provided by Digitale Bibliothek Thuringen
1 INNWVU Vi /I1I1NJIJ

55. IWK

Internationales Wissenschaftliches Kolloquium
International Scientific Colloquium

13 - 17 September 2010

Crossing Borders within the

utomation,
iomedical Engineering and

omputer Science

Faculty of
Computer Science and Automation

www.tu-ilmenau.de TECHNISCHE UNIVERSITAT
ILMENAU

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

https://core.ac.uk/display/224757436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tu-ilmenau.de
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

Impressum

Published by
Publisher: Rector of the limenau University of Technology
Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff
Editor: Marketing Department (Phone: +49 3677 69-2520)
Andrea Schneider (conferences@tu-ilmenau.de)
Faculty of Computer Science and Automation
(Phone: +49 3677 69-2860)
Univ.-Prof. Dr.-Ing. habil. Jens Haueisen
Editorial Deadline: 20. August 2010
Implementation: limenau University of Technology

Felix Bockelmann
Philipp Schmidt
USB-Flash-Version.
Publishing House: Verlag ISLE, Betriebsstatte des ISLE e.V.
Werner-von-Siemens-Str. 16
98693 [Imenau
Production: CDA Datentrager Albrechts GmbH, 98529 Suhl/Albrechts

Order trough: Marketing Department (+49 3677 69-2520)
Andrea Schneider (conferences@tu-ilmenau.de)

ISBN: 978-3-938843-53-6 (USB-Flash Version)

Online-Version:

Publisher: Universitatsbibliothek llmenau
ilmedia
Postfach 10 05 65
98684 limenau

© limenau University of Technology (Thiir.) 2010
The content of the USB-Flash and online-documents are copyright protected by law.

Der Inhalt des USB-Flash und die Online-Dokumente sind urheberrechtlich geschitzt.

Home / Index:
http://www.db-thueringen.de/serviets/DocumentServiet?id=16739

http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

A MODULAR SYSTEM FOR BUILDING AUTOMATION

Andreas Giinther, Thomas Meier, Chris Richter

Hochschule fiir Telekommunikation, Leipzig
Gustav-Freytag Str. 43-45
04277 Leipzig

ABSTRACT

This paper will introduce a modular system for build-
ing and home automation that can by applied to a wide
range of scenarios, for example, energy management
and ambient assisted living. Because of the modular
structure, our system can be used in a lot of different
scenarios. For example, it is possible to implement a
central as well as a decentral management of the sys-
tem. Beside the modular structure, one of the project
main goals was to develop a generic system to inte-
grate sensors and actuators already in existence. There-
fore, we have implemented a gateway to connect a wide
range of proprietary devices from different manufactur-
ers with our system independent of their specific com-
munication interface (for example ZigBee, WLAN or
USB). The task of the gateway is to translate these dif-
ferent technologies to a uniform interface (UPnP). This
interface is used by the controller to interact with the
sensors and actuators. The controller is responsible for
the execution of the system logic, for example, a heat-
ing control system or an alarm system. The controller
implements a web service interface to facilitate the con-
figuration of the controller by a various number of dif-
ferent clients, such as Home Control Interface, Man-
agement Server or a mobile device.

1. MOTIVATION

More and more, the role of technologies and comput-
ers is growing to improve and simplify everyday life.
Also in the scope of the home control there are already
many individual solutions existing to automatize and
simplify different tasks. For example, the central heat-
ing control module as it is present in nearly each home,
solutions for the automatically light control, shutters or
sunblinds can be controlled automatically. Even though
there are already a lot of such single components to au-
tomatize the home control and also different manufac-
turers offer proprietary solutions, there is not solution
at the moment which integrates all these components
or the isolated applications into one system.

It is the aim of this project to create a system to
combine different technologies of the home control.
An important point is the use of open standards like

23

UPnP [1] or Web Services which have a wide propaga-
tion in industry at the moment.

The advantage of the migration of different prod-
ucts from different manufacturers to one system is the
simplification for the end user. Therefore, he can con-
trol all the elements of the home control in a transparent
way with one system and add new elements simply per
plug and play to the system. This induces the facilita-
tion of the daily tasks.

