
 

 

Jena Research Papers in 
Business and Economics 

 
 

Optimally Loading Clocked Tow  
Trains for JIT-Supply of  

Mixed-Model Assembly Lines 

Simon Emde, Malte Fliedner, Nils Boysen 

10/2009 

 

 
 
 

Jenaer Schriften zur Wirtschaftswissenschaft 
 
 
 

Working and Discussion Paper Series  
School of Economics and Business Administration 

Friedrich-Schiller-University Jena 
 

ISSN 1864-3108 
 
Publisher:  

Wirtschaftswissenschaftliche Fakultät 
Friedrich-Schiller-Universität Jena 
Carl-Zeiß-Str. 3, D-07743 Jena 

www.jbe.uni-jena.de 

Editor: 

Prof. Dr. Hans-Walter Lorenz 
h.w.lorenz@wiwi.uni-jena.de 

Prof. Dr. Armin Scholl 
armin.scholl@wiwi.uni-jena.de 

 

 

www.jbe.uni-jena.de 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224757704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimally Loading Clocked Tow Trains

for JIT-Supply of Mixed-Model Assembly

Lines

Simon Emde, Malte Fliedner, Nils Boysen

Friedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management,

Carl-Zeiÿ-Straÿe 3, D-07743 Jena, Germany,

{simon.emde,malte.fliedner,nils.boysen}@uni-jena.de

Abstract

In today's mixed-model assembly production, there are two recent trends
in particular, namely increasing vertical integration and the proliferation of
product variety, which more and more shift focus to an e�cient just-in-time
part supply. In this context, many automobile manufacturers set up decen-
tralized logistics areas referred to as �supermarkets�. Here, small tow trains
are loaded with parts and travel across the shop �oor on speci�c routes to
make frequent small-lot deliveries which are needed by the stations of the line.
This paper investigates the loading problem of clocked tow trains, which aims
at minimizing inventory near the line while avoiding material shortages given
the limited capacity of tow trains. An exact solution procedure with polyno-
mial runtime is presented and interdependencies with production planning,
i.e., the sequencing problem of product models launched down the line, are
investigated.

Keywords: Mixed model assembly lines; Just-in-Time; Clocked Tow Trains;
In-Process Inventory

1 Introduction

With increasing vertical integration and ongoing proliferation of product variety, just-
in-time (JIT) supply of �nal assembly lines more and more becomes one of the greatest
challenges in today's automobile production. Thousands of materials and suppliers need
to be coordinated, to ensure that �nal assembly never runs out of parts. In this context, a
decentralized organization of frequent small-lot JIT-deliveries seems especially desirable
in order to �exibly adjust part supply to unforseen events and to keep inventory near the
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line low. For this purpose, automobile producers more and more adopt the �supermarket-
concept�. Supermarkets are decentralized logistics areas, where all parts of adjacent line
segments are intermediately stored, so that logistics workers can prepackage parts for
assembly in a comfortable manner, in analogy to customers in traditional supermarkets.
Part supply out of the supermarket is conducted by small tow trains (or tuggers) which
serve a subset of stations. Typically, tow trains are clocked and operate upon a given
schedule, so that they circulate through stations along their tours, where they substitute
empty for �lled bins of parts. Finally, an empty train returns to the supermarket to be
reloaded for its next tour.
For a given schedule of a tow train and a given production sequence in �nal assembly

the number of bins to be loaded on a train's next tour can be easily determined. However,
space restrictions impede a perfectly balanced JIT-supply. On the one hand, tow trains
must remain maneuverable when driven through sharp turns, so that the number of
waggons per tow train is restricted to less than a handful. On the other hand, the space
at the stations of the line is extremely scarce, so that the number of parts stored near
the line is to be reduced to a minimum.
This paper introduces a solution procedure with polynomial runtime which calculates

the optimal number of material bins per tour of a clocked tow train, so that inventory
near the line is minimized given the limited capacity of vehicles. The research on this
topic is inspired by an implementation of the supermarket-concept at a major German
automobile producer and we are aware of multiple other automobile producers applying
supermarkets and clocked tow trains for their in-house logistics. The concept of �kanban
supermarkets� is not a novel phenomenon, but rather a core element of the famous
Toyota Production System (see Vatalaro and Taylor, 2005, Holweg, 2007) with a long
tradition in many industrial sectors (Rees et al., 1989, Hodgson and Wang, 1991, Spencer,
1995). Thus, we are convinced that our �ndings are generalizable and that our solution
procedure can also be used in a variety of other implementations of the supermarket-
concept coupled with clocked tow trains.
The remainder of the paper is organized as follows. Section 2 describes the in-house

logistics process of supermarkets and the utilization of clocked tow trains in detail. Then,
Section 3 introduces the loading problem of tow trains and states a suited mathemat-
ical model. The optimization procedure is described in Section 4. In a comprehensive
computational study (Section 5) we investigate the elementary trade-o� between tour
frequency and in-process inventory near the line. Furthermore, we investigate whether
leveled production sequences, as proposed by the famous Toyota Production System (see
Monden, 1998), are indeed helpful to reduce in-process inventory. Finally, Section 6
concludes the paper.

2 JIT-supply from decentralized supermarkets via clocked

tow trains

In the course of an extensive project to reduce in-house production depth in the �nal
assembly, a major German automobile producer completely redesigned its in-house lo-
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gistics concept. Instead of supplying �nal assembly directly from a centralized receiving
store, multiple decentralized logistics areas, i.e., supermarkets, were introduced, which
intermediately stock items for adjacent line segments. Notice that supermarkets can be
interpreted as the in-house logistics equivalent of the cross-docking-concept (see, e.g.,
Apte and Viswanathan, 2000). These supermarkets are supplied from the receiving store
with (comparatively) large industrial trucks, whereas line segments are served with small
tow trains. In line with the JIT-philosophy, tow trains enable more frequent part deliver-
ies at the stations of the line in smaller lots. Moreover, part supply can be adjusted more
�exibly to unforeseen events, so that wrong deliveries compared to a large-lot-supply
from centralized store can be reduced. Both advantages of the supermarket-concept are
very important in today's automobile production as the space at the stations of the line
is notoriously scarce (see Boysen et al., 2009a). Finally, small-lot-deliveries come along
with smaller bins which can be stored in comfortable racks near the line, so that assembly
workers can access parts in an ergonomic and e�cient manner, which reduces the strain
on the workforce and saves handling times when parts are fetched.
To facilitate a reliable and steady part supply, tow trains are typically operated upon a

�xed schedule. This schedule predetermines the �xed tour by which each tow train cycles
through the supermarket and related stations and determines the production cycles of
each stopover. As the production sequence of the �nal assembly line is also �xed, the
amount of parts required between any two visits of a vehicle can be calculated exactly.
Thus, each tow train is to be loaded in its supermarket with the respective amount
of bins required for the next tour. Then, a tow train successively visits the stations
on its tour and �nally returns to the supermarket. At each stopover, all bins for the
respective station are unloaded while empty bins are returned. Especially for smaller
parts in standardized bins unloading is fully automated by employing so-called �shooter-
racks�. At these special kind of gravity �ow racks (see, e.g., Bartholdi and Hackman,
2008, Sec. 5.1.3) the waggons of a tow train are docked while driving by. As soon as the
tow train comes to a halt, gates sideways of the waggon and at the back of the rack are
opened automatically and loaded bins are injected by elastic springs into the rack while
empty bins are returned to the waggon. These racks reduce the length of a stopover to
merely a few seconds, so that reliable tow train schedules can be derived.
The planning and control of this in-house logistics concept amounts to a complex task

where several interrelated decision problems have to be solved:

(i) Decide on the number and location of decentralized supermarkets.

