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Abstract
With increasing cost competition and product variety, providing an efficient Just-in-
Time (JIT) supply has become one of the greatest challenges in the use of mixed-
model assembly line production systems. In the present paper, therefore, we propose
a new approach for scheduling JIT part supply from a central storage center. Usually,
materials are stored in boxes that are allotted to the consumptive stations of the line
by forklift. For such a real-world problem, a new model, a complexity proof as well
as different exact and heuristic solution procedures are provided. Furthermore, at
the interface between logistics and assembly operations, strategic management impli-
cations are obtained. Specifically, basing on the new approach, it is the first time a
statistical analysis is being made as to whether widespread Level Scheduling policies,
which are well-known from the Toyota Production System, indeed facilitate material
supply. Note that in literature it is frequently claimed that this causality exists.

Keywords: Scheduling; Mixed-model assembly line; Just-in-Time; In-house Logistics

1 Introduction

An increasing necessity for close cooperation with suppliers and ongoing proliferation of product
variety are two recent trends that are increasingly shifting focus to an efficient JIT part supply.
For instance, in the automotive industry, production programs often comprise billions of different
models (see Boysen et al., 2009a). Note that these complex model programs have to be assembled
on a single mixed-model line. As a result of this, installing and maintaining an efficient JIT part
supply gets more and more challenging in modern mixed-model assembly line production systems.

Therefore, the present paper proposes a new approach for efficiently handling JIT supply for
mixed-model assembly lines. This approach is motivated from the real-world storage processes
involved in the production of luxury cars by a major car manufacturer in Germany. To be more
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specific, the approach seeks to find JIT-conform sequences of material boxes that are delivered
from a central storage center.

In this specific setting the final assembly process, which has to be supplied with parts, is
located on the second floor of a factory building. The central receiving store is located on the
ground floor. Here, parts from multiple suppliers and preceding in-house production stages are
received and temporarily stored. Both levels are connected by a hoist system, which is to be
filled with transport boxes (in the ground floor) containing parts. (Note that the parts in the
transport boxes are stored in standardized skeleton containers or in part-specific boxes e.g. a box
for door sets). Once they have arrived on the second floor, the transport boxes are picked up by
a forklift from the hoist gate and delivered to the stations of the final assembly line, where the
respective parts are assembled into end-products. The line is subdivided into multiple u-shaped
segments consisting of multiple stations. At the stations, each u-segment is assigned a forklift
and a separate gate to the hoist system. Once a forklift has delivered a box to a station, it
returns to the hoist gate and immediately fetches the next box waiting in queue. A schematic
representation of part supply is depicted in Figure 1.

Figure 1: Schematic representation of problem setting

In our problem setting, part distribution by forklift is a bottleneck. Therefore, a suitable
sequence of given material boxes has to be found. Note that each material box may contain a
varying number of parts fed into the hoist system. The distances and delivery times taken by
the forklift between gate and stations are known with certainty. Moreover, supplying parts by
forklift takes much longer than replenishing boxes via the hoist system. Therefore, the sequence
of boxes fed into the hoist system solely determines the number of parts available per station
and production cycle. On the one hand, by all means, a material shortage should be avoided,
otherwise there is a threat of having a line stoppage leading to hundreds of assembly workers
being idle. On the other hand, however, the space at the stations of the line is notoriously scarce
(see Klampfl et al., 2006; Boysen et al., 2009b). Thus, we aim at a box sequence, which minimizes
the weighted maximum of part inventory near the line over all stations and production cycles.
However, in order to feasibly execute the production process defined by the model sequence at
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the final assembly line, resulting part demands have to be satisfied.
Clearly, although the work in this paper is inspired by a specific real-world case, our findings are

easily generalizable to numerous other applications. Specifically, this problem setting becomes
relevant whenever the widespread pallet to work station-policy is applied (e.g., see Battini et al.,
2009). In this scenario pallets or boxes for parts are successively delivered by a vehicle (e.g., a
forklift or tow train) from some central storage area to a consuming production system under
time-varying demand. Such a storage area might be the queue of a hoist system but can also
be a (centralized or decentralized) warehouse or an inbound area for truck deliveries. Note that
our problem could even be more general and can also be applied if point-to-point deliveries of a
single vehicle are to be scheduled in a one-warehouse-multiple-retailer setting with deterministic
and time-varying demand. However, in our description we will focus on our real-world case of
supplying parts to a mixed-model assembly line.

The remainder of the paper is organized as follows. Section 2 reviews related literature. Section
3 provides a detailed problem description. This is followed by sections 4 and 5, which introduce an
exact Dynamic Programming procedure and a Simulated Annealing approach, respectively. The
computational study is presented in Section 6. In addition to evaluating the solution performance
of algorithms, this section also investigates the interface between in-house part logistics and the
sequencing problem at the assembly line. The latter determines the sequence of product models
launched down the assembly line. The famous Toyota Production System promotes a sequencing
procedure labeled “Level Scheduling”, which aims at evenly spreading part supply (induced by
the model sequence) over the planning horizon. Since demand peaks are significantly reduced, it
is frequently conjectured that material supply is alleviated. Our aim is to test whether leveled
production sequences in final assembly are indeed helpful in avoiding excessive inventory in our
part supply setting. Finally, Section 7 presents a summary and conclusions of our findings.

