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Abstract

A mixed-model assembly line requires the solution of a short-term sequencing prob-
lem, which decides on the succession of di�erent models launched down the line.
A famous solution approach stemming from the Toyota Production System is the
so-called Level Scheduling (LS), which aims to distribute the part consumption in-
duced by a model sequence evenly over the planning horizon. LS attracted a multi-
tude of di�erent researchers, who, however, invariably treat initial sequence planning
where all degrees of freedom in assigning models to production cycles exist. In the
real-world, con�icting objectives and restrictions of preceding production stages, i.e.,
body and paint shop, simultaneously need to be considered and perturbations of an
initial sequence will regularly occur, so that the sequencing problem often becomes
a re-sequencing problem. Here, a given model sequence is to be reshu�ed with the
help of re-sequencing bu�ers (denoted as pull-o� tables). This paper shows how to
adopt famous solution approaches for alternative LS problems, namely the Product-
Rate-Variation (PRV) and the Output-Rate-Variation (ORV) problem, if the (re-
)assignment of models to cycles is restricted by the given number of pull-o� tables.
Furthermore, the e�ect of increasing re-sequencing �exibility is investigated, so that
the practitioner receives decision support for bu�er dimensioning, and the ability of
the PRV in reasonably approximating the more detailed ORV in a re-sequencing en-
vironment is tested.

Keywords: Mixed-model assembly line; Just-in-Time; Level Scheduling; Re-Sequencing
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1 Introduction

The sequencing of di�erent product models launched down a mixed-model assembly line is a

widespread short-term decision problem perpetually arising in industries, which mass-produce

customizable products to order, e.g., automobile industry. A famous solution approach for this

problem stems from the Toyota Production System and is denoted as Level Scheduling (LS). LS

propagates to spread material demands induced by the model sequence evenly over the planning

horizon. This way, demand peaks are avoided and just-in-time production and distribution of

parts is facilitated, because a steady demand stream allows reducing expensive safety stocks near

the line. A detailed discussion of LS is provided in the review papers by Kubiak (1993), Dhamala

and Kubiak (2005) as well as Boysen et al. (2009a).

The traditional LS, which was initially developed at Toyota (see Monden, 1998), aims at a

leveling of each part's consumption pattern. Kubiak (1993) refers to this case of LS as Output

Rate Variation (ORV) problem, because materials constitute the outputs of preceding production

levels, whose actual demand rates are to be leveled. Within the ORV problem, each part type

receives a target demand rate, which is determined by distributing the material's overall demand

evenly over the planning horizon. Then, a sequence is sought where actual demand rates for all

parts are as close as possible to the ideal target rates in every production cycle. Figure 1 gives

a schematic representation of the basic concept for a single part.

Figure 1: Schematic representation of ORV for a single part

As the ORV was shown to be NP-hard (see Kubiak, 1993, and Kubiak et al., 1997), a simpli�ed

LS approach labeled Product Rate Variation (PRV) problem has been introduced (Miltenburg,

1989), which is solvable in pseudo-polynomial runtime (see Kubiak and Sethi, 1991, Steiner

and Yeomans, 1993). The more aggregate PRV is claimed to reasonably approximate the ORV

(under speci�c circumstances) without explicitly considering the materials contained in products.

Instead, the PRV de�nes a target production rate for each model type (product), which is then

to be approximated by each types's actual production rate.

These alternative versions of the basic LS idea attracted multiple researchers and a recent

review paper on sequencing mixed-model assembly lines (Boysen et al., 2009a) lists more than

70 papers on this topic. However, existing research invariably treats initial sequence planning,

where no restrictions according to the assignment of models to production cycles exist. In real-
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world applications, a re-sequencing of given sequences is often equally essential. On the one

hand, workpieces visit multiple departments, i.e., automobile production is subdivided into body

and paint shop as well as �nal assembly. A sequence that is optimal for one department is

usually suboptimal for other departments. Consequently, re-sequencing bu�ers can be applied

to reshu�e a sequence according to each's departments individual objective instead of producing

an unchanged compromise sequence. On the other hand, disturbances like machine breakdowns,

rush orders or material shortages occur with utmost probability, so that initial sequences are

stirred up. Especially the paint shop, where smallest defects in color necessitate a retouch or

complete repainting of cars, is a widespread reason for disordered model sequences. Again,

re-sequencing bu�ers can be applied to regain desired model sequences before �nal assembly.

O�-line bu�ers � also denoted as pull-o� tables (see Lahmar et al., 2003) � are a widespread

form of organizing re-sequencing bu�ers. Here, the current on-line model of the initial sequence

can be pulled o�-line into a free pull-o� table, so that successive models can be brought forward

and processed before the o�-line model is reinserted from its pull-o� table back into a later se-

quence position. Note that each pull-o� table is directly accessible. The paper on hand treats the

re-sequencing versions of PRV and ORV, where a given number of pull-o� tables can be applied

to rearrange an initial model sequence, so that material demand is evenly spread over time.

Figure 2: Example for the LS re-sequencing problem with �ve models and a single pull-o� table

Example: An illustrative example is given in Figure 2. Here, a given initial sequence (numbered

from model 1 to 5) arrives from a preceding production stage (see Figure 2(a)), where models

1 and 5 (black) as well as models 2, 3 and 4 (grey), respectively, share a common model type.

According to the PRV, the models of the di�erent types are to be evenly spread over the �ve

production cycles, where a single pull-o� table can be applied to reshu�e the initial sequence.

