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Zusammenfassung

Motiviert durch zahlreiche Anwendungen beispielsweise aus der Finanzmathematik oder
der Quantenmechanik, riickte die Approximation hochdimensionaler Probleme in den
letzten Jahrzehnten immer mehr in den Blickpunkt analytischer und numerischer Unter-
suchungen. Hochdimensional bedeutet in diesem Zusammenhang, dass die betrachteten
Funktionen von sehr vielen Variablen abhéngen, typischerweise mehrere 100 oder 1000.
Ein immer wieder kehrendes Problem stellt dabei die Beobachtung dar, dass die Komple-
xitét und der zeitliche Aufwand der Verfahren sehr schnell mit der Anzahl der Variablen
ansteigt, in vielen Fillen exponentiell. Dieses wird zusammengefasst bezeichnet als Fluch
der Dimension. Trotz der in den letzten Jahren enorm angewachsenen Rechenleistung von
Computern scheinen Probleme mit 15 Variablen oder mehr nach heutigen Stand aufler
Reichweite.

In der theoretischen und numerischen Analysis verfolgt man daher zwei Wege, um die
Auswirkungen dieses Fluches entweder zu umgehen, oder sie zumindest zu reduzieren.
Einerseits schriankt man die Klasse der betrachteten Funktionen (in geeigneter Weise)
ein, und zum anderen sucht man nach ,besseren (angepassteren) Algorithmen.

Diese Dissertation betrachtet dazu jeweils einen Ansatz. Der erste Teil (die Kapitel 1-4)
beschéftigt sich dazu mit Tensorprodukten von Funktionenrdumen und mit Besov- und
Triebel-Lizorkin-Funktionenrdumen mit gemischt dominanter Glattheit. Der zweite Teil
der Arbeit (Kapitel 5 und 6) schlieBlich behandelt eine spezielle Variante nichtlinearer
Approximation, die sogenannte beste m-Term Approximation.

Bei der Behandlung hochdimensionaler Probleme erscheint ein Typ von Funktionen als
besonders einfach und erlaubt in Rechnungen oftmals drastische Vereinfachungen der
Probleme. Dabei handelt es sich um Tensorprodukt-Funktionen, also jene Funktionen,
welche eine Darstellung als Produkt niederdimensionaler Funktionen gestatten, also etwa
f(x1,...,x,) = q1(x1) - - - gn(x,). Einige Vorteile solcher Funktionen beispielsweise fiir das
Abspeichern von Funktionswerten sind evident. Will man etwa die Funktionswerte einer
Funktion f, definiert auf [0, 1]?, in den Gitterpunkten (%, %), 0 < 1,j < n, abspeichern, so
benétigt dies fiir allgemeine Funktionen (n + 1)* Funktionsauswertungen, im Gegensatz
zu 2(n + 1) fir Tensorprodukte. In hoheren Dimensionen wird dieser Unterschied noch
deutlicher ((n + 1)¢ gegeniiber d(n + 1)).

Davon ausgehend erscheint die Betrachtungen von Tensorproduktrdumen ein natiirlicher
Ansatz. Tensorprodukte von Vektorrdumen und anderen Strukturen sind in der Alge-
bra wohlbekannt, ebenso im Zusammenhang mit der topologischen Struktur von Ba-
nachrdumen. Fiir letzteres gehen einige der grundlegenden Begriffe auf Schatten [67]
zuriick, und entscheidend vorangetrieben wurde die Entwicklung nach Grothendieck [31].
Grob gesprochen enthalten die Tensorproduktraume alle Tensorproduktfunktionen und
deren Linearkombinationen. Allerdings ist nur in wenigen Situationen eine explizitere Be-
schreibung der topologischen Struktur dieser Rdume bekannt, d.h. ausgedriickt in Form
von Integrabilitit oder Glattheit. Auler an den Tensorprodukten selbst ist man daher
auch an solchen Rdume interessiert, die in gewisser (nicht néher spezifizierter) Hinsicht
,dicht“ an solchen Tensorproduktrdumen dran sind. Die Hoffnung ist dann die, dass solche
Réume dhnliche Eigenschaften beispielsweise fiir approximationstheoretische Betrachtun-
gen zeigen, etwa fiir Fehlerabschétzungen bis auf zusétzliche logarithmische Fakoren.
Wie schon angedeutet sind diese Fragen eng verkniipft mit der Suche nach besseren Model-
len fiir die zu approximierenden Objekte. Ein einfaches Beispiel: Wir betrachten fiir zwei k-



fach stetig differenzierbare Funktionen deren Tensorprodukt h, wobei h(x,y) = f(x)g(y).
Nach der Produktregel wird dieses wiederum k-mal differenzierbar sein, aber es gilt noch
mehr. Da die Ableitugen f® und ¢V, () < @' j < k, stetig sein sollen, sind auch die
partiellen Ableitungen Zjayj (z,y) = fO(x)gY)(y) der Ordnung i + j stetig, also auch
fiir Ordnungen hoher als k bis zu 2k. Andererseits ist sicher nicht jede partielle Ablei-
tung der Ordnung 2k stetig, z.B. gx}f(aj y) = fO(x)g(y) oder g;?(x y) = f(2)gY(y),
E+1 <1i,7 <2k, miissen nicht existieren. Man verliert also Informationen, wenn man
h lediglich als k-mal differenzierbare Funktion behandelt, aber man kann sie auch nicht
ohne weiteres als 2k-mal differenzierbar betrachten.

Dieses Beispiel verdeutlicht, dass in Zusammenhang mit Tensorprodukten eine isotrope
Theorie ungeeignet ist, bei der alle Variablen in der gleichen Weise behandelt werden.
Vielmehr muss man ein gerichtetes, eigensténdigeres Verhalten der Variablen gestatten.
Ein mogliches Modell in dieser Richtung ist gegeben durch Funktionenrdume gemischt
dominanter Glattheit.

Funktionenrdume sind ein wichtiges Hilfsmittel in vielen Bereichen der Analysis, insbe-
sondere bei der Behandlung von partiellen Differentialgleichungen. Eines der bekanntesten
Beispiele solcher Funktionenrdume sind Sobolev-Réume Wg”(Rd), eingefiihrt in den 1930er
Jahren von S.L. Sobolev. Diese sind charakterisiert durch ihre Norm,

[ W @Y= D || D f |L
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d.h. man fordert, dass alle verallgemeinerten Ableitungen der Funktion f € L,(R?) bis
zur Ordnung m ebenfalls wieder zu L,(R?) gehért. Die Skala der Triebel-Lizorkin-Riume
F? (R?) kann als Verallgemeinerung der Sobolev-Skala verstanden werden.

Die Besov-Raume B;”q(]Rd) sind mit den Triebel-Lizorkin-R&umen eng verwandt. Ur-
spriinglich eingefiithrt durch S.M. Nikol’skij (1951) und O.V. Besov (1959/60) stellte sich
schnell heraus, dass diese Rdume eng verkniipft sind mit einigen zentralen Problemen der
Approximationstheorie wie Approximation periodischer Funktionen durch Partialsummen
der zugeordneten Fourierreihe.

Beide Skalen von Funktionenrdumen erlauben eine Untersuchung mit Hilfe fourieranalyti-
scher Techniken. Als eine wesentliche Eigenschaft erweist sich dabei ihre Charakterisierung
mit Hilfe von Wavelet-Systemen. Eine Funktion oder Distribution gehort demzufolge zu
Bs (R?) bzw. 5 (R?) genau dann, wenn die zugehorige Folge von Wavelet-Koeffizienten
in einem zugeordneten Folgenraum liegt.

Funktionenrdume gemischt-dominanter Glattheit wurden erstmals in den 1960er Jah-
ren von Nikol’skij definiert. Auch in diesem Fall begann das Studium mit Rdumen vom
Sobolev-Typ. Man betrachtet dabei die Norm

Sk Yy (R?) = {f € L) : || IS5 W (R = || f | L, (R?)]
aklf ) ak‘gf ) ' ak1+/€2f 9
Z 2L (R L,(R — | Lp(R
i H@:clfl AR+ H(%:’;Q P Oy Oy” S

wobei 1 < p <oound k; =0,1,2,... (i =1,2). In der Folgezeit wurden ebenfalls Raume
vom Besov- (S54™ B(R2)) und Triebel-Lizorkin-Typ (S F(R?)) betrachtet. In den
letzten Jahren wurde auch fiir diese Radume eine entsprechende Wavelet-Charakterisierung
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bewiesen. Dariiber hinaus konnten die Sobolev-Raume und die Besov-Raume S,()E’TQ)B (R?)
als Tensorprodukte identifiziert werden,

S\ B(R?) = BlL(R) @, B2 (R),  SFRIW(R?Y) = WH(R) ®, W2(R).

p,p

Neben solchen Tensorprodukten von Funktionen in einer Variablen treten in Anwendun-
gen auch ,mehrdimensionale“ Varianten auf. Beispielsweise kann man bei der elektro-
nischen Schrodingergleichung zeigen, dass ihre Eigenfunktionen zu Rdumen der Form
N, WHR?) @ - - WE(R?) @, - - - @ W (R?) gehoren, wobei W2(RR?) der ite Faktor des
Tensorproduktes ist, siche [98]. Ein Ziel dieser Arbeit war ein Gegenstiick fiir die an-
gegebenen Tensorprodukt-Identitdten mit Hilfe einer Wavelet-Charakterisierung fiir eine
entsprechende Modifikation der Rdume gemischt dominanter Glattheit.

Nachdem also Tensorproduktrdume und Réume gemischt dominanter Glattheit geeignete
Modelle fiir hochdimensionale Probleme liefern, bleibt die Frage nach einem passenden
Approximationsverfahren als dem zweiten Teil der beschriebenen Ansétze zur Reduktion
des Fluchs der Dimension.

Der zweite Teil der Dissertation beschéftigt daher mit der (nichtlinearen) besten m-Term
Approximation und auch kurz mit der (linearen) Approximation vom hyperbolischen
Kreuz. Wahrend friither lineare Approximationsverfahren, beschrieben durch lineare Ope-
ratoren, favorisiert wurden, riickten in den letzten Jahren und Jahrzehnten nichtlineare
Verfahren zunehmend in den Fokus. Die Idee dahinter ist ziemlich einfach: Man erhofft
sich ein besseres Fehlerverhalten dadurch, dass man nicht mehr eine ganze Klasse durch
einen festen Algorithmus approximiert, sondern den Algorithmus an die zu approximie-
rende Funktion anpasst.

In dieser Arbeit habe ich mich auf ein spezielles solches Verfahren konzentriert, die so-
genannte m-Term Approximation. Wéahrend viele lineare Verfahren dadurch beschieben
werden konnen, dass die vorgegebene Funktion durch Elemente eines (fixierten) Unter-
raumes angendhert wird, passt man bei der m-Term Approximation den Unterraum an
die Funktion an. Dazu gibt man sich eine Menge von Funktionen in dem betrachteten
Raum vor, genannt dictionary, und betrachtet alle Unterrdume, die von hochstens m Ele-
menten des dictionary aufgespannt werden. AnschlieSfend optimiert man {iber alle diese
Unterrdume, wodurch der optimale Unterraum von der gegebenen Funktion abhéngt.
Gerade aufgrund dieses Optimierungsprozesses ist m-Term Approximation vor allem ein
theoretisches Verfahren, da typischerweise zur Berechnung der optimalen Approximation
vollstéandige Kenntnis der Funktion bendétigt wird.

Unmittelbar an der Definition der m-Term Approximation wird deutlich, dass diese ent-
scheidend auch vom verwendeten dictionary abhéngt. Die natiirliche Wahl wére eine Ba-
sis im betrachteten Funktionenraum. Dabei haben seit den 80er Jahren vor allem die
bereits erwahnten Wavelet-Basen grofle Aufmerksamkeit erregt. Da diese auch hervorra-
gend geeignet sind im Zusammenhang mit den beschriebenen Funktionenrdumen gemischt
dominanter Glattheit, motivierte dies das Studium der besten m-Term Approximation
beziiglich Wavelet-Basen in solchen Funktionenrédumen.

Die beschriebene Zweiteilung der Aufgabenstellung spiegelt sich auch im Aufbau der Dis-
sertation wieder. Der erste Teil (die Kapitel 1-4) beschéftigt sich mit Tensorprodukten
und mit den Funktionenrdumen gemischt dominanter Glattheit. Im ersten Abschnitt wie-
derholen wir zunéchst die Definitionen und Wavelet-Charakterisierungen der isotropen
Funktionenrdume und der Rédume gemischt-dominanter Glattheit. Dariiber hinaus wer-
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den die grundlegenden Begriffe und Aussagen fiir Tensorprodukte von Banach- und auch
Quasi-Banachraumen besprochen. Insbesondere werden Sobolev-Réume und auch gewisse
Besov-Réaume als Tensorproduktridume identifiziert.

Danach folgt die fourieranalytische Behandlung der Sobolev-, Besov- und Triebel-Lizorkin-
Réume gemischt dominanter Glattheit STW(R?), ST B(R?) und S}  F(R?) beziiglich all-
gemeiner Variablenunterteilungen gemif R = R% x - .- x R% . Nach den grundlegenden
Aussagen, die weitestgehend parallel zu denen fiir die isotropen Rdume sind, behandeln die
Abschnitte 3 und 4 weitere wesentliche Hilfsmittel fiir diese Rdume, insbesondere Charak-
terisierungen durch Lokale Mittel und Atome. Hauptresultat dieses Teils der Dissertation
ist die Charakterisierung durch Tensorprodukt-Wavelets, welche grob aussagt, dass ei-
ne Funktion (bzw. eine temperierte Distribution) zu einem Funktionenraum Sj B(R?)

oder S} F (R?) gehort genau dann, wenn die zugehérige Folge der Wavelet-Koeffizienten
in einem zugeordneten Folgenraum liegt. Dariiber hinaus liefert diese Zuordnung einen
Isomorphismus vom Funktionen- auf den Folgenraum. Als eine erste Folgerung aus die-
ser Charakterisierung erhalten wir die angestrebte Darstellung von Sobolev- und Besov-
Réumen als Tensorprodukte ihrer isotropen Gegenstiicke,

S(Tlﬂ"z)B(Rdl X RdQ) = B;}p(Rdl) ®p B;,Qp(Rd2> ’

b,p
SR (RN x R%) = Wt (R™) ®, Wy (R™).

Der genannte Isomorphismus ermoglicht es in den Kapiteln 5 und 6 das Studium von Ein-
bettungen und der m-Term Approximation von den Funktionenrdume auf entsprechende
Probleme fiir Folgenrdume zu iibertragen. Kapitel 5 behandelt zunéchst notwendige und
hinreichende Bedingungen fiir stetige und kompakte Einbettungen, da diese wiederum eine
notwendige Bedingung fiir die Untersuchungen der m-Term Approximation darstellen.
Der sechste Abschnitt ist der zweite zentrale Bestandteil dieser Arbeit. Nach der Bereit-
stellung weiterer Hilfsmittel, insbesondere von Approximationsraumen, und einiger a prio-
ri Vereinfachungen, die die Betrachtung der Folgenrdume erméglicht, folgt zunéchst die
explizite Konstruktion nahezu optimaler Approximationen unter gewissen Zusatzvoraus-
setzungen an die beteiligten Parameter. Dabei ist , explizite“ Konstruktion dahingehend
zu verstehen, dass man dafiir die vollstdndige Kenntnis der zu approximierenden Folge
voraussetzt. Der zweite Schritt ist dann die Charakterisierung des asymptotischen Fehler-
verhaltens der m-Term Approximation. Ausgehend von den Resultaten, die die expliziten
Konstruktionen liefern, kénnen wir diese auf fast alle anderen moglichen Parameterkon-
stellationen mit Hilfe von reeller Interpolation und Reiterationsaussagen ausdehnen.

Der Schlussabschnitt 7 fasst die auf diese Weise erhaltenen Ergebnisse nochmals zusam-
men. AuBlerdem werden dabei die Resultate von den Folgenrdume riickiibertragen auf die
zugeordneten Funktionenrdume. Neben Riéumen auf dem ganzen RY kénnen dabei auch
Funktionenriiume auf Gebieten Q wie dem Einheitswiirfel [0, 1]¢ behandelt werden. Das
Hauptresultat iiber beste m-Term Approximation in L,-Rdumen lésst sich dann wie folgt

beschreiben: Seien 1 < pg, p1 < oo und t € R derart, dass ¢t > max(0, =~ — ). Dann gilt

"po p1
sup inf inf Hf — ch\lfj

A<m c¢;eC
IfIFl<1 #ASm e

Lm(]Rd)H e m, m>2,

wobel die exakten logarithmischen Ordnungen fiir fast alle moglichen Parameter bekannt
sind. Dabei ist F' einer der Rdume S! H(R?) oder S}  B(R?), T = td.
Den Abschluss der Arbeit bildet ein Vergleich der erzielten Resultate mit solchen, die in

den letzten Jahren von Temlyakov und Dinh Dung publiziert worden sind.
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Preface

Over the course of the last three decades highdimensional approximation, i.e. approx-
imation of functions of many variables, became an important topic in several fields of
mathematics and its applications. To name only some prominent examples, various prob-
lems in financial mathematics deal with PDEs or integration problems in a large number
of variables (typically 360 or multiples thereof). One of the basic objects in Quantum me-
chanics and related fields of theoretical physics and chemistry is the electronic Schrodinger
equation, where the number of variables is a multiple of the number of particles involved
which generally increases the higher the demands on the materials which are to be de-
signed. As a last example may serve the large field of stochastic processes and stochastic
differential equations whose deterministic numerical treatment often produces highdimen-
sional problems.

We want to deal with these types of problems from a more theoretical point of view. In the
past many types of approximation problems were investigated and solved, determining the
(asymptotic behaviour of the) error of different methods and describing optimal solutions
(approximants). However, most of these results have one thing in common which is
nowadays summarized by the term “Curse of Dimension”. This describes the observation
that the asymptotic convergence rate for many methods is of the form n=*/¢ where n
stands for the degrees of freedom for the approximant, d is the number of variables, and
k is some characteristic parameter of the function which shall be approximated, typically
some smoothness parameter. Though theoretically sufficient, numerically this turns out
to be a major drawback. Such results imply that in order to approximate the function
to within some prescribed error € the computational cost increases exponentially in the
number of variables, which even with modern equipment cannot be handled, thus problems
with d > 15 or 20 seem out of range.

Hence one mainly has two possibilities in trying to circumvent this obstacle: Either one
finds “better” approximation methods, i.e. with better error behaviour, or one shrinks
the class of objects to be approximated. A lot of effort has been put into both strategies,
and this thesis deals with two particular approaches.

When talking about highdimensional functions one type of functions appears particularly
simple and leads in many cases to a drastical reduction of the complexity. These are
tensor product functions, where a function f can be written as the product of lower di-
mensional ones, e.g. f(xy,...,2,) = g1(x1) - - gn(2,). Some advantages of such functions
are obvious. If the function f is defined on [0, 1]> and one wants to store the function
values at the lattice points (%, 7]7)7 0 < 4,5 < n, for general functions this would mean
(n+ 1)? values, opposed to 2(n + 1) values for tensor product functions. In higher dimen-
sion this generalizes to n? or dn, respectively. Similar comparisons can be made for the
numerical solution of differential equations etc. A simple example where tensor product
functions lead to an enormous simplification of the problem is given by the separation
ansatz for analytical solutions of linear partial differential equations like the heat or the
wave equation.

Unfortunately not every highdimensional function can be identified as a tensor product,
hence we are back with another approximation problem when asking: Which (classes of)
functions can be approximated well by tensor products? The most immediate answer is
both simple and theoretically demanding: tensor product spaces.



Tensor product constructions for vector spaces and other types of algebraic structures are
known to algebraists for a long time. In connection with Banach spaces most of the basic
concepts were introduced by Schatten in 1943 [67], and their importance for Banach space
theory became gradually clear after Grothendieck’s groundbreaking paper [31], see also
the recent monograph by Pietsch [62] for an historic overview.

Roughly spoken, these spaces collect linear combinations of tensor products and their
limits. Hence it would be interesting to know which types of spaces can be identified
which such tensor product spaces, and moreover, one should try to find spaces which are
“close” to tensor product spaces. The latter stems from the fact that in many situations
the tensor products itself are difficult to handle, whereas one might expect that, as far as
most properties like performance for corresponding approximation methods, sufficiently
“close” spaces (whatever the precise meaning of this phrase might be) should behave
similarly, i.e. for error estimates possibly up to additional logarithmic terms.

This question is closely related to the above mentioned problem of finding a better model
for the objects which shall be approximated, i.e. smaller classes of functions. A simple ex-
ample: Suppose two functions f and g are both k-times continuously differentiable. Their
tensor product h, where h(z,y) = f(x)g(y), Will of course again be k-times continuously
differentiable, but some more is true. Since f® and ¢¥), 0 < i j < k, are assumed to be
continuous, h will have continuous mixed partial der1vat1ves 88 By h(x, y) FO(z)gD(y) of
order 7+ 7, which is possibly higher than k: up to 2k. But clearly not every partial derivative
of h of order 2k will be continuous, e.g. dwl Nz, y) = fD(2)g(y) and g;?(a:,y) = f(2)g" (y),
k41 <1i,5 < 2k, need not even exist. In other words on the one hand we lose information
about h when treating it as a k-times differentiable function, on the other hand we can
not treat it as 2k-times differentiable.

This simple example shows that tensor product functions do not fit into a classical
“isotropic” theory, where all variables are treated alike. In some sense we have to al-
low for the variables to have some “separate behaviour”, though clearly they are not
totally independent of each other.

Hence, while such tensor product spaces might be a good approach towards the treatment
of high-dimensional problems, it needs some more work beforehand. We have to determine
suitable spaces from which tensor products are constructed. And moreover, we still have
to find a proper approximation method.

While in former times linear methods were preferred over the course of the last three
decades nonlinear methods came more into focus. The idea behind this is quite simple:
One no longer wants to approximate a whole class of functions by the same method, and
by this unified treatment potentially limiting the performance, but one adjusts the con-
struction of the approximant (out of a prescribed class of methods) according to the given
function. This concept has proved quite successful in numerous numerical applications
such as adaptive finite element schemes.

In the sequel we concentrate on one particular nonlinear method, the so-called m-term
approximation. The basic idea behind this concept seems quite natural. Most linear
methods could be understood as: We fix the system of possible approximants as a finite-
dimensional subspace of the given space of functions, and consider linear mappings into
that subspace. When dealing with m-term approximation we instead fix a certain system
of functions, called dictionary, and afterwards we consider finite linear combinations of
elements of that dictionary. Though of course every finite selection of elements of the



dictionary spans a finite-dimensional subspace, this subspace may be a different one for
every function we wish to approximate. In other words the approximating subspace
depends on the given function.

