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ASPECTS OF USER SPECIFIC DIALOG ADAPTATION FOR AN AUTONOMOUS
ROBOT

Steffen Miiller, Christof Schroter, Horst-Michael Gross

Ilmenau, University of Technology
Neuroinformatics and Cognitive Robotics Lab

ABSTRACT

The paper is giving a survey on multimodal dialog

technology and highlight some specifics of human
machine dialog on an autonomous companion robot
especially for elderly, cognitively impaired people,
to be developed in the CompanionAble [1] project.
The central aspect is adaptation to the user and
multi-modality of inputs and outputs, which is es-
sential for a natural and intuitive interaction. The
paper at first introduces a prototypical dialog sys-
tem and figures out issues of possible user adap-
tation. Then, a new concept for a dialog system,
realizing three aspects of adaptation is described.
Learning the meaning of user inputs, adaptation of
dialog strategy according to the user’s experience
and user specific timing of proactive behaviors like
reminders

Index Terms— multi-modal human machine dia-
log, input interpretation, fusion, timing, daytime man-
agement

1. INTRODUCTION

Within the CompanionAble consortium we are de-
veloping a mobile service robot for elderly people
with mild cognitive impairments (MCI), which aims to
assist them in their daily life. Besides the embodied
interaction robot, the system also consists of a smart
home environment able to recognize the user’s situation
and interact to her via a touch screen and verbally.
Caused by the target group of elderly, special empha-
sise has been put on a natural communication allowing
an intuitive interaction. Multimodal design of such an
interface is obvious but comes along with some hard
problems, which are not solved sufficently yet.

The most useful medium for commanding and
interaction with a robot, which most of the time is
located at some distance to the user, is speech. Speech
is an intuitive medium with a great explanatory power
but on the other hand, it is difficult to recognize speech
from a distant microphon in a noisy environment.
Also the interpretation of natural language is a hard
problem, which often is done by means of grammars,

This work is supported by EU-FP7-ICT Grant #216487 to
CompanionAble.
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as we do, too. Because of the mentioned problems
using speech recognition, the communication with our
system always includes further channels which are a
GUI on a touch screen — a very robust and reliable input
channel —, as well as a simple gesture recognition (only
head gestures). Furthermore, the presence and activity
of the user is recognized and modeled by the system.
This allows a multimodal grounding in the dialog.

Multimodality as later detailed helps reducing mis-
understandings and besides speeds up dialogs (up to
10%), while it is preferred by 95%-100% of inter-
viewed users as Oviatt [2] could show.

A further aspect of a system like the robot devel-
oped in CompanionAble is an adaptation to the user’s
specifics. Since our system will be in contact to a
person over a long period of time, adaptation of the user
to the system can be expected and the user’s attitude
to the system has to be tracked and modulated in a
positive way. The robot should not be seen as a tool
convincing by its functional benefit, but it shall be a
real companion having some personal relationship to
the care recipient.

In the remainder of the paper, a brief overview on
the state of the art in multimodal dialog management
and a survey on user adaptivity is given, followed by
an overview on our robot’s realization and adaptation
mechanisms for dialog content selection, input fusion
and timing of proactive behaviors.

2. MULTIMODAL DIALOG MANAGEMENT

Multimodality means that multiple channels are used
for communication between the dialog partners. Trung
in his detailed survey [3] distinguishes active and
passive input modes, depending on whether it is used
consciously like speech or unconsciously like head
gestures and facial expressions.

Various analytical models exist for describing the
multimodal interaction, where a dialog model and a
dialog management model have to be distinguished.
Dialog models are psychological and sociological or
linguists descriptions of human human or human com-
puter interactions with a rather technical focus. On
the other hand, the implementation and the methods
for realizing an interactive system are following some



dialog management model, where they fall into the
folowing classes: finite-state, frame-based, information
state and plan-based and collaborative agend-based

[3]. These are not mutually exclusive, since often
mixed forms appear.
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Fig. 1. Structure of a multimodal dialog system

A prototypical multimodal dialog system consist
of mainly five parts (compare fig. 1). Various input
modules (1) are extracting features from the different
modalitis. These features are integrated by a fusion
module (2) in order to extract some common semantics
from the stream of features, which is sent to the dialog
manager.

The dialog manager (DM) (3) is responsible for
planning and executing the next actions of the system.
It can take into account different models of knowledge,
like some form of a task model, general and domain
specific knowledge, a dialog model, a user model
and the dialog state itself. Depending on the dialog
management approach, the task model and the dialog
model are realized in an explicit or implicit manner.
E.g. in a frame-based approach the task model is
explicit, while the dialog model is contained implicitly.