As Figure 2(b) shows models 1 and 2 change positions by pulling model 1 o�-line and reinserting

it after model 2. Then, model 3 is produced and models 4 and 5 change positions (Figure 2(c)),

so that in the �nal sequence of Figure 2(d) both model types are scheduled in alternating manner
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and the resulting sequence is better leveled than the initial one.

Existing research on mixed-model assembly lines does not treat re-sequencing in an LS context.

Instead, mainly sequence alterations in front of the paint shop to build larger lots of identical

color are investigated, e.g., by Lahmar et al. (2003), Spieckermann et al. (2004), Lahmar and

Benjaafar (2007) as well as Lim and Xu (2009). Other contributions for various re-sequencing

settings stem from Inman and Schmeling (2003), Ding and Sun (2004) and Gusikhin et al. (2008).

The remainder of the paper is organized as follows. Section 2 treats the adoptions required

when re-sequencing is applied in a PRV context. First, the resulting re-sequencing problem is

formalized and the exact PRV solution approaches of Kubiak and Sethi (1991) for the sum-

squared-deviation function and Steiner and Yeomans (1993) for the max-abs-case are adopted

to solve our re-sequencing problem. In a comprehensive computational study, the in�uence of

the bu�er capacity (number of pull-o� tables) is evaluated, so that the production manager gets

some decision support for bu�er dimensioning. Re-sequencing in the ORV context is investigated

in Section 3. Again, the problem is formalized, a solution approach is presented, which is

adapted from the graph approach of Lim and Xu (2009), and the impact of an increasing re-

sequencing �exibility is evaluated. Section 4 tests the ability of the re-sequencing version of PRV

in approximating the ORV by comparing both LS alternatives in a realistic setting. The �nal

Section 5 concludes the paper.

2 The Product Rate Variation problem under limited

re-sequencing �exibility (PRVR)

2.1 Problem description

Consider an initial sequence of models leaving a preceding production stage, e.g., the paint shop,

which contains models i = 1, . . . , T numbered according to their initial sequence position. This

initial sequence is to be re-sequenced with the help of a given number K of pull-o� tables. Each

pull-o� table can store a single model at a time and can be accessed directly so that models

pulled o�-line can be re-inserted in an arbitrary order. Thus, the re-sequencing version of PRV

(denoted as PRVR) aims at a mapping σ : {1, . . . , T} → {1, . . . , T} specifying the reshu�ed

sequence to be produced in the succeeding production stage, e.g., �nal assembly. Note that such

a mapping ensures that each model receives a unique position in σ and is thus produced exactly

once.

Furthermore, for a solution being feasible limited re-sequencing �exibility needs to be con-

sidered. In order to shift a model i to an earlier position of the sequence (forward shift), it is

necessary to remove preceding models from the sequence and reinsert them after model i has

passed. If K pull-o� tables are available, a forward shift from a position i to an earlier position

i − 1, . . . , i −K is possible. Let σ(i) denote the new sequence position of model i in reshu�ed
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sequence σ, limited re-sequencing �exibility is re�ected by condition (1):

σ(i) ≥ max{1, i−K} ∀i = 1, . . . , T. (1)

Each model i is a speci�c copy of a model type (blueprint) m ∈M (with |M | ≤ T ). The number
of copies of model type m constitutes its demand dm. The model type a model i is assigned to is

denoted as a(i). It is the aim of PRVR to evenly spread the demand of the model types over the

planning horizon. To enable a comparison of (cumulated) actual and target production rates, the

number oc(σ,m, t) of occurrences of each model type m in a sequence σ up to sequence position

t needs to be de�ned, where σ−1(t) denotes the model at position t of reshu�ed sequence σ:

oc(σ,m, t) = |{τ ∈ {1, . . . , t} : a(σ−1(τ)) = m}| ∀m ∈M ; t = 1, . . . , T (2)

Furthermore, a target production rate rm is to be de�ned for each model typem by distributing

its demand evenly over the planning horizon of length T : rm = dm
T . With these values on hand,

the deviation DEVmt between cumulated actual (�rst term) and cumulated target (second term)

production quantity can be determined in objective function (3):

minimize Z(σ) = G (Fm (DEVmt = oc(σ,m, t)− t · rm)) (3)

Thus, within PRVR a mapping σ : {1, . . . , T} → {1, . . . , T} is to be determined, which min-

imizes objective function (3) subject to constraints (1). In the literature, di�erent forms of ag-

gregation functions G(·) and (possibly model type speci�c) deviation functions Fm(·) have been
investigated, which consolidate single deviations DEVmt over all model types m and production

cycles t. In the following, we will consider the sum-squared (Section 2.2) and the max-abs-case

(Section 2.3) of PRVR.

2.2 Solving the sum-squared-case

The sum-squared-case sums up squared deviations over all cycles t and model types m, so that

the objective function takes the following form:

minimize Z1(σ) =
T∑
t=1

∑
m∈M

(DEVmt)
2 (4)

For the corresponding PRV problem, Kubiak and Sethi (1991, 1994) present an exact solution

approach (labeled KS in the following), which is based on the linear assignment problem and

runs in O(T 3) time. We will brie�y summarize the KS-procedure and show how to adopt it for

the sum-squared-version of PRVR.