Beside the termed criterions — the use of open stan-
dards and the migration of existing products and solu-
tions — the project’s focus is upon the conception and
development of a scalable, inexpensive, error-tolerant
and extensible solution. In particular, the scalability
should facilitate a manifold use of the system and in-
clude various and also different use cases. On the one
hand, the central management of several costumers as
a service or the management of several company loca-
tions is conceivable, and on the other hand the manage-
ment of a single household. For instance, derived use
cases from this are the implementation of an alarm sys-
tem or to automatically read off the meter reading like
power, water or gas as a service. But also the configu-
ration and optionally the monitoring of the own house-
hold with a mobile device should be possible.

This document is divided into four main parts. Sec-
tion 2 gives an overview about the whole system in-
cluding the particular components with a description
of their tasks and functions. Subsequent to this, section
3 provides a short presentation of the used hard- and
software-platform for the Gateway and Controller. The
last two sections 4 and 5 give a detailed description of
these two components.

2. SYSTEM DESCRIPTION

The basic concept for the whole system is a combina-
tion of central and peripheral control of operation se-
quences according to passed criterions and parameters.
The overall picture as shown in figure 1 contains six
important components of the whole system:

e Management Server,

o Gateway,

Controller,

Home Control Interface (HCI),

clients,

sensors and actuators.

Figure 1 shows the schematic structure of the sys-
tem.

Management
Server

Controller @

Gateway

Home Control Interface

== Encrypted Connection
uPnP
Wab Service

——— JNDI / RMI

— — HTTP

Maobile

Frontend device

Fig. 1. Schematic structure of the system

The Management Server’s main task is the man-
agement of one or more Controllers. This includes the
configuration of the Controller as well as the analysis
of the sensors’ and actuators’ values which are man-
aged by the Controller. A Web Service interface is
planed for the communication between the Manage-
ment Server and the Controller. The use of the Manage-
ment Server’s functions should be realized by a web-
based front-end or clients which are either connected
locally or by the Internet to the Management Server.

As shown in Figure 1, the Controller has two com-
munication interfaces — a Web Service interface to a
Management Server and a Home Control Interface and
a UPnP interface to one or more Gateways. The task of
the Controller is the management of the sensors and ac-
tuators which are connected by the Gateways. This also
includes complex use cases like the automatically con-
trol of the temperature in a room or a building. Beside
the configuration of the Controller by the Management
Server the configuration by the Home Control Interface
and mobile clients should be possible. The Home Con-
trol Interface is an optional component which can be
used together with the Management Server or instead
of the Management Server for configuration.

The Gateway is supposed to be the connection point
for the different sensors and actuators. On the one hand,
it sends the values of the sensor and actuators to the
Controller and on the other hand, it delivers the com-
mands of the Controller to the corresponding actuators.
Therefore, the Gateway has to support different trans-
port technologies for the communication to the sensors
and actuators. These transport technologies are for ex-
ample ZigBee or WLAN. Beside the support of the

24

different transport technologies, a generic interface is
planned for the several drivers of the connected sensors
and actuators. In fact, the sensors and actuators are the
functional units of the home or building which had to
be controlled. Some possible sensors and actuators for
a building automation could be motion and air pressure
sensors as well as light switches and locking systems.

After the conception of the whole system, the next
step of the project was the development of the main
components Gateway and Controller. This also inclu-
ded the choice of a suitable platform for these two com-
ponents.

3. PLATFORM

The first step was to decide which platform is right for
the Controller and Gateway based on investigations on
hardware as well as on software components. From
the beginning of the project, Linux was selected as the
operating system for both devices. This enhances the
scalability of the whole system by only replacing the
hardware of Controller or Gateway. Additionally, the
system could be easily adapted to meet the concrete re-
quirements where it will be installed. An adaption of
the software is not necessary. The wide support for
Linux allows the use of various hardware platforms,
also of embedded devices.

