

50. Internationales
Wissenschaftliches Kolloquium

September, 19-23, 2005

Maschinenbau
von Makro bis Nano /

Mechanical Engineering
from Macro to Nano

Proceedings

Fakultät für Maschinenbau /
Faculty of Mechanical Engineering

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=15745

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224756923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Impressum

Herausgeber: Der Rektor der Technischen Universität llmenau
 Univ.-Prof. Dr. rer. nat. habil. Peter Scharff

Redaktion: Referat Marketing und Studentische Angelegenheiten
 Andrea Schneider

 Fakultät für Maschinenbau

Univ.-Prof. Dr.-Ing. habil. Peter Kurtz,
Univ.-Prof. Dipl.-Ing. Dr. med. (habil.) Hartmut Witte,
Univ.-Prof. Dr.-Ing. habil. Gerhard Linß,
Dr.-Ing. Beate Schlütter, Dipl.-Biol. Danja Voges,
Dipl.-Ing. Jörg Mämpel, Dipl.-Ing. Susanne Töpfer,
Dipl.-Ing. Silke Stauche

Redaktionsschluss: 31. August 2005
(CD-Rom-Ausgabe)

Technische Realisierung: Institut für Medientechnik an der TU Ilmenau
(CD-Rom-Ausgabe) Dipl.-Ing. Christian Weigel

Dipl.-Ing. Helge Drumm
Dipl.-Ing. Marco Albrecht

Technische Realisierung: Universitätsbibliothek Ilmenau
(Online-Ausgabe)
 Postfach 10 05 65
 98684 Ilmenau

Verlag:
 Verlag ISLE, Betriebsstätte des ISLE e.V.
 Werner-von-Siemens-Str. 16
 98693 llmenau

© Technische Universität llmenau (Thür.) 2005

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind
urheberrechtlich geschützt.

ISBN (Druckausgabe): 3-932633-98-9 (978-3-932633-98-0)
ISBN (CD-Rom-Ausgabe): 3-932633-99-7 (978-3-932633-99-7)

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=15745

50. Internationales Wissenschaftliches Kolloquium
Technische Universität Ilmenau

19.-23. September 2005

George Nikolov / Boyanka Nikolova / Marin Marinov / Volker Zerbe

Design of Virtual Laboratory Workbench Using Unified
Modeling Language

ABSTRACT

Modeling is proven well-accepted engineering technique. Engineers study models to assess the
impact of environmental forces and anticipate the behavior of actual structures. The Unified
Modeling Language (UML) has become the standard for documentation and high-level design.
There are lacks of any UML guidance, manual or application notes that would be useful for creating
laboratory practices. In this paper the principal approach of design of virtual laboratory workbench
using UML is presented. The software package LabVIEW is chosen to create virtual instruments
(VIs) that support the laboratory practice. To illustrate applicability of presented approach the
application layer of the magnetic hysteresis is created. The design and implementation of this virtual
workbench are based on concept of virtual instrumentation and UML modeling.

INTRODUCTION

The technological innovations behind the computers industry have transformed markets, business

processes, education and many other human activities over the last years. The computer has

transformed measurement and industrial automation applications from loosely coupled, often

incompatible, stand-alone instruments to tightly integrated, high-performance, networked test and

measurement and automation solutions. Recent developments and applications, specifically the

computer-based applications, have shown that many pure lecture-based engineering courses and

conventional experiments (which are heavily dependant upon specialized instruments) can be

updated and integrated with custom-written virtual instrumentation (VI), multifunction data

acquisition systems (DAQ) and can be delivered by computers [5, 6]. In addition to this, the courses

and experiments can be delivered remotely without having multiple copies of the experimental

setups. Additional scientific visualizations and advanced analysis can also be added in the form of

virtual instruments with minimal cost, which is limited or not possible in the conventional

laboratory practice. Moreover, the virtual instrumentation approach is open to further improvements

and developments, which may increase the student participation and enthusiasm while providing

ideal delivery environment.

A considerable portion of virtual instrumentation takes the software. Software transforms the PC

and the DAQ hardware into a complete data acquisition, analysis, and display system. The

increasing sophistication of DAQ hardware, computers, and software continues to emphasize the

importance and value of good software. A most important aspect of the process of creating good

software takes up modeling. Models are used to visualize the desired structure and the behavior and

architecture of designed virtual system. By way of modeling the developers can:

• Visualize the system;

• Specify the structure or behavior of a system;

• Create a template of how the system should be constructed;

• Document the decisions that have made.