First, for each model i its ideal production cycle ipci, which causes least deviation from target

rate for its model type a(i), is to be determined as follows with σ′ denoting the initial sequence:
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ipci =
⌈

(2 · oc(σ′, a(i), i)− 1) · T
2 · da(i)

⌉
∀ i = 1, . . . , T (5)

Note that formula (5) takes into account that model i is the oc(σ′, a(i), i)th occurrence of a copy
of model type a(i) in the initial sequence. Typically, at least some models compete for identical

ideal positions, so that model types need to be coordinated. This is enabled by calculating

penalty costs Cit, which amount to additional deviations surmounting those resulting from ideal

position, if model i is assigned to cycle t:

Cit =


∑ipci−1

τ=t

((
j − τ · ra(i)

)2 − ((j − 1)− τ · ra(i)
)2)

, if t < ipci

0, if t = ipci∑t−1
τ=ipci

((
(j − 1)− τ · ra(i)

)2 − (j − τ · ra(i))2) , if t > ipci

∀ i, t = 1, . . . , T (6)

These penalty values constitute the cost coe�cients of the linear assignment problem to be

�nally solved within KS. The result is an assignment of models i to production cycles t, which

directly constitutes the assembly sequence sought.

The only modi�cation required when solving PRVR with the KS-procedure is to exclude those

assignments between models and production cycles in the linear assignment problem, which

would lead to an infeasible reshu�ed sequence. This can be easily ensured by setting the respec-

tive penalty costs of all those arcs, which represent more than K forward position shifts, to a

prohibitive value:

Cit =∞ ∀ i, t = 1 . . . , T, with i− t > K (7)

Example (cont.): In our example of Figure 2, there are two model types (black (type 1) and grey

(type 2)), whose target demand rates amount to r1 = 2
5 and r2 = 3

5 , respectively. An optimal

sequence for PRV (i.e., PRVP with unlimited number of pull-o� tables) with an objective value

of Z1(σ) = 0.8 is σ = (2, 1, 3, 5, 4). Sequence σ can also be attained from the initial sequence

σ′ = (1, 2, 3, 4, 5) with a single pull-o� table as depicted in Figure 2.

Clearly, the necessary modi�cations do not alter computational complexity, so that PRVR

can be solved in O(T 3) as is the case with PRV. Interestingly, this means that PRVR can be

solved in polynomial time in the length of a reasonably encoded problem instance, since the

input length of PRVR directly depends on T (the length of the initial sequence). This is not

true for the traditional PRV as the input data only consists of integer model demands, so that

T (the sum over all model demands) is not polynomially bounded by their bit size (see Kubiak,

2003 for a more detailed discussion). Note that the KS-procedure also solves the sum-abs-case

(G(Fm(·)) =
∑T

t=1

∑
m∈M | · |) to optimality (see Kubiak and Sethi, 1991, 1994), so that the

presented extension solves this case of PRVR, as well.
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2.3 Solving the max-abs-case

If the maximum absolute deviation over all cycles t and model types m is to be minimized within

PRVR, the objective function is de�ned as follows:

minimize Z2(σ) =
T

max
t=1

max
m∈M

|DEVmt| (8)

For this case of the PRV, Steiner and Yeomans (1993) introduced an exact solution procedure

(denoted as SY), which also solves instances in pseudo-polynomial time (O(T log maxm∈M{dm})).
Again, we brie�y summarize SY and present the extensions required for solving PRVR.

The SY-procedure reduces the problem to a set of feasibility problems, each of which being

initialized with a given maximum deviation DEV . With given DEV for each model i the set Θi

of feasible production cycles (sequence positions) can be determined as follows:

Θi =
{
t ∈ {1, . . . , T} :

∣∣j − t · ra(i)∣∣ ≤ DEV ∧ ∣∣j − 1− (t− 1) · ra(i)
∣∣ ≤ DEV } ∀ i = 1, . . . , T,

(9)

with j = oc(σ′, a(i), i) being the number of copies of model i's type a(i) scheduled up to initial

sequence position i. Thus, for a sequence position t being feasible for model i, it must hold

that producing actual model i in period t does not surmount given deviation level DEV (�rst

condition). Moreover, it must hold that postponing production of i to cycle t and, thus, having

assigned only j−1 copies of model a(i) up to the preceding cycle t−1, does not lead to excessive

deviation in cycle t− 1 (second condition).

With these sets on hand, the feasibility problem reduces to determining a perfect matching in

a bipartite graph (e.g., see Hopcraft and Karp, 1973). Both node sets are determined by models

i = 1, . . . , T and production cycles t = 1, . . . , T , respectively, where i and t are connected by an

arc whenever t ∈ Θi holds. A perfect matching denotes a feasible model sequence σ.

For restricting the number of feasibility problems to be solved, Steiner and Yeomans (1993)

proved that merely the following set Γ of possible maximum deviation values have to be consid-

ered:

Γ =
{
DEV ∈ R : min

m∈M
{1− rm} ≤ DEV ≤ 1 ∧DEV · T ∈ Z+

}
(10)

A binary search within set Γ then delivers the minimum deviation, for which a feasible sequence

can be determined, and the SY-procedure terminates.

The modi�cations required, so that SY can also solve PRVR, are twofold. First, when de-

termining the sets Θ′i of feasible production cycles per model i in addition to equation (9) a

third condition must hold, so that limited re-sequencing �exibility is considered while solving

feasibility problems:
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Θ′i = Θi \ {t ∈ {1, . . . , T} | i− t > K} ∀ i = 1, . . . , T, (11)

Furthermore, the set Γ of possible maximum deviations is to be modi�ed.