2 Literature Review

Existing literature on mixed-model assembly lines mainly deals either with the strategic assembly
line balancing problem or the operational sequencing problem, which determines the succession of
models launched down the line. For recent review papers on both topics see Boysen et al. (2007)
and Boysen et al. (2009c), respectively. In relation to our hoist scheduling problem, it is assumed
that both problems have already been solved. Thus, the layout of the line is already determined,
so that it is easy to accurately define which part is required at what station. Moreover, the
short-term model sequence is assumed to be given, so that exact demands for parts per station
and production cycle are known with certainty.

Literature on organizing the part supply of mixed-model assembly lines is extremely scarce.
For instance, Klampfl et al. (2006) investigate the location of material boxes within a station’s
restricted space. The organization of part supply from a consignment stock organized by a third
party logistics provider is considered by Boysen et al. (2008). Other part feeding strategies are,

3



e.g., investigated by Baek et al., (1997) as well as Choi and Lee (2002). However, part supply of
mixed-model assembly lines still remains a widely unexplored field of research.

If movements of material boxes from hoist system to the assembly line stations are interpreted
as jobs and the forklift as a processor, our problem is closely related to traditional machine
scheduling problems with given due dates (for an overview see Józefowska, 2007). In this field,
single-machine scheduling problems (without allowing idle times of the processor and with job
dependent due dates) which aim at minimizing weighted earliness and tardiness, are investigated
by Abdul-Razaq and Potts (1988), Ow and Morton (1989), Li (1997) as well as Liaw (1999).
However, the major difference between single-machine scheduling problems and our problem
setting is that material boxes per station arrive from suppliers and preceding in-house production
stages filled with diverging numbers of parts. Thus, unique due dates per material box can not
be calculated upfront as the point in time a station runs out of parts depends on the number of
parts delivered in preceding boxes. Moreover, late jobs are not allowed in our setting as tardiness
costs for a line stoppage are prohibitive. Therefore, since our hoist scheduling problem has not
yet been considered in the literature, it is described in detail in the following section.

3 Detailed Problem Description

In our problem setting, different boxes containing parts to be consumed by a mixed-model final
assembly line are to be fed into a hoist system, which conveys boxes from the central receiving
store close to a specific line segment. At the output gate of the hoist system a forklift fetches
these boxes one after another (in the given sequence) and delivers them to the respective stations
of the line. Upon returning from a station, the forklift directly loads the next box waiting in the
queue of the hoist system and the course of events repeats itself until the end of the planning
horizon is reached. Note that in our real-world case the planning horizon comprises exactly one
shift, which typically lasts 8 hours.

Once a material box is delivered to a station, assembly workers remove parts from the box and
successively assemble them into the workpiece. The sequence of production is typically fixed three
to four days before production starts, whereas determining the box sequence is an operational
problem solved the same day. Consequently, in what follows, demands for parts per station
and production cycle are exactly defined. Note that a material shortage at a station would be
extremely costly due to a necessary line stoppage or off-line repairs. Therefore, an efficient part
supply has to guarantee that no station may run out of parts. Consequently, when determining
the box sequence, material shortages are to be avoided. On the other hand, inventory at the
stations violates the JIT-principle. Typically, the space at the stations is extremely scarce,
so that excessive inventory obstructs assembly operations. For instance, workers may cover
considerably longer distances in order to collect required materials. Thus, we aim at minimizing
the maximum inventory over all stations and production cycles, where each part owns different
weights, e.g., to represent different part dimensions or values. Note that the min-max objective
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restricts the amount of weighted inventory in every production cycle while preventing inventory
becoming extraordinarily high in single cycles, as might occur in the min-sum case. As such the
obstruction of assembly operations by such peaks of inventory is disproportionately high, in our
case, the min-max objective seems better suited.

In addition to this general problem setting, the following premises are introduced:

• No forklift idle time is allowed between two consecutive jobs. Note that by allowing idle
time, more degrees of freedom with regard to the objective function would exist. Specif-
ically, by delaying certain deliveries, inventory near the line could be reduced. However,
such a policy would require access to an information system for a forklift driver, which
exactly defines his/her idle time between two jobs. In order to avoid respective investment
costs, a no-wait policy is applied.

• Processing times of box deliveries by forklift to and from a station as well as maneuvering
times for picking up and dropping boxes are static and deterministic.

• Time units are normalized to the equidistant length of a production cycle, which is not
a very restrictive premise as typical cycle times are fairly short, e.g., between 60 and 90
seconds in the automobile industry.

• Each box contains a predetermined number of units of a single item. In order to avoid
costly line stoppages or off-line repairs, a feasible schedule has to guarantee that at every
station the material demand is satisfied in every time period, i.e., that the total number of
items delivered is larger or equal to the cumulative demand.

• For simplicity reasons, it is assumed, that each station assembles only a single part. Con-
sequently, each part can be unambiguously assigned to a single station. Clearly, extensions
towards the supply of multiple parts per station could be easily integrated into our problem
definition and solutions procedures.

• Typically, multiple boxes containing the same part type are to be fed into the hoist system
during the planning horizon. All of these boxes may contain a varying number of parts.

• After the arrival of the forklift at a station, parts are assumed to be available for assembly
just after a given static maneuvering time (labeled “drop time”) has elapsed.

• W.l.o.g. safety stock must not explicitly be considered, but can simply be added to the
first demand period.

