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Zusammenfassung

Anhand direkter numerischer Simulationen (DNS) werden detaillierte Untersuchun-
gen in turbulenter Rayleigh-Bénard Konvektion in einer zylindrischen Zelle mit
isothermen oberen und unteren Platten und adiabatischen Seitenwanden durch-
gefiihrt. Die Schwerpunkte der Untersuchungen sind die Statistiken der Temperatur
T, ihrer Fluktuationen 6, und ihrer Gradienten; die Statistik der thermischen Dissi-
pationsrate er und ihre Skalierung mit der Rayleigh-Zahl Ra; die Abhangigkeit des
Wiérmetransports vom Seitenverhaltnis der Zelle I' und damit zusammenhangende
Anderungen in der groBskaligen Zirkulation (GSZ) sowie die Lagrangesche Teilchen-
dynamik in Konvektion. Die Simulationsparameter sind Ra = 107 — 10%, ' =
0.5 — 12 und die Prandtl-Zahl Pr = 0.7.

Die Wahrscheinlichkeitsdichtefunktionen (WDF') von 7" und 6 weichen in allen Re-
gionen der Zelle vom Gauflschen Fall ab. Anhand der Schiefe von 0.6 konnte die
Riickkehr der kleinskaligen Turbulenz zur lokalen Isotropie mit zunehmender Ra
im Innern der Zelle festgestellt werden. Ahnlich wie beim skalaren Mischen, weicht
die WDF der thermischen Dissipationsrate der Temperaturfluktuationen, €,, von
der Log-Normalform ab. Die WDF's sind stets gestreckte exponentielle Verteitun-
gen, deren Schweife mit wachsender Ra auf Grund zunehmender kleinskaliger In-
termittenz weiter werden. Der Grad der Intermittenz ist starker sowohl in der
thermischen Grenzschicht (TGS) als auch im Volumen. Er ist stets stérker im
Seitenwandbereich als im Innern der Zelle. Dartiber hinaus liefert ey nicht nur im
Volumen den dominanten Beitrag zur Gesamtdissipation, sondern tragt auch in der
TGS signifikant bei. Das Potenzgesetz (er) ~ Ra® ergibt immer einen negativen
Exponenten (, sowohl im Volumen als auch in von Plumes beherrschten Gebieten
und im turbulenten Hintergrund. Das steht im Gegensatz zur Skalentheorie des
Warmetransports, stimmt aber gut mit Experimenten iiberein.

Die Nusselt-Zahl, Nu, folgt dem Gesetz Nu = A(I') x Ra”") | mit einer Potenzgesetz-
Abhéngigkeit der Parameter A und 5. Das Minimum der Kurve Nu(T") liegt genau
dort wo die GSZ einen Ubergang von einer grofen Rolle zu zwei hat. N u(T") variiert
zwischen 3%-11% und wird geometrieunabhangig fiir I' 2 8. Die Muster im vollen
turbulenten Regime haben Ahnlichkeit mit Strukturen im schwach nichtlinearen
Regime. Fiinfeckige bzw. sechseckige im Rollen werden beobachtet, wenn I > 8.

Die Lagrangesche Teilchendispersion in Konvektion zeigt einen Ubergang vom bal-
listischen Regime zum Richardson-Regime, jedoch kein Taylor-Regime auf Grund
die Endlichkeit der Konvektionszelle. Die Existenz des Richardsonregimes hangt
sensitiv vom Anfangsabstand der Teilchen im Paar ab, ahnlich wie in homogen
isotroper Turbulenz. Unser Interpolationsschema gibt die Nusseltzahlen im La-
grangeschen Bezugssystem richtig wieder. Die Statisitik der Komponenten des
Beschleunigungsvektors ist sehr intermittent dhnlich zu isotroper Turbulenz. Alle
drei Verteilungen fallen im Gegensatz zur Konvektion in einer unendlich ausgedehn-
ten Stromgungsschicht zusammen.



Abstract

We conduct detailed investigations in turbulent Rayleigh-Bénard convection in a
cylindrical cell with isothermal top and bottom plates and adiabatic sidewalls by
means of three-dimensional direct numerical simulation (DNS). Our analyses fo-
cused on the following areas: the statistics of the temperature T, its fluctuations 6,
and gradients; the statistics of the thermal dissipation rate ey, and its scaling with
the Rayleigh number Ra; the dependence of the heat transfer on the aspect ratio I,
and the corresponding changes in the large-scale circulation (LSC) patterns; and
the Lagrangian particle dispersion in convection. The simulation parameters are
Ra =10"—-10°, T = 0.5 — 12 and the Prandtl number Pr = 0.7.

The probability density functions (PDFs) of T' and # are found to be always non-
Gaussian in all regions of the convection cell. The skewness of 0.6 shows a return-
to-isotropy trend in the bulk with increasing Ra. Similar to passive scalar mixing,
the PDFs of the thermal dissipation rate due to the temperature fluctuations, €4,
deviate from the log-normality. The PDFs are stretched exponential shape and
the tails are more extended with increasing Ra, due to increasing degree of small-
scale intermittency. The degree of intermittency is much stronger in the thermal
boundary layer (BL) than in the bulk, and stronger in the sidewall region than in
the inner zone. Furthermore, ¢y not only dominates in the bulk but also contributes
significantly to ep in the BL. The scaling law (er) ~ Ra‘ always gives a negative
exponent, ¢, in the bulk or plume and background dominated regions. This is in
contrast to the scaling theories, but in agreement with measurements.

The Nusselt number, Nu, follows the scaling law Nu = A(I') x Ra®™)| in which
a power law dependence of the fit parameters A and [ on I' is detected. The
minimum of Nu(T) is found at T’ & 2.5 and T’ & 2.25 for Ra = 107 and Ra = 108,
respectively. At this point, the LSC undergoes a transition from a single-roll to
a double-roll pattern. Nu(I') varies between 3%-11% and becomes independent
of geometry for I' 2 8. The LSC patterns in fully turbulent flow are strikingly
similar to those in the weakly nonlinear regime. Patterns similar to pentagon or
hexagon are observed preferentially in turbulent convection, if I' > 8. The LSC is
reorganised from roll to pentagonal or hexagonal shapes with increasing Ra and I'.

The Lagrangian pair dispersion, R%(t), in turbulent convection undergoes a tran-
sition from the ballistic regime to the Richardson-like one. No Taylor regime is
observed due to the finite size of the cell. Moreover, R*(t) is sensitive to the initial
separation. Our interpolation scheme reproduces accurately Nu in the Lagrangian
frame. The convergence of Nu(t) is sensitive with respect to the number of parti-
cles and the kind of seeding (uniform or nonuniform). The acceleration components,
a;, are highly intermittent with symmetric and stretched exponential distributions
and have non-Gaussian flatness (F'(a;) > 3). All three distributions collapse, in
contrast to studies in a laterally unbounded fluid layer.
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1 Introduction

1.1 Rayleigh-Bénard Convection

Rayleigh-Bénard Convection is a natural phenomenon that occurs due to the insta-
bility of a fluid layer confined between two horizontal plates with different temper-
atures. Let us consider a convection cell filled with a fluid of density p, viscosity
i and thermal conductivity x. Initially, the fluid is at rest with no convection.
The cell is heated from below and cooled from above. If the temperature differ-
ence AT between the hot and cold plates is strong enough, the hot plumes rise
and cold plumes descend as shown in Figure 1.1, which triggers convective motion
inside the cell. Natural convection occurs as the buoyancy force causes an unstable
temperature gradient (Figures 1.2b,c). For different forcing and boundary condi-
tions, patterns like parallel rolls, square or hexagons are identifiable (Koschmieder
1993). Bénard (1900) was the pioneer, who conducted systematic investigations of
convection in a thin fluid layer heated from below and later, Rayleigh (1916) estab-
lished the theoretical foundation of Bénard’s work. For convection to take place,
the buoyancy force due to gravity must overcome the viscous forces due to thermal
and momentum diffusions.

T

T AT

Figure 1.1: Sketch of the thermal convection process in a rectangular cell.
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T T

Z dT S dr

X T+AT T+ AT

Figure 1.2: Fluid layer with: (a) stable temperature gradient (- > 0) and (b)

unstable temperature gradient (“C < 0). The unstable gradient in (b) leads to

convection with roll pattern as shown in (c) .

The Rayleigh number Ra, which is a measure of the dimensionless temperature
difference in the cell, is defined as

agATH?
vk

Ra = (1.1)
The symbol « is the coefficient of volume expansion, g — the gravitational acceler-
ation, H — the height of the convection cell and v = % — the kinematic viscosity.
Other control parameters involved in convection are the Prandtl number Pr = £,
which defines the characteristics of a given fluid, and the aspect ratio I', which
is a measure of flatness or slenderness of a cell. Most of the investigations in
Rayleigh-Bénard convection are aimed to establish a precise relation between the
heat transfer and control parameters, such as

Nu = f(Ra, Pr,T). (1.2)

The Nusselt number Nu is the ratio of the convective to conductive heat transfer.

1.1.1 Boussinesq approximation

The convection process in a system can be described by the Boussinesq (1903)
equations, which are the simplifications of the Navier-Stokes equations. In the
Boussinesq approximation, the density variation due to the temperature difference
is neglected everywhere except in the buoyancy term. For a small temperature
difference, the density is a linear function of the temperature, which is given by

p=po{l—a(T-T)}, (1.3)

where pq is the density of fluid at reference temperature Ty. The equations of motion
follow the conservation of mass, momentum and energy, which can be written in
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the form of

ou

i (U-V)U = —-VP+vVU - ag(Ty —T)e., (1.4)
%—f +U-V)T = kV*T, (1.5)

V.U = 0. (1.6)

Here U(z,t) = (ug, uy,u,)” is the velocity at position & = (z,y, )" and time ¢,
T(x,t) — the total temperature and P(x,t) = p/po + @, with p being the isotropic
pressure, ¢ the gravitational potential and e, the identity vector opposite to the
direction of gravity.

Eqns. (1.4)-(1.6) are made dimensionless with respect to the free-fall velocity U; =
VvagATH, the cell height H and the temperature difference AT = T), —T,., with T},
and T, being the temperatures at the hot and cold plates, respectively. Following
Verzicco & Camussi (2003), the resulting dimensionless system is

ou Pr _, N

- . = — —_— T 1.

at+(u V)u Vp+\/RaV u+Te,, (1.7)

oT . 1 .

— 4+ (u- V)T = VT, 1.8

o VT = R "y
V-ou = 0. (1.9)

The symbol u denotes the dimensionless velocity, p is the dimensionless pressure
(separated from the hydrostatic contribution) and 7' = (17" — T.) /AT is the dimen-
sionless temperature. 7" has the value 1 at the hot plate and 0 at the cold plate.

Due to the imposed temperature gradient on the system, there is a net heat flux in
the vertical direction. For adiabatic sidewalls, averaging Eqn. (1.5) in the horizontal
plane results in a constant Nusselt number, which is independent of z. Following
Shraiman & Siggia (1990) and Grossmann & Lohse (2000), we write the vertical

heat flux as
<UzT>A,t - /iaz<T>A,t
KATH-1

Here (-) 4+ denotes an averaging over the horizontal plane and an ensemble of sta-
tistically independent snapshots.

Nu(z) = = const . (1.10)

1.1.2 Linear stability and onset of convection motion

Linear stability analysis is a very useful tool in understanding the pattern formation
at the onset of convection. In linear stability analysis of the Rayleigh-Bénard
system, a small perturbation around a uniform base flow results in a linear system
of equations, whose solution is aimed at identifying the critical values of the control
parameters for which the flow becomes unstable. Let us consider a horizontal fluid
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layer with reference solutions ug(z) and Ty(z). The solutions of the system in terms
of the base flow and perturbations are

u(x,t) = wuo(z) +u'(x,t), (1.11)

T(x,t) = To(z)+0(x,t), (1.12)

where 4’ and @ are the fluctuations from the base state in the velocity and temper-
ature fields, respectively. With the help of incompressibility of fluid, it is possible
to eliminate the pressure, temperature and horizontal components of the velocity
from Eqns. (1.7)-(1.9) (see Drazin 2002 for details). The resulting ordinary differen-
tial equation (ODE) system depends only on u’,, which is solved with the so-called
normal mode ansatz for infinitesimal disturbances as

u(x,t) = ug(z)elkerthuy) gst (1.13
O(z,t) = Ty(z)eFamthoy) gst (1.14)

The term e’ represents the temporal growth rate of perturbations for the complex
amplitude s, and k, and k, are the horizontal wave numbers, with ¢* = k2 + k.

3000

2000

Ra

1000

Figure 1.3: Neutral stability curve in the Ra — ¢ plane for Rayleigh-Bénard convec-
tion in a laterally unbounded fluid layer with free-slip top and bottom boundaries.

The stability conditions are

Re(s) < 0= stable, (1.15)
Re(s) > 0= unstable. (1.16)
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For the free-slip boundaries (0 = u, = a;;/z = 0 at z = 0,1), the eigenvalues

corresponding to the marginal stability, Re(s) = 0, are

(77,27T2 + q2)3

Ra(q,n) = 7 , (1.17)
and the smallest eigenvalue (n = 1) is
72 4 ¢2)3

Minimizing Ra(q) with respect to the horizontal wave number ¢ gives the critical
Rayleigh number Ra. = 277%/4 = 657.5, with the corresponding critical wave
number ¢, = 7/v/2 (Figure 1.3). For rigid boundaries, the critical values are
Ra. = 1708 and ¢. = 3.11.

675 : . - .

670

Rc

665

660

655 * ' ~
10 15 20 25

Figure 1.4: Critical Rayleigh number as a function of the dimensionless cell size L
in a 2D free-slip box. For a non-negative constant o = rk, 772, with k, — thermal
diffusivity of the side wall, 7 — sidewall thickness (7 < 1), the sidewall parameters
are (from bottom to top curves) @ = 0, 0.2, 1 and 100, respectively. Here v = 0
corresponds to the free-slip case and a = oo for the no-slip case. (Taken from Chen
1992).
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The sidewalls act as obstacles in the flow field through viscous effects and change
the threshold value of the marginal stability parameter Ra. as given in Figure 1.4
(Chen 1992). In this figure, the sidewall boundary conditions vary with respect to
a non-negative constant o = rk, 772, with r is the ratio of the volume specific heat
capacity of the sidewall and the fluid layer, k,, — the dimensionless thermal diffu-
sivity of the sidewall, 7 — the sidewall thickness (7 < 1). The sidewall parameters
are (from bottom to top curves) a = 0, 0.2, 1 and 100, respectively, with o = 0
corresponds to the free-slip case and o = oo for the no-slip case. In case of no-slip
boundaries (top curve), the critical Rayleigh number Ra. at the onset of convection
is higher for a slender cell than that of a flat cell.

T+AT

Figure 1.5: Two-dimensional parallel rolls in a rectangular domain.

Now let us consider the function

f = eilkaothyy) (1.19)
Taking the gradients of f twice in the x — y plane gives

Af+¢f=0, (1.20)

which is the 2D-wave equation, whose solution results in infinite numbers of wave
vectors k = (k,, k,)” in the horizontal plane of a laterally unbounded domain. The
simplest solution is in the form of parallel rolls, for example, in a rectangular domain
as shown in Figure 1.5. In the sub-critical regime (Ra < Ra.), no pattern exist,
however, in the super-critical (moderately non-linear) zone (Ra > Ra.), bifurcation
causes the formation of stable patterns in the vicinity of the onset of convection
(Schliiter et al. 1965). Examples of such steady patterns are rolls which are made
of a single pair of wave vectors +k& with & the unit vector in the horizontal
plane oriented opposite to each other, squares which consist of two pairs of wave
vectors at right angles and hexagons which are formed due to the superposition
of three pairs oriented at 120° (Chandrasekhar 1961). Figure 1.6 shows a two
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dimensional envelope, which is a section of the so-called Busse balloon (Busse 1978)
at constant Prandtl number. Two-dimensional stable patterns exist within this
envelope and beyond that perturbations of three-dimensional waves on the weakly-
nonlinear patterns cause various instabilities, e.g. cross-rolls, zig-zag instability and
the Eckhaus instability, which are also called the secondary instabilities.

E=Eckhaus
R A Z=ZigZag
SV=Skew Varicose
O=Oscillatory
RC

qC q

Figure 1.6: Section of the Busse balloon at constant Prandtl number. (Taken from
Cross 2003).

1.1.3 Transition to turbulence

The transition to turbulence state is reached after a series of bifurcations in the
form the primary, secondary, tertiary and time-dependent instabilities as described
in Figure 1.7 in the Ra— Pr parameter space by Krishnamurti (1970). The turbulent
state is characterized by complex three-dimensional time-dependent random chaotic
motions with a wide range of temporal and spatial scales. According to Castaing et
al. (1989), convective turbulence is classified into soft turbulence (2 x 10° < Ra <
4x107) and hard turbulence (4x10” < Ra < 6x10'?) regimes. Their rationalization
is based on the fact that the probability distribution of the temperature exhibits
Gaussian shape in the soft regime and exponential shape in the hard regime. There
may exist an ultimate regime (Ra > 10'%) according to Kraichnan (1962), in which
the boundary layers become unstable and most of the temperature drop is localized
within the thermal boundary layers. As a result of this instability, the heat transfer
is significantly enhanced with a corresponding scaling Nu ~ Ra'/?, which is much
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oY——
10° F i
10% F i
Ra | ]
107 F i
10° F i
I Turbulent flow Time dependent
t 3-dimensional flow
10° F - 4
: P Steady 3-dimensional flow
104 F i i
- B ‘_,,-—""ﬂ Steady 2-dimensional flow (rolls) -
103 :““. e o . e o . Mo motion e o . s ol . N
1072 107! 10° 10 - 10 10° 10
r

Figure 1.7: Transition to turbulence in the Ra — Pr plane as described by Krish-
namurti (1970).

higher compared to that in the hard turbulence regime (Nu ~ Ra*71/3).

1.2 Motivation for the present work

Study of Rayleigh-Bénard convection has gained tremendous importance as con-
vection phenomena occur in many physical and industrial processes such as in geo-
physics, astro-physics, indoor ventilation, industrial heating and cooling (Kadanoff
2001). Following the pioneering works of Bénard (1900) and Rayleigh (1916), nu-
merous theoretical (Malkus & Veronis 1958; Kraichnan 1962; Schliiter et al. 1965;
Busse & Whitehead 1971; Grossmann & Lohse 2000), experimental (Krishnamurti
& Howard 1981; Castaing et al. 1989; Niemela et al. 2000; Brown & Ahlers 2006;
He et al. 2007) and numerical (Kerr 1996; Verzicco & Camussi 2003; Schumacher
et al. 2005; Hartlep et al. 2005; Shishkina & Wagner 2006) studies have been
conducted in the past. The main focus of thermal convection studies has been on
the precise quantification of the global turbulent heat transport through the cell,
which is measured by the dimensionless parameter, the Nusselt number Nu, as a
function of the applied outer temperature difference, the properties of the working
fluid and the geometry (Niemela & Sreenivasan 2003; Funfschilling et al. 2005).
Three dimensionless control parameters — the Rayleigh number Ra, the Prandtl
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number Pr and the aspect ratio I'- represent the temperature difference in the cell,
fluid properties and the geometry, respectively.

