operation is required. Such a direct move is depicted on the left-hand-side of
Figure 2. However, if start and target positions are separated by at least one area border
(represented by the dashed vertical line) a split move occurs. The crane which covers the
start position has to move the container onto some vehicle waiting in the same slot on the
moving lane of the sorter. Then, the container is moved to the slot of its target position,
where the second crane (covering the target position) �nally moves the container from
the sorter to the container's �nal destination on train. The right-hand-side of Figure 2
depicts the double handling required for such a split move.

Figure 2: Direct move vs. split move

For each container move c ∈ C startup slot ss
c and track tsc as well as target slot st

c

and track tsc are known. Thus, for given left l and right r borders of an area, the sets of
associated direct moves D(l, r), split moves into the sorter IN(l, r) and and split moves
out of the sorter OUT (l, r) can be determined as follows:

D(l, r) =
{
c ∈ C|l ≤ ss

c ≤ r ∧ l ≤ st
c ≤ r

}
IN(l, r) =

{
c ∈ C|l ≤ ss

c ≤ r ∧
(
l > st

c ∨ r < st
c

)}
OUT (l, r) =

{
c ∈ C| (l > ss

c ∨ r < ss
c) ∧ l ≤ st

c ≤ r
} (1)

A container c can be transshipped by a direct move (c ∈ D(l, r)) only if both start
ss
c and target st

c slot are within an area's left l and right r border, whereas a split move
into (c ∈ IN(l, r)) and out of (c ∈ OUT (l, r)) the sorter occurs if only one position
is located in the respective area. As the actual route of a container through the yard
depends on whether it is transshipped by a direct or a split move, we need to consider
container speci�c weights to represent the resulting workload for cranes. If container
move c is a direct move, the resulting workload for the respective crane is represented by
weight wD

c , whereas split moves into and out of the sorter are weighted with wIN
c and

wOUT
c , respectively. There exist multiple alternatives of how to calculate these weights.

In the most basic version each weight can be �xed to one, so that merely the number
of moves per crane are leveled. However, more sophisticated weights incorporate the
resulting distances of container moves (see the following Example) or approximate exact
processing times (see Section 5).
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With these weights on hand the workloadW (l, r) of a crane area ranging from slot l to
r can be determined by summing weights of associated direct and split moves as follows:

W (l, r) =
∑

c∈D(l,r)

wD
c +

∑
c∈IN(l,r)

wIN
c +

∑
c∈OUT (l,r)

wOUT
c (2)

Example: In the example of Figure 3 a transshipment yard is subdivided into six slots.
On four parallel tracks a pulse of trains is parked, where arcs symbolize container moves
c ∈ C to be processed between the respective railcars. White boxes represent containers
which remain on the train, e.g., because they are dedicated to another destination. Arc
weights represent the weights wD

c of direct moves. As gantry cranes are able to simultane-
ously move in vertical and horizontal direction using two di�erent engines, these weights
approximating the distances of container moves are simply chosen as the maximum of
the number of tracks or slots covered. Note that this simple approximation presupposes
equal vertical and horizontal distances between tracks and slots which are covered with
identical crane velocity. Thus, the move from the fourth track of slot �ve to the second
track of slot four passes two tracks and one slot, so that wD

c = max{2; 1} = 2. Weights
for split moves into and out of the sorter are not depicted, but simply amount to the
track number of the respective container position. If the aforementioned container move
is executed as a split move (which occurs if an area border is located between slots four
and �ve), then the split move into (out of) the sorter has to cover a distance of four (two)
tracks, so that wIN

c = 4 (wOUT
c = 2).

On the right-hand-side of Figure 3 two alternative solutions for n = 3 cranes are de-
picted, where the numbers indicate the realized weights of the respective crane area.
Solution A has equally sized crane areas, which results in a maximum workload of ten
faced by crane three. In Solution B border areas lie after slots three and �ve and the
maximum workload reduces to four.

