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Asymptotic Safety of Yukawa Systems

Abstract

Different Yukawa systems in three and four dimensions are investigated. The four-
dimensional systems are toy models and are plagued with the still unresolved trivial-
ity and hierarchy problem of the Standard Model Higgs sector. We use the functional
renormalisation group equations and construct asymptotic safety scenarios for the
four-dimensional models. This was recently done in a simple Yukawa system. In
this thesis we expand this model and include a left-right asymmetry. For the three-
dimensional model we investigate the critical behaviour of a second-order phase
transition to a chiral-symmetry broken phase. The critical behaviour is investigated
in terms of critical exponents.
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Chapter 1

Introduction

The Standard Model of particle physics was developed in the early 1970s and has
been tested very well in a large number of experiments. It is a quantum field theory
containing various fields (see Tab. 1.1), including six quark flavours (upper left in
Tab. 1.1) and six lepton flavours (upper right in Tab. 1.1), which are the matter
content of the known universe. Further included particles are eight gluons, the W-
and Z-bosons and the photon (the lower part in Tab. 1.1). These particles are carrier
particles and thus are responsible for the interaction of the matter particles. They
belong to the strong force, the weak force and the electromagnetic force, respectively.
The last particle of the Standard Model is the yet not discovered Higgs particle. This
field is very important since it generates the masses of the matter particles via a
Yukawa interaction in combination with the mechanism of spontaneous symmetry
breaking (SSB). The Higgs field also generates the masses of the W- and Z-bosons via
this mechanism. The fourth known force (gravity) and its carrier particle (graviton)
are not included in the Standard Model.

The success of the Standard Model did not come all of a sudden. It took a
long time from the proposition of quarks as constituents of protons and neutrons
by Gell-Mann and Zweig in 1964. Important steps towards today’s picture were
the electroweak unification in 1967 by Weinberg, Glashow and Salam, the first ob-
servation of a quark (charmed quark) in an experiment in 1974, the experimental
proof for the bottom quark in 1977, the discovery of the W- and Z-bosons in 1983,
the evidence for the top quark, as the heaviest quark, in 1995 at Fermilab and the
observation of the τ -neutrino in 2000 also at Fermilab. Today all the particles of
the Standard Model except the Higgs boson has been observed. The hope is that
this last particle has not been observed yet because of insufficient energies at the

u d e νe
c s µ νµ
t b τ ντ
g W± Z0 γ

h

Table 1.1: Particles of the Standard Model.
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1 Introduction

Figure 1.1: Landau pole of the perturbative λφ4 theory.

experiments made till this day. If this is the case the new experiments at the Large
Hadron Collider (LHC) at CERN coming up in the next few years may successfully
find the last undiscovered part of the Standard Model.

In spite of the successes of this model there are still unresolved problems. First
of all the unification with gravity. Furthermore there are obscurities about neutrino
masses and oscillations, dark matter and energy and baryon asymmetry. However,
besides these problems which are beyond the Standard Model there is also lack
of knowledge inside the theory. Two problems which are still unresolved are the
triviality problem and the hierarchy problem. These are the two problems which we
tackle in the present work.

The easiest way to explain the triviality problem is to study the perturbative
λφ4 theory. The relation between the bare coupling λ and the renormalised coupling
λR is given by

1

λR
− 1

λ
= β0 ln

(

Λ

mR

)

, β0 = const. > 0.

Here mR is the renormalised mass and Λ is a momentum cutoff. If the renormalised
coupling is kept fixed and the momentum cutoff is send to infinity the bare coupling
diverges at the Landau pole

ΛL = mR exp

(

1

β0λR

)

.

See also Fig. 1.1. On the other hand, if we fix the bare coupling λ the continuum limit
(Λ→∞) leads to a vanishing renormalised coupling λR. Thus the theory becomes
trivial. That is why the problem is called triviality problem. If one investigates
the Standard Model, which is of course more complicated than the λφ4 theory, one
gets the same problem in the Higgs sector [1, 2, 3, 4, 5, 6, 7] and also in the U(1)
gauge sector [8, 9, 10, 11]. The common opinion is that the Standard Model is an
effective theory which means that it is only valid up to a cutoff scale Λcutoff where
new physics sets in. In this spirit the Standard Model has to be considered as a low
energy limit of a more fundamental theory.

The scale where the Landau pole of the U(1) sector occurs is beyond the Planck
scale where gravitational contributions have to be taken into account [9]. The Lan-
dau pole of the Higgs sector occurs at a scale below the Planck scale. Thus the cutoff
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scale for the Standard Model has to be below the scale of the Landau pole of the
Higgs sector. That is why we are turning our attention to this triviality problem.

One might ask whether the triviality problem is a problem of the system or just
a problem due to the shortcomings of perturbation theory. One hint for the latter is
that near the Landau pole the interaction constant becomes very large and thus the
perturbation theory predicts its own breakdown. This induced some investigations of
scalar and Yukawa systems with non-perturbative lattice methods which confirmed
the Landau pole in a limited set of scenarios [12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
Also the gauged Yukawa system was investigated [22]. Another non-perturbative
method is the functional renormalisation group which we are using in the present
work.

Our aim is to construct an asymptotic safety scenario. In such a scenario one
uses nontrivial fixed points instead of the trivial one of perturbation theory1. A
fixed point of this type would enable us to move the cutoff to infinity. This brings
back our attention to the Planck scale where the other triviality problem occurs
and also gravity sets in. In this region the search for asymptotic safety scenarios
including gravity is also at work. The hope is that it might be possible to construct
such a scenario including the matter content of the Standard Model and gravitation
[23, 24, 25].

The inclusion of all these things is far beyond the scope of this work. We restrict
ourselves to toy models which are less complicated but still have the properties of
the Standard Model Higgs sector which are responsible for the triviality problem.
In this way we try to find out which degrees of freedom are needed to construct an
asymptotic safety scenario and hope to get a deeper insight into the problem itself.

The second problem mentioned above is the hierarchy problem of the Higgs
sector. It is not a fundamental problem, like the triviality problem, but it seems
unnatural. The reason is a large separation of the Higgs mass at different scales. At
a ultraviolet (UV) cutoff scale (ΛUV) m

2 ∼ Λ2
UV holds. Let us consider the GUT

scale ΛGUT ∼ 1016GeV as a UV cutoff scale. As an infrared (IR) scale let us use the
scale of electroweak symmetry breaking ΛEW ∼ 102GeV. Again perturbation theory
suffices to explain the hierarchy problem. The mass at the EW scale is expected
to be given as m2

EW = a104GeV2 where a is a constant of order one. The relation
between the initial condition (m2

GUT) and m
2
EW is given by

m2
EW ∼ m2

GUT − δm2,

with δm2 being the counterterm of perturbation theory. Since these contributions
are of order of the squared cutoff we can write δm2 = b1032GeV2. Again b is a
constant of order one. Thus we get

m2
GUT ∼

(

b+ a10−28
)

1032GeV2.

The second part in the parentheses indicates that the initial condition, m2
GUT, has

to be given very precisely. This is called fine tuning of initial conditions. In our case

1A fixed point is called trivial if all interaction constants vanish and nontrivial if at least one
remains finite.
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1 Introduction

the precision has to be of order Λ2
EW/Λ

2
GUT ∼ 10−28. This is the point which seems

unnatural as mentioned above but does not represent a problem of principle.
The question is if it is possible to circumvent the Hierarchy problem. There are

different approaches on how to solve the problem, e.g., with supersymmetry. Our
aim is to solve or at least weaken the hierarchy problem by using the asymptotic
safety scenario. In order to explain this idea we have to use the terminology of
the renormalisation group: The quadratically dependence on the cutoff scale ΛUV

mentioned above corresponds to the critical exponent θ = 2 at a perturbative, trivial
fixed point. The critical exponent specifies how fast a given coupling flows away from
the fixed point. If it is possible to get an interacting, or nontrivial, fixed point it
might be possible that the value of the critical exponent at this point is less than that
of the trivial one. Such a non-Gaußian fixed point corresponds to an asymptotic
safety scenario if some other conditions are fulfilled. The hierarchy problem is said
to be weakened if θ < 2 and is said to be solved if θ � 1.

In summary, we aim to construct an asymptotic safety scenario for a toy model
plagued by the triviality problem and the hierarchy problem. If this is possible and
the critical exponent at the corresponding fixed point is less than two we would
have solved the triviality problem and the hierarchy problem would be, at least,
weakened.

A first step in this direction was done by Holger Gies and Michael M. Scherer
in [26]. They investigated a simple Yukawa system which consists of a single real
scalar field, representing the Higgs field, and N Dirac fermions. The goal of the
present work is to extend this model and to construct an asymptotic safety scenario.
Therefore we start, in Chap. 2, by introducing briefly the tools we are using. This
includes the exact renormalisation group equation, the asymptotic safety scenario
and a short introduction to gauge theories. This introduction is far away from
being complete but contains the things need in this work. Furthermore this chapter
contains a section about the Goldstone and the Higgs model. In Chap. 3 we are
starting by motivating the model under investigation in this chapter. Afterwards
we deduce the flow equations of the system and analyse the fixed-point behaviour
of this model in the symmetric regime and in the spontaneously symmetry broken
regime2, see also [27, 28] for this four-dimensional model. Chap. 4 is an excursion: It
investigates the model of Chap. 3 in three dimensions. In the first section we give a
short overview over the comparison of our model with other models like the Thirring
model or the Gross-Neveu model. After motivating our three-dimensional model we
are following the steps of the previous chapter and deduce the flow equations and
analyse the fixed-point behaviour, see also [29]. In Chap. 5 we are turning back to
our four-dimensional model of Chap. 3. We extend this model by introducing gauge
degrees of freedom. Again we start with a short motivation before deducing the flow
equations and analysing the fixed-point structure. In the last chapter we conclude
and give a short outlook.

2We talk about regimes at ultraviolet scales and about phases at infrared scales.
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Chapter 2

Theoretical Foundations

In the following chapters we use the functional renormalisation group (RG) in the
formulation as put forward by C. Wetterich [30]. Here we give a short introduction.
For more information see [31, 32, 33, 34, 35, 36]. The functional RG method is
not restricted to weak couplings, like in perturbation theory. It is a combination of
functional methods and the RG idea. Functional methods handle with generating
functionals or correlation functions and try to solve them analytically. To do so one
starts with microscopic interactions and has to integrate out all quantum fluctua-
tions to understand the macroscopic physics. The RG idea is not to integrate over
all momentum scales at once, but to integrate momentum shells successively (Wil-
son’s idea). This leads to an exact differential equation. We shall recall the most
important quantum field theory (QFT) basics, before we derive this RG equation.
Afterwards we introduce the idea of asymptotic safety and give a very brief intro-
duction to gauge theories. At the end of this chapter we introduce the Goldstone
and the Higgs model.

2.1 Quantum Field Theory Basics

In quantum field theory all the information about a system is encoded in correlation
functions. In the case of a scattering process with two incoming and n− 2 outgoing
fields, the system is described by a n-point correlator. This correlator is defined
through n field operators ϕ(xi) as 〈ϕ(x1) . . . ϕ(xn)〉. In Euclidean field theory and
with the help of the path integral formalism this correlator can be written as

〈ϕ(x1) . . . ϕ(xn)〉 = N
∫

Dϕϕ(x1) . . . ϕ(xn)e−S[ϕ],

where S is the action and N is a normalisation constant. We assume that a proper
definition of the measure can be given, for example with a spacetime lattice dis-
cretisation. Furthermore this measure has to preserve the symmetry of the relevant
theory.

The information of all n-point correlators can be summarised in a generating
functional

Z[J ] =

∫

Dϕe−S[ϕ]+
∫
ddxJ(x)ϕ(x). (2.1)
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2 Theoretical Foundations

If this generating functional is known, all n-point functions can be determined by
taking functional derivatives with respect to the fields.

〈ϕ(x1) . . . ϕ(xn)〉 =
1

Z[0]

(

δnZ[J ]

δJ(x1) . . . δJ(xn)

)

J=0

.

It is also possible to use the Schwinger functional W , instead of Z. W is defined
through Z[J ] = exp(W [J ]). Another alternative (and this is the one we use) is to
Legendre transform this Schwinger functional and use the so-called effective action

Γ.

Γ[Φ] = sup
J

(∫

ddxJΦ(x)−W [J ]

)

. (2.2)

All information about the system is stored in these functionals. Once Z[J ], W [J ] or
Γ[Φ] is computed the theory is “solved”.

The next question is how to compute for example the effective action. Let Jsup
be the value of J where

∫

ddxJΦ − W reaches its supremum. At J = Jsup the
following equation holds:

δΓ[Φ]

δΦ(x)
= −

∫

ddy
δW [J ]

δJ(y)

δJ(y)

δΦ(x)
+

∫

ddy
δJ(y)

δΦ(x)
Φ(y) + J(x) = J(x). (2.3)

The last identity is true since

0
!
=

δ

δJ(x)

(∫

ddxJΦ−W [J ]

)

⇒ Φ =
δW

δJ

is true at J = Jsup. With Eq. (2.2), Eq. (2.3) and Eq. (2.1) we find

e−Γ[Φ] =

∫

Dϕ exp

(

−S[Φ + ϕ] +

∫

ddx
δΓ[Φ]

δΦ
ϕ

)

.

Altogether we get a nonlinear first-order functional differential equation, which is a
result of a functional integral, for computing the effective action. A different way
for the computation is given by RG ideas, where we get the flow equation mentioned
above which was first developed by C.Wetterich [30].

2.2 Exact Renormalisation Group Equation

Let us now derive this flow equation. It is called the exact renormalisation group

equation (ERGE). Instead of the effective action, like in Eq. (2.2), we define an
effective average action Γk. Let k be a momentum-shell parameter, such that

Γk→Λ ' Sbare and Γk→0 = Γ, (2.4)

where Sbare is the bare action and Λ is an ultraviolet (UV) cutoff scale. As we did
for Γ we define the generating functional, but this time we insert a regulator term

∆Sk, which implicitly specifies the properties of the momentum-shell integration:

eWk[J ] ≡ Zk[J ] :=
∫

Dϕe−S[ϕ]−∆S[ϕ]+
∫
ddxJϕ. (2.5)

12



2.2 Exact Renormalisation Group Equation

2 4 6 8 10
���������
p2

k2

0.5

1.0

1.5

2.0

���������
Rk

k2

Figure 2.1: The exponential regulator Rk(p)
k2 = p2/k2

exp(p2/k2)−1 (lower curve) and its

derivative ∂tRk
k2

(upper curve).

Let ∆Sk be quadratic in ϕ for acting like a k-dependent mass term:

∆Sk[ϕ] =
1

2

∫

ddp

(2π)d
ϕ(−p)Rkϕ(p). (2.6)

Here the regulator function Rk, sometimes also called cutoff function, has to fulfil
the following conditions:

lim
p2/k2→0

Rk(p) > 0, lim
k2/p2→0

Rk(p) = 0 and lim
k2→Λ→∞

Rk(p)→∞. (2.7)

The first condition implements an infrared (IR) regularisation, which means that the
IR modes become mass like. The second condition ensures Zk→0[J ] = Z[J ] and the
third condition ensures that we find the classical action for k2 → Λ→∞. Therefore
the regularised effective average action Γk satisfies Eq. (2.4) if it is defined by the
average generating functional Zk, with a regulator function satisfying Eq. (2.7). A
typical regulator and its derivative is shown in Fig. 2.1.

Since we know that the effective average action exhibits the correct limits for
k → 0 and k → ∞ we now turn our attention to the intermediate path, the RG

trajectory. At first we define the logarithmic scale parameter t := ln k
Λref

with a

reference scale Λref . The derivative with respect to t is then given by ∂t = k d
dk . For

receiving information about the RG trajectory let us investigate the derivative ∂tΓk.
Due to the insertion of the regulator the Legendre transformation has to be changed
to

Γk[Φ] = sup
J

(
∫

ddxJΦ−Wk[J ]

)

−∆Sk[Φ]. (2.8)

We observe again that Φ(x) = δW [J ]
δJ(x) at J = Jsup and we therefore obtain

δΦ(y)

δJ(x′)
=

δ2Wk[J ]

δJ(x′)δJ(y)
=: Gk(y − x′). (2.9)

On the other hand Eq. (2.3) changes to

J(x) =
δΓk[Φ]

δΦ(x)
+ (RkΦ)(x)

13



2 Theoretical Foundations

and functional differentiation leads to

δJ(x)

δΦ(x)
=

δ2Γk[Φ]

δΦ(x)δΦ(y)
+Rk(x, y) =: Γ

(2)
k [Φ] +Rk(x, y). (2.10)

The so defined matrix Γ
(2)
k is called fluctuation matrix. Combining Eq. (2.9) and

Eq. (2.10) we find

δ(x − x′) = δJ(x)

δJ(x′)
=

∫

ddy
δJ(x)

δΦ(y)

δΦ(y)

δJ(x′)

=

∫

ddy
(

Γ
(2)
k [Φ] +Rk

)

(x, y)Gk(y − x′).

In operator notation this important identity reads

1 =
(

Γ
(2)
k +Rk

)

Gk. (2.11)

∂tΓk for fixed Φ and at J = Jsup is given by

∂tΓk[Φ] = −∂tWk[J ]|Φ − ∂t∆Sk[Φ] +
∫

ddx(∂tJ)Φ

= −
[

∂tWk[J ]|J +

∫

ddx
δWk[J ]

δJ(x)
∂tJ(x)

]

+

∫

ddxΦ(∂tJ)− ∂t∆Sk[Φ]

= −∂tWk[J ]|J − ∂t∆Sk[Φ].

∂tWk can be written as

∂tWk =
∂tZk
Zk

= − 1

2Zk

∫

ddp

(2π)d
∂tRk

∫

Dϕ(−p)ϕ(p)e−S−∆S+
∫
ddxJϕ

= −1

2

∫

ddp

(2π)d
∂tRk[〈ϕ(−p)ϕ(p)〉 − 〈ϕ(−p)〉〈ϕ(p)〉 + 〈ϕ(−p)〉〈ϕ(p)〉]

= −1

2

∫

ddp

(2π)d
∂tRk

[

δ2Wk

δJδJ
+ 〈ϕ(−p)〉〈ϕ(p)〉

]

= −1

2

∫

ddp

(2π)d
∂tRk

δ2Wk

δJδJ
− ∂t∆Sk.

Together we find

∂tΓk =
1

2

∫

ddp

(2π)d
Gk∂tRk.

Writing this in operator notation and using Eq. (2.11) we end up with the Wetterich

equation (ERGE):

∂tΓk[Φ] =
1

2
Tr[(Γ

(2)
k [Φ] +Rk)

−1∂tRk],

where the trace denotes a sum over all loop momenta and matrix indices. If the
theory also contains fermionic degrees of freedom the Wetterich equation changes to

∂tΓk[Φ] =
1

2
STr[(Γ

(2)
k [Φ] +Rk)

−1∂tRk]. (2.12)

14



2.2 Exact Renormalisation Group Equation

∂tΓk = 1

2

Figure 2.2: Graphical representation of the Wetterich equation as explained in the
text below.

Here the “super-trace” (STr) is a trace in the super-field space. This super-field
space is equipped with a metric which includes a minus sign for the fermions.

Comparing Eq. (2.12) and the regulator conditions, Eq. (2.7), one can see how the
regulator Rk acts as a mass term and therefore cuts off all diverging small-momentum
terms (see also Fig. 2.1 for an example). On the other side the derivative ∂tRk cuts
off all large-momentum terms and therefore acts as a UV regulator.

The Wetterich equation can be interpreted in a graphical language as in Fig. 2.2.
The one loop structure corresponds to one momentum integral which is the trace in

Eq. (2.12). The propagator line is the full propagator (Γ
(2)
k + Rk)

−1 and the filled
box is the regulator insertion ∂tRk. We shall come back to this graphical language
in later sections.

We have derived an exact functional differential equation, so we do not have to
deal with the complicated functional integral. If the initial condition (for example
the bare action at a high UV cutoff scale Λ) and the regulator function Rk are given,
the solution of this equation provides us the trajectory of Γk in theory space1 from
k = Λ down to k = 0, which is the full effective action. Following this trajectory is
like integrating out all quantum fluctuations, momentum shell by momentum shell,
like in Wilson’s idea.

There are two ingredients we have to deal with: the regulator and the initial
condition. The latter one is a point in our infinite-dimensional theory space. We
can not deal with infinitely many operators all at once. Thus we have to choose a
truncation of Γk with a finite number of operators. How this Γk looks like depends
on the task. One possibility is to use the so-called derivative expansion as was done
in various works [37, 38, 39, 40, 41, 42]. In this case one organises the operators
with respect to the power of derivatives (

∑

n an(∂µφ)
n) and truncates the series. At

the end one has to take these parts into account which are important for the flow.
Thus the choice of the operators needs to be guided with as much physical input as
possible. Note that the usage of a truncation is the point where one has to use an
approximation, so the solution of the exact equation is not exact anymore.

The second ingredient we have to deal with is the regulator. It only has to satisfy
the conditions of Eq. (2.7). Apart from that it can be constructed with regard to the
special case. Different regulators surely lead to different trajectories in theory space.
Provided that the full theory is studied, the endpoint (Γk=0) does not depend on
the regulator. If we deal with a truncation (not with the full theory), the variation

1The theory space is the space of all action functionals spanned by all possible invariant operators
of the field.
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2 Theoretical Foundations

of the endpoint can indicate the quality of the truncation and the regulator. In our
calculation we use an “optimised regulator” (see [43]) in the sense that this regulator

maximises the gap minq2≥0(Γ
(2)
k + Rk) = Ck2 > 0. This is the denominator of the

Wetterich equation, thus the r.h.s. of Eq. (2.12) becomes as small as possible due to
the choice of the regulator. Consequently the system flows as little as possible.