As the requirements to the hardware platform de-
pend on the point of action and the size of the whole
system, the right platform for all scenarios does not ex-
ist. But it is possible to define general requirements that
should be paid attention to concerning the choice of the
platform?

Asset costs

To minimize the costs of the whole system, the
costs for the hardware should be as small as pos-
sible because the price of the system is an im-
portant marketing argument. Thus features that
are not needed for the system and which make
the hardware unnecessarily expansive should be
ignored.

Performance

This is not only the clock frequency of the CPU
but also the size of working memory and stor-
age. Because of missing experiences, no exact
data could be defined for this criterion. The re-
quirements depend on the size of the system. If
the platform is too powerful, this could have neg-
ative influence on the power consumption.

Power consumption
As the devices of the system run all day long
through out the year, the power consumption is
an important criterion because high costs could
arise with too wasteful devices.

Interfaces

Particularly for the Gateway, the configuration
of the hardware with many various interfaces is
important to integrate as much as possible sen-
sors and actuators from different manufacturers.
Beside the standard interfaces like USB or RS-
232, different wireless technologies like WLAN,
Bluetooth or ZigBee are desirable.

Linux compatibility
Because of the decision to use Linux as operat-
ing system, the Linux compatibility is a basic
assumption for the selected hardware platform.
This has the above mentioned advantage of scal-
ability and the price advantage because of the
missing royalties.

Robustness

This criterion contains the adaption of the com-
ponents to environmental conditions such as tem-
perature, dust or humidity. Particularly the case
of Gateway or Controller is affected but also in-
ner components like a hard drive, if the device
is installed in an environment with a high risk of
agitation.

During the development of the Gateway and the
Controller, the authors agreed to concentrate on the sce-
nario of a household. Therefore, the following require-
ments to the hardware platform are defined.

e 500MHz to 1 GHz CPU clock frequency

e 128 MB to 256 MB working memory

e 512 MB storage

e power consumption between 5 W and 10 W

On the base of this requirements, a research was
done with the result that the SheevaPlug (Figure 2 and
the Alix.1D (Figure 3) are possible platforms.

Fig. 2. SheevaPlug

Fig. 3. Alix.1D

The selection of the software platform is a result of
the choice of the programming language and the used
frameworks for the UPnP- and the web service inter-
face. Therefore ,a second detailed research was done
to determine for example the usability and the license
conditions of the frameworks. As a result, the Cyber-
Link for Java framework[2] was selected for UPnP and

25

Jersey[3] as a REST-framework for the web service in-
terface. With this, Java becomes the programming lan-
guage for Gateway and Controller.

4. GATEWAY

The main task of the Gateway is the connection of the
various sensors and actuators from different manufac-
turers to the system for building automation. It pro-
vides the access to the devices over a uniform interface
and hides the specific access technologies of the manu-
facturer from the rest of the system. UPnP was selected
as the technology for this uniform interface. Section
4.1 gives the reasons for this decision and describes
the interface specification. Furthermore, the Gateway
should support the dynamic adding and removing from
sensors and actuators. To reach this hot plug support,
the implementation of the Gateway is based on OSGi
[4]. Section 4.2 describes the internal structure of the
Gateway.

4.1. The UPnP interface

The Controller must be able to communicate with the
sensors and actuators. For this communication, UPnP
was selected in the run-up to this work because of the
following reasons:

Locating devices
It should be possible to connect new sensors and
actuators to the system during the runtime. There-
fore, the Controller must be able to find new de-
vices automatically or the devices must announce
their presence to the Controller. The Discovery
contains different procedures for these scenarios.

Learning the properties of new devices

It is not enough to know, which devices are pre-
sent in the network. The Controller must know
how to connect to the devices and which infor-
mation they provide. There can be a large num-
ber of various devices. If the information for
each device must be configured manually, the ad-
ministration effort of the system would be to large
if a high number of devices is connected. The
system itself must learn the properties of the de-
vices. For this task, the devices interchange de-
scription documents in XML format. This is de-
fined in the Description-phase. These documents
contain all information about the properties and
capabilities of a device. So the Controller gets all
needed information about the connected devices
without a manual intervention.