(ii) Assign line segments to supermarkets and determine the number of tow trains per
supermarket.

(iii) Determine each tow train's �xed delivery schedule.

(iv) Decide on the bins to be loaded per tour of a tow train

To the best of the authors' knowledge there exists no literature on the coordination
of supermarkets and tow trains. However, these in-house logistics decision problems
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show some similarities to problems of designing and operating traditional distribution
networks, e.g., location of distribution centers (see, e.g., Klose and Drexl, 2005), �eet
sizing (see, e.g., Beaujon and Turnquist, 1991) and inventory routing (see, e.g., Cordeau
et al., 2007). This paper investigates short-term problem (iv) and is, thus, related to
the famous inventory routing problem (IRP), which deals with the repeated distribution
of items from a single distribution center to multiple customers. Typically, the decision
about the delivery schedule and the amount of items shipped per customer is supported
by IRP (see Campbell et al., 1998), so that the loading problem of vehicles can be seen
as a subproblem of IRP. However, IRP is a tactical problem and, thus, solved over a mid-
term horizon, so that customer demands are usually either assumed to follow a constant
rate (e.g., Fisher et al., 1982, Bell et al., 1983) or a given probability distribution (e.g.,
Kleywegt et al., 2002, 2004). In contrast to that, our problem is a short-term one, so that
the production sequence of models and its part demand are known with certainty. As
a consequence, the standard solution approaches for the IRP are not applicable. In the
following we investigate the deterministic loading problem of tow trains in more detail.

3 The tow train loading problem

3.1 Problem description and mathematical model

Part demand for the tow train loading (TTL) problem is determined by the production
sequence of the �nal assembly, which is well known and communicated to all suppliers
hours before TTL is to be solved. Nowadays, versatile products like cars can be speci-
�ed by the customers according to their individual needs so that customizable product
options, e.g., sunroof or leather trim, can be (de-)selected. Thus, it is the sequence of
customized product models launched down the line which exactly speci�es the number of
parts required in each production cycle. Additionally, the �xed schedule of each tow train
exactly determines the cycles in which a vehicle substitutes material bins at a station.
Thus, the demand for bins at any station between to stops of the tow train can be easily
calculated, which is shown by the following example.

Example: Consider a production system where copies of three models (m = 1, 2, 3) are
assembled at two stations (s = 1, 2) . The demand of parts dmodsm per station and model is
given in Table 1a. Assuming a (given) production schedule of < 1, 1, 3, 2], the demands
per cycle (c = 1, . . . , 5) and station can easily be calculated as in Table 1b; notice that
workpieces move down the line sequentially, so that the �rst copy of model 1 will reach
the second station as late as cycle 2. Table 1c displays an externally given schedule which
states the production cycle at which the tow train arrives at a station. On each tour
(t = 1, 2, 3) the tow train visits both stations in adjacent cycles, so that to station 1 the
train will come in cycles 0, 1 and 3 and to station 2 in cycles 0, 2 and 4, where cycle 0
refers to the required inventories at the start of production. It is assumed that all bins
delivered in a cycle c are available for assembly not before cycle c+ 1. Furthermore, we
assume that bins for station 1 have a capacity of two parts while those for station 2 have
one of three. In this introductory example we restrict ourselves to the case of only one
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kind of part per station but extending the problem to account for multiple parts with
di�ering bin capacities is quite easy. On its �rst tour the tow train must deliver one bin
containing 2 parts to station 1 in cycle 0. This amount is su�cient to serve the demand
dcyc11 = 1 of the �rst cycle c = 1, because the demand of the remaining cycles can be
supplied in later tours. On tour 2 in cycle 1, the remaining part in stock at station 1 is
not enough to ful�l the demand (dcyc12 +dcyc13 = 1+2 = 3) of cycles 2 and 3 up to the next
tour, so that another bin is to be delivered. On its last visit, demand up to the last cycle
has to be satis�ed, which amounts to dcyc14 + dcyc15 = 5+0 = 5. As no parts are in stock at
cycle 4 another 3 bins are to be delivered. Table 1d summarizes the resulting demands
dst for bins per station s and tour t.

dmodsm 1 2 3

1 1 5 2
2 2 1 5

(a) Example demands
of parts per station
and model dmod

sm .

dcycsc 1 2 3 4 5

1 1 1 2 5 0
2 0 2 2 5 1

(b) Example demands of parts
per station and cycle dcyc

sc .

cst 1 2 3

1 0 1 3
2 0 2 4

(c) Example sched-
ule of the tow
train.

dst 1 2 3

1 1 1 3
2 1 2 1

(d) Example de-
mand of bins in
between tours.

With these demands on hand, the JIT-principle could be easily met by simply loading
each tow train exactly with the number of desired bins. However, each additional tow
train causes one-time investment cost and daily labor costs for its operator, so that
manufacturers aim at keeping the �eet of tow trains small. Furthermore, each vehicle's
capacity is comparatively low. For instance at our OEM exactly three waggons are
allowed per tow train. Otherwise, maneuverability in the sharp turns of the shop �oor
cannot be guaranteed. Thus, TTL aims at a delivery schedule in line with the JIT-
principle, which considers the limited tow train capacity.
To concisely model this problem, the situation at our OEM allows for the following

simplifying assumptions:

• In order to reduce handling times of assembly workers to a minimum, each bin
needs to be stored directly next to their respective station. Thus, there exist no
bins which are accessed by two or more stations.

• All bins are of identical standardized size, which is a requirement of the aforemen-
tioned shooter racks.

• With a given number of waggons per tow train and standardized bins the capacity
restriction of vehicles can be measured one-dimensionally by limiting the number
K of bins to be loaded. As all tuggers are su�ciently powerful an additional weight
restriction is a non-issue.
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• Seeing that the stock at any station can only reach its minimum right before and its
maximum right after the tow train is scheduled to visit, considering every cycle in
the planning horizon is not necessary. We therefore focus on the state right before
a tugger arrives at a station.

