
PROCEEDINGS

13 - 17 September 2010

Crossing Borders within the ABC

Automation,

Biomedical Engineering and

Computer Science

Faculty of
Computer Science and Automation

www.tu-ilmenau.de

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

55. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224757308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tu-ilmenau.de
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

Impressum
Published by

Publisher: Rector of the Ilmenau University of Technology

Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Editor: Marketing Department (Phone: +49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

 Faculty of Computer Science and Automation

(Phone: +49 3677 69-2860)
Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Editorial Deadline: 20. August 2010

Implementation: Ilmenau University of Technology

Felix Böckelmann
Philipp Schmidt

USB-Flash-Version.

Publishing House: Verlag ISLE, Betriebsstätte des ISLE e.V.

Werner-von-Siemens-Str. 16
98693 llmenau

Production: CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts

Order trough: Marketing Department (+49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

ISBN: 978-3-938843-53-6 (USB-Flash Version)

Online-Version:

Publisher: Universitätsbibliothek Ilmenau

Postfach 10 05 65

 98684 Ilmenau

© Ilmenau University of Technology (Thür.) 2010

The content of the USB-Flash and online-documents are copyright protected by law.
Der Inhalt des USB-Flash und die Online-Dokumente sind urheberrechtlich geschützt.

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

MODEL-DRIVEN HMI DEVELOPMENT IN THE AUTOMATION INDUSTRY

Daniel Meisen, Sebastian von Klinski, Dragan Macos

Beuth Hochschule für Technik Berlin – University of Applied Sciences

ABSTRACT

The underlying article describes a case study for the
usage of MDD in the automation industry. Together
with an industry partner a MDD tool chain has been
developed in order to create project-related HMIs for
numerous application areas in the automation
industry.

For the adoption of the MDD approach the overall
system architecture has been adjusted. The underlying
embedded applications provide a simple access
interface to the input and output signals of the
embedded application’s function blocks. An
embedded access layer runs in an additional low
priority non-real-time process and provides a generic
web-service interface to the embedded application.

On the client-side a generic client access layer
implements access to the embedded application’s
signal values for the HMI client platform.

The MDD tool chain is used to graphically
generate sophisticated HMIs for the client’s
automation products. Therefore, an Eclipse GMF
graphical editor has been developed to create project-
related dialogs from a universal and reusable control
widget library.

Index Terms - MDD, HMI, SCADA, automation

industry

1. INTRODUCTION

A few years ago an industry partner needed a new
HMI (Human-machine interface) platform for their
automation products that are mainly in the power
conversion and automation industry. The HMI
platform was to fulfill numerous requirements that are
symptomatic for the ongoing changes in the
automation industry. Shorter development cycles, an
increasing diversity of hard- and software platforms
as well as an increasing complexity of applications
lead to a dramatic increase in development costs
while the time pressure in the projects increased.

Due to the increasing use of off-the-shelf
hardware, nowadays the automation hardware
underlies only minor variations. In contrast, the
applications and the necessary HMIs must cover a
wide range of product- and customer-specific
adjustments. Additionally, the application
requirements and plant complexity increased
continuously. HMIs, in turn, are supposed to

encapsulate the underlying complexity with easy-to-
understand graphical user interfaces.

Aim of the underlying project was to develop a
MDD infrastructure for the graphical modeling of
HMIs. With this approach, development costs were to
be reduced while quick adjustments to the HMIs were
to be facilitated. Additionally, HMIs should be
implemented by non-technical experts to reduce the
development load of the technical experts.

2. OVERALL ARCHITECTURE

The systems used in the automation industry are
controlled and monitored using embedded devices
(Figure 1) that can be accessed by a SCADA
(Supervisory Control and Data Acquisition) system.
In the past, these devices consisted mainly of custom
hardware, specific for every single type of system. A
large amount of engineering effort had to be spent to
develop and test these custom hardware components.
Most of the application logic of those systems has
been implemented by the system’s hardware.

Figure 1: typical automation product components

In recent years powerful off-the-shelf embedded

hardware has become available. This changed the
general development process for applications in the
automation industry. Nowadays, most parts of a
system’s application logic are implemented in
software, running on standard industrial grade off-the-
shelf hardware.