2.3 Asymptotic Safety

In this section we give a short introduction to the so-called asymptotic safety sce-

nario. This scenario was first discussed in connection with the quantisation of gen-
eral relativity by S. Weinberg in 1976 [44, 45]. The common expectation is that at
very short distances (e.g. the Planck scale) the continuum QFT should be replaced
by a more general theory. This is not necessary if one can construct an asymptotic
safety scenario. If this is possible the theory is valid and consistent at all energy
scales. Till this day asymptotic safety was used in various theories. Ranging from
four-fermion models [46, 47], nonlinear sigma models in d > 2 dimensions [48], the
Gross-Neveu model [49], the standard model without fundamental Higgs scalar [50]
and extra-dimensional gauge theories [51]. Also the research with respect to gravity
is still going on [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. For a more detailed
introduction see e.g. [45, 63]. A discussion in a historical context is given in [64].

Now we introduce the idea of asymptotic safety. Let us begin with a general
effective average action Γk(φA, gi) =

∑

i giOi(φA). Here gi are running couplings,
Oi are operators and φA are the fields of which the operators are constructed. The
Wetterich equation, which we derived in the previous section, provides us with the
flow of this effective action. If it happens that the flow cannot be integrated beyond
a scale k = Λ, new physics sets in. We then talk about an effective QFT. The
theory is called fundamental, if the limit t→∞ can be taken safely. We now want
to study the flow of the couplings instead of the flow of Γk. The derivatives of the
Wetterich equation with respect to the fields provide us with the flow of the gi’s
and ∂tgi = βi(gj) are called beta functions. The couplings are related to physically
measurable quantities like cross sections. If one of the couplings diverges for k →∞
we expect the cross section to do the same. This problem can be avoided if there is
a fixed point g∗i where βj(g

∗
i ) = 0 holds for all j. This is the first requirement for

asymptotic safety. Now we distinguish between inessential and essential couplings.
Therefore we first need a few definitions. Let us consider the effective action as
a functional on F × Q × R

+, where F is the configuration space of the fields, Q
is an infinite-dimensional manifold parametrised by the gi’s and R

+ is the space
parametrised by the scale parameter k. The fields φA can be redefined without
changing the physics. This redefinition can be described by a group G acting on F .
It is possible to define an action of G on Q (at least locally) by

Γk(φ
′
B(φA), gi) = Γk(φA, g

′
i),

where primes denote the redefined fields and couplings. Now we can divide Q into
two subsets. The first subset {gî} contains all couplings which transform nontrivial
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2.4 Gauge Theory Basics

Figure 2.3: Theory space and critical surface at a fixed point.

under G. These couplings are called inessential. The second subset {gī} contains
all couplings invariant under G. These are called essential couplings. We can use a
field redefinition (at least locally) such that the inessential couplings gî gain fixed
values (gî)0. Furthermore there is an effective action Γ̄k which depends only on the
essential couplings:

Γk(φA, gī, gî) = Γk(φ̄A, gī, (gî)0) =: Γ̄k(φ̄A, gī).

This means that there is no need to restrict the flow of the inessential couplings. It
does not matter whether they flow towards a fixed point or not.

Next we turn our attention to the second requirement for asymptotic safety. Let
Q̃ be the space of all essential couplings. The set of all points in Q̃ that flow towards
a fixed point for k → ∞ is called the UV critical surface S. If the initial point lies
on S the whole trajectory lies on S. If the critical surface is finite dimensional only
a finite number of parameters have to be taken into account. These parameters can
be determined in experiments. This is the second requirement.

This situation is depicted in Fig. 2.3. The blue arrows on the critical surface
S indicate the so-called UV attractive directions corresponding to relevant param-
eters. The green arrows, leaving S, indicate the so-called UV repulsive directions

corresponding to irrelevant parameters. In summary, a theory is called asymptotic
safe if there exists a fixed point and the critical surface is finite dimensional.

An example for an asymptotic safe theory is a perturbatively renormalisable,
asymptotically free theory (e.g. QCD). In this case the fixed point is the Gaußian
one. In the present work we consider the electroweak standard model (SM). Nowa-
days the SM is seen as an effective theory. That means there has to be a cutoff scale
Λ above which new physics sets in. If it is possible to construct an asymptotic safety
scenario, such a new theory would not be necessary.

2.4 Gauge Theory Basics

In this section we shall give a very brief introduction to gauge theories. Often gauge
theories are introduced via the most common one, namely electrodynamics. Here
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we talk about gauge theories in general since electrodynamics is not the topic of
the present work. For more information see e.g. [65] for the main ideas of gauge
theory or [66] for a detailed description. There are also a lot of introductions like
[67] available.

Let us start with a system containing some field ψ, which should satisfy some
symmetry. Let the symmetry transformation be of the form

ψ → ψ′ = exp(−ig
∑

k

θk(x)Fk)ψ =: Uψ. (2.13)

Here Fk are the generators of the transformation and θk are some space-dependent
parameters. Thus we have a local instead of a global symmetry (θk spacetime inde-
pendent). First it looks like a very little change but we shall see that this has huge
consequences. In the case of a global symmetry ∂µψ → U∂µψ holds. This is not
true for a local symmetry, since

∂µψ → U∂µψ − ig
∑

k

(∂µθk)FkUψ.

Introducing the gauge fields Akµ := ∂µθk we can define a so-called covariant derivative

as Dµ := ∂µ − igAkµFk. We can not achieve ∂µψ → U∂µψ, but we can obtain
Dµψ → UDµψ.

ψ′ = Uψ, D′µψ
′ !
= U(Dµψ)

⇒(∂µ − igAk
′

µ Fk)Uψ = U(∂µ − igAkµFk)ψ

⇒Ak′µ Fk = UAkµFkU
−1 − i

g
(∂µU)U−1. (2.14)

Requiring the gauge fields Akµ to satisfy Eq. (2.14) we find the desired behaviour of ψ
under these local transformations. Consider a system described by an action which
is invariant under a global transformation. If we want to switch to a local symmetry
we have to introduce the gauge fields and replace ∂µ through Dµ. The new action
is then invariant under the gauge transformations (2.13) and (2.14).

Due to the gauge symmetry we not only have the spacetime itself, but also
have an internal space of the gauge group. The system has an additional freedom.
Thereby some trouble arises while quantising a theory. Consider a theory described
by an action S. Integrating path integrals of the form

∫

DAe−S[Aµ] would lead to
difficulties because different Aµ’s lead to the same physics due to the internal space.
Sloppy speaking it is like double counting. In order to avoid this we have to choose
a gauge G(Aµ) = 0 (e.g. the Lorentz gauge ∂µA

µ = 0) and implement a gauge fixing
term into the path integral. This is called the Faddeev-Popov method. For details
about this method see e.g. [68] or [69]. Let us see how it works. At first we can
insert a 1 into the path integral (c.f. 1 =

∫

dxδ(f(x))|∂f/∂x|):

1 =

∫

Dθ(x)δ
(

G(Aθµ)
)

det

(

δG(Aθµ)

δθ

)

.
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2.4 Gauge Theory Basics

Aθµ is the transformed gauge field, defined through

Aθkµ Fk = U(θ)AkµFkU
−1(θ)− i

g
(∂µU(θ))U−1(θ).

As long as G is linear the determinant is independent of θ and with a change of the
integration variable we get

I :=

∫

DAe−S[Aµ] =
(∫

Dθ
)∫

DAe−S[Aµ]δ(G(Aµ)) det
(

δG(Aθµ)

δθ

)

.

The θ integral gives a normalisation constant N , which is not important due to the
fact that we are interested in quantities which are proportional to a quotient of path
integrals. In the next step we introduce a spacetime-dependent function ω(x) with
a Gaußian weight.

I = N
∫

Dωe−
∫
ddxω

∗ω
2α

∫

DAe−S[Aµ] det
(

δG(Aθµ)

δθ

)

δ(G(A) − ω(x))

= N
∫

DA exp

(

−S[Aµ]−
∫

ddx
G∗G

2α

)

det

(

δG(Aθµ)

δθ

)

= N
∫

DADc̄Dc exp
(

−S[Aµ]−
∫

ddx
G∗G

2α
+

∫

ddxc̄iDijcj
)

. (2.15)

In the last line we introduced Dij =
δG(Aθµ)

δθ and complex Grassmann variables c and
c̄ and used the following identity.

detDij =

∫

DcDc̄e−
∫
ddxc̄iD

ijcj .

This identity is easily shown with the following definition of integration over a Grass-
mann variable θ.

∫

dθ(A+Bθ) := B. Using this definition we find
∫

dθ∗i dθie
θ∗iB

ijθj =

∫

dθ∗i dθie
∑
i θ

∗

i biθi

=

∫

dθ∗i dθi

(

1 +
∑

i

θ∗i biθi

)

=
∑

i

bi = detB,

where B is a hermitian matrix with eigenvalues bi. In the second line we Taylor-
expanded the exponential function and only the linear term survived, due to the
properties of the Grassmann variables.

Summarising the Faddeev-Popov method we can say that with Eq. (2.15) we
effectively have to replace the action

S → S +

∫

ddx
G∗G

2α
−
∫

ddxc̄iD
ijcj (2.16)

for quantising our theory. The new fields c̄, c are called ghost fields. These new field
are anti commuting fields which satisfy boson statistics and do not interact with the
matter.

19



2 Theoretical Foundations

2.5 Goldstone and Higgs Model

One important feature of the models discussed below is the possibility of spontaneous
symmetry breaking. Therefore we contemplate the spontaneous symmetry breaking
in the Goldstone model and in the Higgs model in this section. These models are
simple but appropriate to explain the mechanism. A more detailed description can
be found in many standard textbooks like [68] or [70].

We start with the Goldstone model which consists of one dynamic, complex
scalar field φ. The action of the Goldstone model reads

S =

∫

ddx
[

(∂µφ
∗)(∂µφ)− µ2|φ|2 − λ|φ|4

]

, (2.17)

where λ and µ are parameters. The latter terms can be combined into a potential
U [φ] = µ2|φ|2 + λ|φ|4. The field φ can be divided into its real and imaginary part
φ(x) = 1√

2
[φ1(x) + iφ2(x)]. Since the potential energy of the system should be

bounded from below, λ > 0 should hold. This action is invariant under a global
U(1) phase transformation:

φ(x)→ φ′(x) = φ(x)eiα, φ∗(x)→ φ∗
′

(x) = φ∗(x)e−iα.

The system reaches its minimum of energy if φ minimises the potential. Whether
the ground state is determined by a finite expectation value of φ depends on the
value of µ2:

In the symmetric phase µ2 > 0 holds. The potential looks like the left one
in Fig. 2.4 and reaches its minimum at φ(x) = 0. This describes a complex Klein
Gordon field with self-interaction λ|φ|4. The vacuum expectation value is given by
〈0|φ(x)|0〉 = 0.

In the regime of spontaneously broken symmetry µ2 < 0 holds. The shape of the
potential is depicted in the right panel of Fig. 2.4 and reaches its minimum at

φ(x) = φ0 =

(−µ2
2λ

)
1
2

eiθ, 0 ≤ θ < 2π.

Here θ is an angle in the complex φ plane and φ0 is the vacuum expectation value.

Figure 2.4: Effective potential in the symmetric phase (left panel) and the sponta-
neously symmetry broken phase (right panel).

20



2.5 Goldstone and Higgs Model

The ground state is degenerated. Let us choose θ = 0 and expand the field around
the minimum v.

φ(x) =
1√
2
[v + σ(x) + iη(x)]. (2.18)

σ and η are the fluctuations around the minimum. The action of the Goldstone
model (Eq. (2.17)) can be rewritten as

S =

∫

ddx
[1

2
(∂µσ)(∂

µσ)− 1

2
(2λv2)σ2

+
1

2
(∂µη)(∂

µη)

− λvσ(σ2 + η2)− 1

4
λ(σ2 + η2)2 + const.

]

.

This can be interpreted as one massive boson (first line), one massless boson (second
line) which is called Goldstone boson and interactions (last line). If one starts with a
N -component, complex scalar field one gets one massive boson and (2N−1) massless
Goldstone bosons.

Next we discuss briefly the so-called Higgs model. This model is the Goldstone
model plus gauge degrees of freedom as a consequence of a local symmetry. Thus
the action reads

S =

∫

ddx

[

(Dµφ)(D
µφ)− U [φ]− 1

4
FµνF

µν

]

. (2.19)

Here Dµφ = (∂µ + igAµ)φ and Fµν = ∂νAµ − ∂µAν . As explained in Sec. 2.4 Aµ is
the gauge field and g is the gauge coupling. Decomposing the bosonic field as done
in Eq. (2.18) leads to

S =

∫

ddx
[1

2
(∂µσ)(∂

µσ)− 1

2
(2λv2)σ2 (2.20)

− 1

4
FµνF

µν +
1

2
(gv)2AµA

µ (2.21)

+
1

2
(∂µη)(∂

µη) + gvAµ∂µη
]

, (2.22)

where the interaction terms are omitted for briefness. The interpretation is not
that easy since the term qvAµ∂µη shows that σ, η and Aµ are not independent.
Another hint for the problems with the interpretation is that the vector field Aµ,
the massive field σ and the massless field η together contain five degrees of freedom
while Eq. (2.19) describes a system containing four degrees of freedom. Since we have
only changed the variables, the number of degrees of freedom should not change. If
we use the so-called unitary gauge the field η vanishes: φ(x) = 1√

2
[v + σ(x)]. Now

the action excluding the interaction terms reads

S =

∫

ddx
[1

2
(∂µσ)(∂

µσ)− 1

2
(2λv2)σ2

− 1

4
FµνF

µν +
1

2
(gv)2AµA

µ
]

.
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Thus we have a system containing the massive boson and a massive gauge boson.
The Higgs mechanism thus eliminates the massless field η of the Goldstone model and
equips the gauge boson with a mass. We shall come back to these two mechanisms
below.
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Chapter 3

4D Model without Gauge

Bosons

In this chapter we investigate a four-dimensional model which serves as a simple toy
model for the Standard Model of particle physics. The goal is to solve the triviality
problem. That is why the model requires to have some special properties. A simple
model able to mimic the triviality problem was investigated in [26]. It consists
of a real scalar field and N Dirac fermions. We extend this model and use a N -
component, complex scalar field and N left-handed and one right-handed fermions.
This asymmetry between left-handed and right-handed number also exists in the
Standard Model. It is still a toy model but can be seen as a next step towards the
Standard Model.

3.1 Constructing the Model

Before we construct the model mentioned above we recapitulate the findings of [26].
In this work the truncation of the effective action of the considered model reads

Γk =

∫

d4x

(

Zφ
2
(∂µφ)

2 + Uk(ρ) + Zψψ̄i/∂ψ + ihkφψ̄ψ

)

. (3.1)

Here φ is a single-component real scalar field and ψ describes N Dirac fermions.
Furthermore Uk is the effective potential, ρ = 1

2φ
2, Zφ and Zψ are the wave-function

renormalisations and hk is the Yukawa coupling. Constant wave-function renormal-
isations correspond to the leading order derivative expansion. The system described
by this truncation is invariant under a discrete Z2 symmetry. It can be in one of two
regimes, the symmetric one (SYM) or the regime of spontaneous symmetry breaking
(SSB). The first corresponds to an expansion of the effective potential around zero
field ρ = κ = 0 while the second corresponds to an expansion around the minimum
ρ = κ > 0. In both cases the authors found no evidence for a reliable non-Gaußian
fixed point for N ∈ N. Thus no asymptotic safety scenario can be established.
The problem occurs in the flow equation of the vacuum expectation value κ. This
equation reads

∂tκ = −2κ− fermionic contributions + bosonic contributions. (3.2)
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∂tκ

κ
κ
∗

bosonic fluctuations

dominate

fermionic fluctuations

dominate

Figure 3.1: Contribution of fermionic and bosonic fluctuations to the flow equation
for the vacuum expectation value κ as explained in the text below.

A possible fixed point requires a vanishing ∂tκ. If the bosonic contributions do not
compensate the fermionic contributions the term −2κ leads to a negative fixed-point
value for κ. Neglecting the κ dependence of the fermionic and bosonic contributions
leads to the straight lines in Fig. 3.1. The intersection with the κ axis is the fixed-
point value of κ. If the fermionic contributions dominate this fixed-point value is
negative. Including the κ dependence of the different contributions might lead to a
change of the slope near the fixed point. For N = 1 it turned out that the fermionic
fluctuations dominate and increasing N would make the problem more severe since
the fermionic loops are proportional to the number of fermions (see Fig. 3.2). The
authors showed that it is possible to get an acceptable fixed point if one decreases
N sufficiently. This decreases the contribution of the fermionic fluctuations and the
bosonic fluctuations dominate. Such a change corresponds to a shift of the zero to
the right side in Fig. 3.1.

Since a fermionic number N < 1 is unphysical we try to circumvent this problem
in a different way. Instead of decreasing the fermionic contribution we try to in-
crease the bosonic ones. Thus we extend the model by introducing a N -component,
complex scalar field instead of the one-component real one. The bosonic loop in
Fig. 3.2 is now proportional to N . The Yukawa coupling part of the truncation of
the old model is ihkφψ̄ψ. Since we changed the bosonic field we have to change this
interaction too. The interaction term has to be scalar and thus the index of the new
bosonic field has to be contracted. We divide the fermionic field in its left-handed and
its right-handed part. Introducing an asymmetry by using N left-handed and only
one right-handed fermion the new Yukawa interaction reads hk(ψ̄Rφ

aψaL−ψ̄aLφa†ψR).
This left-right asymmetry is not just a mathematical trick but can also be seen in the
Standard Model. The electron consists of a left-handed and a right-handed part but
the neutrino only has a left-handed part. This corresponds to a vanishing neutrino
mass. New experiments showed that neutrinos might have tiny masses. However,
since our model is a toy model we can take the left-right asymmetry simply as a
property of our model. With this new Yukawa interaction we can see in Fig. 3.2 that
the fermionic loop is not proportional to N since the ”incoming” boson component
defines the fermionic component of the loop. Altogether our new system contains
a N -component, complex scalar field, a N -component, left-handed fermionic field
and one right-handed fermionic field. Therefore we denote the number of bosonic

24



3.1 Constructing the Model

Figure 3.2: Bosonic and fermionic contributions to the flow equation of the vacuum
expectation value: Left panel: Bosonic loop. Right panel: Fermionic loop.

and left-handed, fermionic components by NL. The symmetry we desire is a chiral
U(NL)L⊗U(1)R symmetry. This allows a mass term for the bosons (m2

∑

a φ
a†φa)1

but inhibits a mass term for the fermions. The fermions acquire a mass via the
Yukawa interaction in the following way. In the SSB regime the bosonic field ac-
quires a vacuum expectation value v. Let φ1 = v and φi = 0 (∀i > 1). Thus,
the Yukawa interactions containing ψi (∀i > 1) vanish and these purely left-handed
fermions remain massless. The Yukawa interaction containing ψ1 does not vanish
and this fermion consisting of a left-handed and a right-handed part acquires a mass:

hkψ̄RvψL + c.c. = hkvψ̄ψ, with ψ = (ψL, ψR)
T .

Furthermore we introduce bosonic self-interactions to arbitrary order
∑

i
λi
i! ρ

i where
ρ = φa†φa and collect the mass term and the self-interactions in an effective potential
Uk. Introducing kinetic terms for the fermions and the bosons we obtain the following
new truncation:

Γk =

∫

ddx
[

Uk(ρ) + Zφ,k(∂µφ
a†)(∂µφa) + i(ZL,kψ̄

a
L /∂ψ

a
L + ZR,kψ̄R /∂ψR)

+h̄k(ψ̄Rφ
aψaL − ψ̄aLφa†ψR)

]

. (3.3)

Here the lower index k indicates the scale dependence, ZL and ZR are the wave-
function renormalisations of the left-handed and the right-handed fermions, respec-
tively, and h̄k is the Yukawa coupling. It is important to distinguish between ZL,k

and ZR,k because in later sections we shall see that they obtain different loop con-
tributions. The standard RG invariance of field rescaling is fixed by the definition
of the renormalised fields:

φ̃ = Z
1/2
φ,k φ, ψ̃L,R = Z

1/2
L,RψL,R.

The scale dependence of the field thus tucks in Zφ, ZL and ZR respectively. It follows
that the t derivative of the fields is proportional to the anomalous dimensions ηφ,
ηL and ηR. These anomalous dimensions are given by η = −∂tZ

Z . If these anomalous
dimensions become too large the derivative expansion breaks down.

1From now on we will drop the
∑

and if there is a index two times ahead the sum has to be
taken.
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3 4D Model without Gauge Bosons

3.2 Flow Equations

In this section our goal is to determine the flow of the effective average action Γk of
our toy model. It is not possible to solve the Wetterich equation (2.12) exactly (as
mentioned in Sec. 2.2) so we first have to truncate our action. We use the truncation
(3.3). The next step is then to determine the flow equations for the different parts
of our truncated action by choosing appropriate projections. If we have done this
we get a system of coupled nonlinear equations, the so-called β functions.

3.2.1 Fluctuation Matrix and Regulator

At first we have to determine the fluctuation matrix and decide which regulator is
appropriate for our purposes. Therefore we start by introducing some definitions
which help us to simplify the calculations.

We split the complex bosonic fields into two real scalar fields:

φa(x) = 1√
2
(φa1(x) + iφa2(x)) φa†(x) = 1√

2
(φa1(x)− iφa2(x))

φa†(x)φa(x) = 1
2(φ

a
1(x)

2 + φa2(x)
2) = ρ.

The Fourier transform is given by

φa(p) :=
1√
2
(φa1(p) + iφa2(p)) φa†(p) :=

1√
2
(φa1(p)− iφa2(p)) 6= FT(φa†(x)),

where we used the following convention for the Fourier transformation:

f(x) =

∫

ddp

(2π)d
f(p)eipx, δ(x) =

∫

ddp

(2π)d
eipx,

f(p) =

∫

ddxf(x)e−ixp, δ(p) =

∫

ddxe−ixp.