Making us of the notation de�ned in Table 1 the restrictions of TTL can now be
formalized as follows:

S∑
s=1

xst ≤ K ∀t = 1, . . . , T (1)

t∑
t′=1

xst′ ≥
t∑

t′=1

dst′ ∀t = 1, . . . , T, s = 1, . . . , S (2)

xst ∈ N0 ∀t = 1, . . . , T, s = 1, . . . , S (3)

Restriction (1) ensures that the capacity of the tow train is not exceeded. Constraint
(2) states that the sum of bins that have been delivered to any station s is su�cient
to meet the accumulated demand in every period t. Note that this does not preclude
bins from being brought to the station in an earlier period than that in which they
are consumed; they will then be lying in stock in the meantime. Finally, (3) makes
it impossible to deliver a non-integral or negative number of containers to any station.
Note that initial stock at each station need not be modeled explicitly, but can simply be
considered by reducing part/bin demands appropriately.
Concerning the objective, it seems clear that as few parts as possible should be delivered

on the whole. The very heart of the JIT philosophy is to avoid waste and surplus stocks,
therefore only the bins that are actually needed should be brought to the stations. To
meet this goal, objective function (4) aims to minimize the sum of all bins in stock over
all stations and periods.

Minimize fsum =
T∑
t=1

S∑
s=1

t∑
t′=1

(xst′ − dst′) (4)

As a second consideration, space at the stations is notoriously scarce. If it is necessary
to stock bins, they should at least be divided as equally among the stations as possible
so as not to clog up one or a few stations. The maximum amount of containers stashed
at any one station should be minimal, as stated by equation (5).

Minimize fmax = max

{
t∑

t′=1

(xst′ − dst′)

∣∣∣∣∣ t = 1, . . . , T ; s = 1, . . . , S

}
(5)

Example (cont.): Consider a tow train with a capacity of 3 bins per tour. Thus, for
our example a �perfect� JIT-solution obviously does not exist because the total demand
after the last tour (

∑2
s=1 ds3) exceeds the capacity of the train. A feasible solution X

for the example problem is given in Table 2a which leads to one container of parts being
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S number of stations (index s = 1, . . . , S)
T number of tours of the tow train (index t = 1, . . . , T )
K maximum number of containers that can be loaded onto the tow

train
dst number of containers that are used up at station s in the interval

between tours t and t+ 1
xst amount of containers for station s to be loaded in tour t

Table 1: Notation

kept in stock at station 1 up until the third tour (Table 2b), resulting in fsum(X) = 2
and fmax(X) = 1.

xst 1 2 3

1 2 1 2
2 1 2 1

(a) Example solu-
tion.

lst 1 2 3

1 1 1 0
2 0 0 0

(b) Example stocks
of the solution.

Table 2: An example problem.

3.2 Properties of the objective functions

We have now established two desirable objectives, namely minimizing the sum of all bins
stocked (Equation (4)) and minimizing the maximum number of bins stocked at any one
station (Equation (5)). We will now show that these two objectives are not con�icting
but can, in fact, both be optimized simultaneously.
First o�, in order to ease notation, we introduce auxiliary variables lst, which denote

the amount of parts in stock at station s in period t and are de�ned as

lst =
t∑

t′=1

(xst′ − dst′) ∀t = 1, . . . , T, s = 1, . . . , S. (6)

Next, the notion of an excess of demand et is introduced. If in any one period t the
cumulated demand

∑S
s=1 dst of bins is greater than the capacity K of the tow train, there

is an excess of

et =
S∑
s=1

dst −K ∀t = 1, . . . , T (7)

that cannot be ful�lled just-in-time. If K is greater than the demand in a given period,
there is an overcapacity and et is negative. Whenever et is positive, the bins in excess
must have already been stocked in the preceding period t− 1. Of course, if the capacity
of the tugger is insu�cient to supply et plus the total demand of bins in this period
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∑S
s=1 ds,t−1, then the di�erence will need to have been stocked in yet an earlier period.

It follows that the number of bins for all parts required in stock gt in any period t can
be calculated recursively by

gt = max{0; gt+1 + et+1} ∀t = 1, . . . , T − 1, (8)

with gT = 0 (since it follows from the assumptions that it is pointless to stockpile bins
in the last period). Table 3 shows the excess and required stocks in the above example.

dst 1 2 3

1 1 1 3
2 1 2 1

et -1 0 1
gt 1 1 0

Table 3: et and gt in the example

We can now prove the following:

Lemma 3.1. In any feasible solution it holds that
∑S

s=1 lst ≥ gt ∀t = 1, . . . , T .

Proof. Directly follows from the de�nition of gt.

Lemma 3.2. For any feasible solution X where
∑S

s=1 lst′ > gt′ for a period t′, it also

holds that ∃t = t′ + 1, . . . , T :
∑S

s=1 xst < K ∨
∑S

s=1 lsT > 0.

Proof. Let
∑S

s=1 xst ≥ K ∀t′ + 1, . . . , T . According to (7) and (8) it holds that gt+1 +∑S
s=1 ds,t+1 − gt ≤ K ∀t = 1, . . . , T − 1, since gt ≥ gt+1 + et+1 = gt+1 +

∑S
s=1 ds,t+1 −

K ∀t = 1, . . . , T − 1. It follows that if
∑S

s=1 lst > gt and
∑S

s=1 xs,t+1 ≥ K then∑S
s=1 ls,t+1 > gt+1, so that whenever

∑S
s=1 lst′ > gt′ and

∑S
s=1 xst ≥ K ∀t = t′ +

1, . . . , T then
∑S

s=1 lsT > gT ≥ 0 which completes the proof.

Lemma 3.3. Any feasible solution X with a period t′ for which
∑S

s=1 lst′ > gt′ holds, can
be improved to a solution X ′, so that fsum(X ′) < fsum(X) and fmax(X ′) ≤ fmax(X).

Proof. Let
∑S

s=1 lsT > 0 hold for solution X. It immediately follows that ls′T > 0
for a station s′. Let t0 denote the last period where station s′ was supplied, t0 =
max {t = 1, . . . , T |xs′t > 0}, it then follows that xs′t0 can be reduced by at least one unit
without compromising the feasibility of the solution, since the delivery was never con-
sumed by a station. This reduction diminishes (at least)

∑S
s=1 lsT , therefore improving

the fsum-objective, while not increasing the fmax-objective.
If instead

∑S
s=1 lsT = 0 holds for X, then let t1 be the earliest period after t′ with

excess capacity, t1 = min
{
t = t′ + 1, . . . , T |

∑S
s=1 xst < K

}
. According to Lemma 3.2

such a period needs to exist and since
∑S

s=1 xst ≥ K ∀t = t′ + 1, . . . , t1 − 1 it follows

that
∑S

s=1 ls,t1−1 > gt1−1 ≥ 0. Let s′ be a station for which ls′,t1−1 > 0 holds, then xs′t1
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could be increased by at least one unit thereby diminishing ls′,t1−1 without compromising
the feasibility of the solution. Again the resulting solution would be better with regard
to fsum and at least as good regarding fmax.

Corollary 3.4. A solution is fsum-optimal if and only if
∑S

s=1 lst = gt, ∀t = 1, . . . , T
holds.

Proof. The �if�-part follows from the lower bound derived from Lemma 3.1, the �only if�
directly follows from Lemma 3.3.

Theorem 3.5. For every feasible problem instance, there exists a solution which is both

fsum and fmax optimal.