Figure 3: Example data and two solutions

Note that the aforementioned weights for calculating each crane's workload only cover
�loaded� moves where cranes actually carry a container, whereas �empty� moves bridging
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n number of gantry cranes (index i)
T number of tracks (index t)
S number of slots (index s)
C set of container moves (index c)
ss

c, s
t
c start and target slot of container move c, respectively

tsc, t
t
c start and target track of container move c, respectively

D(l, r) set of direct moves in a crane area ranging from slot l to r
IN(l, r) set of split moves into sorter in a crane area ranging from slot

l to r
OUT (l, r) set of split moves out of sorter in a crane area ranging from

slot l to r
wD

c , wIN
c , wOUT

c weights of move c if executed as a direct move, split move into
sorter and out of sorter, respectively

W (l, r) workload in an area ranging from slot l to r
X solution vector of area borders

Table 1: Notation

the distance between two loaded moves are not considered. However, determining each
crane's actual workload (resulting from a complete crane tour with loaded and empty
moves) would require integrating a detailed crane scheduling. This results in a com-
plex optimization problem, since already scheduling a single crane takes the form of an
asymmetric traveling salesman problem, which is known to be NP-hard in the strong
sense (see Garey and Johnson, 1979). With multiple cranes connected via split moves
and the sorting system, the problem becomes even more di�cult to handle. To avoid
such a detailed crane scheduling within the yard partition problem only loaded moves are
considered. We, thus, assume that minimizing the workload resulting from loaded moves
is strongly positively correlated to minimizing the overall operating time, which includes
empty moves. If this assumption holds, minimizing the workload due to loaded moves
would be a suitable surrogate objective, which considerably eases the solution process.
It is part of our simulation study in Section 5 to evaluate this assumption.

With the help of the notation summarized in Table 1 the yard partition problem for
rail-rail transshipment yards (YPPrr) can be formalized as follows.

Model formulation: Within YPPrr a vectorX = {0, x1, x2, . . . , xn−1, T} −→ {1, 2, . . . , T−
1} of area borders is to be determined which minimizes objective function (3) subject to
constraints (4):

(YPPrr) minimize F (X) = maxn
i=1 {W (xi−1 + 1, xi)} (3)

subject to

xi ≥ xi−1 + 1 ∀ i = 1, . . . , n (4)
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In objective function (3) the maximum workload over all cranes i = 1, . . . , n is mini-
mized, where each crane i's workloadW (xi−1 +1, xi) is determined by adding all weights
of direct and split moves, which fall into the respective area between left border (xi−1+1)
up to the right border (xi). Constraints (4) ensure a minimum area length of one slot
between two consecutive trains. Note that by �xing the �rst and the last entry of solution
vector X it is ensured that the area of the �rst (last) crane starts (ends) in the �rst (last)
slot.

4 Dynamic Programming

As an area's workload exclusively depends on its left and right border (and not on the
detailed partition of preceding or succeeding areas) all possible partitions of the yard
can be evaluated with the help of a Dynamic Programming (DP) procedure. For this
purpose, the decision process is subdivided into n stages, where each stage i = 1, . . . , n
represents a crane. Any stage i contains a set of states (i, s), where each state represents
a possible right-hand border (slot s) of the respective crane area i. As the minimum area
width is a single slot, each stage i = 1, . . . , n− 1 exactly contains S−n+ 1 states. Only,
�nal stage n contains merely a single state (n, S), because in any case last crane n has
to cover the remaining yard length up to �nal slot S.
The DP procedure operates with a forward recursion, so that �rst stage 1 (representing

crane 1) has to be initialized by de�ning partial objective values f1s for each possible
right-hand slot s (see (1) and (2)):

f1s = W (1, s) ∀s = 1, . . . , S − n+ 1 (5)

Then, (partial) objective values fis assigned with the states of remaining stages can
be calculated with the basic recursion as follows:

fis = mini−1≤j<s−1 {max {fi−1j ; W (j + 1, s)}} ∀i = 2, . . . , n− 1, s = i, . . . , i+ S − n
and i = n, s = S

(6)
Partial objective value fis of state (i, s) is calculated by considering all feasible prede-

cessor states (i−1, j) of preceding stage i−1, which are all those with a smaller right-hand
slot: j = i− 1, . . . , s− 1. For any of these possible predecessor states, workload amounts
to the maximum of partial objective value fi−1j of predecessor state (i− 1, j) (�rst term
of maximum function) and additional workload W (j + 1, s) of the actual yard area of
crane i ranging from slot j + 1 to s (second term of maximum function). Lastly, �nal
state (n, S) is reached and fnS is the maximum workload of the optimal yard partition.
Area borders for the optimal partition can be determined by a simple backward recursion
along the states part of the optimal policy.

Example (cont.): For the input data of Figure 3 the resulting DP graph is shown in Fig-
ure 4. The bold sketched optimal solution value for three cranes amounts to a min-max
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workload of four. The solution equals Solution B of Figure 3, so that optimal yard areas
range up to slots 3, 5 and 6, respectively.