Off-the-shelf hardware (e.g. industrial grade
automation PCs) can be used in a variety of different
automation products without major hardware-
modifications. These devices provide different kinds

211

of interfaces, such as Ethernet-, CAN- or RS232-
ports, specific to the type of system and can be
extended via additional PCI/PCI-Express interface
cards.

The automation PC, i.e. the controller, is used to
monitor and control other hardware components of an
automation system. Common hardware components
are sensors and actuators.

The controller’s application data will be accessed
by a SCADA-system that collects the signal values
and renders complex graphical HMIs based on the
data. The main component of a SCADA system is the
HMI that allows workflow visualization and
manipulation that is specific for each automation
system or system type.

The diversity and complexity of the software
applications running on these controllers has
increased constantly requiring a new overall system-
architecture (Figure 2).

Figure 2: Overall Application Architecture

This architecture is similar for all of the client’s

automation products and basically consists of a
controller tier with an embedded application layer –
the system’s control application – and an access layer.
The access layer allows to read the embedded
application’s output-signals and to modify the values
of the application’s input signals.

For the user-friendly display and modification of
the embedded application’s signal values a
sophisticated HMI is implemented in the client tier.
The client tier consists of three layers:

• A client access layer, implementing the access
interface to the controller’s embedded
application

• A client control layer implementing
components for the lifecycle management of a
controller’s state and the embedded
application’s signal values

• A HMI layer that implements a runtime
component for graphical HMI diagrams as
well as set of list-based views for common
embedded application information

Thus, the overall application architecture can be
subdivided into a client and a controller tier (Figure
2).

2.1. Controller Tier

The controller tier runs on the controller hardware, i.e.
the automation PC, and implements two different
layers: an embedded application layer, comprising the
system’s embedded application and an additional
embedded access layer that provides a remote access
to the embedded application’s signal values.

2.1.1. Embedded Application Layer

An embedded application is designed from a set of
highly customizable logical components (so called
function blocks) that have a number of input and
output ports that are connected via signals (Figure 3).
A signal has a specific data type, a unique address
within the embedded application and a value.

The value of an output-signal is computed within a
function block; the value of an input signal can be
either set manually or derived from the output of the
application’s function blocks.

Figure 3: Function Block Diagram

2.1.2. Embedded Access Layer

The embedded access layer implements an interface
to the embedded application layer that can be
accessed by the client tier via web services. An
embedded HTTP server runs in a low priority non-
real-time process next to the embedded application’s
processes and provides a web-service interface that
can be accessed via standard protocols such as http.

A range of different message-oriented web
services provide the access to the embedded
application’s input and output signals. Manipulation
of values of single input signals or sets thereof is also
supported.

An additional web application that runs within the
controller tier’s web server can be used for very basic
manipulation of input-signal values and the retrieval
of the most basic controller information using a web-
browser.

212

2.2. Client Tier

The client tier is implemented as a multi-platform rich
client application based on the Eclipse RCP-
Framework [1]. The client can be used to monitor and
control a single controller or groups thereof (so called
plants). In some projects more than 20 controllers are
addressed simultaneously by one HMI.

The client continuously monitors the controller’s
state and can display the state of the controller and the
embedded application’s information. A very
rudimentary display mode provides a list of all input
and output signals as well as error- and event-log
messages in generic list views.

For more sophisticated and customized HMI
interfaces the MDD tool chain is used. Therefore, the
HMI client includes a model-based graphical editor
and a runtime component. The graphical editor is used
to create new HMI component descriptions. The
runtime component is used to execute the graphical
HMI diagram descriptions as normal views in the
client.

The custom HMI components of the client
basically consist of three different layers:

• A client access layer, that implements the
communication between the client- and the
controller tier

• A client control layer, that manages the
controller’s states and offers additional
services e.g. for storing and recording
controller information or the values of the
embedded application’s signals

• A HMI layer that implements the graphical
interaction with a controller through list
views and graphical user interface diagrams
(see Figure 4).

Figure 4: Graphical HMI

2.2.1. Client Access Layer

A controller’s embedded application is addressed

using the controller’s specific IP address. During the
handshake between the controller and the client the
controller sends a description of all input and output
signals of the embedded application. This controller
description is interpreted by the client and can be
referenced by the client control layer.