However, best m-term approximation first of all is a theoretical concept. Though in many
situations explicit constructions and even continuous mappings for near best approxima-
tions, i.e. optimal up to constant factors, are known there are currently no implementa-
tions realizing such constructions. The reason for this lies in the fact that those mappings
require complete knowledge of the given function, e.g. when expanding it with respect to
the dictionary all coefficients are needed for the construction of the approximant. Nev-
ertheless this concept has proven to be useful, e.g. as a benchmark for implemented
algorithms.

Having a closer look on the concept of m-term approximation it becomes quite clear that it
depends heavily firstly on the spaces involved, i.e. which functions shall be approximated
and the norm in which the error is measured, and secondly on the chosen dictionary. A
natural choice would be to select a basis in the given space. But then immediately one
might ask: What are “good” bases?

Since the 1980s one particular type of bases has attracted a lot of attention, namely
wavelet-type bases. This term refers to systems which are constructed out of a single
function (the wavelet) by dilations and translations. In recent years this type of bases has
proved to be quite useful in numerous applications, perhaps the most prominent one being
image compression. In particular one of the basic ideas behind the JPEG 2000-algorithm,
representing the image by certain wavelet expansions and afterwards taking only the terms
with the largest coefficients, can be interpreted as an m-term approximation of the given
image.

Another important advantage of wavelet bases is given by the fact that many classical
function spaces allow a characterization by such wavelet systems, usually in terms of
decay conditions for the sequence of coefficients appearing in the corresponding wavelet
expansions. This makes it possible to consider m-term approximation with respect to
wavelet-type systems for a wide range of function classes.

Nowadays the approximative powers of m-term approximation for many combinations of
function spaces and different dictionaries are well-understood. One result in this direction
which is of particular interest for our further considerations is due to DeVore, Jawerth
and Popov [15]. Without going into details at this point, some approximation classes
of best m-term approximation with respect to wavelet bases in L,(R%), i.e. classes of
functions with a common asymptotic behaviour of its error, are identified as Besov spaces
B;q(Rd). Keeping in mind our interest in tensor product spaces, when dealing with m-
term approximation tensor products of such Besov spaces are a reasonable starting point.
Another type of spaces is of particular interest in lots of applications, namely Sobolev
spaces. For instance, spaces of this type are the natural framework for many boundary
value problems for PDEs like the Laplace-Poisson equation. Moreover, the spaces H, (R%)
are another scale which allows a characterization by wavelets. Additionally, they have
been studied in connection with m-term approximation. The case p = 2 is of particular
interest, since the spaces Hj are Hilbert spaces. In this situation also corresponding tensor
products were studied before, and it is a well-known result that these tensor product spaces
can be identified with Sobolev spaces of dominating mixed smoothness.

Historically Sobolev spaces of such type on R? were first introduced in the early 1960s by



S. M. Nikol’skij. More precisely, he proposed to consider spaces
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to play a dominant role, which gave these scales of function spaces their name. Though
not intended at that time a close connection to tensor products of functions is indicated
by the observation that this norm applied to some tensor product factorizes, we remind
on the example above.

Later on the definition was extended to include non-integral parameters r; and ry by
Fourier analytic methods to obtain the spaces SV H(R?) and their respective multi-
variate analoga. In recent time W. Sickel and T. Ullrich [74] were able to give precise
results concerning the mentioned connection of these Sobolev-type spaces with tensor
products of the usual isotropic ones. In particular, every such space Sgl’m)H (R?) can be
identified with the tensor product space H'(R) @, H *(R).

In the same article they furthermore were able to deal with tensor products of Besov
spaces. Starting with Nikol’skij’s definition above a theory of spaces with dominating
mixed smoothness was developed by many authors, primarily in the former Soviet Union.
Important contributions, including generalizations to Besov-type spaces, were made by
Amanov, Besov, Lizorkin, Nikol’skij and Potapov, to name only some of them. A first
systematical treatment can be found in the monograph [1].

The mentioned result by Sickel and Ullrich now states that also the tensor product space
B (R) ®, B2, (R) can be identified with a function space of dominating mixed smooth-

where 1 < p <ooand r;, =0,1,2,... (i =1,2). The mixed derivative

ness, namely the Besov space S;(,E’TQ)B(RQ). This motivates having a closer look on these

function spaces of dominating mixed smoothness first, prior to the treatment of corre-
sponding m-term approximation problems.

Apart from the classical one via derivatives and differences, preferred by most authors
from the former Soviet Union, there is another main approach towards function spaces
with the help of Fourier analytic methods. Using this approach related scales of Besov-
and Triebel-Lizorkin-type spaces of dominating mixed smoothness were introduced. For
a detailed treatment of the spaces on R? we refer to [71]. The Fourier analytical approach
is based on a representation of functions and distributions by entire analytic functions,

= Z Flen, ®--® gojkVN]'"ﬂ : convergence in S'(R?),

keNY

where (@?)jeNo, t = 1,...,N, are decompositions of unity, known from the study of
isotropic function spaces, and cp,il ®- - -®<,0,]ch denotes their tensor product. This construc-
tion is a first example of the importance of tensor product constructions in the treatment
of these function spaces, and it once more indicates a close connection to tensor product
spaces.

The main advantage of this strategy lies in the possibly unified treatment of the spaces
Sy ,B(R?) and STH(R?) = Sy ,F(R?), and moreover, in many situations we obtain addi-
tional information via the introduction of a further fine index.



So far when talking about tensor products we dealt with the product of functions in
one variable, accordingly for the function spaces. The generalization of this situation is
obvious, and it is motivated by a result of H. Yserentant [98]. He considered the electronic
Schrodinger equation and proved that the eigenfunctions of the corresponding Hamilton
operator belong to spaces (I, H3(R*) ® --- ® H3(R*) @ - -- ® H}(R®), where H3(R?) is
the ith factor of the tensor product. Hence the idea is to split the set of d variables into
N groups, where each group may behave differently, but within each group all variables
are treated alike. This approach leads to a slight modification of the function spaces of
dominating mixed smoothness whose treatment shall be one of the main objectives for
our considerations.

According to the above considerations this thesis consists of two main parts. The first
one is devoted to the study of function spaces. To begin with we recall in Chapter 1
the definitions and wavelet characterizations of first the isotropic Sobolev, Besov and
Triebel-Lizorkin spaces, and later on this is done for the spaces of dominating mixed
smoothness. Moreover, we present the basic concepts and notions for tensor products
of Banach spaces, and have a closer look at their extension to quasi-Banach spaces. At
the end of that chapter we state the precise formulation of the previously mentioned
result establishing a connection between tensor product spaces and function spaces of
dominating mixed smoothness.

Chapter 2 then presents the definition and basic properties of our main objects of study,
the function spaces of dominating mixed smoothness with respect to general variable
splittings R? = R% x .. x R . The treatment is restricted to those facts needed in the
later considerations, though a greater number of results could easily be obtained with the
help of the methods presented, following either the approaches for the isotropic spaces or
those ones for the usual spaces of dominating mixed smoothness.

In Chapter 3 we derive a characterization of our function spaces in terms of the Peetre
maximal operator and local means. This characterization and its corollaries will be the
main tool to establish theorems for atomic and wavelet decompositions in Chapter 4.
That characterization by tensor products of Daubechies-type wavelets in Theorem 4.3.1
is the main result of the first part of this thesis. As a corollary we can prove the identities

SppBRY) = By, (R") @, - ®, By (R™),  0<p<oo,

and

STH(RY) = HMRM) @, - @, H)N(R™), 1< p<oo,

and hence verify the aspired relation between tensor products of isotropic Sobolev and
Besov spaces in arbitrary dimensions on the one hand, and function spaces of dominating
mixed smoothness for general variable splittings on the other hand.

The second part of the thesis, Chapters 5 and 6, then deals with the problem of best m-
term approximation. More precisely, we study this problem for sequence spaces which are
related to the Besov and Triebel-Lizorkin spaces. This reduction can be done, because
the mentioned wavelet characterization establishes an isomorphism from the function
spaces onto those sequence spaces. As a first step, in Chapter 5 results for continuous and
compact embeddings are presented since the boundedness of the embedding is a necessary
condition for the m-term width to be finite.



After introducing further notions and tools at the beginning of Chapter 6, the calcula-
tion of the asymptotic behaviour of the m-term widths is split into two steps. The first
one consists in explicit constructions for near best m-term approximation, establishing
said asymptotics for a restricted range of parameters. As mentioned before, though those
constructions are explicit they can’t be reformulated as algorithms since they require
the complete knowledge of the given sequence. Afterwards, in the second step we ex-
tend the results obtained from those explicit constructions. The main tool in this step
are approximation spaces related to m-term approximation. With the help of embed-
ding, interpolation and reiteration results for such approximation spaces we were able to
characterize the asymptotic behaviour of the error of the best m-term approximation for
almost all possible constellations of parameters.

Finally, the last chapter of this thesis presents our main results on m-term approximation.
After introducing function spaces on domains and deriving a description in terms of
wavelets, we can apply said description to transfer the previously obtained results for the
asymptotics from the sequence spaces to related function spaces. The main result on best
m-term approximation in L,-spaces then reads as follows: Let 1 < pg,p1 < oo and t € R,
such that ¢+ > max(0, = — L). Then it holds

’ po p1

sup inf inf Hf — ch\Ifj

#A<m c;eC
If1Fl<1 ) =

Lu@®)|| % m™t, mz2,

where the exact orders of the logarithm are known for almost all possible parameters.
Here F is one of the spaces SIEOH(Rd) or Sf)oﬁpoB(Rd), t=td.

At the end of Chapter 7 we furthermore compare our results to related work by Temlyakov
[79] and Dinh Dung [21, 22]. Concerning our starting point, high-dimensional approx-
imation, our results are both positive and negative. On the one hand, the obtained
asymptotic rates m ™t show considerable progress compared to the rate m = for isotropic
spaces. However, the curse of dimension cannot be overcome in this way, since the be-
haviour of the constants involved remains an open problem. While for most situations on
sequence space level explicit constants could be derived (on some occasions we did just
that) this information gets lost upon applying the wavelet isomorphism. Apart from the
constants also the occurring logarithmic terms depend on the dimension (their exponent
being proportional to N — 1), which has a major influence in numerical applications.
Another open problem remains the question, whether the tensor product structure of the
function spaces is particularly helpful when considering m-term approximation. On the
one hand we used a dictionary with tensor product structure (the employed wavelet system
consisted of tensor product functions), on the other hand the applied techniques made
very limited use of this additional structure, even more so after the transfer to sequence
spaces. Exploiting this property might possibly lead to (considerable) simplifications of
the proofs.
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1 Preliminaries/Introduction

In this chapter, we review the definitions and wavelet-characterizations of the isotropic
Sobolev, Besov and Triebel-Lizorkin spaces and their counterparts for dominating mixed
smoothness. Moreover, we study tensor product spaces, at first in their abstract formu-
lation, and afterwards we apply that abstract theory to tensor products of Besov and
Sobolev spaces.

1.1 Notation

As usual, we denote by R? the d-dimensional real Euclidean space, Z is the set of all
integers, N are the natural numbers, and Ny = N U {0} are all non-negative integers.
Moreover, C denotes the complex numbers, and R, stands for the collection of all non-
negative real numbers. Finally, R} = (R;)" denotes the set of all vectors with solely
non-negative components.

Points of the underlying Euclidean space are denoted by x, vy, z, . . ., and their components
are numbered from 1 to d, i.e. © = (x1,...,24). Moreover, in later subsections we will
use a splitting R? = R% x ... x RN =: R? where N,d;,...,dv € N, d=d; +--- + dx,
de NN and d = (dy,...,dy). Accordingly, we will split the components of z € R? as per
= (z',... 2N), 2" € R%, where o = (2},...,2) ) = (Tdjtdi 141 - -+ Tdyoobds_1+d;)-
Any other d-tuple will be dealt with analogously, in particular lattice points from Z¢.
Besides d-tuples, we will need N-dimensional vectors. For distinction from d-dimensional
ones these will be denoted with a bar, i.e. we will write 7 € RY, 7 € NI etc.

The notation a > b for n-tuples a and b (where n = d;, n = N or n = d, according to the
concrete case) will be used, if a; > b; holds for every i = 1,...,n. The relations a > b,
a < band a < b are understood similarly. Moreover, the expression a £ b means the
negation of a < b, i.e. there is at least one index ¢ € {1,...,n} with a; > b;. Similar
notations are used for the other relations. Finally, despite a slight abuse of notation, by
a > X for an n-tuple a and a real number A € R we mean a; > A for every ¢t = 1,...,n.
For n-tuples we will use three different norms. If not indicated otherwise, with |a| the

/2
usual Euclidean norm is meant, i.e. |a| = |a|y = (Z?:l |az~|2> . In particular for integer

parameters, we will use |a|; = Y, |a;|. The last one is the usual maximum-norm, i.e.
|a|co = max;—1_, |a;l.

For every multiindex o = (ay,...,a4) € N, its length is given by |a| = |a|; = a; +

-+ + ag. The derivatives D* = 9l°l/(0z{* - - 9257) = D* ... D*" are understood in
1

the distributional (weak) sense. Moreover, we put * = z{*---25¢ = (:L"l)a (:EN)a .

Finally, we define for a € N¢ a vector @ € N) by @ = (|a!],...,|a"]), according to the

chosen splitting of variables.

Let S(R?) be the Schwartz space of all complex-valued, rapidly decaying, infinitely dif-
ferentiable functions on RY. By Fo, F(p) or @ we denote the d-dimensional Fourier
transform of p € S(RY), i.e.

Fp(§) = W /Rd p(x)e” " dr, ¢ eRY,

where x - & = 216, + - - 4&, is the standard scalar product on R?. Accordingly, we will



use a - b = a;by + ---a,b, for arbitrary n-tuples. The inverse Fourier transform will be
denoted by F 1o, F~1(p) or ¢V. Both F and F~! are extended in the usual way to the
dual space of S(R?), the space of tempered distributions S'(R%).

Occasionally, we have to distinguish between the d-dimensional, the d;-dimensional and
the one-dimensional Fourier transform. In that case, we will write F,, F4, and JF;, respec-
tively, and their inverses will be denoted by F; ', Fa, Yand F;'. We would like to point
out, that for tensor product functions p(z) = ¢1(z!) - on (V) = (p1 @ -+ ® on)(2),
©; € S(R%), these transformations are connected:

(Fap)(§) = (Fayp)(€) -+ (Fayon)(€) = (Farpr) © -+ ® (Fayon)) (€) (1.1.1)

valid for all £ = (£1,...,¢V) € R In particular, for functions p(x) = ¢ (1) -+ on(r,) =
(@1 K& San)(x)v Yi € S(R)7 we find

(Fap)(€) = (Fren)(&) -+ - (Frpn) (&n) = (Frepr) ® -+~ @ (Fiepn)) (€) - (1.1.2)

Now let 0 < p,q < oo. As usual, the space L,(R?) consists of all (equivalence classes of)
Lebesgue-measurable functions, such that

1/p
| £ Lp(RY]| = (/R |f(x)|pdx>

is finite. If p > 1, then these spaces can be interpreted as subsets of S'(R?). Any statement
that a distribution f € &'(R?) belongs to L,(R?) hence includes that f is regular, where
such a distribution and its generator are identified.

For a sequence of (complex-valued) measurable functions (fy)
arbitrary countable index set, we put

1 a/p\ V1
ka\éq(LwH:(Zka\Lp<Rd)|y‘1> :<Z(/Rd\fk(x)\pd:c) ) (1.1.3)

d .
rea OB RY, where A is an

as well as
Izt = (§|fk<~>|q)l/q Ly () =< / d(;4|fk<x>q)p/qu)l/p, (114)

with the usual modification in case p and/or ¢ = oo. If there is no danger of confusion,
we won’t explicitly mention the index set for ¢,-norms.

Now, let X and Y be quasi-Banach spaces. Then we denote by £(X,Y) the class of all
linear bounded operators T : X — Y, equipped with the usual operator (quasi-)norm

| TL(X.Y)||= sup |Tf]Y], TeLX)Y),

IF1XN<1

which turns £(X,Y") again into a quasi-Banach space.

We will write ay = max(a,0) for an arbitrary real number a € R. Furthermore, let 7,

and o, , be defined by

. 1 . 1
a;:di<——1> and ol = i(_——1> . i=1,...,N,
p N ’ min(p, q) N



or in a shorter way o, = 3(% — 1)+, Opg = E(minip’q) — 1)+, for all 0 < p,q¢ < oo.

Furthermore, let the symbol denote [z] the integer part of the real number xz € R, that
is, the uniquely determined integer m € Z, such that m <z < m + 1.

All unimportant constants will be denoted by ¢, ¢, C etc. The concrete value of these
constants may vary from one formula to the next, but remains the same within one chain
of (in)equalities. We will write A < B, if there is a constant ¢ > 0, independent of the
relevant parameters, such that A < ¢B. Finally, the notation A ~ B is an abbreviation
of AS B A

1.2 Isotropic spaces

We begin with a short repetition of the definitions and wavelet characterizations for the
isotropic function spaces.

1.2.1 Definitions of the isotropic function spaces
Definition 1.2.1. Let 1 < p < oc.

(i) For any m € Ny we put
Wi R") i= {f € Ly(R") : | £ W &) := D | D°f| LR | < oo,
la|<m
where the derivatives have to be understood in the distributional sense.
(ii) For an arbitrary s € R, we define
Hy(RY) = {f € S®) : ||/ [H;®")]| < o0},
where
1 F [Hy R[] = [ F7 (1 + [ F f| Ly (R
The spaces H;(R") are the Sobolev spaces of fractional order (Bessel potential

spaces).

Remark 1.2.1. Obviously, we have W)(R") = H)(R") = L (R”) Furthermore, it is
a well known fact that for any m € Ny it holds Wm(R") = HJ'(R") in the sense of
equivalent norms.

Definition 1.2.2. We define the set ®(R") to be the collection of all systems (gpj);io C
S(R™), such that

supp o C {t € R": |t] < 2}, (12.1)
supp ; C {t € R": 2071 < J¢| < 2771} ifj=1,2,..., o
for every o € Nf} exist positive constants ¢, with
2710l Dop; ()| < ¢4 for all j € Ny and all t € R" (1.2.2)

11



and

Zgoj(t) =1 for every t € R". (1.2.3)
=0

o0

Any such system (903');:0 is called a smooth dyadic decomposition of unity.

Remark 1.2.2. We shall give an example of such a decomposition, whose special struc-
ture will be helpful in proofs. Let ¢ € S(R") be a function with the following properties:

(i) plr) =
(i) ()

Now we put o = ¢, ¢1 = ¢(-/2) — ¢ and

1 for all x| <1,
0 for all |z| > 2.

wi(z) = g01(2_j+1x), reR" jeN.

Then it can be easily verified that this system (<pj);i0 satisfies the conditions (1.2.1)—

(1.2.3), that is, for every such system we have (¢;) € (R").

J€No

Now we can proceed to the definition of the isotropic Besov and Triebel-Lizorkin spaces.

Definition 1.2.3. Let se R, 0 < ¢ < o0, and let ¢ = (goj) € d(R™).

Jj€No

(i) Let 0 < p < oco. Then B; (R") is defined as the collection of all distributions
f € S8'(R™), such that

00 1/q
1135280 = (327 L@ = )t

is finite.

(ii) Let 0 < p < oo. Then FJ (R") is the collection of all f € §'(R"), such that

(> 2J‘W\<sojﬂv<->|q)1/q

=0

I 75,8 = ' 1@ | = 12 (6,7 Lt

is finite.

Remark 1.2.3. It is a well-known fact, that the spaces B, (R") and F (R") are in-
dependent of the system ¢, in the sense that different decompositions of unity generate
equivalent (quasi-)norms, see e.g. [83, Proposition 2.3.2/1]

Remark 1.2.4. The above function spaces are closely connected, though apart from the
obvious identity By (R") = F; (R"), it holds B; (R") # F; (R") whenever p # ¢ (see
[83, Section 2.3.9]). As usual, we will use the notation A; (R") to refer to both Besov
and Triebel-Lizorkin spaces.

12



Both scales of function spaces have been studied extensively in the last fifty years, since the
original definition of Besov in 1959/60. They cover many classical scales of function spaces
like Sobolev spaces, (real) Hardy spaces or Holder-Zygmund spaces. In particular, there is
a well-known corollary from Littlewood-Paley theory, stating that for 1 < p < oo we have
Hj(R™) = F;,(R") in the sense of equivalent norms. For the basic (Fourier analytical)
investigation of these spaces we refer mainly to the work of Triebel, in particular in [84, 86]
many historical remarks are to be found, and Peetre, particularly the monograph [56].

Here we shall only be concerned with basic results on wavelet characterizations for these
spaces which will be described in the next subsection.
1.2.2 Wavelet characterizations

We start with the following key assertion of the wavelet theory which is due to Daubechies.
It can be found in [13] or [95].

Theorem 1.2.1. For every s € N, there are real-valued functions

Yo, 1 € C°(R) (1.2.4)

with compact support and

/ t%Y (t)dt = 0, a=0,1...,s, (1.2.5)
R
such that

{?/Jo(' —m):m € Z} U {%‘,m :J € No,m € Z} (1.2.6)
with

Vim(t) = 2% (27t —m) jeNy,meZ,

is an orthonormal basis of Ly(R).

The function v is called (orthogonal) scaling function, and 1 is the associated wavelet.
There are now two standard constructions to obtain bases for Ly (R™) based on the system
(1.2.6). The first one will be used here to obtain bases for isotropic spaces, the other one
will be applied in Section 1.4.4 to construct bases for function spaces related to tensor
product spaces.

Let 1)y and 1/, be functions as in Theorem 1.2.1. We define index sets I',, and ~,, by

L, :={0,1}"\ {(0,...,0)} = {G",....,G*" '}, Y= {1,...,2" = 1}.

Then we put

U0 (2) = 0w —m) = (w1 —ma) - Yo(w, —my) (1.2.7)
and
;m(m) = QJn/zwi(ij — m) = 2jn/2¢G§(2j$1 _ ml) .. 'ng (ijn _ mn) ’ (1.2.8)

13



where
r=(x1,...,2,) ER", m=(my,...,m,) €Z", jENy, 1€,.

Finally, we put I; = v,, j € N, and [y = v, U {0}. The n-dimensional counterpart of
Theorem 1.2.1 then reads as follows.

Proposition 1.2.1. For every s € N, there are real-valued functions g, 1; € C*(R)
with compact support and property (1.2.5), such that the system

W:{;MJGN@mGWJGQ} (1.2.9)

where the functions ¢}, are defined as in (1.2.7) and (1.2.8), respectively, forms an
orthonormal basis of Ly(R™).

Thus, in addition to the scaling function ° we now use 2" — 1 associated wavelets 1*. The
aspired characterization of the isotropic Besov and Triebel-Lizorkin spaces is formulated
in terms of the wavelet coefficients and certain sequence spaces.

Definition 1.2.4. Let s€ Rand 0 < p,q < o0.

(i) The space b is defined as the collection of all sequences

A={X, €eC:jeNymelZ"iecl}, (1.2.10)
such that
s p/a\ M
s~ (2 ( 5 ) ) o)
J=0 i€l; “Smezn
is finite.