Experimental studies have been able to explore a large range of Rayleigh numbers
in the so-called hard turbulence regime from Ra ~ 107 up to Ra ~ 10'7 in the case
of liquid helium (Niemela et al. 2000). However, most experiments can provide
pointwise measurements of time series of the turbulent fields only (du Puits et
al. 2007). Only recently, two-dimensional cuts through the flow field have been
analyzed by combining particle image velocimetry and shadowgraph techniques
(Xi et al. 2004).

In contrast, direct numerical simulations (DNS) could not be conducted for flow
configurations with very high Rayleigh numbers and large aspect ratios due to the
limitation of current computer capacity. So far Amati et al. (2005) have reached
Ra ~ 10* in a cell with aspect ratio I' = 0.5. The advantage of DNS over the
experiment is, however, a fully resolved spatial and temporal information in turbu-
lent fields and local mechanisms of heat transfer (Kerr 1996; Verzicco & Camussi
2003; Hartlep et al. 2005; Shishkina & Wagner 2006, 2007).

1.2.1 Temperature and thermal dissipation rate

Closely related parameter to the Nusselt number is the mean of the thermal dissi-
pation rate, which can be written as (see Grossmann & Lohse 2000)

< > Nu
€ = —
v v RaPr

The symbol (.),, represents an averaging over the volume and an ensemble of sta-
tistically independent snapshots. The thermal dissipation rate field itself measures
the magnitude of the temperature gradient and is defined as

(1.21)

er(@,1) =k (gif | (1.22)

Here x; = z,y, z. Both equations, Eqns. (1.21) and (1.22), imply that the statistics
of the fluctuating thermal dissipation field is connected with the local heat flux,
j(x,t) = —xkVT. The measurement of the thermal dissipation field — and thus
of the spatial derivatives of the temperature field — is experimentally challenging,
especially in high-Rayleigh-number turbulence. Experiments can usually provide
well-resolved time derivative (Belmonte & Libchaber 1996) or temporal increments
of the temperature field (Zhou & Xia 2002). In case of temporal increments in
convection, closed forms of the corresponding probability density functions (PDF)
of stretched exponential type have been constructed successfully by Ching (1991,
1993). For other flows, such as axisymmetry jets, turbulent channel flows or homoge-
neous isotropic turbulence, PDFs of the velocity increments have been constructed
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as a superposition of Gaussian distributions (Castaing, Gagne & Hopfinger 1990) or
a product of a Gaussian random variable and a scale-dependent random multiplier
(Chevillard et al. 2006). In Rayleigh-Bénard convection, time derivatives, however,
cannot be translated into spatial derivatives by a Taylor frozen-flow hypothesis as
in pipe or channel flows. Furthermore, for turbulence in a closed vessel, the con-
cept of homogeneity is limited to the cell center only. Recently, He et al. (2007)
were able to measure four temperature signals close to each other simultaneously
to reconstruct temperature gradients. Their analysis disentangled contributions to
the total thermal dissipation coming from the bulk and boundary layers. Rayleigh
numbers Ra ~ 10° were attained in their experiments, but the resolution of the
gradients remained limited to scales larger or equal to the thermal boundary layer
thickness. Direct numerical simulations by Kerr (1996) and more recently by Shishk-
ina & Wagner (2007) focused on the geometric properties of thermal plumes, the
structures that carry the heat away from the bottom plate.

A detailed statistical analysis of the spatial derivatives of the temperature and the
thermal dissipation field in different regions of the convection cell is thus incomplete.
Very recent investigations by Emran & Schumacher (2008), He & Tong (2009) and
Kaczorowski & Wagner (2009) shed more light in this regard. Moreover, knowledge
about the strength of fluctuations around the mean temperature gradient and their
dependence on the Rayleigh number allows for a validation of predictions by scaling
theories, e.g. those by Grossmann & Lohse (2000). Such analysis is also interest-
ing from the perspective of passive scalar mixing in turbulence where progress in
understanding the mechanisms that cause intermittent fluctuations has been made
recently (Shraiman & Siggia 2000). A first and open point is to understand the
differences between passive and active scalars such as the temperature in convec-
tive turbulence. For the passive scalar case, it is known that larger amplitudes of
the dissipation fields are mostly concentrated on fine scales (Kushnir et al. 2006)
and that their statistical study puts rather large resolution constraints on DNS
(Schumacher et al. 2005; Schumacher & Sreenivasan 2005; Donzis et al. 2008).

Therefore, we provide a detailed height-dependent statistical analysis of the tem-
perature, its fluctuations and spatial derivatives. Due to constraints on the DNS
grid resolution, our study is limited to a moderate Rayleigh number range, Ra =
107 — 10, for the cell with aspect ratio I' = 1. Odd-order moments of spatial deriva-
tives along an imposed outer mean scalar gradient have been used successfully to
quantify deviations from local isotropy in shear flows or for the mixing of scalars
in turbulence (Warhaft 2002; Pumir 1996; Schumacher & Sreenivasan 2003). We
adopt these ideas for the present active scalar case and discuss the dependence of
these anisotropy measures on Ra in different regions of the convection cell. Further-
more, we study the statistics of the thermal dissipation rate in the bulk and close
to the bottom and top plates of the convection cell. The results are then related
to findings from the passive scalar dissipation field. Our study is intended to build
a bridge between the mixing of passive and active scalar fields by comparing the
statistical properties for both cases. Motivated by the concept of Grossmann &
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Lohse (2004), we also propose new definitions of the plume and background domi-
nated thermal dissipation rate fractions, which are conditioned with respect to the
quantity u,#, which is always positive for the rising or falling plumes in a convec-
tion cell. We provide detailed scaling relations of the thermal dissipation rate with
respect to the Rayleigh number, based on our new definitions as well as the bulk
and boundary layer contributions and make a comparative study. Our aim is to
understand the discrepancies between the theories (e.g. Grossmann & Lohse 2000,
2004) and experiments (e.g. He et al. 2007; He & Tong 2009).

1.2.2 Geometry dependence of the heat transfer and large-scale
circulation

Until now, the variation of turbulent heat transfer with respect to two of the three
dimensionless control parameters in thermal convection, namely the Rayleigh num-
ber Ra and the Prandtl number Pr, was the focus of most of the laboratory experi-
ments and simulations. The dependence on the third control parameter, the aspect
ratio I', has been studied much less extensively. Only a few systematic analyses
of high-Rayleigh-number convection in flat cells with ' > 1 have been reported
(Wu & Libchaber 1992; Funfschilling et al. 2005; Hartlep et al. 2005; Sun et al.
2005; Niemela & Sreenivasan 2006; du Puits et al. 2007), although large-aspect
ratio systems are relevant for nearly all geophysical and astrophysical flows (Stein
& Nordlund 2006) and many engineering applications such as an energy-efficient
design of indoor ventilation systems (Zerihun Desta et al. 2005). Furthermore, an
explicit dependence on the aspect ratio is missing in any of the existing scaling
theories for the turbulent heat transfer (Siggia 1994; Grossmann & Lohse 2000).
Grossmann & Lohse (2003) refined their original ansatz by including variations of
the kinetic boundary layer thickness at the plates and sidewalls as a function of the
aspect ratio, however, they found that the global heat transfer laws were indepen-
dent of I'. This can be attributed to the fact that their argumentation is built on
the volume flux conservation, which requires a large scale flow — a so-called “wind
of turbulence”. In fact all existing scaling theories require such a large-scale flow
for the ansatz of their boundary layer dynamics. It is well-known that the coherent
large-scale circulations present at I' ~ 1 break down into more complex and less co-
herent patterns when the aspect ratio is increased far beyond unity (I' > 1). Such
phenomena were reported by several authors: for example by means of Fourier spec-
trum analysis by Hartlep et al. (2003), plume structure visualizations by Shishkina
& Wagner (2006) or comparisons of the autocorrelations of the temperature and
velocity fields by du Puits et al. (2007).

In this work, we, therefore, want to study the dependence of convective turbulence
on the aspect ratio in a cylindrical cell by three-dimensional direct numerical sim-
ulations. Our focus is on aspect ratios larger than unity. Values for I' cover a
range between 0.5 and 12 for Rayleigh numbers between 107 and 10° and for a con-
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stant Prandtl number Pr = 0.7. We try to address and augment the following two
questions that have been partly discussed in other works: How does the turbulent
heat transfer at fixed Rayleigh and Prandtl numbers vary the aspect ratio? Which
changes in the global flow structure are associated with an increase of the aspect
ratio beyond unity?

1.2.3 Lagrangian particle dispersion

Finally, we want to explore and complement some of the previous studies on the La-
grangian particle dispersion in turbulent convection. Most of the experimental and
numerical investigations in turbulence have been conducted in the Eulerian frame
of reference. Although Eulerian and Lagrangian studies are complementary, true
temporal structures are revealed when the measurement of turbulent fluctuations
is conducted along the particle trajectories (Voth et al. 2002). DNS studies on the
Lagrangian turbulence have been conducted in the past, for example, by Yeung &
Pope (1989) and most recently for the thermal convection in a Cartesian slab by
Schumacher (2008, 2009). With the advancement in sophisticated apparatus, e.g.
high resolution digital cameras, experiments on particles tracking in turbulence
have drawn significant attention in recent decades (La Porta et al. 2001; Mordant
et al. 2002; Gasteuil et al. 2007; Lobutova et al. 2009). Those studies were focused
on the statistics of velocity or acceleration, measurements of local heat flux, iden-
tification of plumes and the geometrical characteristics of the particles (Braun et
al.). Nevertheless, particle tracking experiments in the laboratory have some limi-
tations, e.g. the size of the tracer particles and the size of the domain observable
by the digital cameras. DNS on Lagrangian particle tracking has no such limita-
tions, however, the challenging part here is to achieve high Rayleigh number Ra,
which is restricted by the DNS grid resolution criteria. In the Lagrangian frame,
we study the heat transfer, particle dispersion properties for the pair separation,
statistics of the acceleration and the convective heat flux as well as the velocity and
temperature increments for the data set I' = 1 and 3 for Ra = 107, and I' = 1 for
Ra = 108,

1.3 Outline of the work

This thesis contains seven chapters. In Chapter 1, we give a brief introduction
to Rayleigh-Bénard convection, the Boussinesq approximation to the equations of
motion as well as a short discussion on the linear stability of the Rayleigh-Bénard
system.

Chapter 2 deals with the numerical models, DNS grid resolution criteria, discretiza-
tion schemes and the aspect-ratio-constraints on the DNS grid size as well as grid
convergence studies.
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In Chapter 3, we report the statistics of the total temperature field as well as its
fluctuations and gradients. The analysis includes the height dependence of the
temperature, its vertical derivatives, skewness and flatness. We also compare our
findings with those of the passive scalar case. The studies are conducted in the cell
with aspect ratio I' = 1 for a moderate Rayleigh number range, Ra = 10" — 107,
keeping the Prandtl number constant (Pr = 0.7).

Chapter 4 presents detailed analysis of the thermal dissipation field in different sub-
volumes of the convection cell. We give an overview of the existing scaling theories
on the thermal dissipation rate with respect to the Rayleigh number. Motivated
by the theories of Grossmann & Lohse (2000, 2004), we provide new definitions of
the plume and background dominated thermal dissipation rate fractions. We relate
our findings to those of the existing scaling theories and experiments as well. The
same data sets as in the previous chapter are taken here.

The dependence of the aspect ratio I' on the heat transfer Nu is reported in Chapter
5. The variations in the heat transfer due to changes in the large-scale circulation
(LSC) patterns in convection are elaborated with the flow field visualization. Com-
parisons are made with those in the weakly nonlinear regime above the onset of
convection. The analysis includes a wide range of aspect ratio I' = 0.5 — 12 for
Ra = 10" — 10° and a fixed Pr = 0.7.

The studies on the Lagrangian tracer particle dispersion in Rayleigh-Bénard con-
vection are provided in Chapter 6. A brief description of the interpolation scheme
is given there. Due to the staggered grid arrangement, we adopt linear interpola-
tion for the velocity field, which simplifies the computation. The time marching
is done by the analytical integration of ordinary differential equations (ODEs) in
the Lagrangian frame. The investigations are carried out for the pair dispersion
properties and the heat transfer in the Lagrangian frame of reference as well as
the statistics of the acceleration, the convective heat transfer and the velocity and
temperature increments. The relevant parameters are: I' = 1 and 3 for Ra = 107,
and I' = 1 for Ra = 108.

Finally, the concluding remarks are made in Chapter 7.



2 Numerical Scheme

The convective terms in the Navier-Stokes equations encompass the nonlinear dy-
namics of fluid flow. Complex flow phenomena such as instabilities, bifurcations
and turbulence are the manifestation of the nonlinear dynamics. Due to this in-
herent nonlinearity, the existence of analytical solutions of the Navier-Stokes in
complex flow configurations is not known except for a few simple laminar cases like
the Couette flow, the Poiseuille flow and the Blasius boundary layer flow. Alter-
native approaches are sought to solve the system, e.g. to simplify the equations
with the help of some statistical filtering processes like the Reynolds averaging and
employ some adhoc basis modeling techniques such as RANS, LES or to conduct
direct numerical simulation, in which no simplification is required and all scales of
the flow are resolved numerically.

Time and computer capacity constraints do not allow for a broad use of DNS
in large-scale industrial applications. Therefore, Reynolds-averaged Navier-Stokes
(RANS) modeling and large eddy simulation (LES) are common in such complex
external and internal flows, e.g. for aircraft wings and combustion chambers. Nev-
ertheless, DNS has become an essential tool in conducting basic research in physics
in recent decades. Because of its accuracy, DNS can be regarded as a direct com-
petition to the experiments. Laboratory experiments are expensive and cannot
provide, for example, the whole spectrum of spatial data in a domain. In contrast,
DNS provides fully resolved spatial and temporal information in a turbulent field.
The DNS database is extensively used in validation of the RANS and LES based
engineering models.

2.1 Direct Numerical Simulation

Turbulent flow is characterized by complex three dimensional random motions with
a wide range of temporal and spatial scales. Classical Richardson cascade hypoth-
esis tells us that turbulent motions are composed of eddies of different sizes, small
and large. The largest eddy could be of the size of the characteristic length L of
the flow and the smallest ones are of the size of a dissipative scale, the Kolmogorov
length nx. In most cases, large eddies are fed energy by the mean flow. Since they
are unstable, they break down into smaller and smaller eddies in a cascade process
until disappear completely at the dissipation scale, at which the kinetic energy is

15
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converted to internal energy due to the finite viscosity of the fluid. Small scale
turbulence is assumed to be isotropic and universal and, therefore, independent of
flow types.

In DNS approach, resolving turbulent features such as three-dimensionality and
time-dependence of flow is very challenging. DNS is the most accurate method
available today. Its accuracy is bounded by the particular numerical scheme, e.g.
spectral methods, finite difference schemes. In order to capture all of the significant
turbulent structures, the computational domain should be at least as large as the
size of the largest eddy, L. For homogeneous isotropic turbulence with an uniform
grid spacing, the DNS computational complexity is L/nx ~ Rei/ : (Ferziger & Peri¢
2001), with Rej, the Reynolds number based on L. In case of a three-dimensional
domain, this complexity grows to N ~ Rei/ * — where N is the number of grid
points, which is extremely high in terms of cost and time, since typical Reynolds
numbers in turbulent flows of practical importance could reach up to Re ~ 10°
(Oh & Kang 1992). Latest advancements in supercomputing allow to achieve DNS
simulations for a grid size of N ~ 107! (Kaneda et al. 2003; Schumacher et al.
2005; Yeung et al. 2005; Donzis et al. 2008). So far the highest Rayleigh number
in DNS studies of Rayleigh-Bénard convection is Ra ~ 10'* as reported by Amati
et al. (2005) for a cylindrical cell with aspect ratio I' = 0.5. In our present study,
we could reach aspect ratio I' = 3 for a simulation with Ra = 10°.

2.2 Discretization methods

The non-dimensional Boussinesq equations, Equs. (1.7)—(1.9), are rewritten in the
cylindrical coordinate system. Boundary conditions are the no-slip condition for
the velocity at all boundaries, isothermal top and bottom plates with adiabatic
sidewalls for the temperature (Figure 2.1).

We employ the DNS scheme by Verzicco & Orlandi (1996) and their code. The
equations are solved on a staggered grid, where the velocities are stored at the
center of the surfaces, and the temperature and pressure are stored at the center of
the cell as described in Figure 2.2. The staggered grid is used in order to avoid odd-
even decoupling between the pressure and velocity that occurs on a collocated grid
in finite-difference discretization (Harlow & Welch 1965). The Odd-even decoupling
error leads to so-called checker-board patterns in the solutions.