Proof. Let X be a feasible solution that is optimal with regard to fmax. By Lemma 3.1 it
holds that no feasible solution with

∑S
s=1 lst < gt for any t = 1, . . . , T can exist. Assume

that in at least one period t′
∑S

s=1 lst′ > gt′ , then according to Lemma 3.3 the solution
can be improved with respect to fsum without compromising fmax-optimality. It follows
that there is always an fmax-optimal solution for which

∑S
s=1 lst = gt,∀t = 1, . . . , T holds

which by Corollary 3.4 is also fsum-optimal.

Theorem 3.5 opens up the possibility to formulate problem TTL as an integer program
with both objectives in one joint objective function (9) subject to (1) - (3).

Minimize fj = fsum + fmax (9)

4 Outline of the Algorithm

With these properties in mind, we set forth to develop an algorithm to solve the TLL-
problem. Theorem 3.5 states that in each period t no more (and no less) than gt bins
need to be stocked to optimize fj . A solution that satis�es this condition will de�nitely
be optimal with regard to fsum. However, there remains the problem of distributing
the bins among the stations s = 1, . . . , S in each period t = 1, . . . , T such that fmax is
minimal.
The idea of the algorithm presented in this paper is to distribute the required stock

gt in each period as evenly as possible, i.e., so that no more than gt bins are stocked in
any period and the solution is still feasible. What makes this di�cult is the fact that
the decision to stock bins in one station in one period may have repercussions on all the
following. Bins, once stocked, cannot be removed from a station except by consumption
in the station itself. A simple example: assume that in one period t 10 bins are stocked
in one station s, which does not pose a problem with regard to gt. In the next period
no bins are consumed in that station, which means that the 10 containers will of course
still be lying in stock in t + 1. If gt+1 < 10 the solution cannot be optimal - and might
not even be feasible anymore. Consequently, in order to construct a feasible and optimal
solution, whenever an algorithm assigns bins to a station it will have to look ahead at
how this a�ects later periods.
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Unlike the fsum objective, whose optimal value is already known in advance, the op-
timum of the fmax function is much harder to obtain. We will show that if f∗max was
known in advance, it would, however, be rather easy and computationally inexpensive
to construct a feasible solution, as care would only have to be taken to distribute no
more than gt containers per period t while not exceeding f∗max in any station. As a
consequence, the optimization is transformed into a series of feasibility problems, where
di�erent values for fmax are systematically tested. If no feasible solution can be found,
the value was too low. Otherwise, it might have been too high and a lower one needs
to be checked. The determination of f∗max can be implemented e�ciently in the form of
a binary search, where the search space between the lower and upper bound for f∗max
is continuously halved until only one, the correct, value remains. Notice that f∗max is
bounded from above by R = max{gt|∀t = 1, . . . , T}, since, in the worst case, all contain-
ers required in a period are stashed at just one station. It is further bounded from below
by L =

⌈
R
S

⌉
, as, in the best case, all containers are divided equally among the stations.

Figure 1 outlines the procedure for constructing a feasible solution � if one exists �
for a given p := fmax. First, in Line 1, the gt are calculated as with Equation (8).
Then, the algorithm iterates through all periods (Line 2). In each period the number
of containers to be stored k is calculated (Line 3). This number may be less than gt
(although of course not less than zero) for any given t because decisions made in earlier
periods may cut into the available storage space, like in the example above where 10
containers are already stocked in period t+1 and can thus not be reassigned. This same
idea is also applied when calculating the upper bounds in Line 5. The question here
is: What is the maximum number of bins that can be stocked in each station without
making it impossible to stay below gt bins in future periods? To answer this, �rst, a
vector zt′ , ∀t′ = t+ 1, . . . , T , is assembled which contains the residues of the gt′ that are
still disposable. The upper bound ubst for a station s is then de�ned as the minimum of
the sum of the accumulated demands

∑t′

t′′=t+1 dst′′ (bins that have been consumed will
not lie in stock anymore), the zt′ (the number of bins that may still be stocked) and the
lst′ (the amount of bins that have already been stocked in the station) of all the periods
t′ = t+ 1, . . . , T following the current period. Also, no upper bound can be greater than
p (i.e., the given fmax) or lst + k (because no more than k bins may be distributed), of
course. As long as these bounds are not exceeded, the solution will obviously be fsum-
optimal and feasible, the given p permitting. The pseudo-code from Line 10 to 12 serves
to assign as much of k as possible to the station whose current stock level is farthest
away from its maximum, dictated by ubst (Line 10). If all stations have already reached
their limit, the solution is infeasible because p is too small (Line 7). After each portion
of k has been assigned, i.e., one station has been loaded to the maximum, the future
stock levels lst′ , ∀t′ = t+ 1, . . . , T have to be updated in Line 13, which in turn makes a
recalculation of the upper bounds necessary.
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Calculate the gt for all periods;1

for t = 1 to T do2

Set k to the part of gt that is still unassigned;3

while k > 0 do4

Calculate the upper bounds;5

if all stations already reached their upper bounds then6

p is infeasible;7

Exit;8

end9

Set maxStation to the station farthest away from its upper bound;10

Load maxStation to its upper bound;11

Reduce k by the amount assigned in the previous step;12

Update the stock levels in the succeeding periods;13

end14

end15

p is feasible;16

Return the optimal stock levels;17

Figure 1: An algorithm to check if a given fmax =: p is feasible.

A formal description of the whole algorithm as well as an example can be found in the
appendix.
Strictly speaking, the algorithm in Figure 1 only outputs the amount of containers lst

stored in each period and station while actually the loading of the tow train xst is what
is wanted. However, the xst can easily be calculated by rearranging Equation (6):

xst = lst + dst − ls,t−1 ∀s = 1, . . . , S, t = 2, . . . , T (10)

with

xs1 = ls1 + ds1 ∀s = 1, . . . , S

In the appendix it is proven that the proposed algorithm solves any instance of TTL
to optimality in polynomial time.

5 Computational study

5.1 Instance generation

As there is no established test data for the TTL, we will �rst describe how the instances
for this paper were generated.
TTL instances are derived from the parts usages of di�erent models at the stations.

Depending on the production sequence of the models, the number of parts and, con-
sequently, containers consumed at any station in between any two tours will �uctuate.
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For each station count from Table 4, the models are randomly generated by assigning
a demand dparmp for parts p ∈ P to each model m ∈ M . The parts usages dmp are
calculated as brnd(um, um)e∀m ∈ M ; p ∈ P where um = rnd(0.5, 0.5)∀m ∈ M and
rnd(µ, σ) ∼ N(µ, σ) is a normally distributed random number capped at 0 and b·e de-
notes rounding to the nearest integer. Bins have a di�ering capacity depending on what
kind of part p ∈ P is stored in them, namely a uniformly distributed random number
from the interval [1; 20], to allow for the fact that di�erent parts may have di�erent sizes
while the size of the bins is standardized. At each station two di�erent kinds of parts p
are used.