(ii) Let 0 < p < oco. Moreover, we denote by &j,, the characteristic function of the
cube @ = 277([0,1]" + m). Then the space f$ is defined as the collection of all
sequences as in (1.2.10), such that

S o , 1/q
[ foall == || (ZZ > 2f<8+2>qu;,m\wj,m<->)

j=0 icl; mezZ"

L,(R") (1.2.12)

is finite.

If p and/or ¢ = oo the (quasi-)norms have to be modified in the usual way.

Now we can present the theorem on the wavelet characterization.

Theorem 1.2.2. TLet s € R and 0 < p,q < co. Moreover, let ¥ C C*(R™) be a wavelet
system according to Proposition 1.2.1. If u € N is chosen sufficiently large then the
following statements are true:

14



(i) The space B; (R") is the collection of all distributions f € S'(R"), such that

f= Z Z Z A5 m convergence in §'(R"), (1.2.13)

j=0 icl; mezZn

where \ = (A§7m>j€No,i€Ij,m€Z” cb,
(ii) Let 0 < p < co. Then the space F; (R") is the collection of all distributions f €
S'(R™) that can be represented as in (1.2.13), where A = ()‘é}m)jeNo,ite,meZ" € fog

(iii) The coefficients in (1.2.13) are uniquely determined. It holds
A = () jeENy,i€l;meZ",
where (-, -) denotes a dual pairing. Moreover, the mapping .J, defined by

f — (<f, w;',m>)jeN0,i€Ij,m€Zn )
is an isomorphism from B3 (R™) onto b5 , and from F; (R™) onto f; .

(iv) If max(p,q) < oo, then the system W in (1.2.9) is a basis in A (R").

Remark 1.2.5. The dual pairing in part (iii) needs some further explanation. Since we
are working with compactly supported Daubechies wavelets instead of Meyer wavelets,
the functions ¢!, do not belong to S(R™), hence we cannot use the dual pairing in §'(R").
However, with suitable assumptions on u and with the help of embedding assertions and
the characterizations of the dual spaces of Besov spaces we can always either interpret
ji-’m as a linear functional on some Besov space containing f € A;q(R”), or vice versa we
can interpret f as a linear functional on a Besov space containing ¢ ,,. For details we
refer to [86] or [89].
In both cases the expressions (f, w;m) then have to be understood in the sense of that
respective dual pairing. Finally, for f € A5 (R") it is possible to justify such a pairing
directly in the sense of local means, see [86, Section 5.1.7].

For more details concerning these wavelet decompositions as well as proofs, we refer to
the literature, e.g. Meyer [46], Kahane and Lemarié-Rieusset [42], or Triebel [87].

1.3 Tensor product spaces

In this section, we introduce some general notions on tensor products of (quasi-)Banach
spaces, and afterwards we consider tensor products of weighted sequence spaces of £,-
type and Besov spaces Bj (R). For a brief overview concerning the basic notions and
constructions we refer to [48]. A more detailed treatment, including the deep interrelation
with the theory of operator ideals, can be found in [14]. Finally, for historic remarks see
(62, Section 5.7.2].
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1.3.1 Abstract background

In algebra tensor product constructions are known for several different structures. The
starting point for the explicit construction for vector spaces X and Y (with respect to the
same field; here we concentrate on real or complex vector spaces) is the free vector space
F(X,Y)on X x Y, ie. the set

F(X)Y):= span{x@y::ceX,er}

—{ijxj@)yj:xjEX,ijY,)\jGC,j—l,...,n,nEN}.

J=1

Afterwards the algebraic tensor product X ®Y is defined as the quotient space of F'(X,Y)
with respect to the subspace

U:=span({(x1+a:z)®y—x1®y—w2®y:xl,xzeX,er}
U{z®@ i +yp)— 2@y — 2@y z,2€ X,ycY}
U{A(az@y)—(A:c)@y,A(x@y)—x@()\y)::cGX,yGY,AE(C}).

In this way some intuitive calculational rules are ensured.

The usual functional analytic approach for normed spaces X and Y is slightly different.
Once more one starts with F/(X,Y"), but this times this space is equipped with the fol-
lowing equivalence relation. We say f = Z?Zl Nz ®@y; € F(X,Y) generates an operator
Ay X" — Y by the determination

Apd = Ny, v eX.
j=1

Then we define for f,g € F(X,Y), f =37 Nz Q@yj, g = > N @y;

J=1""3"] J=17"3"]

f~g <= A;()=A4,) for all ¢ € X',

i.e. f and g generate the same operator from the dual space X’ of X to Y. Of interest
now is the quotient space T'(X,Y) = F(X,Y")/ ~, which is found to coincide as a vector
space with X ® Y.

This approach applies to quasi-normed spaces as well, but since the dual space is possibly
trivial, this equivalence relation as well as the respective quotient space might become
trivial. To avoid this, i.e. to ensure the equivalence of both approaches, we have to impose
certain restrictions on the quasi-normed spaces. This situation is clarified by the following
lemma.

Lemma 1.3.1. Let X and Y be two quasi-normed spaces. Then it holds T'(X,Y) =
X ®VY if, and only if, X’ separates the points in X, i.e. for every z € X \ {0} there exists
a functional ¢, € X', such that ¢, (x) # 0.

Proof. In order to show the coincidence of both spaces we have to show that U =V :=
{f € F(X,Y): Ay =0} holds. The inclusion U C V is obvious. For the reverse inclusion
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we remark that the condition on X’ is equivalent to A,g, 7 0 for all z # 0 and y # 0. To
show now V' C U, we show instead, that from f & U follows f & V.

We shall use the fact, that for every f ¢ U there exists an (algebraically) equivalent
representation f = > x; @ y;, where {z1,...,z,} C X and {y1,...,y,} C Y are
linearly independent (this can be seen analogously to [48, Lemma 1.1]). The linearity of
f — Ay, the linear independency of {y1,...,y,} and the assumption for X’ (applied to
the vectors x; # 0) now yield Ay # 0. O

In case of Banach spaces, this condition is always fulfilled. On the other hand in those
cases when X’ and hence also T'(X,Y) is trivial the algebraic tensor product is of little
use since many functional analytic methods used for tensor products fail. Hence there is
no hope of a general abstract theory for quasi-Banach spaces.

However, for those quasi-Banach spaces of sequences and distributions we are interested in
the dual spaces have the property described in the above lemma and are thus sufficiently
rich to provide meaningful results, see Lemma 1.3.3. We shall add a few more remarks
about quasi-Banach spaces in Section 1.3.4. For the rest of this subsection, we shall be
concerned with Banach spaces only.

To derive Banach spaces from X ®Y', we equip it additionally with various norms, adapted
to tensor products. Here, we shall use the following ones.

Definition 1.3.1. Let X and Y be Banach spaces.

(i) Let [f] € X ® Y with a representative f € F(X,Y),
f:ij@)yj, rje X, y; €Y,neN. (1.3.1)

Then the injective tensor norm A(-, X,Y) is defined by

A, X,Y) = || A £(X", V)]

= sup{
7j=1

Z ¥(w;)y;

yH e x!, |l g1}.

(ii) Let 1 < p < oo and 1 = é + z%‘ Then the p-nuclear tensor norm a,(-,X,Y) is
defined by
1/p
p([f), X,¥) := nt (znmxu )" (Zw W)t
1Y7]I<1

where the infimum is taken over all representatives f € [f] as in (1.3.1).

(iii) The tensor norm (-, X,Y’) is defined as

207 Sl < € im0}
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Remark 1.3.1. Let o be one of the functionals A\, o, (1 < p < 00) or 7. If X and YV
are Banach spaces, then « is indeed a norm on X ® Y. In particular, by the definition of
the equivalence relation ~, \([f], X,Y) is independent of the representative f € [f]. We
denote by X ®, Y the completion of X ® Y with respect to this norm. Hence X ®, Y is
again a Banach space.

As usual, in the sequel we will always identify equivalence classes [f] and their represen-
tatives f.

A vector f € F(X,Y), that can be represented as f = = ® y, is called simple tensor or
pure tensor or dyad.

These norms « have some additional properties. First of all, they all are crossnorms, i.e.
for any dyad f = ® y it holds

ale®y, X,Y) = [« X[| - [[y]Y]

, reXyey. (1.3.2)

Moreover, they are so-called uniform tensor morms. Let T; : X; — Y, i = 1,2, be
bounded linear operators mapping Banach spaces X; into Banach spaces Y;. We define a
linear mapping 77 ® T» on F(X;, X3) by the property

(Tl X T2)<$1 & .%’2) = (Tl.iﬁl) X (TQLEQ) , x| € Xl,.ilﬁg € Xg , (133)
and linear extension. Then a crossnorm « is called a uniform tensor norm, if
Oé((Tl (029 Tz)h, Yl, Yé) S HTI ‘E(Xl, YI) H . HTQ}E(XQ’ Yé) H()é(h, Xl, XQ) (134)

holds for all ~ € X; ® X5. Then there is a unique continuous extension 1" of T7 ® T, to
X1 ®4 Xo, such that

T: X1 Ry Xo—Y R Yo and T€£<X1®QX2,Y1®O¢}/2).

We will denote the extension T' by 71 ®,T5. Finally, the norms A, o, and y are reasonable
crossnorms. For functionals ¢ € X’ and ¢ € Y’, we can define a functional ¢ ® 1) on
F(X,Y) via

() (zey) =) YY), seXyeY,

and linear extension. A crossnorm « is called reasonable, if p ® 1) is bounded on X ® Y
with respect to «, and its continuous extension ¢ ®, 1) to X ®, Y satisfies

e @a v (X @0 V)| = el X[ - o yI]

Though the next lemma is quite simple, it is important for our considerations. It can be
found, e.g., in [74].

Lemma 1.3.2. Let X;, X», Y7, Y5 be Banach spaces, and let a be a uniform tensor norm.
Suppose that 77 € L(X1,Y)) and Ty € L(X5,Ys) are isomorphisms. Then also T ®, T»
is an isomorphism from X; ®, X5 onto Y] ®, Ys.

Remark 1.3.2. We add a remark on tensor products for more than two spaces. In this
work this will be understood as iterated tensor products, i.e. by X®@Y ® 7 = X®(Y ®72)
we mean the tensor product of the space X with the space Y ® Z, accordingly for more
factors and for completions with respect to tensor norms. Hence for a precise statement
we have to add brackets to clarify the order of the iteration. Only if the resulting tensor
product spaces coincide for every order of iteration we will instead just write X @ Y ® Z
ete.
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1.3.2 Tensor products of Hilbert spaces

Before we turn our attention to more concrete examples, we shall deal with one more
aspect of the abstract theory. The case of Hilbert spaces is well-investigated in the litera-
ture for many years. In fact these tensor products were the starting point of that theory
(first considered by Murray and von Neumann in the late 1930s). In this case there exists
a canonical construction of the tensor product space. Moreover, it has been shown by
Grothendieck [32] that for the class of nuclear spaces (which Hilbert spaces are a special
case of) all reasonable crossnorms are equivalent, hence there is de facto only one tensor
product.

Hence, let G and H be Hilbert spaces with scalar products (-,-)s and (-, )y, respec-
tively. Then we define a functional (-,-) on F(G, H) be putting

(1 ®h1,92®@ha) = (g1,92)c - (h1,ha)u

and subsequent bilinear (or sesquilinear, respectively) extension. Clearly, this defines a
scalar product on the algebraic tensor product G ® H. Moreover, this scalar product
induces a norm on G ® H in the usual way, and the completion H of G ® H then becomes
a Hilbert space as well. With a slight abuse of notation (as explained above), we will
denote this completion again by G ® H. We refer to [48] for further details.

1.3.3 Tensor products of sequences, functions and distributions

For sequences, functions or distributions the (so far formal) expressions f = Z?:1 T; @Y
have a more immediate meaning. At first, for some sequences a = (a;);e; and b = (b;) ;e
of complex numbers, indexed by some arbitrary index sets I and J, we define

a ®s b= ((a ®S b)i,j) (CL ®S b)@j =a; - bj .

iel,jed”’

For functions z : ; — C and y : {9 — C, defined on some arbitrary sets €2; and €25,
we have

@y xQ — C, (x @7 y)(s,t) = x(s) - y(t), s€,t€Qy.

Of course, this definition coincides with the one for sequences, if we interpret the sequence
a = (a;);esr as a mapping from [ into C. Finally, in the theory of distributions there exists
a calculus for tensor products as well. While originally developed for distributions from
D'(R™), the topological dual of D(R") = C§°(R"™) (equipped with the standard topology),
the main assertions still hold true for tempered distributions. The calculus is based on
the following proposition, which can be found in [74, Appendix B], see also [72] and [38].

Proposition 1.3.1. Let S € §'(R%) and T € S’(R%). Then there exists a uniquely
determined distribution U € S'(R%+%) such that for all functions ¢ € S(R%) and
¥ € S(R®)

Ulp @ v) =S(p) - T(¥) (1.3.5)

holds. Furthermore, U is given explicitly by the formula

U(p(x,y)) = Ty (Sa(p(z.9))) = Su(Ty(p(x,y)),  p € SRM™).
The distribution U is called the tensor product of S and T and is denoted by S @ T.

19



This proposition can immediately extended to (finite) linear combinations.

Proposition 1.3.2. Let S; € &'(R") and T; € §'(R%), i = 1,...,n. Then there exists
a uniquely determined distribution U € &’(R%742), such that for all functions ¢ € S(R%)
and ¢ € S(R%)

U@ ) =) Sile) - Tily))
i=1
holds. Furthermore, U is given explicitly by the formula

i=1

This last proposition ensures, that ;| S;®"T; is again a well-defined tempered distribu-
tion. Moreover, if S and T are regular distributions, generated by functions f : R — C
and g : R — C, then it can be easily seen, that also S ®” T is a regular distribution,
generated by f ®/ g : Rh+dz — C,

At the end we intend to apply the theory to tensor products of Sobolev and Besov spaces.
This motivates a closer look on spaces of tempered distribution.

Hence, let X and Y be quasi-Banach spaces of tempered distributions. The first question
to be addressed is whether their dual spaces are rich enough to provide meaningful results
for tensor products.

Lemma 1.3.3. Let X be a topological vector space, such that X < S'(R™). Then X’
separates the points in X, and hence T'(X,Y) = X ® Y for every vector space Y.

Proof. We consider the natural injection J : S(R") — S”(R™), which is defined by
(Te)(f) = fle), ¢ € SR™), f € S'(R™). Due to the assumed topological embedding
X — §'(R") we immediately find J¢ € X’ for every ¢ € S(R™).

Now let f € X, f # 0. Then we also have f # 0 in the sense of S'(R%). This means there
is some function ¢ € S(R%) such that f(¢) # 0. This immediately implies (J¢)(f) # 0,
which yields the desired functional from X’. O]

Thus when dealing with tensor products of spaces of tempered distributions the minimal
assumption is a continuous topological embedding into the space S'(R™). In particular,
all types of Fourier analytical Besov and Triebel-Lizorkin spaces satisfy this condition.
Another interesting aspect arises from Proposition 1.3.2. Due to the uniqueness assertion
the set

X®DY:{ZfZ®DgZ fz€X7 gleya Z:]_,,TL, TLEN}

=1

is a well-defined subspace of &'(R%*92). Moreover, Proposition 1.3.2 motivates the fol-
lowing definition for all h = 37" | \ifi ® g and w = Y777 | pju; @ v; from F(X,Y):

DNi®gi = ;@
i=1 Jj=1
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— ZAZ- () - gi(v) = Zujuj«o) () forall ¢ e SRM), ¥ e SR®).

The relation 2 then turns out to be an equivalence relation on F(X,Y’), and we have
X ®@PY = F(X,Y)/ =. This yields another approach towards tensor product spaces
which is applicable also for quasi-Banach spaces. The immediate question regarding a
comparison with the algebraic tensor product X ® Y is dealt with in the next lemma.

Lemma 1.3.4. Let X,Y be topological vector spaces of tempered distributions, such
that X — S'(R%). Then f ~ g implies f = ¢ for all f,g € F(X,Y), i.e. we find
XePYCX®Y.

Now suppose the continuous embeddings S(R%) — X — S'(R%) and S(R®) — YV
S'(R%) to hold. Moreover, we assume J (S(R%)) to be dense in X', where J is the
natural injection from S(R™) into S”(R%). Then the vector spaces X ® Y and X @Y
are isomorphic.

Proof. A proof of this lemma, though in a slightly different formulation, can be found
in [74, Appendix BJ. [

Remark 1.3.3. It remains an open problem to what extent the assumed density of
J(S(R™M)) in X’ is necessary. A more natural condition seems to assume that S(R™) is
dense in X.

Moreover, for isotropic Besov spaces this assumption is not always satisfied, since S(R")
is dense in (Bf,,p(R")), if, and only if, 1 < p < oo, i.e. for p < 1 we could end up with
considerably smaller tensor product spaces when working with Bj! (R") @7 Bg2 (R%).
The main advantage of this approach towards tensor products of distributions is the
more immediate meaning of the expressions > | S; ®@P T, in comparison with the purely
algebraic definition. However, since most of the abstract results for tensor products are
based on the algebraic tensor product we will not further pursue this angle at this point.
We shall finally add that for the concrete case of Besov spaces the method used in Sections
1.4.5 and 4.4 provides the respective identifications automatically.

Remark 1.3.4. We add another remark on dense subsets. Assume F' and G to be
dense subsets of given quasi-Banach spaces X and Y, respectively. We equip X ® Y with
some crossnorm «. Then it is immediately clear, that (F ® Y) + (X ® G) is a dense
subset of X ® Y. On the other hand one finds at once that F' ® G is a dense subset of
(F®Y)+ (X ® G) with respect to the same crossnorm «. Altogether, it follows that
F®(Gisdensein X ®,Y.

In particular, this argument applies to dense embeddings S(R%) — X and S(R%) —
Y with quasi-Banach spaces of functions or distributions X and Y. Conversely, this
observation will be helpful in identifying tensor product spaces X ®,Y with known spaces
Z. 1f the dense embedding S(R%792) — 7 is known, it suffices to show that X ®,Y C Z
is a closed subspace with equivalent quasi-norms. The desired identity X ®, Y = Z then
follows from the density of S(R%") ® S(R%) in S(R%“+%2) which in turn is a consequence
of the dense topological embedding D(R") — S(R") and the density of D(R%) @ D(R%)
in D(R® %) see e.g. [81] for details.
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1.3.4 Tensor products of quasi-Banach spaces

Before we return to tensor product spaces, we shall recall a well-known notion for quasi-
Banach spaces.

Definition 1.3.2. Let 0 < p <1, and let X be a quasi-Banach space. Then X is called
a p-Banach space and its quasi-norm p-norm, respectively, if

| f+g| X< rIX]"+|g|X|] forall f,ge X.

It is clear, that every Banach space is a 1-Banach space and every norm is a 1-norm.
Furthermore, it can be shown, that for every quasi-Banach space (X, || - ||) there exists a
p € (0,1] and a p-norm || -||* on X, which is equivalent to || - ||, i.e. (X, ] -|*) is a p-Banach
space. We refer to [25] and [62] for details and further references.

Definition 1.3.3. Let X and Y be quasi-Banach spaces, and let 0 < p < 1. Then we
define the p-nuclear tensor norm ~,(-, X,Y) as

n 1/p
(] X, Y) = mf{(z s | X7 Hyj\yup) Felf]asin (1.3.1)}.

These quasi-norms have been originally introduced by Grothendieck in [31]. It can be
shown that the norm ~; = 7 is always equivalent to oy (which justifies the above notion
in case p = 1). Moreover, it can be checked easily that the p-nuclear norms ,, p < 1, are
always p-norms.

In Section 1.3.1, the concepts of reasonable crossnorms and uniform tensor norms were
introduced for Banach spaces only. Both notions can directly be extended to quasi-Banach
spaces and to quasi-norms. The following lemma deals with these properties in connection
with .

Lemma 1.3.5. Let X and Y be quasi-Banach spaces, such that X’ separates the points
in X. Then 7,(-,X,Y), 0 < p <1, is a reasonable quasi-norm on X ® Y. Furthermore,
let (X1, X2) and (Y7, Y2) be two pairs of quasi-Banach spaces such that X separates the
points in X;, i = 1,2. Then it holds (1.3.4) for every 77 € L(X1,Y1), T» € L(X5,Y3) and
h € X; ® Xy, i.e. 7, is uniform.

Proof. We shall follow closely the corresponding proofs for v; = v in [48].

Due to the assumptions Lemma 1.3.1 is applicable, hence the functional analytic tensor
product coincides with the algebraic one. Now let ¢ € X', p € Y andz=> " 2, ®y; €
X ®Y. Then we find

(6 @ ¥)(2)] < Z (6 @ ¥) (2 @ )| = Z ()] - [(ys))|

<ol XNy I 2l [ X flwe Y
=1

Taking the infimum over all representation of z we obtain
(e ) <[] X" |0 |Y vz, X, Y) < [ ¢ | X || - [[ 9| Y [|3(2, X, Y),
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where we additionally used the monotonicity of the £,-quasi-norms. If we denote by -,
the induced operator quasi-norm on (X ® Y,~,)" we have shown

e d) < || o[ X[ [lv Y (1.3.6)
In particular, this implies for all x € X and y € Y

(@) ()| = [(¢@V)(z@y)| <7 (¢ @Y, X,Y)p(r @y, X,Y)
Using the obvious estimate

W@y, X,Y) < |z|X] - |lylY| forall ze€e X, ,yeY, (1.3.7)
and taking a supremum over the unit balls of X and Y we find

lo X - [ [Y'[[ < (e® ) (1.3.8)

Combining (1.3.6) and (1.3.8) proves that 77 is a crossnorm on X’ ® Y’. On the other
hand, this is obviously equivalent to «, being reasonable.
Finally, let Ty € £(X1,Y1), Th € L(X,,Ys) and z = > | u; ®v; € X1 @ Xy, Then it holds

n n I/P
" (2 T, ®T2vi) < (2 | T | 1 |- || Tows | Yo H”)
=1 =1

n 1/p
< [l eea |- [Tl Y (3 0P e el

i=1
Taking the infimum over all representations of z yields (1.3.4). O

Remark 1.3.5. We want to point out that so far we have not shown whether v, is a
crossnorm. As mentioned in the proof, we have the one-sided estimate (1.3.7). Comparing
with the proofs in [48] the reverse inequality can be shown using norming functionals, i.e.
given x € X these are functionals ¢, € X’ such that ||| X’|| = 1 and @, (x) = ||| X]].
However, this well-known consequence of the Hahn-Banach theorem fails to be true for
general quasi-Banach spaces.