Note that φa1(p) and φa2(p) are no real fields. Using this we can write down the
truncation (3.3) in momentum space:

Γk =

∫

ddxUk(ρ) +
Zφ,k
2

∫

ddp

(2π)d
p2[φa1(p)φ

a
1(−p) + φa2(p)φ

a
2(−p)]

−
∫

ddp

(2π)d
[ZL,kψ̄

a
L(p)/pψ

a
L(p) + ZR,kψ̄R(p)/pψR(p)] (3.4)

+ h̄k

∫

ddp

(2π)d

∫

ddq

(2π)d

[

ψ̄R(p)φ
a(p− q)ψaL(q)− ψ̄aL(p)φa†(p− q)ψR(q)

]

.

Our task is to evaluate the Wetterich equation (2.12). So far we know what Γk

looks like. The fluctuation matrix Γ
(2)
k and the regulator Rk are still missing. The

next task is to evaluate the fluctuation matrix. This matrix is given by Γ
(2)
k (p, q) =

−→
δ

δΦ(p)Γk
←−
δ

δΦT (−q) , where we have combined all fields in one vector Φ(p). Therefore the
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fluctuation matrix is a (4NL + 2)× (4NL + 2) matrix and can be written as

Γ
(2)
k =



















Γφ1φ1 Γφ1φ2 Γφ1ψL
Γφ1ψ̄L

Γφ1ψR
Γφ1ψ̄R

Γφ2φ1 Γφ2φ2 Γφ2ψL
Γφ2ψ̄L

Γφ2ψR
Γφ2ψ̄R

ΓψLφ1 ΓψLφ2 ΓψLψL
ΓψLψ̄L

ΓψLψR
ΓψLψ̄R

Γψ̄Lφ1
Γψ̄Lφ2

Γψ̄LψL
Γψ̄Lψ̄L

Γψ̄LψR
Γψ̄Lψ̄R

ΓψRφ1 ΓψRφ2 ΓψRψL
ΓψRψ̄L

ΓψRψR
ΓψRψ̄R

Γψ̄Rφ1
Γψ̄Rφ2

Γψ̄RψL
Γψ̄Rψ̄L

Γψ̄RψR
Γψ̄Rψ̄R



















. (3.5)

The different parts of this matrix can be found in App.A.
Next we choose an appropriate regulator Rk. As said in Sec. 2.2 the regulator

has to satisfy three conditions. Recalling that the regulator contributions could be
interpreted as momentum dependent masses the structure of the regulator matrix
is obvious. The non-vanishing elements of the matrix should be those, which are
responsible for the masses of the fields. These are the φa†φa term for the bosonic
fields, the ψ̄LψL term and the ψLψ̄L term for the left-handed fermionic fields and
the ψ̄RψR term and the ψRψ̄R term for the right-handed fermionic field. Therefore
the regulator matrix is given as

Rk(q, p) = δ(p − q)
(

RkB 0
0 −RkF

)

, (3.6)

with a 2NL × 2NL matrix

RkB =

(

Zφ,kδ
abp2rkB(p) 0
0 Zφ,kδ

abp2rkB(p)

)

for the bosonic sector and a (2NL + 2)× (2NL + 2) matrix

RkF =









0 ZL,kδ
ab/pT rkF(−p) 0 0

ZL,kδ
ab/prkF(p) 0 0 0
0 0 0 ZR,k/p

T rkF(−p)
0 0 ZR,k/prkF(p) 0









for the fermionic sector. Now we have all ingredients at hand that we need for our
calculation of the flow equations.

3.2.2 Flow Equation of the Effective Potential

In this subsection we use the Wetterich equation, our truncation and the things we
dealt with in the last subsection for a derivation of the flow equation of the effective
potential. This equation will be used later for the calculation of the flow equation of
the bosonic mass, the flow equation of the bosonic self interacting constants and the
flow equation of the vacuum expectation value. First let us rewrite the Wetterich
equation (2.12) and our truncation (3.3):

∂tΓk =
1

2
STr[(Γ

(2)
k +Rk)

−1∂tRk],
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(∂tUk)B = 1

2

(

(2NL − 1) +

)

Goldstone massless

Figure 3.3: Bosonic contributions to the flow equation of the effective potential in
the spontaneously symmetry broken regime.

Γk =

∫

ddx
[

Uk(ρ) + Zφ,k(∂µφ
a†)(∂µφa) + i(ZL,kψ̄

a
L/∂ψ

a
L + ZR,kψ̄R /∂ψR)

+h̄kψ̄Rφ
aψaL − h̄kψ̄aLφa†ψR

]

.

Inserting the truncation into the Wetterich equation we see how to get the flow
equation of the effective potential. We project onto constant bosonic fields and
vanishing fermionic fields. If we do so only the potential term in our truncation
survives. Thus the flow equation reads

∂tUk =
1

2
STr[(Γ

(2)
k +Rk)

−1∂tRk]

∣

∣

∣

∣

φa=const,ψa
L
=ψR=0

. (3.7)

Comparing Eq. (3.7) with Eq. (3.6) we see that we can calculate the bosonic part

(upper left block) and the fermionic part (lower right block) of (Γ
(2)
k + Rk)

−1∂tRk
separately. Let us start with the bosonic part:

(Γ2
k +Rk)B = δ(p − q)






(Zφ,kPB(p) + U ′k)1+ U ′′k







φ11φ
1
1 . . . φ11φ

NL

2
...

...

φNL

2 φ11 . . . φNL

2 φNL

2












, (3.8)

with PB(p) = p2(1 + rkB(p)), 1 being the identity matrix and primes denote the
derivative with respect to ρ. Inverting the matrix, multiplying it with the derivative
of the regulator and taking the STr yields

(∂tUk)B =
1

2

∫

ddp

(2π)d
∂t(Zφ,kp

2rkB(p))×
[

2NL − 1

Zφ,kPB(p) + U ′k
+

1

Zφ,kPB(p) + U ′k + 2U ′′k ρ

]

. (3.9)

This equation can be interpreted graphically as we did with the Wetterich equation
in Sec. 2.2. In Fig. 3.3 one can see two different parts which correspond to the two
different parts of Eq. (3.9). In the symmetric regime the vacuum expectation value
of the bosonic field vanishes and thus both parts are the same and the equation
becomes proportional to 2NL. In the symmetry broken regime both parts differ
from each other. Thus we have the left loop in Fig. 3.3 which are the 2NL − 1
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(∂tUk)F = −

(

(NL − 1) +

)

massless massive

Figure 3.4: Fermionic contributions to the flow equation of the effective potential in
the spontaneously symmetry broken regime.

Goldstone modes and the right loop which corresponds to the one massive radial
mode. Again the filled boxes are the regulator insertions ∂tRk.

Now let us have a look for the fermionic part. Again we first write down the

(Γ
(2)
k +Rk)F matrix:

(Γ
(2)
k +Rk)F = −δ(p − q)









0 AT1 0 hkφ
a

A1 0 hkφ
a† 0

0 −hkφb† 0 AT2
−hkφb 0 A2 0









.

Here we introduced A1 = ZL,kδ
ab/p(1 + rkF(p)) and A2 = ZR,kδ

ab/p(1 + rkF(p)),
a, b = 1, . . . , NL. Inverting, multiplying with the derivative of the regulator and
taking the STr we find

(∂tUk)F = −dγ
∫

ddp

(2π)d

{

(NL − 1)
/p

ZL,kp2(1 + rkF)
∂t(ZL,k/prkF(p))

+
ZL,kZR,kPF(p)

h̄2kρ+ ZL,kZR,kPF(p)

/p

ZL,kp2(1 + rkF(p))
∂t[ZL,k/prkF(p)]

+
ZL,kZR,kPF(p)

h̄2kρ+ ZL,kZR,kPF(p)

/p

ZR,kp2(1 + rkF(p))
∂t[ZR,k/prkF(p)]

}

, (3.10)

with PF(p) = p2(1 + rkF(p))
2 and dγ as the dimension of the γ matrices. This

equation can again be interpreted graphically, see Fig. 3.4. The left loop corresponds
to the first line in Eq. (3.10). These are the (NL − 1) massless, purely left-handed
fermions. The right loop corresponds to the second and third line in Eq. (3.10).
These are the left-handed and the right-handed part of the massive fermion. In the
symmetric regime ρ = 0 holds and thus all parts become massless.

Now we just have to add the fermionic part, Eq. (3.10), and the bosonic part,
Eq. (3.8). Using the threshold functions defined in AppC we end up with

∂tUk = vdk
d2

[

(2NL − 1)ld0

(

U ′k
Zφ,kk2

)

+ ld0

(

U ′k + 2ρU ′′k
Zφ,kk2

)]

− dγvdkd2
[

(NL − 1)l
(F)d
0L (0) + l

(F)d
0L

(

ρh̄2k
k2ZL,kZR,k

)

+ l
(F)d
0R

(

ρh̄2k
k2ZL,kZR,k

)]

. (3.11)
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3 4D Model without Gauge Bosons

Here v−1d = 2d+1πd/2Γ(d/2) is the volume of the d-dimensional unit sphere and
again primes denote derivatives with respect to ρ. In this equation the different
contributions are visible. The first line contains the (2NL − 1) Goldstone modes
and the radial mode. The second line contains (NL − 1) massless fermions and the
left-handed and the right-handed part of the massive fermion.

If we want to look for a fixed point it is convenient to rewrite this equation
in terms of dimensionless quantities. Therefore we use the dimensionless form by
running scale division. This means that we have to use the following quantities:

ρ̃ = Zφ,kk
2−dρ,

h2k = Z−1φ,kZ
−1
L,kZ

−1
R,kk

d−4h̄2k,

uk(ρ̃) = k−dUk(ρ)|ρ=kd−2ρ̃/Zφ,k
. (3.12)

Rewriting Eq. (3.11) with Eq. (3.12) yields

∂tuk =− duk + ρ̃u′k(d− 2 + ηφ)

+ 2vd
{

(2NL − 1)ld0(u
′
k) + ld0(u

′
k + 2ρ̃u′′k)

− dγ
(

(NL − 1)l
(F)d
0,L (0) + l

(F)d
0,L (ρ̃h2k) + l

(F)d
0,R (ρ̃h2k)

)}

,

where primes denote derivatives with respect to ρ̃. Inserting the optimised regulators
(see App.C) and using the anomalous dimensions ηφ, ηL and ηR we end up with the
dimensionless form of the flow equation for the effective potential:

∂tuk =− duk + ρ̃u′k(d− 2 + ηφ)

+
4vd
d

[

2NL − 1

1 + u′k

(

1− ηφ
d+ 2

)

+
1

1 + u′k + 2ρ̃u′′k

(

1− ηφ
d+ 2

)

(3.13)

− dγ

(

1− ηL
d+ 1

)(

(NL − 1) +
1

1 + ρ̃h2k

)

+

(

1− ηR
d+ 1

)

dγ
1 + ρ̃h2k

]

.

3.2.3 Flow Equation of the Yukawa Coupling

Now we determine the flow equation of the Yukawa coupling h2. As we did with the
effective potential we start with our truncation and project onto the coupling. The
truncation reads

Γk =

∫

ddxUk(ρ) +
Zφ,k
2

∫

ddp

(2π)d
p2[φa1(p)φ

a
1(−p) + φa2(p)φ

a
2(−p)]

−
∫

ddp

(2π)d
[ZL,kψ̄

a
L(p)/pψ

a
L(p) + ZR,kψ̄R(p)/pψR(p)]

+ h̄k

∫

ddp

(2π)d

∫

ddq

(2π)d

[

ψ̄R(p)φ
a(p− q)ψaL(q)− ψ̄aL(p)φa†(p− q)ψR(q)

]

.

For the projection we divide our bosonic field into two parts: the vacuum expectation
value (vev), which is zero in the SYM regime and greater than zero in the SSB
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3.2 Flow Equations

regime, and the fluctuation around the vev (∆φ). The vev acts as a mass term for
the fermionic fields and the fluctuation contributes to the interaction via Yukawa
coupling. Precisely we divide the bosonic field as follows:

φ =
1√
2











φ11(p) + iφ12(p)
φ21(p) + iφ22(p)

...

φNL

1 (p) + iφNL

2 (p)











=
δ(p)√

2











φvev
0
...
0











+
1√
2











∆φ11(p) + i∆φ12(p)
∆φ21(p) + i∆φ22(p)

...

∆φNL

1 (p) + i∆φNL

2 (p)











.

(3.14)
Here we rotated the coordinate system such that the vev points into the direction of
the first real axis. Inserting this into our truncation we see that a possible projection
rule is −→

δ

δψ̄1
L(p)

√
2
−→
δ

δ∆φ11(p
′)
Γk

←−
δ

δψR(q)

∣

∣

∣

∣

∣

ψa
R
=ψa

L
=∆φ=0

p′=p=q=0

= −h̄kδ(0).

Using this projection for the Wetterich equation we obtain the flow of the Yukawa
coupling:

−δ(0)∂th̄k =
1

2

−→
δ

δψ̄1
L(p)

√
2
−→
δ

δ∆φ11(p
′)
STr[∂̃t ln(Γ

(2)
k +Rk)]

←−
δ

δψR(q)

∣

∣

∣

∣

∣

ψa
R
=ψa

L
=∆φ=0

p′=p=q=0

.

Here we introduced the operator ∂̃t which is the the same as ∂t, but it just acts on the
regulator Rk. One may ask why we use this new operator and the logarithm instead
of the old operator. The answer is that it may look a little bit more complicated at
the moment but it helps us during the following calculations. At first we divide the

term Γ
(2)
k +Rk into two parts as we did with our bosonic fields. The first part is called

Γ
(2)
k,0+Rk and only contains the components which are independent of the fluctuating

fields (∆φ,ψL, ψR, ψ̄L, ψ̄R). The second part contains just those fluctuating fields.

This one is called ∆Γ
(2)
k .

First we note that only those parts survive the projection which contain exactly
one ∆φ11, one ψ̄

1
L and one ψR. That is why we can drop the other terms. At first we

expand the logarithm:

∂̃t ln(Γ
(2)
k +Rk) = ∂̃t ln(Γ

(2)
k,0 +Rk +∆Γ

(2)
k )

= ∂̃t ln[(Γ
(2)
k,0 +Rk)(1 + (Γ

(2)
k,0 +Rk)

−1∆Γ
(2)
k )]

= ∂̃t ln(Γ
(2)
k,0 +Rk) + ∂̃t ln[1 + (Γ

(2)
k,0 +Rk)

−1∆Γ
(2)
k ]. (3.15)

The first term does not survive the projection so we can drop it. For the second
part we use the Taylor expansion of the logarithm ln(1 + x) = x− 1

2x
2 + 1

3x
3 − . . ..

Just the part to the third power survives the projection. Together we obtain

−δ(0)∂th̄k =
1

6

−→
δ

δψ̄1
L(p)

√
2
−→
δ

δ∆φ11(p
′)
STr



∂̃t





∆Γ
(2)
k

Γ
(2)
k,0 +Rk





3



←−
δ

δψR(q)

∣

∣

∣

∣

∣

∣

ψa
R
=ψa

L
=∆φ=0

p′=p=q=0

.
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+ −∂th̄k = −
1

2

(

vev

vev

vev

vev

)

vev

vev

+ +

vev

vev

−

Figure 3.5: Different contributions to the flow equation of the Yukawa coupling.

Performing the matrix calculations and taking the super-trace we find:

∂th̄k = −
h̄3k
2

∫

ddp

(2π)d
∂̃t×





1

ZLZRPF +
h̄2
k

2 φ
2
vev

(

U ′′kvevφ
2
vev

(ZφPB + U ′kvev)
2
− 3U ′′kvevφ

2
vev + U ′′′kvevφ

4
vev

(ZφPB + U ′kvev + U ′′kvevφ
2
vev)

2

)

+
h̄2kφ

2
vev

(ZLZRPF +
h̄2
k

2 φ
2
vev)

2

(

1

ZφPB + U ′kvev
− 1

ZφPB + U ′kvev + U ′′kvevφ
2
vev

)

− 1

ZLZRPF +
h̄2
k

2 φ
2
vev

(

1

ZφPB + U ′kvev
− 1

ZφPB + U ′kvev + U ′′kvevφ
2
vev

)



 . (3.16)

For a better readability we dropped the k index of the wave-function renormalisations
and used the shortcut Ukvev for Uk(φ

2
vev). Primes again denote derivatives with

respect to ρ. As we did for the flow equation of the effective potential we can write
down this equation in terms of Feynman diagrams. This time the derivative with
respect to the fields at the projection onto the coupling corresponds to external legs
in the graph. Therefore all graphs contain one external, bosonic leg and two external,
fermionic legs. The ∂̃t operator converts n propagators to (n + 1) propagators and
one regulator insertion. Note that 1

PF
is proportional to two fermionic propagators.

In Fig. 3.5 we can see six diagrams corresponding to the three lines in Eq. (3.16).
We do not separate the loops for the Goldstone and the radial mode and ignore
the term proportional to U ′′′k in this figure. The first two graphs (corresponding
to the first line in Eq. (3.16)) contain three Yukawa couplings where one of them
couples the fermions to the vev. Furthermore they contain one φ4 coupling with
three fluctuating bosonic fields coupling to the vev. Both graphs differ only by
the regulator insertion. The second two graphs (corresponding to the second line
in Eq. (3.16)) couple two times to the vev too but contain five times the Yukawa
coupling. The third two graphs do not couple to the vev and contain three times
the Yukawa coupling.
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Using the threshold functions defined in the App.C we find:

∂th̄
2
k =− 4vdh̄

4
k×

[

− U ′′kvevφ
2
vev

k6−dZL,kZR,kZ
2
φ,k

l
(FB)d
1,2

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev
k2Zφ,k

)

+
3U ′′kvevφ

2
vev + U ′′′kvevφ

4
vev

k6−dZL,kZR,kZ
2
φ,k

l
(FB)d
1,2

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev + U ′′kvevφ

2
vev

k2Zφ,k

)

+
1

k4−dZL,kZR,kZφ,k
l
(FB)d
1,1

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev
k2Zφ,k

)

− 1

k4−dZL,kZR,kZφ,k
l
(FB)d
1,1

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev + U ′′kvevφ

2
vev

k2Zφ,k

)

− h̄2kφ
2
vev

k6−dZ2
L,kZ

2
R,kZφ,k

l
(FB)d
2,1

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev
k2Zφ,k

)

+
h̄2kφ

2
vev

k6−dZ2
L,kZ

2
R,kZφ,k

l
(FB)d
2,1

(

h̄2kφ
2
vev

2k2ZL,kZR,k
,
U ′kvev + U ′′kvevφ

2
vev

k2Zφ,k

)

]

.

Using the dimensionless quantities in Eq. (3.12) and writing ukvev as a short cut for
uk(κk/Zφ,kk

2−d) we end up with

∂th
2
k = (ηφ + ηL + ηR + d− 4)h2k − 4vdh

4
k[

−2u′′kvevκkl
(FB)d
1,2 (κkh

2
k, u
′
kvev)

+(6u′′kvevκk + 4u′′′kvevκ
2
k)l

(FB)d
1,2 (κkh

2
k, u
′
kvev + 2u′′kvevκk)

+l
(FB)d
1,1 (κkh

2
k, u
′
kvev)

−l(FB)d
1,1 (κkh

2
k, u
′
kvev + 2u′′kvevκk)

−2κkh2kl
(FB)d
2,1 (κkh

2
k, u
′
kvev)

+2κkh
2
kl

(FB)d
2,1 (κkh

2
k, u
′
kvev + 2u′′kvevκk)]. (3.17)

This time primes denote derivatives with respect to ρ̃. Since our choice of the
regulator is hidden in the threshold functions this is the general result. Now we
move on with the determination of the anomalous dimensions.

3.2.4 Anomalous Dimensions

In this section we calculate the equation for the anomalous dimensions depending
on the bosonic self-interactions, the Yukawa coupling and the other anomalous di-
mensions. Because of ηi = −∂tZi/Zi we have to turn our attention to the flow of
the wave-function renormalisations. Let us start with the bosonic one. At first we
divide our bosonic field according to Eq. (3.14) into two parts. One part contains
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the vev and the other one the fluctuating fields. If we look at our truncation

Γk =

∫

ddxUk(ρ) +
Zφ,k
2

∫

ddp

(2π)d
p2[φa1(p)φ

a
1(−p) + φa2(p)φ

a
2(−p)]

−
∫

ddp

(2π)d
[ZL,kψ̄

a
L(p)/pψ

a
L(p) + ZR,kψ̄R(p)/pψR(p)]

+ h̄k

∫

ddp

(2π)d

∫

ddq

(2π)d

[

ψ̄R(p)φ
a(p− q)ψaL(q)− ψ̄aL(p)φa†(p− q)ψR(q)

]

,

we see how to project onto Zφ,k:

δ(0)∂tZφ,k =
∂

∂(p′2)

δ

δ∆φ11(p
′)

δ

δ∆φ11(q
′)

1

2
STr

(

∂̃t ln(Γ
(2)
k +Rk)

)

∣

∣

∣

∣

∆φ=ψa
L
=ψR=0

p′=q′=0

.

The first step is analogous to the one in Subsec. 3.2.3: We rewrite the logarithm as
we did in Eq. (3.15) and use the Taylor expansion. This time, however, we just need
those parts which contain two fields. Thus we just have to pick up the quadratic
term:

δ(0)∂tZφ,k =
∂

∂(p′2)

δ

δ∆φ(p′)

δ

δ∆φ(q′)

−1
4

STr



∂̃t





∆Γ
(2)
k

Γ
(2)
k,0 +Rk





2



∣

∣

∣

∣

∣

∣

∆φ=ψa
L
=ψR=0

p′=q′=0

.