Let µt = {a(i) | i ∈ {1, . . . , T} : t ∈ Θ′i} be the set of model types that can be assigned to

position t then Γ′ is determined by:

Γ′ =
{
DEV ∈ R : min

m∈µ1

{1− rm} ≤ DEV ≤ DEV max ∧DEV · T ∈ Z+

}
(12)

The lower bound is strengthened by taking into account that not all model types can be assigned

to the �rst position of the sequence. DEV max can be set to the objective value of the initial

sequence, which constitutes a simple upper bound as the unchanged sequence is feasible for

PRVR, too.

Figure 3: Perfect matching (bold faced) for DEV = 2
5

Example (cont.): The initial sequence produces a maximum deviation DEV max = 3
5 caused by

models 1 and 4. Since both model types are feasible at the �rst position (µ1 = {1, 2}) it follows
that DEV ≥ min

{
1− 3

5 , 1−
2
5

}
, so that the set of possible deviations is Γ′ = {2

5 ,
3
5}. For a

given deviation of DEV = 2
5 , we get Θ′1 = {2}, Θ′2 = {1, 2}, Θ′3 = {3}, Θ′4 = {5}, and Θ′5 = {4}.

The resulting graph is depicted in Figure 3. As a perfect matching exists for DEV = 2
5 , the

optimal reshu�ed sequence is σ = {2, 1, 3, 5, 4} with Z2(σ) = 2
5 .

As DEV max is set to the objective value of the initial sequence, the maximum run-time of

the modi�ed algorithm depends on the worst-case quality of any initial sequence. Let m∗ be

the model type with the highest demand, i.e., dm∗ = max{dm|m ∈ M}, then the worst-case

(maximum) objective value can be easily determined by assigning all models of type m∗ to the

�rst (last) dm∗ positions of the sequence. It follows that DEV max ≤ dm∗ · (1 − rm∗) < T ,

however, since objective values can be fractional, the total number of values to be tested can be

considerably higher. By equation (12) any element of set Γ′ has to be a multiple of 1/T , so that
|Γ′| < T 2. Since checking feasibility for a given DEV can be done in O(T ) and the elements

of Γ′ can be e�ciently generated and inspected using binary search, the total run-time of the

modi�ed algorithm is polynomial in T and of the order O(T log T ).
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2.4 Computational study

As exact polynomial time procedures have been presented for PRVR, computational performance

of these procedures must not be reported in detail. Even with T = 400 cycles, which is a

representative number of cars produced per shift in automobile industry, executing our PRVR

procedures requires less than a second. Instead, we investigate the interdependency between

improving solution quality of the initial sequence and the number of pull-o� tables available.

The instances applied for this test are derived as follows. For a given number T of cycles and

number |M | of model types, �rst, each type receives a equally distributed random number out

of interval [0, 1]. Then, the number of copies per model type is determined proportionally to the

random numbers drawn, so that in total T models are to be produced. Finally, these copies are

shu�ed and, thus, randomly distributed over the initial sequence. The number T of cycles and

the number |M | of model types is varied as follows: (a) |M | = 20 and T ∈ {50, 100, 150, 200} and
(b) T = 100 and |M | ∈ {10, 20, 30, 40}. For each parameter constellation instance generation is

repeated 100 times, so that 800 instances are derived. Each of these instances is solved for 22

di�erent numbers of pull-o� tables (K ∈ {0, 1, . . . , 20, T − 1}) with either the sum-squared and

the max-abs solutions procedure, so that in total 35,200 solutions are gained. All algorithms

were implemented in C# 2008 and all tests have been conducted on a 2.1 GHz x86 Personal

Computer with 2 GB of memory.

Figure 4: Average gap of PRVR with sum-squared-objective depending on number K of pull-o�
tables

Figure 4 summarizes the results for the sum-squared-objective and parameter constellations

(a) and (b) on the left-hand and right-hand side, respectively. The performance indicator �gap�

denominates the average relative deviation of the objective value gained with the current number

of pull-o� tables and the best possible solution value with full re-sequencing �exibility, i.e.,

the objective value of unrestricted PRV which is obtained by setting K = T − 1 in PRVR.

Clearly, with increasing number of pull-o� tables and, thus, increasing re-sequencing �exibility

better (more leveled) solutions can be gained, with the incremental bene�t of additional tables

decreasing.
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Our results deviate from those previously published by Lahmar et al. (2003) and Lahmar and

Benjaafar (2007), who investigate re-sequencing in a paint-shop environment to batch cars of

identical color and report that less than a hand-full tables is required to nearly reach full re-

sequencing �exibility. In our setting, a considerable number of pull-o� tables is required before

getting su�ciently leveled sequences. For instance, with T = 200 cycles and K = 20 tables,

the gap still amounts to a remarkable 534%. Thus, the number of tables to be installed heavily

depends on the length of the sequence to be reshu�ed. Note that, however, calculating the

adequate number of pull-o� tables in a real-world LS setting is a complex task since the bene�t

of a more or less leveled sequence can hardly be calculated accurately. The number of tables

required also depends on the number of models to be produced (right-hand side of Figure 4).

Counter to intuition, the gap widens with fewer models. However, with �xed number of cycles

fewer models lead to a higher demand per model, which in turn raises target rates and, thus,

penalizes deviations more severe.

Figure 5 depicts the results for the max-abs objective. As this case shows similar gap curves

the aforementioned results hold, as well.