• Empty material boxes are collected by separate tugger trains, which cycle through multiple
u-segments and return empty boxes. Thus, box removals are not considered within our
problem. Note that, however, returns by forklift could be easily integrated into our problem
by simply adding station specific return times.
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Based on these assumptions, our hoist scheduling problem can be formally defined as follows:

M set of stations (index m)
T number of production cycles (index t = 1, . . . , T )
s index of sequence positions in the hoist system (with s = 1, . . . , |B|)
B set of boxes containing parts (index p)
Bm ⊆ B subset of boxes that have to be delivered to station m
ζp ∈ M station where box p has to be delivered to
Dm,t cumulated demand for parts at station m up to cycle t
pm delivery time for forklift from hoist to station m
pl total time span that elapse for the forklift to pick up and drop a box,

i.e., the total time span for executing both operations
ap number of parts that are contained in box p
wm weighted priority of parts at station m
Am initial inventory of parts at station m
π solution vector that defines the sequence of boxes fed into the hoist
π(s) box on sequence position s within solution vector π
tπp point in time where box p becomes available at its station ζp. Clearly,

this time assignment depends on the definition of the schedule π
Γm,t set of boxes that are delivered up to cycle t at station m
Lm,t inventory at station m stored near the line in cycle t

Table 1: Notations

A solution is determined by a vector π: B −→ B, which stores the sequence of boxes fed into
the hoist system. Consequently, the point in time tππ(s) where a box π(s), which is scheduled at
position s, becomes available at the line, can be calculated as follows:

tππ(s) = pζπ(s)
+

s−1∑
s′=1

2 · pζπ(s′) + s · pl ∀ s = 1, . . . , |B|. (1)

Clearly, for delivering box π(s) at sequence position s, the forklift has to transport this box
from the hoist to the respective station. This requires pπ(s) time units. Additionally, all preceding
boxes must be processed by the forklift. These operations require the transport time from hoist
to station and back. Finally, s pick and drop operations need to be considered. Furthermore, we
denote Γm,t as the set of boxes that are delivered on time up to cycle t at station m. Specifically,
it holds that:

Γm,t =
{
p ∈ Bm|tπp ≤ t

}
∀m ∈ M, t = 1, . . . , T. (2)

With these abbreviations, resulting inventory levels Lm,t at station m in cycle t are calculated
by:

Lm,t = Am +
∑

p∈Γm,t

ap −Dm,t ∀m ∈ M, t = 1, . . . , T. (3)

In cycle t resulting inventory Lm,t at station m amounts to initial inventory Am (first term)
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plus the sum of parts that are delivered on time in boxes (second term) minus the respective
cumulated part demand Dm,t of the assembly production process at station m. By applying
these equations and the notations summarized in Table 1, the hoist scheduling problem (HSP)
can be formulated as a mathematical optimization model:

Model formulation: Within HSP a permutation vector π: B −→ B has to be determined that
defines the sequence of boxes p ∈ B fed into the hoist system. The solution vector is bound to
the following objective function (4) and feasibility constraints (1) to (3), and (5):

(HSP) minimize Z(π) = max
m∈M ; t=1..T

{wm · Lm,t} (4)

subject to (1), (2), and (3) as well as to

Lm,t ≥ 0 ∀m ∈ M, t = 1, . . . , T (5)

Objective function (4) pursues the minimization of the maximum inventory level in all stations
over all cycles t. Weighting factors wm are applied to assess each station m individually, so that,
e.g., diverging part dimensions or values can be adequately represented. Furthermore, constraint
(5) ensures that no material shortages can occur.

Example: Consider four boxes to be delivered to two stations (M = {1, 2}). Boxes 1 and 2
contain a1 = 2 and a2 = 3 parts for station m = 1, respectively. The third (with a3 = 2) and
fourth box (with a4 = 3) are dedicated to station m = 2. Processing times are p1 = p2 = 1
while drop and pickup times are of negligible size, i.e., it holds that pl = 0. Moreover, since all
stations are equally weighted, it holds that w1 = w2 = 1. More data is given in Table 2.

Consider a solution π = (3, 1, 4, 2) of boxes fed into the hoist system. Due to predetermined
processing times, these boxes arrive at their respective stations in cycle 1 (station 2), 3 (station
1), 5 (station 2) and 7 (station 1), respectively. The objective value amounts to Z(π) = 3 result-
ing from the derived inventory levels Lmt that are listed in Table 3.

t 1 2 3 4 5 6 7 8 Am

D1,t 0 1 1 2 3 3 5 6 1
D2,t 1 2 2 4 4 5 6 7 2

Table 2: Example data

Proposition: HSP is NP-hard in the strong sense.

Proof: See appendix.
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t 0 1 2 3 4 5 6 7 8
L1,t 1 1 0 2 1 0 0 1 0
L2,t 2 3 2 2 0 3 2 1 0

Table 3: Inventory Lm,t for box sequence π = (3, 1, 4, 2)

4 Bounded Dynamic Programming

In this section, we propose a Dynamic Programming (DP) procedure for solving HSP to opti-
mality. Subsequently, in order to obtain a more efficient enumeration process, this approach is
extended by upper and lower bounds to a Bounded Dynamic Programming procedure.

Basically, our DP-approach is an extension of the well-known DP-procedure for sequencing
problems proposed by Held and Karp (1962). Thus, the decision process is carried out in |B|
stages, where each stage s = 1, . . . , |B| represents a current sequence position.

