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Model Building, Control Design and pr actical
| mplementation of a MEM S Acceleration Sensor

Heiko Wolfram, Ralf Schmiedel, Torsten Aurich, Jan Mehner, Thomas Geliner and
Wolfram Dotzel

ABSTRACT

This paper presents some new results on MEMS acceleration sensors. An approximate method is de-
scribed to analytically analyze deep airstream channels on the mass surface. The channels enormously
decrease the squeeze-film damping force for ambient pressure inside the sensor. The ambient pressure
simplifies the fabrication process and guarantees approximate equal dynamics for all sensor samples.
The sensor fabrication and design is shortly covered. A theoretical model is built from the physical
principles of the complete sensor system, consisting of the MEMS sensor, the charge amplifier and the
PWM driver for the sensor element. A reduced-order model of the entire system is used to design a
robust control with the 3 .-Approach. The weighting takes the plant-input disturbance into account
and prevents a slow disturbance rejection, which is the case for the S/KS-design. Remarks are given
on the identification of the mechanical system. Practical tests and the system identification prove the
newly found results.

Keywords: Acceleration Sensor, Model Building, H.,-Control, Mixed-Sensitivity Approach, ldenti-
fication

1. INTRODUCTION

ICRO-ELECTRO-MECHANICAL systems (MEMS) play an important role in the realization of
IVI sensor/actuator systems. They are small, very compact, have a simple and robust layout. An-
other advantage is the technology, which can directly be applied from the micro electronics and hence,
makes the integration of the electronics and the production of large quantities possible. There are,
however, some limitations such as packaging, cross-talk related problems, the MEMS mechanical
limitation. A major problem for the control design and stability is the strong nonlinearity of the elec-
trostatic field component and the nonlinearity of fluid damping. Therefore, an intensive analysis of the

open and closed-loop system may be necessary.
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Figure 1. Block diagram of the system

Control systems were widely applied to MEMS to improve the system behavior. A sigma-delta con-
verter [1, 2] was used to control an accelerometer. A phase lead-lag controller in combination with
a second-order low-pass filter [3] was successfully attached to micro-mirror systems. A Kalman ob-
server based state feedback with integral action [4] as well as further control schemes like PD and

phase-lead control [5] found its application for micro-actuators.

Nonlinear control, such as model-reference adaptive control systems (MRAC) were successfully ap-
plied to micro-mirrors [6] and gyroscopes [7, 8], as well as a model-reference based neural network
(NN) [9] on an accelerometer. Sliding-mode control [10] and PID control with non-linearity inversion

and gain-scheduling [11] was used to control micro-mirrors.

From control theory is known, that special requirements are needed or limitations exist. The sigma-
delta converter is a proportional control with limited tuning possibilities, the tuning rule for the phase
lead-lag, PD controller rely on practical tests and the pole-placement control needs full state measure-

ment or generation.

There are, however, limitations for the nonlinear approaches — MRAC cannot be applied to non-
minimum phase systems and might be impractical for fast time-varying systems. Similarly, gain-

scheduling assumes a slow altering scheduling variable and the scheduling variable should capture the



plant nonlinearities. The non-linearity inversion assumes a perfect cancellation and the sliding-mode
control produces high-frequency switching in the control-loop. Further, the NN approach just gives
a black-box model with no knowledge of the inside dynamical system and needs a large amount of

training data sets.

All applied control schemes are developed in time domain and except of the MARC, sliding-mode
control and gain-scheduling do not consider robustness explicitly. Therefore, the 3., control design
is introduced to control the system, depicted in Fig. 1l Since there is no guaranteed stability for the
developed linear time-invariant (LT1) control on the nonlinear system, stability analysis has to be given
explicitly. This will be a task for the future.