Figure 5: Average gap of PRVR with max-absolute-objective depending on number K of pull-o�
tables

3 The Output Rate Variation problem under limited

re-sequencing �exibility (ORVR)

3.1 Problem description

The more detailed ORV explicitly considers the parts p ∈ P required by each model typem ∈M ,

expressed by part coe�cients apm. Thus, the re-sequencing version of ORV (called ORVR) aims

at a reshu�ed model sequence σ, such that actual part demands δ(σ, p, t), de�ned as
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δ(σ, p, t) =
t∑

τ=1

ap,a(σ−1(τ)) ∀ p ∈ P ; t = 1, . . . , T, (13)

approximate target demands t · rp, where rp denotes the target rate de�ned for each part p:

rp =

∑T
i=1 ap,a(i)

T
=
∑

m∈M apm

T
∀ p ∈ P (14)

Thus, within ORVR a mapping σ : {1, . . . , T} → {1, . . . , T} is to be determined, which minimizes
objective function (15) subject to constraints (1), representing limited re-sequencing �exibility:

minimize Z3(σ) = G (Fp (δ(σ, p, t)− t · rp)) . (15)

Note that again G(·) and Fp(·) denote di�erent forms of aggregation functions, i.e., the sum-

and max-function, and (possibly part speci�c) deviation functions, i.e., absolute and squared

deviations, respectively. Further note that the ORVR with a facultative number of pull-o�

tables is NP-hard in the strong sense. This is obviously true because with K ≥ T − 1, ORVR
is not restricted in its assignment decision (of models to cycles) and the traditional ORV arises.

The ORV with di�erent aggregation and deviation functions was shown to be NP-hard in the

strong sense (Kubiak, 1993 and Kubiak et al., 1997).

In the following we will discuss a general graph approach, which can simply be adopted for all

aforementioned aggregation and deviation functions. We build up on the research of Lim and Xu

(2009), who propose a dynamic programming approach to solve a re-sequencing problem with

pull-o� tables which batches cars to blocks of identical color in front of the paint shop of a mixed-

model assembly line. We show how to adapt and improve their approach for an application to

LS by using the concepts proposed by Kubiak et al. (1997). As customizing the graph search for

di�erent functions is readily available, we will restrict our description to the sum-squared-case.

3.2 A graph search procedure

The graph approach is based on an acyclic digraph G(V,E, r) with a node set V divided into

T · (K+ 1) + 1 stages, a set E of arcs connecting nodes and an arc weighting function r : E → R.
To de�ne node set V , it is necessary to examine possible decisions at a sequence position i. Lim

and Xu (2009) di�erentiate three types of decisions, which can be taken for each model i of the

initial sequence:

• Move current model i into a pull-o� table, if an empty table exists.

• Produce current model i, while leaving models in pull-o� table unchanged.

• Reinsert and produce a model from a pull-o� table (if at least one table contains any

model).
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As the alternative decisions at a current decision point only depend on model i being the next

in line and the current content (set of stored models) κ of pull-o� tables and, furthermore, the

impact of these alternatives on the objective value only depends on the models (and their part

requirements) previously scheduled, a node representing a current decision point can be de�ned

as [i, κ].

Figure 6: Example for a decision point in ORVR with six models and a single pull-o� table

Example: Consider the example depicted in Figure 6. Here, a current decision point (t = 5) of
the re-sequencing process is depicted, where four models are already �xed while models 5 and 6

wait o�-line and on-line, respectively. While model 5 requires both parts (a15 = a25 = 1 indi-

cated by �x�), model 6 requires a16 = 0 and a26 = 1 units of part 1 and 2, respectively (indicated

by �-� and �x�). Furthermore, the resulting target rates r1 = 2
6 = 1

3 and r2 = 4
6 = 2

3 for part

p = 1 and p = 2, respectively, are given in Figure 6. The node for the current state is de�ned as

follows: [6, {5}]. When either model 5 or model 6 is produced, successor nodes [6, ∅] and [7, {5}]
are to be branched, respectively.

Node set V is subdivided into T · (K + 1) + 1 stages, where a stage (j, k) contains all nodes
V(j,k) ⊂ V , where j models are de�nitely �xed to the �rst j positions of the sequence and

k = |κ| models are stored in pull-o� tables. This way, a forwardly directed graph arises, which

means that an arc can only point from a node of stage (j, k) to a node of stage (j′, k′), if
j < j′ ∨ (j = j′ ∧ k < k′) holds. In particular, a node of stage (j, k) can only be connected with

nodes of the following stages: (j, k+1) (put current model in pull-o� table), (j+1, k−1) (reinsert
model from pull-o�) or (j + 1, k) (produce current model). This way, a stage-wise generation of

the graph and a simultaneous evaluation of the shortest path to any node is enabled. Obviously,

�rst stage (0, 0) and �nal stage (T, 0) contain merely a single node [1, ∅] (start node) and [T+1, ∅]
(sink node), respectively.

Arcs of arc set E connect nodes of adjacent stages and thus represent a transition between

two decision points. The result of such a transition is a decision on the current model, so that

a value j > 0 representing the current model �xed in the �nal sequence is stored with each arc.

On the other hand, j = 0 is to be stored with the arc, if the current model is moved into pull-o�

table and no model is de�nitely �xed. There exist the aforementioned three kinds of transitions

from any current node [i, κ], so that the following cases are to be distinguished:
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• If |κ| < K, there exists at least one empty pull-o� table, so that current model i can be

pulled into o�-line bu�er and node [i+1, κ∪{i}] is to be generated. Thus, no model is �xed
in the �nal sequence (produced) and j = 0 is stored with the arc. For example, consider

the preceding decision point of that depicted in Figure 6 before pulling model 5 o�-line.