The Unified Modeling Language (UML) has become the standard for documentation and high-level

design of modern software [1, 2, 3]. The UML is an evolutionary general-purpose, tool-supported,

standardized modeling language for specifying, visualizing, constructing, and documenting the

artifacts of a system intensive process. It is broadly applicable to different types of systems,

domains, methods, and processes. It enables and promotes a use-case-driven, architecture-centric,

iterative, and incremental process that is object oriented and component based, fundamentally

supporting industry and educational engineering best practices.

It is obvious that by incorporating the mentioned design and modeling practices, as software

development tools will avoid unnecessary application redesign, increase VI reuse and minimize

maintenance costs. Unfortunately there are lacks of any guidance, manual or application notes that

would be useful for such initiative. To make up for this deficiency in this paper the principal

approach of design virtual instruments using the benefits of UML is presented. Because of its

overall versatility as an engineering tool, the software package LabVIEW is chosen to create VI.

LabVIEW is a graphical development tool that allows rapid automation of instrumentation

systems. Many useful functions can be incorporated with the LabVIEW programs to perform very

useful tasks in a laboratory virtual instrumentation system design.

PRINCIPAL APPROACH FOR VIRTUAL WORKBENCH DESIGN BY UML

Following the best practice guides [2, 3] the design and development process can be divided in four

main phases:

Phase 1 - Requirements analysis

Phase 2 – Design of virtual workbench

Phase 3 - Software coding, and

Phase 4 - Verification and validation

Phase 1 Requirement analysis

 The first step is the virtual laboratory workbench analysis, and the input to the analysis is the

specification of the requirements. In an object oriented and UML approach the requirements are

identified with help of identifying of cases of use of the system. This is done by UML use case

diagrams. The main goal of this part is to identify the most characteristic use cases, and the actors

(i.e. people or other types of “users” of the system). In figure 1, a UML use case diagram shows

examples of how the requirement analysis of lab workbench can be implemented. To the left in the

figure can be identified an actor Student, which is a triggered actor.

The process of analyzing the virtual laboratory workbench involves the following steps and

considerations performed by Use Case Modeling

1. Identify and name the use case.

2. Draw a diagram indicating the use case, as well as its primary or triggering (student) and

secondary (professor) actors – fig 1.

3. Describe the use case briefly. According figure 1 the table 1 is associated.

4. Describe the main flow of events in the use case (not presented in this paper). This description is

used for activity diagram composition in next phase.

5. Define appropriate pre- and post-conditions for this flow of events (not presented in this paper).

Measurement

User Interface

Graphical display()
Spreadsheet file()

<<Interface>>

Internet

Control the stimulation
sources

Control the acquisition
node s

Execute the procedures

Select the UUT
Learn the base theory

Student

Professor

Create a Lab Report

Fig. 1. Use case diagram of laboratory workbench

Use-case name Description
Learn the base

theory
The actor Student read through the theory and lab procedure for this
experiment from the textbook, datasheets or the actor (entity) Internet.

Select the UUT The actor Student selects the appropriate unit under test (UUT) from the
given opportunity.

Control the
stimulation sources

The actor Student configures the DAQ system, initialized the analog output
channels and buffers using appropriate VI’s and set the stimulation sources.

Control the
acquisition nodes

The actor Student set the resolution for analog input channels and buffers
using appropriate VI’s.

Execute the
procedures

The actor Student executes the measurement procedures via actor User
Interface (Front panel of the VI).

Create a Lab
Report

The actor Student create a Lab Report, which is mainly, consists of
descriptions of the experiments, measurement results and some conclusions.
The actor Professor examine and rate student’s Lab Report.

Table 1. The use case description

Phase 2 Virtual Workbench Design

Applying structural approach the design process can be divided in dynamic and architectural

modeling. The UML’s activity and state chart diagrams can describe the dynamic behavior of the

developed system. In this paper the first step for virtual workbench design concerning the software

portion is suggested to be ordering the flow of behavior. To explore the flow of laboratory

measurement process, the activity diagram is most appropriate. In order to accomplish the modeling

of flow of behavior the following steps is performed specifying workflows with Activity Diagrams

1. Break up the main success scenario into groups of interactions.

2. Each group of interactions becomes an interaction occurrence.

3. Connect the main success scenario interactions with control-flow lines to show the correct

sequence.

4. When there is an alternative flow, break the control flow between interaction occurrences and

insert a decision node or a fork node.

5. Use merge or join nodes to bring any alternative paths that pass through the interaction diagram

back together (if necessary).