Symbol description values

|M | number of distinct models 100

D sequence length 400

T number of tours 10, 25, 50, 75, 100, 125, 150, 175, 200
S number of stations 10, 50, 100, 200, 400

Table 4: Parameters for instance generation

Next, one sequence Y0 = (y1, y2, . . . , yD) is generated for each station count from Table
4 by assigning to each sequence position yi, ∀i = 1, . . . , D a model rnd(|M |/2, |M |/4)
where rnd(µ, σ) is a normally distributed random number from the interval [1; |M |]
rounded to the next integer. Of this sequence, 99 random permutations Yr∀r = 1, . . . , 99
are generated, leading to a total of 100 sequences for each parameter set. With these
data in mind, it is easy to calculate the number of bins required drst in between any two
tours t at any station s for each sequence r by following the procedure outlined in Section
3. For the sake of this study, it is assumed that the train cycles through the stations in
a consecutive manner, needing exactly 1 cycle to get from one station to the next. The
tuggers will start their tour every bD/T c cycles. All stations will also receive a delivery
before actual production begins (in cycle 0), i.e., an initial stock that is also planned like
a normal tour.
The tugger capacity K is calculated as the minimum K necessary to still be able to

reach a feasible solution given the �worst� sequence for each parameter set, i.e.,

K = max

{
max

{⌈∑t
t′=1

∑S
s=1 d

r
st′

t

⌉∣∣∣∣∣ t = 1, . . . , T

}∣∣∣∣∣ r = 0, . . . , 99

}
. (11)

The instances are divided into two groups: First, we analyze a case developed on the
basis of real-world data from a major German car manufacturer. The parameters used
for this series of test are printed in bold in Table 4. Furthermore, for this case, we
assume that each tow train will serve three stations which it will visit T = 25 times
during the time frame of D = 400 cycles. Note that the problem decomposes into
smaller sub-problems in this case, because, as there are no overlapping tugger routes,
what one tow train delivers to one set of stations does not concern another tow train
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which serves another (distinct) set of stations. Second, we try all the other parameter
combinations from Table 4 to see how tweaking the problem parameters a�ects results
and performance. For this latter group of tests, we assume that the tow train always
cycles through all stations. This is obviously an unrealistic assumption in many cases
but it presents an interesting test case as it makes the problem more challenging.

5.2 Computational results

The algorithm was implemented in C# 2008 and tests have been run on an x86 PC with
an Intel Core 2 Quad Q9550 2.8 GHz CPU and 4096 MB of RAM.
Apart from solving the TTL, interdependencies between part supply and production

sequencing are investigated. As part of the famous Toyota Production System, level
scheduling has received widespread attention both in research (for surveys, see Kubiak
(1993), Dahmala and Kubiak (2005) and Boysen et al. (2009b)) as well as practical
application (see, e.g., Duplaga et al. (1996), Monden (1998)). Level scheduling consists
of �nding a production sequence such that the material requirements are smoothed over
time with the goal of facilitating JIT supply of material and reducing safety stocks �
a goal that would seem to correspond well with the objectives of TTL. However, by
measuring the correlation between classic level scheduling goals and objective values for
the TTL, the promise of level scheduling facilitating part supply is tested in our speci�c
supply setting. In order to do this, a well-known objective functions for the Output Rate
Variation (ORV) problem is utilized (Kubiak, 1993). The target consumption rate rp per
part p, which is to be approximated by actual part demand, is de�ned as

rp =
∑

m∈M dparmp · bm
D

∀p ∈ P, (12)

where bm represents the number of models of type m to be produced over a planning
horizon consisting of D production cycles. This leads to an objective function

Z1(Y ) =
D∑
t=1

∑
p∈P

(∑
m∈M

dparmp ·
t∑

t′=1

ymt′ − t · rp

)2

(13)

with binary variables ymt indicating whether (ymt = 1) or not (ymt = 0) model m is
produced in cycle t. While the general goal of the classic ORV is probably compatible with
the goals of the TTL, one problem with this function Z1 can immediately be identi�ed:
The �uctuations of parts usage rates are summed up over time. Therefore, a sequence
that entails a usage rate which consistently oscillates around the desired rate will possibly
produce the same objective value as a sequence that behaves well most of the time but
has one or a few periods with extreme deviation. It stands to reason, however, that the
latter sequence would have far worse repercussions on the TTL. As a consequence, we
will also take another aggregation function of the ORV into consideration:

Z2(Y ) = max

∑
p∈P

(∑
m∈M

dparmp ·
t∑

t′=1

ymt′ − t · rp

)2
∣∣∣∣∣∣ t = 1, . . . , D

 . (14)
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With these functions (13) and (14) the generated model sequences of our test instances
can be evaluated with respect to ORV. For each parameter set, these objective values and
the ones obtained through solving the TTL are compared. The results are listed in Table
5 for the real-world case. fsum and fmax show the corresponding optimal objective values,
the �rst row showing the minimum, the second the average and the third the maximum
over all 100 sequences, ρZ1 and ρZ2 stand for Pearson's product-moment correlation
between fj and Z1 and Z2, respectively, and CPU time denotes the average time in
seconds the algorithm needed to solve the problem. The correlation is also marked with
an asterisk (*) if it is signi�cant at the 95% con�dence level and with two asterisks (**)
if it is signi�cant at the 99% con�dence level.

fsum fmax ρZ1 ρZ2 K CPU time

1817 4
2860,21 6,98 0.50** 0.59** 10 <1
5187 13

Table 5: Minimum, average and maximum objective values and correlation with level
scheduling for the real-world case.

While the numbers for the fsum-objective can be hard to translate, the meaning of the
fmax values is easy to interpret: On average, a maximum of about 7 bins was stored at
any station, right before the tow train arrived. The values of both objective functions
are rather volatile, ranging from 1817 to 5187 and from 4 to 13, respectively. Keeping
in mind that the only thing that changes between instances is the order in which the
very same models are assembled, it becomes obvious that a �good� production sequence
can go a long way toward easing just-in-time supply of the assembly line. As to �nding
such a sequence, classic ORV methods seem to be applicable, seeing that there is a highly
signi�cant � albeit not very strong � correlation between ORV and TTL objectives. That
there is great room for improvement yet to be exploited is noticeable when comparing
the correlation coe�cients ρZ1 and ρZ2 : Just as we surmised, the Z2 objective is better
suited to predicting attainable TTL objective values than the Z1 objective is, although
the correlation is still far from perfect, as can also be seen in Figure 2.
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(a) The relation between Z1 and fsum. (b) The relation between Z2 and fsum.

Figure 2: Correlation between ORV and TTL for the real-world case.

Table 6 shows the results for all test cases. Here, the above observations regarding
correlation between ORV and TTL are con�rmed. In only 6 out of the 45 problems no
signi�cant correlation between either Z1 or Z2 and fj could be found. In most cases
the correlation is only moderate (0.49 is the maximum for Z1, 0.53 for Z2) but highly
signi�cant (99% con�dence in 31 cases for Z1 and 35 cases for Z2). In 37 cases Z2 proved
to be the better predictor of TTL success than Z1. In the remaining 8 cases they were
tied or at least very close together.