In order to fulfill the current tasks, the DM also
needs access to the background functionality of the
system, which can be a data base or the functions of
a robot. Once the DM has selected the content for the
message to the user, the fission module (4) is respon-
sible for selection of the best modalities to express the
content for the user. At last, output modalities (5) will
render and transmit the message to the user.

In contrast to unimodal GUI interaction as well as
to pure language based interaction, a multimodal dialog
system comes along with the inherent need of contin-
uous interpretation of inputs and parallel processing of
the different modalities. While unimodal inputs realize
as a sequence of atomic events, in a multimodal system
various channels have to be analyzed in parallel. This
mostly is done in a probabilistic manner. Furthermore,
the different inputs have to be associated to indivual
communicative acts based on the time line and the
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development of the dialog state. Time sensitivity is cru-
cial in order to decide whether to interpret commands
in parallel (e.g. a command and a pointing gesture)
or sequential. There exist formal models [4] (CASE
[5] and CARE) describing the combination of inputs.
The CASE model e.g. cathegorizes the modalities into
sequential or parallel and the fusion into independant
or combined. Thus it finds four different ways of
modality combination. Only when the modalities are
independent (e.g. voice command for “come here” and
doing respective hand gestures meanwhile) and used
in parallel a synergy effect occures helping to reduce
ambiguity and gain robustness. In contrast in the
combined case (e.g. command “go there” and pointing
pose giving the target) the correct interpretation of
the semantic is dependent on two systems, thus true
positive rate of both modalities multiplies, reducing the
overall robustness. Cohen et al. [6] already in 1997
introduced a tool called quickset for multimodal dialog
design, their modality integration scheme considers
temporal statistical and semantical properties of the
modalities.

Fusion of multimodal inputs as central element of
multimodality is subdivided into Data-level, Feature-
level and Decision-level fusion [4], where Data-level
fusion refers to combination of different audio chan-
nels or camera images before features are extracted.
Feature-level fusion combines different features before
the semantic classification takes place, but it only helps
when applied for closely coupled modalities, which
are syncronized very well. An example for this is the
combination of speech and mouth movements prior to
of speech recognition. Often probabilistic models like
HMMs or temporal neural networks provided with a
combined feature vector are used for that kind of fusion
coming along with difficulties due to complex models,
which depend on extensive datasets. Despite expensive
training, these methods often do not generalize well for
less closely coupled modalities as we intend to use.
The alternative is fusion at decision level. Here the
different input channels each have extracted their own
interpretation of the semantics in the user’s expression,
which are combined in the dialog manager.

Depending on the dialog management model,
decision-level fusion by Dumas [4] are classified as
frame-based, unification-based or symbolic/statistical
fusion. The latter group also allows adaptation to a
user’s charakteristics as we will discuss later. The
interpretation of combined inputs, which only can be
interpreted in conjunction explicitely can be realized
by multimodal associative maps. Here for each com-
bination of two modal classes the multimodal semantic
class is stored. This mapping can be handcrafted or
learned from a labeled corpus. In our case, we apply
a kind of frame-based dialog management model, the
combination is done in the dialog manager, thus our
research on fusion only captures the beneficial case of



parallel combined inputs.

[7] gives an overview of the development of fusion
techniques for multimodal dialoges and concludes that
classical fusion in contrast to machine learning based
approaches is well understood nowadays. [8] noticed
that machine learning based fusion at decision level on
the other hand is still in its infancy and needs further
research. One example for application of Bayesian
inference applied to decision level fusion is presented
in [9]. A problem for machine learning approaches in
general is the amount of necessary training datasets, not
to be underrated.

The other important part where multimodality
plays a special role is the output or fission module.
Once the dialog manager has decided what content to
send to the user, the Fission module is responsible for
selecting the way to express the message. This consists
of selecting the modalitiy and if necessary generating
a natural language expression. Different types of
approaches for output generation can be found in lit-
erature. template-based generation, conventional NLG
(Natural Language Generation) and recently trainable
generation. Template-based methods are often used
but come along with limited abilities for adaptation to
user preferences and dialog context. The conventional
NLG [10] consists of three steps, which are a content
selection and discours planner, a sentence planner
and a renderer for transforming the plans into natural
language. The results of that process are satisfying,
but adatation is limited by the designer of the system,
which requires very domain specific tuning. For face
to face dialog, such systems are often too complex and
slow. The trainable NGL refines the stages of con-
ventional NGL by means of statistical models gained
from train data. Here a couple of possible solutions
is generated with a conventional approach, which later
are ranked by means of a learned language model.
The reinforcement based methods for strategy selection
in the dialog manager are also extended to include
the way of information presentation in the domain of
information retrieval [11].