On the other hand, explicitly assuming the property

sup |o(x)] = ||z|X|| forall ze X
ol x’[I<1
turns out to be a severe restriction, because even quite simple and prominent examples of
quasi-Banach spaces such as the spaces £,(I), 0 < p < 1, and their weighted versions (for
a definition see the next subsection) do not satisfy this condition. This follows from the
well-known characterization (¢,(I))" = («(I), which is provided by the usual isometric
isomorphism. As a consequence of this characterization every functional ¢ € (¢,)" can be
extended to a functional in (¢;)" with equal norm, and vice versa every functional on ¢;
can be restricted to ¢, without changing the norm. In particular, this implies

sup |¢(x)| = sup |¢(x)| =||z|t1]] forall zedl,.
llél(en) <1 lol(€1)"]I<1
Since for every x # \e', i € I, A € C, we have ||z|(,|| > ||z|¢1] this shows the non-existence
of norming functionals for such = € ¢,,.
However, the mentioned one-sided estimate (1.3.7) for ~, is sufficient for most purposes,
in particular all assertions needed in our investigations remain valid under this weakened
assumption.
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The next lemma is the counterpart of Lemma 1.3.2 for quasi-Banach spaces, see [74,
Section 5.1].

Lemma 1.3.6. Let X1, Xy, Y, Y5 be quasi-Banach spaces, which fulfil the assumptions
of Lemma 1.3.5, and let 0 < p < 1. Suppose that T} € L£(X;,Y7) and Ty € L(X5,Y5) are
isomorphisms. Then also T} ®,, T5 is an isomorphism from X; ®, X, onto Y} ®,, Ys.

Remark 1.3.6. Several further attempts to deal with tensor products of quasi-Banach
spaces can be found in the literature, we refer to Turpin [90] and Nitsche [55].

Instead of working with the topological dual, Nitsche stated restrictions for the algebraical
dual to circumvent the failure of the Hahn-Banach theorem, which lead to the notion of
placid g-Banach spaces. Furthermore, he introduced a version of the p-nuclear tensor
norm for values p < 1. His main result reads as ¢,(N%) ®, (,(N) = ¢,(N?*!) with equal
quasi-norms (with the interpretation of tensor products of sequences as above).
Moreover, his approach can be applied to Besov spaces B;,/qqfl/ 2(R) as well. The results
obtained in this way correspond very well to special cases of those ones which will be
presented in the sequel (see Sections 1.3.5, 1.4.5 and 4.4).

1.3.5 Tensor products of weighted sequence spaces

In this section, we shall cite some results on tensor products of weighted sequence spaces,
which were proven in [74]. For this, let I be a countable index set, a sequence w = (w;);es
of positive real numbers, and let 0 < p < oco. Then ¢,(w,I) consists of all sequences
a = (a;);er of complex numbers, such that the quasi-norm

1/p
la|6w, D = ||a-w|g,(D)| = (Z |aiwiyp)

i€l

is finite. Moreover, according to our definitions in Section 1.3.3, the space £, (w; @wq, I x J)
is the collection of all sequences a = (a; ;)ier jes, such that

1/p
H a ‘gp(UM & wa, I x J)H = (Z Z |ai,jw17¢w2,j|p> < 0.

icl jeJ

Here J is another arbitrary countable index set, and w; and wy are two weight-sequences.
Finally, we denote by ¢o(w, I) the closure of the set of finite sequences with respect to the
norm

| a ‘co(w,I)H = || a |€Oo(w,])H = sg:) la;w;|,

i.e. co(w, ) consists of all sequences a = (a;);er, such that a - w = (a;w;)ies is a null
sequence.

Proposition 1.3.3. Let w; and wy be two arbitrary weight sequences.

(i) Let 1 < p < oo. Then it holds

Ep(wl, N) ®ap Ep(wg, N) = Ep(wl &® wo, N2) .
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(ii) If 0 < p <1, it follows

Ep(wl, N) ®Vp fp(wg, N) = £p<w1 ® wa, Nz) .

(iii) It holds
Co(wl, N) ®)\ Co(’wg, N) = CQ(U)l & Wa, Nz) .

In (i)—(iii), the identities hold with equality of (quasi-)norms.

Remark 1.3.7. As an immediate consequence of this proposition we find that v, is a
crossnorm for these particular class of quasi-Banach spaces. This follows from the explicit
meaning of the tensor product of sequences and the above mentioned equality of the
quasi-norms.

We now want to apply these results to the sequence spaces by , from Section 1.2.2. To
this purpose, we define another scale of sequence spaces first.

Definition 1.3.4. Let r1,...,7¢ € R and 0 < p < oco. Then {7 is defined as the
collection of all sequences a = (ayk)yend keza, such that

1/p
b=l (3 s et p

veNd kezd

is finite.

The next corollary follows from Proposition 1.3.3 for appropriate weight sequences simply
by renumbering the index sets. The sequence spaces b}/, have to be understood for d = 1.
Moreover, we shall use the notation

5 — ay, l<p<oo,
? 7}77 0<p§17

to combine these two cases.

Corollary 1.3.1. Let ry,...,74,74:1 € R and let 0 < p < co. Then it holds

71 7"2,...,7"d+1 — T1y..37d T‘d+1 — Tl,...,T’d+1
bpm s, gp gp s, bp,p gp

with coinciding (quasi-)norms.

We define J?¢ := J, @ - -- ® Jy, where J; : B, — by, i=1,...,d are the isomorphisms

according to Theorem 1.2.2. Then from Lemmas 1.3.2 and 1.3.6 we obtain the following
corollary. We shall use the temporary notation

To"4(R?) = Byt (R) ®5, T, (RT) = By, (R) @, -+

P

®s, Brd (R) .

P PP
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Corollary 1.3.2. Let d > 2, ri,...,74 € R, and let 0 < p < oo. Then J?¢ is
an isomorphism from 771" (R%) onto £yr-md. Moreover, the iterated tensor product
Tr-r(RY) = BJY (R) ®s, - - - @5, Byt (R) is independent of the order of iteration.

In Section 1.4.5, we will identify the tensor product spaces T;*"d (R%) as Besov spaces
of dominating mixed smoothness.

1.4 Spaces of dominating mixed smoothness

In this section, we will recall the definitions and wavelet characterizations of Sobolev,
Besov and Triebel-Lizorkin spaces of dominating mixed smoothness. In special cases, we
can identify these spaces as tensor products of spaces of functions/distributions defined
on R.

1.4.1 Sobolev spaces of dominating mixed smoothness

As before, we begin with the definition of Sobolev spaces.
Definition 1.4.1. Let 1 < p < oc.
(i) For any [ € N§ we define the Sobolev spaces S,W (R?) by
SIWRY) = {f € SR : | £SIWRY| = 3" D | L, (RY| < 0},
a<l
where D®f denotes the weak derivative of f of order a = («y, ..., aq).
(ii) For r € R? we put
S;HRY) = {f € SRY) 1 || f[S;HRY]| < oo},
where
| f1SpHRY] o= || F 1+ (&) (14 |€al*) 2 F | Lp(RY)| -
These spaces are Sobolev spaces of dominating mixed smoothness of fractional order,

or Bessel potential spaces of dominating mixed smoothness, respectively.

Remark 1.4.1. Similar to the case of isotropic function spaces, we have by definition
SyW(RY) = SYH(R?) = L,(R?). Furthermore, also for these spaces it can be shown, that
for m € Nj it holds S;'W (R?) = S7" H(R?) in the sense of equivalent norms.

1.4.2 Tensor products of Sobolev spaces

In this section we concentrate on Sobolev spaces with fractional smoothness. However,
the results can be transferred immediately to the spaces S;*W (R?).

A first indication of the connection of the spaces S;* H (R?) with tensor products of Sobolev
spaces on R is given by the fact, that the norm in S;" H (R?) is a crossnorm. More precisely,
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let f = fi®. .. P f; € §'(RY) with f; € H}'(R), i = 1,...,d, then it holds with
7’:(7’1,...,7”6[)

Ifr@” - & fal SHRY| = [| £ [H @[] | fa | H R

This follows directly from the definition of the tensor product of distributions and the
tensor product property of F; on S(R?), see (1.1.2). For two distributions S € S'(R%)
and T € §'(R%) and their tensor product U = S @ T € §'(R* ") the counterpart of
(1.3.5) for the respective Fourier transformed distributions is immediate:

(Far4a.U) (0 @7 ) = U(Fuar1a,(0 @7 0)) = U((Fayip) @7 (Farth))
- S(~Fd1(p) ’ T(]:d2w) - (J:d1S)<g0) ’ (Fd2T>(¢)

for arbitrary ¢ € S(R") and ¢ € S(R%). Hence, by Proposition 1.3.1 we have found
Fdy+dy (S ®D T) = (]—"dlS) ®D (]:dQT) . (1.4.1)

That the spaces S'H (R?) are even tensor product spaces is the content of the next
proposition.

Proposition 1.4.1. Let d > 2,1 <p < oo, and let 7 = (ry,...,74) € R% Then it holds

_ T1 ey d— d—1 T _ ] T
= S (RN @4, Hi4(R) = H'(R) ®a, - -+ ®q, HI*(R)

with coinciding norms.

The proof can be found in [74, Section 3.1]. In case of Hilbert spaces, the corresponding
assertion, usually written as H*(R) ® H*(R) = H$, (R?), has been known for a long time.

mix

1.4.3 Besov and Triebel-Lizorkin spaces of dominating mixed smoothness

We choose arbitrary systems ¢° = ((pz-);io € ®(R),i=1,...,d, and put

() = g, (21) -+~ 0, (a). (1.4.2)

where k € Nd and z = (71,...,74) € R% The system ¢ = (¢r)keng can be viewed as the
tensor product of the systems ¢*, i = 1,...,d. Using (1.2.3), we find at once

> onlx) = (Z o, (:m)) (Z ¢gd(xd)> =1 (1.4.3)

keNg k1=0 kqg=0
for all z = (21,...,74) € R In this sense the system ¢ again is a decomposition of unity
on RY,

Equipped with this decomposition of unity, we proceed to the definition of Besov and
Triebel-Lizorkin spaces of dominating mixed smoothness.
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Definition 1.4.2. Let r € R%, 0 < ¢ < oo and ¢ = (cpk) pene &S above.
0

(i) Let 0 < p < oo. Then S;  B(R?) is the collection of all f € S'(R?), such that

1/q
| £ 1S5 BRY|, = (Z 2’“”||<sokf3V\Lp<Rd>Hq)

keNd
is finite.

(ii) Let 0 < p < oo. Then we define S F(R?) as the set of all f € §'(R?), such that

(Z 27| (W(-)\q) :

keNg

|15, PEY]| } £ ®)

is finite.

These quasi-norms have to be modified in the usual way, if p and/or ¢ = oc.

Remark 1.4.2. Spaces of this type together with several modifications and general-
izations have been studied by many authors, in particular Amanov, Besov, Nikol’skij,
Schmeifler and Triebel. For a detailed systematical treatment of these spaces and further
references we refer to [1], [71] and the recent survey [69]. As for the isotropic spaces, we
mention here only some basic facts.

Both scales of spaces are independent of the chosen decomposition of unity ¢ up to
equivalence of quasi-norms, see e.g. [71, Theorem 2.2.4]. Hence we omit this index for
the quasi-norms.

It obviously holds S;  B(R?) = S7 F(R?). Moreover, the notation S}  A(R?) is used in
the usual way to refer to both scales of spaces at once.

These scales contain many classical spaces as special cases. The most important result in
this direction is a variant of the Littlewood-Paley-Theorem for tensor product decompo-
sitions as above, stating that for 1 < p < co we have S; ,F(R?) = Sy H(R?) in the sense
of equivalent quasi-norms.

The characterization by wavelets will be presented in the next section.

1.4.4 Characterization by wavelets

For the aspired characterization, we will use another construction of wavelet bases for
Ly(RY), which is different from the one used in Section 1.2.2. To this purpose, consider
again the wavelet systems according to Theorem 1.2.1. We renumber the system (1.2.6)

by

¢0(9€—m)7 ij,mGZ,
Vjm(T) = q i i1 .
272 (227 —m), jeENmMEeZ.

Now, let ¥ be the d-fold tensor product of the system (1.2.6), i.e.

U= {¢V,k = ¢V1,k1 ®f ce ®f wl/d,kd ‘v e Nga k€ Zd} : (144)
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Then the next proposition is a consequence of well-known results in classical harmonical
analysis. It provides a counterpart to Theorem 1.2.1 and Proposition 1.2.1.

Proposition 1.4.2. For every s € N, there are real-valued functions g, 1; € C*(R)
with compact support and property (1.2.5), such that the system ¥ from (1.4.4) forms
an orthonormal basis of Ly(RY).

For the wavelet characterization of the distribution spaces, we need again certain associ-
ated sequence spaces.

Definition 1.4.3. Let r € R4, 0 < p,g < oo,andlet e = (1,...,1) € N%

(i) The space s}, b is defined as the collection of all sequences

A={\p€C:veN]keZ}, (1.4.5)
such that
L A A
H A ’S;qu = (Z 2u~(r+2e—pe)q(z ’)\Vyk’p) ) (1.4.6)
veNE keZd
is finite.

(ii) Let 0 < p < oco. Moreover, we denote by &, the characteristic function of the

rectangle

Quae = [274m1, 27 (my + 1)) ¢ -+ ¢ [27%0mg, 27 (my 4 1)) (1.4.7)
Then the space s f is defined as the collection of all sequences as in (1.4.5), such
that

L 1/q .
H A ‘s;qu = (Z Z 2”'(T+26)q|)\y,k|un,k(')) L,(R%) (1.4.8)
veNG kezd

is finite.

If p and/or ¢ = oo the (quasi-)norms have to be modified in the usual way.

Now the desired wavelet characterization for the spaces S;’qA(]Rd) reads as follows.

Theorem 1.4.1. Let r € R? and 0 < ¢ < co. Moreover, we assume ¥ C C*(R%). Then
there exists some (sufficiently large) u € N such that the following statements hold:

(i) Let 0 < p < oo. Then the space S B(R?) is the collection of all distributions
f € 8'(RY), such that

f= Z Z Aok Wuk s convergence in S'(R?) (1.4.9)
veNg kezd
and A = ()\Vvk)ueNg,keZd € s, 40
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(ii) Let 0 < p < co. Then a distribution f € §'(R?) belongs to the space S F(R?) if,
and only if, it can be represented as in (1.4.9) with A = ()\Vvk)yeNd rezd € Spal-
0 )

(iii) The coefficients in (1.4.9) are uniquely determined. It holds
Mok = (fvr), veEN] kel
where (-, -) denotes a dual pairing. Moreover, the mapping .J, defined by
fr— (<f, ¢I/,k>)keNg’kezd7
is an isomorphism from S;  B(R?) onto s b and from S; F(R?) onto s f.
(iv) If max(p, q) < oo, then the system W in (1.4.4) is a basis in 5] A(R?).
For a proof of this theorem as well as more details on these wavelet decompositions we
refer to [94, Section 2.4]. Similar results can be found in [5].

Remark 1.4.3. The dual pairing in part (iii) has to be justified, since the wavelet system
U from (1.4.4) is no subset of S(R?). This can be done in complete analogy to the isotropic
case (see Remark 1.2.5), i.e. (f,1,x) is interpreted as a dual pairing in some Besov space
S~ B (RY) with suitably chosen parameters s and p. For further details we refer to [94,
Sectlon 2.4.1].

1.4.5 Tensor products of Besov spaces

In this section we have a closer look at the tensor product structure of the spaces
Sy ,B(R?). First of all, we note that the quasi-norm in S B(R?) is a crossnorm. Let
f=hHeP P f € SRY with f; € Bl (R), i = 1,...,d, then it holds with
r=(ry,...,rq)

1fr @7 @ fa| S5 BRY|| = || fu[ By R[] - [| fu | By (R (1.4.10)
Moreover, we now are able to identify the spaces S;’pB(Rd) as tensor product spaces.

Theorem 1.4.2. Let d > 2,7 = (r1,...,7q) € R% and let 0 < p < oo. Then it holds
S;,pB(Rd) = B, (R) ®s, - -+ ®s, By, (R)

in the sense of equivalent quasi-norms.

This theorem follows immediately from Theorem 1.4.1, Corollary 1.3.2, the identification
s,p0 = €7 and the observation, that the isomorphism J from Theorem 1.4.1 coincides
with the isomorphism J¢ from Corollary 1.3.2.

30



2 Function spaces of dominating mixed smoothness
with respect to general splittings R? = R4 x - .. x R

One of the main aims of the first part of this thesis is to generalize Theorem 1.4.2 to
tensor products of spaces By (Rd ). To this purpose we introduce a generalization of the
spaces S A(R?) to spaces S” JAR™ x - x R, This spaces will again be referred to as
spaces of dominating mixed smoothness. We also define related scales of Sobolev spaces.
Afterwards we will study the basic properties of these spaces, where we will prove mo-
dified versions of results in the monograph [71]. Subsequent chapters will be devoted to
characterizations of these spaces by local means, atoms, and eventually wavelets.

2.1 Sobolev-type spaces

We begin again with the definition of Sobolev spaces of dominating mixed smoothness
and their counterparts with fractional smoothness.

Definition 2.1.1. Let 1 < p < o0.

(i) For every [ € N} we define the Sobolev space S;;W(Rdl X - x RIV) = STW(RY) by

1
P
SV EY = {1 € L@ s | 7SIV (ED] = 07|, @Y)] < oc
a<l
where as before D*f denotes the weak (distributional) derivative of f.
(ii) For 7 € RY we define the Sobolev spaces of fractional order (Bessel-potential spaces)
SPH(R™ x --- x RW) = STH(R?) by
STHRY) = {f € S®RY) : || f |S7HRY)|| < o0},
where

1FISTH@D| = [FH A2 (L (672 £ Ly (R

Remark 2.1.1. From Definition 2.1.1 it follows at once SgW(]Rg) = SEH(RE) = L,(RY).
Moreover, for N = 1 one re-obtains the isotropic spaces W} (R?) and HJ(R?) from Def-

inition 1.2.1, while for d = (1,...,1), i.e. d = N, we get Sobolev spaces of dominating
mixed smoothness SJW(R?) and S)H(R?) as in Definition 1.4.1.

Remark 2.1.2. Both norms, || - [S]W( 7)|| and || - |S;H(RE)||, are crossnorms. For
functions ¢ = 1 ® --- ® @y with ¢; € Wi(R%), i =1,..., N, it holds

N
[ S, (R 5 - x R™)|| = [T 1] s Wy (R*)
i=1
where [ = (ly,...,In) € Név. Analogously we find
H © ®w |SI()Z,W)W(Rd1 oo X Rle x RdN1+1 TR Rle‘*'N?)H
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=1l SZW(Rdl X oo X RdN> . ¢ SWW(RleJrl X o X RdN1+N2)
p P

for I € NJ" and m € Nj. Similar equations are true for SZH(RE).

Remark 2.1.3. In Section 4.4 we will prove that indeed these Sobolev spaces are tensor
product spaces. More precisely, we will prove

T dy _ 1 d r d — N
S,H(R?) = H'(R™) @, -+ + Qa,, H)N (R, TERY ,1<p<oo,

with equality of norms. In view of Theorem 2.1.1 this transfers to spaces S?W(]RE) and
Wri(R%), i=1,...,N, where m € Nj and 1 < p < oo.

The connection between the function spaces S;;W(RE) and S)H (R%) is given by the fol-
lowing theorem.

Theorem 2.1.1. Let 1 < p < oo and m € N). Then it holds
m d dvY _ o (TR d
SyW(R™ x - x R™) = STH(R™ x -+« x R™)

in the sense of equivalent norms.

This result is the generalization of the relations mentioned in Remark 1.2.1 and Remark
1.4.1, respectively. For its proof we need a Fourier multiplier theorem of Lizorkin [50].

Theorem 2.1.2. Let the function ® have continuous strictly mixed derivatives of order
j <d,ie. D*® is continuous for all a € {0, 1}¢. Furthermore, let
P
b 2" <A
Ehy - D 06 | =

forall 1 <k; <---<kj<dandall 0 <j<d. Then ® is a Fourier multiplier in L,(R?)
for 1 < p < 0.

Proof of Theorem 2.1.1.
Step 1: We show ||Daf|Lp(Rd)|| <call f |SpmH(RE)||.

We put h(€) == [T, (1 +[€%)™/2. As S(R?) is a dense subset of L,(R%) for 1 < p < oo,
it is sufficient to consider f € S(R?). Let o € N¢ with @ < m. Then we find

| D f|Lp(RY) || = || FLFD f|Ly(RY) || = || F e F f| Lp(RY) |
£ 1

R Q}"(]-“ h(g)ff) 7

< c||Fh(EFfILyRY|| = c|| f[SyTHERY]|.

-

Ly(RY)|

Here we used Theorem 2.1.2 in order to show, that M () := % is a Fourier multiplier

in L,(R?). Obviously, M € C*(R?), in particular, all partial derivatives are continuous.
It remains to show, that

IDPM(€)] < c5l€°| ™" = [P DM ()] < ¢p
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for all 3 € {0,1}4. First of all, |[M ()| < 1 due to @ < mm, thus M is bounded. Moreover,
w.l.o.g. consider the case 7 < dy, all the other cases can be treated completely analogous.
Then we obtain

a; € h(g) — £*0;h(8)

O;M(&) = MGE (@' =a—ejif a; #0)
:wgf_fa.@ﬂ+WWmﬂ:w€w_m,@‘ &
h©)  hE©  AHIEP)™E R TR 1 EP

e &\ 1
@( g 1+KW)_MGK%& 1+KW)’

and hence, because of |M(§)| <1,

1 &1 mil§l g+
M6 < O (e + s ) < 7 TR < e

In particular, we can read off

O;M ()] < clgl™ = |§0M(E)] < c.

The desired estimate for arbitrary § now follows inductively. Assume that for every
B € N&, |8| <k, the partial derivative D? M can be written in the following form

Sa
h(€)

where 75(£) is a rational function such that €Prs(€) can be written as a linear combina-

D°M(¢) =

rs(§),

tion of products of (up to |f|) factors W’ where i(j) € {1,..., N} is the uniquely
determined index, such that d; +---+d; 1 +1 <7 <d; +---+ dZ. In particular, this at
once yields [€9r5(€)] < cg. Above, this has been shown for ]ﬁ| = 1. Then we obtain (let

again w.l.o.g. j < dy)

g ¢ 1 & &
007 =559 =i (v, ~ o) O+ ighrot©

The term in brackets can be estimated by c|¢;|™ as before. Moreover, one can verify
easily, that 0,7 is again a rational function and that £;£%0;rs is of the described form as
well (one only has to consider derivatives of the “elementary factors”). Hence we conclude
£,€°0,r(€)| < . Altogether, we get

e _ g
h(f)rﬁ(£)7 where Tﬁ(é) = O‘jg_j 9 T |§1|2

as well as the estimate |£;6°75(€)] < ¢. This shows the induction step and thus the
desired estimate [€PDPM (€)| < Cjs. Because only finitely many derivatives are relevant
for Theorem 2.1.2, the functions £€° DP M are uniformly bounded for all 3 € {0,1}¢, and
the assumptions of that theorem are fulfilled.