Here, the node [5, ∅] is developed to depicted node [6, {5}] and both nodes are connected

by an arc with j = 0.

• Furthermore, current on-line model i can directly be produced while pull-o� tables remain

unchanged. We can, however, make use of the following observation here: Since models of

the same type have identical part demands by de�nition, they can always swap positions in

a sequence without changing cumulated deviations. It follows, that if models of the same

type would overtake each other in the reshu�ed sequence, then we could simply swap these

two models and restore order preservation. As a consequence, we do not need to branch a

node for an on-line model i, if a model of the same type was stored in the o�-line bu�er.

Therefore, an arc is to be inserted pointing to node [i+ 1, κ], only if @j ∈ κ|a(i) = a(j). In
that case, model i is stored with the arc as the current model produced. Consider Figure

6 as the present decision point and on-line model 6 to be produced. Here, an arc (with

which model j = 6 is stored) is to be inserted from current node [6, {5}] to successor node
[7, {5}], since no model of the same type exists in bu�er.

• Finally, if κ 6= ∅, any o�-line model waiting in the pull-o� table can be reinserted and

produced. Due to the described order preservation, it is su�cient to branch a successor

node for the model with the smallest index number only, whenever more than one model

of the same type is stored in the bu�er. Therefore for each j ∈ κ for which @j′ ∈ κ|a(j) =
a(j′) ∧ j′ < j a successor node [i, κ \ {j}] is to be generated and connected by an arc with

j being the current model produced and stored with the arc. In Figure 6 model 5 can be

reinserted from the pull-o� table, so that an arc (with which model j = 5 is stored) is to

be generated connecting current node [6, {5}] and successor node [6, ∅].

As it is not necessary to generate duplicate nodes within a stage, in a computer implementation

of the graph, nodes per stage can be stored e�ciently in a hash-table and addressed by a unique

hash-key.

Finally, arc weights c : E → R are assigned to each arc, which store the contribution of the

current sequencing decision to the overall objective value. Note that this contribution cannot be

stored with nodes, because then moving a model into pull-o� table would cause an additional

deviation. Thus, an arc weight becomes zero whenever an arc represents the transition of pulling

a model into pull-o� table. If a model is de�nitely �xed at the current decision point, a weight

c([i′,κ′],[i,κ]) belonging to arc ([i′, κ′], [i, κ]) ∈ E is calculated as follows:
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c([i′,κ′],[i,κ]) =
∑
p∈P

 ∑
j∈{1,...,i−1}\κ

apa(j) − (i− 1− |κ|) · rp

2

∀ ([i′, κ′], [i, κ]) ∈ E (16)

Here, the resulting set of models already �xed can be easily determined from the information

stored with each destination node [i, κ], which are all those models with 1 ≤ j ≤ i − 1 minus

those still being o�-line (stored in κ). These �xed models determine the actual demand per part

p, which is to be compared with target demand calculated by multiplying the current number of

production cycles t = i− 1− |κ| already �xed with target demand rate rp. Note that right here

deviation function is to be exchanged, if absolute deviations are to be considered instead.

Example (cont.): In our example of Figure 6, current node [6, {5}] is to be branched into nodes

[6, ∅] (reinsert o�-line model 5) and [7, {5}] (produce on-line model 6), respectively. The former
choice leads to a squared deviation of c([6,{5}],[6,∅]) = 0.5 and the latter to c([6,{5}],[7,{5}]) = 2.8.

With this graph on hand solving ORVP reduces to �nding the shortest path from start node

[1, ∅] to sink node [T + 1, ∅], which, following the principle of dynamic programming, must not

separately be calculated after constructing the complete graph but can simultaneously derived

by stage-wise storing the shortest path to each node. For our example of Figure 6 the optimal

reshu�ed sequence is σ = {2, 1, 3, 4, 5, 6} with objective value Z3(σ) = 1.2. Note that, instead,
the min-max path is to be stored with each node, if, e.g., the max-abs case of ORVR is considered.

As the size of the graph increases exponentially with the number K of pull-o� tables, exploring

the complete graph by exhaustive search will be too time-consuming for larger instances. Instead,

a heuristic graph search seems better suited. Well known meta-heuristic Beam Search (BS) (e.g.,

see Lowerre, 1976; Ow and Morton, 1988) is such a graph search procedure, which heuristically

restricts the set of nodes per stage to be further branched to a promising subset. This choice is

typically being based on a priority value (see Sabuncuoglu et al., 2008) and in its most basic form

this value is simply the partial objective value of the shortest path to the respective node. With

these priority values on hand, BS chooses the BW best nodes per stage to be further branched

while excluding the rest, with beam width BW being the basic control parameter. With our

re-sequencing graph and shortest-path lengths as priority values, a BS procedure for ORVR is

readily available.

3.3 Computational study

The computational part for ORVR aims at investigating the solution performance of our exact

(exhaustive search) and heuristic (Beam Search - BS) procedures. Furthermore, the impact of an

increasing number of pull-o� tables on solution quality is tested. To answer the former research

question 70 test instances are derived by randomly generating 10 instances per varying number
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of cycles: T ∈ {10, 15, . . . , 40}. Each instance is derived by randomly setting each product

coe�cient of the bill of material (T · |P |-matrix) to one with a given probability of Prob = 0.5.
These instances are solved for K ∈ {0, 1, . . . , 6} pull-o� tables and with six di�erent solution

procedures (exhaustive search + BS with �ve di�erent beam widths BW ∈ {2, 5, 20, 50, 100}),
so that in total 2,940 solution runs have been executed.