3. THE COMPANIONABLE ROBOT’S DIALOG
SYSTEM

The robot companion to be developed in our project
has no manipulators an thus concentrates on hands-off
services like communication, entertainment, informa-
tion, observation, agenda management, and as a special
aspect of CompanionAble, the cognitive stimulation
of people with MCI. This shows that it intends not
to be a passive tool but has a proactive component,
actively approaching the user in order to encourage
some activities and deliver reminders and other social
interactions.

Considering the complexity and effort for develop-
ing plan and information state based implementations,
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we concentrate on a frame-based approach, which
models the communicative acts as described below.
Finite State approaches are not sufficient for the robot,
since we have to handle mixed initiative dialoges.
Furthermore, the poor quality of speech recognition
in a noisy indoor environment makes generic dialog
systems (plan based / collaborative agent-based ap-
proaches) seem to be inadequate for the domain of the
robot applications.

The development of the dialog management model
was inspired from Speech Act Theory [12], the turn
taking model of a sequence of communication acts re-
sulting from analysis of human human interaction. We
have a high level dialog situation which incoorporates
the requirements arising from a mobile robot. This
level is describing the state of the conversation like the
user is absent, repetition, non matching inputs, help
necessary or dialog ok. At the task level topics of
conversation are described by frames, e.g. navigation
commands, reminder, greeting, information request, ...,
which can also be hierarchically dependent.

The frames consist of a couple of communicative
acts, more precisely user acts and machine acts (see fig.
2) which describe the semantic classes of possible com-
munication. In order to allow disambiguation of inputs,
the history of the dialog is represented implicitly by
means of expectation values for the communicative
acts. Whenever a question is asked, the possible input
acts with the answers are assigned some expectation
according to the graph (as depicted by the arrows in fig.
2). So a simple “yes” e.g. can be handled by the most
expected input act, even if it would also match others.
The data communicated in the dialog is stored in slots,
having a value and a reliability which results from the
inference process as described below. The reliability
also indicates whether an input has been confirmed
already or not. The output generation in our system
is controlled by a handcraftet grammar handling each
machine output act. Grammar rules can be activated
or suppressed by means of rules, which will consider
the reliability of slots to decide whether to confirm
assumptions implicitely or explicitely. Furthermore,
different possible personalities are realizable due to the
activation of other grammar parts, as used for adapta-
tion to user preferences. In order to take into account
the variability of the dialogs, considerable effort has to
be put into the specification of the robot’s expressions.
This leads to the central topic of adaptivity.

4. ADAPTIVITY

With the new fields for robot applications, a need for
adaptivity comes along. One reason is the growing
variety of potential users. Formerly application of IT
concentrate on experienced technically versed users,
while nowadays a wide public community is addressed.
Additionally, the growing complexity of system func-
tionality, the amount of information and objects of in-
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Fig. 2. Frame in the companionable dialog manager. A
sequence of human input acts and machine acts is modelled.
Necessary information on the dialog state are stored in slots
with value and reliability also indicating the confirmation
level (used for grounding)

terest to be dealt within a service application has grown
compared to a few years ago, making a user specific
selection and filtering necessary. In [13] a survey
of adaptivity functions for adaptive user interfaces in
general is given, where a useful subset is:

o taking over parts of routine tasks,

e adapting the interface to fit better the user’s way

of working with it (smart menus),
giving advice on the system usage,
controlling the dialog,

supporting information aquisition, and prevent
from information overload by means of filtering
and finding information

In presence of all the adaptivity capabilities, a small
set of fundamental design aspects has to be considered
carefully: Predictability, Controllability, Unobtrusive-
ness, Privacy

For example, a proactive presentation of informa-
tion like reminders, which falls into the last category,
needs to take care of the unobtrusivness. This can
be done by means of a good situation analysis and a
strategy for timing active behaviors as described later
on.