This completes the proof of the estimate announced at the beginning. Together with the
definition of the norm on SJ"W (R?) we now conclude || f|SI'W (R?)|| < c|| f Sy H(R?)|.

0;D"M = re(§) + 9r(§),
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Step 2: We show the reverse estimate || f \S?H(RE)H <c| f \S?W(]RE)H.

Let p € C*(R) be a monotone function with p(0) = 0 and p(t) = sgn(¢) for |¢| > 1. Then
the function £%p(£%) € C°(R?) is non-negative on the whole of R?. The derivatives of
p(£%) can be written in the form pg(£%)€~#, where the functions pg are linear combinations
of terms p*) (£2)(¢*)*, k = 0,...,|B|. This can be seen inductively with the help of

0 [p(€M)] = ayp'(€)€e e, 960 = =g a2 0,

and

05 [P (€)(€7)*] = pM V(€ (€M) e + pEMR(E)  aye
— ajp(k+1)<€a)<§a)k+1€—ej + kajp(k)(ga)(ga)kg—ej ]

Moreover, p(£%) vanishes for [€2| > 1 for all & and all k > 0 because of p¥)(t) = 0
for all |t| > 1. For all [€2| < 1 all (finitely many) terms p®) (£%) (€)%, k = 0,..., ||, are
bounded due to continuity. Hence, by Lizorkin’s multiplier theorem it follows, that p(£%)
is a Fourier multiplier for L,(R?) for every o € Ng.

Now, define the function M € C*(R?) by

Mo A
9(§) 1+ Zagm p(§~)Ee

From h?(€) ~ 14+ o o €% ~ (14> e |€a])2 we conclude the boundedness of M, see
also Remark 2.1.4. Moreover, M is non-negative. For any multiindex 8 € {0, 1}¢ it holds
DPM(€) = > <s cBNDVh(f)Dﬁ gy (1) The derivatives D7h can be calculated as before,

and these can be written as a product of h(§) with a linear combination of products of
|y| terms 1+|§’<J>|2 with v; = 1. Thereby index i(j) € {1,..., N} is defined as in Step 1.

Hence, we find |§7D7h( )| < ¢, h(§).
The derivatives D=7 (5) can likewise be written as products of £~#=7)g(£)~! with linear

combinations of products of terms p®*) (£2)(£*)**+1g(€)~!, k =0,...,|8 — |. This follows
inductively from

1 Za<m(pl(£a>§a (éa))ga eJO‘

M(§) = (2.1.1)

o= © /
and
a.p(k) (E)(E)H Pl (g0 ()41 4 (J 4 1)p(k)<§a)(§a)ka,§a—ej
T 9(&) ’
POENEN T Toem (P (€18 — p€D)0,67

9(&) ' 9(&)

Altogether, this yields |§5*7D5*7W15)| < ¢ -4, since p®) has compact support for all k& > 0

9(8)
and p(£)€" < g(¢).
Eventually, we obtain for 1 < j; < --- < j, <d

[&i - &, 05 - 05, M(O)] = |EPDPM(€)| < e M(€) < ¢
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From this, it follows by Theorem 2.1.2; that M is a Fourier multiplier as well. Altogether,
we find

| £ IS5TH®RD|| = (|7~ h(E)F £ LR

1 e S
<cl|F (1 Y plemen) FriL, Y

<c (| £ 1@ + SoIF o) F(F e F )| L(RY|)

< (12 ® ] + Y7 e o], )
= (|1 £ [ Lo + D D2 f|L, D)) < 2¢ || £]S7W @D
The proof is complete. O

Remark 2.1.4. From the second step of the proof it can be seen, that with the same
arguments we can show the equivalence of norms of the form

I FISTWR|, = [ £ [ LR+ D[ D Ly(RY]

acA

where A C Ay := {a € N : @ < m}, to the norm ||f|SpﬁH(RE)H. The only fact needed
is the boundedness of the function M4, which is a modification of the Fourier multiplier
from (2.1.1),

GG
Ma®) = e = Tr 5, pEe

In the next corollary we apply this consideration to derive further equivalent norms on

ST (RY).

Corollary 2.1.1. Let 1 <p <ooand m € NJ". Then the following functionals define
equivalent norms on SJ'W (R%):

Y. D PIL®Y)
Ic{l,.,N}  aeN
| |=my;, i€

[Flsgw@®)*= 37 30 DL,
Ic{1,...,N}, J1s-ndnt
I={i1,...,in} ®&=1(Jk), k=1,...,n

| 185w @||*

Y

where i(7) is defined as in the second step of the proof of Theorem 2.1.1, and moreover
we have a(ji1,...,Jn) = my, €5, + - +my e,
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Proof. Let B:= {{ € RY: [¢| < /d;,i=1,...,N}. As B is compact, the continuous
function Mg = M4 is bounded on B, where M4 is defined as in Remark 2.1.4, and
the set A(#) corresponds to the derivatives used in the definition of || - |SPWW(RE) H‘ For
every index i € {1,..., N} such that |£'| > \/d; we define the index k(i) by

[Eki)] = 180 = P s, S &kl > 1.
For every ¢ ¢ B such an index i exists. Now define the multiindex g = B(§) by 8 =
Dijei|> v Ma€k()- Then it holds |€#] > 1 by choice of k(i). Furthermore, as |£']o ~
€] = |€7], and |B] = my, we find 1+ |[€°©)| ~ h(£), where the constants can be chosen
independent of € ¢ B. Since 3(£) € A(#) this implies the boundedness of My on R\ B.
To complete the proof, we add the obvious estimate M < Mg, < M. [l

Remark 2.1.5. Both norms in the above corollary are crossnorms. More precisely, these

are the tensorized versions of the following well-known norms on the isotropic spaces
W (R™):
p

lg Wy @)|* =g |L@®)|+ > [Pl ®)],
BENG:|B|=m

g W@ * = |l g |Lp(®")] |+ZII3"‘9\L RY)||.
7j=1

A connection of these spaces to the spaces of dominating mixed smoothness of Besov and
Triebel-Lizorkin type will be discussed in Section 2.3.7.

2.2 Besov- and Triebel-Lizorkin-type spaces

We now proceed to the definition of the main objects of our investigations, compare with
the corresponding definitions in the Sections 1.2 and 1.4.3. B
For i = 1,...,N we choose systems ¢! = (goj) € ®(R%), and put for k € N and

r=(z',...,2") e R
pr() = g, (@) - oy, (). (2.2.1)

As in Section 1.4.3 the system ¢ = (90E>E6Né\’ can be interpreted as the tensor product of
the decompositions ¢’, i = 1,..., N. Similar to equation (1.4.3), we have

3 are) = (3 ebe) (32 etieh) - 222
kGNéV k1=0 kn=0

for all z = (2',...,2") = (x1,...,75) € R% In this sense the system ¢ again is a
decomposition of unity on R¢ with respect to the splitting R? = R% x ... x R,

Equipped with this notation, we can introduce the function spaces of dominating mixed
smoothness S] B(R™ x --- x R™) and S}  F(R™ x --- x R).
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Definition 2.2.1. Let 7 € RV, 0 < ¢ < oo, and let ¢ = (SOE)EGN{)V be defined as above.

(i) Let 0 < p < oco. Then we define ST, B(R% x --- x R¥) = ST B(R?) to be the
collection of all f € §'(R?), such that

1/q
[ £S5 BR™ x -+ x RN)|| o= (Z Qk""qll(%f)v\LzXRd)Hq)

keNyY
is finite.

(i) Let 0 < p < co. Then S] F(R™ x --- x R*™) is the collection of all distributions
f € 8'(RY), such that

Ly(R?)

(Z 28] (MW) )

keNY

H f‘S;qF(Rdl X +ee X RdN)HW p— ‘

is finite.

Remark 2.2.1. With the notations introduced in (1.1.3) and (1.1.4), the above quasi-
norms can be reformulated as

| £S5 BR™M x - x R || = |28 F " (0 F ) €a(Ly) |
and
| £ 1S5 FRY x - s RN)|| = |28 F 7 (o F £) | L ()|

Similar formulations can be obtained for the spaces A3 (R") and S A(R?).

Remark 2.2.2. As before, we will use the notations S] A(R% x---xR%) and S} | A(R?)
to refer to both scales of spaces.

As mentioned before, the introduced scales of function spaces generalize the classical case
of isotropic Besov and Triebel-Lizorkin spaces A;q(Rd), which corresponds to the case
N =1, as well as the Besov and Triebel-Lizorkin spaces of dominating mixed smoothness
S;’qA(]Rd), which can be obtained for dy = --- = dy = 1, or d = N respectively. Hence,
most results of the next sections are natural generalizations of results for these well-known
spaces.

Remark 2.2.3. Spaces of this type had been introduced before, and were discussed
primarily by several authors from the former Soviet Union including Amanov, Nikol’skij,
Lizorkin and Besov. We refer to [51] and [8] and the references given there for an overview
of their work. Moreover, we shall add that Bazarkhanov dealt with characterizations by
differences and related topics for periodic and non-periodic spaces, see [3, 4].

In the Fourier analytic framework spaces of this type have been investigated before by
Schmeifler in the 1980s, most often in connection with integral operators, whose kernels
were assumed to be elements of vector-valued Besov or Triebel-Lizorkin spaces, taking
values in another Besov or Triebel-Lizorkin space. In that framework some further gener-
alizations for mixed (quasi-)norms were discusssed. We refer to [68, 69] and the references
given there.
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Remark 2.2.4. As for the Sobolev-type spaces in Remark 2.1.2 the quasi-norms of the
Besov and Triebel-Lizorkin spaces are crossnorms. Due to the tensor product properties
of the Fourier transform (equations (1.1.1) and (1.4.1)) and the tensor product structure
of the decompositions ¢ we find immediately

H f®g ‘SZ()ZE)A(RM e x RN 5 RINIHL ¢ ... % RleJer)H
= || f ‘S;qA(Rdl X oeee X Rle)H . ||g ‘S;qA(RleJrl X ene X RdNﬁNQ)H

for 7 € RN 5 € R™. This is the direct generalization of equation (1.4.10).

Remark 2.2.5. We will not give an exhaustive treatment of the spaces SZ’qA(RE). In-
stead we firstly aim at a wavelet characterization of these spaces, and secondly we will

identify certain Besov spaces as tensor products. More precisely, we will show in Section
4.4

S;pB(Rd) = B;fp(Rdl) ®s, ** * Ds, B;%(RdN) , FeERY . 0<p< oo,

in the sense of equivalent quasi-norms. This will be the counterpart of Theorem 1.4.2.

2.3 Basic facts and inequalities

The results of this section and their proofs are based on the approach in [71]. Our theorems
and proofs are direct generalizations of those ones presented there for the case N = 2,

dy =dy = 1.

A basic question in the Fourier analytical approach to Besov- and Triebel-Lizorkin-type
spaces is the independency of the definition of the decomposition of unity, i.e. in our case,
whether Definition 2.2.1 depends on the system ¢ = (g@)g oyv- The answer is given by

0
the following theorem, its counterparts may be found in [71, Proposition 2.2.3/1] and [83,
Theorem 2.3.3].

Theorem 2.3.1. Let (90;");.;07 (1/););10 € ®(R%), i =1,..., N, and define systems ¢ =
(SOE)EGNN and 1 = (wE)EeNN according to equation (2.2.1). Furthermore, let 7 € RY and
0 0

0 <p,q<o00(p<oointhe F-case).
Then || - ‘S;qA(Rd)H@ and || |S;qA(Rd)||w are equivalent quasi-norms.

Remark 2.3.1. As a consequence of this theorem, we may omit the index ¢ or 7 in
H . |SZ’QB(Rd)H or H . ‘S;qF(Rd)H, referring to one of these equivalent quasi-norms.

Before we proceed to the proof of Theorem 2.3.1 we need some auxiliary results. In the
next sections, we will deal with some maximal inequalities, and then prove a multiplier-
theorem for L,-spaces of analytic functions as well as its vector-valued analogon.

2.3.1 Maximal operators

Maximal operators (and their boundedness on appropriate function spaces) play an im-

portant role in harmonic analysis and the theory of function spaces. Our constructions

38



in later sections will make use of the Hardy-Littlewood maximal operator, and are based
essentially on the maximal operator of Peetre. The definition and some boundedness
results for the former one are the subject of this section, for the latter one we refer to
Section 3.2.

For any measurable and locally integrable function f € LP¢(R9) the classical Hardy-
Littlewood maximal operator is defined by

1 d
(M) @) = sup /Q Fo)ldy,  ze R

where the supremum is taken over all cubes @ C R?, which are centred in x and whose
sides are parallel to the coordinate axes. The symbol |@Q| denotes the Lebesgue measure
of the cube ). The famous Hardy-Littlewood maximal inequality now states, that for
every p with 1 < p < oo exists a positive constant ¢, such that

|MFILRY|| < c| flLRY],  feL,®RY. (2.3.1)

A vector-valued generalization of this assertion goes back to C. Fefferman and E. M. Stein
[27].

In our considerations tensor product constructions (will) play an important role, as it
could be seen for the decompositions of unity ¢ = (ng) in Definition 2.2.1. In order to
take this structure into account, we regard the following “directional” maximal operators.
We define fori=1,..., N

(Mif)($)= (M[ i-1 7xi+1,‘“7xN)}>(xi)

flat, .t
1 . )
:sup—/|f(x1,...,xl_l,y,x“'l,...,xN)’dy, (2.3.2)
o 1QJg

where the supremum is taken over all cubes Q C R%, centred in 2’ and with sides
parallel to the coordinate axes. The composition of all these operators will be denoted
by M = My o ---o M;. The following maximal inequality goes back to a result of R. J.
Bagby [2] (indeed, this result is only a special case of much more general result presented
in this reference).

Proposition 2.3.1. Let 1 < p < co and 1 < ¢ < oo. Then there exists a positive
constant ¢, depending only on p, ¢, d;, and N, such that

V) o) < | (e Bt =1 (233)

for all sequences ( fg)E oy € Lp(€y) of measurable functions on R
0

Iterated applications of this proposition show, that an analogon of (2.3.3) holds true for
the operator M as well. In addition to this proposition we shall need another corollary of
Bagby’s result. That one will be concerned with double-indexed sequences of functions.
We introduce the notation

(B

keA meB

lo (L)

H (Akvm) k€A,meB
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for sequences \ = ()\km) of complex numbers and arbitrary countable index sets

keAmeB
A and B. This is a special case of so-called mixed norms, which are treated, e.g., in [71].

The notation L, (¢,(£,)) is to be understood accordingly as in (1.1.4).

Proposition 2.3.2. Let 1 <p < oo, 1 <g<oo,and 1 < v < oo. Then there exists a
positive constant ¢, independent of f, such that

177 f | 2 (a0 | < ] L (6(00) | (23.4)

for all sequences (f,,) + C Ly(R?) of measurable functions on R?.

keN) mez

Remark 2.3.2. Both, Propositions 2.3.1 and 2.3.2, were originally formulated in [27]
and [2], respectively, for finite parameters only. However, the assertion for L,({) follows
immediately from the scalar case using the monotonicity of M (i.e. for functions f < g it
holds M f < Mg). Similarly, the result for L,(¢,({~)) follows from the usual vector-valued
one.

Finally, we shall cite a lemma connecting the Hardy-Littlewood maximal operator to
convolution of functions.

Lemma 2.3.1. Let f be a non-negative measurable function. Moreover, let ¢ € L;(R")

be a function of the form ¢(t) = 1(|t|) for some non-negative, non-increasing function
on [0,00). Then it holds

(f*¢)(@) < c(Mf)(@)| e |L(R™)]

where the constant ¢ > 0 depends only on n.

, reR",

This result can be found, e.g., in [75], Chapter 2 (3.9). In case the function ¢ is given
as the tensor product ¢ = ' ® --- ® " of radially symmetric functions ¢’ € L;(R%),
1=1,..., N, as in Lemma 2.3.1, then an analogous statement holds true for M.

2.3.2 Fourier multipliers

In this section we will simply write F~'mJF f instead of F~![m(F f)], if there is no danger
of confusion.

Lemma 2.3.2. Let p € RY, and let 0 < p < 2. Moreover, let 7 € RY with

1 1
Ti>liiizpi+di<———), Zzl,,N (235)
p 2

Then there exists a positive constant ¢, such that
|1+ [ )2 o (L 2N PP FF L RY| < o fISEHRY|

holds for all f € S5H(R?).
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Proof. Define fori=1,...,N
Q= {teR%:|t| <1},
Q, = {teR% M < <2M} k€N,

and let X be the characteristic functions of Q} . Then we have 1 + [|2|* ~ 2% for all
z' € Qj,. Hence, we obtain

[(1+ [t [)Pr/2 - (14 |2 )2 f Ly (RY)|

(24

1/p
/ (14 [zt 2)/2 o (1 |2V 2)PNPR2 | F f (2)[Pdat - - -de>
Qly

kn=0 k1=0
o0 1/p
¢ (Z 2kNpr/ Z 2k1p1p/ | Ffax)|Pdat - - d:r;N> )
En=0 Qv k=0 k1

An application of Hélder’s inequality for integrals with respect to £ + 252 = 1 yields

) p/2
2k:1p1p/ | Ff(z)Pdz’ < 2k101p’Qi1|(2—p)/2 (/ ]]—"f(a:)\p'pd:vl)
1 Q}Cl

k1
_ 02k1P1P(2k1d1 _ 2(k1—1)d1)17p/2HXk11f-'f‘L2|$1 ||p
< Qhrpofci=pD| 200 F f| Loy ||
= 1 z
= ¢ 2Rt L] X Ff | Lojan |
1 x
J 2k1m1p||X]cllff|L2‘m1 Hp .

Correspondingly one estimates the integrations over 22, ..., z". The notation Ly,: indi-

Y

cates, that the Lo-norm is taken with respect to the variables z¢. Altogether, we find

( Z 2kNpr/ _,_2216101;0/ |Ff($)|pdx1d$N>
kn=0 Qry k1=0 Qi
<c (Z kavmvp ng(xN) (Z gkzrap
kn=0 ko=0
TS N
sz (Z 21@151;)“‘)(1 f)(x)‘LQIml Hp> L2\x2 ) s L2|xN ) .
k1=0

Now we apply Holder’s inequality once more, this time for series, and use x; —r; < 0. In
this way, a convergent geometric series arises. Again, we demonstrate it for k; only, the

other sums can be treated similarly (iteratively for ko, ..., ky):
00 1/p
(5= 2o
k1=0

2-p 1 1.p

o0 ) 2 P (e.¢] 9 2 p 2
e D I P e
k1=0 k1=0
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0o 1/2
<o (Z 22’“”1}|X,§1]-“f|L2m1H2> |

k1=0

This has to be multiplied by Xé, and then the Ly,2-norm is formed etc. The arising
iterative integrals (after interchanging summation and integration) can be comprised to
an Lo(R%)-norm. Arguing as at the beginning of the proof, we finally obtain

(1 |22 (14 [N 2 F fIL,(RY) |
, 1/2
=20

S c <Z L Z 22k17‘1+"'+2kN7'N (Xk}l R ® Xk];[\f)ff
<+ 222 (1 + ‘xN]Q)TN/Q}'f{Lz(Rd)H =J| f ‘SgH(RE>

kn=0 k1=0

what finally proves the assertion. O]

Remark 2.3.3. The lemma and its proof are based on [71, Proposition 1.8.3]. One can
even prove a slightly stronger version of this result for f € S5 B(R?), see [71], Section
1.7.5, as well as J. Peetre [57], pages 9-11, and the references given there. Nevertheless,
the above lemma suffices for our purposes.

Definition 2.3.1. Let 0 < p < 0o, and let Q C R"™ be compact. Then we put

LER") = { f € S(R") :supp Ff € Q| £ Ly(R")] < o0} .

By the Paley-Wiener-Schwartz theorem the spaces Lg (R™) consist of analytic functions.

Lemma 2.3.3. Let Q2 and ' be compact subsets of R". Let 0 < p < oo and u = min(1, p).
Then there exists a positive constant ¢, such that

|F MEF|L R < ef|F 7 MILL @) - | £ 2y (R™)]]
holds for all f € LY and all F~'M € LT

A proof for this lemma can be found in [83], Proposition 1.5.1. We shall add a corollary

dealing with the behaviour of the appearing constant ¢ = ¢(I', Q) for some special cases
of sets I' and 2.

Corollary 2.3.1. We define sets

I :={zeR?: |z| <"}, jeN,,

Qri={reR?: || <2 i=1,... N}, keN).
Then we obtain

| M, (R < ey 2T 0 B £ |y )
for every f € Ly* and supp M C Qp and

|70 Ly | < 20 7 M (B | ||

for every f € ng and supp M C I'; with constants c;, co independent of j and k.
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Proof. Let at first be f € LSE and supp M C Q. Then clearly f(2_E~) c Lﬁﬁ and
supp M (2¥ ) c Qg for every k € NJ'. Then we find by standard calculational arguments

|7 MF FLy(RY) | = 2752 | (FMFf)(27 ) LR
= 2 Al F (M F )2 )] [, (RY)|

< c2—E'E/P2E'32—E'3HF1 [M(2F )]

Lo(®?)| - [ 127

o(RY)|

c2_k'a/p2_E'EH (F-La)(2°F )

IN

Lu(®?)|| - 2907|| £ | LR

IN

c2 IR FIMLLRY| - | £ LR
The proof of the second assertion follows by similar arguments. O]

Theorem 2.3.2 (Minkowski’s inequality). Let (21,9, 1) and (Qg, My, o) be o-
finite measure spaces, and let f be a u; ® ps-measurable function on €2 x 5. Then it
holds for 1 < p <

)| < [ e

Remark 2.3.4. For more details and a proof for this version of Minkowski’s inequal-
ity see either the literature on (classical) measure theory and integration, e.g. [47] or
[65], or on vector measures and Bochner integration, e.g. [20] or [24]. In the frame-
work of Bochner-integration the theorem is a consequence of the elementary inequality
/o fdu”X < Jo If ()]l xdp, applied to X = L,,, where 1 < p < oo.

(y)-

; [ y)dps(y)

Remark 2.3.5. We will apply this inequality in two special cases. In each case, one of
the measure spaces will be the standard one for the Lebesgue measure, (R?, B4, \%). The
other one is either (NN, 1), where p is the counting measure on the power set PN of
N, analogous for any other countable set 2, or (R B, wA?), where w : R? — [0, 00)
is some density function (weight function). In the first situation the case p = oo is an
almost trivial consequence of the monotonicity properties of the Lebesgue integral.

Lemma 2.3.4. Let 7 € RY with 7 > d/2. Moreover, let ¢ € S(R?) be compactly
supported, and let M € S;H(R?). Then it holds

o2 |STHERY|| < cf|M]STHRY)|

with a constant ¢ > 0 independent of M.

Proof. The assumption 7 > d/2 makes it possible to apply Lemma 2.3.2 with p = 0 and
p = 1. This yields FM € L;(R%), and it holds

F(pM) (&) = (2m)** (Fup = FM)(&).