First, Figure 7 depicts the solution time (in CPU-seconds) of exact exhaustive search for

di�erent number of cycles and pull-o� tables. The results con�rm a linear increase in the number

T of cycles but an exponential increase in the number K of pull-o� tables. With K = 6 and

T = 40, average solution time amounts to 67.4 CPU-seconds, so that the upper limit, up to

which exhaustive search can reasonably be applied, ranges near these parameter values.

Figure 7: Performance (in CPU-seconds) of exhaustive search depending on sequence length T
and number K of pull-o� tables

The solution quality of heuristic BS with diverging beam widths BW is reported in Table 1 by

listing the average CPU-seconds (cpu) and the average relative gap (gap in %) between heuristic

and optimal solution values. The results reveal a very good solution quality within a very short

time frame. For instance, with a beam width of BW = 100 BS solves 96% of all instances to

optimality in merely 0.24 CPU-seconds on average. Thus, beam search seems well suited for

solving large ORVR instances and we restrict the investigation of research question two, the

impact of a varying number of pull-o� tables, to heuristic solutions gained with BS (BW = 20).
For this purpose, random bills of material are derived in the aforementioned manner for di-

verging numbers of cycles: T ∈ {50, 100, 150, 200}. Instance generation is repeated 100 times,

so that 400 instances are derived. These instances are solved with BS for 20 di�erent numbers

of pull-o� tables (K ∈ {1, . . . , 20}), so that in total 8,000 solution values are determined. The

results are depicted in Figure 8. Here, the average relative improvement (imp in %) of the solu-

tion gained with the respective number of pull-o� tables in relation to the solution value of the

initial sequence (with K = 0) is reported. Obviously, only a few pull-o� tables are required to

reduce the total deviation of the initial sequence dramatically as about 6 (for T = 50) to 12 (for
T = 200) tables are su�cient to reduce the deviations to about 5% of the initial value. As in
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BW = 2 BW = 5 BW = 20 BW = 50 BW = 100
K T gap cpu gap cpu gap cpu gap cpu gap cpu

1 10 3% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
15 3% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
20 0% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
25 2% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
30 1% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
35 2% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
40 3% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1

2 10 7% <0.1 0% <0.1 0% <0.1 0% <0.1 0% <0.1
15 8% <0.1 1% <0.1 0% <0.1 0% <0.1 0% <0.1
20 4% <0.1 2% <0.1 1% <0.1 0% <0.1 0% <0.1
25 8% <0.1 2% <0.1 0% <0.1 0% <0.1 0% <0.1
30 5% <0.1 1% <0.1 0% <0.1 0% <0.1 0% <0.1
35 9% <0.1 3% <0.1 0% <0.1 0% <0.1 0% <0.1
40 9% <0.1 6% <0.1 0% <0.1 0% <0.1 0% <0.1

3 10 17% <0.1 6% <0.1 0% <0.1 0% 0.1 0% 0.1
15 12% <0.1 2% <0.1 0% <0.1 0% 0.1 0% 0.1
20 10% <0.1 5% <0.1 0% <0.1 0% 0.1 0% 0.1
25 15% <0.1 1% <0.1 0% <0.1 0% 0.1 0% 0.1
30 15% <0.1 3% <0.1 0% <0.1 0% 0.1 0% 0.1
35 12% <0.1 3% <0.1 1% <0.1 1% 0.1 0% 0.1
40 14% <0.1 5% <0.1 0% <0.1 0% 0.1 0% 0.1

4 10 25% <0.1 8% <0.1 1% 0.1 0% 0.1 0% 0.2
15 17% <0.1 7% <0.1 2% 0.1 0% 0.1 0% 0.2
20 15% <0.1 5% <0.1 0% 0.1 0% 0.1 0% 0.2
25 22% <0.1 3% <0.1 0% 0.1 0% 0.1 0% 0.2
30 22% <0.1 5% <0.1 0% 0.1 0% 0.1 0% 0.2
35 15% <0.1 6% <0.1 3% 0.1 2% 0.1 0% 0.2
40 8% <0.1 4% <0.1 1% 0.1 0% 0.1 0% 0.2

5 10 28% <0.1 7% <0.1 2% 0.1 1% 0.2 0% 0.4
15 24% <0.1 10% <0.1 1% 0.1 1% 0.2 1% 0.4
20 11% <0.1 5% <0.1 2% 0.1 2% 0.2 0% 0.4
25 28% <0.1 10% <0.1 0% 0.1 0% 0.2 0% 0.4
30 22% <0.1 7% <0.1 2% 0.1 1% 0.2 0% 0.4
35 21% <0.1 11% <0.1 2% 0.1 0% 0.2 0% 0.4
40 21% <0.1 9% <0.1 2% 0.1 1% 0.2 0% 0.4

6 10 24% <0.1 9% <0.1 1% 0.1 1% 0.4 0% 0.7
15 18% <0.1 7% <0.1 2% 0.1 1% 0.3 1% 0.7
20 20% <0.1 9% <0.1 3% 0.1 1% 0.3 1% 0.7
25 22% <0.1 7% <0.1 1% 0.1 0% 0.3 0% 0.6
30 20% <0.1 5% <0.1 1% 0.1 0% 0.3 0% 0.6
35 24% <0.1 11% <0.1 5% 0.1 1% 0.3 1% 0.6
40 17% <0.1 7% <0.1 2% 0.1 0% 0.3 0% 0.6

total 14% <0.1 5% <0.1 1% 0.1 0% 0.1 0% 0.2

Table 1: Solution quality of Beam Search with diverging beam widths (BW )
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case of PRVR, the results show that an increasing number T of cycles increases the number of

pull-o� tables required to level material demand.