2. DESIGN

A capacitance acceleration sensor has been developed in bulk micro machining technology. It con-
sists of a silicon wafer with the mechanical structure (Fig. and glass wafers with the electrodes,
which are anodic bonded to both sides of the silicon wafer. Fig. shows the sensor’s schematic

configuration.

electrode

torsion spring

connection contacts

. ¢ e entilation /

hole silicon
glass
gz aluminum
. titanium

7

(a) SEM micrography of the seismic mass (b) Schematic configuration

Figure 2. The sensor chip

By using silicon-nitride and silicon-oxide as mask layers, eight different masks (four for each side)
are used to etch the spring-mass components into the silicon wafer (Fig. 3). Caps of about 3 m are
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Figure 3. Process steps

wet etched in KOH-solution with the first masks (front and back side). A following LOCOS-process
is used to grow up 1 um thermal oxide on the mass-surface. The second masks structure the oxide to
create oxide spacers on the surface of the mass. These spacers prevent the electrical contact between
mass and electrodes and also the sticking during the bonding process. The third masks are used to
etch 30 um deep channels into the mass to minimize the squeeze-film effect. Finally the spring-mass
components are etched into silicon. All masks are designed to create components, which are rotated
with an angle of 45° in relation to wafer flat. The under-etching rate is nearly the same as the deep-etch
rate. That means, that the cross-section of the springs has a rectangular shape.

Silicon wafers were anodic bonded on the glass wafers and structured to get silicon islands. Holes



are ultrasonic drilled into the glass wafers to get the electrical contact from outside to inside of the
glass wafers and the equalization to ambient pressure. The holes have a diameter of 500 xm and a
deepness of about 600 pm. Silicon hard-masks are used to sputter aluminum electrodes and to realize

the connection between electrodes and outer silicon islands.

One silicon wafer is anodic bonded together with two glass wafers to get the final sensor. The process
parameters are a temperature of 400 °C, ambient pressure and a voltage of 300 V. The ambient pressure
guarantees equal heating of silicon and glass wafers during bonding process, and thus minimizes the
deformation of the components after cooling down. An electric charge on top of the SiO,-spacers
can emerge from the anodic bonding process, which can create an additional unknown electrostatic
moment. The outer islands are connected with the middle wafer during the bonding process to prevent
this effect. A bonding grid at the outside of the glass wafers applies the bonding voltage exactly to the

position of the silicon frame on the silicon wafer.

The sensors are separated and a final sputter process supplies the side wall contacts. Therefore, some
sensors are put together in a sputter feature and covered by a hard-mask to separate the connection

contacts. Bonding wires finally connect the sensor to the electronics.

3. MODEL BUILDING

The acceleration sensor can generally be described as a spring-mass system
[~w*M + jw{D + Dy(w, v(w))} + K + K(w, v(w))] v(w) = Py (w) + Pa(v(w), u(w)) (1)

with the inertial matrix M, the damping matrix D and stiffness matrix K, consisting of constant me-
chanical and frequency dependent squeeze-film parts, the displacement vector v and the load vectors,

the electrostatic load p; and the disturbance, the mechanical load p.,,.
The mechanical system has in general several degrees of freedom, where only the first mode

1 /K

- )

fo=5-0/7

with the moment of inertia .J and mechanical spring constant K is considered. The higher degrees of
freedom usually appear in higher frequency areas (Fig.[4), which are uncontrollable and undetectable

from the electronics.
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Figure 4. First four results of the modal analysis

The mechanical constants can be derived from the mechanical laws, where the mass has the dimension

A X by, X d,, (Width x length x thickness) and the beam the dimension a, x b, x d,. The calculation

of the spring constant further needs the elastic shear modulus of silicon G and the torsion moment of

inertia for a rectangular profile 7,

1
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which can be found in ].
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mechanical electrical

translatory rotatory lext
mass M moment of inertia .J capacitance C A ==
spring constant K spring constant K inverse inductance L ! LZ d R R
damping constant D damping constant D conductance G = R~ = |:> = s LI} Sts mn
velocity v(t) angular velocity ¢(t) voltage u(t) = ¢(t) o ¢ URSL L o I
force F(t) Moment M (¢) current i(t) s Ll s mn
displacement z(¢) angle o (t) zag)nitlzgzz)

Table 1. Force-current analogy and its relation between Figure5. Analogy model of a spring mass system

mechanical and electrical components

3.1. Squeeze-Film Effect

Fluid damping generally plays an important role in micro systems, because of very small distances
between moving parts. The fabricated acceleration sensor works at ambient pressure and therefore
uses the gas in the gap as the damping element. Because of the compressibility of air, the gas produces
frequency dependent damping and spring parts, where the damping part decreases and spring part

increases with growing frequency.