Hence we obtain
N

loar|s3E@®D|" = / d (H(l + !5"\2)”) (2m)*] (Fuo + FM) (&) de

i=1
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N

— (2n) /Rd(H<1+|£r )] [ Fomrae- wan| a6

i=1

Now we put w(€) = [, (1 + |£|?)™, and consider

1f| L2 (R 1= ( /R d |f<§>|2w<£>df) -

i.e. || - |Law(RY)| is the Loy-norm with respect to the measure wA?. First of all, we find
% i) 2 "
) < H( (1" = 'l + In'1)*)

H( L4 I8 — ) (14 7)) = 27w — mun)

for all £, € R Applying Minkowski’s inequality, we get

Lo (R?)

/Rd FM(E —n)Fib(n)dn

TME=m) (w(j(g)n)> WFw(n) (w gg(f)n)y/zdn Ly . (R?)
< [Jpue- (g i (e ) i, ean)

Apparently, it holds

[ JFare—np

< ot 2

| Fio(r) |2w(“g<f>n) w(€)de

2 2w (§ — 1)
[ e = mP e

9,
w(T 1/2
TERE (_)77) )

< sup Fugy) (20— ety ;

reRd w(T =)

|7 M| Lo (R

= [Fwtm) (2w [ a5 @D (235)
Inserting (2.3.8) in (2.3.6) and (2.3.7), respectively, finally yields
Jont|s5a R < 2m) [ [Foe] (27 wn) 01|55 Ry
= (2m) Y22 2| M| ST H(RY) | /Rd|f¢(n)\ ﬁ(l + ()" dn
= c||M|SzHRY) .

The last integral is finite as ¢ € S(R?) if, and only if, its Fourier transform F1 belongs
to S(R?), and hence sup,cga | F1p(n)|(1+ [n|*)* < oo for every s € R. O
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Proposition 2.3.3. Let 0 < p < o0, and let Q be a compact subset of R? with
QcQp={zeR*:|z'|<b,i=1,...,N} forsome b>0.

Moreover, let 7 € RY with

1 1
i iZdi —_— =], '21...,N. 2.3.9
i >0 (mm(l,p) 2) ! ( )

Then, every function M € STH (]RE) is a Fourier multiplier for LIS}. Furthermore, there
exists a positive constant ¢, such that

| MFf|LyRY|| < cf|M(br... ) [STHRD|| - || £ LR

holds for all M € S;H(RY), all b € RY, all Q C Qp and all f € L.

Proof. As Q; C €, always implies LQl C L , it suffices to prove the assertion for
2 = 3. To this purpose, we shall begln with the case by = --- =by = 1.

Therefore, let Q = Qg, and let 1) € S(R?Y) be a compactly supported function, supp ) =: T,
satisfying

Y(z) =1 forall x € Q. (2.3.10)

(the assumptions of that lemma are

Applying Lemma 2.3.2 with p = 0 and p := min(1, p) of
3.9) it holds 7 > & > d/2) yields

assured by (2.3.9)) as well as Lemma 2.3.4 (by (2

|17 D) LR = [| 702 | LR
<c|yM|SEHRY)|| < ¢ | M|S3HRY)]|. (2.3.11)

Since supp )M C supp ), it follows F~1 (v M) € Lg. Hence, we can apply Lemma 2.3.3
to Y M instead of M in order to obtain

[FMFFI|LyRY| < e |[F T @M)|| Ls@RY]] - || ] Lp(RD]] -
From this, together with (2.3.10) and (2.3.11), it finally follows

M LR = | M| LR < e |5 - 7|2,
for all f e Lg.

The general case now follows by a simple scaling argument: Since supp Ff C @ <
supp(F f)(by-,...,bn+) C Qq, it holds f € L,?E = f(g, e E) € LZ?T. But then we
find for f = by ™ - by f(5,..., ;=) and M == M(by,...,by")

L,(RY) H (bl’dl o b;\[dw)l/p—l

| F T MF f|L,(RY)||
= (@ o) F I MER (G5

- H]:_l [(M]:f) (51', . ,bN.)]

Ly(RY)
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= |7 [p77] |2t

Rd H b—dl . b]_\rdN)l/p_l

< e |M|SgH®||| | Ly R (o - b3™)
=M (br o) [STHE| - G ) LR (0 53™) 7
= c|[M(br, o by) [STHERI| - [|f| Ly (RY]

where the constant ¢ is independent of M € STH(R?), f € ng, and b € RY . This finally
proves the assertion. O

Remark 2.3.6. For spaces of dominating mixed smoothness S;’qA(]Rd) a corresponding

result can be found in [71, Theorem 1.8.3], and for its isotropic counterpart we refer to
[83, Theorem 1.5.2].

We shall need a vector-valued version of the above proposition as well. But at first, we

will prove some auxiliary means. The next lemma is a maximal inequality for a variant

of the Peetre maximal operator. To this end, let {2 = (QE>E NN be a sequence of compact
0

subsets of R¢, defined by

QG={zeR": 2" <aip,....|2"] < anpy }
for some aj g, ...,anky > 0. The result is based on [71, Theorem 1.6.4].
Lemma 2.3.5. Let I' C RY be compact, and let 0 < p < oo.

(i) Let 7 € RY with 7 > 0. Then there is a positive constant ¢, such that
[f(z = 2)|
ceri [, (1 [214/7)
<o (M (- My(My| )/ NIy U g (2.3.12)

holds for all f € L} and all z € R%.

(ii)) Let 0 < 7r; < p < oo, i =1,...,N. Then there exists a positive constant ¢, such
that
|f(-—2)] d d
: L,(RY || < c||f|Lp(RY) (2.3.13)
e T+ )| 710

holds for all f € L.

Proof. Step 1:

Let ¢ € S(RY) be a function satisfying (F1)(x) = 1 for all z € T'. In case supp Ff C T,
it follows Ff = Ff - F and f = F Y(Ff-Fi). Then known properties of the Fourier
transform yield

flx) = (2m)*? 5 fv(z —y)dy, zeR’.
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Now we replace in this equation x by x — z and apply V, to obtain
‘(fo)(x — z)’ < (27T)d/2d1/2 /Rd |f(y)\|(Vx¢)(fE —z— y)’dy.

We divide both sides by [, (1 + |2/|%/") and use the inequality

4 c(14 |2t — o' — 2|%/m), 2yt 2eRY i=1,..., N.
e (1]t =y =21, oty

This follows from the triangle inequality in R%. Thus we get

VS —2)
cems [T (1 []m)

e W)l
cera Jra [T, (14 ||

[(Vat))(z — 2 — y)|dy

)

< - —z— d
< oo TR
. Iﬂ)l'
weRd Hl L1+ |zt — wi|di/ri)
N
X Sup ‘ Vo) (x —y —z)}H(l—l— 2" — ' — 2% dy
z€R4 i1
[f(w)] :
= sup , V) (v + dv .
wGRdH,1(1+|IZ wzldi/ri) ]Rd‘< )( )}E( )

The integral is finite due to general properties of functions from S(R?), in particular
sup,cpa(l + [v[2)F[(DY)(v)] < oo for all @ € N& and all k¥ € Ny. Altogether we have

found
sup Vo f(z = 2)| < ¢y sup N|f($—é)| ’
oo T, (L [y = S TTY, (1 + [#1[4/7)

(2.3.14)

where the constant ¢ is independent of f € L) and x € R%.

Step 2:

We need another auxiliary result. Let g be a complex-valued continuously differentiable
function on the set Bs = {y € R : |y| < §,i=1,..., N} for some arbitrary fixed § > 0.
Then the mean value theorem yields

9(2)] < min |g(w)[ + VZNS sup [Vg(w)|, 2 € Bs.
webs

wEBs

The minimum can be further estimated by

N ro/T1 r3/T2 1/rn
1 1

[11Bil / / / (mln lg(w )\) dul | du? e du

i=1 BY B2 \ /Bl \WwEBs

)
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N . r2/T1 T3/T2 1/rn
H<|Bl ri 5_72) / e / lg(u)|™ du' du® cdu® :
By B} \/B;

where we used B; = B} x --- x BN, Bi = {t € R% : |t| < §}. Hence, we obtain for z € B

o) <e o4 (/ (/ ( \g(u)yﬁdw) du2> ---duN>
i=1 By B} \/B;
+ V2N§ sup |[Vg(w)| (2.3.15)

weE Bj

with some positive constant ¢ independent of 9.

Step 3:
Now we apply the inequality (2.3.15) to the function f(z —y —-) € L;" with respect to
the point 0 € By in order to obtain

|f(x—y)|§cc5_d'i</BN---(/BQ<B1|f(x—y—u)|ndul> duz> "'dUN>

+ V2N§ sup [V f(z —y — w)|. (2.3.16)

wE By

The integral in (2.3.16) can be estimated from above for 0 < § < 1 as follows:

ro/r1 r3/ra 1/rNn
(o alfpyemrar) ) )
By B3 \/B;
ro/r1 r3/ra 1/rNn
[l (e ([ ) ) s
Bl B el N\ Bsgp

N
<c H((S—i— ‘ i’)di/Ti (MN( "MQ(M1|f‘T1)T2/T1 N .)TN/TNfl)l/TN(x)

v
H + [yl

Now we insert the last inequality in (2.3.16). Afterwards we divide by [, (14 |y|*
and take a supremum over y € R Altogether we find

MN(‘ My (M1’f|r1)r2/r1 o )TN/rN,l)l/rN (2).

)
sup I 5B ()Y )
yera [[;2, (14 Jy?|%/m)

+sup V2N Supi“_[GBé ’(vf(x Y )w)l . (2.3.17)

Moreover, we shall use the estimate

N X N i
Hi:l(l ) < CHi:1<1+ |28 —w
Hz’]\il(l"“zi_wi i) H£1(1+|Zi_wi ‘
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i) ) (T (1 + /)

di/ﬁ')

(M50 + 12 = wf
Hi]il(l + [2F — !

<c

N
=c [+
i=1
for all 0 < <1 and w € Bs. By putting z = y + w we further obtain
SWpyep, Vi@ —y—w)| - [Vf(z—-2) I, (1 + ||y

A = sup ; 5 ,
IS 0m) sy [T (1 ) TIY, (1 + |2 — wild/n)
Vie-2|  _ Vi —2)]

< ¢ sup , )
) = em T (L []4m)

N
iy <e [T+ 0% < e2?,

i=1

<c¢ sup ,
omyeBs [[, (1 + |2

If we insert this into (2.3.17), we end up with

|f(ZL’ - y)| < —d-i r2/T1 rN/rN—1\1/rN
O “F(Mn(- - My(M 1 -
et T (1+ [yilelry — ¢ (Ma (- M (AIST) ) )@

+c1V2NO sup N|Vf(9[: y)| .

yere [[;1, (1 + [yf|di/m)
The assertion (2.3.12) now follows from this last estimate together with (2.3.14), if we
choose ¢ sufficiently small. Of course this requires of the supremum on right hand side
to be finite, but this is a consequence of f € Lg and Nikol’skij’s inequality, which is the
subject of the next subsection (Proposition 2.3.6). This inequality yields the boundedness
of all partial derivatives of the analytic function f, and hence also of the norm of the
gradient.

Step 4:
We finally prove (2.3.13). From (2.3.12) and the maximal inequality (2.3.3) from Propo-
sition 2.3.1 (by assumption, we have p/r; > 1 for alli =1,..., N) we conclude

f( -2
sup N| ( )|d : Lp(Rd)
z€R4 Hi:1(1 + |2 l/rl)

(MN( - M, (M1|f|r1)r2/r1 o )TN/T’Nfl)l/TN

<c Ly(RY)|

1/r
LP/TN(Rd)H "
Hl/rN

MN(' - M, (M1|f|r1)7“2/7“1 o )TN/?"N—l

IN
Q\

[ M (M 1) ) Ly (RY)

~

Lp/qu (Rd>

ro/T1 TN_1/TN_ 1/rn-1
= ’MN—I(-..MQ(M1|f|T1) 2/ )N JTN—2 H N

[terating this argument eventually yields

o =2
P —% :
cerd [T (1+ 21

< c||pny

Ly(RY)

H l/m

Ly R < I Ly R = || £ LR

Now the proof is complete. O]

I
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The next proposition is a vector-valued counterpart of Lemma 2.3.5(ii). It is based on
[71, Theorem 1.10.2(ii)].

Proposition 2.3.4. Let 0 < p < 00, 0 < g < o0, and let Q = (QE)EGNN as before.
0
Furthermore, let

0<r; <min(p,q), i=1,...,N.

Then there exists a positive constant ¢, such that

=
z€R? Hz (1 ag g, 2

Lp@q) <c HfE|Lp(€q) ”

)

holds for all sequences of functions (fg) weny C L,(R?) with supp F fz C Oz .
0

Proof. We apply Lemma 2.3.5(i) to fg(a1

cube). At first, one makes sure of

(i (- (oG )

..,——) (i.e. in this case, T is the unit
o) ’GN,I@N )

riN\ r2/r1 *N/TN-1\ 1/TN
Y

1 N
— (MN(...Mz(M1|fE|n)T2/”...)TN/erl)l/rN( v )
a1,k AN ky
That way, we obtain
sup ‘fg(l’ - Z)| (MN( .M, (M1|fE|r1>7"2/7"1 o )TN/TN—I)l/TN (:E) ’

Z€Rd H (L4 a2

)

where the constant ¢ is independent of z € R?, k and f7- Moreover, similarly to the proof
of Lemma 2.3.5 we find

oy =3
zeRdHZ 1(1 + |al ki z )
<c HMN(MN—l EE ]\42(]\/./'1|JCE|TI)T2/T1 o )TN/TN ' ‘Lp/mv q/rzv)Hl/rN :

Ly(£y)

The right hand side of this last inequality can be further estimated with the help of
Proposition 2.3.1 (by assumption it holds p/r; > 1 and ¢/r; > 1) by

J H (MN—l . MQ(MIIfEVI)rQ/Tl B )rN/rN 1 ‘Lp/rN q/TN>H1/TN
= ¢ || Moo (- Mo (M fl ™)™ ) L (g )]

Iterated use of this argument eventually yields

oy =3
cerd [V (1 4+ |ajp, 21

Lo(t)|| < C I [ Lpsr Cope) |7 = C || fi | Loll0)])

)

This proves the assertion. [l
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Proposition 2.3.5. Let 2 = (QE)EGNN and aqk,,...,anky > 0 be as before. Further-
0
more, let 0 < p < 00, 0 < ¢ < o0, and

r=(r T d —1 1
= (r,...,rN) >d(mm(p,q) +2). (2.3.18)

Then there exists a positive constant ¢, such that

Lp(£y)

(5up [[op(@r s s )| STH R )| fel Lo(C)|
keNlY

|7~ ox f

holds for all sequences ( fE)E ony € L,(¢,) with supp F fz C §, k € NYY, and all sequences
_ 0
(PF) geny € S3H(RY).

This proposition is the aspired vector-valued counterpart of Proposition 2.3.3. Its fore-
runner for multipliers from S5 H (R?) can be found in [71, Theorem 1.10.3].

Proof. By Lemma 2.3.2 we have F ' pz € L;(R?), hence the expressions F ! prF fr make
sense pointwise, and it holds

(F P ) = n) [ (F ) (el =)y, R

Abbreviatory we put

fk( ) zeRd Hz 1( +’ai,kizi i ) yS:Rd Hﬁ\il(]‘—i_’ai,ki(mi_yi) s .)7 ( 0. )

where the s; will be chosen later on. Then it holds

‘(.7-" /r]:fk)(x—z}
27rd/2/}.7-"_ (z — 2 —y)|Ifx(v)ldy

N
=1
- 1
' 111( )sz'vla’?zk
-1 yl ‘ d/sl
: /Rd (7= e) <a1,k1 ' CLNkN> H L+1y' ' (2.3.20)

The last step follows from the triangle inequality in R% and a substitution x — z — y —

( y e y” ) Furthermore, we find
a1,k AN,k
1 - y' y" -
v (F ) (G ) = (F ol anan ) ().
’ a1,k AN kN

| az‘,ki

ol



Moreover, for ¢ € R™ and arbitrary & € R it always holds 1+ [£]® ~ (1 4 [£]?)*/2. Hence,
we can apply Lemma 2.3.2 (with p = 1 and p; = %) to the integral in (2.3.20). Together
with (2.3.19) (for f; replaced by F~!prF fr), we obtain

(F 7 popF ) (@) < ¢ f2(@)|| pp(aip s - - anpy ) |[SEH(RY | (2.3.21)
as long as
d; 1 1 1 .
;> — N1—=)=d;| —+ = =1,...,N. 2.3.22
Tz>si+dz< 2) dz<si+2)a 1 ) ) ( 3 )

We additionally mention, that

T ) 0] < (F e ) (@) (23:23)

holds for all x € RY. Under the assumption (2.3.18) we can find real numbers s; with
0 < s; < min(p, q) and (2.3.22). From Proposition 2.3.4 (with s; instead of 7;), together
with (2.3.21) and (2.3.23), it finally follows

|7 o fel Lol < (7 o7 £2) [ L(40)]

<c H fE* LP(EQ)H 7511[) H:OE(CLLMV s ’aNJCN')’S;H(]RE)H
keNl
< C sup | or(at s - angy )| SSHRY|| - || | Lo(Co)]] -
keNlY
This completes the proof. n

Proof of Theorem 2.3.1. We begin with the case of F-spaces. Hence, let 0 < p < oo.
At first we remark, that

() = (V51 () + ¥5() + U5 (1) @5(8), teR™ j=0,1,2,...,
holds with ¢, (¢t) = 0. Therefore, it immediately follows
FloFf= Z FloF []_—A%H}-Jc] _ (2.3.24)
1e{-1,0,1}N
Therefore we put abbreviatory
frsg i =F WpaFf,  keN),le{-1,01}".

Then it follows from (2.3.24)

2 F e fIL el < e 32 IF erF 2 fryd] 1La(6)] (23.25)

1€{-1,0,1}N

We want to apply Proposition 2.3.5 to the right hand side of the last estimate (with
aiy, = 2F72). The properties of o' € ®(R%), in particular (1.2.1) and (1.2.2), imply

[k, (252 [ W3 (R*)

SCi, izl,...,N, k’iENo,
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where the constants ¢; are independent of k;. Thus we find

sup [[r(2 2, 22 [ ST (R |

keNYY

= sup 1]_\7“

keNy’ =1

P, (2572 3™ (RT)

N
| <[]ci<oo. (2.3.26)
i=1

Here we have used Remark 2.1.2. One needs to bear in mind that due to (1.2.1) we have
supp ¢, (2F12.) € {t € R% : |t| < 1/2}, hence its Lebesgue measure can be estimated
independent of k;. Thus Proposition 2.3.5 is applicable because of Theorem 2.1.1. From
(2.3.25) and (2.3.26) we obtain

1257 F o F f Lot < e D0 (125 fraal Lo

1€{-1,0,1}N

By Definition 2.2.1 this results in
7155 F®D, <l £ 155, FRI], -

Interchanging of ¢ and v finally yields the equivalence of the quasi-norms. The case of B-
spaces can be treated analogously with Proposition 2.3.3 instead of Proposition 2.3.5. [

Remark 2.3.7. We have not defined the spaces S7  F(R?) for p = oo. The reason is the
same one as for the isotropic Triebel-Lizorkin spaces. Of course it would be possible to
extend Definition 2.2.1 to p = oo, but there would be no counterpart of Theorem 2.3.1.
On the contrary, this spaces indeed do depend on the choice of the systems ¢/ € ®(R%).
This can be seen by tensorizing the corresponding examples for the spaces F S (R%) and
using the crossnorm property for Sﬁo,qﬁ (R?) (the tilde refers to the usage of the “wrong”
definition, i.e. the “wrong” quasi-norm).

M. Frazier and B. Jawerth defined in [29] the spaces F5, , for s € R and all 0 < ¢ < oo with
the help of atomic representations. Though this could be carried over to our situation,
this shall not be executed here. See also [84], Section 1.5.2, and the references given there.

2.3.3 A Nikol’skij-type inequality

For the further treatment of the function spaces of dominating mixed smoothness, in
particular for the Besov-type spaces, we shall need an adapted version of the Nikol’skij
inequality. Generally, it says

| D f| Lu(RY)|| < ]| £]Lp(RY)| (2.3.27)

for all f € Lg, Q C RY a multiindex € N¢ and 0 < p < u < oco. In this form, the
inequality goes back to B. Stockert [76] and A. P. Uninskij [93].

For special domains €2 more precise statements about the constant are possible. One
obtains

| D% f| L@ < et G=2) | |2, @) (2.3.8)

for f € Lf”, where By, = {x eRY: |z| < b}. For further details and references compare
with [83], Sections 1.3.2 and 1.4.1. We shall seek an analogon of the inequality (2.3.28).
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Proposition 2.3.6. Let 0 <p <wu < o0, and let a € Ng be a multiindex. Moreover, let
2 = @y be defined by

={zeR?: |2’ <b,i=1,...,N}. (2.3.29)
Then there exists a constant ¢ > 0, independent of l_7, such that

| e FEuR)| < ety O HflL ®RY)]| (2.3.30)

holds for all f € L(R?).

Proof. The inequality (2.3.27) holds true for arbitrary compact sets @ C R* and f € L.
In particular, it covers the assertion (2.3.30) for the case by = --- = by = 1 with some
constant ¢;. The general assertion then follows by a simple scaling argument

With the notation T = (1,...,1) it holds f € LY <= f(b7,..., by') € LT, Hence,
we obtain

D I Lu®D|| = o7 - by [D2F] (0, by ) | Lu(RY)|

— bl pe [f(b-l. b [ L (RY)|
_ bllal\—dl/u - -blf\j;N|_dN/uHD°‘ [f(bl—l" N } ‘LU(R )H
< el \L (RY)|
= b\all—dl/u . ”b\ﬁNFdN/ubdl/P . dN/PH ¥ ‘L (RY) H
ST TG ST
This proves the assertion. O]

2.3.4 Elementary embeddings

We now return to the investigation of the basic properties of the spaces S; qA(]RE). After
having shown the independency of the decomposition of unity, we now consider some ele-
mentary embeddings of these function spaces. Furthermore, we show their completeness.

Again we put abbreviatory fr = F o Ff for f € S'(R?), where (QOE)E — is some fixed

decomposition of unity according to Definition 1.2.2 and equation (2.2.1).