15



S T fsum fmax ρZ1 ρZ2 K CPU time

10

10 184,68 4,06 0.33** 0.28** 59 <1

25 103,15 2,06 0.21** 0.26** 32 <1

50 90,25 1,45 0.18* 0.27** 24 <1

75 183,56 1,86 0.052 0.17* 20 <1

100 194,34 1,78 0.10 0.16 18 <1

125 151,01 1,5 0.19* 0.22** 17 <1

150 150,68 1,4 0.20** 0.18* 16 <1

175 95,65 1,17 0.24** 0.24** 16 <1

200 63,36 1,03 0.34** 0.31** 16 <1

50

10 843,17 3,77 0.24** 0.25** 255 <1

25 677,63 2,1 0.43** 0.50** 144 <1

50 1018,08 1,92 0.42** 0.50** 107 <1

75 883,73 1,74 0.49** 0.51** 93 <1

100 1029,39 1,87 0.33** 0.35** 83 <1

125 822,3 1,56 0.27** 0.33** 78 <1

150 813,29 1,49 0.19* 0.22** 73 <1

175 928,03 1,57 0.13 0.21** 68 <1

200 766,29 1,39 0.038 0.13 66 <1

100

10 2127,32 4,58 0.10 0.23** 546 <1

25 1412,95 2,2 0.35** 0.46** 302 <1

50 2116,99 2,06 0.29** 0.40** 221 <1

75 2314 2,07 0.23** 0.38** 188 <1

100 2985,43 2,16 0.20** 0.34** 165 <1

125 2814,19 2,07 0.26** 0.38** 151 <1

150 2586,69 1,92 0.22** 0.34** 141 <1

175 3433,65 2,11 0.33** 0.41** 128 <1

200 2763,28 1,95 0.20** 0.31** 124 <1

200

10 5646,86 5,5 0.13 0.11 1167 <1

25 4679,07 2,71 0.33** 0.40** 634 <1

50 4288,44 2,11 0.43** 0.53** 460 <1

75 6272,87 2,27 0.32** 0.42** 381 <1

100 5004,77 2,02 0.26** 0.31** 343 <1

125 8514,39 2,31 0.11 0.12 298 2

150 7638,43 2,21 0.15 0.20* 277 2

175 8072,71 2,15 0.076 0.056 257 3

200 7019,28 2,07 0.11 0.095 246 3

400

10 7420,27 4,1 0.096 0.093 1836 <1

25 7000,11 2,17 0.26** 0.30** 1070 <1

50 7175,36 1,8 0.38** 0.49** 813 2

75 9872,19 1,98 0.41** 0.46** 686 3

100 11385,88 2,05 0.42** 0.44** 603 5

125 11675,51 2,03 0.39** 0.44** 547 8

150 9940,91 1,78 0.23** 0.25** 512 10

175 10664,13 1,75 0.31** 0.37** 476 13

200 8674,95 1,62 0.29** 0.33** 459 13

Table 6: Average objective values and correlation with level scheduling.

The only moderate correlation between ORV and TTL objectives can be explained by
some of the characteristics of ORV. For instance, the employed objective functions do not
account for the di�erent bin sizes of parts, which could, however, be readily considered
by introducing weighting factors for parts. More severely, classic ORV objectives weight
negative and positive deviations from a leveled part demand equally. In the context of
in-house supply, it is the demand peaks which trigger a supply run and the more peaks
occur in consecutive production cycles the more di�cult a synchronous supply becomes.
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In the symmetric objective function of the ORV an overshooting of the demand rate in
one cycle accompanied by an undershooting in the next cycle, is counted twice, even
though it might have little impact on scheduled tow train loads. Finally, since the parts
share a common bottleneck, i.e., the tow train capacity, supply problems especially occur
when more than one part exceeds the ideal target rate in the same cycle. As Z1 aggregates
deviations over time, deviations of parts in the same cycle are not considered di�erently
as the same deviations spread over several cycles. We can draw two main conclusions
from this evaluation: On the one hand, classic ORV objectives are in principle suited
to ease tow train deliveries in the described setting. On the other hand, the sequencing
objectives discussed in the literature are far from ideal if the sole aim is an improved in-
house supply. An important step in this direction would be the consideration of delivery
schedules, which is discussed in detail in Boysen et al. (2009c).
In addition to the relationship to level scheduling, we further explore the connection

between the number of tours T and the fmax-objective in Figure 3a. Unsurprisingly,
there is a de�nite trend towards better, i.e., lower, objective values when the tow train
visits the stations more often. However, this trend is anything but linear. The greatest
gains are made when T jumps from 10 to 25, whereas in the interval between 100 and 200
not much happens. This is understandable, seeing that the whole production sequence
takes only 400 cycles to process, meaning that with T = 200, the tugger will come to each
station every other cycle, i.e., the supply is already almost as just-in-time as possible.
T has a very similar e�ect on tow train capacity K as can be seen from Figure 3b.

Remember that K is systematically calculated as the bare minimum tugger capacity
needed to reach a feasible solution in even the most unfavorable of the randomly generated
sequences. The trend here is also undeniable: The more tours, the less burdened the
tugger will be, but after a certain point (about 50 tours in the test cases), the added
bene�t of an even denser schedule becomes so marginal as to not matter.

(a) In�uence of T on fmax. (b) In�uence of T on K.

Figure 3: In�uence of tour frequency on fmax and K.
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Another thing that comes to attention when evaluating the test results is the relative
similarity in the fsum- and fmax-values within one parameter set. Sequences that nega-
tively a�ect one objective almost invariably seem to similarly a�ect the other, too, and
vice versa. Indeed, a correlation of up to 0.8 can be attested for the test cases (the exact
strength of the correlation mainly depends on the di�culty of the parameter set � if the
instance is too �easy�, objective values are low all around, making it harder to detect
trends), which hints at an even distribution of the bins among the stations. This means
that it is apparently not the case that there is just one station which causes a lonely peak
in the fmax objective while all the others are more or less empty (which would imply a
low fsum-score), which was the very reason for introducing the fmax objective in the �rst
place.
Finally, concerning performance, the algorithm is obviously well-suited to solving even

the most complex instances since it never needed more than an average of thirteen seconds
to solve even the most di�cult problems.