The desired frequency response can be controlled with a proper gas pressure. In our case, the frequency
behavior can be further achieved with changing the depth, width and amount of the airstream channels

on the mass surface.

General flow problems can be described with the Navier-Stokes Equations. A special simplification,
the Reynolds Lubrication Equation [13], describes the pressure distribution in a small air gap between
two moving plates. A simple, linear dependence can be derived with a Taylor approximation and
further neglecting high order terms. The resulting differential equation can be solved with separating
the variables, which was done in [14] for parallel moving rectangular plates. The procedure was
extended in [15] to tilting rectangular plates with a variational rotation axis. With using the force-
current analogy, which is summarized in Tab. 1] the result alters to an infinite sum of series connections
of a resistance and inductance (Fig.5). A new variable, the squeeze number

12p1a2
o=t (4)
0

was introduced in [14] for solving the linearized differential equation. The gauges a and b denote the
width and length of the plate, p, the nominal pressure, d, the nominal gap width and ;. the viscosity.
An one-term approximation of the squeeze-film damping parts is sufficiently accurate for most prac-

tical purposes [14]. Tab.[2 summarizes the squeeze-film damping results for both, the translatory and



rotatory motion.

REMARK 1. An analytical solution of the plate with airstream channels is not a trivial task. The
channels are deep enough to set the pressure inside of them to nominal pressure. This approximation
would split of the plate area into (n, + 1)(n, + 1) small planes with the new dimension

a — NgW, and p_ b —nyw,
ng +1 ny, + 1

a =

: ()

where w, is the width of the channels, n, the number in x-direction and n,, in y-direction. The summa-

tion of all spring and damping forces gives the resulting load

~ 1 ~ 1
R, = RO, and L, = L,
N T R A T A

which is valid for the translatory movement.

The rotatory motion needs some more calculation, since the rotation axis varies from plane to plane.
One gets the solution of the squeeze-film parts for a variational rotation axis [15]

dom® a? dom?
R = —— (14— and Lt = ——— . 7
sLL 64a3bC2pyo ( + b2> s 64a3bC2p, ()

A one-term approximation is in this case correct, since the distance { = ¢/a will be a factor of 1/2.

The length ¢ defines the distance of the rotation axis to the barycentric axis of each plane. A summation

of all moments gives

2 2
Rmt C Rrot and Erot _ C Lrot (8)
s 1,1 ~ s 1,1 s1,1 — < s 1,1

(n, +1)¢? (n, + 1)¢2

where

- "i": (2n+ 1) (14 mny)(1 4+ 2n,)(3 + 2ny)

i 12 ' ©)

The gap between each plate can be neglected for the moment calculation, as long as a >> w,. For the
approximation is further supposed, that the channel depth is greater than the mean free path d, > d,

and the plate area @ x b not too small.

A detailed analysis of airstream channels can be found in [16], which considers the actual pressure

distribution and the viscous friction on the sidewalls.



The transfer function of the acceleration sensor can be easily get from the state-space description,
found from the Kirchhoff Equations. An one-term approximation for the squeeze-film parts at the top
and bottom side is sufficiently accurate, since the seismic mass is controlled in zero position. The
model for the control design reduces further to

1 _1 1] 1
CR C C C
A|B LY 0 o0 |0 . R =5 R1a
Grnech = {Cg’f} — Lo - % 0 with the values L 1 . (10)
0 L 0 ‘ 0 s 2 S 171

This approximation will be also used for the control design, since the order of the model directly
determines the order of the controller.