Any stage s comprises a set of states, where each state represents a possible subset Bs ⊆ B of
boxes scheduled up to the current sequence position s, i.e., |Bs| = s. In order to find an optimal
schedule, we introduce function h∗(Bs) as the minimal objective function value of a schedule for
boxes of set Bs ⊆ B, i.e., the min-max weighted inventory. This function can be calculated by
making use of the following recursive formula:

h∗(Bs) = min
p∈Bs

{max {h∗(Bs \ {p}), f(Bs, p)}} . (6)

This calculation is initialized by setting h∗(∅) = 0. Thus, (partial) objective values h∗(Bs) are
calculated by choosing the minimum over all boxes p ∈ Bs to be scheduled at the last position
s. Consequently, partial objective function values of the respective predecessor state containing
boxes Bs \{p} (first term of max-function) are compared with the current resulting contribution
f(Bs, p) to the overall objective function that occurs by scheduling box p at the last position s.

Obviously, a maximum inventory level potentially augmenting the overall objective value can
only occur in a period of a forklift delivery, because all other periods merely consume inventory
and step-wise reduce stock between two delivery periods. Moreover, at a specific delivery period
a maximum can only occur for the station that is currently supplied with parts. Thus, in order to
identify the maximum contribution of box p, we consider the respective delivery period t(Bs, p),
in which box p arrives at station ζp:

t(Bs, p) = pζp +
∑

τ∈Bs\{p}

2 · pζτ + |Bs| · pl. (7)

For this specific point in time and corresponding station ζp the maximum contribution f(Bs, p)
of box p scheduled at the sequence position s and antecedent subset Bs \ {p} is determined as
follows:
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f(Bs, p) = wζp ·

Aζp +
∑

τ∈Bs∩Bζp

aτ −Dζp,t(Bs,ζp)

 . (8)

Furthermore, infeasible states, which result in material shortages in final assembly, need to be
excluded from the decision process. Obviously, a minimum inventory level (and, thus, a potential
material shortage) can only occur in the production cycle right before a forklift delivery. Thus,
for each state it is checked whether there is enough inventory before a successive forklift can visit
the respective station again or before the final cycle T is reached. This period t(Bs,m) that is
right before the next possible forklift arrival at station m can be calculated by:

t(Bs,m) = min

pm +
∑
p∈Bs

2 · pζp + (|Bs|+ 1) · pl − 1, T

 . (9)

Consequently, for each subset Bs ⊆ B of boxes resulting inventory level L(Bs,m) can be
calculated at each station m by making use of the formula:

L(Bs,m) = Am +
∑

p∈Bs∩Bm

ap −Dm,t(Bs,m). (10)

Clearly, if minm∈M{L(Bs,m)} < 0 holds, the considered state is infeasible and is therefore
excluded from the succeeding enumeration process.

Finally, when the final stage |B| is reached and an optimal solution value h∗(B) is determined,
a simple backward recursion can be applied in order to determine the optimal sequence of mate-
rial boxes. Hence, in a worst case scenario, where no infeasible state can be excluded, there are
altogether 2|B| states to be evaluated, so that the computational worst case time complexity of
the algorithm amounts to O(2|B|) (see Held and Karp, 1962).

Example (cont.): The resulting DP-graph for the aforementioned example data is depicted in
Figure 2. Optimal solution value amounts to a weighted maximum inventory of h∗(B) = 3. One
of five optimal solutions is π = (3, 1, 4, 2) (see Table 3).

Although the number of states to be generated is considerably reduced compared to a direct
assignment of individual boxes to sequence positions (e.g., in a box-oriented branching scheme),
it may be too large for problem instances with plenty boxes |B|. Thus, in order to further reduce
the number of nodes, we employ the idea of Bounded Dynamic Programming (BDP) (e.g., Morin
and Marsten, 1976; Marsten and Morin, 1978; Carraway and Schmidt, 1991).

BDP extends the DP-approach that is introduced above by additionally computing a lower
bound LB(Bs) on the objective function value of the schedule of the remaining boxes B \ Bs

for any state. Furthermore, a global upper bound UB is determined upfront by some heuristic
procedure (see Section 5). Let h∗(Bs) be the minimal maximum weighted inventory level of
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Figure 2: Resulting DP-graph for the example

already scheduled boxes Bs in a currently considered state s, i.e., the optimal objective function
value for scheduling this set of boxes. Whenever it holds max{LB(Bs), h∗(Bs)} ≥ UB, this state
can be fathomed as it cannot be part of a complete solution with a better objective function
value than the incumbent best solution.

For the lower bound computation of the remaining problem (vacant sequence positions s + 1
to |B|) the following simple consideration is applied: Recall that a potential weighted maximum
inventory can only occur in a delivery period. In such a period, at least the number of parts ap

that are currently delivered will be in inventory reduced by the number of parts demanded for
assembly in the respective production cycle. Thus, in a best case scenario (in sense of a minimum
inventory level) the maximum number of parts to be delivered to station m in remaining boxes
(Bm \ Bs) is scheduled at the one of remaining cycles (from t(Bs,m) to T ) that causes the
largest demand. The weighted maximum over all stations of this difference amounts to lower
bound LB(Bs):

LB(Bs) = max
m∈M

{
wm ·

(
max

p∈Bm\Bs
{ap} − max

τ=t(Bs,m),...,T
{Dm,τ −Dm,τ−1}

)}
(11)

Example (cont.): The resulting BDP-graph for a given upper bound of UB = 4 is depicted in
Figure 3. Note that fathomed states are colored grey.