Figure 4: DP graph of the example

The DP graph consists of n stages, where each stage i = 1, . . . , n contains no more
than S states. Since only states of consecutive stages i− 1 and i are connected, the total
number of arcs linking all states of a stage is bounded by S2. For each state transition
at maximum all container moves c ∈ C are inspected to check whether a direct or a
split move is counted for the respective area. As the number of cranes n is bounded
from above by the number S of slots the overall runtime complexity of DP is bounded by
O(|C|·S3). Thus, DP has polynomial runtime complexity, so that optimal yard partitions
can e�ciently be determined even for larger instances of real-world size.

5 Yard Simulation

In this section, two research questions are to be answered by a simulation of real-world
transshipment yard operations. First, it is investigated whether the surrogate objective of
minimizing the workload of loaded moves is indeed a suited objective to reduce the overall
workload (consisting of loaded and empty moves). Recall that the surrogate objective is
applied to avoid the solution of a complex crane scheduling problem. Furthermore, we
aim at a comparison between optimal yard areas and equally sized areas, with the latter
being a widespread policy in real-world transshipment yards (see Boysen and Fliedner,
2009). Before describing the results with regard to both research questions (Section 5.2),
we �rst elaborate on the setup of our computational study (Section 5.1).

5.1 Setup of simulation study

To derive test instances for simulating yard operations some assumptions on the yard
layout, the container moves to be processed, the parking policy of trains, technical pa-
rameters of gantry cranes and the sequencing of crane movements are required. All
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assumptions are described in detail in the following.

Yard Layout: With regard to the yard layout, we base the study on the typical setting of
a German transshipment yard. A typical yard length is 700 meters and slots are adjusted
to accommodate standard railcars with a total length of 14 meters. Thus, we assume a
yard length of T = 50 slots, with a horizontal distance of dh = 14 meters between any
two adjacent slots. Furthermore, we assume a vertical distance of dv = 7 meters between
neighboring tracks and the sorter, which is located above track one. The number T of
parallel tracks and the number n of gantry cranes are varied as follows: T ∈ {2, 3, 4, 5}
and n ∈ {2, 3, 4, 5}, so that di�erently sized transshipment yards are investigated.

Container moves: The train length (in slots) is assumed to follow a truncated normal
distribution with expected train length µ = 43 (adjusted to an average train length of
600 meters, see Ballis and Golias, 2002) and a standard deviation, which is varied as
follows: σ ∈ {2, 4, 6, 8}. If a train length of more than 50 (less than zero) is drawn, the
train length is reduced to the maximum (increased to the minimum) yard length of 50
(zero) slots. The number |C| of container moves is determined by applying parameter
frac ∈ {0.2, 0.4, 0.6, 0.8}, which is multiplied with the overall number of containers re-
sulting from the di�erent train lengths and divided by 2. Then, for each container move
c unique start and target positions (start and target slots: ss

c and s
t
c as well as start and

target tracks: tsc and t
t
c with t

s
c 6= ttc) are randomly drawn out of a uniform distribution.

Parking Policy: In real-world transshipment yards, it is a widespread policy to park
locomotives at the beginning of the yard, so that we assume each train's �rst railcar
(may it or not carry a container to be processed) is positioned at slot 1 (see Boysen
and Fliedner, 2009). The assignment of trains to tracks is randomly determined, which
re�ects a �rst-come-�rst-serve policy often applied in real-world yards.

Technical crane parameters: The gantry cranes move in horizontal and vertical direc-
tion simultaneously propelled by independent engines. In horizontal direction the whole
crane moves on special rail tracks, whereas vertically merely the steeple cab carrying
the spreader is moved. Thus, the maximum time span for executing the vertical and
horizontal movement determines the processing time of a container move. We assume a
velocity of crane and steeple cab of ve = 3 meters per second, if the crane moves empty,
whereas the velocity reduces to vl = 2 meters per second, if a container is carried. Once
positioned, picking and dropping of containers requires additional processing time. Es-
pecially, locating the spreader is precision work, so that we assume a typical time span
of td = 45 seconds for picking or dropping a container. See Alicke (2002) and Martinez
et al. (2004) for comparable parameters.

Crane Movement: If all container moves are �xed and assigned to gantry cranes, se-
quencing moves per crane remains a complex optimization problem. In our case, for
each crane an asymmetric traveling salesman problem would need to be solved while
considering the interdependencies among cranes resulting from split moves. However,
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the sequence of container moves is typically not optimized by a scheduling procedure but
locally determined by the respective crane operator. Thus, to simulate a human decision
rule we apply a simple nearest neighbor heuristic. Each crane's starting position is the
left hand border of its area, while the steeple cab is positioned over the sorter. From
there it consecutively executes the container move closest to its current position. Split
moves, e.g., from yard area A to B, are considered by updating crane B's list of unpro-
cessed container moves, not before the respective container arrived in the sorter-segment
of crane B. Thus, the list is updated just after crane A processed the �rst part of the split
move (from train into the sorter) and a vehicle (with sorter velocity vs = 3) moved the
container into yard area B. With regard to the sorting system it is assumed that vehicles
are no bottleneck and congestions do not occur.