Since the matrix calculation is not straightforward let us remark on those things
which are a little bit more involved. First, it is important to realise that the ma-

trix multiplications contain “momentum indices”. In our case the ∆Γ
(2)
k part is

proportional to δ(p − q) and the inverse matrix (Γ
(2)
k,0 + Rk)

−1 is proportional to

∆φ11(p− q). Because of the square inside the super-trace four matrices are involved
in the multiplication. The result is proportional to

∫

ddp

(2π)d

∫

ddr

(2π)d

∫

dds

(2π)d

∫

ddt

(2π)d
δ(p − r)∆φ11(r − s)δ(s − t)∆φ11(t− p),

where the p integration belongs to the STr.

In the fermionic part of the supertrace the following term appears:

∫

ddp

(2π)d
d

dp′2
1

ZL,kZR,kPF(p) +
h̄k
2 φ

2
vev

×
(

1

ZL,kZR,kPF(p+ p′) + h̄k
2 φ

2
vev

+
1

ZL,kZR,kPF(p − p′) + h̄k
2 φ

2
vev

)

. (3.18)

As a shortcut let us write the fraction as a function f depending on p, p + p′ and

p− p′ respectively. Eq. (3.18) then reads
∫ ddp

(2π)d
d
dp′2 f(p)(f(p+ p′)+ f(p− p′)). Now
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let us rewrite this term by using the Taylor expansion:

∫

ddp

(2π)d
d

dp′2
f(p)(f(p+ p′) + f(p− p′)) =

∫

ddp

(2π)d
d

dp′2
f(p)p′µp′ν∂µ∂νf(p)

= − d

dp′2
p′µp′ν

∫

ddp

(2π)d
∂µf(p)∂νf(p)

= − d

dp′2
p′µp′ν

∫

ddp

(2π)d
4pµpν

(

d

dp2
f̃(p2)

)2

= −4

d

∫

ddp

(2π)d
p2
(

d

dp2
f̃(p2)

)2

.

Apart from these things the matrix calculation can be performed as discussed above.
If one calculates the bosonic and the fermionic part separately one gets the following
two contributions to the flow of Zφ,k. The bosonic part reads

(∂tZφ,k)B =
1

d

∫

ddp

(2π)d
∂̃t×



(3U ′′kvevφvev + U ′′′kvevφ
3
vev)

2p2Z2
φ,k

(

∂
∂p2P (p)

(Zφ,kP (p) + U ′kvev + U ′′kvevφ
2
vev)

2

)2

+(2NL − 1)(U ′′kvevφvev)
2p2Z2

φ,k

(

∂
∂p2

P (p)

(Zφ,kP (p) + U ′kvev)
2

)2




and the fermionic part reads

(∂tZφ,k)F =
dγ
d

∫

ddp

(2π)d
∂̃t



2h̄2kp
4ZL,kZR,k





∂

∂p2
(1 + rkF(p))

ZL,kZR,kPF(p) +
h̄2
k

2 φ
2
vev





2

−h̄4kφ2vevp2




∂

∂p2
1

ZL,kZR,kPF(p) +
h̄2
k

2 φ
2
vev





2

 .

This again can be interpreted graphically, see Fig. 3.6. We do not separate the differ-
ent contributions of the Goldstone modes and the radial modes in the bosonic loop.
Adding both parts and using the threshold functions as well as ηφ = −∂tZφ,k/Zφ,k
we obtain

ηφ =
4vd
d

(18u′′2kvevκk + 24u′′kvevu
′′′
kvevκ

2
k + 8u′′′2kvevκ

3
k)m

d
22(u

′
kvev + 2κku

′′
kvev)

+
(2NL − 1)8vd

d
κku

′′2
kvevm

d
22(u

′
kvev)

+
8vddγ
d

h2km
(F)d
4 (κkh

2
k)−

8vddγ
d

κkh
4
km

(F)d
2 (κkh

2
k). (3.19)

Again the choice of the regulator is hidden in the threshold functions defined in
App.C.
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(∂tZφ)B ∝

vevvev

(∂tZφ)F ∝ −

vev

vev

Figure 3.6: Graphical interpretation of the flow equation for Zφ. Bosonic contribu-
tion on the top and fermionic contribution below.

Now there are just ηL and ηR missing. The calculation can be performed along
the lines to ηφ and that is why we discuss this part very briefly. The projection rules
are

δ(0)∂tZL,k =
trγµ

4ddγ

∂

∂p′µ

−→
δ

δψ̄1
L(p
′)
STr



∂̃t





∆Γ
(2)
k

Γ
(2)
k,0 +Rk





2



←−
δ

δψ1
L(q
′)

∣

∣

∣

∣

∣

∣

∆φ=ψL=ψR=0

p′=q′=0

and

δ(0)∂tZR,k =
trγµ

4ddγ

∂

∂p′µ

−→
δ

δψ̄R(p′)
STr



∂̃t





∆Γ
(2)
k

Γ
(2)
k,0 +Rk





2



←−
δ

δψR(q′)

∣

∣

∣

∣

∣

∣

∆φ=ψL=ψR=0

p′=q′=0

for ZL,k and ZR,k respectively. Using the Taylor expansion as above we get the
following flow equations for ZL,k and ZR,k:

∂tZL,k =
2h̄2k
d

∫

ddp

(2π)d
p2∂̃t





ZL,k(1 + rkF(p))

ZL,kZR,kPF(p) +
h̄2
k

2 φ
2
vev

Zφ,k×

∂

∂p2
P (p)

(

1

(Zφ,kP (p) + U ′kvev + U ′′kvevφ
2
vev)

2
+

1

(Zφ,kP (p) + U ′kvev)
2

)]

,

∂tZR,k =
2h̄2k
d

∫

ddp

(2π)d
p2∂̃t





ZR,k(1 + rkF(p))

ZL,kZR,kPF(p) +
h̄2
k

2 φ
2
vev

Zφ,k×

∂

∂p2
P (p)

(

1

(Zφ,kP (p) + U ′kvev + U ′′kvevφ
2
vev)

2
+

1

(Zφ,kP (p) + U ′kvev)
2

)

+
2(NL − 1)ZR,k(1 + rkF(p))

ZL,kZR,kPF(p)
Zφ,k

∂

∂p2
P (p)

1

(Zφ,kP (p) + U ′kvev)
2

]

.
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∂tZL,R ∝ +

Figure 3.7: Graphical interpretation of the flow equation for ZL,R.

The graphical representation is shown in Fig. 3.7. The graph for the left-handed and
the right-handed wave-function renormalisation is the same but the right-handed
one contains massive and massless fermionic propagators as internal lines and the
left-handed one only contains massive propagators.

Using ηi = −∂tZi/Zi, the threshold functions defined in App.C and the dimen-
sionless quantities in Eq. (3.12) we find

ηL =
8vd
d
h2k[m

(FB)d
12 (h2kκk, u

′
kvev + 2κku

′′
kvev) +m

(FB)d
12 (h2kκk, u

′
kvev)] (3.20)

and

ηR =
8vd
d
h2k[m

(FB)d
12 (h2kκk, u

′
kvev + 2κku

′′
kvev) +m

(FB)d
12 (h2kκk, u

′
kvev)

+ 2(NL − 1)m
(FB)d
12 (0, u′kvev)]. (3.21)

Now we are equipped with the flow equation of the Yukawa coupling (Eq. (3.17)), the
anomalous dimensions ηφ, ηL and ηR (Eq. (3.19), Eq. (3.20) and Eq. (3.21)) and the
flow equation for the potential (Eq. (3.13)). In the symmetric regime the latter one
provides us with the flow equations for the mass and the bosonic self-interactions. In
the regime of spontaneous symmetry breaking it provides us with the flow equation
for the vacuum expectation value and the bosonic self-interactions. Altogether we
are equipped with a system of coupled differential equations which we have to solve.

3.3 Fixed-Point Analysis

In this section we analyse the fixed-point structure of the symmetric regime and
the regime of spontaneous symmetry breaking separately. At first we give some
constraints for the parameters. Afterwards we try to find some fixed points in the
different regimes which fulfil these constraints.

3.3.1 Symmetric Regime

The parameters of our system are the mass m2 and the self-interactions λi of the
effective potential. Furthermore we have the Yukawa coupling h and the anomalous
dimensions ηφ, ηL and ηR. Due to the derivative expansion ηφ, ηL, ηR . O(1) should
hold. The squared Yukawa coupling should be positive since a vanishing h2 would
lead to a decoupling of the bosonic and the fermionic part. It is clear that m2 has
to be positive and furthermore the highest non vanishing coefficient λi should be
positive too. Otherwise the potential is not bounded from below.
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3 4D Model without Gauge Bosons

Here it suffices to investigate the flow for the Yukawa coupling and the anomalous
dimensions. In four dimensions and at vanishing κ (symmetric regime) the flow
equations read

∂th
2 = (ηφ + ηL + ηR)h

2,

ηφ =
1

4π2
h2
(

1− ηL + ηR
8

)

,

ηL =
1

16π2
h2
(

1− ηφ
5

) 2

(1 +m2)2
,

ηR =
1

16π2
h2
(

1− ηφ
5

) 2NL

(1 +m2)2
.

At a fixed point the flow of the Yukawa coupling has to vanish (∂th
2
k = 0). The first

conclusion is, that in leading order of the derivative expansion (vanishing anomalous
dimensions) this is the case. In next to leading order the sum of the anomalous
dimensions has to vanish. There has to be a relative minus sign. This is only
possible if ηφ > 5 or ηL + ηR > 8. These constraints are not compatible with the
assumption of small anomalous dimensions. Thus the only possibility is a vanishing
Yukawa coupling.

Our fixed-point Yukawa coupling vanishes in the symmetric regime (h∗2k = 0).
Since the flow of h2k is proportional to itself this leads to a decoupling of bosons and
fermions at every scale. Altogether, there is no reliable fixed point in the symmetric
regime of the present truncation.

3.3.2 Spontaneously Symmetry Broken Regime

The parameters of the SSB regime differ from those of the SYM regime. We still
have the Yukawa coupling and the anomalous dimensions but we expand our effective
potential differently. The general expansion is given by

uk =

Np
∑

n=1

λn
n!

(ρ̃− κk)n =
λ1
1!

(ρ̃− κk) +
λ2
2!

(ρ̃− κk)2 +
λ3
3!

(ρ̃− κk)3 + . . . .

In the symmetric regime we expand around zero field (κk = 0) and set λ1 = m2.
In the symmetry broken regime we expand around the vacuum expectation value
κk where the first derivative of the effective potential has to vanish (λ1 = 0). The
vev κ and the self-interaction λ2 have to be positive. Otherwise the curvature at
the minimum of the potential is not positive. Furthermore the potential should be
bounded from below and thus the highest order λi should be positive too.

A first approximation is given by leading order in the derivative expansion (van-
ishing anomalous dimensions) and leading order in the polynomial expansion of the
effective potential (Np = 2). Thus our parameters are hk, κk and λ2. The flow
equation for λ2 can be derived by using u′′k(ρ̃)|κk = λ2. As mentioned above the first
derivative of the potential at κk has to vanish and therefore the flow has to vanish
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Figure 3.8: Appropriate fixed-point values for κ, λ2 and h
2 in leading order derivative

expansion as well as leading order polynomial expansion of the potential as a function
of NL.

as well:

0 = ∂tu
′
k(κk) = ∂tu

′
k(ρ̃)|ρ̃=κk + (∂tκk)u

′′
k(κk)

⇒ ∂tκk = − 1

u′′k(κk)
∂tu
′
k(ρ̃)|ρ̃=κk . (3.22)

This is how we get the flow equation for κk. Together with the flow equation of hk
in four dimensions we get

∂tκ = −2κ+
1

32π2
(2NL − 1) +

3

32π2
1

(1 + 2κλ2)2
− 1

4π2
h2

λ2(1 + κh2)2
,

∂tλ2 =
1

16π2
(2NL − 1)λ22 +

1

16π2
9λ22

(1 + 2κλ2)3
− 1

2π2
h4

(1 + κh2)3
,

∂th
2 =

1

16π2
h4

(1 + κh2)

{

2λ2κ

(

1

1 + κh2
+ 2

)

−
(

1

1 + κh2
+ 1

)

− 6κλ2
(1 + 2κλ2)2

(

1

1 + κh2
+

2

1 + 2κλ2

)

+
1

(1 + 2κλ2)

(

1

1 + κh2
+

1

1 + 2κλ2

)

+
2κh2

(1 + κh2)

(

2

1 + κh2
+ 1

)

− 2κh2

(1 + κh2)(1 + 2κλ2)

(

2

1 + κh2
+

1

1 + 2κλ2

)}

.

If there is a fixed point (κ∗, λ∗2, h
∗2) the flow of all parameters has to vanish.

∂tκk(κ
∗, λ∗2, h

∗2) = 0,

∂tλ2,k(κ
∗, λ∗2, h

∗2) = 0,

∂th
2
k(κ
∗, λ∗2, h

∗2) = 0.

This nonlinear system of equations can be solved analytically. Many solutions can
be excluded by the constraints given above. For 1 ≤ NL < 4 there exists one reliable
fixed point. For 4 ≤ NL ≤ 29 there exist two reliable fixed points and for some (but
not all) NL > 29 there exists one appropriate fixed point, see Fig. 3.8.

The next question is whether it is possible to extend this solution to higher
orders in the derivative expansion. In other words, are the anomalous dimensions
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Figure 3.9: Estimates for anomalous dimensions depending on NL.

small enough? The equations of the anomalous dimensions are given in Eq. (3.19)
for ηφ, in Eq. (3.20) for ηL and in Eq. (3.21) for ηR. A first estimate can be given
by inserting the fixed-point values for κ, h2 and λ2. It does not consider the back
coupling of the nonzero anomalous dimensions to the fixed-point values. These
estimates depending on NL are given in Fig. 3.9. For NL > 5, ηφ < 1 and ηL < 1
holds but ηR is much bigger than one. This is due to the large values of h2 and
the contributions of the massless Goldstone bosons. These contributions are large
because they are not damped by a mass. Moreover they are proportional to NL. If
one trusts this estimate the leading order derivative expansion is not self consistent.
Nevertheless we do not know the real value of the anomalous dimensions.

A consistent calculation of the real values requires a solution of the following
system:

∂tκk(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = 0,

∂tλ2,k(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = 0,

∂th
2
k(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = 0,

η∗φ(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = ηφ(κ

∗, λ∗2, h
∗2, η∗φ, η

∗
L, η
∗
R),

η∗L(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = ηL(κ

∗, λ∗2, h
∗2, η∗φ, η

∗
L, η
∗
R),

η∗R(κ
∗, λ∗2, h

∗2, η∗φ, η
∗
L, η
∗
R) = ηR(κ

∗, λ∗2, h
∗2, η∗φ, η

∗
L, η
∗
R).

We are not able to solve this highly nonlinear system analytically but tackle this
problem numerically. We use Newton methods with the leading order fixed point as
a starting point but are not able to find a suitable fixed point with non-vanishing
anomalous dimensions. Due to the non linearity of the system a systematic search
is computationally expensive and thus beyond the scope of this work.

To get an idea of the behaviour of the system we switched on the anomalous
dimensions step by step and realised that the leading order fixed point vanishes if
the anomalous dimensions become sufficiently large.

Comparing our model with the Standard Model one realises that the Goldstone
bosons which are responsible for the large anomalous dimensions in our model are
not present in the Standard Model (see Sec. 2.5). Thus it might be possible that this
problem is just a problem of our toy model. Although our leading order fixed points
are not self consistent regarding the derivative expansion it might be interesting
to investigate the behaviour of such a fixed point in more detail. As an example
we choose NL = 10 and the red points in Fig. 3.8 since it has no extreme coupling
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Figure 3.10: Dimensionless effective potential for different expansions. Dotted line:
Expansion up to λ2. Dashed line: Expansion up to λ4. Solid line: Expansion up to
λ6.

values. The first question is if the polynomial expansion of the potential is reliable.
Therefore we can draw the effective potential for NP = 2, 4, 6 (NP is the highest
order in the expansion), see Fig. 3.10. The quantitative form of the potential does
not change in the vicinity of the expansion point κ. Thus the fixed point should
be stable when higher order bosonic self-interactions are taken into account. If we
calculate the fixed-point values for different orders of the expansion the stability
can be shown. For NP = 2, 4, 6 the results are given in Tab. 3.1. One can see that
the fixed-point values converge satisfactorily as we expected due to the form of the
effective potential.

Now we are interested in the vicinity of the fixed point. There the flow equations
of the different coupling constants can be linearised:

∂tgi = Bj
i (g
∗
j − gj) + . . . , Bj

i =
∂βgi
∂gj

∣

∣

∣

∣

g=g∗
.

In our case the gi represents κ, λ2, λ3, . . . and h
2. The negative of the eigenvalues of

the stability matrix Bj
i are the so-called critical exponents θI . As mentioned above

they describe how fast the system leaves the fixed-point regime. If the real part of
a critical exponent <(θI) < 0 the contributions in this direction die out towards the
IR. These directions are the irrelevant directions. On the other hand if <(θI) > 0
the corresponding direction is relevant and the respective physical parameter has
to be fixed by experiment. The asymptotic safety scenario is thus predictive if the
number of positive critical exponents is finite.

The calculation of the stability matrix and the corresponding critical exponents
of our model is straightforward. The results are given in Fig. 3.11 depending on NL

NL = 10 h2
∗ κ∗ λ∗

2 λ∗

3 λ∗

4 λ∗

5 λ∗

6

Np = 2 55.8 0.0174 12.11 - - - -
Np = 4 56.0 0.0158 12.09 -115 1.30 · 104 - -
Np = 6 57.4 0.0152 12.13 -152 1.20 · 104 −8.76 · 105 1.44 · 108

Table 3.1: Fixed-point values for different orders in the polynomial expansion of the
effective potential.
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Figure 3.11: Critical exponents depending on NL.

and in Tab. 3.2 for NL = 10. The first result is that the critical exponents converge
like the fixed-point values. The higher order critical exponents do not converge
that fast but they do. The second result is that the maximal critical exponent is
smaller than two and thus the hierarchy problem is weakened. The third result is
that the number of relevant directions do not change if one increases the order of
the polynomial expansion. There is just one relevant direction corresponding to one
physical parameter which has to be fixed.

Now we can compare our toy model to the Standard Model. Our massive fermion
can be interpreted as the top quark with mass mtop. The massless fermions are
bottom quark like. The bosonic field contains the massless Goldstone bosons which
have no counterpart in the Standard Model and the massive radial mode can be
interpreted as the Higgs boson with massmHiggs. The bosonic field exhibits a vacuum
expectation value κ which has its counterpart v2 = 2φa†φa in the Standard Model.
These different parameters can be connected to the dimensionless parameters κ and
λ2 of our model:

v =
√
2κ k, mtop =

√
h2 v, mHiggs =

√

λ2 v.

The top mass and the vacuum expectation value are known from experiments:
mtop = 173GeV and v = 246GeV. These experimental data are values at an IR
scale and thus to compare these parameters with our model we have to integrate
out the flow. This can be done numerically. The starting point is an UV point for
which we choose t = 16 corresponding to k = e16GeV since t = ln k. As an IR
scale we choose t = 2 corresponding to k = e2GeV. Since κ is a relevant parameter
different IR values flow to the same UV fixed point. The same has to hold for v as
depicted in Fig. 3.12. Our goal is to end up at the IR scale with the measured value
v = 246GeV.

At the UV scale κ still flows and thus differs from the fixed-point value κ∗. We
can slightly perturb our initial value for κ at the UV scale. Changing this starting
point results in different values for κ at the IR scale and thus for v. Therefore

NL = 10 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7

Np = 2 1.294 -0.143 -3.94 - - - -
Np = 4 1.167 -0.170 -2.50 -5.53 -13.61 - -
Np = 6 1.056 -0.175 -2.35 -4.97 -8.49 -14.02 -25.54

Table 3.2: Critical exponents in the polynomial expansion of the effective potential.
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Figure 3.12: Different possible flows of v towards the IR.

we can fine-tune the starting point so that we end up at v = 246GeV. Solving
the flow equations provides us with the IR values of κ, h2 and λ2. The other two
parameters are predictions since there is only one relevant direction. Thus our
asymptotic safety scenario ”predicts” the top mass and the Higgs mass. These
”predictions” are mtop = 5.78v and mHiggs = 0.97v. The top mass is far above the
expected value. The problems are the strong Yukawa coupling and the Goldstone-
boson contributions which are not included in the Standard Model, see Sec. 2.5. As
expected the predictions of our model are special for our toy model and have to be
taken with care.

However, we showed that it is possible to construct an asymptotic safety scenario
which weakens the hierarchy problem, i.e. highest critical exponent is lower than two,
solves the triviality problem by construction and is predictable (only one parameter
has to be fixed by experiment).
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Chapter 4

3D Model without Gauge

Bosons

In this chapter we take a little side trip to a three-dimensional model. The model
we investigated in the previous chapter resembles the Standard Model. Furthermore
it resembles statistical physics models like the Nambu-Jona-Lasinio (NJL) model or
the Thirring model in three dimensions. For a comparison of the different models we
start by introducing a very general fermionic model which obeys some symmetries
and then determine all possible terms satisfying these symmetries. These terms can
be used to classify different models. Included in this classification is for example the
NJL model.

After this classification we use the techniques of the previous chapter to find
fixed points and critical exponents. This time the goal is not the construction of
an asymptotic safety scenario, but to investigate the critical behaviour of the model
corresponding to the phase transition between the symmetric and the symmetry
broken phase. Information about the critical behaviour are stored in the critical
exponents which can be calculated at the fixed point.

4.1 Classification

On the next few pages we construct the above mentioned, general model. Therefore
we start to investigate chiral symmetries. Since our model contains fermions we
have to think about a representation of the Dirac algebra

{γµ, γν} = 2δµν .