The grid spacings are non-uniform in the axial and radial directions. In the axial
direction, they correspond to the Tschebycheff collocation points, which ensure a
dense clustering in the thermal boundary layers close to the hot and clod plates. The
spatial discretization is performed by the second-order central difference scheme. A
fractional-step method combined with a third-order Runge-Kutta for the advection
terms and the Crank-Nicolson scheme for the viscous terms are employed for the
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Figure 2.1: Rayleigh-Bénard cell with height H and diameter D. Boundary condi-
tions are: no-slip condition for the velocity at all boundaries, isothermal top and
bottom plates, and adiabatic sidewalls for the temperature.

temporal discretization. The time advancement scheme can be written as (see Kim
& Moin 1985; Verzicco & Orlandi 1996 for details)

u; — u?
: ! == an nH‘nil - nGz "
At r-)/ KA +p A Oé p
ay, R n
+ 7(A1¢ + Ay + A ) (G +ul) (2.1)
u™t — 4,
i L= _q,Ge 2.2
= 0 G 22)

with the incompressibility condition

D;(ul*') =0, (2.3)

7

is enforced for each cell. The symbol u; represents the intermediate velocity field,
which is globally divergence free but not locally ; H; — the convective terms; D; —
the discrete divergence operator; GG; — the discrete gradient operator; A;4, A; and
A;. are the discrete difference operators for the viscous terms in the azimuthal,
radial and axial directions, respectively. The values of the coefficients «,,, 7, and
pn depend on a particular time advancement scheme, e.g. Runge-Kutta, Adam-
Bashforth. The tridiagonal system which arises from a factorization of Eqn. (2.1)
is solved (Beam & Warming 1976). This results in a significant reduction of the
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Figure 2.2: Position of variables in a three-dimensional cell on a staggered grid in
the cylindrical coordinates. The temperature and pressure are stored at the center
of the cell. The velocity components are located at the center of the faces.

computational cost compared to an inversion of a sparse matrix. The resulting
tridiagonal system is given by (Verzicco & Orlandi 1996)

(1 — BnAip)(1 — BrAi)(1 — BrAn) (U —ul) = At(v,H + ani”_l — a,G;p")

where (3, = a, At/2. Due to the staggered grid arrangement, boundary conditions
for some of the velocity components are required at a particular boundary (Kim
& Moin 1985). After elimination of u*! from Eqn. (2.2) by taking the divergence
of Eqn. (2.2) and with the help of incompressibility condition, Eqn. (2.3), one can
obtain a discrete Poisson equation for the scalar ®"*! as

1

AR =
g o, At

Dyil; (2.4)

Here Ay, is the discrete Laplacian in the cylindrical coordinates. To solve the Poisson
equation, Eqn. (2.4), one-dimensional Fast Fourier Transform (FFT) is applied in
the azimuthal direction and a two-dimensional Laplace operator is inverted in the r-
z plane for each azimuthal mode. The FISHPACK package (Schwarztrauber 1974)
is used as the Poisson solver.
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2.3 Spatial grid resolution criteria

For fluid with Pr < 1, the Kolmogorov scale ng is the smallest scale to be resolved
in DNS simulations of convective turbulence. Recent investigations by Schumacher
et al. (2005) and Donzis et al. (2008) have demonstrated that the smallest scale 7y
and the largest wave number k,,,, satisfy the inequality

kmaa: Nk > ¢, (25)

with ¢ > 3 for a well resolved grid. The largest wave number is given by the
dealiasing rule as (Orszag 1971)

Fomaz = V2N/3 . (2.6)

For N = L/A and L = 27 gives kyq, ~ 7/A. It follows that the mean grid size,
Al is

A < %n,{. (2.7)
L3/4 3
Substitution of nx = e and (e) = ﬁ(Nu — 1)RaPr=? (Grossmann & Lohse
2000) into Eqn. (2.7) yields
m Pr? 1/
AL —-L|—-— for N 1. 2.8
T ((Nu—l)Ra) or v > (28)

This is clearly an improvement over the Grotzbach (1983) criterion, in which ¢ = 1.
Consequently A becomes much smaller if ¢ = 3. Hence the DNS grid size according
to the Grotzbach criterion is

Pr? 174
Ag <mng=aL(—""—) . 2.
¢ =Mk =7 ((Nu—l)Ra) (2:9)

In the cylindrical coordinate system, the mean grid spacing, A, can be estimated

as
A= max YrAAA,, (2.10)

T=(p,r,z)
where Ay, A, and A, are the grid spacings in the azimuthal, radial and axial
directions, respectively. This A should never exceed A given by Eqn. (2.9).

2.4 Dependence of DNS grid on the aspect ratio

The aspect ratio for a cylindrical cell is defined as

r=—=== 2.11
7= (2.11)
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I
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Figure 2.3: Plan view of two concentric cylindrical cells whose aspect ratios are I’y
and I’y for the radii Ry and Ry (Rs > R;), respectively.

where R is the radius and H is the height of the cylinder. Now consider two
cylindrical cells with a constant height H and aspect ratios I'; and 'y (I'y > T'y)
as shown in Figure 2.3. Given a small angle A¢, the corresponding azimuthal grid
spacings are

Ary = RiAg, (2.12)

Here Ax; and Az, are the azimuthal grid size at radial positions R; and R, re-
spectively. With the help of Eqn. (2.11), Eqns. (2.12) and (2.13) give

Avy _ Rid¢ Iy
Azy  RoAp Ty

(2.14)

With an increasing aspect ratio, it is evident form Eqn. (2.14) that Axs must be
reduced by a factor I'y /T’y in order to sustain the same size as Az;. The DNS grid
size N is thus a function of the aspect ratio as give by

N =TN, x TN, x N., (2.15)

with Ny, NV, and N, are the number of grid points in the azimuthal, radial and axial
directions, respectively. It turns out that N has a growth rate of I'>. However, in
a cylindrical geometry, the center region is over-resolved compared to the sidewall
region.



2.5 Convergence studies 21

2.5 Convergence studies

We use the free-fall velocity U; and free-fall time ¢; as normalization factors. These
are given by

U = VagATH, (2.16)

H
ty = — . 2.17
/ U; (2.17)
A prefactor Cj, where
U, = CyUy (2.18)

is necessary to calculate the appropriate convective velocity U. and convective time
t.. The prefactor is defined as

u? + u? + u?
Cr = <% : (2.19)
Uy
Vit

The symbol (-)y; represents an averaging over the cell volume V = 7R?H and an
ensemble of statistically independent snapshots. The convective velocity U, is an
alternative definition of the characteristic velocity in terms of the root-mean-square
velocity as oppose to Uy. Figure 2.4 displays the plane-averaged Cj (Eqn. 2.19) as

N, x N, x N, A Ag NK Nuto oin% Ngy
1 97x49x64 00221 0.0235 0.0075 16.90+0.11 0.65 8
2 193x97x 128 0.0110 0.0235 0.0075 16.73+0.08 0.50 14
3 257 x 129 x 210 0.0077 0.0235 0.0075 16.76+0.05 0.30 24

Table 2.1: Nusselt number convergence for three different grid spacings— (1) coarse
grid with A = Ag, (2) medium grid with A = 0.5 Ag and (3) fine grid with A & 7y
— for the data set Ra = 107, Pr = 0.7 and I' = 1. Np;, is the number of grid planes
inside the thermal boundary layer, A— mean DNS grid spacing as in Eqn. (2.10)
and Ag — the grid spacing according to the Grotzbach criterion, A< TNk, which

is given by Eqn. (2.9).

a function of height of the cell for three Rayleigh numbers, namely Ra = 107, 10®
and 10%, and for aspect ratio I' = 1. The simulations are conducted over at least
141 nondimensional time units. In can be observed that the values vary between
Cy =~ 0.17 and 0.19. For wide-aspect-ratio rectangular cells, this factor is typically
Cr ~ 0.1 (Kerr 1996; van Reeuwijk et al. 2008).

In order to verify the quality of grid spacings in our simulations, we have performed
several pilot studies for different grid spacings as provided in Table 2.1 and analyzed
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Figure 2.4: Plots of the plane-averaged Cj (Eqn. 2.19) as a function of height of

the cell for three Rayleigh numbers — Ra = 107, 10® and 10° — and aspect ratio
I' = 1. The statistics are gathered over at least 141 x ¢/t; time units.

the Nusselt number for each case. The global Nusselt number Nu is obtained by
integrating Eqn. (1.10) over the cell height as

H
/Nu = 1+ (T (2.20)

The standard deviation o of Nu is calculated as

1 &

o= Z[Nu(zj) — Nuj?. (2.21)

Here z; is the vertical coordinate at gridplane j, and Nu(z) and Nu follow from
Eqns. (1.10) and (2.20), respectively. The relative deviation with respect to the
mean value is smaller than 1% for all the three cases in Table 2.1 and thus compa-
rable with Kerr (1996).

Figure 2.5 plots Nu(z) over the cell height for the three simulations described in
Table 2.1. In case of the coarse grid (simulation No. 1), spike-like jumps in both of
the thermal boundary layers and large-amplitude oscillations in the bulk are visible,
which result in a higher value of o compared to the other two cases. Eventhough
it satisfies the Grotzbach criterion, the grid planes in the thermal boundary layer
are not sufficient to resolve the gradients. In case of the medium and fine grids,
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Figure 2.5: Variation of the plane averaged Nusselt number with respect to the
height of the cell for three different grid spacings as mentioned in Table 2.1.

simulation No. 2 and 3 respectively, for which the total grid points are increased
by an order of magnitude compared to the coarse grid, the Nu(z) profiles are
smoother with small standard deviation in the global heat transfer Nu. There
is not much improvement from medium to fine grids albeit almost doubling the
number of boundary layer grid planes and a denser spacing in the bulk. Therefore,
for this particular Rayleigh number, Ra = 107, we have selected medium grid
for further simulations. However, we have adopted A ~ Ag (see Eqn. (2.9)) for
simulations with higher Rayleigh numbers (Ra > 107) and for larger aspect ratios
(I' >> 1) with a minimum 14 grid planes in the thermal boundary layer. The
impact of the resolution on Nu was also discussed recently by Stevens et al. (2009).

The smallest mean scale in a turbulent flow is the Kolmogorov dissipation length,

which is defined as
L3/4

= T (2.22)

where (€) is the mean of the energy dissipation rate (Pope 2000), which is given by

v aul 8’&]' 2
(@) = 3 (aa:j + axi) . (2.23)

The resolution criteria based on nx works well in homogeneous isotropic turbulence,
but has to be modified for the inhomogeneous situation. As we will see in chapter 4
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Figure 2.6: Ratio of the maximum geometric mean grid spacing A(z) and the
Kolmogorov scale nx(z) (see Eqn. (2.24)) for three different Rayleigh numbers in
a cell with aspect ratio I' = 1. The horizontal dotted line indicates the global
Grotzbach resolution criterion A /ng < .

that the mean dissipation rate is strongly height-dependent in our investigations,
we define a height-dependent Kolmogorov scale as

w(z) = 2.24
) = o 220

Figure 2.6 displays the ratio A(z)/nk(z) over the cell height for three different
Rayleigh numbers, namely Ra = 107, 10® and 10° for simulations in a cell with
aspect ratio I' = 1. One can observe that the ratio varies close to the upper
and lower plates and levels off in the bulk. Overall, it does not exceed the global
resolution criterion by Grotzbach (1983), A < g as in Equ. (2.9), for the given
Rayleigh numbers.



3 Statistics of the temperature and
its gradients

In this chapter we study the fine-scale statistics of the temperature field in turbulent
Rayleigh-Bénard convection in a cylindrical cell with aspect ratio I' = 1 for a
moderate Rayleigh number range Ra = 107 — 10°. We provide detailed statistics of
the temperature T, its fluctuations € and the vertical derivative 0,0 as well as the
skewness and flatness for different quantities. We also compare our results with the
passive scalar case.

3.1 Mean temperature and temperature fluctuations

In Rayleigh-Bénard convection, coherent thermal elements continuously detach
from the thermal boundary layers and tend to rise from a hotter to a colder re-
gion, and fall from a colder to a hotter region due to the action of buoyancy force
before they disappear in the bulk as their temperature matches with the surround-
ing ones. Figure 3.1 shows such thermal plume-activity in a cell with aspect ratio
I = 1 for the simulation at Ra = 10%. In the top panel, 3D isosurfaces denote the
dimensionless temperature, where the red color (hot plumes) corresponds to isolevel
0.7 and the blue color (cold plumes) corresponds to isolevel 0.3. A 2D temperature
isosurface in rz-plane through ¢ = 0 — 7 line is shown in the bottom panel. We
wish to study now which impact these coherent structures have on the statistics of
temperature field. We also see in the figure a thin hot and cold layer at the bottom
and top plates, respectively. This is the thermal boundary layer and its thickness

is defined as 1

" 2Nu’
Since Pr = 0.7 in our studies, the associated velocity boundary layer has about
the same thickness as 7. Plumes can be considered as fragments of the thermal
boundary layer, which detach randomly from both plates.

or (3.1)

The temperature field is decomposed into a mean profile (T') , , and fluctuations ¢
as

T(x,t) = (T)as(z) + 0(x,t). (3.2)
The symbol (.) A, denotes an averaging over the horizontal plane and an ensemble
of statistically independent snapshots. Sometimes, we omit the subscript ¢ in such

25
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Figure 3.1: Instantaneous temperature isosurface plots show the rising and falling
plumes in a cylindrical cell with aspect ratio I' = 1 for the simulation at Ra = 105.
In the top panel, the red color (hot plumes) corresponds to isolevel 0.7 and the
blue color (cold plumes) corresponds to isolevel 0.3. In the bottom panel, a 2D
temperature isosurface in rz-plane along ¢ = 0 — 7 line is shown.

averaging for the simplification. We plot the mean temperature profiles for three
different cases for the simulation at Ra = 10® in the cell with aspect ratio I' = 1
in Figure 3.2. The standard plane-averaged mean profile (T') 4(z) is compared with
two other profiles, which are taken at two fixed radial positions— close to the axis
(r ~ 2A,) and close to the sidewall (r ~ R) — and averaged azimuthally. It can be
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Figure 3.2: Mean temperature profiles at Ra = 108, I' = 1. The standard profile
(T)a(z) is compared with two other profiles, which are calculated at fixed radial
positions and averaged azimuthally. One is taken at the sidewall (r ~ R), the other
is close to the axis of the cell (r &~ 2A,). All mean profiles vary from 0 to 1 along
the horizontal axis but only interval [0.4, 0.6] is shown.

Ra Nu Re Ng x N x N, Ag A or or t/ty
1x107 16.73 682 193 x 97 x 128  0.0236 0.0104 0.0300 0.0253 151
5x 107 25.86 1444 257 x 129 x 160 0.0139 0.0080 0.0193 0.0162 151
1x 108 31.67 2036 271 x 151 x200 0.0111 0.0069 0.0158 0.0138 151
5x 108 52.43 4530 301 x 201 x 256 0.0065 0.0058 0.0095 0.0084 151
1x10° 65.00 6255 361 x 181 x 310 0.0053 0.0051 0.0077 0.0065 82

Table 3.1: List of parameters for different simulations. The Nusselt number is

calculated as in Eqn. (2.20). The Reynolds number Re is based on the rms velocity
as in Eqns. (3.3)-(3.4) and follows Re = 0.33Ra®*™. Crid spacings Ag and A
are given by the Grotzbach criterion, Eqn. (2.9), and Eqn. (2.10), respectively. dr
is determined as H/(2Nu) and b7 is estimated from the variance of temperature
fluctuations profiles (#%) , (z) (Figure 3.3). The convective time unit is t. = Cy t/ty,
with Cy = 0.17 — 0.19 from Figure 2.4. We have improved the statistics for some
simulations for the aspect ratio dependence analysis (see Table 5.1 in chapter 5).

seen that the slopes of the temperature profiles vary significantly. While the profile
(T') 4(2) has almost zero slope at z = 0.5, a destabilizing slope, d(T)(z)/dz < 0,
is observed close to the sidewall. Close to the center, the situation is reversed,
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Figure 3.3: Mean square fluctuations (6?) 4 as a function of z/H for three Rayleigh
numbers— Ra = 107,10% and 10°- for aspect ratio I' = 1. The inset magnifies
the thermal boundary layer. The solid horizontal lines in the inset correspond to
or = H/(2Nu) and the dotted lines for 47, the distance at which the maximum of
(6?) 4 intersect the z axis.

where we observe a stabilizing slope, d(T"),(z)/dz > 0. Our finding agrees with
the recent experiment by Brown & Ahlers (2007) and confirms that the assump-
tion of the temperature drop AT across the thermal boundary layer is rather a
simplification, which, however, works well for many considerations. The presence
of a non-vanishing local mean temperature gradient can have an impact on the
statistics of the small-scale temperature fluctuations, similar to the passive scalar
case. This point will be discussed in more detail in section 3.2. The thickness of
the thermal boundary layer, d, can be estimated either by oy = H/(2Nu) or from
the maximum value of the variance of temperature fluctuations, (%) ,, profile. We
denote the later definition as d7. Both definitions differ by a small magnitude as
can be seen in Table 3.1. The grid planes in the thermal boundary layer for various
simulations are listed there as well. We plot (6%) , as a function of height of the cell
in Figure 3.3 for three different Rayleigh numbers and a fixed aspect ratio I' = 1.
In the inset of this Figure, deviations between 07 and 07 are highlighted.
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Figure 3.4: Log-log plot of Re as a function of Ra for five simulations in Table 3.1.
The DNS results agree with the power law Re = 0.33Ra’47.

The Reynolds number Re can be estimated as

UTmSH
Re = . (3.3)

where the rms velocity U,.,s is given by

Upms = \/<u§ +u? + u§>v’t : (3.4)

Here (.),, represents an averaging over the whole volume and an ensemble of statisti-
cally indépendent turbulent fields. Figure 3.4 displays Re as a function of Ra for the
data set provided in Table 3.1 in logarithmic scale. A power law Re = 0.33Ra"*™
is obtained for the DNS data set, which is roughly in agreement with Brown et al.
(2007) and van Reeuwijk et al. (2008).

3.2 Higher-order temperature statistics

Figure 3.5 shows the probability density functions (PDFs) of the dimensionless tem-
perature 1" at different heights from the bottom plate as a function of the Rayleigh
number. The findings are in agreement with Siggia (1994), Kerr (1996) and He &
Tong (2009). As expected, the PDF's in Figure 3.5a become increasingly symmetric
toward the center of the convection cell. This height-dependent asymmetry can be
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measured alternatively by the skewness of temperature fluctuations, Sy, which is
given by
(6°) 4

)5

The graphs of Sp(z) are shown in Figure 3.6a. A small skewness around op = 1

So(z) = (3.5)

0.‘6 018 . .
(T-T )/AT (T-T /AT

Figure 3.5: Probability density functions (PDF) of the dimensionless temperature
T. (a) All data points are taken for Ra = 10° and for the whole plane at height
z. Heights are z = 0.5 (o), z = dr (0), 2 = 207 (%), z = 40r (A) and z = 0.5H
(4+). (b) Data points are taken at the center plane z = 0.5 for different Rayleigh
numbers: Ra = 107 (o), Ra = 10® () and Ra = 10° (x).

z/H

Figure 3.6: Height dependence of the skewness (a) and flatness (b) of the temper-
ature fluctuations. Data points are given for three Rayleigh numbers as shown in
the legend. The symbols in the skewness curve of Ra = 10° indicate the distances
from the wall for which the PDFs in Figure 3.5a are plotted.
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Figure 3.7: The PDFs the temperature fluctuations, 6, in the center plane (z =
0.5H) for different Rayleigh numbers as shown in the legend. The simulations are
conducted in a cell with aspect ratio I' = 1. Each PDF is normalized with the

corresponding rms value calculated over the horizontal plane area, A = wR?, at
z=0.0H.

implies that rising and falling plumes are present at the edge of the bottom and
top thermal boundary layers. Simultaneously, the colder and hotter pockets of
temperature are generated in the vicinity of the thermal plumes which detach from
the thermal boundary layer. This is a consequence of the incompressibility of
the fluid as investigated more detailed in the Lagrangian frame of reference by
Schumacher (2008, 2009). Up to a height of z/H =~ 0.1, the skewness increases
monotonically before it declines to zero at the cell center plane. The plots show
that the maximum value of skewness increases with increasing Rayleigh number.
A large positive value of the skewness close to the bottom plate means that rising
plumes with 7'(z) > (T") 4(z) are dominant in this region of the convection cell. The
distribution of the temperature in the center plane (z = 0.5) of the cell as a function
of the Rayleigh number is shown in Figure 3.5b. The profiles are clearly non-
Gaussian for all three Rayleigh numbers. The support of the PDF becomes narrower
with increasing Ra. The PDF for the fluctuations # has similar shape in the center
plane (Figure 3.7). We find that the PDFs for the two larger Rayleigh numbers
almost collapse when 6 is normalized by the corresponding root-mean-square value,
Oms. The PDF for Ra = 107 has slightly smaller tails and all distributions are
sub-Gaussian.