Proposition 2.3.7. Let 0 < p,qo, q1,q2 < oo (p < oo for F-spaces), and let 7,7 € RY.
Then it holds for gy < ¢; and t > 0

S ARY) = ST AR?) — S LARY). (2.3.31)
Moreover, for 0 < p < oo and every 0 < ¢ < oo we find
S; min(p,q) B(Rd> — S;qF(R ) — S;max(p q)B(Rd) : (2332)

Proof. Step 1: The left hand embedding immediately follows from the monotonicity of
the {;,-quasi-norms, because for gy < g it holds ||(¢j)jeno |Ca || < ||(¢))jens|leo|| for an
arbitrary sequence (¢;)jen, € g
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By the same argument for the right hand embedding it suffices to prove
i T—t
T DARY) — STTARY),

p,q2

where ¢o < co. We start with the B-case. For f € S;OOB(R‘I) we get

1/Q2
7|5 B | = (Z 2”'“‘”"2||fu|Lp(Rd)||q2>

veNY
1/q2
- (S“p 2570 | 2, (R \qz(Z > >)
k VGNN
— ¢ sup 27 i L, (R = | 7| BED)|.
kGN

The F-spaces can be treated analogously. We obtain for f € S;OOF (Rg)

1/q2
I7]ST P (@) = sz-“%\fw) I (R

veNy

1/Q2
e Pore)

N
keNg veNY

IA

Ly(R)

sup 2E'F|f%(') }
keNYY

Ly(RY)|| = ¢ £ 187 FRY]].

|
o

Both times we used, that the series Z%Név 2710 ig g convergent geometric series due to
t > 0, whose value depends on ¢ and ¢, only.

Step 2: To prove (2.3.32), it is sufficient to consider the situation for L,(¢,) and ¢,(L,),
see Remark 2.2.1. The monotonicity of the ¢;,-quasi-norms immediately yields the left
hand embedding in case p < ¢ and the right hand embedding in case ¢ < p. The other
two embeddings follow from Minkowski’s inequality (Theorem 2.3.2). Exemplary we show
the left hand embedding for the case ¢ < p. Let f = (f;)jea € {;(L,). Then we obtain
due to p/q > 1

1/q 1/q
I 1Eatell = | | Ea@]| < (S5 @)
1/q
~ (Sl @) " = sl .
JjEA

The forerunners of the next theorem can be found in [83, Theorem 2.3.3] and [71, Theorem
2.2.4(ii)]. Tt describes some basic topological properties of the spaces S] qA(Rd). In the
sequel it will be frequently used, mostly without explicitly mentioning it.

Theorem 2.3.3. Let 7 € RY and 0 < p,q < oo (p < oo for F-spaces). Then it holds

S(RY) < 57 AR?) — S'(R?) (2.3.33)
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in the sense of continuous topological embeddings. If we additionally have max(p, q) < oo,
then S(R?) is dense in S}  A(R?).

While these embeddings could be proved in complete analogy to the above mentioned
references, we rely on the following proposition, which establishes a connection of the
spaces of dominating mixed smoothness to their isotropic counterparts.

Proposition 2.3.8.
(i) Let 1 < p < oo and m € N)'. Then it holds
K (mpd m d M (md
W (RY) — S)'W(R?) — WH(R?),
where K, M € Ny satisfy M < min;—; _nym; and K > ZZJ\; m;.
(ii) Let 0 < p,q < oo (p < oo for F-spaces) and 7 € RY. Then we have
s d 7 d t d
AS ((RT) — S A(RY) — A} (RY),

where s,t € R satisfy
N
t < max (0, min(ry,...,75)) + Z min (0, ;)
i=1
and

N
s > min(0, max(ry,...,7y)) + Z max (0,7;) .
i=1

Remark 2.3.8. The above conditions for s and ¢ are almost optimal as can be seen
when comparing the case 7 > 0 with the conditions on K and M in part (i) (we remind
on F5(RY) = W (R?) and ST, F(RY) = SI'W(R?) for 1 < p < oo and m € Ny, m € Ny ).

Proof. The embeddings in (i) are immediate consequences of the definitions of the cor-
responding norms, i.e. of the partial derivatives involved. Hence we may concentrate on
(ii). We fix some decompositions of unity ¢ € ®(R?) and ¢’ € ®(R%), i = 1,..., N,
constructed as in Remark 1.2.2, and define ¢ = (@E)Eewgy as in (2.2.1).

Step 1: At first, we shall be concerned with the support of products ;¢ . To this
purpose, define for every j € Ny sets

Aj = {E c Ny : supp gy N supp ¢; # @} )
and conversely, for every k € N} we define

Ar = {j € Ny : supp; Nsupp ¢; # Q)}'
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Immediate consequences of these definitions and the properties (1.2.3) and (2.2.1), re-
spectively, are the pointwise identities

vi(r) =D pp(a)(x) and  gp(r) = Y vi(x)eg(r), (2.3.34)

keA; jeEAL

j €Ny ke NY, r € R% Next, we want to estimate the count of the elements of the
above index sets. To begin with let x € supp ¢7. Then we have |z?| < 2571 and hence

N N
2 _ 12 2(k;+1) < 2(14+maxk;) < 2(14+n+max k;)
|| |z']* < 2 < N2 <2 ,

i=1 i=1

where 17 € N is the smallest number, such that n > log, V/N. Altogether, since z € supp )
implies |z| > 297!, we find j < maxk; +n + 2 for every j € Az. On the other hand, for
every i € {1,..., N} we obtain from |x?| > 2%~ the condition j > k; — 2, since otherwise
we have the contradiction

x € supp; = |z| < 27 < oki=l < |2 < |2 .

This implies 7 > max k; — 2.

Now let @ € supp ;. Then the property |z| > 2/~! implies that for some i € {1,..., N}
we have |z¢| > ﬁ?j_l > 277171 Thus we find the condition j —n — 2 < k; for that i,
which in particular is fulfilled, if j —n — 2 < max k;. Finally, |z| < 277! yields |z*| < 2711,
thus the condition j > maxk; — 2 is necessary for x € supp ¢y.

Altogether we have found, that for supp; N supp ¢z # 0 the condition

max k; —2 < j < maxk; +n+2 (2.3.35)
is necessary. This implies

#A <n+5~1 and #A, <(G+2VN —(G—n-2)" ~ VL. (2.3.36)

Step 2:
We now proceed similarly to the proof of Theorem 2.3.1. This time we obtain from the
identities (2.3.34)

FUFf=) FlephFf and  FlopFf=) F 'eeFf,

keA; jeEAL
and hence (appropriate modifications in case ¢ = 00)

q

> F gt Ff|Ly(RY)

keA,

> q/u
< ZW(Z Hf‘lef(f‘lsokff)|Lp<Rd>H“) ,

J=0 EGAJ'

1f 1B RO = D _ 2
j=0
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where u = min(1, p). Similarly, it follows

_ _ q/u
71553 < 3 (3 e En )

keNY JEAT

Hence we have to consider the Fourier multiplier properties of the functions 1; and ¢
next.

Step 3: We shall use Corollary 2.3.1 due to the support properties of 9; and ¢z. To
simplify notation we will restrict ourselves to the case j > 1 and k > 1, the other cases
can be treated analogously. o

Keeping in mind the condition (2.3.35), we find supp ¢;(2"~ ) C I'” for some compact set
I'°, which is independent of j and k. By the same arguments as in the proof of Corollary
2.3.1 we find

|77 F (F o F £) [ Lp(RY| < 20 DD F 5 | Ly RY | - | F g F £ L, (R

Similarly, we obtain

|77 e (F s F £ [Lp(RY)| < 207D F g L) - | 71057 £ | L

since supp (2771 ) € Q° for some compact set Q°.

Step 4: We now calculate the L,-quasi-norms of the functions F ~14; and F~ oz, Here
we restrict ourselves to the cases 5 > 1 and k > 1, all the other cases yield similar
estimates. By straightforward calculations, we obtain
177 0 | Lu @D = (|7 (1 (277 ) | Lu(RY|| = 2974 (Fn) (277 )| Lu(RY |
— 9(i=1)dg(= J+1)d/U||]:¢1 ‘Lu Rd ” = 2" ( Dd(1/u=1)

The quasi-norm is finite, since F; € S(R?). Using the tensor product properties of the
Fourier transform and the crossnorm-property of the L,-quasi-norm, we further find

N
= [tk 7 L

i=1

N
|7 el LaRY| = [T 1 Faoh |2
i=1

_ 2-(%-1)-8(1/u—1)” Fapr |Lu(Rd)H _ C@Q—(k—T)-E(l/u—l) '
Recalling the results of Step 3, applying Lemma 2.3.3 now results in

|15 BN < e 32 (3 N7 e |, )

Jj=0 keA;
<d XY PO, R

keN) jeAy

< Y T F e Ff|L

keNY

q/u

where v = (1 — ¢/u)+ (use Holder’s inequality or the monotonicity of ¢,-quasi-norms,
respectively). Furthermore, we used (2.3.35), hence 2/ ~ 22 for all pairs (j, k) under
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consideration, as well as (2.3.36). Eventually, the assumption on ¢ implies (+¢) max k; <
k - 7 for some sufficiently small € > 0. This proves the right-hand-embedding in (ii).
For the left-hand-embedding we obtain analogously

_ _ q/u
7155, 8@ < 3 27 3 17 w0 )

keNy JE€AE
<y T F T F LR
J=0 keA,

<Y 2 F T FfL(RY||,

§=0
where we used #Az ~ 1 and #A; ~ ¥~ as well as the estimate k-7 < (s — &) max k; for
some € > 0, which is implied by the condition on s.

Step 5: The corresponding embeddings for the F-scale follow immediately from the
embeddings in Proposition 2.3.7. O]

Proof of Theorem 2.3.3. The embeddings (2.3.33) are immediate consequences of Pro-
position 2.3.8 and the corresponding embeddings for the isotropic spaces in [83, Theorem
2.3.3].  We shall only mention, that the right hand embedding in (2.3.33) means an
inequality of the form

[F@)] < el FIS AR |

for suitable ni,ny € Ny. Hence, it only remains to prove the density assertion.

: Y € S(RY), (2.3.37)

ni,n2

Step 1: At first, let f € S] B(R?), max(p, q) < co. We put for n € Ny
fﬁ;::j{:;rfapﬁfj{
Egn

Let (wy)veNN be an arbitrary further decomposition of unity. Then by Lemma 2.3.3,
0
applied with p = min(1, p), it follows

|F e F (F 7 opF F)| Lo(RY || < || F | L] - || F opF f| Ly (RY)]]
and hence F'opFf € S) B (R%) as well. One has to take into account, that because
of property (1.2.1) only the (finitely many) terms with 7 = k + [ for Zﬁe {-1,0,1}"

are of relevance. Again due to (1.2.1) and (1.2.3) it holds f, € ST B(R?) N L, where
Q= {x e Re: |2f| <2nFLl = 1,...,N}. We now show

f = fal ST BRY|| — 0 for n — oo. (2.3.38)
Pa

In order to see this, we observe that due to (2.2.2) we have f = deNév FlopFf with

convergence in §’(R%). Hence we obtain

f=to= D FloeFf =) FlopFf=) FloeFf

keNYY k<n k¥n
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in the sense of S'(RY). With @ppr #0 <= 7 —k € {—1,0,1}" in mind, we find
B a\ /4
1 = fal S5 BRY| = (Z 2 )

veNY
1/q
=c ( Z Z QWqHJ:190u80u+l}—f‘Lp(Rd>Hq>

vgn—17e{-1,0,1}V

1/q
< ( > 2”"“1Hflsoyff\Lp<Rd>H"> :

vin—1

F o> opF f|Lp(RY)

k¥n

where the last estimate follows as in the proof of Theorem 2.3.1 from Proposition 2.3.3,
Theorem 2.1.1 and (1.2.2). Altogether we have shown

|7 = JalS BEY)

1/q
SC(Z 2T F o FFIL,RY|T = 2’”"q||f1<puff!Lp<Rd)llq> :

veNY v<n-—1

From f € S B(R?) we obtain, that the right hand side of the last inequality converges
to 0 as n — oo. Thus it finally follows (2.3.38). For F-spaces one uses an analogous
argument with Proposition 2.3.5 instead of Proposition 2.3.3, and eventually Lebesgue’s
theorem on dominated convergence.

Step 2: We construct an approximation g € S(R?) of f,, in the space Lg, where I' =

{3: € R |2t <272 = 1,...,N}. To this purpose, let ¢ € S(R?) with (0) = 1
and supp Fyp C {x € R?: |z/| < 1,7 =1,...,N}. Then it holds ¢(e-) f, € L, N S(R?)
for an arbitrary 0 < € < 1, because f, is an infinitely often differentiable and bounded
function, whose every partial derivative is bounded as well, and for the support of the
Fourier transform of ¢ (e-) f,, we find

supp F [1h(e-) fn] C supp F[¢p(e-)] + supp F f,, = supp(F¢) (<) + supp F fn
C{reR®: || <e+2"" i=1,...,N}CT.

The boundedness of f,, is a consequence of the boundedness of F1prFf for all k€
N, which in turn follows from Nikol’skij’s inequality. More precisely, an application of
Proposition 2.3.6 with u = oo, a = 0, and b; = 2%+ (we remind of property (1.2.1))
yields

| F L opF | Loo(RY) || < c289P)| F 1 op F £ LRY|

which is finite, since F'¢pF f € L,(R?) due to f € S B (RY). This argument immedi-
ately extends to the partial derivatives of f,,. Moreover, for every x € R? we get

U(er) fu(z) — fulz),  —0,

and [¢(ex) fr(z)| < |@Z)(5:E)|||fn{Loo(Rd)H Since v(e-) is integrable due to ¢ € S(R?), we
conclude from Lebesgue’s theorem on dominated convergence

1o — (e ) ful LRY|| — 0, &—0.
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Hence, for all § > 0 there exists a function g € S(R?), such that ||g — f,|L,(R?)|| < 0.

Step 3: Now, let an arbitrary € > 0 be given. By Step 1 there exists an ny € N, such that
H f— fn|S;qB(Rd) || < % holds true for all n > ngy. Here ¢; is the constant from the quasi-

triangle inequality in S7  B(R?). We fix such an n, say n;. Moreover, let g € S(R?) N L}
be as in Step 2, such that Hg — fn‘Lp(Rd)H < 6. Then it follows from Lemma 2.3.3 with
p = min(1, p)

lg = falS5., BRY|

1/q
_ ( S 27| F ol F (g - fn>\Lp<Rd>Hq)

v<n4+2

1/q
< ( Z 27T ey || F~ ow| Ly(RY) "l g — f"‘LP(Rd)Hq>

v<n+2
1/q
<6 ( > 2V'chl,Hf1g0y‘Lz~,(Rd)Hq> =: 0
v<n+2
for some constant ¢, = ¢3(n1) independent of & (because of ¢ € S(R?) we have F 1y, €

S(RY) C Lz(RY)). With 6 < 55— we finally obtain

lg = 1155, BEY| < er(llg = ful S5, BEY| + |1 £2 — £155,BERY] )

< (5 + 6>< c +€ €
c @ - ci1C - =£.
= 2 201 _20102 12 2

Thus, we have proved the density of S(R?) in S} B (R%). In case of F-spaces one proceeds
analogously. O]

Remark 2.3.9. Indeed there exist functions ¢ € S(R?) with the properties required in
Step 2, ¢(0) = 1 and supp Fy C {y eRY: |y < 1}. To this purpose let 1) € S(RY) be
some real-valued function with ¢ (z) > 0 for |z| < 1 and t(z) = 0 for |z| > 1. Then it
holds for ¢ := F~ 14

©(0) = (.7:_11&) (0) = (27T)_d/2 » U(x)dr = (27T)_d/2 " (x)dx > 0.

A renormalization of ¢ yields a function with the desired properties.

We finish these considerations of basic properties with the next proposition. It is based
on [83, Theorem 2.3.3].

Proposition 2.3.9. Let 0 < p,q < o0 (p < oo for F-spaces) and 7 € RY. Then the
spaces S} qA(]Rd) are quasi-Banach spaces, and they are Banach spaces, if min(p, q) > 1.

Proof. In the previous considerations we already used that the spaces S;qA(RE) are
quasi-normed. This can widely be derived from Remark 2.2.1 and the quasi-norm proper-
ties of || - |L,(¢,)| and || -[¢4(L,)||. Here we will only show the property || f |S;qA(Rd)H =
0= f=0.
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To this purpose let (cpg) be an arbitrary decomposition of unity according to Defini-

keNl 1
tion 1.2.2 and (2.2.1). Furthermore, we suppose H f |S;qF(Rd)H = 0. By Definition 2.2.1
this implies at first

Z ‘2%?]_——190%]:]0(3;)“1 =0 for almost every x € R?.

keNYY

But this clearly yields, that for all & € NY it holds 28" F ' F f(x) = 0 almost every-
where. Hence we have found, that the (regt_llar) distribution F1prF f is nothing else
than the Null-distribution in &'(R?) for all & € N)Y. Then we obtain with the help of
(2.2.2)

FUFf=F 'Y @Ff=Y FloFf=0 inSRY.
keNY keNY
So we have shown f = 0 in the sense of §'(R?), and thus it holds f = 0 in S;qF(RE) .
Analogi)usly from the assumption H f ‘S;QB(RCI) H = 0 we obtain H]—ngog]-"ﬂLp(Rd) || =0
for all k € NJ'. But this clearly is equivalent to F '@ F f(x) = 0 almost everywhere for
all k € Nj'. Now we can conclude as before f = 0 in the sense of S'(R?) and hence f =0
in S} B(RY).

It remains the proof of the completeness. At first we remark, that S’(R%) is complete, as it
is the dual space of the Fréchet space S(R?), and being equipped with the strong topology.
Let (fl)zl be a Cauchy sequence in S} B(R?). By (2.3.33) and (2.3.37), respectively, this
sequence is a Cauchy sequence in S'(RY) as well. Due to the completeness of S'(R?) we
find a limit element f € S’(Rd) Hence, also F ' F f; converges to FtopF f in §'(R?)
for I —» oo for every k € NY, as F and F~! are continuous transformations on &’(R%),
as well as multiplication with (. On the other hand, because of

| F e Fg|L,RY|| < 2757|| g ST, BRY)|  for all g € S B(RY),

the sequence {.7-" “LopF fl}loil is a Cauchy sequence in L,(R?), and by Proposition 2.3.6
in Loo(R?) as well. Likewise by Proposition 2.3.6 follows, that if F~l@rFf, — gz for
| — oo in L,(R?), this convergence holds in L., (R?) as well. As for arbitrary regular
distribution hy, hy € §'(R?) and a test function ¢ € S(R?) always holds

By () —ha (¥ \</ [ () —ha () [t () [dee < [[or =] Lo (RY)||-] )] L (RY]], (2.3.39)

we additionally obtain gz = F 1oz F f in S'(RY). This follows from the fact that S'(R?) is
a Hausdorff space, hence limiting elements are unique. In particular, we find F ' F f €
L,(R%) for all k € NY.

Now, let M € N. Then for every € > 0 there exists some [ € N, such that

|F e fi = FopF fIL, R < e27HCH) for all [k < M. (2.3.40)

Hence, we find

> kT F ot pp F Ly (RY||

[k|<M
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< 3 ey (|| F e F ALy + | F o F fi = F e F L RY))
|k|l<M
< Z 2E’?qH]-"_lg0E]:fl|Lp(Rd)||q +c Z ok Ta 1~k (T+d)q
k|<M [kl<M
< e Z 2E'FqH~7:_1905-7:fz|Lp(Rd)Hq+C1 Z qu—E.aq
keNl keNl
= C || fl ’S;qB(Rd)Hq + 6102€q S C,
because Cauchy sequences are always bounded. Since the constant C' does not depend on
M, we can conclude f € ST B(R?).
Let again M € N. Then by the definition of a Cauchy sequence for every € > 0 there is
some ly(e) € N, such that

Z 26T | F o F(fi — fn) [LyRO|| < €9, if 1m > lo(e). (2.3.41)
[k|<M
As the sum is a finite one, it follows from (2.3.41)
> 2F | FlorF (fi = )| LR < e, if 1> lo(e). (2.3.42)
k| <M
Letting M — oo, we finally obtain from (2.3.42)
_ _ 1/q
13- 155,00 = (e 3 2 - D&)<

MeN =
[El<M

for every | > ly(e). Thus, we have proved, that f; converges to f in the quasi-norm of

ST B(RY).

P.g
For F-spaces one argues similarly with the help of Lebesgue’s theorem on dominated
convergence. O

Remark 2.3.10. Most often, the notion of Cauchy sequences is used in connection with
metric spaces. Since S'(R?) is no metric space, we want to recall for sake of completeness
what is meant by the notion of a Cauchy sequence in this particular case. In the weak*
topology (which coincides in this case with the strong topology) the open neighbourhoods
of 0 are of the form

Uae = {f e S'RY : |f(p)| <e,i= 1,...,n},
where A = {¢1,...,0,} C S(RY) and € > 0. We put

o ={UDUsc: ACSRY), #A < 00,e >0},
B = {UAE:A:{ﬁp},QOES(Rd),8>O}.

Then B is a local basis of the neighbourhood system Ly (thereby a system € C Ly is
called local basis, if it holds VU € ,3C € € : C C U). Now, a sequence (fi)ren is

called a Cauchy sequence, if

VBe® IMeN VYn,m>M: f, — fn € B.
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In our concrete case, this means for distributions: A sequence (f)2, C S'(RY) is a
Cauchy sequence if, and only if,

Ve >0 Vo e S(RY) IM eN Vn,m > M : |fu(p) — fmlo)| <e.

In the above proof, this is ensured by an estimate as in (2.3.37), compare also to (2.3.39).

2.3.5 Sobolev embeddings for Besov spaces

Among the most important properties of function and distribution spaces like S; qA(]Rd)
are embeddings connected to these spaces, both into each other and into other scales of
function spaces, in particular L,-spaces. At this point, we shall restrict ourselves to two
particular results. However, we will return to the question of embeddings later, after we
proved the wavelet characterization.

In this section, we shall at first clarify when the Besov spaces consist of continuous func-
tions. Thereafter, we shall present a result on so-called Sobolev embeddings, which will
be of importance later on.

Lemma 2.3.6. With the notation 0 = (0,...,0) € RY it holds
S%1B(RY) — C(RY).

Here, the space C'(RY) is the Banach space of all complex-valued, uniformly continuous
and bounded functions on R¢, equipped with the usual norm

[ f[C®RY = Sélﬂglf(xﬂ = || f|Loo(®D]].

Proof. Let ¢ = (@E)EeNéV be a dyadic decomposition of unity according to Definition

1.2.2 and (2.2.1). Then for every f € SEOJB(]RCI), the function F~ ' Ff is uniformly
continuous. This follows from the Nikol’skij inequality (Proposition 2.3.6), because the
boundedness of F 1oz Ff € Lo(RY) implies the boundedness of all of its partial deriva-
tives. Then we get from the definition of the norm in SEOJB (RY), that the series

Z F o Ff (2.3.43)

keNY

converges at first absolutely in C'(R?). Hence, the series converges also uniformly to some
uniformly continuous function. On the other hand, by (2.2.2) the series (2.3.43) converges
in §'(R?) to the limit element f.