The UML activity diagrams for “Learn the base theory” scenario and package “Measurement”

(complex scenario) are shown in fig. 2 and fig. 3 respectively.

The next dynamic behavior diagram is a state chart diagram. This diagram is used to express the

states of the lab proceeding, or internal inside LabVIEW applications, and its transition from a state

to a state triggered by a particular event. State chart diagrams are variations of finite-state machines,

a standard method used in software design and programming. Figure 4 shows UML state chart

diagram showing the states of the program when the laboratory measurement process proceeding.

To create State Chart Diagram from scenarios the following steps are needed:

1.Get things started by adding a wait state.

2. Find incoming events.

3. Locate an event pair, which consists of an incoming event and the next incoming event.

4. Determine what the component is doing in response to the first incoming event.

5. Place a new state on the diagram

6. Draw a transition with the name of the first incoming event between the wait state and the

new state just placed on the diagram.

7. Add transitions and states.

8. Consider the last transition.

Fig. 2. Activity diagrams for “Learn the base theory” scenario

Browse
Internet

Learn the Base Theory for
Lab Practice

Learn the
preliminary theory

Go to measurement

Select the
UUT

Start

Perform
Selftest

That's
enough

Main Front
Panel

(Next)
Abort Lab

(Cancel)

Opens build in
Interne t brow ser

Opens pdf
files

Measure
ment

(Failed)(Pass)

(Cancel)

(not shure)

In the case of graphical programming presented in this paper, for architectural modeling most

appropriate are component diagrams. Component diagrams describe the organization of physical

software components, including source code, existing LabVIEW function, created applications and

executables. Building modern virtual systems for maximum flexibility means designing with

components [4]. A good design is distinguished with component that is a modular, self-sufficient,

replaceable unit and works like a black box in the system.

The process for deploying the workbench’s components involves the following steps and

considerations:

1. Consider the design priorities

2. Review current laboratory practice.

3. Decompose the system (laboratory workbench) used to implement the lab. Take the system and

break it up into smaller subsystems (so called subVI, sub-Virtual Instrument).

4. Define architecture. Once the subVIs are defined it is going to describe how those subVIs relate

to each other and the hardware (in this case DAQ) that supports those subVI

5. Define the subVI’s interfaces (connectors).

6. Select existing LabVIEW’s components (build-in LabVIEW functions).

Fig. 3. Activity diagrams for “Measurement”

Main Measurement
Dialog

Configure
DAQ AO

Abort
Measureme nt

Preset
Default

Configure
DAQ AI

Execute
Measurement

Result

Create Test
Report

Refer to
Theory

Ask the
professor

End

(Cancel)

(Next)

(Cancel)

(Expected) (Unexpected)

7. Draw a UML component diagram describing the existing components and the component that

should be created – fig. 5.

Phase 3 Software Coding

In order to create efficient programming code for laboratory practice a good practice is to use the

design patterns. It is well known that design patterns represent techniques that have proved

themselves useful time and time again. The state machine pattern is one of the most widely

recognized and highly useful design patterns for LabVIEW. This pattern neatly implements any

algorithm explicitly described by a state chart diagram. A state machine usually illustrates a

moderately complex decision making algorithm, such as a investigation of UUD (Unit Under Test)

or a process monitor. The standard LabVIEW state machine consists of a large “while loop”, a shift

register to remember the current state, and a case structure that holds separate code to run for each

Fig. 4. State chart diagram for laboratory measurement process

Main Measurement
Dialog

Set Analog Output
(AO)Values

Wait for "Next' button

Next Pressed

Set conditions for
Analog Inputs (AI)

Set default
values

Start measurement
execution

(AI subscribed)

Abort
measurement

(Cancel)

Data manipulation
and visualisation

Select Test
Report Format

End

(AO subscribed)

(Cancel)

(Cancel)

(Cancel)

(Display result)

state. Of course, to complete the full LabVIEW program many other build-in functions and subVI

are used, which are less or more described in appropriate documentation [4].

To create the programming code for virtual workbench the following steps must be fulfilled:

1. From application requirements (phase 1) choose the correct design patterns and data structures

2. Using state chart diagram (phase 2) recognize state machines and use them in application

3. Implement good programming style to create efficient VIs [4]

4. Stick to develop modular applications, which are easier to debug, maintain, and re-use

5. Document in time created VIs and subVIs

6. Use build in LabVIEW tools to evaluate inefficient VIs

Phase 4 Verification and validation

As example of verification phase and to illustrate benefits offered by suggested approach in the next

topic the development of virtual magnetic hysteresis measurement system is observed.