The aforementioned parameters of instance generation are summarized in Table 2. All
parameters are combined in a full-factorial design and in each parameter constellation
instance generation is repeated 100 times, so that 4 · 4 · 4 · 4 · 100 = 25, 600 di�erent
instances were obtained.

symbol description values

T number of tracks 2, 3, 4, 5
n number of gantry cranes 2, 3, 4, 5
S length of transshipment yard (in slots) 50
dh horizontal distance between two adjacent slots

(in meters)
14

dv vertical distance between two adjacent tracks (in
meters)

7

µ expected train length (in slots) 43
σ standard deviation of train length 2, 4, 6, 8
frac fraction of all containers being part of a con-

tainer move
0.2, 0.4, 0.6, 0.8

tp processing time for a crane to pick (or drop) a
container (in seconds)

45

ve velocity of an empty crane carrying no container
(in meters per second)

3

vl velocity of a loaded crane carrying a container
(in meters per second)

2

vs velocity of sorter carrying a container (in meters
per second)

3

Table 2: Parameters for instance generation

For any of these instances we apply two di�erent policies for partitioning the trans-
shipment yard. First, we determine optimal crane areas, which rely on a balancing of
the cranes' workload as described in Section 4. For this purpose during a preprocessing
the weights for direct (wD

c ) and slit moves (wIN
c and wOUT

c ) need to be determined. To
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directly represent the resulting processing times weights are calculated as follows:

wD
c = 2 · tp + max

{
|ss

c − st
c| · dh

vl
;
|tsc − ttc| · dv

vl

}
∀ c ∈ C (7)

If processed as a direct move, container move c requires a pick and a drop operation
(2 · tp). Additionally, the time for the actual move is to be added, which amounts to the
maximum of the crane's horizontal and vertical distance each weighted with velocity vl

(for a loaded move).
Split moves into (with weight wIN

c ) and out of (with weight wOUT
c ) the sorter also

require a pick and drop operation and the actual movement time, which is required for
the vertical movement between rail track and sorter:

wIN
c = 2 · tp +

tsc · dv

vl
∀ c ∈ C (8)

wOUT
c = 2 · tp +

ttc · dv

vl
∀ c ∈ C (9)

Note that varying distances between tracks and/or slots (see Alicke, 2002) can easily be
integrated into weight calculation. With these weights, optimal crane areas are calculated
(with the DP procedure of Section 4) and passed over to the yard simulation, where the
resulting overall processing time (makespan) of the actual pulse of trains is determined by
simulating each crane (in its respective area) according to the nearest neighbor heuristic.
The second policy investigated is to equally size crane areas. Again, the makespan
of train processing is determined by the yard simulation. This way, the gap of train
processing times between both policies can be computed. The results are summarized in
the following section.

5.2 Results

First, we compare optimal results of the surrogate objective (SURR) generated by the
DP approach of Section 4 with the actual makespan of the yard simulation (ACT),
which takes the yard areas of the DP solution. While the DP approach minimizes the
cranes' workload merely on the basis of loaded moves, the yard simulation provides the
actual workload consisting of loaded and empty crane moves. On average over all 25,600
instances, the workload of SURR already ranges at 84.79 % compared to that of ACT,
which results from the overproportional in�uence of tedious pick and drop operations.
Moreover, the coe�cient of correlation between both approaches amounts to a remarkable
0.9973. Thus, the conclusion can be drawn, that our surrogate objective of merely
considering loaded moves is a suited simpli�cation. On the one hand, the actual objective
of reducing the overall workload is strongly supported and, on the other hand, the solution
process is considerably alleviated by excluding a detailed crane scheduling.
Furthermore, we aim at investigating the question whether optimal crane areas enable

a considerable reduction of train processing time compared to equally sized areas. For
this purpose, we report the average absolute deviation (labeled �avg abs�) between both
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policies with regard to the makespan. Avg abs denominates the acceleration of train
processing if optimal crane areas are applied instead of equally sized areas in minutes
averaged over all instances of the respective parameter constellation. Furthermore, the
average relative deviation (labeled �avg rel�) of both policies in percent is reported, where

the deviation is measured by F (EQU)−F (OPT )
F (OPT ) ·100 with F (EQU) and F (OPT ) being the

makespan when crane areas are equally sized or optimally partitioned, respectively. Table
3 lists both performance measures in dependency of the parameters: number T of tracks
and number n of cranes, which together re�ect the size of a transshipment yard.