The client access layer is communicating with the
controller tier via a variety of web services provided

by the controller. The client tier uses the web services
to request the values of the input and output signals,
the controller’s alarm- or event-message log or other
controller specific information.

These web service requests can be accessed from
the client control layer using a simple API.

2.2.2. Client Control Layer

The client tier is able to monitor multiple controllers
or groups thereof simultaneously. A client control
layer manages the state of all connected controllers.

A watchdog thread continuously monitors the
controller’s application and connection state and
triggers application events if a state change occurs,
e.g. a controller is disconnected.

The values of the embedded application’s signals
are retrieved periodically by a scheduler component
and can be visualized using generic list-views or
graphical HMI diagrams.

2.2.3. HMI Layer

Often control systems require complex visualizations
of the embedded application’s input and output
signals, workflow processes, or system states.
Additionally, GUI-based manipulation of the
application’s signal values must be provided to allow
user manipulation of the embedded steering
processes. Those GUIs usually require user
adjustments for a specific automation product. This
often includes visual process animations as well as
adjusted display of the embedded application’s input
and output signal values.

In addition to the display of an embedded
application’s signal values in various list-based views
the HMI layer implements a runtime component for
the rendering of system-specific GUIs. This runtime
component is a runtime platform for the graphical
HMI diagram components that are described in a
proprietary description format.

A graphical HMI diagram is developed by
arranging a selection of graphical control widgets
from the library of system control widgets on various
pages using the client’s graphical modeling
component. The resulting graphical definition of the
graphical HMI diagram can be exported into a XML-
based HMI description format.

2.2.4. HMI Description Format

The HMI description format is based on XML and
describes the components that comprise a graphical
HMI diagram, the component’s arrangement and their
layout. A graphical HMI diagram is described by a set
of control widgets that are arranged on pages. The
visual appearance of the control widgets is defined by
additional layout (e.g. size and position) and styling
information (background or foreground color, fonts).

213

The HMI description format also contains
information that is necessary to connect the control
widget to the input and output signals of a controller’s
embedded application such as a signal’s address and a
controller’s IP address.

The control widgets allow the creation of complex
animated HMI visualizations for a variety of different
applications using a large control widget library.
These animations can be assembled from custom,
application specific images. The description format
therefore contains references to all resources that are
referenced from a graphical HMI diagram’s control
widgets.

3. MDD-APPROACH

The developed MDD tool chain consists of a
graphical modeler (Figure 5), a graphical HMI
description format generator and a graphical HMI
diagram runtime component.

The graphical modeler is based on the Eclipse
frameworks (i.e., GMF [2], EMF [3], GEF [4], etc.).
The underlying DSL (domain-specific language) is
defined using EMF.

For the transformation of the EMF model into the
HMI description format a proprietary XML-based
code generation approach is adopted. The HMI
description format contains both the description of the
graphical HMI diagrams as well as the specification
of the access to the according input and output signals
of the specific embedded application.

The HMI descriptions are interpreted and executed
by the HMI runtime component. This HMI runtime
creates the actual GUI components using SWT and
JFace widgets and connects those widgets with the
according embedded backend using an adjusted
widget controller. This widget controller directly
accesses the embedded application using adjusted
web-service calls to the embedded-tier access layer.

3.1. HMI Modeling

Graphical HMI diagrams are divided into multiple
pages, which in turn comprise the control widgets. In
the first step, EMF has been used for the specification
of the DSL. It allows the description of the HMI
pages together with the contained control widgets. In
the DSL all control widgets provided by the platform
have been specified with the required access interface
to the embedded application. With this EMF model a
graphical editing tool has been generated using the
Eclipse Frameworks GMF and GEF.
 The palette of the GMF modeling tool contains all
available widgets (see Figure 5).

Figure 5: Screenshot of the HMI Modeling Tool

The provided system control widgets comprise

passive and active components. Passive components
are not associated with any of the embedded
application’s signals and can be used for structuring
and decorating the graphical HMI diagram pages.
Passive widgets include labels, images and various
kinds of geometrical figures (e.g. rectangles, ellipses).