32 3 Statistics of the temperature and its gradients

The magnitude of the deviations from Gaussianity can be measured by the flatness
which is given by
(0") a

(%)%
Figure 3.6b shows the vertical profiles of the flatness for three Rayleigh numbers.
The non-Gaussianity, i.e., a flatness larger than 3, is present for all three cases.
This is in agreement with other studies such as by Heslot et al. (1987), Castaing et
al. (1989) and Ching (1991). It can also be observed that the flatness values almost
match each other in the bulk for the two larger Rayleigh numbers. This could
indicate that the transition to the so-called hard turbulence regime of convection
has been completed. Dimotakis (2005) discussed a mixing transition for passive
scalars at Re ~ 10%. Above this threshold, a weaker Re dependence was predicted.
A similar behavior could be the reason for our observation (our Re = 6255 for
Ra = 10°, see Table 3.1). All flatness profiles have a minimum right above the
thermal boundary layer. The slight asymmetry of the profile at Ra = 10? is due
to limitations in the statistical analysis. Even a longer time advancement and 140
statistically independent snapshots were not sufficient to obtain a symmetric profile
since the flatness analysis is done plane by plane.

Fy(z) = (3.6)
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Figure 3.8: Vertical profiles of the probability of u.0 > 0 for three different Rayleigh
numbers.

As already seen, the non-Gaussian PDF of the total temperature and the tempera-
ture fluctuations in the cell center is a robust feature in thermal convection. Similar
behavior was observed in experiments by Heslot et al. (1987) and Castaing et al.



3.3 Vertical derivative of temperature fluctuations 33

(1989). Almost an exponential shape was emphasized by Yakhot (1989) on the basis
of a hierarchy of moment equations for the temperature fluctuations. These ideas
have been extended by Ching (1993) later. Yakhot suggested that this form prevails
even for moderate Rayleigh numbers (which implies moderate Reynolds numbers),
whenever regions with u.,6 > 0 are dominant. A correlation between the vertical
velocity and temperature fluctuation is nothing else but a fingerprint of a local blob
of heat transferred through the cell. Inspection of our data yields indeed that larger
regions with u,f > 0 are present everywhere in the cell, even in the center where
coherent plumes are absent. This is shown in Figure 3.8 where we plot the height
dependence of the probability P(u,f > 0) for three different Rayleigh numbers. It
can be clearly seen that the probability decreases with increasing Rayleigh number,
but remains significantly larger than 0.5 for all three cases. The outcome is another
manifestation of the net transfer of heat through the cell.

The passive scalar turns out to be more sensitive to a particular driving and the
Reynolds number of the advecting flow. When a mean scalar gradient is absent, the
statistics is close to Gaussian or sub-Gaussian as observed by Mydlarski & Warhaft
(1998) and Watanabe & Gotoh (2004). In case of a non-vanishing mean scalar gradi-
ent, based on a simple one-dimensional random advection model, Pumir et al. (1991)
suggested that an exponential distribution is a generic feature in passive scalar con-
vection. This was confirmed experimentally for sufficiently high Reynolds numbers
(Gollub et al. 1991; Jayesh & Warhaft 1991, 1992). However, sub-Gaussian distri-
butions of # have also been found for the passive scalar turbulence by Overholt &
Pope (1996), Ferchichi & Tavoularis (2002) and Schumacher & Sreenivasan (2005).
Experiments by Gylfason & Warhaft (2004) observed that the statistics depends on
a particular driving of the turbulent flow. While an active grid caused sub-Gaussian
fluctuations, a fine static grid caused super-Gaussian passive scalar distributions.
Furthermore, the deviations from Gaussian distributions decreased with increasing
downstream distance in their experiments. The two findings imply that the ratio
of the integral scales to the system scale is important. This point needs to be
addressed more detailed in the future.

3.3 Vertical derivative of temperature fluctuations

An important question in turbulent convection is whether the fluctuations of the
temperature field in the bulk can be considered as being locally isotropic. In order
to shed light on this point we adopt an approach that has been used successfully
for passive scalars with a mean scalar gradient (Warhaft 2000). As we have seen
in Figure 3.2, the local mean temperature gradient can deviate from zero while
the overall profile sums up to a mean temperature gradient which is almost zero.
Following Brown & Ahlers (2007), we define a ratio = that relates a difference of
the azimuthally averaged mean temperatures at fixed radial distance rq to the total
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temperature drop. It is given by

(ro) = (T'(ro))s(z = 3H/4) — (T'(ro))s(2 = H/4)
AT

Close to the sidewall, we get Z(R) = —0.12, —0.07 and —0.04 for Ra = 107, 10®
and Ra = 10°, respectively. This slope is mainly due to the rising and falling
plumes along the large-scale circulation. Close to the axis of the cell, it follows
Z(2A,) = 0.015, 0.009 and 0.006 for Ra = 107, 10® and 10%, respectively. Although
decreasing with increasing Rayleigh number for both cases, their magnitude is not
negligible. We observe that local mean temperature gradients are present. This
supports the idea to conduct an analysis similar to that in passive scalar turbu-
lence. The statistics of the vertical derivative of the temperature, 9,7, is shown in

[1]

. (3.7)

PDF

Figure 3.9: Probability density functions (PDF) of vertical derivative of the tem-
perature, 8T/ 0z, taken in the same planes as in Figure 3.5a. The data set is for
Ra = 10° and T' = 1. Heights are z = 0.567 (o), z = 7 (0), z = 27 (*), 2 = 407
(A) and z = 0.5H (+).

Figure 3.9. The PDFs are taken at the same heights as those for the temperature
in Figure 3.5a. A sharp decrease of the PDF at 0.507 is present in the vicinity of
0,T = 0, simply because positive vertical derivatives are very unprobable close to
the bottom plate. With increasing distance from the plate, the support of the PDF
decreases. A negative skewness of all distributions can be observed which implies
preferential derivatives along the mean negative temperature gradient. Recall also
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that a turbulent field is thought to be perfectly locally isotropic when all odd-order
derivative moments are exactly zero. The derivative skewness with respect to the
temperature fluctuations 6 is defined as

So.0(2) = (3.8)

It measures the deviations from the local isotropy at smaller scales in convective
turbulence. Figure 3.10 shows that such deviations are indeed present in different
regions of the cylindrical domain. With increasing Rayleigh number and thus in-
creasing Reynolds number, the derivative skewness Sy_g(z) decreases in magnitude
in the bulk (see Figure 3.10a). Following the original idea of the return to local
isotropy in a simple shear flow (Lumley 1967) and its adoption to the passive scalar
case (Warhaft 2000), a return would require a rather rapid decay of the skewness
with respect to the Taylor microscale Reynolds number R, i.e.

|So.0| ~ Ry (3.9)
This was not found in passive scalar case for Schmidt numbers around unity

1
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Figure 3.10: Skewness of the vertical temperature derivative as a function of the
Rayleigh number Ra. (a) Data analysis is performed in the bulk of the cell for points
inV ={r0,2/04H < z < 0.6H}. Data points are displayed in double-logarithmic
axes. In addition, the decay laws of the skewness with respect to Ra are shown. The
decay is in line with a return to isotropy (dashed lines). (b) Analysis is conducted
in the thermal boundary layer for points in V' = {r,0,2|0 < z < é7}. Points are
plotted in logarithmic-linear diagram.

(Warhaft 2000). Given the scaling dependence of the Reynolds number with re-
spect to the Rayleigh number, which will be discussed in more detail in section 4.3,
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and the relation Re ~ R%, a return to local isotropy in convection would require a

decay law which is given by
|So.0] ~ Ra™*/%, (3.10)

for a fixed Pr. Here ( is the scaling exponent for the relation Re ~ Ra®, which
was found to vary between ¢ = 0.43 and 0.49 in experiments (Brown et al. 2007).
Figure 3.10a indicates that our data follow such a decay law for the larger Rayleigh
numbers. This is in line with the observation that the local mean gradients in the
bulk decrease in magnitude with increasing Ra. The mean temperature gradient
still causes ramps and cliffs of the temperature and thus a non-vanishing derivative
skewness, but its impact seems to be weaker compared to a passive scalar which
lacks a return to isotropy trend. A larger range of Rayleigh numbers and the
analysis of the hyperskewness would allow to draw a firm conclusion.

The opposite trend with respect to the Rayleigh number can be observed in the
thermal boundary layer where the skewness Sp_g(z) is increasing in magnitude with
growing Rayleigh numbers (see Figure 3.10b). Figure 3.9 shows that the PDFs
of 8.T have strong negative skewness, in particular, in the boundary layer. This
observation is due to the fact that the heat transfer is mostly contributed by the
second term of Eqn. (1.10) and that the fluctuations about the mean are conse-
quently dominated by the conductive contributions j, = —k0.6. We come back to
this point in the next chapter when discussing the height dependence of thermal
dissipation rate in chapter 4.



4 Thermal dissipation rate

Thermal dissipation rate in convective turbulence plays an important role in under-
standing the transport of heat through the convection cell since its volume-averaged
quantity is directly correlated to the global heat transfer (Eqn. 1.21). The local tem-
perature dissipation field, er(x,t), provides vital information in understanding the
dynamics and morphology of the coherent thermal elements — i.e., plumes, which
can be observed in Figure 4.1. Measurement of e is very challenging from the
experimental perspective since it involves simultaneous measurement of the tem-
perature at different spatial points. Moreover, it is almost impossible to determine
the global quantity — the volume-averaged temperature dissipation rate (er),, — in
experiments since the spatial resolution is constrained. It is also difficult to resolve
the thermal boundary layer, dr, due to the dimension of the temperature probe,
which could be larger then d7. However, the DNS data base provides a complete
picture of any field variable in turbulent convection.

In this chapter, we analyze the vertical profiles of the thermal dissipation rate and
its probability distributions in different sub-volumes, namely the bulk and bound-
ary layer, of the convection cell. Motivated by the work of Grossmann & Lohse
(2004), we propose new definitions of the plume and background dominated ther-
mal dissipation rate fractions, which are conditioned with respect to the quantity
u.0. We present detailed scaling relations of ey with respect to Ra, based on our
new definitions as well as the bulk and boundary layer contributions and make a
comparative study. Our aim is to understand the discrepancies between the theo-
ries (e.g. Grossmann & Lohse 2000, 2004) and experiments (e.g. He et al. 2007;
He & Tong 2009).

4.1 Instantaneous field of er(x,t)

Figure 4.1 presents the isosurface plots of an instantaneous snapshot of 7' (Fig-
ure 4.1a) and er (Figure 4.1b) for the simulation at Ra = 10° in the convection
cell with aspect ratio I' = 1. We recognize the ridges in the temperature isosurface
which correspond to the plumes that detach from the bottom and top boundary
layers. Associated with the rising and falling plumes are larger amplitudes in the
thermal dissipation rate field which can be observed in Figure 4.1b, similar to find-
ings by Kerr (1996) and Shishkina & Wagner (2007). The pattern of ridges (or

37
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(a) Temperature field with isolevels 0.7 (red) and 0.3 (blue).

(b) Thermal dissipation rate field with isolevel 10 X (er)y .

Figure 4.1: Instantaneous snapshot of the temperature and the thermal dissipation
rate in turbulent convection. The simulation is conducted for Ra = 10° in the
aspect ratio I' =1 cell.
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(C) T(T, d)v ZOvtO) at zo = H/2 (d) fT(ﬁ d)? ZO7t0) at zop = H/2

Figure 4.2: Contour plots of the total temperature and the thermal dissipation rate
for the simulation at Ra = 10° and I' = 3. Two-dimensional slices of instantaneous
fields are taken: (a,b) at zp = dr and (c,d) at zyp = H/2. Contours of er in (b,d)
are plotted in logy( scale.

stems) in Figure 4.1a is recaptured almost one-to-one in Figure 4.1b. The plot
also indicates that the local maxima of the thermal dissipation rate field er are
dominant close to the both plates and not in the cell center. Two dimensional
contour plots of instantaneous temperature and thermal dissipation rate field are
shown in Figure 4.2. The 2D-slices are taken at different heights — close to the
boundary layer, zo = Jr, and at the center plane, zp = H/2 — in a cylindrical
cell with aspect ratio I' = 3 and for a simulation at Rayleigh number Ra = 10°.
While the temperature contours in Figure 4.2a are closely related to the permanent
and random detachment of thermal plumes, the contours in Figure 4.2¢ resemble to
those of the passive scalar which is stirred and advected in homogeneous turbulence
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(Watanabe & Gotoh 2004). The corresponding contours of the thermal dissipation
field in Figures 4.2b and 4.2d illustrate clearly the strong vertical inhomogeneity in
the convection cell. The inhomogeneity is also reflected in the statistics of ep(x,t),
which is explained in section 4.2.

4.2 Vertical profiles of ¢

In order to quantify the vertical inhomogeneity of er(x,t) more precisely, we de-
compose the thermal dissipation rate field into contributions which result from the
mean temperature profile and the temperature fluctuations. With Eqn. (1.22) and
the decomposition in Eqn. (3.2), it follows

B ATYA\> (T4 00 )
er(x,t) = ( P ) + 2 5 55 (Vo) | , (4.1)
(T 4 00
= e (2) + 2k 9 B + eg(x, t) (4.2)
The mixed term vanishes after averaging over planes at fixed height z and thus
(er)a(z) = ey (2) + (e0)a(2) - (4.3)

Figure 4.3 plots the vertical profiles of both contributions to the total thermal
dissipation rate for Rayleigh numbers Ra = 107 (Figures 4.3a,c) and 10° (Fig-
ures 4.3b,d). All values on the horizontal axis are given in units of the correspond-
ing ensemble mean, (er),, = Nu/v RaPr (see also Eqn. (1.21)). The contribution
of the mean temperature profile, €/7), is dominant in the thermal boundary layer
and decreases rapidly to almost zero toward the cell center (see Figures 4.3a,b).
This mean profile contribution increases with increasing Rayleigh number since the
scale across which the significant temperature variation occurs — i.e., the thermal
boundary layer thickness d7 — becomes smaller. Conversely, the thermal dissipation
rate due to the temperature fluctuations is dominant in the bulk and exceeds the
mean profile contribution by more than 3 orders of magnitude (not shown here).
As displayed in Figures 4.3(c,d) for both Rayleigh numbers, the total dissipation
remains significantly below Nu/v/ RaPr in the bulk.

From the advection-diffusion equation, Eqn. (1.5), we derive a balance equation for
the temperature variance. Multiplication of Eqn. (1.5) with 7" in combination with
the decomposition in Eqn. (3.2), and averaging over the horizontal plane at a fixed
height leads to

()4 . d(T)a\’
Gt =S nwe e ()

We identify the first term on the right-hand side of Eqn. (4.4) as the production
term, Pr(z), the second as the thermal dissipation due to temperature fluctuations,
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Figure 4.3: Vertical profiles of the two contributions to the total thermal dissipation
rate which follow from the mean temperature and the temperature fluctuations (see
Eqn. (4.2)). Data points are for Rayleigh number Ra = 107 (a,c) and Ra = 10°
(b,d). The terms on the horizontal axis are normalized by the ensemble average
of the total dissipation rate (er)y = Nu/v RaPr (see Eqn. (1.21)). In (c,d), the
vertical profiles of the total thermal dissipation rate are replotted in order to demon-
strate that they decrease significantly below the global quantity (er)y.

(€g) a(2), and the third one as the thermal dissipation due to the mean temperature
profile, /7y (2). The remaining flux terms are not shown here. Both dissipation rates
sum up to the total dissipation (e7) 4(z) (see Eqn. 4.3). Figure 4.4a plots the vertical
profiles of the four above mentioned terms. The term €/ (z) dominates inside the
boundary layer, while the contribution due to fluctuations, (ep)4(z), is dominant in
the bulk as shown in Figure 4.3 also. It can be seen that the production is maximum
close to 67 = 1. The ratio Pr(z)/(er)a(z) > 1 for ér < z < 507 (Figure 4.4b),
which means that in this region a significant fraction of the temperature variance
is injected into the system. This production dominated region above the boundary
layer can be regarded as the plume mixing zone. Now, consider the mixing zone
length as [, (Figure 4.4b). We obtain a power law relation /,, = 0.5 x Ra=%1
for five Rayleigh numbers, namely Ra={1 x 107, 5 x 107, 1 x 10%, 5 x 10® and
1 x 10} with a fixed aspect ratio I' = 1. It shows that [,, here is of the same order
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Figure 4.4: Height-dependent profiles of the turbulent production of temperature
variance, Pr(z), contributions to the total thermal dissipation rate, (er)a(z), due
to temperature fluctuations, (eg) (%), and the mean temperature profile, €1 (2) are
plotted in (a) (see Eqn. (4.4)). The height is given in units of the thermal boundary
layer thickness dr = H/(2Nwu). The terms on the horizontal axis are normalized
with respect to the global quantity (er)y = Nu/v RaPr (see Eqn. (1.21)). In
plot (b), the ratio of the production to the total thermal dissipation rate is shown.
The plume mixing zone length [, is defined as the thickness above d, for which
Pr/{er)4 > 1. The analysis is conducted for I' = 1 and Ra = 10°.

of magnitude as the one reported by Procaccia et al. (1991) (I,, = 2 x Ra~%113)
and Zhou & Xia (2002) (I,, ~ Ra=%'3). In the former case, I,, is estimated from
the scaling argument and, therefore, the prefactor is different from ours. In the
later case, [, is calculated from the height-dependent profiles of the temperature
derivative skewness for the experiments conducted in a cylindrical cell filled with
water.