Interaction with the devices
To request information or execute actions, there
must be a way for the Controller to communi-
cate with the devices. To facilitate this communi-

cation between devices from different manufac-
turers, a standardized protocol is needed. UPnP
uses in the Control-phase SOAP as technology
for the access to the devices.

Efficient notification

It is important for the usability of the system that
the Controller is informed about changes of the
sensors and actuators as fast as possible. If the
Controller had to ask each device periodically to
notice a changed value, the network traffic and
the resource consumption would increase and the
delay between the change of a value and the re-
cognition of the Controller gets longer. UPnP
solves this problem in the Eventing-phase by an
asynchronous notification of the Controller. The
devices report changed values automatically di-
rectly after the event.

Because of these capabilities, UPnP was selected
for the communication technology between the sensors
and actuators on one side and the Controller on the
other side.

4.1.1. Classification of the Gateway

Like mentioned above, the sensors and actuators com-
municate via the UPnP interface with the Controller.
Currently, there are no devices that support our UPnP
interface specification because it is designed in this pro-
ject.

To use already existing sensors and actuators from
different manufacturers in our system, the Gateway must
take over the communication via UPnP substitutionally
for the devices. From the Controllers point of view it
looks like a direct communication with the connected
devices. This is important to integrate devices later
that implement the UPnP interface themselves without
adaption on the Controller or other parts of the system.
For the Controller the Gateway is transparent. It does
not need to know anything about the existence of the
Gateway. For the Controller the communication looks
like in Figure 4. The devices are logically connected
to it via the UPnP interface. It does not notice that the
devices are simulated by the Gateway. This has high
significance for the specification of the UPnP interface
because it must be designed for the communication be-
tween Controller and the sensors and actuators and not
for the communication between Controller and Gate-
way.

The real communication looks like in Figure 5. The
UPnP connection exists between Controller and Gate-
way which simulates the communication endpoints for
the connected devices. The connection to the single
devices takes place via the manufacturer-specific tech-
nologies and protocols. Thus, the two main tasks of
the Gateway are the connection of non-UPnP devices

UPnP
/’
UPnP

<O

Devices

Controller Gateway

Fig. 4. Logical Communication between Controller
and Devices

by simultaneously hiding of the manufacturer-specific
technologies.

Manufacturer
specific

Controller Gateway Devices

Fig. 5. Real communication between Controller and
Devices

4.1.2. Requirements to the UPnP interface

Many of them are partially complied with the features
of UPnP. They can be summarized as followed:

e The Controller must have the possibility to search
for a single device or a group of devices. The
needed procedures are defined inthe Discovery
step of UPnP. Only the device type must be de-
fined.

e If new devices enter the network they must reg-
ister themselves to the Controller. This point is
complied by UPnP as well.

e The Controller must be able to request the cur-
rent value or state of a device.

e Actuators must provide the possibility to change
their state.

e The devices must provide the possibility to the
Controller to register for automatic notifications
if a value of the device changed. If this happens,
the device has to inform the Controller. These
requirements are nearly completely complied by
UPnP.

4.1.3. Specification of the UPnP interface

For the specification, the requirements in the previous
section had to be mapped to the different elements of
UPnP[5]. The first step was to decide whether there are
two different device types for sensors and actuators or

to combine them in one. The authors decided to specify
only one type for both device classes. The main reason
for this is that each actuator is a sensor too because
the current state could be seen as a sensor value. The
difference between the device types is mapped to the
different actions that are provided by the devices.
Because there is no device type defined by the UPnP-

Forum for devices for building automation, an own de-
vice had to be defined. The same concerns to the pro-
vided services. All requirements are mapped to the be-
longing parts of UPnP like the device and the service
description documents. The authors tried to keep the
specification as general as possible to facilitate map-
ping of as much as possible devices over the interface.
So it is possible to use the device type for a tempera-
ture sensor as well as for a motion detector or a garage
opener. The detailed specification could be requested
from the authors.