Additionally, there is large range of active control
widgets that have to be associated with one or more
signals of an embedded application. These active
control widgets can be subdivided in display and
manipulation widgets.

Display widgets allow the display of input- and
output-signal values or a derived value. Commonly
used are labels that display output values and images
that are adjusted in their appearance according to the
value of an output signal, thus allowing animations
based on the value of the controller’s embedded
application signals (Figure 6).

Figure 6: Animation Area

Manipulation widgets offer graphical controls to

alter the value of an input signal’s value. A
comprehensive set of manipulation control widgets is
provided for manipulating the values of the embedded
application’s input signals. Buttons, sticky buttons,
check-boxes, combo-boxes, scales, and several other
common widgets can be added to an HMI page to
manipulate arbitrary input values with varying data
types.

Finally, there is an increasing set of sophisticated
display components that allow the creation of rich
graphical HMI diagram pages. Time-dependent trend
diagram widgets, bi-signal diagram widgets (that
display the history of two signal’s values) or
adjustable dynamic function diagram widgets - that

214

can be used to display multiple points or curves based
on signal values or mathematical derivations thereof
(Figure 7) - are some of the more complex display
components provided by the widget library.

Figure 7: Function Diagram Widget

The graphical HMI modeler includes user-friendly

dialogs to manage the connections between the
control widgets and the embedded application signals.
In order to connect the control widget to the
embedded application’s signals a connection to the
controller’s web service is established by utilizing the
client control layer.

An arbitrary number of controllers can be
integrated in one graphical HMI diagram. Each active
component is attached to the signal of one or more
signals of a controller’s embedded application using
the IP address of the controller and the application’s
input- or output-signal address. The description of
components therefore usually comprises the
specification of the location, the horizontal and
vertical sizes, as well as the controller signal
specification.

3.2. HMI-Description Generation

The modeled HMI description is initially stored in the
EMF format that includes several EMF specific
entries. For the serialization of the EMF files the
XML Metadata Interchange format (XMI) is used.
The XMI format has been specified by the OMG
Group and is commonly used as an exchange format
for development tools. The HMI description for the
target controller is generated by transforming the
EMF model into a proprietary XML-based HMI
description format. Therefore, the EMF model is
parsed, exporting all relevant information like
component positioning and alignment, layout, as well
as access to the embedded application’s signals.

A proprietary exporter component has been
implemented to optimize the integration of the HMI
generation into the productive HMI client. Thus, new
HMIs can be used immediately after the modeling
step. The exporter component is conceived in a way
that it can easily be extended by new GUI
components. Each model element is mapped to a
SWT widget or a group of widgets. The exporter then

retrieves an according producer class using a factory,
where all producers are registered. The producer in
turn generates the according HMI description for the
currently exported HMI component.

The HMI modeling chain has been conceived to
allow a simple integration of new HMI components.
By registering a new producer at the factory new
component types can be added to the HMI modeling
chain. As HMIs are highly dependent on project-
related requirements this extensibility of the HMI
modeling chain is indispensible to ensure a long-term
usage and avoid software ergonomic limitations.

The HMI description is a simplified version of the
EMF model and is limited to the data, required for
rendering the actual runtime HMI. The specification
of the embedded application access is based on the
specific application design with respect to the input
and output addresses.

The actual IP addresses of the controllers are
added to the HMI description during the modeling
process. They can still be modified during the setup of
the productive HMI client in order to allow the re-
usage of diagrams for several controllers. The correct
mapping of the input and output signals between the
controllers has to be ensured in this case, though.
Therefore, signal names have been introduced to
allow a mapping of names to actual hardware
addresses of signals. This concept allows switching
applications and diagrams between controllers
without the need to adjust hard-coded signal
addresses.

Resources such as images or animations are
bundled together with the HMI description making a
graphical HMI-diagram easily distributable as a single
jar file.

3.3. HMI Runtime

The client tier is implemented as an Eclipse RCP
application. The actual graphical HMI diagrams are
Eclipse views. They are registered as extensions to the
org.eclipse.ui.views [5] extension point. The pages
are implemented as individual composites in a stack
layout. The various control widgets are created mostly
using standard SWT [6] and JFace [7] widgets.
Control widgets that display graphical animations or
diagrams are implemented by custom widgets mostly
based on Draw2D [8].