5 A Simulated Annealing approach

Since the problem HSP is NP-hard in the strong sense, optimal solutions can be generated for
problem instances with a limited problem size only. Specifically, as within our DP- and BDP-
approaches the number of states to be examined rises exponentially with the number of boxes |B|,
problem instances of real-world size are not solvable to optimality. Hence, a Simulated Annealing
(SA) approach is presented in the following. SA is a stochastic meta-heuristic that is able to
overcome local optima. Specifically, it is based on the acceptance of a modified neighboring
solution on a probabilistic scheme inspired by thermal processes for obtaining low-energy states
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Figure 3: BDP-graph for the example

in heat baths (e.g. Kirkpatrick et al., 1983; Aarts et al., 1997).
Preliminary tests with simple priority rule-based start heuristics predominantly lead to infea-

sible solutions. In these unsuccessful start heuristics the box sequence is simply filled from left
to right while choices are guided by a priority value. Thus, a meta-heuristic seems much more
promising in order to guide the search into feasible regions of the solution space. Although other
meta-heuristics such as tabu search are possible, we opted for SA as it is a quite simple yet
powerful approach that has successfully been applied to many real-world automotive problems,
e.g., at the French car manufacturer Renault (Solnon et al., 2008).

Our SA-approach operates on a vector π with element π(s) (with s = 1, . . . , |B|) determining
the box that is currently assigned to the respective sequence position s in the hoist system. As the
neighborhood-function we apply a simple swapping move. Specifically, two boxes at randomly
chosen sequence positions are interchanged. The initial solution vector is randomly filled with
boxes. For a given sequence vector π the corresponding objective function value Z(π) can be
easily determined according to equations (1) to (4).

If this objective function value is directly applied for the acceptance decision of a neighboring
solution, the procedure might yield infeasible solutions. As simple repair mechanisms are not
available, we apply the idea of penalty costs. It penalizes solutions showing material shortages
proportionally to the degree of violation. By integrating a penalty value PV , we derive a modified
objective function value ZSA(π) with additional potential penalty costs, which is applied to guide
the acceptance of neighboring solutions:

ZSA(π) = Z(π) + PV ·

(∑
m∈M

T∑
t=1

max {−Lm,t, 0}

)
(12)

Clearly, if a material shortage occurs within a current solution it holds that Lm,t ≤ 0 for
at least one station m and production cycle t. Consequently, based on the calculation of Lm,t

defined in restriction (3), this modified objective function weights each part unit that is not
supplied in time with penalty costs PV .
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A proper determination of the penalty value PV turns out to be a very critical task with
regard to the overall performance of the SA. It should be avoided that the SA gets stuck in less
promising regions of the solutions space. Such a region may be, for instance, characterized by
feasible solutions with poor objective function values or infeasible solutions with further solutions
around that violate even more constraints. In a negative scenario this region cannot be left by
the enumeration process, due to only marginal acceptance probabilities of neighboring infeasible
solutions.

Thus, dynamically changing penalty values in terms of a diversification-intensification strategy
have been applied (e.g., see Boysen et al., 2009b). For this purpose, the penalty value PV is
initialized with PV start = Z(π)start · 10, where Z(π)start is the objective function value of the
first randomly generated solution (be it feasible or not). Subsequently, with each improvement
of the modified objective value ZSA(π) the intensiveness of the search towards a local optimum
is augmented by raising the penalty value by applying PV := PV · 1.2.

Otherwise, if within the last 30 swap moves (in direct succession) no improvement of ZSA(π)
is obtained, the penalty value PV is decreased by applying PV := PV · 0.5. By reducing the
impact of the penalty value, the computation of infeasible constellations becomes more likely.
Consequently, the searching process may be directed into other regions and is therefore diversified.

The decision about whether a neighboring solution π′ obtained by a swap move is accepted is
decided according to traditional probability schemes (cf. Aarts et al., 1997).

Prob(π′ replacing π) =

1, if ZSA(π′) ≤ ZSA(π)

exp
(

ZSA(π)−ZSA(π′)
C

)
, otherwise

(13)

If accepted, current solution π is replaced by π′ as the starting point for further local search
moves.

Our SA is steered by a simple static cooling schedule (see Kirkpatrick et al., 1983). The
initial value for control parameter C is calculated by PV start · 10. Subsequently, this value C is
continuously decreased in the course of the procedure by multiplying it with factor 0.995 in each
iteration. If penalty value PV falls below PV start

10 , the procedure is restarted with a new random
sequence and a re-initialized control parameter C. A total of 100,000 neighboring solutions are
evaluated by our SA-approach and the feasible solution (if obtained) with the minimum objective
function value Z(π) is returned. In our computational study, we will only report results for the
values of control parameters described above. Note that preliminary studies have indicated that
this parameter constellation outperforms other settings and has obtained promising results.

6 Computational study

In what follows, efficiency and management impacts of our problem model and solution ap-
proaches are analyzed. Since no established test-bed is available for a comprehensive computa-
tional study, we firstly focus on the generation of useful test instances. Based on these problem

12



instances, algorithmic performance of our solution procedures is subsequently analyzed in detail.
Additionally, we focus on possible management impacts of our approach. Specifically, we

investigate the interface between part supply and production planning. By making use of our
approach, we analyze in detail whether leveled production sequences indeed ease an efficient
material supply. Note that in literature, it is often claimed that this causality exists.