This algebra could be realised by an irreducible representation in terms of (2 × 2)
matrices. Such a representation inhibits chiral symmetry since there exists no fifth
γ matrix. Thus we use a reducible representation with (4 × 4) matrices. These
matrices are given by

γµ =

(

0 −iσµ
iσµ 0

)

, µ = 1, 2, 3.
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4 3D Model without Gauge Bosons

Here σ1, σ2 and σ3 are the (2 × 2) Pauli matrices. Using these γ matrices we are
able to construct two fifth γ matrices as

γ4 =

(

0 11 0

)

and γ5 = γ1γ2γ3γ4 =

(1 0
0 −1) .

These matrices anticommute with each other as well as with the γµ matrices. Fur-
thermore we can construct the generators of the Lorentz transformations

σµν =
i

2
[γµ, γν ] (µ < ν).

Altogether the sixteen matrices {1, γµ, σµν , iγµγ4, iγµγ5, iγ4γ5, γ4, γ5} form a com-
plete basis of the Dirac algebra. Since we would like to discuss chiral symmetries we
have to define the chiral projectors. We choose PL/R = 1

2 (1± γ5) but note that we
could have chosen different projectors by replacing the γ5 matrix in the definition by
γ4 or iγ4γ5. Note that the chirality is conserved under Lorentz transformations since
[γ5, σµν ] = 0 holds. These chiral projectors define the four-dimensional left-handed
and right-handed Weyl spinors ψL and ψR of the Dirac fermion ψ as

ψL/R = PL/Rψ, ψ̄L/R = ψ̄PR/L.

These left-handed and right-handed fermions are the constituents of our model.
To be specific, the system contains NL left-handed and NR right-handed fermions
whereNL andNR do not have to be identical. We demand the system to be U(NL)L⊗
U(NR)R symmetric. This means that it is invariant under the chiral transformations

U(NL)L : ψaL 7→ UabL ψ
b
L, ψ̄aL 7→ ψ̄bL(U

†
L)
ba,

U(NR)R : ψaR 7→ UabR ψ
b
R, ψ̄aR 7→ ψ̄bR(U

†
R)
ba.

The field transformations act independently on the left-handed and right-handed
parts. UL and UR are unitary (NL×NL) and (NR×NR) matrices respectively. The
symmetry can be splitted as

U(NL)L ⊗U(NR)R ∼= SU(NL)L ⊗ SU(NR)R ⊗U(1)A ⊗U(1)V,

where for the U(1)A axial transformations UabL = eiαδab and UabR = e−iαδab holds
and for the U(1)V vector rotations holds UabL = eiαδab = UabR .

Besides the invariance under these chiral transformations we expect the system
to be invariant under some discrete transformations as it is the case for the NJL
model and the Thirring model. These are the charge conjugation C, the parity
transformation P and the time reversal T . Due to the reducible representation of
the Dirac algebra these transformations are ambiguous (see also [29] and [71]). For
these transformations we use the following conventions. The coordinates (x1, x2, x3),
where the first two parts are the space coordinates and the last one is the Euclidean
time coordinate, change under parity transformation as

(x1, x2, x3) 7→ (−x1, x2, x3) =: x̃.
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C P T
ψ̄aLψ

b
R ψ̄bRψ

a
L ψ̄aRψ

b
L ψ̄aRψ

b
L

ψ̄aLγµψ
b
L −ψ̄bLγµψaL ψ̄aLγ̃µψ

b
L −ψ̄aLγ̂µψbL

ψ̄aLσµνψ
b
R −ψ̄bRσµνψaL ψ̄aLσ̃µνψ

b
R −ψ̄aLσ̂µνψbR

ψ̄aLγ4ψ
b
L ψ̄bLγ4ψ

a
L −ψ̄aLγ4ψbL ψ̄aLγ4ψ

b
L

ψ̄aLiγµγ4ψ
b
R ψ̄bRiγµγ4ψ

a
L −ψ̄aLiγ̃µγ4ψbR ψ̄aLiγ̂µγ4ψ

b
R

Table 4.1: Properties of fermion bilinears under discrete transformations. The ar-
guments of the transformed fields are x̃ = (−x1, x2, x3) in the case of parity trans-
formation and x̂ = (x1, x2,−x3) in the case of time reversal. The bilinears with
(L↔ R) transform analogously.

The time reversal is defined via

(x1, x2, x3) 7→ (x1, x2,−x3) =: x̂.

The three discrete transformations are given by

C : ψaL/R 7→
(

ψ̄aL/RC
)T

, ψ̄aL/R 7→ −
(

C†ψaL/R

)T
,

P : ψaL/R(x) 7→ PψaL/R(x̃), ψ̄
a
L/R(x) 7→ ψ̄aL/R(x̃)P

†,

T : ψaL/R(x) 7→ TψaL/R(x̂), ψ̄
a
L/R(x) 7→ ψ̄aL/R(x̂)T

†.

The unitary matrices C,P and T are given as C = γ2γ5, P = γ1γ4 and T = γ2γ3.
Since there exists an ambiguity this is just one possible choice.

In summary we expect our system to be invariant under Lorentz transformation,
chiral U(NL)L ⊗ U(NR)R transformations, C charge conjugation, P parity transfor-
mation and T time reversal. All these symmetries together forbid fermionic bilinears
to zeroth order in derivatives. For example the ψ̄aLψ

a
R term and the ψ̄aRψ

a
L term is

not allowed due to chiral invariance. The terms ψ̄aLγ4ψ
a
L and ψ̄aRγ4ψ

a
R are excluded

due to P parity transformation. Terms like ψ̄LψL vanish since PLPR = 0, see also
Tab. 4.1 for transformation properties of all nonvanishing bilinears. In leading order
in derivatives the only combinations which are invariant are the standard kinetic
terms

ψ̄aLi∂µγµψ
a
L and ψ̄aRi∂µγµψ

a
R. (4.1)

Although all bilinears to zeroth order in derivatives are forbidden there exist some
four-Fermi terms1 invariant under all considered transformations. These invariant
terms are

(

ψ̄aLγAψ
b
L

)(

ψ̄bLγAψ
a
L

)

,
(

ψ̄aRγAψ
b
R

)(

ψ̄bRγAψ
a
R

)

with γA ∈ {γµ, γ4},
(

ψ̄aLγBψ
b
R

)(

ψ̄bRγBψ
a
L

)

with γB ∈ {1, iγµγ4}
1Four-Fermi terms are combinations of two bilinears.
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or with inverse flavor structure
(

ψ̄aLγAψ
a
L

)

(

ψ̄bLγAψ
b
L

)

,
(

ψ̄aRγAψ
a
R

)

(

ψ̄bRγAψ
b
R

)

,

(

ψ̄aRγAψ
a
R

)

(

ψ̄bLγAψ
b
L

)

.

Terms with γA ∈ {1, γ5, iγµγ4, σµν} or γB ∈ {γµ, iγµγ5, γ4, iγ4γ5} vanish since
PRPL = PLPR = 0 holds. If γA ∈ {iγµγ5, iγ4γ5} or γB ∈ {γ5, σµν} no new terms ap-
pear since ψL and ψR are eigenvectors of γ5 and σµν is given as σµν = −iεµνργργ4γ5.
Furthermore the terms with the inverse flavor structure are not independent of the
terms above. They are related to each other by the so-called Fierz transformations.
These transformations read

(

ψ̄aLγµψ
a
L

)

(

ψ̄bLγµψ
b
L

)

=
1

2

(

ψ̄aLγµψ
b
L

)(

ψ̄bLγµψ
a
L

)

+
3

2

(

ψ̄aLγ4ψ
b
L

)(

ψ̄bLγ4ψ
a
L

)

, (4.2)

(

ψ̄aLγ4ψ
a
L

)

(

ψ̄bLγ4ψ
b
L

)

=
1

2

(

ψ̄aLγµψ
b
L

)(

ψ̄bLγµψ
a
L

)

− 1

2

(

ψ̄aLγ4ψ
b
L

)(

ψ̄bLγ4ψ
a
L

)

, (4.3)

(

ψ̄aRγµψ
a
R

)

(

ψ̄bLγµψ
b
L

)

= −3

2

(

ψ̄aRψ
b
L

)(

ψ̄bLψ
a
R

)

− 1

2

(

ψ̄aRiγµγ4ψ
b
L

)(

ψ̄bLiγµγ4ψ
a
R

)

,

(4.4)
(

ψ̄aRγ4ψ
a
R

)

(

ψ̄bLγ4ψ
b
L

)

= −1

2

(

ψ̄aRψ
b
L

)(

ψ̄bLψ
a
R

)

+
1

2

(

ψ̄aRiγµγ4ψ
b
L

)(

ψ̄bLiγµγ4ψ
a
R

)

.

(4.5)

Analogous equations hold for the case (L↔ R). In summary we have six independent
four-Fermi terms which are invariant under Lorentz transformation, chiral U(NL)L⊗
U(NR)R transformations, C charge conjugation, P parity transformation and T time
reversal. These are

(

ψ̄aLψ
b
R

)(

ψ̄bRψ
a
L

)

, (4.6)
(

ψ̄aLγ4ψ
b
L

)(

ψ̄bLγ4ψ
a
L

)

,
(

ψ̄aRγ4ψ
b
R

)(

ψ̄bRγ4ψ
a
R

)

, (4.7)
(

ψ̄aLγµψ
b
L

)(

ψ̄bLγµψ
a
L

)

,
(

ψ̄aRγµψ
b
R

)(

ψ̄bRγµψ
a
R

)

, (4.8)
(

ψ̄aLiγµγ4ψ
b
R

)(

ψ̄bRiγµγ4ψ
a
L

)

. (4.9)

Now we can construct our general theory by combining the standard kinetic
terms Eq. (4.1) and one or some of the four-Fermi terms of Eqs. (4.6)-(4.9) into one
action. If one chooses the four fermi term of Eq. (4.6) the action reads

S =

∫

d3x

[

iψ̄aL /∂ψ
a
L + iψ̄aR /∂ψ

a
R +

λ

N

(

ψ̄aLψ
b
R

)(

ψ̄bRψ
a
L

)

]

.

Here λ is a coupling constant and N is the number of fermion flavors. This action
describes the U(N)L ⊗ U(N)R symmetric Nambu-Jona-Lasinio model which was
introduced in 1961 by Yoichiro Nambu and Giovanni Jona-Lasinio [72, 73] and is
used to describe low-energy quantum chromodynamics (QCD).

Combining the left parts of Eq. (4.7) and Eq. (4.8) as in Eq. (4.2) and also
combining Eq. (4.6) and Eq. (4.9) as in Eq. (4.4) leads to

(

ψ̄aLγµψ
a
L

) (

ψ̄bLγµψ
b
L

)

and
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Figure 4.1: Four-Fermi vertex and the corresponding bosonised graph.

(

ψ̄aRγµψ
a
R

) (

ψ̄bLγµψ
b
L

)

. These terms can be combined and the resulting action then
reads

S =

∫

d3x
[

iψ̄a /∂ψa +
g

2N

(

ψ̄aγµψ
a
)

(

ψ̄bγµψ
b
)]

,

where g and N are constant. This is the Thirring model which was introduced by
Walter Thirring in 1958 [74]. This model is used to investigate for example high Tc
cuprate superconductors [75] and electronic properties of graphene [76].

If we want to study the critical behaviour of our model it is convenient to include
bosonic degrees of freedom. This can be done by a Hubbard-Stratonovich transfor-

mation. This transformation corresponds to a partial bosonisation of a theory which
can be interpreted as the replacement of a four-Fermi vertex by two Yukawa inter-
actions as indicated in Fig. 4.1. We have the scalar channel in Eq. (4.6) and the
pseudo-scalar channel in Eq. (4.7). Furthermore there is a vector-boson channel in
Eq. (4.8) and a pseudo-vector-boson channel in Eq. (4.9). We choose the four-Fermi
term in Eq. (4.6) for our model. Furthermore NR has to be one for our purposes.
Thus the action in three dimensions reads

S4−fermi =

∫

d3x
[

iψ̄aL /∂ψ
a
L + iψ̄R /∂ψR + 2λ

(

ψ̄aLψR

) (

ψ̄Rψ
a
L

)]

,

where λ is the coupling constant. We rewrite this purely fermionic action as a
partially bosonised action:

S =

∫

d3x

[

1

2λ
φa†φa + iψ̄aL /∂ψ

a
L + iψ̄R /∂ψR + φa†ψ̄Rψ

a
L − φaψ̄aLψR

]

.

The equivalence can be seen by the equations of motion for the bosonic field φ.

φa = −2λψ̄Rψ
a
L, φa† = 2λψ̄aLψR.

It is also possible to see this equivalence with the help of the path integral. The
path integral including the bosonic fields can be written as

∫

DφDψDψ̄e−S[φ,ψ,ψ̄] =
∫

DψDψ̄e−S4−fermi[ψ,ψ̄]

∫

Dφ exp
(

− 1

2λ
(φa† − 2λψ̄aLψR)(φ

a + 2λψ̄Rψ
a
L)

)

.

Here the bosonic path integral in the second line gives us an unimportant constant.
From the definition of the new bosonic fields the transformation properties under
chiral transformations follow:

φa 7→ UabL φ
bU †R, φa† 7→ URφ

b†(U †L)
ba.
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4 3D Model without Gauge Bosons

Including kinetic and self-interaction terms for the bosons we end up with the action
of the system we studied in the last chapter in four dimensions. The corresponding
effective action reads

Γk =

∫

ddx
[

Uk(ρ) + Zφ,k(∂µφ
a†)(∂µφa) + i(ZL,kψ̄

a
L/∂ψ

a
L + ZR,kψ̄R /∂ψR)

+h̄kψ̄Rφ
aψaL − h̄kψ̄aLφa†ψR

]

. (4.10)

For comparison see also Eq. (3.3). This is the starting point for the application of
the exact renormalisation group equation.

4.2 Flow Equations

Now we have to derive the flow equations for the effective potential, the Yukawa
coupling and the equations for the anomalous dimensions. First we see that the
flow equation of the effective potential does not change besides the change of the
dimension compared to the flow equation in four dimensions. Thus we can use
Eq. (3.13) and find:

∂tuk =− duk + ρ̃u′k(d− 2 + ηφ)

+
4vd
d

[

2NL − 1

1 + u′k

(

1− ηφ
d+ 2

)

+
1

1 + u′k + 2ρ̃u′′k

(

1− ηφ
d+ 2

)

(4.11)

− dγ

(

1− ηL
d+ 1

)(

(NL − 1) +
1

1 + ρ̃h2k

)

+

(

1− ηR
d+ 1

)

dγ
1 + ρ̃h2k

]

.

In comparison to the equation in four dimensions d and vd change. Otherwise it
remains unchanged. Again the effective potential can be in the symmetric regime
and in the regime with broken symmetry.

For the flow equation of the Yukawa coupling we divide the bosonic field again
into its vacuum expectation value and the deviation thereof:

φ =
1√
2











φ11(p) + iφ12(p)
φ21(p) + iφ22(p)

...

φNL

1 (p) + iφNL

2 (p)











=
δ(p)√

2











φvev
0
...
0











+
1√
2











∆φ11(p) + i∆φ12(p)
∆φ21(p) + i∆φ22(p)

...

∆φNL

1 (p) + i∆φNL

2 (p)











.

This time we are mainly interested in the coupling between the fermions and the
Goldstone modes instead of the coupling between the fermions and the radial mode.
This is essential since the four-dimensional model should mimic the Higgs sector
of the Standard Model. The contributions of the massive radial mode in the IR
are negligible compared to the ones of the Goldstone modes. That is why we are
interested in the coupling between fermions and Goldstone bosons. Therefore we
have to change our projection. We do not project onto ∆φ11 but onto ∆φ12. Thus
our projection now reads

∂th̄k = −
i

2

−→
δ

δψ̄1
L(p)

√
2
−→
δ

δ∆φ12(p
′)
STr

[

∂̃t ln(Γ
(2)
k +Rk)

]

←−
δ

δψR(q)

∣

∣

∣

∣

∣

ψa
R
=ψa

L
=∆φ=0

p′=p=q=0

.
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4.2 Flow Equations

The following calculation is analogous to the one of the four-dimensional model.

At first we split (Γ
(2)
k + Rk) into the fluctuation part and the propagator part.

After expanding the logarithm only the third power survives the projection. As in
the previous chapter the matrix calculation is tedious but straightforward and the
result can be given in dimensionful quantities:

∂th̄
2
k =

∫

ddp

(2π)d
∂̃t

h4kU
′′
k φ

2
vev

(

ZφPB + U ′k + U ′′k φ
2
vev

) (

ZφPB + U ′k
)

(

ZLZRPF +
h̄2
k

2 φ
2
vev

) .

Here the potential is evaluated at the minimum 1
2φ

2
vev. Changing to dimensionless

quantities

ρ̃ = Zφ,kk
2−dρ,

κk =
1

2
Zφ,kk

2−dφ2vev

h2k = Z−1φ,kZ
−1
L,kZ

−1
R,kk

d−4h̄2k,

uk(ρ̃) = k−dUk(ρ)|ρ=kd−2ρ̃/Zφ,k

and using the threshold functions defined in App.C we get

∂th
2
k = (ηφ + ηL + ηR + d− 4)h2k

−8vdh4kκku′′kl
(FB)d
111 (κkh

2
k, u
′
k + 2κku

′′
k, u
′
k). (4.12)

For the derivation of the bosonic anomalous dimension we project again onto ∆φ12
instead of ∆φ11. After splitting (Γ

(2)
k +Rk) into the fluctuation part and the propa-

gator part we expand the logarithm and the second power is the only one which sur-
vives the projection. The matrix calculation is the same as for the four-dimensional
model. Using dimensionless quantities and the threshold functions defined in App.C
we end up with

ηφ =
16vd
d

u′′2k κkm
d
22(u

′
k + 2κku

′′
k, u
′
k) +

8vddγ
d

[

κkh
4
km

(F)d
2 (κkh

2
k) + h2km

(F)d
4 (κkh

2
k)
]

.

(4.13)
The derivation of the equations for the fermionic anomalous dimensions does

not change. Thus we can use the results of the preceding chapter (Eqs. (3.20) and
(3.21)).

ηL =
8vd
d
h2k[m

(FB)d
12 (h2kκk, u

′
kvev + 2κku

′′
kvev) +m

(FB)d
12 (h2kκk, u

′
kvev)] (4.14)

and

ηR =
8vd
d
h2k[m

(FB)d
12 (h2kκk, u

′
kvev + 2κku

′′
kvev) +m

(FB)d
12 (h2kκk, u

′
kvev)

+ 2(NL − 1)m
(FB)d
12 (0, u′kvev)]. (4.15)
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4.3 Fixed-Point Analysis

In this section we investigate possible fixed points of our system. Therefore we study
our system in two different regimes: the symmetric regime and the spontaneously
broken regime. The first one corresponds to an expansion of the effective potential
around vanishing vacuum expectation value:

uk =

NP
∑

n=1

λn
n!
ρ̃n = m2ρ̃+

λ2
2!
ρ̃2 +

λ3
3!
ρ̃3 + . . . . (4.16)

On the other hand the spontaneously broken regime corresponds to an expansion of
the effective potential around non-vanishing vacuum expectation value κk:

uk =

Np
∑

n=1

λn
n!

(ρ̃− κk)n =
λ1
1!

(ρ̃− κk) +
λ2
2!

(ρ̃− κk)2 +
λ3
3!

(ρ̃− κk)3 + . . . . (4.17)

4.3.1 Symmetric Regime

We are equipped with the flow equation for the effective potential Eq. (4.11), the
flow equation for the squared Yukawa coupling Eq. (4.12) and the equations for the
anomalous dimensions Eqs. (4.13)-(4.15). If we write down the flow equation for the
squared Yukawa coupling in d = 3 dimensions in the symmetric regime we get

∂th
2 = (ηφ + ηL + ηR − 1)h2.

Thus for an interacting fixed point (h 6= 0) the following sum rule for the anomalous
dimensions has to hold:

ηφ + ηL + ηR = 1. (4.18)

The equations for the anomalous dimensions in the symmetric regime and for d = 3
dimensions read

ηφ =
h2

3π2
(5− ηL − ηR),

ηL =
h2

6π2
(4− ηL)

1

(1 +m2)2
,

ηR = NL
h2

6π2
(4− ηL)

1

(1 +m2)2
.

If we consider h2 and m2 as parameters this system of linear equations can be solved
depending on these two parameters. The solution can be given as

ηφ =
2h2(2h2(NL + 1)− 15π2(1 +m2)2)

h4(NL + 1)− 18π4(1 +m2)2
, (4.19)

ηL =
h2(5h2 − 12π2)

h4(NL + 1)− 18π4(1 +m2)2
, (4.20)

ηR = NL
h2(5h2 − 12π2)

h4(NL + 1)− 18π4(1 +m2)2
. (4.21)
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This solution depending on h2 andm2 can be inserted into Eq. (4.18). The result
is an equation which can be interpreted as h2 depending on m2 or the other way
round. We consider the first case. We get a quadratic equation for h2 and thus get
two solutions. For the solution with the positive square root we were not able to find
an appropriate fixed point and thus we only consider the solution with the negative
square root which reads

h2cond =
3π2

8(NL + 1)

{

7 + 5m(2 +m) + 2NL

−
√

33 +m(2 +m)(54 + 25m(2 +m)) + 12NL + 4m(2 +m)NL + 4N2
L

}

.

The index ”cond” reflects that h2cond still depends on m2 and thus is a conditional
fixed point.

So far we considered the anomalous dimensions and the Yukawa coupling. The
effective potential and thus the couplings m2, λ2, λ3, . . . are still missing. The flow
equations for these couplings can be derived, as for the four-dimensional model, by
taking derivatives of the flow equation of the effective potential with respect to ρ̃. We
observe that the flow equation for λn only depends on h2,m2, λ2, . . . , λn+1. Inserting
Eqs. (4.19)-(4.21) and the conditional fixed point for h2 into these equations leads to
a nonlinear system of equations for m2 and the λi. Expanding the potential (4.16)
for example up to NP = 4 leads to

∂tm
2 = βm(m,λ2),

∂tλ2 = β2(m,λ2, λ3),

∂tλ3 = β3(m,λ2, λ3, λ4),

∂tλ4 = β4(m,λ2, λ3, λ4, λ5 = 0).