When the HMI runtime is started a request
scheduler is created that manages the controller(s)
state and coordinates the retrieval of signal values by
periodically requesting the controller(s) signal values
through the client’s access layer.

The HMI can consolidate the responses from an
arbitrary number of controllers. To minimize network
traffic the requests to the controllers are consolidated
by the request scheduler. Usually, only the values for
signals that are visible from the HMI client’s views
are requested from the controller. However some
control widgets display a history of signal values over

215

time. Signals that are connected to such a history
control widget will be requested constantly, even if
they are on a diagram page that is not currently
visible.

4. RESULTS

The MDD tool chain has been applied to a large
variety of different kinds of productive automation
products such as solar plants, heavy steel production
sites, wind energy plants, power converters, and
various other application areas. In these application
areas the MDD tool chain generated rich graphical
HMI diagrams that can directly interact with a
controller’s embedded application utilizing the
client’s control and access layers through web-
services.

Due to the graphical modeling approach the HMI
generation could be delegated to non-technical team
members and functional experts. Additionally, HMI
development expenses and development time to
create HMIs for specific products could be reduced.

Overall, the MDD approach helped the industry
partner to cope with the new industry challenges
described above and significantly shortened the
development-cycle for their HMIs.

4.1. Extensibility

An additional feature of the described HMI
architecture is the possibility of extending the control
widget library. Adding a new control widget can be
performed in three steps: (1) the component has to be
added to the clients HMI EMF-model; (2) a producer-
component for the generation of the control widgets
HMI description format has to be implemented; and
(3) a runtime representation of the widget has to be
implemented using standard SWT or JFace controls or
utilizing Draw2D.

4.2. Cost Reduction

The HMIs are currently running on additional panel
PCs or separate service PCs that are not part of the
automation system itself. To further reduce costs for
the HMI, the usage of low cost embedded touch panel
PCs is being evaluated. This can be achieved by either
running the HMI application on the systems
embedded controller tier using the Eclipse RAP (Rich
Ajax Platform [9]) project. To access the
HTML/AJAX based UI – rendered from the original
SWT/JFace-UI – the low cost embedded touch panel
PC only needs to have a web-browser installed
(Figure 8).

Another option is to use a slightly modified
version of the HMI based on the eRCP (embedded
Rich Client Platform [10]) running directly on the low
cost embedded touch panel PC. Compared to the
Eclipse RCP the requirements for eRCP (e.g. Java
Profile) are more likely to be fulfilled by a low cost

embedded touch panel PC. The limited performance
of the low cost touch panel would still allow the client
to contain list-based views and the graphical HMI
runtime component. However the graphical modeler
would not be included.

Figure 8: RCP / RAP Architecture

5. REFERENCES

[1] Eclipse Rich Client Platform,
http://wiki.eclipse.org/index.php/Rich_Client_Platfor
m, The Eclipse Foundation

[2] Graphical Modeling Framwork,
http://www.eclipse.org/modeling/gmp/, The Eclipse
Foundation

[3] Eclipse Modeling Framework,
http://www.eclipse.org/modeling/emf/, The Eclipse
Foundation

[4] Graphical Editing Framework,
http://www.eclipse.org/gef/, The Eclipse Foundation

[5] Platform Extension Points,
http://help.eclipse.org/help32/index.jsp?topic=/org.ecl
ipse.platform.doc.isv/reference/extension-
points/index.html, The Eclipse Foundation

[6] SWT: The Standard Widget Toolkit,
http://www.eclipse.org/swt/, The Eclipse Foundation

[7] JFace, http://wiki.eclipse.org/JFace, The Eclipse
Foundation

[8] Draw2D Toolkit,
http://help.eclipse.org/help33/index.jsp?topic=/org.ecl
ipse.draw2d.doc.isv/reference/api/org/eclipse/draw2d/
package-summary.html, The Eclipse Foundation

[9] Rich Ajax Platform, http://www.eclipse.org/rap/,
The Eclipse Foundation

[10] Embedded Rich Client Platform,
http://www.eclipse.org/ercp/, The Eclipse Foundation

216