4.3 Scaling relations

From Eqn. (1.21) and the scaling relation Nu ~ Ra”, the Rayleigh-number depen-
dence of the ensemble average (er)y yields

(er)y ~ Ra’ 2 = Ra" (4.5)

which gives an exponent v = —0.217 in our simulations as shown in Figure 4.5 for
the data set Ra={5 x 10°, 107, 5 x 107, 10%, 5 x 10%, 10°} and T" = 1.

Grossmann & Lohse (2000) decomposed the mean dissipation rate into the bound-
ary layer contribution, (er)pr, and the bulk contribution, (er)pgux, as

(er) = (er)BL + (€T) Bulk , (4.6)
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Figure 4.5: Volume-averaged thermal dissipation rate, (er),,, as a function of Ra
for the data set Ra={5 x 10°, 107, 5 x 107, 10%, 5 x 10%, 10°} and " = 1. The DNS
data points follow the scaling (er), = 0.206 Ra~"2'".

with the scaling relations

(er)pr ~ Ra”
(er)pur ~ Ra‘. (4.7)

The exponent ( follows from a scaling of the Reynolds number with respect to the
Rayleigh number, Re ~ Ra‘, and is found between 0.43 and 0.49 (Ahlers et al.
2009). The boundary layer contribution in Eqn. (4.7) follows from the assumption
of a power law Nu ~ Ra® for the turbulent heat transfer. The exponent 3 is
found between 2/7 and 1/3 (Ahlers et al. 2009). In our studies, we exclude the
dependence on the Prandtl number and consider only a fixed value of Pr = 0.7.

Following the GL theory (Grossmann & Lohse 2000), we define different subvolumes,
bulk and boundary layer (BL) regions, in the cylindrical cell. The corresponding
mean thermal dissipation rates are given by

T 2
(er) Buk = /<&< (g ) > for z; = (r,y,0.4 < 2<0.6). (4.8)
L Bulk

(er)BL = /<&< (gi:)Z >BL for x; = (z,y,2 < or). (4.9)

In line with the definitions of averaging in section 2.5, we combine again an average
over many realizations of turbulent fields and a volume average which is taken now
over the subvolumes, BL and Bulk, as defined in Eqns. (4.8) and (4.9), respectively.
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4.3.1 Scaling in the boundary layer

From the GL theory (cf. Eqn. (2.15) in Grossmann & Lohse 2000), one can estimate
the thermal dissipation in the thermal boundary layer by assuming that it is due
to the mean temperature drop across 6 only and that (er)pr, = €y, which gives

2 2
(er)BL = K (?TT) % ~ K (%) Nu ~ Ra”. (4.10)
T

The factor 07/ H stands for the fraction of the total volume which is occupied by
the boundary layer. The last relation in Eqn. (4.10) holds if x is a constant. For
Rayleigh numbers between 5 x 107 and 10, our DNS data set gives a scaling with
respect to Rayleigh number as

{er)pr, &~ 0.016 x Ra®'. (4.11)

This exponent is significantly smaller than those predicted by the scaling theories,
B =2/7 or 1/3 and even a larger exponent of 0.63 was found in the experiments
by He et al. (2007) and He & Tong (2009). The discrepancies between our findings
and He et al. results could be due to the fact that their data points are taken
at several points across a vertical line inside the thermal boundary layer, while we
have averaged the thermal dissipation rate over the volume fraction as in Eqn. (4.9).
Their experiments were conducted for different values of Pr than ours. Moreover,
in experiments, it is not possible to achieve the same level of spatial resolution
in the boundary layer as in DNS. The estimation given in Eqn. (4.10) does not
consider all of the boundary layer dynamics, e.g. significant contribution of (&) 5y,
as seen in Figure 4.3. In addition, we have found that (ey); has almost the same
scaling with Rayleigh number as (e7) gy, in our DNS simulations.

4.3.2 Scaling in the bulk

In the bulk of the cylindrical cell, the thermal dissipation rate is due to temper-
ature fluctuations only (cf. Figure 4.3), which can be estimated with the help of
Eqn. (2.12) in Grossmann & Lohse (2000) as

U(AT)?  (AT)?

(€1) Butr. =~ (€0) Butk ~ 7 RePr, (4.12)

It requires the knowledge of Re(Ra, Pr) in order to get the full insight. The power
law Re ~ RaS gives a range of exponents between ¢ = 0.43 and 0.49 (Brown et
al. 2007; Ahlers et al. 2009). This variation in ¢ is due to a particular choice of
the definition of Reynolds number , e.g. Re based on the characteristic velocity. It
follows thus from Eqn. (4.12) that

(er) puk ~ Ra‘ (4.13)
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for a fixed Prandtl number with an exponent ¢ > 0. However, our DNS simulations
for the data set Ra={5 x 105, 107, 5 x 107, 108, 5 x 10%, 10°} and ' = 1 give a
negative exponent for ( as

(e7) Buk = 0.32 x Ra™"3% (4.14)

in the bulk sub-volume, which comes close to the experimental findings by He et
al. (2007) and He & Tong (2009) and follows also the observed trend of Verzicco &
Camussi (2003). This trend (¢ < 0) does not alter even if the bulk volume fraction
is increased in the analysis. For example, an exponent ¢ = —0.34 in Eqn. (4.14)
was obtained for 0.2 < z < 0.8. We conclude that the scaling exponent, which
is rather robust with respect to changes of the volume fraction, has the opposite
sign compared to the one reported by Grossmann & Lohse (2000). The reason for
this discrepancy could be that the dimensionally correct ansatz U(AT)?/H may
not be appropriate for the thermal dissipation rate. Similar to fluid turbulence, the
Rayleigh numbers and, therefore, the Reynolds numbers are still too small to reach
the regime in which the thermal dissipation rate given in units of U(AT)?/H is a
constant. This is known as the dissipation anomaly (Donzis et al. 2005). Both
(e7) Butk) (Urms T2 s/ H) and {e7) pun/ (Upms AT?/H) still decrease with increasing
Ra for our data set, with U, is defined in Eqn. (3.4).

4.3.3 Scaling based on plume and background dominated mean
dissipation rate

Later, Grossmann & Lohse (2004) refined their concept based on differences in the
Rayleigh-number-dependence of the mean thermal dissipation, which were reported
in DNS studies by Verzicco & Camussi (2003). The decomposition of the mean
thermal dissipation rate, (er), into a plume-dominated part, (er),;, and a turbulent
background contribution, (er),,, gives the following power laws

(er)pr ~ Ra‘/?
(er)py ~ Ra‘. (4.15)

In both cases, Equs. (4.7) and (4.15), the plume (or boundary layer) and background
(or bulk) fractions are increasing functions with respect to Rayleigh number. Moti-
vated by this approach and the discrepancies in the original GL theory (Grossmann
& Lohse 2000), we propose the following definitions of the plume-dominated sub-
volume, V};, and the background contribution sub-volume, V4, in the convection
cell as

Vai={xeV : ub>0}. (4.16)

Vig=V\Vuy={x eV : ub<0}. (4.17)

The corresponding mean thermal dissipation rates in those sub-volumes, as given
by Eqns. (4.16) and (4.17), are (er), and (er)s,, respectively. This means that the
dissipation rates are conditioned with respect to the quantity wu.6.
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Figure 4.6: 2D contour plots of instantaneous snapshots for Ra = 10 and I' = 1.
Contour (a) is the total temperature field with red color represents the hot plumes
and blue color the cold plumes. Contour (b) plots u.f > 0, which separates plumes
(hot or cold) according to the intensity of colors as highlighted by red and blue.

Figure 4.7: Plumes and background contributions to the total thermal dissipation
rate (er)a. The simulation is conducted for Ra = 10? in a cell with aspect ratio
I' = 1. Averages are taken in planes at fixed height 2z for a sample of statistically
independent snapshots. The data on the horizontal axis is normalized with respect
to the global quantity (e7)y = Nu/v RaPr.
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Figure 4.8: (a) plumes and (b) background contributions to the mean thermal
dissipation rate as in Eqns. (4.16)-(4.17) are plotted as a function of the Rayleigh
number Ra. Two series of simulations are compared, one for the aspect ratio I' = 1
and the other for I' = 3.

The motivation behind the choice of u,0 as a splitting criterion can be explained
from Figure 4.6. A plume element is a combination of the vertical upward (or
downward) velocity u,, and positive (or negative) temperature fluctuations ¢, with
the product wu.0 is always positive. Based on this splitting criterion, the plume
elements in the total temperature field in Figure 4.6a are replicated in u.0 > 0
contours in Figure 4.6b. This suggests that our separation criterion is justified.
Figure 4.7 displays the vertical profiles of (er),; and (er),, as well as the sum of
both, (er). The plume contribution is about 75% of the total thermal dissipation
rate in the thermal boundary layer. The profiles are similar to those plotted in
Figure 4.3 for a decomposition shown in Eqn. (4.3). Figure 4.8 plots the dependence
of the mean values on the Rayleigh number. We compare two series of simulations
at different aspect ratios, I' = 1 and 3. We observe slight differences in the means
with respect to I'. The power law fits remain, however, nearly unchanged. The
power law fits for our DNS data set for the Rayleigh number range, Ra = 107 — 107,
and [' =1 are

(er)p = 0.15 x Ra™%** (4.18)
(er)py = 0.04 x Ra™ "2 (4.19)

which indicate that the exponents are negative and almost the same in magnitude.
However, the prefactors differ. Shishkina & Wagner (2008) and Schumacher (2008,
2009) observed that the rising of thermal plumes is connected to strong vorticity,
in particular in the detachment zone. Strong gradients of the convecting fluid
thus result in strong temperature gradients in the vicinity of plumes. Due to the
incompressibility of the working fluid, strong updrafts will cause downdrafts next
to it. To summarize, the refined analysis does not change our former findings
qualitatively.
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Ra=10%, m=3.67, a=0.44
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Figure 4.9: Tails of the PDFs of the thermal dissipation rates due to temperature
fluctuations, €y, in the bulk. Planes with z € [4dr, H — 407| are included. The tails
are fitted by stretched exponentials as given by Eqn. (4.20) with the fit coefficients
and exponents are indicated in the figure. The inset magnifies the PDFs for the
smallest dissipation rate amplitudes in log-log scale. The data points are normalized
with respect to the rms value calculated over the whole volume V = 7R?H and a
sequence of statistically independent snapshots.

4.4 Stretched exponential behavior in the tails

The mismatch of the Rayleigh number scaling with the predictions by Grossmann
& Lohse (2000) suggests that strong fluctuations of the thermal dissipation were not
taken into account in their scaling, which is indeed not possible for a scaling theory.
We discuss now the statistics of ¢y and show that the extreme events are significant
at least in the boundary layer. Figure 4.9 shows the PDF of the dissipation rate
due to temperature fluctuations €y in the bulk. The analysis is conducted in planes
between z € [467, H—467]. In correspondence with the passive scalar case (Overholt
& Pope 1996; Schumacher & Sreenivasan 2005), we fit a stretched exponential to the
fraction of the PDF which extends from the most probable amplitude (see the inset
of Figure 4.9) to the end of the tail. We define X = ¢/(€p)y and X* = X — X,
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with X, is the abscissa of the most probable (mp) value. Data points are fitted
to

p(X*) = \/%exp (—mX™) . (4.20)

Similar to the passive scalar case, we do observe fatter tails with increasing

Figure 4.10: PDFs of €y at the center plane (z = 0.5H) normalized with respect
to (€9)rms, which is also taken at z = 0.5H for the area A = 7R?. Our DNS data
set for Ra = 10? is compared with the experimental results (FIG. 4) of He et al.
(2007) for Ra = 9.6 x 10® and Pr = 5.4. The statistics are gathered again over a
sequence of statistically independent snapshots. Data points are more scattered in
the far tail compared to Figure 4.9 because here only a single plane is included in
the analysis as opposed to the bulk volume there.

Rayleigh number (and therefore with increasing Reynolds number). This is in line
with an increasing degree of small-scale intermittency of the thermal dissipation
rate field. Overholt & Pope (1996) and Schumacher & Sreenivasan (2005) have
conducted a similar analysis for the passive scalar dissipation rate in a homoge-
neous isotropic turbulent flow. There, a minimal exponent « = 1/3 can be derived
analytically in the limit of a very large Peclét number. The scalar is then advected
in a flow which is white in time (Chertkov et al. 1998; Gamba & Kolokolov 1999).
The advection of a passive scalar in a Navier-Stokes flow resulted in tails that were
sparser, i.e. a > 1/3 (Yeung et al. 2005). Our present analysis indicates that this
threshold is also approached to the hard-turbulence regime of convection.
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Figure 4.11: Tails of the PDFs of ¢ in the bulk (z € [407, H —407]) for three cases,
namely the whole bulk (0 < r < R, middle curve, see also Figure 4.9), the center
zone (R/3 < r < R, bottom curve) and close to the sidewalls (2R/3 < r < R,
top curve). The analysis is conducted for the simulation at Ra = 10? and T' = 1.
The PDF is normalized by the corresponding rms value. The rms value is obtained
for the whole volume, V = 7wR?H, and a sequence of statistically independent
realizations of turbulent fields.

Figure 4.10 replots our data in the center plane for Ra = 10° in units of the rms
value of thermal dissipation (€p),ms in order to compare them with those obtained
by He et al. (2007). A slightly sparser tail in their experiments was observed.
The reason for the difference between both cases might be due to the improved
resolution of the temperature gradient in our simulations, which was not possible
in the experiment, as mentioned before. Moreover, the Prandtl number (Pr =
5.4) was almost an order of magnitude larger in the experiment. An increasing
Prandtl number reduces the thermal boundary layer thickness and might cause less
plume mixing in the bulk. Less pronounced plumes will cause smaller amplitudes
of the thermal dissipation. Such a trend with the Prandtl number would differ
from passive scalar turbulence, where the tails of the PDF of ¢y become fatter
with increasing Prandtl (or Schmidt) number for a given Reynolds number of the
advecting flow (Schumacher & Sreenivasan 2005). There a less diffusive scalar
field generates sharper gradients. It remains open which of those two effects is
more dominant. Further studies are required to understand the dependence of the
temperature gradient statistics on the Prandtl number in thermal convection.
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Figure 4.12: Tails of the PDFs of €y close to the bottom plate (2 € [0,407]) for
different Ra. The data points are normalized with respect to the rms value calcu-
lated over the cell volume V = 7R?H and a sequence of statistically independent
snapshots.

We also investigate how the statistics of the thermal dissipation rate field is affected
by the averaging volume. We have selected two concentric cylinders in the bulk
(z € [467, H — 497]) for this purpose. One is in the center region (0 < r < R/3)
and the other is in the outer region close to the sidewalls (2R/3 < r < R). We
present the PDF's of ¢ in these sub-volumes in Figure 4.11 for the simulation at
Ra = 10% and I' = 1. The tail of the PDF in the sidewall region is more extended
compared to that in the center zone. This implies that the flow in the sidewall region
is more intermittent than in the center. This increasing degree of intermittency
can be attributed to the large-scale circulation (LSC), which is dominant near the
sidewalls and the plumes, which are carried by the mean flow along the LSC. In this
region, a destabilizing mean temperature gradient is detected as explained earlier
in Figure 3.2 (see also Brown & Ahlers 2007). We will discuss the LSC in more
details later in chapter 5.

When repeating the analysis for the part of the volume (z € [0,407]) that has been
excluded before, distributions as shown in Figure 4.12 result. It is observed that
the amplitudes of the dissipation rate increase by an order of magnitude for the
largest Ra compared to those in the bulk (Figure 4.9). The fatter tails for the
boundary layer data are in line with the analysis of the plane averaged vertical
profiles (Figure 4.3). The fluctuations of the thermal dissipation rate increase with
increasing Ra.
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4.5 Deviations from log-normality

The intermittent nature of the thermal dissipation field leads to deviations from
log-normality, as can be seen in Figure 4.13 where the same data set has been stud-
ied as in Figure 4.9. In order to highlight the differences in PDFs; we replot the
data in linear-linear and linear-logarithmic axes in Figure 4.13a and Figure 4.13b,
respectively. It can be seen that neither the core nor both tails of the PDF fit
perfectly with the log-normal form. This is similar to the passive scalar mixing.
Small-amplitude tails are fatter than the log-normal curve while large-amplitude
tails remain sparser (Ferchichi & Tavoularis 2002; Schumacher & Sreenivasan 2005).
The trend of the data with Rayleigh numbers between 107 and 10° suggests a very
slow convergence towards the log-normality. The repetition of the analysis in the
vicinity of the thermal boundary layers for the same data set as in Figure 4.12,
reveals even stronger deviations (see Figure 4.14). For the large-amplitude tail, a
bump is observed. A similar feature has been reported by Kaczorowski & Wagner
(2007, 2009). Our analysis suggests that this particular feature is due to the bound-
ary layer dynamics. The bump in the distribution remains also when the PDF is
analyzed for the whole volume in the cylindrical cell .
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Figure 4.13: Replot of the same data set as for Figure 4.9 in log-normal coordinates.
(i is the mean of In(ep) and o is the corresponding standard deviation. The solid line
indicates a log-normal distribution. (a) Linear-linear plot. (b) Linear-logarithmic
plot of the same data. Rayleigh numbers are given in the legend.
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Figure 4.14: Replot of the same data set as for Figure 4.12 in log-normal coordinates.
Line and symbol styles are the same as in Figure 4.13.
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Figure 4.15: Conditional mean dissipation in the bulk (z € [4dr, H — 467]) as a
function of the Rayleigh number. The rms of # has been taken over the whole
volume, V = 7R?H, and for a sequence of statistically independent snapshots.
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4.5.1 Conditional mean thermal dissipation

Deviations from the Gaussian distributions of the temperature fluctuation are also
manifested in the conditional mean thermal dissipation. It is known that a condi-
tional mean scalar dissipation is constant for a Gaussian scalar field, i.e. indepen-
dent with respect to the scalar amplitude (e.g. Overholt & Pope 1996). The mean
is defined as

> p(eg,g(x, t) — 77Z)>

(loe.t) = v) = [ depe ZE I =, (1.21)
where p(eg, 0) is the joint PDF of the thermal dissipation rate and the temperature
fluctuation. Figure 4.15 displays clearly the V-shape for the conditional mean for
the temperature fluctuations values around 6/6,,,s = 0. This is consistent with
the deviations from Gaussianity, which were observed for the distributions of the
temperature field in Figure 3.5. At larger magnitudes of #, the graphs reach a
maximum before decreasing to zero since the support of the joint PDF and the
temperature PDF is bounded. The V-shape is more pronounced with increasing
Rayleigh number which is due to the higher thermal dissipation amplitudes observ-
able in the flow (see Figure 4.9). Our results agree with the findings of Jayesh &
Warhaft (1992).
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In this chapter we study the aspect ratio dependence of heat transfer with corre-
sponding changes in the large-scale circulation (LSC) patterns in the convection
cell. Since there are not many systematic investigations on the aspect ratio de-
pendence of heat transfer, we intend to explore more details in this regard, in
particular to establish an explicit scaling relation Nu(T", Ra) for a certain range of
parameters. We have selected an aspect ratio range, I' = 0.5 — 12, and a Rayleigh
number range, Ra = 107 — 10°, for this purpose. The simulations are conducted
at a fixed Rayleigh number Ra by varying the aspect ratio I' of the cylindrical
geometry. The Prandtl number, Pr = 0.7, remains constant for all cases. In the
beginning, we discuss the changes in the vertical convective flux and temperature
profiles due to the aspect ratio variation. In section 5.2, we provide the scaling
relation Nu(Ra,T') = A(T') Ra®") for several aspect ratios. Finally, we analyze the
LSC patterns in fully turbulent fields and compare with those in the moderately
nonlinear regime right above the onset of convection in section 5.3.