6 Conclusion

The paper presents an exact solution procedure with polynomial runtime for the tow
train loading problem, which decides on the number of bins to be loaded per tour of a
clocked and capacity constrained tow train when supplying parts consumed by a mixed-
model assembly line. In a comprehensive computational study the tradeo� between
the number of tours, inventory near the line and tow train capacity is investigated. In
line with intuition, increasing the delivery frequency reduces inventory or requires fewer
waggons per train. This e�ect is shown to diminish with delivery schedules becoming
denser. Furthermore, interdependencies between part supply and production scheduling
are investigated. The Toyota Production System promotes leveled production sequences
on the �nal assembly line, so that resulting part demands are evenly spread over the
planning horizon. This way, part supply is (said to be) facilitated and safety stocks
can be reduced. This e�ect is con�rmed by our computational study. However, it was
also shown that by slightly changing the aggregation function of level scheduling this
e�ect increases. Thus, future research should further investigate the best type of level
scheduling (or alternative sequencing approaches) for di�erent supply settings.
With regard to supermarkets and clocked tow trains future research should also tackle

the superordinate problems of the planning hierarchy, e.g., location of supermarkets and
determining tow train schedules (see Section 2). However, to exactly quantify the impact
of di�erent decisions within these problems solving the subordinate problem of loading
tow trains becomes an essential part. As optimally solving this problem requires merely
polynomial time, an integration of our solution procedure should be easily possible.
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Appendix

Formal description of the algorithm

et :=
∑S

s=1 dst −K ∀t = 1, . . . , T ;1

gT := 0;2

for t = T − 1 down to 1 do3

gt := max {0; et+1 + gt+1};4

end5

R := max{gt | t = 1, . . . , T};6

L :=
⌈
R
S

⌉
;7

R := R+ 1;8

while L < R do9

p := L+ b(R− L)/2c;10

pTooSmall := False;11

lst := 0 ∀s = 1, . . . , S; t = 1, . . . , T ;12

for t = 1 to T do13

k := gt −
∑S

s=1 lst;14

while k > 0 and pTooSmall = False do15

zt′ := gt′ −
∑S

s=1 lst′ ∀t′ = t+ 1, . . . , T ;16

ubst :=17

min
{

min
{∑t′

t′′=t+1 dst′′ + zt′ + lst′ | t′ = t+ 1, . . . , T
}

; lst + k
}
∀s =

1, . . . , S;
maxMargin := max {min {ubst − lst; p− lst} | s = 1, . . . , S};18

maxStation := argmax
s=1,...,S

{min {ubst − lst; p− lst}};
19

if maxMargin ≤ 0 then20

pTooSmall := True;21

end22

lmaxStation,t := lmaxStation,t +maxMargin;23

k := k −maxMargin;24

lmaxStation,t′ := max
{
0; lmaxStation,t′−1 − dmaxStation,t′

}
∀t′ = t+ 1, . . . , T ;25

end26

end27

if pTooSmall = True then28

L := p+ 1;29

else30

R := p;31

l∗st := lst ∀s = 1, . . . , S; t = 1, . . . , T ;32

end33

end34

Return l∗;35

Figure 4: Formal description of the algorithm to optimally load tow trains.

19



Example problem for the algorithm

Consider the example problem given in Table 7a. The table also shows the excess (or
overcapacity) et and the amount of parts that have to be stocked gt per period as de-
scribed by Equations (7) and (8), respectively. In a �rst step, the lower and upper bounds
for the binary search are computed: R = max{8; 14; 9; 10; 0}+1 = 15 and L =

⌈
14
4

⌉
= 4.

The �rst value of f∗max that is tried is p = 4 + b(15− 4)/2c = 9.
Now, to see if a feasible solution can be constructed with this upper bound p on the

station load, the algorithm plans the stocks in each period. For t = 1, �rst the available
storage zt in the following periods are updated. As no capacity has yet been used,
zt = gt, ∀ t = 1, . . . , T . The zt are needed to calculate the upper bounds ubs1 as in Line
17. For example,

ub11 = min

{
min

{
t′∑

t′′=2

d1t′′ + zt′ + lst′ | t′ = 2, . . . , 5

}
; l11 + k

}
= min {min {7 + 14 + 0; 7 + 9 + 0; 15 + 10 + 0; 15 + 10 + 0} ; 0 + 8}
= min {16; 8}
= 8.

(15)

The bounds for the other stations s, periods t and iterations i can be found in Ta-
ble 7b. Now, k = g1 −

∑S
s=1 ls1 = 8 − 0 = 8 units of storage space yet to be as-

signed have to be distributed among the stations such that no station exceeds either
its upper bound or p. For this, the station with the greatest margin maxMargin =
max {min {ubs1 − ls1; p− ls1} | s = 1, . . . , 4} of available storage space is selected. In pe-
riod one, with p = 9, all stations have the same margin of maxMargin = 8 which is
incidentally equal to k. Therefore the whole of k = 8 containers can be loaded into
station 1 without either breaking the upper bound or p. Period t = 1 has thus been
planned. A look at Table 8 reveals that the decision to stock 8 containers in station 1
in period 1 a�ects periods 2 and 3 as well because not all containers are consumed until
t = 4. As no upper bound was exceeded, however, we can be sure that this has adverse
e�ects on either feasibility or optimality.

dst 1 2 3 4 5

1 0 7 0 8 0
2 0 7 0 8 10
3 6 0 10 3 10
4 6 0 15 0 10

et -8 -6 5 -1 10
gt 8 14 9 10 0

(a) An example problem.

t 1 2 3 4 5
i 1 1 2 1 1 2 1

s = 1 8 8 5 8 0 0 0
s = 2 8 8 4 4 10 10 0
s = 3 8 13 13 4 10 1 0
s = 4 8 13 4 4 10 1 0

(b) Upper bounds ubst per station s, period t
and iteration i (p = 9).

Table 7: The example problem and upper bounds.
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lst 1 2 3 4 5

1 8 1 1 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

zt 13 8 10 0

Table 8: Stock after t = 1 has been planned (p = 9).

In the second period, maxMargin = max {min{7; 8}; {8; 9}; {13; 9}; {13; 9}} = 9 is
less than k = g2 −

∑S
s=1 ls2 = 14 − 1 = 13. Looking at the upper bounds in Table 7b

(t = 2, i = 1), it would seem possible to distribute the entire k = 13 containers in one step
by stocking 7 additional containers in station 1 and 6 in station 2. The individual bounds
as well as p would not be violated and no more than k = 13 units would be distributed on
the whole. However, those 13 containers would still be in stock in period 3 because they
are not consumed, thus leading to an overstock in this later period. Consequently, only
one station (the one with the greatest margin, i.e., either 3 or 4) can safely be loaded to
the maximum (station 3 in Table 9a) before the bounds must be recalculated. Note that
any station thus loaded will not have to be considered again in this period because it has
either been loaded to its maximum regarding p or its individual upper bound or because
the margin was great enough to take the whole of k. After the upper bounds have been
updated, the remaining k = g2−

∑S
s=1 ls2 = 14−(1+9) = 4 units are assigned to station

1 with maxMargin = 4 (Table 9b). The �nal stocks with p = 9 after all periods have
been planned can be found in Table 9c.

lst 1 2 3 4 5

1 8 1 1 0 0
2 0 0 0 0 0
3 0 9 0 0 0
4 0 0 0 0 0

zt 4 8 10 0

(a) Stock after the �rst stage
of t = 2 has been planned.

lst 1 2 3 4 5

1 8 5 5 0 0
2 0 0 0 0 0
3 0 9 0 0 0
4 0 0 0 0 0

zt 0 4 10 0

(b) Stock after the second
stage of t = 2 has been
planned.

lst 1 2 3 4 5

1 8 5 5 0 0
2 0 0 4 9 0
3 0 9 0 1 0
4 0 0 0 0 0

(c) Final stocks (p = 9).

Table 9: Stock after both iterations of t = 2, and the �nal stocks (p = 9).