For designing the interface, one has to distinguish
between adaptability and adaptivity. Behaviour of
the system, which is setup manually by the user
consciously, should be called adaptability. When the
system itself finds the best settings for behavior param-
eters according to the user’s interactions and rewards
adaptivity is present. Since adaptability is indeed a
serious field but is less challenging methodically, we
now concentrate only on adaptivity. In the field of
spoken dialog systems, mostly used for phone ser-
vices, a variety of reinforcement learning approaches
has been presented in the last years. Thus offline
optimization of dialog strategies is a well studied topic.
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[14] learned from a WoZ study the optimal strategy
in a markow decision process (MDP). Unfortunately,
such approaches are limited to quite low complexity of
dialog problems (only 4 slots in their example). For
information retrieval optimizing the dialog strategy in
order to add or remove restiction for selecting from a
huge set of possibilities has been solved by means of
reinforcement learning and user studies. Others tried
to optimize duration (number of turns) necessary for
task completion in a noisy input channel by means of a
POMDP (also reinforcement learning).

Spitters et al. [15] are optimizing a dialog strategy
for encouraging users to take up some exercises. The
system can choose between different social elements
like greeting, smalltalk, apologies, jokes and relational
questions, which are optimized by means of reinforce-
ment learning based on user rewards. This kind of
strategy selection for an encouraging dialog for us is
also of interest in the CompanionAble project.

Besides the dialog strategy for information state
models, recent research concentrates on the output
generation of a dialog system. [11] show an example
for learning the way, how to express messages to
certain users in an information retrieval scenario.

All of these optimization approaches are applied
offline in the design phase of the dialog system and are
limited to a quite low complexity. Furthermore, they all
have to solve the training data problem, which grows
inherently with the complexity of the task. A method
to mitigate that problem is user modelling. Here some
model users are learned based on a limited set of real
interactions and then the necessary training data for the
dialog adaptation is generated in simulations.

In the distinct domain of long term interaction in a
personal environment, offline approaches as used for
the multi-user short term dialogs are not sufficient.
Here the system has to change its behavior during
operation time in order to adapt to the specific user.
Also in short term dialogs some user specific behavior
can be realized by means of classifying the user into
stereotypes and act according to a predefined or adapt-
able policy. The classification can be done based on
information gathered so far inplicitely or explicitely.
Typical stereotypes are distinguishing gender, age, or
preferences in item selections.

Within the CompanionAble project different as-
pects of adaptation are planned or still partially re-
alized. In particular we intent to adapt the output
presentation, the input interpretation and the timing of
proactive robot behaviour.

4.1. Output and dialog content adaptation

The way the system has to talk to the user inherently
depends on the level of experience with and expecta-
tions to the system. Because we intent to have a long
term interaction of many weeks or month, three phases



of living together have been identified: A) getting
known to each other, B) stable, C) changing behavior.
In the phase A the system has to guide the user to learn
about its functionality and introduce the different pos-
sibilities while observing the users reaction. Further,
user’s preferences are acquired explicitely or inplicitely
by building histograms on the users selections in menus
and other media like TV programm and news channels.
In the getting known phase, the dialog strategy of
the system is more passive, while thresholds for self
explaining help messages are lower. Passive in that
context means that the robot is more commanded by
the user instead of proactively making choices by it’s
own.

Later in the stable phase with a raising experience
level of the user, the system can switch to active offer-
ing of services if a specific context situation has been
noticed. Further, selections from lists of options can be
suggested by the system in order to speed up the choice.
Comparable to adaptive menus the problem of reduced
predictability comes along with that. On the other
hand current user trials with a robot assisting elderly
people showed, the users want more companion like
behavior instead of task fulfilling automatism, which
has been suggested to be reached by introducing some
unpredictability.

The last phase of tracking the changes in the user’s
behavior alternates with the stable phase. Implications
on that are that tracking of user’s preferences and re-
wards is necessary over the complete time of operation
online and results are to be used for a continuous
reselection of options (adaptation).

4.2. Adpative multimodal input interpretation

The second aspect for adaptation is a user specific
interpretation of input in order to reduce annoying
confirmation correction cycles in the dialog. On the one
hand the individual detectors for each modality have
to adapt themselfs to the user, and on the other hand,
as introduced in sec. 2, learning of parallel occuring
observations helps to benifit from a synergy effect.

In our application, because of the frame-based
management, combined inputs are not to be considered
by the fusion module. If one frame needs inputs from
different modalities, they can be aggregated in the
dialog manger.

The domain of home robotics is characterized by
large interindividual, cultural and situation depending
variances in expression of gestures (head gestures),
activities and different quality of speech command
recognition. Therefore, the focus of our research lies on
the online learning of user specific probabilistic map-
pings from modality specific detections to semantic
classes for the dialog management system.