5.1 Profiles of the vertical convective flux and
temperature

The vertical convective flux as well as the vertical gradient of the temperature are
responsible for the net heat transfer in convection as can be seen in Eqn. (1.10).
The plots in Figure 5.1 reveal that there are significant changes in u,7T" profiles
with respect to I'. Here, the quantity u,7T" is averaged over the horizontal plane at
fixed height z with an ensemble of at least 150 statistically independent samples
separated each other by 1 t/t; time unit, where ¢; is given by Eqn. (2.17). The
Rayleigh number is Ra = 107 in this case. The temperature profiles in Figure 5.2
show that the variations for the flat cells (I' > 1) are much smaller compared to
the slander cell (I' = 0.5). In case of the slender cell, a large destabilizing slope
(d(T) 4 (2)/dz) in the mean temperature profile is appeared, since the orientation
of the LSC patterns in this case (see Verzicco & Camussi 2003) is different from
those in the other cells (I' > 1, see section 5.3).

The variations in (u.T) 4 , (z) and (T') 4 , (2) profiles contribute to significant changes
in the global heat transfer Nu with respect to I', which are made clear in the next
section (see Table 5.1 and Figure 5.4). Figure 5.3 displays the magnified view of

95
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Figure 5.1: The z-dependent mean profiles of w,T" for different aspect ratios at
Ra = 10". The inset shows the magnified view close to the maximum of (u,T) ,.
Data set for the statistical analysis and the grid points are listed in Table 5.1.

z/H

Figure 5.2: The z-dependent mean profiles of the temperature. Due to symmetry,
z/H =0 — 0.5 is covered here. Data set is the same as in Figure 5.1.
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Figure 5.3: Magnified view of the variance temperature fluctuations profiles,
(0%) 4 (2), close to the bottom plate of the cell. The horizontal dashed line shows

the thermal boundary layer thickness o7 corresponds to I' = 1. This d7 slightly
differs from 67 = 1/(2Nwu) as explained in section 3.1. The same data set as in
Figure 5.1 is used here.

the variance of temperature fluctuations profiles, (6%) a4 (2), close to the bottom

boundary layer. The thermal boundary layer thickness d; for I' = 1 is marked by
the dashed line there and it differs slightly in magnitude (£1 grid plane) due to
aspect ratio variations. We have resolved the thermal boundary layer with at least
14 grid planes in this case.

5.2 Dependence of the global heat transfer on
aspect ratio

5.2.1 Nu(I') at fixed Rayleigh number Ra

We have listed the parameters of our DNS simulations for the aspect ratio studies
in Table 5.1. The global Nusselt number Nu is obtained from Eqn. (2.20) and the
standard deviation o of Nu is calculated as in Eqn. (2.21). The total integration
time in terms of the convective time unit is t. = Cyt/t;, where Cj is given in
Eqn. (2.19) and Figure 2.4. It shows that the standard deviations are less than or
equal to 1% and thus similar to Kerr (1996). The integration time is comparable
with van Reeuwijk et al. (2008).
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Ny x Np x N, Ra I t/ty Nufto o in%
97 x 65 x 128 107 0.50 300 17.08£0.07 0.4
193 x 97 x 128 107 1.00 150 16.7340.08 0.5
217 x 133 x 128 107 1.50 111 16.37%£0.08 0.5
217 x 133 x 128 107 1.75 151 16.1140.03 0.2
217 x 133 x 128 107 2.00 250 15.88%0.07 0.4
217 x 133 x 128 107 225 251 15.97+0.04 0.2
257 x 165 x 128 107 2.50 251 15.77%+0.03 0.1
257 x 165 x 128 107 275 251 15.97+0.04 0.3
257 x 165 x 128 107 3.00 150 16.06+0.05 0.3
301 x 211 x 128 107 4.00 150 16.22£0.03 0.2
385 x 281 x 128 107 6.00 150 16.66%0.04 0.2
401 x 311 x 128 107 8.00 150 17.44+0.02 0.1
513 x 361 x 128 107 10.00 150 17.34£0.03 0.2
601 x 401 x 128 107 12.00 150 17.49+0.03 0.2

151 x 81 x 160 5 x 107 0.50 150 26.2040.21 0.8
257 x 129 x 160 5 x 107 1.00 150 25.8640.13 0.5
271 x 151 x 160 5 x 107 2.00 149 25.8340.12 0.5
401 x 225 x 160 5 x 107 3.00 145 25.90+0.05 0.2

151 x 101 x 256 10% 0.50 300 32.06£0.24 0.7
271 x 151 x 256 108 1.00 150 32.21£0.32 1.0
271 x 151 x 256 108 1.25 150 31.77£0.15 0.5
321 x 161 x 256 10% 1.50 150 31.39£0.11 0.3
321 x 161 x 256 108 1.75 249 31.57£0.10 0.3
361 x 181 x 256 10% 2.00 145 31.25+0.31 1.0
401 x 201 x 256 108 2.25 143 31.25+0.21 0.7
401 x 201 x 256 108 250 146 31.87+0.18 0.6
401 x 201 x 256 108 2.75 145  32.34%0.08 0.3
451 x 225 x 256 10% 3.00 141 32.2940.12 0.4
541 x 257 x 256 108 4.00 132  33.20+£0.08 0.2
801 x 451 x 256 10% 8.00 81 34.78£0.13 0.4

201 x 101 x 310 10° 0.50 150 63.67£0.56 0.9
361 x 181 x 310 10° 1.00 139 64.31£0.64 1.0
811 x 321 x 310 10° 2.00 109 63.25+0.26 0.4
1025 x 551 x 310 10° 3.00 110 65.11£0.50 0.8

Table 5.1: Simulation parameters for various Ra and I' with a fixed Pr = 0.7.
The convective time unit t. = Cjt/t; (C) is given in Eqn. (2.19)). The Nusselt
number Nu and the standard deviation o are calculated from Eqns. (2.20) and
(2.21), respectively.
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Figure 5.4: Nusselt number Nu as a function of the aspect ratio I for (a) Ra = 107,
(b) Ra = 10%, (¢) Ra = 10°. The crossover from one circulation roll to two rolls
is indicated in (a) and (b) by two parallel dashed lines. For each snapshot, the
Nusselt number is determined by volume averaging. In addition, an arithmetic
mean is taken over Ny,m, = t/t; statistically independent turbulent samples (see
Eqn. (2.20)). The convective time unit ¢, = Cy t/ty (Cj is given in Eqn. (2.19) and
Figure 2.4). The standard deviation o, which is given by Eqn. (2.21), decreases
with increasing number of samples Ny, is shown in (d) for the data set Ra = 107
and ' = 2. Simulation parameters for all cases are listed in Table 5.1.

Figure 5.4 shows the Nusselt number Nu as a function of the aspect ratio I' for
three different Rayleigh numbers, namely Ra = 107,10% and 10°. At Ra = 107
(Figure 5.4a), Nu decreases with increasing I', attains a minimum value at I' &~ 2.5,
then increases up to a maximum value close to I' &~ 8, and finally saturates for
I' > 8. Variations in Nu(I') curve can also be observed in Figures 5.4b and 5.4c
for the other two larger Rayleigh numbers. The minimum of Nu(T") is detected
at ' ~ 2.5 and I' =~ 2.25 for Ra = 10" and Ra = 108, respectively. This is the
point at which a transition in the LSC from a single-roll to a double-roll pattern
occurs (see Figure 5.7). On the basis of stability analysis, Oresta et al. (2007)
have shown that there is always a single-roll for I' < 2, irrespective of the initial
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conditions, in the weakly nonlinear regime above the onset of convection. However,
our Rayleigh numbers here are in fully turbulent regime. With our present computer
capability, we could not go beyond I' > 8 for Ra = 10® and I' > 3 for Ra = 10°. In
particular, for the largest Rayleigh number, we can provide four data points only
and, therefore, the minimum of Nu(I") is inconclusive in this case, although it is
apparently at I' & 2 in Figure 5.4c. On the basis of our simulation data, we can not
conclude exactly for which aspect ratio the Nusselt numbers become independent
of the cell geometry. However, the trend indicates that it is right above I' = 8 for
Ra = 107 and beyond I' > 8 for Ra = 108. The variations in Nu, as defined by the
difference between the maximum and minimum in the Nusselt number series, are
significant — especially for the lower Rayleigh numbers — and yield 10.9%, 11.3%,
and 3.0% for Ra = 107, 10® and 10°, respectively.

A closer inspection of the three panels in Figure 5.4 reveals non-monotonic graphs of
Nu(T") with local maxima and minima. We have first verified that there is sufficient
statistical convergence of the data (see Table 5.1). Since statistical uncertainties
can be excluded, there must be some physical reasons for the behavior observed in
Figure 5.4. We observe time-averaged flow patterns in turbulent fields which are
similar to those at the onset of convection (see Figures 5.7 and 5.8). In this case, an
integer number of rolls must fit into the cell in the lower aspect ratio regime. This
is the reason why, for example, the linear instability studies by Koschmieder (1969)
and Charlson & Sani (1970, 1971) in the cylindrical cells with insulated side-walls
yield stability curves Ra..(I") with local extrema in the lower I" regime, and extend
to an asymptotic value for larger I only. Small discontinuities in Nu(Ra) in the
weakly nonlinear regime, which could be traced back to a change in the number
of rolls in the cell, have been also reported by Gao et al. (1987). These pattern
bifurcations can be studied when a small number of degrees of freedom dominates
the dynamics. It is not obvious why in a fully turbulent case, where infinitely many
degrees of freedom exist, coherent patterns exist and prevail. Similar patterns
can, however, be found in a turbulent Taylor vortex flow at high Reynolds number
(Lathrop et al. 1992).

The Proper Orthogonal Decomposition (POD) analysis by Bailon-Cuba, Emran &
Schumacher (2009) has demonstrated that the LSC carries a significant amount of
heat through the cell. It was also shown that a change in the LSC morphology
causes jumps in the amount of heat transferred by the first few POD modes, e.g.
the primary and secondary modes. Those findings strengthen our observation of
[-dependent heat transfer (Figure 5.4). It should be mentioned that persistent
coherent patterns at larger Rayleigh numbers are characterized as a sequence-of-
bifurcations to the turbulent state (Busse 2003).
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5.2.2 Nu(Ra) at fixed aspect ratio I’

Systematic experiments with aspect ratios I' larger than unity were conducted by
three groups. First, Wu & Libchaber (1992) detected a power law scaling with Ra,
namely

Nu(Ra,T) = A(T) x Ra” . (5.1)

Their measurements indicated almost an unchanged exponent (3 and an aspect-ratio-
dependent prefactor. Second, Sun et al. (2005) suggested the following scaling law
on the basis of their experiments as

Nu(Ra,T') = A;(T") x Ra”* + Ay(T) x Ra . (5.2)

This scaling is a combination of two power laws with 3, = 1/3 and 3, = 1/5. Again,
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Figure 5.5: Aspect ratio dependence of the fit parameters, A(I') ~ T'"* and 3(T") ~
I'*2 as a compensated power law plot. The exponents are A\; = 0.18 and Xy = 0.03.
The open symbols correspond to our DNS simulation data and the filled symbols
correspond to the data taken from Niemela & Sreenivasan (2006). We have fitted
their data from Ra = 1.10 x 10® to 9.51 x 10° (see Table 1 therein).

the prefactors depend on I' and a saturation of the Nusselt number Nu for I' > 10
has been detected. Third, Funfschilling et al. (2005) did not observe any sensitivity
of the heat transfer on the aspect ratio in their studies. Their measurements gave
power laws of the form

Nu(Ra,T') = A x Ra”, (5.3)

but with a continuous drift of the exponent from 3 = 0.28 at Ra ~ 10% up to
B = 0.33 at Ra = 10'°. Their results were essentially unaltered by an increase
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in the aspect ratio. On the numerical side, a power law of Nu ~ I'"! for I' < 3
was obtained by Ching & Tam (2006) on the basis of two-dimensional steady state
calculations. The present data allows us to compare our results with the scaling

Fit Coefficients I' = % I'=1 I'=2 I'=3
A 0.165 0.145 0.127 0.118
I} 0.287 0.294 0.300 0.305

Table 5.2: Nusselt number as a function of the Rayleigh number for different aspect
ratios. The scaling Nu ~ A x Ra” has been fit for four aspect ratios.

laws given in Eqns. (5.1)—(5.3). Table 5.2 lists the fit parameters for power laws in
the form Nu = A x Ra” for four aspect ratios, namely I' = 1/2,1,2 and 3. For
each aspect ratio, simulations are conducted for four Rayleigh numbers, namely
Ra =107, 5 x 107, 10® and 10°. Within this range of Ra, we observe a growth of
the exponent ( from 0.287 to 0.305, which is about 6% variation. Both the prefactor
A and exponent (3 seem to be functions of the aspect ratio and the functional form
is thus

Nu(Ra,T') = A(T") x Ra®D) . (5.4)

Figure 5.5 shows power law fits of A(T') ~ '™ and B(I') ~ I'* in a compensated
form. The measurements that come closest to the present study, both in Rayleigh
and Prandtl numbers, are those by Niemela & Sreenivasan (2006) for I' = 4. A
power law fit for their data range 1.10 x 10® < Ra < 9.51 x 10? yields Nu =
0.114 x Ra®3%. Adding these parameters to Figure 5.5 covers data over almost a
decade of I'. We see that both parameters, A and (3, almost perfectly follow the
power law with respect to I'. The exponent for [ is small, with Ay = 0.03. The
dependence of the prefactor A on I' is stronger. It is clear that further studies
are required to determine whether this weak dependence on I' prevails at larger
Rayleigh numbers. Furthermore, we can expect that, for sufficiently large I', both
exponents will saturate to geometry-independent values. In addition, the saturation
threshold for A and [ most likely depends on the Prandtl number, which is constant
in our case.

5.3 Large-scale circulation

The coherent structures in turbulent convection can be identified by time averaging
of the flow field. We show 2D vector plots in rz plane along ¢ = 0 — 7 line for
the cells with aspect ratios I' = 2 and 3 for the simulations at a fixed Rayleigh
number Ra = 107 in Figure 5.6. We identify a single circulation roll in case of
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Figure 5.6: 2D vector plots of the mean velocity field in » — z plane along ¢ = 0—7
line. Simulations are conducted at Ra = 107 and the velocity field is averaged over
50 snapshots, which are separated each other by ¢/t; = 1 unit. A single circulation
roll is visible for I' = 2 cell (top panel) and two counter rotating rolls for I' = 3 cell
(bottom panel).

I' = 2 cell (top panel) and two counter-rotating rolls for I' = 3 cell (bottom panel).
In Figure 5.7, we present the LSC patterns for three aspect ratios, namely I' =2.5,
3 and 6 at a fixed Rayleigh number Ra = 107. The streamline plots in the upper
three panels have been obtained by averaging the velocity field over 50 consecutive
snapshots. These snapshots are separated from each other by At = t; = H/Uy.
Averaging over three disjoint sequences of 50 snapshots leaves the observed LSC
patterns unchanged. We conclude, therefore, that the detected LSC pattern is
not transient. Transient behavior and large-scale saturation have been investigated
by von Hardenberg et al. (2008). Our procedure removes not only small-scale
fluctuations of the velocity field, but also oscillations of the LSC, which have been
observed in recent experiments (e.g. Xi & Xia 2008; Brown & Ahlers 2008), mostly
for I' < 1. Between I' = 2.5 and 2.75, the system bifurcates from a one-roll to a
two-roll pattern (1st and 2nd columns of Figure 5.7). We have also identified this
crossover in LSC between 2.25 < I' < 2.5 for Ra = 10%. However, for Ra = 10°
we have noticed a single-roll circulation pattern at I' = 2 and a triple-roll pattern
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Figure 5.7: Flow patterns at different aspect ratios. Streamlines (top row) and
contours of the local heat transfer w,0 (bottom row) for three different aspect
ratios, I' = 2.5 (left column), I' = 3 (middle column), and I' = 6 (right column),
at Ra = 107 are presented. All data are obtained by time averaging a sequence of
50 statistically independent snapshots. In the bottom row (u.0):(r, ¢,z = 1/2) is
shown.

at I' = 3. The intermediate patterns between 2 < I' < 3 were not resolved in
this case. A single-roll close to aspect ratio I' = 2 is consistent with the findings
of Sun et al. (2005), Oresta et al. (2007) and Bukai et al. (2009). The crossovers
of the LSC are marked in Figures 5.4(a,b) by two parallel dashed lines. For all
Rayleigh numbers studied here, this crossover takes place at similar, although not
exact, values of I'. With increasing aspect ratio, the LSC becomes a more complex
multi-roll configuration, as can be seen in the third column of Figure 5.7 for I' = 6.

In the lower row of Figure 5.7, we show the corresponding contour plots of (u,8),
at the midplane. The quantity u.0 is the local convective heat flux and w.0 > 0 if
rising and falling plumes are present. The appearance of rising and falling plumes
(red in (u.0); contours) in the three panels (lower row of Figure 5.7) is directly
correlated to the corresponding LSC pattern of the time averaged velocity field.
We have also verified that almost the same pattern holds for the fluctuations of the
local heat transfer, as given by ((u.0)?);. The LSC patterns were reproduced in the
POD analysis by Bailon-Cuba, Emran & Schumacher (2009) as well.