3.2. LTI System Model

Gmech =

Sensor Element

___ Charge Amplifier |

elektrostatic Force

Figure 6. LTI system model

The LTI model of the complete system shows Fig. 6. The system contains an inner loop part with
positive feedback, which is responsible for the system instability, known as spring-softening effect.
The other gains rise the open-loop gain of the system. The plant model for the control design results
into

x = (A +k,BC)x + Bk,kpymu , y = k.k.Cx . (12)

Tab. 2] summarizes all needed gains for calculation, where the derivation can be found in [15].
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Table 2. Summary of the system gains at zero position

4. IDENTIFICATION

The identification of the mechanical system is not a trivial task. First, a known acceleration must be
applied to the sensor and the seismic mass has to be observed with an optical instrumentation. This

could be a very costly job and might be even impossible for an opaque system.



An alternative to circumvent this problem is to use the electrostatic system and to calculate back the
underlying mechanical system. This can be done with a two-stage identification [17], which identifies
the system at an operating voltage near zero. The dynamics of the electrostatic system is in that stage
close to the mechanical system behavior. The mechanical system DC gain is got from the measured
resonance frequency of the spring-mass system in the unmounted stage. The second stage fine-tunes

the system at nominal operating voltage.

A better alternative to identify the mechanical system, including the system gains, can be found in
[15]. The identification uses the voltage dependences of the linearized gains and interpolates them
with a polynomial. This means, that only two identifications at different operating voltages are needed
to completely calculate back the mechanical system. The algorithm was stated as following:

ALGORITHM 1. The pole movement under variating operating voltage can be approximately de-
scribed with a parabola of second order around the zero operating voltage

Pja (ub) ~ (SOjOT + ijwug) +j (ijm + ijmug) ’ (12)

where the vertex of the parabola defines the approximate pole location of the mechanical poles ¢, +
j(pjm"

The value of the mechanical plant gain k, can be approximately calculated from the dominant real

pole to ,
— ¢1QTUb

koo (up)
The system forward gain kpl% is the static gain of the electromechanical System G ,,.., divided by the

k, ~ (13)

quotient of the products of the pole and zero locations

Hngz_Ilm_p]_l;ub) ’ (14)

kpl% - Gemech(s = 07 ub)

where G epecn () IS @ strictly proper system (n > m).

The dependence of the gain k’pl%, where k = K (up) kq(up) kekpwm (up) is described with a cubic
parabola in wuy,
kpk = paul . (15)



REMARK 2. A similar estimation of the plant gain as in Eq. could be also get for the two dominant
imaginary poles
2
]{,' ~ 90%01 - (@222?’“%)
g ke@(ub)

(16)
of an undamped system.

The Identification algorithm relies on the exactly known order m and n. Subspace Identification [18]
directly determines the system order » from the input-output data. The transformation rule z = e’s
can be easily applied to the poles and a mean value of the zeros z; can be used to calculate back the
system gain in Eq. (14).

It is clear, that the identification routines just only consider the small-signal model at the equilibrium

point. Therfore, a very low excitation signal is only appropriate.

NOTE 1. Finding the system zeros in S-domain is not a trivial task. Identification routines generally
find a discrete-time system model. The Z-Transformation might increase the numerator order and the

location of the zeros vary with the location of the poles. A simple example

1 zZ p1<]_ - 67T5p2>(z _ e*Tspl) —_ p2<1 o e*TSpl)(Z - efT5p2>

G(s) = o—e  G(r)=

pip2(pr — p2)(z — e Tspr) (2 — e~ Topz)
(17)

shows the problem of the transformation. A sign of order discrepancy in the identification are very fast

(S +p1)(8 + pQ)

poles and zeros, which should be canceled.

5. CONTROL DESIGN

The S/KS/GS/T-Standard-Design Problem is used for the control design. In this design, the transfer

function matrix IN will be minimized with the co-Norm.
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Figure 7. Block description of the S/KS/GS/T
standard problem

The H, problem is the minimization of the transfer function matrix N
min ||N(K) |

over all stable and proper controllers K [19]. Fig. 7| depicts the general control loop, where y is the
plant output, w the reference signal, u the control signal, d the plant input disturbance, e the error
signal and z the performance signals, which are object for minimization.