In contrast to the multimodal associative maps [4],
where the cross product table of semantic classes of
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all input modalities is built up and filled with the
semantic class for the dialog, we have the assumption,
that modalities are conditional independent given the
user’s original intention, which is the semantic class .S
for the dialog. By means of that, we can built up a
Bayesian Network allowing to infere the semantics .S
from a given set of observed input modalitiy classes,
knowing that combined semantics is not noticable that
way. (see fig. 3)

The resulting model is depending on a couple of
probability distributions p(S|M;), where S is the set
of dialog semantic classes and M; are the sets of de-
tectable classes from the input modalities. For learning
and adapting these models we do some bootstrapping
from the known semantics of touch based GUI interac-
tions. There is a continuos cycle of first inferring the .S
given all the current observations and sending it to the
dialog manager. Once the dialog manager confirms the
correctness of the result, the probability distributions
are updated by a simple Maximum A Posteriory (MAP)
estimation process.

Unfortunately experiments with that method are
outstanding yet.

Semantic
Command Head
words gesture

Fig. 3. Bayesian Network for inference of semantic class for
a set of parallel observed independent inputs

4.3. Adaptive timing of proactive robot behavior

A third very important aspect for a personalized robot
assistant is the timing of its behaviors like reminders for
aganda items, but also for smalltalk related to special
activities like cooking or a weather forecast service
offered before the person is about to leave the home.
All these services require starting the actions before
the user does something or at least before he is not
available anymore. An example is a reminder for an
appointment, which is at 4:00 PM (see fig. 4), if
the user typically is out from 3:00 PM to 6:00 PM.
In this case the reminder to that appointment has to
be delivered before he leaves home, which in bad
conditions could not be observed directly or the user
goes out earlier than usual.

The solution to that problem is a model of the
user’s availability over the day and for each behavior
to be triggered a necessity function is defined, which
charakterizes the type of the behavior. See fig. 5 for
examples.

The system observes the user’s presence and ak-
tivities and builds up a statistical model of the avail-
ability. In our case a Gaussian Process is used as
model mapping the daytime to a probability function



on availablity P(A[t). By means of the model, the
unobtrusiveness and privacy design constraints can be
achieved when triggering interaction. Once a model
for a day exists, the system can predict the availability
and check, whether the behavior can be expected to be
delivered later with a better rating. The prediction is
permanently updated with new observations. E.g. if
an “about to leave” activity is observed, the availability
will be overlayed with an absent blob in the next hours
(case (b) in the figure). For decision, the product of
availability and necessity for each behavior is com-
puted for the complete day. The point of 90% of the
maximum determines the execution time. If it is in the
past or currently, then the behavior will be triggered.
If it is in the future the robot will wait and update the
prediction meanwhile.

In a simulation of a reminder scenario for an office
assistant, the method could prove to be satisfying. Tests
in the CompanionAble scenario are outstanding yet.

observed
availability

-

0

T
0:00 6:00

i @ availability * necessity
rating

T T T
12:00

Fig. 4. Decision model for proactive behavior like delivery
of reminders. (a) prediction based on a daytime model of
user’s presence at home, (b) overlay of currently observed
activity “prepare for leaving home”, lower graph: rating,
product of predicted availability and need for delivery of
message, For case (a) the intersection with the 90% threshold
is not in the past, thus execution will be shiftet to future. In
case (b) the predicted availability decreases and the 90% is
reached in the past causing immediate delivery of message.

)
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reminder medicine intake
before lunch
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6:00 18:00
& missed phone call, inform user asap or
somewhat later
V7T T T T T T T T T T >
0:00 6:00 12:00 18:00 0:00
1 cognitive training, can be shifted if user
0 /_\s absent at preferred time 9:00AM -
VUL LS N A N Y O N O IO A B E B B B
0:00 6:00 12:00 18:00 0:00

good morning ceremony, immediately
done when user is seen first time

T T T
12:00

Fig. 5. Exemplary necessity curves for different behaviors:
Raising ramps will shift execution to last possible point,
while falling curves try to execute tasks to the first possible
time.
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5. CONCLUSION AND FUTURE WORK

In the present work, some essential aspects of per-
sonalized multimodal dialogs especially for companion
robots have been identified and our solutions for the
adaptation has been briefly sketched. In the future,
these approaches will be implemented on the Com-
panionAble robot and tested in long term studies with
users living alone in their home. For the dialog strategy
selection, some further research is necessary in order to
find a automatic machine learning based solution sub-
stituting handcrafted grammars as described in section
4.1.
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