4.1.4. Address conflicts

The concept of the whole system includes no limita-
tion for the number of Gateways. So it is possible that
a wireless device is in the reach of two Gateways. Be-
cause the ID of the UPnP device is based on proper-
ties of the real device it can happen that a device with
the same ID is provided by two Gateways at the same
time. This facilitates a redundant connection to the de-
vice so that a failure of one Gateway could be absorbed.
But this advantage could not be used with the selected
UPnP framework because an evaluation of the different
URLs for devices with the same ID is not possible. The
different URLSs for the same device ID cause an internal
conflict in the framework.

A possible solution is to integrate a Gateway iden-
tification to the ID of the device so that a device has
a different ID on each Gateway. In the described sce-
nario, that one device would appear under two different
IDs. But for the user and the system it would not be
identifiable that it is the same device.

The implementation of an inter-gateway communi-
cation to observe the connected devices and to recog-
nize a Gateway failure is another possible solution for
this problem. Currently, no solution is implemented for
this problem.

4.2. The generic interface

A central requirement to the Gateway was the possibil-
ity to add and remove devices during the runtime with-
out restarting the Gateway or stopping already active
devices. The specific code to interact with the devices
shall be placed in separate driver modules. So the rest
of the Gateway implementation is independent from the
supported devices. Figure 6 shows the general structure
of the Gateway. To put this requirement into practice,
different conditions must be fulfilled. Because the im-
plementation of the Gateway is based on Java, first a

27

way had to be found to integrate new Java code into a
running virtual machine. But this is not enough. To im-
plement an interworking between the Gateway and the
driver modules a generic interface had to be defined.
This had to be designed in a way that as little as possi-
ble limitations to the functions of the connected device
exist and that all requirements of the UPnP interface
can be mapped.

" Gateway
@ | Driver
Driver 3 s Ins[al\landuninssail
independend rz Driver '_i: ing runtime
part of the 2 fe— briver
gateway % e . I

Fig. 6. General structure of the Gateway

Because the devices can only provide features that
are included in the UPnP interface specification, a ma-
jor part of the requirements to the generic interface could
be copied from the UPnP interface. The specification
of the generic interface consisted of two steps. In the
first step, a technology was selected that allows to load
driver modules into the Gateway during the running
time. After that the interface was specified based on
the selected technology.

4.2.1. Implementation of the Gateway

OSGi was found as the ideal technology for the Gate-
way. It was developed for embedded systems so the re-
source consumption is very low. OSGi provides a sys-
tem for Java to implement modular applications with
the possibility to upgrade them with other components
dynamically during the runtime of the application. The
generic interface consists of a number of classes and
interfaces that must be implemented by a driver devel-
oper to implement a driver that could be installed into
the Gateway.

All parts of the Gateway are separated in different
bundles. A bundle is the smallest structure that can
be installed dynamically in the OSGi framework. The
Gateway implementation is divided into four bundles.
All classes and interfaces that belong to the generic in-
terface are collected in one bundle. The main compo-
nent with the Gateway functionality is implemented in
the second one. New installed devices will be found
and the representing UPnP device is generated auto-
matically. Another bundle is responsible for the man-
agement of the Gateway. It provides a command line
interface to the user to control and configure the Gate-
way. The fourth bundle implements a logging infras-
tructure that can be used by all installed bundles in-
cluding the drivers. These four bundles form the im-
plementation of the Gateway. Each driver is packaged

in its own bundle.

5. CONTROLLER

The Controller is one of the central components of the
building automation system. It is the link between Man-
agement Server, HCI, mobile devices and the sensors
and actuators. Its tasks contain the management of the
sensors and actuators as well as the providing of in-
formation to the sensors and actuators which are con-
nected. Beside the direct control of the sensors and ac-
tuators it should also be possible to realize complex use
cases, for example an automatical temperature control
or an automatical control of shutters on the base of the
incidence of light. To realize these tasks, the Controller
has two different communication interfaces as shown
in Figure 1. The Web Service interface serves for the
communication between the Controller and the Man-
agement Server, the HCI or the mobile devices. For the
control of the sensors and actuators the Controller uses
the UPnP interface — see section 4.1. With the UPnP
interface one or more Gateways can be connected to the
Controller.