6.1 Instance generation

In our computational study, we distinguish between two classes of test instances: case A instances,
which are small enough to be solved to optimality, and case B instances, which represent instances
of real-world size and, thus, need to be solved heuristically. In order to generate instances of
HSP, the following input parameters that are listed in Table 4 are applied.

values
symbol description case A case B
|M | number of parts (=stations) 4, 5, 6 10, 15, 20
|B| number of boxes 10, 12, 14, 16, 18, 20 30, 40, 50, 60, 70, 80
PROB probability of a demand event

per station m and cycle t
0.3, 0.5, 0.7

pl drop time 0
wm weight of part m 1

Table 4: Parameters for instance generation

Within each test case, the parameters are combined in a full-factorial design while instance
generation is repeated 10 times. Consequently, 3 ·6 ·3 ·10 = 540 different instances of case A and
case B were obtained, respectively. On the basis of a resulting predetermined set of parameters,
each single instance is generated as follows:

• At first, all |B| boxes are randomly assigned to stations, where each station is assured of
receiving at least one box. Furthermore, a random sequence π of boxes is determined. In
order to ensure that each instance is feasibly solvable (according to demand constraints),
remaining input data is generated in such a manner that sequence π is a feasible solution.
This is done by the following steps.

• In order to emulate realistic processing times occurring in an u-line-segment, where first
and last station are closest to the hoist gate, processing times are generated by making use
of the following set of formulas: pm = p|M |+1−m = m + 1, ∀m = 1, . . . , d |M |

2 e.

Using these processing times, the availability time tπs of each box can be determined
according to restriction (1), where the number of cycles T is set to the return time of the
forklift after its final delivery.

• The demand for stations is then determined by a random choice:
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Dm,t = Dm,t−1 +

{
1, if rnd ≤ PROB

0, otherwise
∀m ∈ M ; t = 1, . . . , T, (14)

with rnd being an equally distributed random number that is drawn out of interval [0; 1].

• Finally, for a given position s in the box sequence π, with πs = p, the number of items
ap per box is determined. In order to generate a problem instance, where the generated
schedule π is feasible, suitable delivery times pζp are defined accordingly. Specifically, the
content of box πs is determined by aggregating the demand from the arrival time of this
box p up to the succeeding box that is delivered to station ζp. An exception is given by the
forklift’s last arrival, where demand is aggregated up to last cycle T . Additionally, initial
inventory Am of each station m is set such that enough parts are available up to the first
arrival of the forklift.

6.2 Algorithmic performance

The algorithms were coded in C# 2008 and all tests have been conducted on a 2.1 GHz x86
Personal Computer with 2 GB of memory.

First, the solution performance of the exact solution procedures DP (dynamic programming)
and BDP (bounded dynamic programming) is investigated by solving all instances of test case
A. The left-hand side of Figure 4 shows an exponential increase of runtime in the number of
boxes |B| for both procedures. However, due to the applied bounding rule, the increase of BDP
is less distinct. Note that a timeout after 300 CPU-seconds was applied for each instance, which
explains the descending increase at the last data point with |B| = 20.

In this largest parameter constellation with 20 boxes, DP cannot solve a single instance (out
of 90) within the given maximum time limit, whereas BDP still finds 43 (47%) optimal solutions.
The coherence between the size of instances (with regard to |B|) and the number of instances
solved to optimality is depicted at the right-hand side of Figure 4. The figure reveals that the
upper limit of boxes up to which DP and BDP can be reasonably applied ranges between 18 and
20.

The aggregated results for case A instances of heuristic SA (simulated annealing) and lower
bound LB (see equation (11)) are listed in Table 5. SA seems well suited for finding near optimal
solutions. It determines a feasible solution for all 540 instances and solves 480 instances (99.37%)
out of 483, for which the optimal solution values were found by BDP, to optimality in merely 0.178
CPU-seconds on average. Our fast but simple lower bound shows a considerable deviation from
optimum. Only 52 optimal objective values are found and average relative deviation (measured
by Z(DP )−Z(LB)

Z(DP ) amounts to 19.75%.
Finally, case B instances representing problems of real-world size are investigated. Here,

optimal solution values cannot be gained anymore, so that merely SA and LB are compared.
In only three out of 540 instances SA was not able to find a feasible solution. For 55 problem
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Figure 4: Performance of exact solution procedures for case A instances

measure SA LB
number of optimal solutions found 480 52
optimal solutions (in %) 99.37 10.77
average absolute deviation 0.006 3.573
maximum absolute deviation 1 14
average relative deviation (in %) 0.02 19.75
maximum relative deviation (in %) 4 67
average CPU-seconds 0.178 < 0.01
maximum CPU-seconds 0.312 < 0.01

Table 5: Algorithmic performance of SA and LB for case A instances

instances optimality of a found solution could be proven by showing Z(SA) = Z(LB). The
average relative deviation between SA and LB (measured by Z(SA)−Z(LB)

Z(LB) ) for case B instances
amounts to 33.9%. Compared to 32.4% within case A instances, this gap remains nearly constant.
As in case A this gap was predominately caused by LB (see Table 5), it can be conjectured that
SA finds near optimal solutions for the large instances, too. Together with a short runtime,
which increases linearly in the number of boxes |B| (see Figure 5), our SA-algorithm seems to
be a promising approach for efficiently solving real-world instances of HSP.