Solving this system leads to fixed points for NL ∈ {1, 2}. The results for NP = 6
can be read of from Tab. 4.2. For higher NL no reliable fixed points exist.

At these existing fixed points we can calculate the stability matrix as in the
previous chapter. Let ωI be the eigenvalues of the stability matrix. The critical
exponents θI are the negative of these eigenvalues. The Index I labels the critical
exponents starting with the largest real part θ0 corresponding to ω0. Since our model
resembles the O(N) model we define ν = − 1

ω0
according to the notation of critical

phenomena in O(N) models. In such models ν characterises the critical exponent of
the correlation length near the critical temperature. Note that ν corresponds to the
largest critical exponent θ0 and thus to the strongest relevant direction. The second
largest critical exponent θ1 corresponds to the second smallest eigenvalue ω1 ≡ ω.
The results for ν and ω can be read of from Tab. 4.2 for NP = 6.

Due to the polynomial expansion of the effective potential an error occurs. To
estimate this error we restrict ourselves to the caseNL = 2. In Fig. 4.2 the fixed-point
values of h2,m2, λ2, ν and ω are depicted depending on NP. The results show that
these quantities vary only on a 1% level on the highest depicted NP. Nevertheless the
results for λ4 vary much more at this level but are expected to converge for higher
orders of the expansion. Thus the error of the expansion of the effective potential is
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4 3D Model without Gauge Bosons

NL h2∗ m2
∗ λ∗2 η∗φ η∗L η∗R ν ω

1 4.496 0.326 5.099 0.716 0.142 0.142 1.132 0.786
2 3.364 0.104 3.643 0.512 0.162 0.325 1.100 0.809

Table 4.2: Fixed-point values and critical exponents in the SYM regime for an
expansion of the effective potential up to NP = 6.

controllable. The error due to the derivative expansion is much harder to control.
Since our model resembles the O(N) model we can compare results of this model
to our results. We are using the next to leading order derivative expansion since
we included the anomalous dimensions in our calculation. In [77] is shown that to
this order the critical exponent ν of the O(N) model differs from the best known
value only on the 3% level. Thus we expect our results to be reliable at least for
this leading critical exponent. The other critical exponents as well as the anomalous
dimensions are less well approximated.

4.3.2 Spontaneously Symmetry Broken Regime

Now we turn our attention to the regime of spontaneous symmetry breaking. Here
we expand the effective potential around a non-vanishing vacuum expectation value
κk as in Eq. (4.17). This expansion and the flow equation of the effective potential,
Eq. (4.11), provides us with the flow equation for the different coupling constants
λ2, λ3, . . .. The flow equation for the vacuum expectation value κk can be derived by
using Eq. (3.22). Furthermore we have the flow equation for the Yukawa coupling,
Eq. (4.12), and the equations for the anomalous dimensions, Eqs. (4.13)-(4.15). If
we expand the potential for example up to NP = 2 we have to solve a system of
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Figure 4.2: Fixed-point values for NL = 2 depending on NP ≡ n. Left panel: h2∗
(blue dots) and λ∗2 (purple squares). Right panel: m2

∗ (red dots), ν (green squares)
and ω (orange diamonds).
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coupled nonlinear equations.

∂tκ(κ
∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = 0

∂tλ2(κ
∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = 0

∂th
2(κ∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = 0

ηφ(κ
∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = η∗φ

ηL(κ
∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = η∗L

ηR(κ
∗, λ∗2, h

2∗, η∗φ, η
∗
L, η
∗
R) = η∗R. (4.22)

We were not able to solve this system analytically. However we studied this system
numerically as we shall discuss below. Before introducing the numerics it is necessary
to compare our system to the O(N) model.

Our model consist of NL complex bosonic fields which can be divided into their
real parts and imaginary parts. Thus they can be described as 2NL real bosons.
These bosons are coupled via a Yukawa interaction to NL left-handed and one right-
handed fermion. For vanishing Yukawa coupling h = 0 the bosons and fermions
decouple and thus our system corresponds to a purely bosonic system. This is the
O(2NL) model. This system was investigated for example in [77] and is known to
exhibit a fixed point in the spontaneous symmetry broken regime. We expect our
system to differ slightly from the behaviour of the purely bosonic model due to the
contributions of the fermionic fluctuations. As a first hint the solution of the O(2NL)
model may be interesting. Thus we solve the system (4.22) for vanishing fermionic
contributions which can be done analytically. The corresponding fixed point can
be used as a starting point for our numerical solution of the whole system (4.22).
Since we expect our system to behave similarly to the bosonic model we use the
Newton method to solve our system. As a starting point we use the fixed point of
the purely bosonic system. The solutions of the numerical calculation are given in
Tab. 4.3. In Fig. 4.3 we show the fixed-point values of κ∗ and h2∗ and in Fig. 4.4 for
the anomalous dimensions.

In the left panel of Fig. 4.3 we can see the fixed-point values of the dimensionless
vacuum expectation value depending on NL for our system (red dots). For compar-
ison the fixed-point values of the O(2NL) model are given as well. Note that for

NL h2∗ κ∗ λ∗2 η∗φ η∗L η∗R ν ω

3 2.718 0.009 2.967 0.371 0.154 0.487 0.883 0.675
4 2.713 0.042 2.954 0.279 0.125 0.637 1.043 0.678
5 2.519 0.079 2.717 0.204 0.100 0.746 1.124 0.715
10 1.452 0.256 1.506 0.075 0.046 0.913 1.092 0.872
20 0.739 0.597 0.752 0.032 0.022 0.963 1.043 0.942
50 0.296 1.612 0.298 0.012 0.009 0.986 1.017 0.978
100 0.148 3.301 0.149 0.006 0.004 0.993 1.008 0.989

Table 4.3: Fixed-point values and critical exponents in the SSB regime.
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Figure 4.3: Left panel: Dimensionless vacuum expectation value κ∗ in our
U(NL)L⊗U(1)R model (red dots) compared with those of the O(2NL) model (blue
circles). Right panel: Fixed-point values of h2 depending on NL.

NL ∈ {1, 2} the fixed-point values of κ are negative and thus unphysical. Therefore
we do not have any reliable fixed point in the case NL ∈ {1, 2} but recall that we
have suitable fixed points in the symmetric regime. The unphysical fixed points for
NL < 3 cause a kink of the fixed-point values for h2 between NL = 2 and NL = 3.
Furthermore we see that the fixed-point values for κ only differ slightly from those
of the purely bosonic model as expected.

In the left panel of Fig. 4.5 we show the fixed-point values of ηφ for our model
(red dots) and for the bosonic model (blue circles). For small NL they differ due to
the fermionic contributions. For large NL both values approache each other. This is
due to the decreasing fixed-point value of h2 which corresponds to a decoupling. In
the right panel the fermionic anomalous dimensions are plotted which are identical
for NL = 1. This corresponds to a left-right symmetry. For larger NL the fixed-point
values of ηR increase due to the contribution proportional to NL in Eq. (4.15).

As we did in the symmetric regime we can calculate the critical exponents. In
Fig. 4.5 the exponents ν and ω are plotted depending on NL. For comparison the
values for the O(2NL) model are plotted as well. We find that the difference is
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Figure 4.4: Left panel: η∗φ in the U(NL)L⊗U(1)R model (red dots) compared with
that of the analogous O(2NL) model (blue circles). Right panel: η∗L (purple dia-
monds) and η∗R (green triangles) depending on NL.
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Figure 4.5: Critical exponents as a function ofNL in the chiral U(NL)L⊗U(1)R model
(red dots) compared to those of the corresponding O(2NL) model (blue circles).

sizeable for small NL. For large NL, however, the difference decreases. This is
caused by the fact that for large NL the Yukawa coupling h decreases and thus our
model resembles more and more the purely bosonic O(2NL) model.

In summary we have found that our model exhibits non-trivial fixed points for
various values of NL in next to leading order. For NL ∈ {1, 2} the fixed point lies
in the symmetric regime while it lies in the spontaneously broken regime for larger
NL.
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Chapter 5

4D Model including Gauge

Bosons

In this chapter we turn our attention to the four-dimensional model again. In
Chap. 3 we realised that our four-dimensional model exhibits a fixed point in the
spontaneously broken regime but only in leading order. The extension to next to
leading order was inhibited by the contributions of the Goldstone modes. We already
mentioned that these Goldstone modes do not exist in the Standard Model. They
vanish because of the Higgs mechanism explained in Sec. 2.5. That is why we shall
introduce gauge bosons and investigate the effects of this extension of the model. We
determine the new flow equations and at the end of this chapter we study whether
fixed points of this new system exist which allow a construction of an asymptotic
safety scenario.

5.1 Extension of the Model

So far we have investigated the model with the truncation of Eq. (3.3):

Γk =

∫

ddx
[

Uk(ρ) + Zφ,k(∂µφ
a)†(∂µφa) + i(ZL,kψ̄

a
L /∂ψ

a
L + ZR,kψ̄R/∂ψR)

+h̄kψ̄Rφ
aψaL − h̄kψ̄aLφa†ψR

]

.

This system is invariant under global U(NL)L ⊗U(1)R transformations. The group
U(NL)L can be divided into SU(NL)L ⊗U(1).

The gauge group of the Standard Model is SU(3)×SU(2)×U(1) where the SU(3)
corresponds to the gluons, the SU(2) corresponds to the W- and Z- gauge bosons
and the U(1) corresponds to the photon. We are interested in the Higgs mechanism.
That is why we investigate the electroweak sector of the Standard Model. This
sector corresponds to SU(N)⊗U(1) with N = 2. In this case 2N − 1 = 3 Goldstone
modes appear. These 3 Goldstone modes are removed from the spectrum of the
theory by the N2 − 1 = 3 gauge bosons1 which acquire a mass. The gauge boson
corresponding to the abelian group U(1) (the photon) remains massless.

1SU(N) has dimension N2
− 1 and thus N2

− 1 gauge bosons appear.
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5 4D Model including Gauge Bosons

In our model NL is arbitrary and thus can be bigger than two. As an example let
NL = 3. In this case 2NL − 1 = 5 Goldstone modes appear. If we introduce a local
symmetry and the corresponding gauge degrees of freedom we get N2

L−1 = 8 gauge
bosons. They remove the Goldstone bosons and some of them but not all acquire
a mass. Thus we have to have a look for the SU(NL)L symmetry. We replace this
global transformation by the local variant thereof. Elements of this group can be
given as

U(x) = e−igα
i(x)T i with (i = 1, . . . , N2

L − 1).

Here g is the gauge coupling constant, T i are the generators and αi depends on the
position. The gauge field is given as W i

µ = ∂µα
i. Thus the partial derivative can be

replaced by the covariant derivative:

∂µ → Dµ = ∂µ − igW i
µT

i.

The different fields (φa, ψaL, ψR and W i
µ) transform under the SU(NL)L like

φa → Uφa, ψaL → UψaL, ψR → ψR and W i
µT

i → UW i
µT

iU−1 − i

g
(∂µU)U−1.

The question is how our truncation changes by switching from a global to a
local symmetry. At first we have to replace the partial derivative by the covariant
derivative. In our truncation this affects the kinetic term of the bosons and the
kinetic term of the left-handed fermions:

Zφ,k(∂µφ
a)†(∂µφa) → Zφ,k((∂µ − igW i

µT
i)φa)†((∂µ − igW i

µT
i)φa),

iZL,kψ̄
a
L/∂ψ

a
L → iZL,kψ̄

a
L(/∂ − ig /W iT i)ψaL.

This covariant derivatives provide us with a Yukawa interaction between the left-
handed fermions and the gauge bosons (gZL,kψ̄

a
L
/W iT iψaL). Besides including the

covariant derivatives we have to include a kinetic term for the gauge bosons. There-
fore we use the term ZF

4 F
i
µνF

iµν with

F iµν = ∂µWν − ∂νWµ + gf jkiW j
µW

k
ν .

Here f jki are the structure constants and thus are given by [T i, T j ] = if ijkT k.

As explained in Eq. (2.16) we also have to include a gauge fixing term. For the
choice of this term we recall Eq. (2.20) of the section about the Higgs model.

S =

∫

ddx
[1

2
(∂µσ)(∂

µσ)− 1

2
(2λv2)σ2

− 1

4
FµνF

µν +
1

2
(qv)2AµA

µ

+
1

2
(∂µη)(∂

µη) + qvAµ∂µη
]

.

The last term was the one that was eliminated in the unitary gauge in Sec. 2.5.
We choose the gauge fixing term in a way that this term will be eliminated. First
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5.1 Extension of the Model

we identify the corresponding term in our model. The bosonic field φ of the Higgs
model corresponds to the field φa in our model and the gauge fields are Aµ and W i

µ

respectively. The decomposition into the vacuum expectation value (v), the Gold-
stone mode (η) and radial mode (σ) in Eq. (2.18) corresponds to the decomposition
in Eq. (3.14) into φvev, the radial mode (∆φ11) and the Goldstone modes. For explicit
explanations we use NL = 2 and go back to the classical action of our model. Using
the covariant derivative and the kinetic term for the gauge bosons the action reads

S =

∫

ddx
[

U(ρ) + (∂µφ
a)†(∂µφ

a) + g2W i
µW

j
µφ

a†T iabT
j
bcφ

c +
1

4
F i2µν

−igW i
µ(∂µφ

a†)T iabφ
b + igW i

µφ
a†T iab(∂µφ

b)
]

.

The bosonic field can be separated into the vacuum expectation value (vev) and the
fluctuations around the vev:

φ =

(

0
v

)

+
1√
2

(

∆φ11 + i∆φ12
∆φ21 + i∆φ22

)

.

Inserting this into the action and rewriting all terms gives us

S =

∫

ddx
{1

4
F i2µν + 2g2v2W i

µW
j
µT

i
NaT

j
aN

+
1

2
(∂µ∆φ

2
1)

2 + λv2(∆φ21)
2

+
1

2

[

(∂µ∆φ
1
1)

2 + (∂µ∆φ
1
2)

2 + (∂µ∆φ
2
2)

2
]

− gvW i
µ(∂µ∆φ

1
2)(T

i
1N + T iN1) + igvW i

µ(∂µ∆φ
1
1)(T

i
N1 − T i1N )

− 2gvW i
µ(∂µ∆φ

2
2)T

i
22

}

,

with N = 2. The first line corresponds to massive gauge fields, the second to the
massive Higgs field and the third line corresponds to the massless Goldstone bosons,
see Sec. 2.5. The last two lines contain the terms we would like to eliminate. We use
G(W i

µ) = ∂µW
i
µ+2iαvgT iNa(∆φ

a
1+ i∆φ

a
2) = 0 as a gauge with α as a parameter but

exclude the term with ∆φ21. We refer to this gauge as Rα gauge2. Thus the gauge
fixing term is given as

1

2α

(

∂µW
i
µ + 2iαvgT iNa(∆φ

a
1 + i∆φa2)

) (

∂µW
i
µ − 2iαvg(∆φa1 − i∆φa2)T iaN

)

=
1

2α
(∂µW

i
µ)

2 + 2αv2g2T iNa(∆φ
a
1 + i∆φa2)(∆φ

b
1 − i∆φb2)T ibN

+ ivg(∂µW
i
µ)∆φ

a
1(T

i
Na − T iaN )− vg(∂µW i

µ)∆φ
a
2(T

i
Na + T iaN ).

The last two lines cancel the unwanted terms in the action since the sign changes

2In many textbooks ξ is used instead of α and the gauge is called Rξ gauge.
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5 4D Model including Gauge Bosons

by partial integration. Adding this gauge fixing term to the action leads us to

S =

∫

ddx
{1

4
F i2µν + 2g2v2W i

µW
j
µT

i
NaT

j
aN +

1

2α
(∂µW

i
µ)

2

+
1

2
(∂µ∆φ

2
1)

2 + λv2(∆φ21)
2

+
1

2

[

(∂µ∆φ
1
1)

2 + (∂µ∆φ
1
2)

2 + (∂µ∆φ
2
2)

2
]

+ 2αv2g2T iNa(∆φ
a
1 + i∆φa2)(∆φ

b
1 − i∆φb2)T ibN

}

.

The first line corresponds to the gauge bosons with the kinetic term

1

4
F i2µν +

1

2α
(∂µW

i
µ)

2 = −1

2
W i
µ

(

∂2δµν − ∂µ∂ν
(

1− 1

α

))

W i
ν ,

the second line corresponds to the Higgs boson and the third line corresponds to the
Goldstone bosons. The last line vanishes in the case of Landau gauge (α→ 0). Note
that the Goldstone bosons do not vanish since this only can be observed in unitary
gauge.

Considering Eq. (2.16) we have to include one more ingredient into our trunca-
tion, namely the ghost term. The ghost fields are called ci and c̄i. Thus the ghost
term reads −c̄iDijcj with

Dij =
δGi(W β)

δβj
= −∂2µδij − g∂µW kµf ikj + 2αvg2T iNaT

j
abφb.

Summarising all these terms we obtain the following truncation:

Γk =

∫

ddx
[

Uk(ρ) + Zφ,k(D
µφ)†(Dµφ) + i(ZL,kψ̄

a
L /Dψ

a
L + ZR,kψ̄R /∂ψR)

+ h̄kψ̄Rφ
a†ψaL − h̄kψ̄aLφaψR +

ZF
4
F iµνF

iµν − c̄iDijcj

+
Zφ
2α

(∂µW
i
µ + 2iαvgT iNa∆φ

a)(∂µW
i
µ − 2iαvg∆φa†T iaN )

]

=

∫

ddx
[

Uk(ρ) + Zφ,k(∂
µφ)†(∂µφ) + i(ZL,kψ̄

a
L/∂ψ

a
L + ZR,kψ̄R /∂ψR)

+
ZF

2
W i
µ

(

−∂2δµν + ∂µ∂ν

(

1− Zφ
αZF

))

W i
ν − c̄iDijc

j

+ h̄kψ̄Rφ
a†ψaL − h̄kψ̄aLφaψR + Zφ2αv

2g2T iNa∆φ
a∆φb†T ibN

+ ZFg(∂µW
i
ν)f

jkiW j
µW

k
ν +

ZF

4
g2f jkif lmiW j

µW
k
νW

l
µW

m
ν

+ Zφg
2WµW j

νφ
a†T iacT

j
cbφ

b

− iZφgW i
µ(∂µφ

a†)T iabφ
b + iZφgW

i
µφ

a†T iab(∂µφ
b)

+iZφvgW
i
µ(∂µφ

a†)T iaN − iZφvgW i
µT

i
Na(∂µφ

a)
]

,
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5.2 Flow Equations

with ∆φa = 1√
2
(∆φa1 + i∆φa2) excluding the term with ∆φN1 . The vacuum expecta-

tion value v is chosen to be in the NL direction. We use this truncation to repeat
the investigations of Chap. 3.

Before doing so we shall discuss briefly the Landau gauge and the unitary gauge.
The propagator of the Higgs boson is given by

∆Higgs =
1

p2 +m2
Higgs

,

with m2
Higgs proportional to λv

2. The propagator of the Goldstone bosons is given
by

∆Gold =
1

p2 + αm2
Gold

,

with m2
Gold proportional to g2v2. Using the projection operators PT and PL the

gauge-boson propagator is given by

∆GB = − PT

p2 +m2
GB

− αPL

p2 + αm2
GB

= − 1

p2 +m2
GB

(

δµν − (1− α) pµpν

p2 + αm2
GB

)

,

with m2
GB proportional to g2v2. PT and PL are associated with the longitudinal and

the transversal modes of the gauge bosons. In the following we shall use the Landau
gauge (α → 0) since it simplifies the calculation. This corresponds to massless
Goldstone bosons. The unitary gauge on the other hand corresponds to α → ∞
and thus the Goldstone modes become infinitely heavy and decouple. Including the
changes of the gauge-boson propagator in the unitary gauge corresponds to gauge
bosons which remove the Goldstone bosons from the spectrum of the theory.

5.2 Flow Equations

In this section we start with the calculation of the fluctuation matrix. Afterwards we
calculate the various flow equations. We shall see that there are new contributions
due to the gauge fields and the ghost fields. The flow equation of the gauge coupling
will not be considered. This is beyond the scope of this work. Thus we compute
the flow equations for the effective potential and the Yukawa coupling which depend
on the gauge coupling as an external parameter. The equations for the anomalous
dimensions will also depend on the gauge coupling.
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5 4D Model including Gauge Bosons

5.2.1 Fluctuation Matrix and Regulator

At first we can use the Fourier transformation as in Chap. 3 and write down the
truncation in momentum space. The result reads

Γk =

∫

ddxUk(ρ) +

∫

ddp

(2π)d

{

Zφp
2

2
(φa1(p)φ

a
1(−p) + φa2(p)φ

a
2(−p))− ZLψ̄

a
L/pψ

a
L

− ZRψ̄R/pψR +
ZF

2
W i
µ(p)

(

p2δµν − pµpν
(

a− Zφ
αZF

))

− c̄i(p)p2ci(p)

+

∫

ddq

(2π)d
[igc̄i(p)qµW

k
µ (q)f

ikjcj(p− q)− 2αvg2 c̄i(p)T iNaT
i
abφ

b(q)cj(p − q)]

+

∫

ddq

(2π)d
h̄k[ψ̄R(p)φ

a†(p− q)ψaL(q)− ψ̄aL(p)φa(p− q)ψR(q)]

+

∫

ddq

(2π)d
ZLgψ̄

a
L(p) /W

i
(q)T iabψL(p− q)

+

∫

ddq

(2π)d
iZFgf

jkipµW
i
ν(p)W

j
µ(q)W

k
ν (−p− q)

+

∫

ddq

(2π)d

∫

ddr

(2π)d
ZF

4
g2f jkif lmiW j

µ(p)W
k
ν (q)W

l
µ(r)W

m
ν (−p− q − r)

+

∫

ddq

(2π)d

∫

ddr

(2π)d
Zφg

2W i
µ(p)W

j
µ(q)φ

a†(r)T iabT
j
bcφ

c(−p− q − r)

+ ZφvgW
i
µ(p)

(

pµφ
a†(−p)T iaN − pµT iNaφa(−p)

)

+

∫

ddq

(2π)d
ZφgW

i
µ(p)

(

qµφ
a†(q)T iabφ

b(−p− q)− qµφa†(−p− q)T iabφb(q)
)

}

.