5.1. Web Service interface

The Web Service interface is the Controller’s commu-
nication interface to the possible clients for the con-
figuration of the Controller and the use of the devices.
These clients could be the HCI, a Management Server
or a mobile client like smartphone. The choice for the
use of a Web Service for this communication interface
follows from the requirements and the basic concept
of the whole system. This decision was determined by
the advantage of the loose coupling and therewith the
independence from the used technologies for the imple-
mentation and the use of the communication interface.
Because of this choice it is possible to facilitate a huge
number of different clients the use of the communica-
tion interface and accordingly the interaction with the
Controller.

5.1.1. Requirements

The Web Service interface facilitates the communica-
tion in fact with the main component of the building
automation system. Hence all interactions between the
clients and the devices — the sensors and actuators —
have to be realized by the Web Service interface. This
basic condition and the enhanced tasks for the Con-
troller result in a set of use cases which have to be
mapped by this interface. The enhanced tasks of the
Controller are:

e The configuration of groups for logical structur-
ing of the devices. These groups can be real
existing structures like a group “living-room” as

28

well as logical structures like “temperature con-
trol devices”.

e The assignment of devices to configured groups
and corresponding the restructuring of the assign-
ments.

e Creating and deleting of programs for the config-
uration of automatical sequences.

e The registration on the Controller for notifica-
tions on events. These events can be triggered
by created programs or by the connected sensors
and actuators.

5.1.2. Implementation

Based on the described requirements, there is large num-
ber of use cases which have to be realized by the Web

Service interface, for example the reading of a sen-

sors value or the creating of new groups. The imple-

mentation of the Web Service interface is realized with

the REST framework Jersey. The basic elements of a

REST Web Service are the resources. Thus, the mod-

eling of the use cases is realized by the specification of

the resources and the allowed HTTP methods.

The base resource (base URL) propagates the basic
information of the Controller and the REST Web Ser-
vice to the client. The necessary resources are divided
into three groups:

1. Resources for the control of the sensors and ac-
tuators,

2. resources for the configuration of groups and

3. resources for the configuration of programs.

Based on the hypermedia principle and the knowl-
edge of the base URL, a client should get an access
point to the whole Web Service by reaching all other
resources by links. At present, the exchange of infor-
mation on the Web Service interface is XML based.
This could be extended by other formats like JSON or
HTML in one of the next possible steps of develop-
ment.

The device resources are a logical representation of
the real existing devices which are connected to the
building automation system. The information which
sensors and actuators are connected the Controller gets
from the devices themselves via the UPnP interface. As
a result, it is not possible to create new sensors and ac-
tuators or delete them by means of the Web Service
interface.

In contrast to the devices, it is possible to create
and structure groups because they are only logical re-
sources. Thereby it is possible to assign one group to
another group as a subgroup. A possible structure of
groups is shown in Figure 7. As you can see, each
group is maximal assigned to one other group. It is

not supposed that one group is a subgroup of several
other groups.

Fig. 7. A possible structure of groups

The reason why these groups have formed is as a re-
sult of applying these devices to them. This makes an
easy visualization possible for a client. So it is imag-
inable to emulate the topology of a one-family house
by several groups. This facilitates a spatially structured
visualization of the one-family house for the user by a
client.

The requesting of the sensors’ values and the ad-
justing of the actuators can be done with the Web Ser-
vice Interface but it is not possible to configure auto-
matical sequences with the device and group resources.
This case is realized with program resources. These
resources allow clients to save, delete, deactivate and
reactivate programs on the Controller.

5.2. Programs and automations

Simple processes, for example, to switch on the light or
shut down the shutters, should be possible by a direct
access via the Web Service interface of the Controller.
In contrast, one of the most important use cases is the
automation of the home control, for example, the con-
figuration of an alarm system by means of motion sen-
sors, door sensors and window sensors. Another sce-
nario is the configuration of a heating control system,
for instance to get a room temperature of 23 °C from
Monday to Friday in the time slots from 6 to 9 am and
from 5 to 11 pm as well as on Saturday and Sunday in
the time slot from 8 am to 12 pm. These and similar
scenarios require an automatical control of the sensors
and actuators by the mean of configured programs. In
general, a program stands for automatical configuration
sequences for the whole system. In the case of the heat-
ing control system, the corresponding program means
that a heating actuator will be turned on if the sensor
falls below a specified temperature. Therewith several
use cases can be realized or the programs can simply
be used to automatize processes.