n
T 2 3 4 5 total
2 4.1/13.1 3.4/16.0 3.2/18.7 2.9/19.8 3.4/16.9
3 6.3/12.5 5.3/16.2 4.8/19.0 4.6/21.5 5.2/17.3
4 8.7/13.0 7.1/16.1 6.2/18.5 6.0/21.7 7.0/17.3
5 10.9/12.9 8,7/15.5 7.9/18.3 7.3/21.0 8.7/16.9
total 7.5/12.9 6.1/15.9 5.5/18.6 5.2/21.0 6.1/17.1
legend: avg abs [minutes]/avg rel [%]

Table 3: Absolute and relative speed-up of train processing depending on yard size

The results reveal a remarkable potential for accelerating train processing. Depending
on the size of the yard, possible absolute accelerations (avg abs) deviate between 10.9
minutes with �ve tracks (high overall workload) and two cranes (low division of labor)
and 2.9 minutes with two tracks (low overall workload) and �ve cranes (high division
of labor). Interestingly, the relative acceleration (avg rel) of train processing performs
somewhat contrarily. This is explained by the fact, that with a high division of labor the
average makespan tends to be lower in value, because a pulse of trains is processed much
faster. As a consequence a comparable absolute reduction in makespan leads to a higher
relative reduction. In relative terms, train processing is accelerated by between 12,5 %
and 21,7 % whenever crane areas are dimensioned optimally.
Further conclusions (in terms of a sensitivity analysis) can be drawn if the speed-up

of optimal crane areas is related to the parameters of instance generation. Therefore,
Figure 5 displays the average relative deviation (avg rel in %) and the average absolute
deviation (avg abs in minutes) in dependency of the parameters: number T of tracks,
number n of cranes, standard deviation σ of train lengths and fraction frac of containers
to be processed, respectively.
While σ seems to have negligible in�uence on the results, the following conclusions can

be drawn for the other parameters:

• With an increasing number T of tracks the overall workload is increased and, thus,
the absolute speed-up (avg abs) of optimal crane areas also rises. This e�ect is
counterbalanced by the increasing level of workload, so that the relative speed-up
(avg rel) remains on a constant level.

• The higher the division of labor (more cranes n), the lower absolute (avg abs) and
the higher relative (avg rel) speed-ups of optimal crane areas. The relative gap is
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Figure 5: Absolute and relative speed-up in dependency of parameters of instance
generation

also in�uenced by the fact that with an increasing number of cranes, yard areas
become smaller. With fairly short crane areas the probability of unbalanced slots
being leveled by others decreases.

• If the fraction (frac) of railcars which carry containers increases, then the overall
workload rises. Thus, the absolute speed-up (avg abs) by optimal crane areas
increases, as well. Again this e�ect is leveled by the general increase in workload,
so that avg rel remains nearly una�ected.

It can be concluded that a more leveled workload evenly spread over the yard reduces
the disadvantage of equally size crane areas. However, as the results over all instances
indicate an average absolute speed-up of 6.1 minutes (or 17.1%) optimal yard areas can
be recommended independent of the respective real-world transshipment yard setting.

6 Conclusion

In this work a partition problem is introduced which aims at evenly balancing the work-
load among gantry cranes of rail-rail transshipment yards. In these yards, the partitioning
needs to especially consider time-consuming split moves, where a single container move
is to be processed by two cranes, which are connected by a sorting system. The problem
is formalized and an exact Dynamic Programming procedure with polynomial runtime
is developed. In a comprehensive computational study possible accelerations of train
processing are evaluated by a comparison between optimally and equally sized crane ar-
eas, the latter being a widespread policy in practice. The results reveal that an optimal
repartitioning of crane areas can result to signi�cant speed-ups in train processing.
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There are several ways in order to build up on this study in future research. On the
one hand, partitioning the transshipment yard into crane areas is heavily interdependent
with determining the horizontal (parking position along the yard) and vertical (track
assignment) positions of trains. Thus, further improvements of train processing might be
gained by additionally optimizing the parking positions of trains. On the other hand, it
would be valuable to quantify the disadvantages (with regard to train processing times)
of �xed yard areas compared to a dynamic assignment of container moves to cranes
(see Section 2). This could provide valuable decision support for assessing dynamic
assignment policies, so that yard managers could evaluate the trade-o� between the
acceleration of train processing and the investment cost required for a sophisticated
online-control system.
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