Here we neglected terms proportional to α. The first two lines contain the kinetic
terms of all fields, the third line contains interactions which include ghost fields,
the fourth line includes all Yukawa interactions and the rest represents higher order
interaction terms.

Next we have to look at the fluctuation matrix. This was a (4NL+2)×(4NL+2)
matrix in our first model, see Eq. (3.5). Now the matrix is a (3N2

L + 4NL − 1) ×
(3N2

L + 4NL − 1) matrix. It can be given as































Γφ1φ1 Γφ1φ2 Γφ1ψL
Γφ1ψ̄L

Γφ1ψR
Γφ1ψ̄R

Γφ1W Γφ1c Γφ1c̄
Γφ2φ1 Γφ2φ2 Γφ2ψL

Γφ2ψ̄L
Γφ2ψR

Γφ2ψ̄R
Γφ2W Γφ2c Γφ2c̄

ΓψLφ1 ΓψLφ2 ΓψLψL
ΓψLψ̄L

ΓψLψR
ΓψLψ̄R

ΓψLW ΓψLc ΓψLc̄

Γψ̄Lφ1
Γψ̄Lφ2

Γψ̄LψL
Γψ̄Lψ̄L

Γψ̄LψR
Γψ̄Lψ̄R

Γψ̄LW
Γψ̄Lc

Γψ̄Lc̄

ΓψRφ1 ΓψRφ2 ΓψRψL
ΓψRψ̄L

ΓψRψR
ΓψRψ̄R

ΓψRW ΓψRc ΓψRc̄

Γψ̄Rφ1
Γψ̄Rφ2

Γψ̄RψL
Γψ̄Rψ̄L

Γψ̄RψR
Γψ̄Rψ̄R

Γψ̄RW
Γψ̄Rc

Γψ̄Rc̄

ΓWφ1 ΓWφ2 ΓWψL
ΓWψ̄L

ΓWψR
ΓWψ̄R

ΓWW ΓWc ΓWc̄

Γcφ1 Γcφ2 ΓcψL
Γcψ̄L

ΓcψR
Γcψ̄R

ΓcW Γcc Γcc̄
Γc̄φ1 Γc̄φ2 Γc̄ψL

Γc̄ψ̄L
Γc̄ψR

Γc̄ψ̄R
Γc̄W Γc̄c Γc̄c̄































.

The relevant parts which differ from the old fluctuation matrix are given in App.B.
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5.2 Flow Equations

Besides the fluctuation matrix we have to look at the regulator. The old regulator
matrix, Eq. (3.6), has to be replaced by a bigger matrix containing the parts for the
gauge bosons (RkGB) and the ghost fields (RkG):

Rk(q, p) = δ(p − q)









RkB 0 0 0
0 −RkF 0 0
0 0 RkGB 0
0 0 0 RkG









.

As before, the regulators for the bosons and the fermions are given as before by

RkB =

(

Zφ,kδ
abp2rkB(p) 0
0 Zφ,kδ

abp2rkB(p)

)

and

RkF =









0 ZL,kδ
ab/pT rkF(−p) 0 0

ZL,kδ
ab/prkF(p) 0 0 0
0 0 0 ZR,k/p

T rkF(−p)
0 0 ZR,k/prkF(p) 0









.

The new parts are given by

RkG =

(

0 p2δijrkG(p)
−p2δijrkG(p) 0

)

and

RkGB = ZF(p
2PT +

p2Zφ
αZF

PL)δ
ijrkGB(p),

with the longitudinal and transversal projectors

PT = δµν − pµpν

p2
and PL =

pµpν

p2
.

These are all ingredients we need to calculate the flow equations.

5.2.2 Flow Equation of the Effective Potential

In this subsection we discuss how the flow equation of the effective potential changes
by introducing the gauge field and the ghosts. First of all we have to project our
truncation onto the potential. This can be done by expanding around constant
bosonic fields and vanishing fermionic, gauge-bosonic and ghost fields.

δ(0)∂tUk = ∂tΓk|ψ,W,c=0

φ=const
=

1

2
STr

(

∂tRk

Γ
(2)
k +Rk

)∣

∣

∣

∣

∣ψ,W,c=0

φ=const

.

Using this projection the fluctuation matrix becomes block diagonal. Thus the
bosonic part, the fermionic part, the gauge bosonic part and the ghost part can be
calculated separately. Since we use the Landau gauge (α = 0) the bosonic part and
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(∂tUk)G = −(N2
L − 1)

Figure 5.1: Ghost contributions to the flow equation of the effective potential.

the fermionic part do not change. The ghost part can be computed very easily and
reads

(∂tUk)G = −(N2
L − 1)

∫

ddp

(2π)d
∂t(p

2rG)

PG(p)

with PG(p) = p2(1 + rG). This corresponds to the graph in Fig. 5.1.

The gauge-boson part is not that trivial. So let us do it step by step. Due to

the gauge bosons Γ
(2)
k +Rk is now given by

(Γ
(2)
k +Rk)

ργ
ij

= δij
[(

ZFp
2PT +

Zφ
α
p2PL

)

(1 + rGB) + Zφg
2δργφa†{T i, T j}abφb

]

δ(p − q)

=



δij
(

ZFp
2PT +

Zφ
α
p2PL

)

(1 + rGB) + δργ
N2

L−1
∑

A=1

m2
AP

ij
A



 δ(p − q).

Here we diagonalised the matrix Zφg
2φa†{T i, T j}abφb. Since PA, PT and PL are

projectors we can write down the inverse as

(

(Γ
(2)
k +Rk)

ργ
ij

)−1

= δ(p − q)
∑

A

P ijA

[

P ργT
1

ZFp2(1 + rGB) +m2
A

+ P ργL
1

Zφ
α p

2(1 + rGB) +m2
A

]

.

Using TrργPT = d− 1,TrργPL = 1 and TrijP
ij
A = 1 we get the gauge bosonic part of

the flow equation of the effective potential as

(∂tUk)GB =
1

2

∫

ddp

(2π)d

∑

A





(d− 1)∂t(ZFp
2rGB)

ZFp2(1 + rGB) +m2
A

+
∂t

(

Zφ
α p

2rGB

)

Zφ
α p

2(1 + rGB) +m2
A



 .

The graphical interpretation of this equation is given in Fig. 5.2. Here we combined
all longitudinal and transversal modes of all gauge bosons in one loop diagram.
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5.2 Flow Equations

Altogether we have the following flow equation for the effective potential:

∂tUk =vdk
d2

[

(2NL − 1)ld0

(

U ′k
Zφk2

)

+ ld0

(

U ′k + 2ρU ′′k
Zφk2

)]

− dγvdkd2
[

(NL − 1)l
(F)d
0L (0) + l

(F)d
0L

(

ρh̄2k
k2ZLZR

)

+ l
(F)d
0R

(

ρh̄2k
k2ZLZR

)]

+
1

2

∑

A

∫

ddp

(2π)d

[

(d− 1)
∂t(ZFp

2rGB(p))

ZFPGB(p) +m2
A

+
∂t(Zφp

2rGB(p))

ZφPGB(p) + αm2
A

]

− (N2
L − 1)

∫

ddp

(2π)d
p2∂trG(p)

PG(p)
.

We introduced PG = p2(1 + rG) and PGB = p2(1 + rGB). Rewriting this equation
by using the threshold functions as defined in App.C leads to

∂tUk =vdk
d2

[

(2NL − 1)ld0

(

U ′k
Zφk2

)

+ ld0

(

U ′k + 2ρU ′′k
Zφk2

)]

− dγvdkd2
[

(NL − 1)l
(F)d
0L (0) + l

(F)d
0L

(

ρh̄2k
k2ZLZR

)

+ l
(F)d
0R

(

ρh̄2k
k2ZLZR

)]

+ 2vdk
d
∑

A

[

(d− 1)l
(GB)d
0T

(

m2
A

ZFk2

)

+ l
(GB)d
0L

(

αm2
A

Zφk2

)]

− 4vdk
d
(

N2
L − 1

)

l
(G)d
0 (0).

The last step is to introduce dimensionless quantities and use the specific regulators
as discussed in App.C. Using the dimensionless quantities

ρ̃ = Zφk
2−dρ, h̃2k =

kd−4h2k
ZφZLZR

, ũk = Ukk
−d, m̃2

A =
m2
A

ZFk2
, g̃2 =

g2

ZFk4−d
,

(5.1)
the flow equation for the effective potential reads:

∂tuk =− duk + ρ̃u′k(d− 2 + ηφ)

+
4vd
d

[

2NL − 1

1 + u′k

(

1− ηφ
d+ 2

)

+
1

1 + u′k + 2ρ̃u′′k

(

1− ηφ
d+ 2

)

− dγ

(

1− ηL
d+ 1

)(

(NL − 1) +
1

1 + ρ̃h2k

)

+

(

1− ηR
d+ 1

)

dγ
1 + ρ̃h2k

]

+
4vd
d

∑

A



(d− 1)

(

1− ηF
d+2

)

(1 + m̃2
A)

+

(

1− ηφ
d+ 2

)



− 8vd
d

(

N2
L − 1

)

. (5.2)

(∂tUk)GB = 1

2

Figure 5.2: Gauge boson contributions to the flow equation of the effective potential.
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+ +
(

∂th̄k

)

GB
=

Figure 5.3: New contributions to the flow equation of the Yukawa coupling.

5.2.3 Flow Equation of the Yukawa Coupling

Next we derive the flow equation for the Yukawa coupling. Therefore we start as in
Chap. 3 by dividing our bosonic field into vacuum expectation value and fluctuations.
This time we choose the vacuum expectation value to be in the NL direction and
call it v:

φ(p) =
1√
2











φ11(p) + iφ12(p)
φ21(p) + iφ22(p)

...

φNL

1 (p) + iφNL

2 (p)











=











0
...
0
v











δ(p) +
1√
2











∆φ11(p) + i∆φ12(p)
∆φ21(p) + i∆φ22(p)

...

∆φNL

1 (p) + i∆φNL

2 (p)











.

(5.3)
We are again interested in the Yukawa coupling between the radial mode ∆φNL

1 and
the fermions. Thus the projection onto the coupling constant h̄k can be given as

−→
δ

δψ̄NL

L (p)

√
2
−→
δ

δ∆φNL

1 (p′)
Γk

←−
δ

δψR(q)

∣

∣

∣

∣

∣
ψ=∆φ=W=c=0

p′=p=q=0

= −h̄kδ(0).

Now we can go on as in our first model by dividing Γ
(2)
k + Rk into the propagator

part and the fluctuation part. Expanding the logarithm as in Eq. (3.15) only the
third power survives and thus we get

δ(0)∂th̄k = −
√
2

6

−→
δ

δψ̄NL

L (p)

−→
δ

δ∆φ(p′)
STr



∂̃t

(

∆Γ
(2)
k

(Γ
(2)
k0 +Rk)

)3




←−
δ

δψR(q)

∣

∣

∣

∣

∣

∣
ψ=∆φ=W=c=0

p′=p=q=0

.

The matrix calculations are tedious again but straightforward. The result shows
that the old contributions remain unchanged and an additional term occurs. This
new term corresponds to the graph in Fig. 5.3. The flow equation reads
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5.2 Flow Equations

∂th̄k =−
∫

ddp

(2π)d
∂̃t×

[

vh̄3

ZLZRPF(p) + v2h̄2

(

vU ′′

(ZφP (p) + U ′)2
− 3vU ′′ + 2v3U ′′′

(ZφP (p) + U ′ + 2v2U ′′)2

)

+
v2h̄5

(ZLZRPF(p) + v2h̄2)2

(

1

ZφP (p) + U ′
− 1

ZφP (p) + U ′ + 2v2U ′′

)

−
1
2 h̄

3

ZLZRPF(p) + v2h̄2

(

1

ZφP (p) + U ′
− 1

ZφP (p) + U ′ + 2v2U ′′

)

− h̄

N
∑

a=1

N2−1
∑

i=1

ZφZLZRg
2p2dγ(1 + rkF)T

i
NaT

i
aN

(ZφP + U ′)(ZLZRPF + v2h̄2δaN )

(d− 1)

ZFPGB +m2
i



 .

Using the threshold functions defined in App.C and the dimensionless quantities of
Eq. (5.1) we get

∂th̃
2
k =(ηφ + ηL + ηR + d− 4)h̃2k − 4vdh̃

4
k×

[−2ũ′′kvevκkl
(FB)d
1,2 (κkh̃

2
k, ũ
′
kvev)

+ (6ũ′′kvevκk + 4ũ′′′kvevκ
2
k)l

(FB)d
1,2 (κkh̃

2
k, ũ
′
kvev + 2ũ′′kvevκk)

+ l
(FB)d
1,1 (κkh̃

2
k, ũ
′
kvev)

− l(FB)d
1,1 (κkh̃

2
k, ũ
′
kvev + 2ũ′′kvevκk)

− 2κkh̃
2
kl

(FB)d
2,1 (κkh̃

2
k, ũ
′
kvev)

+ 2κkh̃
2
kl

(FB)d
2,1 (κkh̃

2
k, ũ
′
kvev + 2ũ′′kvevκk)]

− h̃2k
N
∑

a=1

N2−1
∑

i=1

g̃2dγT
i
NaT

i
aN (d− 1)8vdm

(FBE)
1,1,1 (ũ′, κh̃2kδ

aN , m̃2
i ), (5.4)

where we used κ = ρ̃(ρ = v2). We use this flow equation for our fixed-point analysis
in the subsequent section.

5.2.4 Anomalous Dimensions

Finally we have to derive the equations for the anomalous dimensions. We start with
the bosonic anomalous dimension. The projection onto the wave-function renormal-
isation is given by

δ(0)∂tZφ =
∂

∂(p′2)

δ

δ∆φ(p′)

δ

δ∆φ(q′)

−1
4

STr



∂̃t





∆Γ
(2)
k

Γ
(2)
k,0 +Rk





2



∣

∣

∣

∣

∣

∣
∆φ=ψ=W=c=0

p′=q′=0

,

where we divided the bosonic field as in Eq. (5.3) into its vacuum expectation value
and the fluctuations. We also expanded the logarithm and this time the second
power is the only one which survives the projection. The matrix calculation is
straightforward and the only thing we have to care about are the momenta as in
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(∂tZφ)GB ∝ +

Figure 5.4: New contributions to the bosonic anomalous dimension.

Eq. (3.18). A calculation similar to that of Subsec. 3.2.4 leads to the bosonic part
and the fermionic part as in our first model and contains a gauge bosonic part which
reads

(∂tZφ,k)GB =− 1

d

∫

ddp

(2π)d
∂̃t







Z2
φg

2

2

N
∑

a=1

N2−1
∑

i=1

T iNaT
i
aN

[

2d

(ZφPB + U ′)(ZFPGB +m2
i )

+
12p2ZF

∂
∂p2

PGB

(ZφPB + U ′)(ZFPGB +m2
i )

2
−

4p4ZφZF

(

∂
∂p2PB

)(

∂
∂p2PGB

)

(ZφPB + U ′)2(ZFPGB +m2
i )

2











.

This new contribution can be interpreted graphically as in Fig. 5.4. Introducing
the threshold functions defined in App.C and switching to dimensionless quantities
leads to

ηφ =
4vd
d

(18ũ′′2κk + 24ũ′′ũ′′′κ2k + 8ũ′′′2κ3k)m
d
22(ũ

′ + 2κkũ
′′)

+
(2NL − 1)8vd

d
κkũ

′′2md
22(ũ

′)

+
8vddγ
d

h̃2km
(F )d
4 (κkh̃

2
k)−

8vddγ
d

κkh̃
4
km

(F )d
2 (κkh̃

2
k)

− 8vd
d
g̃2

N
∑

a=1

N2−1
∑

i=1

T iNaT
i
aN×

[

dl
(BGB)d
1,1 (ũ′, m̃2

i ) + 3m
(BGB)d
1,2 (ũ′, m̃2

i )−m(BGB)d
4 (ũ′, m̃2

i )
]

. (5.5)

The calculation for the anomalous dimension of the left-handed fermion can be
performed along the lines to the one for our first model. We split the bosonic field
into the vacuum expectation value and fluctuations. The projection then reads

δ(0)∂tZL =
1

4ddγ
trγµ

∂

∂p′µ

−→
δ

δψ̄NL (p′)
STr



∂̃t

(

∆Γ
(2)
k

Γ
(2)
k0 +Rk

)2




←−
δ

δψNL (q′)

∣

∣

∣

∣

∣

∣
∆φ=ψ=W=c=0

p′=q′=0

,

where we expanded the logarithm and only keep the second order since all other
orders do not survive the projection. The matrix calculation is straightforward and
the momenta have to be treated as in our first model. We find the same terms as in
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(∂tZL)
GB

∝ +

Figure 5.5: Gauge-bosonic contributions to the equation for the left-handed
fermionic anomalous dimension.

Chap. 3 and one additional term for the gauge bosons. This new part reads

(∂tZL,k)GB =

∫

ddp

(2π)d
p2∂̃t



−2dγZ2
Lg

2
N
∑

a=1

N2−1
∑

i=1

T iaNT
i
Na

ZR(1 + rF)

ZLZRPF + δaNv2h2k

ZF
∂
∂p2

PGB

(ZFPGB +m2
i )

2



 .

This can be interpreted graphically as shown in Fig. 5.5. The threshold functions and
the dimensionless quantities enable us to write this equation in a compact notation:

ηL =
8vd
d
h̃2k

[

m
(FB)d
12 (h̃2kκk, ũ

′ + 2κkũ
′′) +m

(FB)d
12 (h̃2kκk, ũ

′)
]

− 8vddγ g̃
2
N
∑

a=1

N2−1
∑

i=1

T iaNT
i
Nam

(FGB)d
1,2 (δaNκkh

2
k, m̃

2
i ). (5.6)

Since the right-handed fermions do not couple to the gauge bosons the equation
for the right-handed anomalous dimension does not change:

ηR =
8vd
d
h2k[m

(FB)d
12 (h2kκk, u

′
kvev + 2κku

′′
kvev) +m

(FB)d
12 (h2kκk, u

′
kvev)

+ 2(NL − 1)m
(FB)d
12 (0, u′kvev)]. (5.7)

Thus we are equipped with all equations we need to turn to the analysis of possible
fixed points.

5.3 Fixed-Point Analysis for NL = 2

The flow equations are much more involved compared to Chap. 3. Thus we are not
able to solve the equations analytically. The numerical method requires a suitable
starting point. There was no acceptable fixed point in the system without gauge
bosons in the symmetric regime which we could use as a starting point. Therefore
we restrict ourselves to the regime of spontaneous symmetry breaking for the in-
vestigations in this section. We can use the flow equation of the effective potential,
Eq. (5.2), to derive the flow equations for the vacuum expectation value κk and the
bosonic self-interactions λi. Together with the flow equation for the Yukawa cou-
pling, Eq. (5.4), and the equations for the anomalous dimensions, Eqs. (5.5), (5.6)
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Figure 5.6: Fixed-point values of h2, κk and λ depending on the gauge coupling g2

which is used as an external parameter.

and (5.7), we get a large system of coupled nonlinear equations. Nevertheless a
numerical solution of the system is possible. We shall use the leading order fixed
points of Chap. 3 as a starting point for the Newton method.

A detailed analysis of the fixed-point structure is beyond the scope of this work
and thus we concentrate on the special case NL = 2. Therefore our model includes
three Goldstone bosons which are removed from the spectrum of the theory by
three gauge bosons. These three gauge bosons acquire a mass. We start with an
investigation of the leading order derivative expansion. Truncating our polynomial
expansion of the effective potential at λ2 leads to the following nonlinear system of
equations:

βh = ∂th
2(h2, κk, λ, g

2) = 0

βκ = ∂tκk(h
2, κk, λ, g

2) = 0

βλ = ∂tλ(h
2, κk, λ, g

2) = 0.

Here the gauge coupling g2 serves as another external parameter, besides NL, which
has to be chosen by hand. For g2 = 0 this is the system of Chap. 3 and the results are
the same. There was exactly one fixed point for NL = 2. Varying the gauge coupling
g2 leads to a changed fixed point as depicted in Fig. 5.6. One can see that the very
high fixed-point value of h2 which was caused by the Goldstone contributions is
lowered by the gauge boson contributions. This helps us to get a fixed point in next
to leading order which was not possible up to now.

We use the leading order fixed-point values which depend on g2 as a starting point
and use the Newton method. The results for h2, κ and λ of the full system including
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Figure 5.7: Fixed-point values of h2, κk and λ depending on the gauge coupling g2,
used as an external parameter, in next to leading order.
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Figure 5.8: Fixed-point values of h2, κk and λ depending on the gauge coupling g2

which is used as an external parameter.

the anomalous dimensions ηφ, ηL and ηR and neglecting ηF are given in Fig. 5.7. The
corresponding values of the anomalous dimensions are depicted in Fig. 5.8. Note that
the value of the anomalous dimension of the right-handed fermions ηR is two orders
of magnitude smaller than the value of Chap. 3 (see Fig. 3.9). The fixed-point values
marked by red squares can be obtained as follows: One starts with the leading order
fixed point for g2 = 20 and the result of the Newton method is the next to leading
order fixed point for g2 = 20. This one can be used as a new starting point with
a slightly changed value of g2 and so on. Iterating this procedure provides us with
the fixed points depicted in Fig. 5.7 (red squares). The fixed points marked by the
blue circles result by the same procedure with the leading order starting point at
25 ≤ g2 ≤ 32 or g2 = 41.