The basic concept of the whole system includes the
execution and storage of such programs by the Con-
troller. The reason therefore is to make the whole sys-
tem independent from the Web Service interface and

29

above all independent from the reliability of the con-

nection to the Internet. In addition, it is important to

make the programs centrally available because it should

be possible to configure the Controller by several clients.
As a consequence, each client can access to each exist-

ing program independently from the fact whether the

client has created the program or not.

5.2.1. Requirements

The language of the programs has to be based on a very
abstract level because the Controller in general only
knows sensors and actuators and no specific forms like
a temperature sensors, electric meters or light switches.
That means the language has to include basic opera-
tions like the requesting of the sensors’ values and the
adjusting of the actuators.

Beside these basic operations, also some logical con-
ditions (if-then, if-then-else), comparisons (equal, not
equal, greater equal, greater, lower, lower equal) and
combinations (and, or, xor) are required. Furthermore,
details for the time of the execution are necessary, i.e.
on which weekday and at which time or in which time
interval the program should be active. Another element
of the language has to be an operation for generating
notifications. This is necessary, for example, to real-
ize an alarm system on which a security service will be
informed if the alarm is released.

Loops or similar elements are not required because
the execution of the programs is realized in a proac-
tive way. That implies that a program will be executed
when a value of a sensor or an actuator which is in-
cluded in the program had changed its state.

5.2.2. Implementation

Due to the specific requirements which are described
in section 5.2.1 we decided to design an own XML
based language. The decisive step was the use of the
JAXB framework [6]. The definition of the particu-
lar language elements and the generation of the XML
scheme was realized with this annotation based frame-
work. The use of this framework additionally facilitates
the simple implementation of an interpreter for the pro-
grams.

The JAXB framework generates an object tree after
the parsing of programs XML representation. The root
element is the representation of the whole program. It
facilitates the execution of the program by calling the
methods for the execution on each element of the pro-
gram. On this scheme the execution is cascaded to the
elements of the deepest nesting — the leafs of the object
tree.

Regardless of the elements which are defined at the
moment, the use of the JAXB framework allows an
easy extension with new elements and functionalities
for future development and adaptations.

5.3. Persistent storage of the configuration

Another important fact is the persistent storage of the
Controller’s configuration to restore the former state of
the Controller after a restart. This is necessary, for ex-
ample, on a power blackout. All configurations like the
created groups, the assignment of devices to groups,
the configured programs or the registrations for notifi-
cations on events have to be restored in such a case. It
would be not acceptable that the Controller discards the
configuration after a shut down — controlled or uncon-
trolled — and the user had to enter all the configurations
once again after the reboot.

At this point the JPA specification [7] with the Hi-
bernate implementation [8] is involved. The important
information of the configuration are saved in a local
database based on annotations in the data model of the
Controller.

The database exists only as a backup, i.e. all inter-
actions with the data model are based on the objects of
the data model which are stored in the main memory
of the Controller. Thus, not all information which are
stored in the data model of the Controller are saved in
the database. Only the important information which are
required after a reboot are persisted. The non-persistent
information are, for example, the current value of the
sensors and the state of the actuators because the Con-
troller can ask the devices for these information after
the reboot.

5.4. Concurrency and deadlocks

The concept of the communication interface facilitates
the interaction between several clients and the Con-
troller and thereby the changing of the configuration.
The simultaneous access of several clients can cause
race conditions and concurrency. This has to be man-
aged in a sensible way to avoid an inconsistent state on
the Controller’s data model.