DEVELOPMENT OF VIRTUAL MAGNETIC HYSTERESIS MEASUREMENT

WORKBENCH USING UML

Passing over the main steps of suggested approach virtual laboratory workbench for magnetic

hysteresis measurement is created. The one of the state machines that is created following the UML

consideration (fig. 4) is shown in fig. 6. This programming code is responsible to ensure the correct

sequence of measurement process.

Fig. 5. Component diagram of physical software components

Measurement (DAQ Driver)

AO Update
Channel

<<LV_function>>

AI Sample
Channels

<<LV_function>>

LV_Main
Component

Knowledge data base

Open Acrobat
<<LV_function>>

Start
Web-Brows

Selftest

Data Manipulation
Transform
Data

Scale
Data Display Data

<<LV_funct ion>>

Test Report

HTML Report
<<LV_function>>

Save to
Spreadsheet

<<LV_function>>

Another design pattern that can be recognized due to UML is event loop. This powerful and

efficient programming method is applied in software code and can be seen also in fig. 6. The event

loop is used for handling user interaction with a LabVIEW program.

As can be seen in the figure, many other build-in LabVIEW functions and subVI are used, in order

to complete the software application. This software components less or more can be recognized in

the presented UML component diagram (fig. 5) .

In order to illustrate some of benefits offered by virtual instrumentation the user interface (front

panels) of virtual measurement system is also appended. This user interface corresponds of UML

use case modeling in phase 1 shown in fig.1 and source code (block diagram) of fig. 6.

The first use case “Learn the base theory” is represented by example shown in fig 7. In the right of

figure is shown the opportunity to investigate the experiment’s details via Internet without leave the

working environment. The next use case (Select the UUT) is depicted by selection of ferrite

material for investigation. It is shown in the fig. 7. As can be seen the great representational

possibility of LabVIEW focus attention of the user in the base objective of experiment.

Fig. 6. The programming code of measurement process

Fig. 7. Front panels of “Learn the base theory” and “Select the UUT” use cases

Fig. 8. Measurement results

In the next figure 8, the successful completion of the measurement procedures is shown. The user

can observe the results and turn of profit the build-in markers for desired magnetic parameter

extraction.

CONCLUSION

The complexity of modern virtual measurement systems is increasing. Laboratory practice that

involve such systems are becoming more and more popular. To manage these new challenges, the

whole software development process has to be improved. One very important aspect supporting this

is virtual system modeling.

In the presented paper the UML based approach for developing virtual laboratory workbenches is

considered. The proposed method is explained step by step in its practical aspect. The presented

approach can be used for various laboratory experiments of different engineering syllabuses. It is

applicable also for other software languages especially graphical. Finally the suggestion of how by

applying conception of virtual instrumentation and UML it is possible to create cost-effective

solution for magnetic hysteresis measurement is appended.

References
[1] OMG Unified Modeling Language Specification, Version 1.5, March 2003.
[2] Charvat J., “Project Management Methodologies—Selecting, Implementing, and Supporting Methodologies and Processes for Projects”,
ISBN:0471221783, John Wiley & Sons, 2003
[3] Rumbaugh, J., Jacobson, I., Booch, G., “The Unified Modeling Language-Reference Manual”, Addison-Wesley, ISBN: 0-201-300998-X,
1999.
[4] National Instruments “LabVIEW Development Guidelines”, 2000.
[5] National Instruments, “Measurement and Automation Catalog“, 2005
[6] Kis P., A. Iványi, “Computer Aided Magnetic Hysteresis Measurement in LabVIEW Environment”, Journal of Electrical Engineering, Vol
53. No 10/S, 2002, 10-11.

Authors:
G. Nikolov, Dr. M. Marinov,
Technical University Sofia, Faculty of Electronics,
P.O. Box 43, BG-1756 Sofia, Bulgarien, Tel.: +3592 965 3677, e-mail: gnikolov@tu-sofia.bg, mbm@tu-sofia.bg

Dr. B. Nikolova
Technical University Sofia, Faculty of Communication,
BG-1756 Sofia, Bulgarien, Tel.: +3592 965 3203, e-mail: bgnikol@tu-sofia.bg

Volker Zerbe
Technical University of Ilmenau, Institute of Technical and Theoretical Computer Science, P.O. Box 100565, D-98684
Ilmenau, Germany, zerbe@theoinf.tu-ilmenau.de