Using these fixed-point values we can calculate the critical exponents along the
line to Chap. 3. The results for the blue labelled fixed points for 25 < g2 < 50 are
depicted in Fig. 5.9. Note that there is only one positive critical exponent corre-
sponding to one relevant direction. Thus our system again is predictive. We can
construct an asymptotic safety scenario which solves the triviality problem by con-
struction. For some values of g2 also the hierarchy problem is weakened since the
largest critical exponent is smaller than two.
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Figure 5.9: Critical exponents θI depending on the external parameter g2.

73



5 4D Model including Gauge Bosons

74



Chapter 6

Conclusion and Outlook

We have studied three different Yukawa models with the aid of the Wetterich equa-
tion. This work is based on a work about simple Yukawa systems [26]. The model
containing one real bosonic field and one left-handed and one right-handed fermion,
was extended by replacing the real bosonic field by a NL-component, complex
bosonic field. Furthermore the left-handed fermion was replaced by aNL-component,
left-handed fermion. The following left-right asymmetry allowed a balancing of
bosonic and fermion contributions to the flow equations. This system can be seen
as a toy model which mimics the Higgs sector of the Standard Model.

This toy model was investigated in leading order derivative expansion. In the
symmetric regime there was no reliable fixed point. Nevertheless there were fixed
points in the spontaneously symmetry broken regime. We found one reliable fixed
point for NL < 4. For 3 < NL < 30 there was a second fixed point besides the one
which already exists for NL < 4. For NL > 29 there was either one or none fixed
point. The calculation of the critical exponents showed that there are two positive
critical exponents for the fixed point which already exists for NL < 4. These critical
exponents correspond to two relevant directions. The other fixed point only has
one positive critical exponent and thus only one relevant direction. We constructed
an asymptotic safety scenario with one relevant and two irrelevant directions for
NL = 10 as an example. The corresponding fixed point is stable under extension
of the effective potential to higher orders in the polynomial expansion. Fixing the
vacuum expectation value of the bosonic field to v = 246GeV provided us with
predictions for the top mass (mtop = 5.78v) and the Higgs mass (mHiggs = 0.97v) of
our toy model. In next to leading order we were not able to find fixed points. There
are contributions of the Goldstone bosons to the flow equations which prevent the
extension to next to leading order. Nevertheless the balancing due to the left-right
asymmetry worked. Furthermore Goldstone bosons are not included in the Standard
Model Higgs sector. They are typical for our toy model. This ”failure” might be
circumvented by including gauge degrees of freedom.

Our model not only resembles the Standard Model Higgs sector but also has
similarities with three-dimensional models like the Nambu-Jona-Lasinio model. We
investigated the U(NL)L ⊗ U(1)R ⊗ P ⊗ C ⊗ T symmetry in three dimensions and
classified all possible four-fermion-interaction terms. We found that there are one
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6 Conclusion and Outlook

scalar condensation channel, two pseudo-scalar channels, two vector-boson channels
and one pseudo-vector-boson channel. The scalar channel is similar to the Standard
Model Higgs scalar. Thus the three-dimensional model is connected to the previous
Standard Model like system by Hubbard-Stratonovich transformation. Nevertheless
the fixed-point behaviour of this system is totally different from the four-dimensional
model. This time there is a next to leading order fixed point in the symmetric
regime for NL ∈ {1, 2}. Furthermore we found fixed points for NL > 2 in the
spontaneously symmetry broken regime. As in the four-dimensional model the fixed
points are stable under extension of the effective potential to higher orders in the
polynomial expansion. The model exhibits a second order phase transition from the
symmetric to the spontaneously symmetry broken phase similar to the well known
phase transition of the Nambu-Jona-Lasinio model. The critical behaviour at this
phase transition is characterised by the critical exponents. The results show that
the critical exponents are comparable with those of the O(2NL) model. This model
corresponds to our model with vanishing Yukawa coupling. The difference of the
critical exponents due to the fermionic contributions is rather small.

After this short side trip to the three-dimensional fermionic models we turned
our attention back to the toy model which mimics the Higgs sector of the Stan-
dard Model. Since the Goldstone bosons prevented an asymptotic safety scenario
in next to leading order derivative expansion we included gauge fields in our model.
These new fields should remove the troublesome Goldstone bosons from the spec-
trum of the theory. We derived the flow equations and restricted ourselves to the
spontaneously symmetry broken regime. Increasing the gauge coupling g as an ex-
ternal parameter leads to a decreasing of the troublesome, high fixed-point value of
the Yukawa coupling in leading order derivative expansion. This enabled us to use
the Newton method and find two different types of fixed points in next to leading
order. For 25 < g2 < 50 the critical exponents of one type of fixed points corre-
sponds to one relevant and otherwise irrelevant directions. Thus we can construct
an asymptotic safety scenario which solves the triviality problem by construction.
The hierarchy problem is weakened for those g2 values where the highest critical
exponent is smaller than two. Furthermore the theory is predictive since there is
only one physical parameter which has to be fixed by experiment, namely the one
which corresponds to the relevant direction.

Nevertheless there are still some unresolved questions which should be considered
in future work. First of all the stability of the fixed points during the extension of the
effective potential to higher orders of polynomial expansion should be investigated.
Also the dependence of the fixed points on the number of left-handed fermions should
be studied. The anomalous dimension of the right-handed fermion is larger than one
(ηR ∼ 5). It is not clear if this is special for our model or a problem of principle and
should be considered in future work. Furthermore predictions of the theory for the
Higgs mass should be calculated and compared to the results of the four-dimensional
model without gauge bosons.
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Appendix A

Fluctuation Matrix

The different parts of the fluctuation matrix read (primes denote ρ derivatives)

(Γφ1φ1)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δφb1(q)
= Zφ,kq

2δabδ(p − q)

+

∫

ddxeix(q−p)[δabU ′k + U ′′kφ
a
1(x)φ

b
1(x)],

(Γφ1φ2)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δφb2(q)
=

∫

ddxU ′′k e
ix(q−p)φa1(x)φ

b
2(x) = (Γφ2φ1)ba,

(Γφ2φ2)ab =

−→
δ

δφa2(−p)
Γk

←−
δ

δφb2(q)
= Zφ,kq

2δabδ(p − q),

(Γφ1ψL
)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δψbL(q)
=

hk√
2
δabψ̄R(q − p),

(Γφ1ψ̄L
)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δψ̄bTL (−q) =
hk√
2
δabψT

R(p− q),

(Γφ1ψR
)a =

−→
δ

δφa1(−p)
Γk

←−
δ

δψR(q)
= − hk√

2
ψ̄aL(q − p),

(Γφ1ψ̄R
)a =

−→
δ

δφa1(−p)
Γk

←−
δ

δψ̄T
R(−q)

= − hk√
2
ψaTL (p− q),

+

∫

ddxeix(q−p)[δabU ′k + U ′′kφ
a
2(x)φ

b
2(x)],

(Γφ2ψL
)ab =

−→
δ

δφa2(−p)
Γk

←−
δ

δψbL(q)
= −i hk√

2
δabψ̄R(q − p),

(Γφ2ψ̄L
)ab =

−→
δ

δφa2(−p)
Γk

←−
δ

δψ̄bTL (−q) = i
hk√
2
δabψT

R(p− q),

(Γφ2ψR
)a =

−→
δ

δφa2(−p)
Γk

←−
δ

δψR(q)
= −i hk√

2
ψ̄aL(q − p),
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A Fluctuation Matrix

(Γφ2ψ̄R
)a =

−→
δ

δφa2(−p)
Γk

←−
δ

δψ̄T
R(−q)

= i
hk√
2
ψaTL (p − q),

(ΓψLφ1)ab =

−→
δ

δψaTL (−p)Γk
←−
δ

δφb1(q)
= − hk√

2
δabψ̄T

R(q − p),

(ΓψLφ2)ab =

−→
δ

δψaTL (−p)Γk
←−
δ

δφb2(q)
= i

hk√
2
δabψ̄T

R(q − p),

(ΓψLψ̄L
)ab =

−→
δ

δψaTL (−p)Γk
←−
δ

δψ̄bTL (−q) = −ZL,kδ
ab
/q
Tδ(p − q),

(ΓψLψ̄R
)a =

−→
δ

δψaTL (−p)Γk
←−
δ

δψ̄T
R(−q)

= −hkφa†(p− q),

(Γψ̄Lφ1
)ab =

−→
δ

δψ̄aL(p)
Γk

←−
δ

δφb1(q)
= − hk√

2
δabψR(p− q),

(Γψ̄Lφ2
)ab =

−→
δ

δψ̄aL(p)
Γk

←−
δ

δφb2(q)
= −i hk√

2
δabψR(p− q),

(Γψ̄LψL
)ab =

−→
δ

δψ̄aL(p)
Γk

←−
δ

δψbL(q)
= −ZL,kδ

ab
/qδ(p − q),

(Γψ̄LψR
)a =

−→
δ

δψ̄aL(p)
Γk

←−
δ

δψR(q)
= −hkφa(p− q),

(ΓψRφ1)a =

−→
δ

δψT
R(−p)

Γk

←−
δ

δφa1(q)
=

hk√
2
ψ̄aTL (q − p),

(ΓψRφ2)a =

−→
δ

δψT
R(−p)

Γk

←−
δ

δφb2(q)
= i

hk√
2
ψ̄aTL (q − p),

(ΓψRψ̄L
)a =

−→
δ

δψT
R(−p)

Γk

←−
δ

δψ̄aTL (−q) = hkφ
a(p− q),

ΓψRψ̄R
=

−→
δ

δψT
R(−p)

Γk

←−
δ

δψ̄T
R(−q)

= −ZR,k/q
Tδ(p − q),

(Γψ̄Rφ1
)a =

−→
δ

δψ̄R(p)
Γk

←−
δ

δφa1(q)
=

hk√
2
ψaL(p− q),

(Γψ̄Rφ2
)a =

−→
δ

δψ̄R(p)
Γk

←−
δ

δφa2(q)
= −i hk√

2
ψaL(p− q),

(Γψ̄RψL
)a =

−→
δ

δψ̄R(p)
Γk

←−
δ

δψaL(q)
= hkφ

a†(p− q),

Γψ̄RψR
=

−→
δ

δψ̄R(p)
Γk

←−
δ

δψR(q)
= −ZR,k/qδ(p − q).
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Appendix B

Extended Fluctuation Matrix

The relevant parts of the extended fluctuation matrix which differ from the old one
read

(Γφ1φ1)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δφb1(q)
= Zφαv

2g2δ(p − q)(T iNaT ibN + T iNbT
i
aN )

+Zφ,kq
2δabδ(p − q) +

∫

ddxeix(q−p)[δabU ′k + U ′′k φ
a
1(x)φ

b
1(x)],

(Γφ1φ2)ab =

−→
δ

δφa1(−p)
Γk

←−
δ

δφb2(q)
= (Γφ2φ1)ab

=

∫

ddxU ′′k e
ix(q−p)φa1(x)φ

b
2(x)− iZφαv2g2δ(p − q)(T iNaT ibN − T iNbT iaN ),

(Γφ2φ2)ab =

−→
δ

δφa2(−p)
Γk

←−
δ

δφb2(q)
= Zφαv

2g2δ(p − q)(T iNaT ibN + T iNbT
i
aN )

+Zφq
2δabδ(p − q) +

∫

ddxeix(q−p)[δabU ′k + U ′′k φ
a
2(x)φ

b
2(x)],

(Γφ1W )ρai =

−→
δ

δφa1(−p)
Γk

←−
δ

δW i
ρ(q)

= −Zφ√
2
vgqρδ(p − q)

(

T iNa − T iaN
)

+
Zφg√

2

[

(qρ − 2pρ)T iabφ
b(p− q) + (2pρ − qρ)φb†(p − q)T iba

]

,

(Γφ2W )ρai =

−→
δ

δφa2(−p)
Γk

←−
δ

δW i
ρ(q)

= −i Zφ√
2
vgqρδ(p − q)

(

T iNa + T iaN
)

+
iZφg√

2
(2pρ − qρ)

[

T iabφ
b(p− q) + φb†(p − q)T iba

]

,
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B Extended Fluctuation Matrix

(ΓWφ1)
ρ
ia =

−→
δ

δW i
ρ(−p)

Γk

←−
δ

δφa1(q)
=
Zφ√
2
vgpρδ(p − q)

(

T iNa − T iaN
)

+
Zφg√

2

[

(2qρ − pρ)T iabφb(p− q) + (pρ − 2qρ)φb†(p− q)T iba
]

,

(ΓWφ2)
ρ
ia =

−→
δ

δW i
ρ(−p)

Γk

←−
δ

δφa2(q)
= i

Zφ√
2
vgpρδ(p − q)

(

T iNa + T iaN
)

+
iZφg√

2
(pρ − 2qρ)

[

T iabφ
b(p − q) + φb†(p− q)T iba

]

,

(ΓWW )ργij =

−→
δ

δW i
ρ(−p)

Γk

←−
δ

δW j
γ (q)

= ZFδ
ijδ(p − q)

[

p2δργ − pρpγ
(

1− Zφ
αZF

)]

+Zφg
2δργ

∫

ddr

(2π)d
φa†(r)

[

T iabT
j
bc + T jabT

i
bc

]

φc(p − q − r),

(Γcc̄)ij =

−→
δ

δciT(−p)Γk
←−
δ

δc̄jT(−q) = p2δijδ(p − q) + 2αvg2T jNaT
i
abφ

b(p− q),

(Γc̄c)ij =

−→
δ

δc̄i(p)
Γk

←−
δ

δcj(q)
= −p2δijδ(p − q)− 2αvg2T iNaT

j
abφ

b(p− q),

(ΓWψL
)ia =

−→
δ

δW i
ρ(−p)

Γk

←−
δ

δψaL(q)
= −ZLgψ̄

bT
L (q − p)γρT iba.
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Appendix C

Threshold Functions

For a compact notation we use the so-called threshold functions. For comparison
see [31, 37, 39]. We use PB(p) = p2(1 + rkB(p)), PF(p) = p2(1 + rkF(p))

2 and
v−1d = 2d+1πd/2Γ(d/2). For the calculation of the flow equations, we use the following
threshold integrals:

ldn(ω) =
n+ δn,0

4
v−1d k2n−d

∫

ddp

(2π)d
×

[(

1

Zφ,k
∂tRk(p)

)

(PB(p) + ωk2)−(n+1)

]

,

l
(F)d
n,L/R(ω) =

n+ δn,0
2

v−1d k2n−d
∫

ddp

(2π)d
×

[

PF(p)

1 + rkF(p)

(

1

ZL,k
∂t(ZL,krkF)

)

(PF(p) + ωk2)−(n+1)

]

,

l(FB)d
n1,n2

(ω1, ω2) = −1

4
v−1d k2(n1+n2)−d

∫

ddp

(2π)d
×

∂̃t
1

(PF(p) + ω1k2)n1(PB(p) + ω2k2)n2
,

l(FB)d
n1,n2,n3

(ω1, ω2, ω3) = −k
2(n1+n2+n3)−d

4vd

∫

ddp

(2π)d
×

∂̃t
1

(PF(p) + k2ω1)n1(PB(p) + k2ω2)n2(PB(p) + k2ω3)n3
,

l
(GB)d
nT (ω) =

n+ δn0

4vd
k2n−d

∫

ddp

(2π)d

1
ZF
∂t
(

ZFp
2rkGB

)

(PGB(p) + ωk2)n+1 ,

l
(GB)d
nL (ω) =

n+ δn0

4vd
k2n−d

∫

ddp

(2π)d

1
Zφ
∂t
(

Zφp
2rkGB

)

(PGB(p) + ωk2)n+1 ,

l(G)d
n (ω) =

n+ δn0

4vd
k2n−d

∫

ddp

(2π)d
∂t(p

2rkG(p))

(PG(p) + ωk2)n+1 ,
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C Threshold Functions

l(BGB)d
n1,n2

(ω1, ω2) = −k
2(n1+n2)−d

8vd

∫

ddp

(2π)d
∂̃t

1

(PB + ω1k2)n1(PGB + ω2k2)n2
,

md
n1,n2

(ω1, ω2) = −1

4
v−1d k2(n1+n2−1)−d

∫

ddp

(2π)d
p2 ×

∂̃t

[

∂
∂p2

PB(p)

(PB(p) + ω1k2)n1

∂
∂p2

PB(p)

(PB(p) + ω2k2)n2

]

,

m
(F)d
2 (ω) = −1

4
v−1d k6−d

∫

ddp

(2π)d
p2∂̃t

[

∂
∂p2PF(p)

(PF(p) + ωk2)2

]2

,

m
(F)d
4 (ω) = −1

4
v−1d k4−d

∫

ddp

(2π)d
p4∂̃t

[

∂

∂p2
1 + rkF(p)

PF(p) + ωk2

]2

,

m(FB)d
n1,n2

(ω1, ω2) = −1

4
v−1d k2(n1+n2−1)−d

∫

ddp

(2π)d
p2 ×

∂̃t

[

1 + rkF(p)

(PF(p) + ω1k2)n1

∂
∂p2

PB(p)

(PB(p) + ω2k2)n2

]

,

m(FBG)(ω1, ω2, ω3) = −k
4−d

4vd

∫

ddp

(2π)d
∂̃t

p2(1 + rF)

(PB + ω1k2)(PF + ω2k2)(PGB + ω3k2)
,

m(BGB)d
n1,n2

(ω1, ω2) = −k
2(n1+n2−1)−d

4vd

∫

ddp

(2π)d
∂̃t

p2 ∂
∂p2PGB

(PB + ω1k2)n1(PGB + ω2k2)n2
,

m
(BGB)d
4 (ω1, ω2) = −k

4−d

4vd

∫

ddp

(2π)d
p4∂̃t

(

∂
∂p2

PB

)(

∂
∂p2

PGB

)

(PB + ω1k2)2(PGB + ω2k2)2
,

m(FGB)d
n1,n2

(ω1, ω2) = −k
2(n1+n2−1)−d

4vd

∫

ddp

(2π)d
p2∂̃t

(

1 + rF
(PF + ω1k2)n1

∂
∂p2

PGB

(PGB + ω2k2)n2

)

.

Here ∂̃t only acts on the regulator Rk (neither rkB nor rkF). For explicit calculations
we use the following bosonic regulator:

rkB(p) =

(

k2

p2
− 1

)

θ

(

1− p2

k2

)

,

where θ is the Heviside function. The fermionic regulator is determined by

(1 + rkB(p)) = (1 + rkF(p))
2.

In [43] is shown, that these regulators are optimal in the sense that they maximise
the gap C in

min
q2≥0

(Γ
(2)
k +Rk) = Ck2 > 0.

For the ghost regulator and the gauge bosonic regulator we choose rkGB(p) =
rkG(p) = rkB(p). Using this and analytically perform the integrals we end up with
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the following threshold functions:

ldn(ω) =
2(δn,0 + n)

d

(

1− ηφ
d+ 2

) 1

(1 + ω)n+1
,

l
(F)d
n,L/R(ω) =

2(δn,0 + n)

d

(

1− ηL/R

d+ 1

) 1

(1 + ω)n+1
,

l(FB)d
n1,n2

(ω1, ω2) =
2

d

1

(1 + ω1)n1(1 + ω2)n2
×

[

n1
1 + ω1

(

1−
1
2(ηR + ηL)

d+ 1

)

+
n2

1 + ω2

(

1− ηφ
d+ 2

)

]

,

l(FB)d
n1,n2,n3

(ω1, ω2, ω3) =
2

d

1

(1 + ω1)n1(1 + ω2)n2(1 + ω3)n3
×

[

n1
1 + ω1

(

1−
1
2(ηL + ηR)

d+ 1

)

+
n2

1 + ω2

(

1− ηφ
d+ 2

)

+
n3

1 + ω3

(

1− ηφ
d+ 2

)]

,

l
(GB)d
nT (ω) =

2(δn,0 + n)

d

(

1− ηF
d+ 2

)

1

(1 + ω)n+1
,

l
(GB)d
nL (ω) =

2(δn,0 + n)

d

(

1− ηφ
d+ 2

)

1

(1 + ω)n+1
,

l(G)d
n (ω) =

2(δn,0 + n)

d

1

(1 + ω)n+1
,

l(BGB)d
n1,n2

(ω1, ω2) =
1

d(1 + ω1)n1(1 + ω2)n2
×

[

n1
1 + ω1

(

1− ηφ
d+ 2

)

+
n2

1 + ω2

(

1− ηF
d+ 2

)]

,

md
n1,n2

(ω1, ω2) =
1

(1 + ω1)n1(1 + ω2)n2
,

m
(F)d
2 (ω) =

1

(1 + ω)4
,

m
(F)d
4 (ω) =

1

(1 + ω)4
+

1− 1
2(ηR + ηL)

d− 2

1

(1 + ω)3

−
(

1− 1
2(ηR + ηL)

2d− 4
+

1

4

)

1

(1 + ω)2
,
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C Threshold Functions

m(FB)d
n1,n2

(ω1, ω2) =

(

1− ηφ
d+ 1

)

1

(1 + ω1)n1(1 + ω2)n2
,

m(FBG)(ω1, ω2, ω3) =
1

(1 + ω1)(1 + ω2)(1 + ω3)
×

[

−1− ηψ
d+ 1

− ηψ
d+ 2

+

ηφ
d+3 +

2−ηφ
d+1

1 + ω1

+

2(1−ηψ)
d+1 +

2ηψ
d+2

1 + ω2
+

ηF
d+3 + 2−ηF

d+1

1 + ω3

]

,

m(BGB)d
n1,n2

(ω1, ω2) =
1

(1 + ω1)n1(1 + ω2)n2
,

m
(BGB)d
4 (ω1, ω2) =

1

(1 + ω1)2(1 + ω2)2
,

m(FGB)d
n1,n2

(ω1, ω2) =

(

1− ηF
d+2

)

(1 + ω1)n1(1 + ω2)n2
.
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