5.4.1. Synchronized access to the resources

The first idea to solve this problem was to synchronize
the accesses to the particular resources of the Web Ser-
vice interface. However, after a short time it became
obviously that this solution is to inefficient and not suf-
ficient enough. Inefficient because the synchronization
is based on the methods for the processing of the HTTP
requests and these methods are not existing for each re-
source but for each resource group, for example, the
devices of a group. Not sufficient because the accesses
to different resources influence each other, for example,
the adding of a group to another group as a subgroup
and the simultaneous deleting of this group.

30

5.4.2. Security of the data model

The next idea was to secure the data model with lock
objects from the Concurrent library [9] for race condi-
tions. With this solution it was not possible to avoid
race conditions during the saving of the changes on
the Controllers configuration into the database. The
changes would be consistent in the data model but in-
consistent states could happen while storing the changes
in the database. As a consequence, this idea was not the
right solution of the problem.

5.4.3. Locks for each object of the data model

The implemented solution for the problem of the con-
current accesses and the race conditions is the imple-
mentation of an own strategy for the allocation of locks
for each object of the data model by a central instance
— the Lock-Manager. It is responsible for the alloca-
tion, the management and the release of locks for the
objects of the data model.

Because of the manifold relations between the par-
ticular objects of the data model it is possible that dead-
lock situations can occur. Therefore, a way for the de-
tection and the handling of such situations had to be
found. For this reason, the request of a lock for an
object is not implemented as a blocking operation but
the Lock-Manager replies with false if the lock for
the requested object can not be granted. If the Lock-
Manager did not grant the requested locks for several
objects on consecutive attempts, we can originate that
we have a deadlock situation. The corresponding in-
stance, i.e. the method of the Web Service interface,
can react in such a situation with an error message to
the client.

Beside the detection of deadlock situations, a sec-
ond mechanism is implemented to resolve such situa-
tions: The request for a lock is randomly repeated three
to six times. If the Lock-Manager could not grant the
locks after these repetitions, the requesting instance re-
leases all locks which it had requested till now. After-
wards the requesting instance starts a new try to get the
locks for the required objects. If this process was not
successful after ten repetitions, the instance will abort
the request with an error message to the client.

Because of these mechanisms it is possible to detect
deadlock situations and react on them in an adequate
way without durably blocking the Controller.

6. CONCLUSION

The presented system facilitates a flexible use in the
different use cases in the scope of the home control
for the ambient assisted living. The use of UPnP in
connection with the concept of the Gateway allows the
usage of devices from arbitrary manufacturers. This
reduces the costs because it is not necessary to develop

the devices for the home control. Already existing solu-
tions for the home control can be integrated and there-
with a huge number of components are still available.

Due to the modular structure and the use of open
standards, it is easy to adapt and extend the system.
Feasibility studies for the implementation of a rich-client
based Home Control Interface and the use of the Con-
trollers Web Service interface with mobile devices on
the basis of the Android platform already exist.

31

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

7. REFERENCES

UPnP Forum, “Project homepage,” Internet: URL
http://www.upnp.org/.

Satoshi Konno, “Cyberlink for java,” Inter-
net: URL http://www.cybergarage.
org/cgi-bin/twiki/view/Main/
CyberLinkForJdava

Jersey, “Project homepage,” Internet: URL
https://jersey.dev. java.net/.

OSGi Alliance, “Project homepage,” Internet:
URL http://www.osgi.org/.

UPnP Forum, “Upnp device archi-
tecture 1.0, Internet: URL http:
//www.upnp.org/specs/arch/
UPnP-arch-DeviceArchitecture-vl.
0.pdf.

Ed Ort and Bhakti Mehta, “Java architec-
ture for xml binding (jaxb),” Internet: URL
http://java.sun.com/developer/
technicalArticlels/WebServices/
jaxb/.

Sun Micrsystems, “Java persistence api,” Inter-
net: URL http://java.sun.com/javaee/
technologies/persistence. jsp.

Hibernate, “Project homepage,” Internet: URL
http://www.hibernate.org/.

Sun Micrsystems, “Package java.util.concurrent —
javadoc,” Internet: URL http://java.sun.
com/javase/6/docs/api/java/util/
concurrent/package-summary.html.