As already indicated in Figure 5.7, the LSC becomes more complex when the aspect
ratio becomes larger. For Rayleigh number 107, we were able to run a numerical
simulation up to I' = 12. Figure 5.8 reveals such complex LSC patterns in convec-
tive flow for two different Rayleigh numbers, Ra = 107 and Ra = 6000, at I' = 12.
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Figure 5.8: Top view of the large scale circulation (LSC) patterns at I' = 12 for
two different Rayleigh numbers, Ra = 6 x 103 (top row) and Ra = 107 (bottom
row). The streamlines of the instantaneous (left column) and time-averaged (right
column) velocity field are shown here. In both cases, the time averaging is done
over 50 t/t; time units.

Figure 5.9: Rayleigh number dependence of the LSC. Left panel: Ra = 6000. Mid
panel: Ra = 107. Right panel: Ra = 10%. Simulations are conducted in a cell with
aspect ratio I' = 8. In all cases, the time averaging is done over 50 ¢/t time units.
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The left column shows the top view of the streamlines for the instantaneous snap-
shots for both simulations, while the right column shows the time-averaged velocity
field as in Figure 5.7. When the small-scale turbulence (see lower left panel) is fil-
tered out, the resulting pattern is strikingly similar to that in the weakly nonlinear
regime immediately above the onset of convection. We observe extended rolls and
pentagon-like cells. These patterns have been reported, for example, in experiments
by Croquette (1989) with argon at Pr = 0.69 for Rayleigh numbers Ra ~ 2Ra,,
where Ra, is the critical Rayleigh number at the onset of convection. Figure 5.9
adds further support to the Rayleigh-number-dependence of the LSC. The left panel
nicely displays the extended roll patterns at Ra = 6000 and in the cell with aspect
ratio I' = 8. Relics of these patterns are still present in the mid panel at Ra = 107.
For the largest Rayleigh number, Ra = 108, the LSC is transformed into a pentagon-
like cell structure. Similarly, if we compare the top-right panel of Figure 5.8 to the
left panel of Figure 5.9, we see the reorganization of the LSC from roll shape to
pentagon or hexagon-like structures with increasing aspect ratio. The LSC patterns
can also be identified in the temperature field (Hartlep et al. 2005). Their study
shows a clear dependence on the Prandtl number.

One possible argument against our observation of ['-dependent Nusselt number
could be that the Rayleigh number for the given Prandtl number Pr = 0.7 is still
too small and that the convective turbulence has not yet reached the so-called
hard turbulence regime, as discussed, for example, by Castaing et al. (1989). In
order to weaken this argument, we determine the dissipation scale and relate it to
the height of the cell. Since Pr < 1, the diffusive scale of the temperature, the
Corrsin scale 1, = (k%/(€))'/4, is larger than the Kolmogorov scale ng = (v3/(e))"/*.
The scale separation ratio gives: H/nx =133, 278 and 588 for Ra = 107, 10® and
Ra = 10%, respectively. Here ny is directly evaluated from the energy dissipation
field as discussed in section 2.5. Even if we take a fraction of H, the scale separation
is of O(10%). Furthermore, for all the Rayleigh numbers discussed here, we have
reported strongly non-Gaussian temperature statistics in chapter 3, which clearly
indicate that the convective motion is in a state of fully developed turbulence.

Further similarities between the weakly nonlinear and turbulent regimes can be
followed by inspecting the driving mechanisms for the flow circulation. The onset
of a LSC is triggered by a slight dominance of buoyancy forces per unit mass,
fo = gall, compared to the restoring drag forces per unit mass, f; = %C(Re)uﬁH
(Fontenele Araujo (2005)). The difference between the onset of convection and
the turbulent regime is contained in the friction coefficient C'(Re). For laminar
flows C(Re) ~ Re™! and f; is a viscous drag force. For larger Re, the force f; is
understood as a turbulent drag force and C'(Re) = const. This might explain why
the characteristic wavenumber does not change significantly.

We can summarize that, for the range of parameters covered here, the LSC patterns
do not disappear in the turbulent regime up to Ra = 10°. For the larger aspect
ratios, pentagonal or hexagonal cells are formed preferentially.
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The motion of a fluid particle can be measured either in the Eulerian or Lagrangian
frame of reference. In the Eulerian frame, the particle is monitored at fixed points
in space, whereas in the Lagrangian case it is monitored along its trajectory. Most
of the experimental and numerical investigations in turbulent convection have been
conducted in the Eulerian frame of reference. Although Eulerian and Lagrangian
studies are complementary, true temporal structures are revealed when the measure-
ment of turbulent fluctuations is conducted along the particle trajectories (Voth et
al. 2002). With the advancement in sophisticated apparatus, e.g. high resolution
cameras, experiments on particles tracking in turbulence have drawn significant
attention in recent decades (La Porta et al. 2001; Mordant et al. 2002; Gasteuil
et al. 2007; Lobutova et al. 2009). Nevertheless, laboratory experiments with
particle tracking systems have some limitations, e.g. the size of the tracer particles
and the size of domain observable by the digital cameras. DNS on Lagrangian
particle tracking has no such limitations, however, the challenging part here is to
achieve sufficiently high Reynolds numbers. The staggered grid arrangement allows
us to adopt one-dimensional linear interpolation scheme for the velocity in a three-
dimensional field and analytical integration for the time marching, which simplifies
the computational efforts.

In the beginning of this chapter, we discuss the interpolation scheme for our La-
grangian studies. In the subsequent section, we provide the results, which include
particle pair dispersion analysis, heat transfer in the Lagrangian frame, probability
distributions of the acceleration as well as the convective heat transfer. Finally, we
present some results on Lagrangian velocity and temperature increments.

6.1 Interpolation scheme

The advection of a particle along its trajectory can be described by a set of ordinary

differential equations (ODEs) as
dxz,(t)
# = u(x,,1). (6.1)

Here u = (uy(¢p), ur(rp), us(2,))" is the velocity of the particle at position x, =
(6p(t),(t), 2,(t))" in the cylindrical coordinates, with the symbols ¢, r and z

67
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correspond to the azimuthal, radial and axial directions, respectively. The ODEs
in (6.1) have to be solved either by an analytical or a numerical scheme, e.g. the
Euler forward method, a Runge-Kutta scheme. Since we have adopted staggered

u, (i,j,k+1/2)

u,(i,j-1/2,k) 2 u(i,j+1/2,k)
r
p
Z
u,(i,j,k-1/2)

r

Figure 6.1: Position of the velocity components on a 2D staggered grid in rz plane,
which is the mid section of a typical 3D cell as shown in Figure 2.2 in the cylindrical
coordinates. The indices i, 7 and k correspond to the azimuthal, radial and axial
directions, respectively. The particle velocity u,(r,) at position 7, is obtained by the
linear interpolation of the Eulerian velocities w,(i,7 — 1/2, k) and w,.(i,j + 1/2, k).

grid for the Eulerian simulations, we need only one-dimensional linear interpolation
of the velocity components as shown in Figure 6.1. Given the Eulerian velocities
at the mid points of the edges of a 2D cell (Figure 6.1, see also Figure 2.2), we
calculate the corresponding Lagrangian components at an arbitrary position inside
the cell as

a X up(i,j+1/2,k) +bxu(i,j —1/2,k)

up(rp) = arb ; (6.2)
u¢(¢p) _ c><udi—l—l/Q,j,kZigxu¢(i—1/2,j,k)’ (6.3)
() — eXuz(i,j,k+1/2)—|—fxuz(i,j,k—l/Q)' (6.4)

e+ f
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With the help of the interpolation scheme described above, one can derive analytical
solutions of the ODEs in Eqn. (6.1). Following Schonfeld (1995), we rewrite the
ODE in the r-direction as

dry

e u,(ry) = ::; —:iUT’R + (1 — ::; _:i) Ur L s (6.5)
where u, p and wu,  are the velocities at known positions rr and 77, respectively
and 7, is the particle’s position in between. The subscripts L and R refer to the
left and right faces of a 3D-cell (Figure 2.2), respectively. Rearranging Eqn. (6.5)
yields (Wolk 2003)
% +7r (—% Auy

dt PR Ar Ar '’
with Au, = u, g — u, and Ar = rg — ry. Multiplying both sides of Eqn. (6.6)

(6.6)

):uT,L_TL

with the integration factor e~ At gives
d Augp AU/ Auyp
p <rp e~ Aar t) = <uT,L —rr ATT) e art, (6.7)

Now integrating both sides of Eqn. (6.7) with respect to ¢ gives the r-position of
the particle as

A’I“ Au

rp(t) =1L — Ur LN +Ceart. (6.8)
mp(to) =10 — ur,Lﬁ + Cearto, (6.9)

Subtracting Eqn. (6.9) from Eqn. (6.8) results in

or =mr,(t) —ry(ty) =C <e%t - eAAuTTtO) : (6.10)

From Eqn. (6.9) and with r,(¢y) = ro, the constant C' is

AT Aupr
C = _ . —arto 6.11
(7"0 TL“‘U,LAUT)G (6.11)
From Eqn. (6.6)
dr, Au, Au,
L = = o , 6.12
dt li=to=tir0 = 70 Ar +UnL = TL Ar ( )
which implies
Ar Ar
To = Uprp +rr. (613)

Au, — UnL Au,
Eliminating r¢ from Eqn. (6.11) with the help of Eqn. (6.13) gives

C=up e ', (6.14)
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Substituting the value of C'in Eqn. (6.10), we get the distance travels by the particle
in the r-direction for the time increment 0t =t — ¢y as

A ur
0r = uyp A; <6AA_T& - 1) . (6.15)

Similarly, for the azimuthal and axial directions, the distances are

ugo A [ Aoy,
§p = 1029 (g 6.16
o =m0l (Foa). (6.16)
AZ Auy St
oz = Uz <e Az % — 1) . (6.17)

The equations of the particle trajectories in the Lagrangian frame are

rp(t) = 1p(to) + 07, (6.18)
Gp(t) = Pp(to) + 69, (6.19)
Z(t) = zp(to) +0z. (6.20)

On a staggered grid, the temperature T is stored at the cell center (Figure 2.2). At
first, we interpolate T" at the vertices of the Eulerian grid and then apply trilinear
interpolation to calculate the Lagrangian temperature at a known particle position.

6.2 Results

For the Lagrangian simulations, we have selected cylindrical cells with aspect ratios
I' =1 and 3 for Ra = 107, and I' = 1 for Ra = 10® keeping the Prandtl number
constant (Pr = 0.7). About 10° tracer particles are dispersed in the cell and
advected over 200¢/t; time units. The statistical analysis is conducted over 4000
independent samples, which are separated each other by At = 0.05.

We visualize the time-evolution of the trajectories of particles in Figure 6.2 for a
simulation at Ra = 107 in the Rayleigh-Bénard cell with aspect ratio I' = 1. It
seems that a particular particle (left panel of Figure 6.2) travels along the large-
scale circulation (LSC). Figure 6.3 plots the time signals of various quantities along
a particle path for the same simulation. The results are qualitatively in agree-
ment with the Eulerian measurements by Shang et al. (2004) and the Lagrangian
measurements by Gasteuil et al. (2007). Sharp spikes of the temperature signal
(Figure 6.3a bottom panel) appear due to plumes close to the hot and cold plates
(Figure 6.3a top panel), where intense plume activities occur. The hot and cold
plumes in a particular zone counteract with each other and as a result the hot ones
lose and the cold ones gain the temperature. Hence, the amplitude of those peaks
in T'(t) signal is less than the extremum value (0 or 1), eventhough it seems that
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Figure 6.2: Three-dimensional trajectories of particles for the Lagrangian simula-
tion at Ra = 107 in the cell with aspect ratio I' = 1 . The left panel represents the
path of a single particle and the right panel for five particles, which are distinguished
from each other by a separate color.
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(a) Signals of z, u, and T (b) Signals of fluxes u,T, u,T and u.T

Figure 6.3: Time signals of various quantities along the trajectory of a particle:
(a) (top to bottom) the vertical position z(t) normalized by the cell height H, the
vertical velocity u,(t) and the temperature 7'(t), respectively; (b) (top to bottom)
the convective heat fluxes w,T", u,T" and u,T, respectively. The dotted line shows
the corresponding mean value.

the particle position is close to the top and bottom plates as indicated in the signal
of the vertical position z(¢) in the top panel of Figure 6.3a. The vertical velocity
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u,(t) has zero mean (Figure 6.3a mid panel). The signals of the convective fluxes
(Figure 6.3b) are highly irregular with sharp peaks as well, which are the signature
of intermittency. The factor v RaPr is multiplied with the flux terms u,T', w,T
and u,T" in order to get the appropriate values. The mean values are 4.8, —1.7 and
23.4 for u, T, u,T and u,T', respectively, which indicate that the vertical flux w,T
is responsible for the net heat transfer in the cell.

6.2.1 Heat transfer in the Lagrangian frame

Similar to Eqn. (2.20), the Nusselt number in the Lagrangian frame, Nuy, is given
by

H
NUL =1+ /QA—T <uZT>L,t s (621)

where the symbol (.), , denotes an averaging over all trajectories and statistically

50

—Lagrangian Nu
---Eulerian Nu

(Nuy

0 50 100 150 200
t

Figure 6.4: Graph of (Nu), over time, which is averaged over 10° tracer paths. The
mean value of (Nu), (t) curve between time ¢ = 40 — 200 is Nuy = 16.77, which
almost exactly matches the corresponding Eulerian value Nu = 16.73 as listed in
Table 5.1.

independent realizations of turbulent fields. We compute the heat transfer in the
Lagrangian frame and compare with its value in the Eulerian frame in Figure 6.4
for a simulation at Ra = 107 in the cell with aspect ratio I' = 1. About 10° tracer
particles are seeded in several horizontal planes along the axis of the cylindrical
cell and 4000 snapshots, with a separation At = 0.05, are stored for the statis-
tical analysis. The time averaging of (Nu), (t) curve from ¢ = 40 to 200 yields
Nujy = 16.77, which almost exactly matches the corresponding value of the FEule-
rian simulation, which was Nu = 16.73 as provided in Table 5.1. Similar result



6.2 Results 73

is achieved for the simulation conducted at Ra = 10% in the same cell, for which
Nu = 32.21 and Nu; = 31.74 with a deviation of 1.5%. The results validate our
interpolation schemes and the time step sizes for the Lagrangian simulations, which
are accurate enough to reproduce flow quantities of the corresponding Eulerian sim-
ulations in turbulent convection. In contrast, recent experiment by Gasteuil et al.
(2007) obtained a value of Nuj, almost twice as large as the Eulerian case. This
huge discrepancy in their measured value could be attributed to the fact that the
mobile sensor used in their measurements preferentially moved along the large-scale
circulation (LSC) path and a significant portion of bulk region was not traversed
by the sensor. However, in order to achieve the appropriate value of the global
Nusselt number, all regions of the convection cell have to be taken into account.
In addition, their sensor dimension was larger than the thickness of the boundary
layers. Therefore, the boundary layer contribution was missing there as well.

At the beginning of (Nu), (t) curve in Figure 6.4, there is a large over-shoot from
the mean value, which generally appears when the majority of the particles follow
the LSC path or all portions of the flow domain are not seeded uniformly at the
same time by the particles. For the same reasons, we see there are spike like
jumps from the mean, for example between ¢ = 100 and 130. We also conducted a
simulation (results are not shown here) for the same Ra and I, in which the number
of particles was increased by a factor of 2.5 compared to the one shown in Figure 6.4.
There, the particles were seeded uniformly in the domain. We observed that the
convergence of Nu was achieved within a shorter period in that case. Therefore, we
conclude that the number of tracer particles should be sufficiently large and they
should be uniformly seeded in the domain for the rapid convergence. Conversely,
the convergence is slower for a small number of tracer particles with a non-uniform
initial seeding.

6.2.2 Pair dispersion

The pair dispersion, R?, is a measure of the relative separation of a pair of particles
traversing along their trajectories, which is can be written as

R(t) = ([2y(t) — 2, (t0)]") , - (6.22)

We resolve the dispersion vector into two parts — the lateral part R,,(¢) and the
vertical part R, (t). Their contributions to the total dispersion are

Riy(t) = <[xp(t) - xp(tO)]Q + [yp(t) - yp(to)]2>L ) (6.23)
RAt) = ([z(t) — ()], - (6.24)
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Figure 6.5: Pair dispersion parameters as in Eqns. (6.22)-(6.24): (a) aspect ra-
tio ' =1, (b) I' = 3, (¢) normalized pair dispersion with respect to three initial
separations, namely 7, 2n and 47, with 1 the Kolmogorov length and (d) the au-
tocorrelation functions of the lateral and vertical velocities for I' = 1 as given in
Eqns. (6.25) and (6.26), respectively. The Kolmogorov time 7, (as in Eqn. (6.28))
and the lateral Lagrangian time TéL) (given in Eqn. (6.27)) are marked on the time

axis in (a) and (b). The horizontal dashed lines in (a) and (b) denote the square of
the maximum dimension of the corresponding cell. The vertical dashed line in (d)
represents the characteristic time required by a particle to travel the cell of height

H. The analysis is conducted at Ra = 107 with 4.16 x 108 and 3.24 x 10® statistical
samples for [' = 1 and I'" = 3, respectively.

We also compute the autocorrelation functions of the velocity components as

(Uay(t + 7) - Uay(t))

(lteay|?)
(us(t + m)u.(t))
(u2) ‘

Y

(6.25)

(6.26)

Here C,, is the autocorrelation coefficient for the lateral velocities u,, = u, - €, +

u, - e,, with e, and e, are the identity vectors in x and y directions, respectively
and C, is for the vertical velocity u,. The symbol 7 is the time lag.
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Figure 6.6: Signals of the velocity components u,, u, and u,.

The lateral Lagrangian time TéL) is obtained by integrating C,, as

T = /0 Cy(7) dr (6.27)

and the Kolmogorov time 7, is given by
Ty =] - (6.28)

The energy dissipation rate € is calculated from Eqn. (2.23).

Figures 6.5(a,b) plot the total dispersion, R?, as well as the lateral, Rfcy, and vertical,

R? components. Two aspect ratios are selected, namely I' = 1 and 3 for simulations
at Ra = 107. Initially, the quantities grow with R? ~ ¢2, which corresponds to the
ballistic dispersion. After the ballistic growth, a transition to the Richardson-like
regime (R? ~ ¢*) occurs. Similar observations were made by Boffetta & Sokolov
(2002) and Schumacher (2008, 2009). The horizontal dashed lines mark the limit
of the pair separation growth, which is the square maximum dimension of the cell.
Hence, a plateau is reached without crossing the limit. The finite size of the cell
suppresses the dispersion limit, hence a Taylor-like regime (R? ~ t) is absent here
in contrast to the results obtained by Schumacher (2008, 2009) for rectangular
domains with free-slip top and bottom boundaries and periodic sidewalls. The
Kolmogorov time units 7, are 0.212 and 0.223, and the lateral Lagrangian time

units 7' L(L) are 0.675 and 0.982 for I' = 1 and 3, respectively. The normalized pair
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dispersion with respect to three different initial separations, namely 7, 2n and 47,
with 7 is the Kolmogorov length, are given in Figure 6.5¢, which indicates that the
pair dispersion is sensitive to the initial separation. The autocorrelation functions
of the lateral and vertical velocities are shown in Fig. 6.5d. The results are in
agreement with Schumacher (2008). The vertical velocity is strongly anticorrelated
to the lateral ones. The strong anticorrelation is in line with the rapid upward
and downward motions as indicated by the signals of velocity components along a
tracer path in Figure 6.6, in which fluctuations in u.(t) are stronger than those in
ug(t) or u,(t). This causes fast separations of the tracer pair.