6.3 Interdependency between part supply and production sequencing

By making use of our new approach, we are able to analyze interesting possible interdependencies
between part supply and production sequencing. Due to its application within the well-known
Toyota Production System, Level Scheduling has received widespread attention in practice (see,
e.g., Duplaga et al., 1996; Monden, 1998) as well as in research (for surveys see, Kubiak, 1993;
Dahmala and Kubiak, 2005; Boysen et al., 2009c).

Basically, Level Scheduling pursues the finding of production sequences at the final assembly
line such that resulting material demand at each station is smoothed over all cycles. Clearly,
as is frequently claimed in literature (e.g., Monden, 1998; Boysen et al., 2009c), this objective
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Figure 5: Performance of SA for case B instances

seems to be appropriate to facilitate an efficient JIT supply of material with small safety stocks.
However, because of a considerable recent reduction in vertical integration, assembly lines are

increasingly supplied in batches. Therefore, adopting to Level Scheduling policies may restrict
flexibility in assembly line sequencing considerably. On the other hand, for strategic management,
a more detailed analysis should be made as to whether a smoothed model sequence may facilitate
an efficient material supply from a warehouse. Our new approach allows us to analyze in detail
for the first time whether there is a correlation between Level Scheduling and inventory-efficient
material supply. Specifically, we measure the correlation between classic Level Scheduling goals
and objective values for the new HSP in our specific supply setting.

In this analysis the well-known objective function for the Output Rate Variation (ORV) prob-
lem is applied (Kubiak, 1993). The target consumption rate rm per station m, which is approx-
imated by the current average part demand per cycle, is defined as:

rm =
Dm,T

T
∀m ∈ M. (15)

Here, Dm,T represents the total part demand at station m to be assembled over all T production
cycles. This leads to an objective function:

ORV1(π) =
T∑

t=1

∑
m∈M

(Dm,t − t · rm)2 , (16)

with Dm,t defining the cumulative part demand at station m up to cycle t. Based on this
definition, objective function ORV1(π) compares actual demands at each station with an ideal
part consumption per cycle, that is defined by parameter rm.

Depending on the aggregation and deviation function, different alternatives to the sum-squared
case that is defined by equation (16) have been presented in ORV-literature (see Boysen et al.,
2009c). Therefore, we will also take another classic objective function – the max-abs case – into
consideration:
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ORV2(π) = max
t=1..T ; m∈M

|Dm,t − t · rm| . (17)

With these functions (16) and (17) any demand vector D of a HSP-instances can be evaluated
according to its ORV-efficiency and can then be compared to the respective optimal objective
value attained for HSP. For such a comparison the ten test instances of the parameter constel-
lation marked in bold in Table 4 are applied.

In any case, demand vector D is randomly shuffled by swapping demand events within a
station, so that 100 instances are derived, which only differ in the distribution of demand per
station over time. Note that instances that turned out to be infeasible according the demand
constraint of HSP are removed, which occurred in less than 3% of demand vectors.

Based on these guidelines, ten test cases (overall containing 1000 instances) are derived, for
which Pearson’s product-moment correlation between Z and ORV1 as well as between Z and
ORV2, respectively, is determined.

On an average of all the ten test cases, the correlation between objective values of HSP and
ORV amount to merely 0.065 (ORV1) and 0.057 (ORV2), respectively. Even the maximum
correlation is only 0.194 (ORV1) and 0.185 (ORV2). Thus, the conclusion can be drawn that
no correlation exists and leveling material demand according to the ORV does not considerably
facilitate part supply in our problem setting. These results can be mainly ascribed to the following
two reasons:

• The ORV aims at a leveling over all production cycles, which seems particularly reasonable
if parts are produced in direct vicinity of the final assembly line and are steadily “pulled”
up the final assembly. These prerequisites are especially fulfilled if parts are produced
on a feeder line (see Boysen et al., 2009c). In our setting, however, parts are delivered
batch-wise in boxes, so that a leveling in every cycle seems of minor relevance. Instead, the
aggregated part consumption, cumulated over all production cycles between two delivery
events, needs to be leveled, whereas the detailed demand pattern between two delivery
events is irrelevant from a JIT point of view.

• Moreover, ORV weights all parts equally, whereas the boxes of HSP contain different num-
bers of parts and are differently weighted. Consequently, while there is a positive leveling
effect between batches caused by ORV-objectives, smoothing inside batches may even com-
plicate an efficient JiT-supply. This can be explained by the fact that Level Scheduling
approaches aspire production sequences where demand changes between neighboring cycles
are minimized. This may cause higher inventory levels for HSP-instances with larger boxes.
While this effect can be already observed for the applied min-max objective, we assume
that it would be even more relevant for the min-sum case.

All these points highlight differences in the underlaying assumptions between both models.
Consequently, in order to facilitate material supply, alternative sequencing procedures need to
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be developed and analyzed. Therefore, strategic management is held to analyze in detail whether
Level Scheduling policies actually support an efficient material supply at the line. Our findings
emphasize that there are real-world part supply settings where it seems much more promising to
focus on schedules where part demand balancing is done in batches.