The main objective is in our case the loop-shaping of the complementary sensitivity transfer function
T, = KG [I + KG]". Thus, the command response will be optimized. A constant bound is further
put on the control signal to avoid actuator saturation. Additional bounds are added on w and e to
ensure, that the controller is proper. The realization of the weighting scheme is done with proper
weighting factors W, at the inputs and outputs of the block P (s).

6. RESULTS

The identification and control design routine have been successfully applied to several samples. Fig.
shows the singular values from the subspace identification of the identified system, where the oper-
ating voltage wu, is varied. It can be seen, that a simple first-order system is sufficiently accurate for
identification. The mechanical model

0.2249

mech = ~— ra a5’ kcorr =0.45 19
" s +52.63 (19)

is evaluated from the identification algorithm, where %.,,.. indicates the correction gain in the outer
loop.

*The translatory approach has been used for reasons of simplicity and numerical computation.



Singular Values

Bode Diagrams

u
o

/I\

o

k] 0

£

() e

T 50 Analytical solution

E ~ ldentified system | 0 e
g ~~ ANSYS results

=-100 :

107 10° 10° 10

A o= p,=1 bar,

1 d,=10pm

én 50 p,=1bar : ))V,/
é—loo do=3um -
£ p,=1bar,d,=3um

° ¢
§ ~150 airstream channels o= Thar

a —200 d,=20um

107 10° 10 10*
Frequency in Hz ——>
(a) Singular values from the subspace identifi- (b) Evaluated models compared to identified
cation model

Figure 8. Results from identification and simulation

Fig. 8(b)| shows the bode diagrams of the analytical results compared to ANSY-simuIation results.
The bode plot shows a very good conformance between simulation and analytical solution. One can
see, that the system with airstream channels reacts as fast as a system without channels and a gap width
of dy = 10 pm. The error between FEM-analysis and analytical solution is also small in this case. The

identified mechanical system lies also in the range of the predicted solution.

Fig.[9/shows the applied weighting schem incorporated with the closed-loop transfer functions. The
weighting directly takes the plant input disturbance into account and optimizes the plant input dis-
turbance rejection. Apart from a good tracking response of T}, this guarantees a good disturbance

rejection for both, input and output disturbances.

The time-domain measured results compared to the simulation results shows Fig. It can be seen,
that the practical results show a very good conformance with the simulated results. The weighting
scheme also prevents the reappearance of the open-loop poles in the closed-loop transfer functions and
thus, avoids a slow disturbance rejection.

TANSYS is a trademark of ANSYS, Inc., Canonsburg, PA

'The weights W, = ¢, Wy = My, W, = (sM; " + wy)/(s + wpe), Wo = (s + wpe M)/ (es + wye)
and W, = M;l were applied for the I{.-minimization, where My = gmackq/(kpumka), Ms = M, = 2.5,
M; = 2My, wp, = 27200 Hz, wp; = 10wy, and e — 0.
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Figure 9. Applied weights incorporated with the closed-loop transfer functions at u, = 10 V

7. CONCLUSIONS

Analytical methods have been used to describe the nonlinear accelerometer system. Remarks are given
on the squeeze-film analytical solution to incorporate plates with deep airstream channels to reduce
the squeeze-film effect. A reduced-order LTI system for the control design was generated at the zero

operating point.

The H..-weighting scheme directly takes the plant input disturbance into account. This weighting
avoids the open-loop pole reappearance in the closed-loop transfer function, and thus, avoids any slow
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Figure 10. Measured and simulated step responses of the closed-loop system at u, = 10 V

disturbance rejection.

The identification and control routines have been successfully applied to several sample systems. The
identification routine also proves the analytical model of the mechanical and the electrostatic system,

its dependence on the operating voltage and the influence of the airstream channels.
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