10° | 2
(b) —k=x
-2| 1.5t — k=y ]
10 ey
W —
2107 &1
107 0.5/
il LT |
1 0_8 . . . . . il . . T
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ak/(ak) rms f=ak/(ak)rms

Figure 6.7: The probability density functions of the acceleration components are
plotted in (a). The statistical convergence test of the 4th order moment of PDFs
are shown in (b). The PDFs are normalized by their rms values. The data set
corresponds to Ra = 107, I' = 1 and 4.16 x 10® events are included in the statistical
analysis. The normalized 4th order moment is the area below the curve in (b)

and 1s given by F(ak) = f(a%/ai,rmg p(ak/akﬂ’mg d(ak/akﬂ‘ms) = <ai/a%,rms> =

(af) / (a3)”.

6.2.3 Probability density of the acceleration

We report the probability density of acceleration components along the 3D trajec-
tories in Figure 6.7a for a data set I' = 1 and Ra = 107. The accelerations are
obtained by using the 2nd order central difference scheme. The PDF of all compo-
nents has a stretched exponential shape similar to those reported in the experiment
by La Porta et al. (2001) and DNS simulations by Schumacher (2008, 2009). The
rms values of the accelerations a, with k = x, y or z, and the corresponding skew-
ness S(ay) = (a3) / (a2)** and flatness F(az) = (al) / (a2)? factors are listed in
Table 6.1 for two Rayleigh numbers, namely Ra = 107 and 10%. The PDFs are
almost symmetric with small skewness and have flatness factors that exceed the
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Gaussian one by almost an order of magnitude (F(a;) > 3). The PDFs of all
three components collapse, in contrast to those in a laterally unbounded fluid layer
(Schumacher 2008, 2009). Here, extreme events with accelerations larger than one
order of magnitude of the rms value are visible. This indicates that the acceleration
is highly intermittent. The values of F'(ay) are of the same order of magnitude as
those of Voth et al. (2002) and Schumacher (2009). Since the tails of the PDF of
4th-order moment in Figure 6.7b are not much scattered, the statistical convergence
is established in our study.

Ra ar (k) rms I(T;f;(‘ffj) ?;kn)(f,’j) S(ax) Flay)

r

10" 1 a, 0139 3274 -30.20 0.028 19.10
1
1

107 a, 0139  28.13 -27.22 0.004 17.54
107 a, 0177 2778 -26.67 0.005 20.13

108 1 a, 0171 38.34 -40.63 -0.015 23.16
10 1 a, 0170 33.60 -38.84 -0.026 21.00
108 1 a, 0203 40.00 -41.12 0.010 27.55

Table 6.1: The rms value (ag).ms = v/ (az) of the acceleration components and the

skewness S(ax) = (a?) / (a2)** and flatness F(ay) = (al) / (a2)” factors are listed
here. The statistics are gathered over 4.16 x 10% and 4.5 x 10® events for Ra = 107
and Ra = 108, respectively.

6.2.4 Probability density of the convective heat flux

Figure 6.8 shows the probability distributions of the convective heat fluxes for a
simulation at Ra = 10® in the convection cell of aspect ratio I' = 1. The distri-
butions are super-Gaussian with sparse tails. The non-Gaussianity is due to the
intermittency. Other studies by Shang et al. (2004) and Gasteuil et al. (2007) re-
ported stretched exponential shapes, however, their Rayleigh numbers are much
higher. The PDF of the vertical flux u,T is positively skewed, since it is responsi-
ble for the net heat transfer in the cell. The PDF's of the lateral components u, 1T’
and u, T almost collapse except for small deviations in the tails. The distributions
are different from those observed by Schumacher (2009).
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Figure 6.8: Probability density functions of the convective fluxes. The PDF is
normalized with the corresponding rms value. The analysis is conducted for 4.5x10%
events in the convection cell with aspect ratio I' = 1 for a simulation at Ra = 108.

6.2.5 Probability density of the velocity and temperature
increments

The vertical velocity increment in the Lagrangian frame is defined as

druy(t) = u(t+ 7) — u.(t), (6.29)
and the temperature increment is

Tt)=Tt+71)—T(t). (6.30)

The symbol 7 denotes the time lag. We plot the PDFs of d,u, and 0,71 with
respect to four different time lags in Figure 6.9. The time lags are 7 ~ 7,,, 1.337},
2.6677, and 5.3377, where 7,, and 77, are the Kolmogorov and Lagrangian time units,
respectively. The Lagrangian time 77, is obtained by integrating the autocorrelation
function of the velocity. In this case 77, ~ 0.3 and 7,, ~ 0.21. The colors red, green,
blue and magenta correspond to 7 ~ 7,, 1.337, 2.667;, and 5.3377, respectively.
The Gaussian distribution (marked by the black curve) is shown as well for the
comparison. The PDFs of 6,u, (Figure 6.9a) are symmetric and non-Gaussian
and similar to those observed by Mordant et al. (2002) in fluid turbulence and by
Gasteuil et al. (2007) in convection. For 7 ~ 7, and 1.3377}, the PDFs have fatter
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Figure 6.9: The probability density functions of the vertical velocity and tempera-
ture increments as a function of four different time lags, namely 7 ~ 7, (red), 1.3377,
(green), 2.6677, (blue) and 5.337}, (magenta) with 7, and 77, are the Kolmogorov
and Lagrangian time units, respectively. The Lagrangian time 77, is obtained by
integrating the autocorrelation function of the velocity. In this case T, ~ 0.3 and
7, ~ 0.21. The black curve corresponds to the Gaussian distribution. Each PDF is
normalized with the corresponding rms value. The data are taken for the simula-
tion at Ra = 107 in the cell with aspect ratio I' = 1. The statistics are accumulated
for 4.16 x 108 statistically independent events.

tails with the stretched exponential shape due to the intermittency. However, they
keep their exponential forms for 7 > Ty. In contrast, Mordant et al. (2002) found
Gaussian distributions for 7 > 77 in fluid turbulence. The distributions for o,7T
(Figure 6.9b) are non-Gaussian and slightly skewed with sparse tails in contrast to
that of d;u,. In the Eulerian measurements by Zhou & Xia (2002), it was found
that, in the inertial range, the distributions of 0,7 are exponential at the center and
stretched exponential close to the sidewall. In addition, stronger intermittency in
the temperature increments was observed at the side wall compared to the center.
The PDF, which displayed here, is another manifestation of the strong small-scale
intermittency. The next step would be to compare the PDFs of the temperature
increments for different Rayleigh numbers.
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We have conducted detailed numerical investigations in turbulent Rayleigh-Bénard
convection in a cylindrical cell. Our analyses focused on the following areas: the
statistics of the temperature, its fluctuations and gradients; the statistics of the
thermal dissipation rate and its scaling with respect to the Rayleigh number; the
dependence of the heat transfer on the aspect ratio and the corresponding changes
in the large-scale circulation (LSC) patterns; and the Lagrangian particle dispersion
in turbulent convection. Our simulation parameters vary from Ra = 107 — 10° and
I' = 0.5 — 12. The Prandtl number Pr = 0.7 remains constant throughout the
study.

In the first part of this work, we have reported the fine-scale statistics of the tem-
perature, its fluctuations and gradients as well as the statistics of the thermal
dissipation rate and its scaling with respect to Ra for the data set Ra = 107 — 10°
and I' = 1. The constraints on the DNS grid resolution limited the study to the
moderate Rayleigh number range. We have compared the fine-scale statistics of
the active temperature field to that of the passive scalar field, far away from the
boundaries. In contrast to the passive scalar case, the temperature statistics is
always non-Gaussian with a probability density function (PDF) close to the expo-
nential shape in the bulk. Non-Gaussianity holds in all regions of the convection
cell and for all mentioned Rayleigh numbers. Deviations in temperature fluctu-
ations from the Gaussian distribution have also been confirmed by the V-shaped
conditional mean thermal dissipation rate. In case of the passive scalar fluctuations,
the statistics depends on the mechanism that sustains the fluctuations and on the
particular ratios of outer turbulence length scales. Super-Gaussian, Gaussian or
weakly sub-Gaussian distributions have been observed there in the past. While
the statistics of the temperature differ from the passive scalar, the statistics of the
spatial derivatives and dissipation rates behave qualitatively similarly.

The PDF of the thermal dissipation rate in the bulk fits well with a stretched
exponential. The tails are extended to larger amplitudes with increasing Rayleigh
number. This is a clear fingerprint of a stronger small-scale intermittency. Thermal
dissipation field is always more intermittent in the boundary layers than the bulk
region of the convection cell. This is manifested by the extended tail of the PDF.
Furthermore, the flow in the sidewall region exhibits stronger intermittency than
in the inner bulk. This is caused by the movements of plumes along the large-scale
circulation path in the sidewall zone and the presence of unstable temperature
gradients close to the sidewalls as demonstrated by Brown & Ahlers (2007). All
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distributions showed clear deviations from the log-normality in the whole range
of dissipation values. This has consequences for closures that usually rely on log-
normal form.

Motivated by similar studies in passive scalar turbulence and by our detection of
locally varying mean temperature profiles, the deviations from locally isotropic tem-
perature fluctuations are quantified by the third order vertical derivative moments
as a function of the Rayleigh number. Interestingly, we found that the deviations
from the local isotropy grow with increasing Ra in the boundary layer. In the
bulk, the derivative skewness is found to decrease, which indicates a return to local
isotropy (Lumley 1967). This is observed when translating the original Reynolds
number dependence of the skewness into a Rayleigh number dependence for the con-
vection case. In contrast, the passive scalar does not display such trend (Warhaft
2000). The observed trend might be due to the small amplitudes that the local
mean temperature gradients possess in a convection cell.

The vertical profiles of the plane averaged thermal dissipation rate show that an
increasing fraction is concentrated in an ever thinner boundary layer with growing
Ra. Furthermore, we have demonstrated that the contribution of the temperature
fluctuations to the total thermal dissipation rate, ey, in the thermal boundary layer
is significant, which is about 25% e for Ra = 10°. This aspect is usually neglected
in the scaling theories and could explain why the trends of {e7) ~ Ra® obtained
in our analyses differ from those by Grossmann & Lohse (2000). From the balance
of the temperature variance, we have obtained a power law scaling for the length
of the plume mixing zone, l,,, as l,,, = 0.5 x Ra~%' which is of the same order of
magnitude as the one predicted by Procaccia et al. (1991) based on scaling argument
and by Zhou & Xia (2002) based on measurements of the temperature derivative
skewness.

Motivated by the concept of Grossmann & Lohse (2004), we have refined those
analyses and proposed new definitions of the plume and background dominated
thermal dissipation rates. Both are conditioned with respect to the quantity u.0,
which is always positive for the rising or falling plumes in a convection cell. We
have presented detailed scaling laws for er as a function of Ra, based on our new
definitions as well as the usual bulk and boundary layer contributions. The scaling
law (er) ~ Ra‘ always gives a negative exponent, ¢, in the bulk or plume and
background dominated regions. This is in contrast to the classical scaling theory of
Grossmann & Lohse (2000) and the refined ansatz of Grossmann & Lohse (2004),
but in agreement with He et al. (2007) and He & Tong (2009). However, our expo-
nent in the boundary layer differs significantly form those of the experiments. This
discrepancy could partly be attributed to the fact that in laboratory measurements
time series are taken at several points and there are some limitations in resolving
the gradients. There is no significant dependence of (er) on the aspect ratio for the
values studied here.

Two particular aspects will be beneficial in exploring further in this regard in the



82 7 Summary and outlook

future. First, an extension to higher Rayleigh numbers is desirable. Second, the
direct link between the observed statistics and the local structures in the boundary
layer and its vicinity is necessary. Some progresses have already been made in this
regard (Shishkina & Wagner 2007; Zhou et al. 2007).

In the second part, the heat transfer and the corresponding changes in LSC patterns
have been studied as a function of I' and Ra for the parameter ranges I' = 0.5 — 12
and Ra = 107 — 10°. Our DNS results have revealed a dependence of the Nusselt
number on the aspect ratio. The variation in Nu(I") curve is between 11% and 3%
for the accessible Rayleigh numbers and aspect ratios. A minimum of Nu(I") is
found at I' =~ 2.5 and ' =~ 2.25 for Ra = 10" and Ra = 108, respectively. This is
the point at which the LSC undergoes a transition from a single-roll to a double-
roll pattern. The trend in Nu(T") curve indicates that the heat transfer becomes
independent of geometry for sufficiently large aspect ratios, namely for I' > 8 at
Ra = 107. Our current data for Ra > 10® suggest that the Nusselt number would
be aspect ratio independent for I' > 8. The observed trend in Nu(I") as well as the
changes in the LSC patterns have been validated by the POD analysis of Bailon-
Cuba, Emran & Schumacher (2009). The reorganization of the LSC from roll shape
to pentagon or hexagon-like structures with increasing Rayleigh number as well as
with increasing aspect ratio is observed.

We provide arguments, which rationalize the non-monotonic graphs Nu = f(I).
Furthermore, we demonstrate that the power law relation Nu = A(T') x Ra®®")
gives the coefficient and exponent ranges as A(I') = 0.165 — 0.118 and (') =
0.287 — 0.305, respectively, which follow the scaling relations A(T') = I'"** and
B(T) = 2, with \; = 0.18 and Xy = 0.03 for the aspect ratio range I' = 0.5 — 4
and Rayleigh number range Ra ~ 107 — 10'°. We believe that it is important to
include this dependence, albeit weak, in future scaling theories. The variations in (3
seem to bridge the gap between the well-known exponents 5 =2/7 and 1/3, which
have been measured in the past. Further investigations at higher Rayleigh numbers
and larger aspect ratios are necessary to draw a firm conclusion on this matter.

We also observe that the LSC patterns in turbulent convection at Ra > 107 are
still strikingly similar to those in the weakly nonlinear regime immediately beyond
the onset of convection (Bodenschatz et al. 2000). The system does not seem
to forget these patterns. Large-scale circulation structures are, therefore, always
present similar to high-Reynolds number turbulence in von Karman swirling flows
(La Porta et al. 2001) or Taylor vortex flows (Lathrop et al. 1992).

It is clear that further numerical explorations in the regime of large aspect ratios
and high Rayleigh numbers, which are at least one or two orders of magnitude
larger than the values provided here, are necessary. One expects that the aspect-
ratio-dependence of the turbulent heat transfer would vanish for sufficiently large I'.
To achieve those goals, the efforts are underway and will shed more light on A(T)
and ((T") as reported in Figure 5.5. Another important aspect, in our view, would
be to conduct a closer study of the same issues for fixed flux boundary conditions,
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which correspond, for example, to a radiative cooling on top of an atmospheric
boundary layer. Recently, the first step in this direction has been undertaken by
Verzicco & Sreenivasan (2007) and Johnston & Doering (2009).

In the final part, we have presented DNS studies on the Lagrangian particle disper-
sion in Rayleigh-Bénard convection. Three cases, namely I' = 1 and 3 at Ra = 107,
and ' = 1 at Ra = 10%, have been selected for this purpose. We have employed
linear interpolation scheme for the velocity field and analytical integration for the
time marching. This approach simplifies the computations. Our interpolation
schemes reproduced accurately the global heat transfer in the Lagrangian frame
Nuy, with deviations 0.2% and 1.5% compared to those of the Eulerian simula-
tions for Ra = 107 and 10%, respectively in the cell with aspect ratio I' = 1. In
order to achieve the appropriate value of the global Nusselt number, all regions of
the convection cell have to be sampled for a sufficiently long time. The oscillations
in Nup(t) curve imply that the majority of the tracer particles follow the LSC path
or they are not uniformly seeded in all parts of the domain at the same time. We
also observe that for a large number of tracer particles with a uniform initial seed-
ing in the domain, the convergence of Nuy(t) is rapid. Conversely, the convergence
is slower for a small number of particles with a non-uniform initial seeding.

For the pair dispersion parameter analysis, we detect ballistic (R* ~ t*) and
Richardson-like (R? ~ t3) regimes. Similar trends were observed in recent studies
for rectangular domains with free-slip top and bottom plates and periodic sidewalls
(Schumacher 2008, 2009). The finite size of the cell suppresses the dispersion limit,
hence a Taylor-like regime (R? ~ t) is absent in our studies as oppose to Schumacher
(2008, 2009). However, we expect it to be present at larger aspect ratios (I"' > 3).
The pair dispersion is sensitive with respect to the initial septation. The vertical
velocity is strongly anti-correlated to the lateral ones due to stronger fluctuations
in the signals of u,(t) compared to those of u,(t) and w,(t). This is in line with the
results of Schumacher (2009).

The probability density functions of the acceleration components, a;, in the La-
grangian frame show that the acceleration is highly intermittent with stretched
exponential shapes. The PDFs are almost symmetric and have flatness values that
exceed the Gaussian flatness by almost an order of magnitude (F'(a;) > 3). Our
results are qualitatively in agreement with that of La Porta et al. (2001), Voth
et al. (2002) and Schumacher (2008, 2009). The acceleration components are al-
most isotropic here. It remains to be seen whether this isotropy persists at higher
Rayleigh numbers (Ra > 10%) and (or) at higher aspect ratios. Furthermore, the
PDF's of the convective heat fluxes revealed super-Gaussian distributions, which
are the manifestations of intermittency in the flow field. One expects stretched
exponential forms in the higher Rayleigh number regime (Shang et al. 2004; Gas-
teuil et al. 2007). From the time increment analysis of vertical velocity, we observe
that the PDFs of §,u, are symmetric and have stretched exponential shapes with
fatter tails for 7 ~ 7, and 7 ~ Tp. However, they keep their exponential forms
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for 7 > T;. The PDFs of the temperature increment, 9,7, are non-Gaussian and
slightly skewed. The next step would be to compare the PDFs of temperature
increments for different Rayleigh numbers.
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