Figure 8: Average improvement (imp) of initial solution for ORVR with sum-squared-objective
depending on the number K of pull-o� tables

4 On the ability of PRVR approximating ORVR

In this section, it is investigated whether (or under which prerequisites) PRVR is a suited ap-

proximation of ORVR. Recall that such a replaceability is desirable since PRVR can be solved

to optimality in polynomial time, whereas ORVR is NP-hard in the strong sense. With re-

gard to traditional level scheduling, literature claims such a replaceability between both models

whenever:

• Miltenburg-case: �Products require approximately the same number and mix of parts.�

(Miltenburg 1989, p. 193).

• Kubiak-case: �Outputs [of preceding production levels] required for each di�erent product

are distinct.� (Kubiak 1993, p. 261).

In a recent paper, Boysen et al. (2009b) question these statements by determining PRV solu-

tions, evaluating them with the ORV objective function, and comparing these results with model

sequences directly gained by an ORV procedure. The results reveal enormous deviations of PRV

solutions whenever the aforementioned premises do not hold and parts occur in varying composi-

tion in their respective models. Furthermore, it is argued that both premises are seldom given in

the real-world, because typically customers de�ne products according to their individual needs

(mass-customization). Thus, it is concluded that more aggregate PRV is indeed not applicable in

today's mixed-model assembly lines to reasonably approximate more detailed ORV. This section

transfers the computational tests of Boysen et al. (2009b) to the re-sequencing version of LS.

For this purpose, test instances are derived by systematically varying parameter Prob, which

de�nes the probability of each product coe�cient of the bill of material of either requiring the
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respective part (apm = 1) or not (apm = 0) (see Boysen et al, 2009b). With Prob being close

to zero sparse matrices result. Thus, models require few and (most probably) divergent parts,

so that instances representing the Kubiak-case arise. On the other hand, dense bill of material-

matrices obviously approach the Miltenburg-case with models requiring many parts in similar

composition. Consequently, we systematically vary Prob ∈ {i · 0.05 | i = 1, . . . , 19}, so that

a continuum of part commonality between both extremes (the Kubiak- and Miltenburg-case)

arises. Speci�cally, for a given probability Prob, number T of cycles, number |P | of parts and
number K of pull-o� tables, each instance is derived as follows: First, an enlarged bill of material

(T · |P |-matrix) is randomly generated according to given probability Prob. Then, this matrix

is condensed by joining equal columns (model copies), so that the �nal bill of material of size

|M | · |P | results. For each of two chosen parameter constellations (T = 100; |P | = 5;K = 5 and

T = 100; |P | = 10;K = 10) instance generation is repeated 100 times, so that 2 ·19 ·100 = 3, 800
instances result. Any instance is solved by PRVR and ORVR procedures with both max-abs and

sum-squared objective function, so that in total 15,200 solution runs are executed. For solving

each PRVR instance, the respective exact solution procedure presented in Section 2 is chosen.

The resulting sequences are then evaluated with the respective ORV objective function and these

results are compared to heuristic ORVR solutions directly determined by BS (with BW = 20)
as described in Section 3. The results of this comparison are summarized in Figure 9.

Figure 9: Gap between PRVR (evaluated with ORV objective function) and ORVR for diverging
probabilities Prob

Figure 9 reveals tremendous average gaps between PRVR and ORVR up to 1,008%, i.e.,

the PRVR solutions have much larger ORV objective values than the heuristic ORVR solutions.

These gaps widen if (i) the sum-squared objective is applied, (ii) instances increase in size and (iii)

models increasingly share parts in diverging composition. Obviously, already slight deviations

from the extremes (Kubiak- and Miltenburg-case) lead to considerable di�erences between both

approaches. Thus, it can be concluded that (in analogy to traditional LS as documented by

Boysen et al., 2009b) PRVR is not a suited approximation for ORVR and it is much more

promising to directly solve ORVR even if only heuristic solutions can be determined.
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5 Conclusion

The paper on hand investigates the level scheduling problem, which aims at an even distribution

of material demands over time, in a re-sequencing environment. A given number of pull-o� tables

is available to reshu�e a given initial sequence, which was either changed by unforseen events

like defects or initially planned to serve the objective of a preceding production stage. For this

purpose, the traditional forms of level scheduling, namely the Product Rate Variation (PRV) and

the Output Rate Variation (ORV) problem, are adopted to the re-sequencing environment and

suited solution procedures are introduced and tested in comprehensive computational studies.

As a main result, it is shown that with an increasing number of production cycles to be leveled

the number of pull-o� tables required increases considerably. Furthermore, it is shown that the

PRV is no suited approximation of the ORV in our re-sequencing environment.

Future research could deal with more e�cient solution procedures for ORVR. Furthermore,

the re-sequencing versions of other well known approaches for sequencing mixed-model assembly

lines, i.e., car-sequencing and mixed-model sequencing, have not yet been considered. Thus, spec-

ifying the respective problems and developing e�cient solution procedures would be a valuable

contribution to further streamline real-world mixed-model assembly systems.
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