7 Summary and Conclusions

This paper considers the problem of finding a schedule of material boxes for efficiently supplying
the production process of a mixed-model assembly line. Specifically, this problem was motivated
by an industrial application in the automotive industry, where the final assembly line production
process is supplied with parts from a central storage using a hoist system. Since stoppage- or off-
line repair costs at the line are prohibitive, demand restrictions are hard, i.e., due date violations
are not allowed. A solution of the problem has to define a sequence of boxes to be transported
by the hoist system.

In order to solve this problem, this paper introduces its mathematical definition. After prov-
ing its NP-hardness in the strong sense, different exact and heuristic solution procedures are
proposed. By generating a first comprehensive test bed for the new problem, the efficiency of
the new solution methods is validated. Specifically, it was shown that a Bounded Dynamic
Programming approach provides optimal solutions for instances of moderate and medium size
(with up to 20 boxes). Furthermore, it can be conjectured that a proposed Simulated Annealing
approach is able to generate almost optimal solutions for large instances (with up to 80 boxes).
Note that the consumed computational time of the SA-approach for scheduling 80 boxes is in the
average less than 1.5 seconds and increases only linearly with the number of boxes. Therefore,
this heuristic can also be applied to extremely large problem instances.

Finally, this paper analyzes whether strategic management can support an efficient material
supply of the assembly line production process by applying Level Scheduling policies. Based
on the proposed new approach, a detailed statistical analysis is provided for the first time. In
contrast to the causality that is frequently conjectured in literature, no correlation can be proven.
On the contrary, indicators have been found that leveling material demands inside each batch
induced by the assembly sequence – like it is proposed by the Toyota Production System and its
Level Scheduling approach – may complicate an efficient part supply in our problem setting.

Consequently, future research should focus on sequencing approaches for mixed-model assem-
bly lines that pursue a leveling of material demands in batches. Note that, due to a reduced
vertical integration in recent times, stages are more loosely coupled and therefore deliveries oc-
cur in larger batches. Consequently, since leveling can be focused on batches, an application
of Level Scheduling policies unnecessarily reduces flexibility inside sequencing. In addition to
it, batch-oriented policies may actually support an efficient internal material supply, since their
objective function is stronger related to the HSP.

Additionally, future research should focus on extended versions of the HSP. In particular, due
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to their practical relevance, extensions towards parallel machine-cases, where multiple forklifts
and storage systems jointly supply parts for a specific line segment, seems an appropriate field
for future research.

Appendix

We will now prove NP-hardness for HSP by a transformation from the 3-Partition Problem,
which is well known to be NP-hard in the strong sense (see Garey and Johnson, 1979).

3-Partition Problem: Given 3q positive integers ri (i = 1, . . . , 3q) and a positive integer R

with R/4 < ri < R/2 and
∑3q

i=1 ri = q · R, does there exist a partition of the set {1, 2, . . . , 3q}
into q sets {A1, A2, . . . , Aq} such that

∑
i∈Aj

ri = R,∀j = 1, . . . , q?

Transformation of 3-Partition into HSP: Generate 3q boxes, which contain ap units of a
single part (|M | = 1), where ap equals the integer values rp of 3-Partition, with p = 1, . . . , 3q. A
priority weight of w1 = 1 is assumed for the single part. With regard to the forklift, we assume
delivery times of all boxes equal one, i.e., it holds pm = 1, ∀m ∈ M whereas pick and drop time
is negligible, i.e., pl = 0. For final assembly we define T = 6 · q cycles. Within these cycles a
demand of R additional items occurs any six cycles starting with cycle 6. Hence, exactly three
forklift visits with boxes are possible between any two demand events. Specifically, we define
D1,τ ·6+t = τ ·R,∀t ∈ {0, . . . , 5}, τ = 0, . . . , q. We label a demand event and the belonging boxes
delivered between previous and current demand event as a “demand cycle”. The question we ask
is whether we can find a solution for HSP with objective value Z = R.

Clearly, a feasible solution for an instance of 3-Partition can be directly transformed into a
feasible solution of the corresponding HSP-instance. For each set Ai = {ri1 , ri2 , ri3} we just
transport the corresponding boxes containing ai1 , ai2 , and ai3 items in one demand cycle. As the
integer values of each set amount to R, obviously any demand Dmt = R can be fulfilled while a
maximum inventory level of Z = R is not exceeded.

On the other hand, we can also prove that each feasible solution of an HSP-instance is also a
feasible solution for 3-Partition. This holds true because of the following cognitions. First, due
to the restriction on the processing time values R/4 < ap = rp < R/2, we need exactly three
boxes per demand cycle. Clearly, any solution with more or less than three boxes per demand
cycle results in an inventory level unequal to R.

Moreover, we have to show that the total number of items transported within each demand
cycle equals R. Thus, we consider an arbitrary cycle with three boxes containing ai1 , ai2 , and ai3

items. Since demand is always fulfilled in a feasible schedule, we conclude that if ai1 +ai2 +ai3 <

R, demand can only be fulfilled if inventory was taken over from a previous demand cycle.
However, this requires for the previous demand cycle that more than R items lay in stock prior
to the belonging demand event, which may not occur because of Z ≤ R. Thus, in any feasible
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HSP-solution with Z ≤ R, it holds ai1 + ai2 + ai3 = R for all demand cycles. By assigning
the corresponding elements in the 3-Partition instance to an identical set Ai, we have a feasible
solution to 3-Partition. This obviously concludes the proof. �
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