Since a feasible solution with p = fmax = 9 could be found, this p might have been too
high; it might also be exactly optimal but that cannot be con�rmed until all lower values
for p have been discarded. To this end, the upper bound of the binary search is set to
R := p = 9. Note that this cuts the search space in half. The new p is 4+b(9−4)/2c = 6.
Running the algorithm with this value will show that it also leads to a feasible solution,
thus R is set to p = 6, making the new p := 4 + b(6 − 4)/2c = 5 which will also work
making the �nal p := 4 + b(5 − 4)/2c = 4 which leads to the feasible solution shown in
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Table 10a. Now R = L = 4, successfully ending the search. The actual tow train load
can easily be derived by applying Equation 10, resulting in the loads in Table 10b. The
optimal objective value in the example is f∗j = f∗sum + f∗max = 41 + 4 = 45.

lst 1 2 3 4 5

1 4 4 4 0 0
2 4 4 4 4 0
3 0 4 1 4 0
4 0 2 0 2 0

(a) Final stocks (p = 4).

xst 1 2 3 4 5

1 4 7 0 4 0
2 4 7 0 8 6
3 6 4 7 6 6
4 6 2 13 2 8

(b) Final loading of the tugger
(p = 4).

Table 10: Optimal result in the example with p = f∗max = 4.

Proof of Correctness

Proposition A.1.
∑S

s=1 lst ≤ gt,∀ t = 1, . . . , T holds if and only if lst′ ≤ ubst′ ,∀s =
1, . . . , S, t′ ≤ t in each iteration.

Proof. First o�, we will have to take a look at how the stock �ow between periods
works. Notice that during the course of the optimization lst and ubst are updated in each
iteration. For ease of presentation we omitted an iteration index and assume that lst and
ubst stem from the same iteration. By de�nition (Equation (6)),

lst =
t∑

t′=1

(xst′ − dst′) (16)

⇔ lst =
t−n∑
t′=1

(xst′ − dst′) +
t∑

t′=t−n+1

(xst′ − dst′) (17)

⇔ lst = ls,t−n +
t∑

t′=t−n+1

(xst′ − dst′) (18)

⇒ lst ≥ ls,t−n −
t∑

t′=t−n+1

dst′ ∀n ∈ N, 1 ≤ n < t, s = 1, . . . , S (19)

�→� Assume that there is a solution with lst′ > ubst′ . By insertion, this inequality can
be rearranged for at least one t, with t′ ≤ t ≤ T :
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lst′ > ubst′ (20)

⇔ lst′ > min

{
min

{
t′′∑

t′′′=t′+1

dst′′′ + zt′′ + lst′′

∣∣∣∣∣ t′′ = t′ + 1, . . . , T

}
; lst′ + k

}
(21)

⇒ lst′ >
t∑

t′′=t′+1

dst′′ + zt + lst ∨ lst′ > lst′ + k (22)

The inequality still holds if we replace lst by applying Inequality (19):

lst′ >
t∑

t′′=t′+1

dst′′ + zt + lst′ −
t∑

t′′=t′+1

dst′′ ∨ lst′ > lst′ + k (23)

⇔ 0 > zt ∨ 0 > k (24)

⇔ 0 > gt −
S∑
s=1

lst ∨ 0 > gt′ −
S∑
s=1

lst′ (25)

⇔
S∑
s=1

lst > gt ∨
S∑
s=1

lst′ > gt′ (26)

�←� The inverse is also true. Assume that there is a solution with
∑S

s=1 lst > gt. This
can have two reasons: First, too many bins have been stocked in this very period t. In
this case:

S∑
s=1

lst > gt (27)

⇔ 0 > k (28)

⇔ ls′t > k + ls′t ∀s′ = 1, . . . , S (29)

⇔ ls′t > ubs′t ∀s′ = 1, . . . , S (30)

Or, bins have been poorly assigned in a preceding period t′ < t, such that it becomes
impossible to stock no more than gt bins in t. In that case:

S∑
s=1

lst > gt (31)

⇔ 0 > zt (32)

Let us assume, without loss of generality, that the o�ending period t′ is t−1. According
to Inequality (19),
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ls,t−1 ≥ lst + dst ∀s = 1, . . . , S (33)

⇒
S∑
s=1

ls,t−1 ≥
S∑
s=1

lst +
S∑
s=1

dst (34)

Inserting zt from Inequality (32), which was shown to be strictly less than zero, the
inequality becomes strict:

S∑
s=1

ls,t−1 >
S∑
s=1

(lst + dst + zt) (35)

⇔
S∑
s=1

ls,t−1 >
S∑
s=1

ubs,t−1 (36)

⇒ ls′,t−1 > ubs′,t−1 ∃s′ = 1, . . . , S (37)

Proposition A.2. The algorithm optimally solves the problem.

Proof. It is obvious that the optimal fmax objective value must lie in the interval between
L and R, therefore the binary search will always �nd it, provided the inner loop is capable
of constructing a corresponding feasible solution. This is indeed the case for any feasible
value of p as the following proof by induction shows.
In the �rst period t = 1, the statement holds obviously true. Exactly k = gt (thus

optimizing fsum) containers are stocked such that p is not exceeded in any station while
also observing the upper bounds ubst. If that is not possible, then either the problem
instance is inherently infeasible or p is too low; either way, p will be rejected and the
binary search will try a larger value if possible. Apparently, in some individual period a
lower p might be attainable if the upper bounds could be neglected. This is, however,
neither possible nor necessary as Theorem 3.5 in conjunction with Proposition A.1 states.
Given a feasible assignment of lst in period t, the algorithm will also correctly and

optimally determine the ls,t+1. Since lst ≤ ubst, ∀s = 1, . . . , S, it follows, by Proposition

A.1, that
∑S

s=1 ls,t+1 ≤ gt+1. Thus, there is no problem stocking exactly gt+1 parts,
again observing the upper bounds as well as p.
The part of any ls,t+1 that has already been determined in the earlier period is ls,t+1 =

lst − ds,t+1 (see Inequality (19)). In consequence, no station can have more than p
containers in stock in t+ 1 because of a decision made earlier.

Proof of polynomial runtime complexity

Proposition A.3. The algorithm solves the problem in polynomial time.
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Proof. In its outer loop the algorithm performs a binary search in the interval [L;R].
The smallest value that L can take is 0, the value of R is max {gt | t = 1, . . . , T} which
is bounded in the sum of the demands

∑S
s=1 dst for any given period t, ergo the interval

to be examined grows exponentially with input size. The binary search algorithm, on
the other hand, has a worst case performance of O(log n), where n is the number of
elements in the interval. The number of iterations through the outer loop is therefore
polynomially bounded.
The runtime of the inner part of the algorithm that deals with constructing a feasible

solution for a given p is obviously polynomially bounded as it contains only �for�-loops
over either the number of stations or periods, the sole exception being the �while�-loop in
Line 4. This loop, too, can only be iterated through S times at the most because after S
iterations either k = 0 or all stations have already been loaded to their respective upper
bounds, in which case pTooSmall becomes true and the loop exits.
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