Hence f is equivalent to the function defined by (2.3.43), in other words the equivalence
class of f contains a continuous representative. In this sense, the statement f € C(R?) is
to be understood, and the corresponding estimate for the norms follows from the triangle
inequality in Lo (R?) and once again from the definition of the norm in S ; B(RY). O

Remark 2.3.11. For L,-spaces a similar assertion holds true, compare to [71, Proposi-
tion 2.2.3/4], where the corresponding result for the spaces S;  A(R?) can be found.
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Proposition 2.3.10. Let 0 < py < p; < 00, 0 < qo,q1 < 00 and 7%, 71 € RY. Assume

either
0 1 1 1 .
7”1—7”1>d1 -_— — — y 2:1’...’N, (2.3.44)
Po P
or
0 1 1 1 .
rl—r; >di| ———1), i=1,...,N, and ¢ <q. (2.3.45)
Po M

Then it holds
T 'S E
Sh W BRY) = ST B(R?).
Proof. Let f € S

cording to Definition 1.2.2 and (2.2.1). We apply the Nikol’skij inequality (Proposition
2.3.6) to FlopFf with a = 0 and b; = 2%*! j=1,...  N. Then we obtain

B(]Rg), and let (‘pﬁ)EeN{;’ be a dyadic decomposition of unity ac-

| F Y opF | Lpy (RY)]| < c2tHD-d/po=/e) || 7o F 1L, (RY)]| (2.3.46)
From this we can conclude

1/q1
1S5, BED)| - (z 2’”“}1Hf-lsokfmm<n@d>u“)

keNY
B — ) /a1
<c (Z 2k'T1q12k'd<m-m>q1\\f1¢kff\Lpo(Rd)H“> . (2.3.47)
keNY

In case gy < ¢1 we use the monotonicity of the £,-norms and obtain together with (2.3.45)

1/q0
10, BED)| < (zz )0 7 e | (R ||q°)

keNYY
_ 1/q0
sc¢ <Z 2k.r0q0“F_1¢kff‘Lp0(Rd)“qO> =¢ H f| P0,490 Rd)H )
keN)

On the other hand, if ¢o > ¢; we apply Hoélder’s inequality to (2.3.47) with respect to
Z—; + % = 1. Then we find

171850 BRI
1 q0—91
q90 091
<c (Z 260 || F Lo F | Ly (R |q°> (Z o (7o m));;”gl)
k‘ENN k‘ENN
B 1/q0
= (Z 2'”0‘1“Hf‘lsokff\Lpo(Rd>Hq°> = || £1S50a BRI
keNyY
The arising geometric series is convergent due to the assumption (2.3.44). [
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2.3.6 Lifting property

Similarly to the case of classical Besov and Triebel-Lizorkin spaces, we now define a lifting
operator. It will be an important tool in later considerations.

Definition 2.3.2. Let p € R". Then we define the lifting operator I by

Lif = FX A+ [P (L+ (€Y RFf, feSRY). (2.3.48)

It is an immediate consequence of the respective definitions, that the lifting operator I
is an isomorphism from S(R?) onto itself and from S'(R?) onto itself. However, at this

point we are much more interested in its mapping properties for spaces S; qA(Rd). The
answer is given by the following proposition.

Proposition 2.3.11. Let 0 < p,q < oo (p < oo for F-spaces) and p,7 € RY. Then the
lifting operator Iz maps the space S} A(R?) isomorphically onto the space S PA(R?).

Furthermore, Hlﬁ(' ‘S’" PA(R? H defines an equivalent quasi-norm on S} A(R?).

Proof. At first, we consider the case of F-spaces. Let ((’OE>EENN be an arbitrary de-
0

composition of unity according to Definition 1.2.2 and (2.2.1). Furthermore, we put
Gh = Pt + Pk, + Plyrs i =1,..., N, where ¢’ | = 0. Thus we obtain

1751577 FRY|| = || FmgF (287 fi) | Lo ()]
where
N N
= [ mi. @) = [ ]2 " (1 + 2?25}, (a)
i=1 i=1

and f; = F'opF f. Now consider first the functions mj (271 -). By property (1.2.1) it
follows at once, that the support of these functions is Contalned in {t € R% : |t| <2} for

all k; € Ng, i =1,..., N. From property (1.2.2) we get
Do [@Zi(Qkﬁ-l . )} (t) 2(k: —H)‘al(Da&Z )(Qkﬁ_lt) <ec, 2(k +1)|a\2 kil < C (2349)

Moreover, derivatives D?(1 4 |27|?)?/? can obviously be written as linear combinations of
terms (1 + |2°2)7/2 . (2), 1 = 1,...,|8], n = 1,...,n;, where m, are monomials of
total degree at most (21 — |3])4, their count n; being bounded depending on 5 only. This
implies

‘Dﬁ [(1+ |2k’i+1 | )01/2 t | < max 9lBl(ki+1) 9ki(pi—21) ki (21— |5\)C _ C/kaz (2‘3.50)
1:21>|8]

where only those t € supp 6}%(2’“*1 -) are of relevance. Thus it follows, that the functions
Da[m};i(QkiH -)] are uniformly bounded independent of k; and . From this, we eventually
obtain for 7 € NYY

[mg(2bt. L 28| STH(RY)
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N
~ @ 2 ST RY | = T [l (244 )|

=1

N
<][c
=1

where we used Theorem 2.1.1 and Remark 2.1.2. Moreover, though the constants C; may
depend on p;, 0;, and ¢, they are independent of k;.

If we choose 7 sufficiently large, such that the condition (2.3.18) is satisfied, we can finally
apply Proposition 2.3.5 to obtain

|7~ mgF (257 f) | Lo () |

< sup |[mp(2Rtt - 2RO STHRY) | - |25 2| Lo (60) |
keNY

< Cl2" felLo() || = C || f | F®RD).
Hence we have shown
| Lf |StPERY)|| < | S, FRY]| - (2.3.51)

The inverse estimate now follows from (2.3.51) and the observation, that on S'(RY) the
inverse of the lifting operator I5 is given by I_;. Consequently we find

| 7155 F @ = 11585 | S} FR|| < | 1o | 5},7FRY]

This also means, that the restriction of I_5 to the space S} PF (RY) is the inverse of
the corresponding lifting operator I; on S; & (R4), and that this restriction is continu-

ous. Altogether we have proved, that the mapping I : S} F(R 4y — — S) O (RY) is an
isomorphism.

For B-spaces one proceeds analogously, and applies Proposition 2.3.3 instead of Proposi-
tion 2.3.5. H

Proposition 2.3.12. Let 0 < p,q < oo (p < oo for F-spaces), 7 € RV, and [ € NY.
Then it holds

> I rISi ARY | < e £ |57 ARY| (2:3.52)

aGNg:ESZ

forall feS (]Rd)

Proof. We begin with the case of B-spaces. Let (gpg) be a dyadic decomposition of

keNYy ‘ . A
unity according to Definition 1.2.2 and (2.2.1), and again we define @) = @}, | + ¢ +

©. 11, where o' | = 0. Let f € S;qB(]RE). We put for o € N¢ with @ <

N N
= [[mi@) == @+ "), zeR?
=1 =1

and m,, 5(2) = ma(2)@y, (&) - G (@) = mbs () - --mly - (z™) for k € N}Y. Then
we obtain firstly for 8 € N

D[, 251 (@)

<Y |pr[mi @) @)

v<B

| DF L )] @)
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The second factor can be estimated as before in (2.3.49), and also for the first factor we can
argue similarly as in the proof of Proposition 2.3.11 or Theorem 2.1.1. More precisely, the
derivatives D?m/! ,(z') can be written as linear combinations of terms (1+ |2'|?) =%/, .
j=1,...,|8],n=1,...,n;, where 7}, are monomials of degree at most (|a’|+2j—|3|)+,
their count n; being bounded independently of j. Altogether we obtain for every @ €

{1,...,N}
‘Dﬁ [mgaki@kiﬂ')} (z)
< Z:c@7 D7 [mfﬂ@k’“)] (J;z) <c Z ol7|(ki+1)

v<B Y<B

< SO bl pay  ghillal2i-lagh(—ti-2)
T a j:2j+|ai >8]

< C//2|,3‘(ki+1)2ki(|ai‘_li_|/8|) - Cﬁ 2ki(|ai‘_li) < Cg.

[DYml;] (28T %)

One has to keep in mind, that only the z* € supp &}, are of relevance, i.e. 2%+!|z?| ~ 2M+1,
As in the proof of Proposition 2.3.11 we can conclude from this

I,z |STHRY)|| < C(a,7) forall k € N) 7 e N

where we used Theorem 2.1.1 and the crossnorm-property of the Sobolev spaces (see
Remark 2.1.2). Eventually, by the observation ¢3¢ = ¢, Proposition 2.3.3 (applicable,
if & € N} is chosen sufficiently large) and the lifting property for Besov spaces (Proposition
2.3.11) we obtain

| D f| S5, 'B(RY) )| = || F = Ff|S, 'B(RY) )| = |F " mozF (Lf)| S5 'B( Rd)H
<c||Lf|Spy BRY| < || f 5], BRY|

for every multiindex o with @ < [. This finally implies the assertion.
The proof for the F-case uses an identical argumentation, only at the end one has to
replace the usage of Proposition 2.3.3 by Proposition 2.3.5. O

Remark 2.3.12. In analogy to [71, Theorem 2.2.6/2] one can show, that the left hand
side of (2.3.52) even defines an equivalent quasi-norm on S} B(R?). However, for our
purposes the above proposition is sufficient.

Corollary 2.3.2. For every K € NYY it holds
SE B(R?) — SKC(RY).

Here, the space S5 C(R?) is the Banach space of all complex-valued differentiable functions
on R? with classical partial derivatives D*f € C(R?) for every multiindex a € Nf with
o < K. This space is equipped with the norm

|f|SFC®RY) = > [[Df]C®RY . (2.3.53)

aENg:ESF

We will call such functions K-times continuously differentiable.
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Proof. We apply Proposition 2.3.12 with p = 00, ¢ = 1, and 7 = [ = K, as well as
Lemma 2.3.6 to obtain from (2.3.52)

> Ipefle®y) < 32 DS BRY| < £ISL BRI

aENg:agi aeNgzagi

Bearing in mind the norm introduced in (2.3.53) this proves the assertion. O

2.3.7 Littlewood-Paley theory

We want to establish a connection between the scale of Triebel-Lizorkin spaces S)  F (]RE)

and the Sobolev spaces of fractional order of smoothness S H (Rg) discussed in Section
2.1. The result is the following theorem.

Theorem 2.3.4. Let 1 < p < oo and 7 € RY. Then it holds
Sy F(RY) = STH(RY)

in the sense of equivalent norms.

Hence Sobolev spaces turn out to be contained in the scale of Triebel-Lizorkin spaces. The
essential step is the case 7 = 0, which is an extension of the classical Littlewood-Paley
theorem.

Proposition 2.3.13. Let 1 < p < oco. Moreover, let (SOE)EGNN be a decomposition
0

of unity according to Definition 1.2.2 and equation (2.2.1). Then there exist constants
B, > A, > 0, such that

Al F LR < [ (F70rF ey | Lole)]| < Byl £ [Lo(RY)| (2:3.54)

holds for every f € L,(R%).

Remark 2.3.13. This result is (in a more general form for parabolic metrics) due to
Yamazaki [97]. In the literature, there exists various modifications and generalizations,
see e.g. Hytonen and Portal [37] for a vector-valued version or Nagel and Stein [54] for
functions defined on products of manifolds, as well as more details and further references.
However, all these assertions are based on results on singular integrals on product domains,
which are essentially due to Fefferman and Stein [28].

Remark 2.3.14. The above Littlewood-Paley decomposition seems to be the first oc-
currence, where we have an essentially distinct behaviour, on the one hand for the case
d = 1 (corresponding results can already be found in articles of Lizorkin [50] or Triebel
[88]) and on the other hand the case of a general splitting R?. Proposition 2.3.13 is not a
straightforward generalization, neither of the isotropic case, nor of the case d = 1, though
it is traced back by a clever induction argument to the classical case.
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Remark 2.3.15. Yamazaki’s result is formulated using a very specific decomposition of
unity, based on decompositions on R% as in Remark 1.2.2, where the generating function
is additionally assumed to be a radial function, i.e. ¢'(z') = @(|a*]) for some function
¢ € S(R) with analogous properties. Nevertheless, in view of Theorem 2.3.1 the above
version follows at once.

Proof of Theorem 2.3.4. We obtain directly from the lifting property (Proposition
2.3.11), the Littlewood-Paley theorem (Proposition 2.3.13) and the definition of the spaces
STH(R?) in Definition 2.1.1(ii)

| 150 @D ~ 115D ~ 1, = | S5
for every f € S'(R?). This proves the assertion. O

2.3.8 Dual spaces of Besov spaces

By Theorem 2.3.3 for max(p,q) < oo the space S(R?Y) is a dense subset of S;qA(RE).

Hence every functional on S;qA(Rd) can be interpreted as an element of the dual space of
S(RY), i.e. as an element of S’(R?). More precisely, this means that g € S'(R?) belongs
to the dual space [S;QA(Rd)]/ of the space Sj  A(R?), where 0 < p,q < oo and 7 € R,
if, and only if, there is a constant ¢ > 0, such that

9(0)] < c|le|SE, ARY| for all ¢ € S(R?). (2.3.55)

All the subsequent statements have to be understood in that way.

At first, we quote a result on the dual spaces of L,(¢,) and ¢,(L,). For 1 < g < oo
the conjugate exponent ¢’ is determined in the usual way by * + & = 1. Moreover, for
0 < g <1weput ¢ = oco. Correspondingly, p’ has to be understood. A proof of the
following proposition can be found in [83], Proposition 2.11.1, and in [26], Theorem 8.20.5.

Proposition 2.3.14. Let 1 <p<ooand 0 < g < 0.

(i) We have g € (Eq(Lp))/ if, and only if, it can be represented uniquely as

o) = 3 [ sz, = )y € L),

keNyY

where (QE)E eny € ly(Ly). Furthermore, it holds

a1l = 1l g5 | (L)
for the usual operator norm of (ﬁq(Lp)),.

(ii) It holds g € (Lp(éq)), if, and only if, it can be represented uniquely as

o) = 3 [ w)fleddn. = gy € Lot

keNY
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where (g); eny € L, (€,). Moreover, it holds

Lol = Il g | Lo (Er)

for the usual operator norm on (Lp(ﬁq))/.

We restrict our investigations on the dual spaces to the B-scale. Since for our later
considerations on decomposition theorems we only need results for Besov spaces, this
will be sufficient. The F-spaces could be treated similarly, but this will be postponed to
Section 5.5, where we will use an alternative approach.

We will begin with the case 1 < p < oo and remind on the determination of ¢’ by %—l—& =1
for 1 <g<ooand ¢ =00 for 0 <q<1.

Proposition 2.3.15. Let 7 € RY, 0 < ¢ < oo, and 1 < p < oo. Then it holds

(ST BRY] = S;Z,B(Rg)

in the sense of the interpretation (2.3.55).

Proof. Step 1: We show S;Z,B(Rg) — [s7,B(RY)]".
Let ¢ € S(R?) and (¢E)EGN5V
and (2.2.1). Once again, we put @, = @}, _, + ¢, + ¢, 1 and @ = @, @ - - - @ Py, Where
¢’ = 0. Then we obtain for every f € S B (RY)

be a decomposition of unity according to Definition 1.2.2

Y (FGFF e F )W)

keNl

@)= (flsokff)(w)| =

keNl

= 1D (F'epF ) (FepF ')

keNY

< |27 FTF o F £y (Lyy)

2T FEF 6L

At the end we used Proposition 2.3.14 and interpreted the sequence (Z_E'?]—" Lo Ff )E NN

0

as an element of (Eq(Lp))/. Since for every decomposition of unity (@E)EGNN the system
0

(SOE<_.))EEN ~ 1s an admissible decomposition as well, we further find by Theorem 2.3.1
0

2 FEF @) <e 0 1O FeraF ) eyl

le{-1,0,1}V

=c > CTF  epa( =) F ) ey [l
1€{~1,0,1}N¥

</ Z H{Qk.?f_l‘zDEJrZ}w}EeNON}Eq(LP)H
1e{-1,0,1}V

< 3%y |5, BRY].
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If we combine both estimates, we have shown
[F@)] < el £1S, BRI [[v S5, BRI,

which means nothing else than f € [ v B (RE)]/, and for the operator norm of the func-
tional f we find || f| < ch|S B Rd )| -

Step 2: We prove the reverse embedding in the case 1 < ¢ < c0. B

Since f — J(f) = (2" FLopFf) is an isometric bijective mapping from S B(R?)
onto a closed subspace of ¢,(L,), every functional g € [S;qB (]RE)]/ can be interpreted as a
functional on this subspace. By the Hahn-Banach theorem there exists a norm-preserving

extension of go J~! to a continuous linear functional g on the Banach space £,(L,). Now
for every ¢ € S(R?) € S} B(R?) follows from Proposition 2.3.14

keNY

o) = - / 0 g ()25 (F o) () (2.3.56)

keNY
and it holds
19155, BR[| =113 |[£(L)]|| = 12775 | £ (L)

Equation (2.3.56) can be rewritten as

9(W) = > ge(FrepFe) = > (ForF 'gp) (¥),

keNYY keNl

(2.3.57)

where g is identified with the generated regular distribution in &'(R4). With the help of
the support properties of the functions ¢y, see (1.2.1), it follows

orFg = S erera(=)F g (2.3.58)
1€{-1,0,1}: k+I>0
as an equation in &’(RY). Hence in the case p = 1, i.e. p’ = oo, we find
| F orFg| Lo (RY)|| < Yo IF o) F gl Lo R
1€{~1,0,1}: k+I>0
For a single summand on the right hand side of the last estimate we obtain
“-7:.71%0%@%+Z(_'>~7'—9E+i‘Loo(Rd)H
= esssup|ge, ((F eropa(—) (@ =)
r€RC
< sup [lgg ] Lo R[] - | (F ™ eropsa(=)) (2 = )| La (R
xre
= gl Lo )| - [ F ppepa(=) [ LR -

We now additionally assume, that the decompositions ¢* = (¢} )r,eng, @ = 1,..., N, are
of the form described in Remark 1.2.2, i.e. we have ¢, (x) = ¢{(27%*!z) for k; > 1. Then
we can calculate further

177 erera( =) Li(RY)|
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:/ |(F ererpa(— |dx—H/ F i PrPrr, (=) (@) |da’
= H/ (Fi it (=) (25 1at) |da’ H/ (o, ebr, (=) ()] da’

it ki>1 i:k;=0
= H / Fa 015, (= ’dy H / f 1%90} ) (xz)‘dazl =qj.
it k;>1 4 it k;=0

In particular, the result ¢; is independent of k. Altogether, the last considerations yield
|7 opFg|LosRY)|| < ¢ Z |54 Lo (RY)]| - (2.3.59)
1€{-1,0,1}: k+1>0

In the case 1 < p < oo (and thus 1 < p’ < 00) one obtains an analogous result by a
considerably simpler calculation. Again we start with (2.3.58) and apply F~! and the
Ly(R%)-norm to obtain

| F o Fg| Ly RY)|| < > | F ereor (=) Fggya| Ly RY)|
1€{-1,0,1}: k+1>0

With the help of Proposition 2.3.3 we now find

17 epFol Ly R <e 30 (g [Ln
1e{-1,0,1}: k+I>0

(2.3.60)

where the constant c is independent of k (compare to the argumentation in the proof of
Theorem 2.3.1). From (2.3.59) and (2.3.60) we can conclude by multiplying with 277
and applying the ¢, -norm

918, BRI <

> 2 gl Ly Y]] £

1€{-1,0,1}: k+I>0
<Y gl Y] |
1€{~1,0,1}: k+I>0

<3N |27 g |6y (L)

Together with (2.3.57) this eventually proves

l918, BRI < C g[S}, BR))

ie.ge ST B (R?), as well as the asserted estimate for the norms.

Step 3: We treat the case 0 < g < 1.

In this case the inclusion from Step 1 can also be obtained by the following argument: By
Proposition 2.3.7 we have S} B(R?) — ST B(R ) and hence we find

ST BRY) = [S7,BRY)]" < [S7,BRY]'.
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For the reverse inclusion assume again g € [S; B (]RE)}/. Then it holds
(FexFa) )] = 9(FeeF )| < llg || FeorF |5}, BRY)|

1/q
<ol X -l

1e{~1,0,1}N

1/q
gc/ngu( > 2’“‘T‘I\\¢\LP<R‘1>W)

1e{—-1,0,1}N
= 3V g 1257 6 | Z,(RY)|
Here we used (1.2.1) and Proposition 2.3.3 as in the second step (compare to (2.3.60)). It
is a well-known fact that S(R?) is dense in L, (R?) for 1 < p < 0o, and hence F~¢zFg can
be extended to a linear functional on L,(R?). Thus it follows from the usual (isometric)
identification (L,(R%))" = L,(R?) that the (regular) distribution F~ ¢z Fg belongs to
Lp/ (Rd) and

| F orFg| Ly (RY|| < 257 g,

from which we finally conclude

1918, BRY|| = sup 277 || F~opFg Ly (RY)| < el g |[S, BRI
keNYy
This proves the assertion in the case 0 < ¢ < 1. [

Eventually, we shall treat the case 0 < p < 1 as well.

Proposition 2.3.16. Let 0 <p < 1,0 < ¢ < oo, and 7 € RY. Then it holds

(57, BERY] = 507 pr)

in the sense of the interpretation (2.3.55).

Proof. Step 1:
By Proposition 2.3.10 we find

= = F—d(;—1) =
Sy BRY) < S, B(RY)

for 0 <p<1and0 < g < oco. Thus we conclude from Proposition 2.3.15

7‘+d(7 1) =

S BR?) — [S7 BRY)]". (2.3.61)

00,q’

Step 2:
Let (QOE)E eny be the same decomposition of unity as in the proof of Proposition 2.3.15.

Furthermore, let g € [S] B (RE)]/. Then it holds

|(FerFg) ()] = |g(F ep)(x— )|

- - (2.3.62)
< gl (F ep)(x = )| Sy BRI
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(e ek, ) (@ = )| By (R

J

. 1/q
- < S 2 F e Fo [ )@ ) \LARd””q)
!

j=—1
1

< D NN, Fa [(Fa e, (2D = )] [L(RY))|

li=—1

1
=¢ Z 2TjkjH‘Fd—jl(piﬁljwij(_')ew.‘LP(Rdj)H

lj=—1

1
=¢ Z 27k H (fcl_jlgoij+ljg0ij(—~))(xj + ')‘LP<Rdj)H

l=—1

1
=c Z 2Tjkj"fCE1W£j+lj90ij(_‘)|Lp(Rdj)||

l=—1

1
=c Z erijzf(fkﬁl)dj []'—leﬂ(?*lj')@{(—')} (gf(fkj+1).)|Lp(Rdj)||
li=-1

1 1/p
=c Y 2kl ( / L2 WG [F A (278 )l ()] (y)\pdy>
=1 R

1
=c Y 2o DB FoG (27 ) g (=) | L (RY)|

l=—1

1
1 1
— C/ § 27’jk‘j 2l€]‘dj(1—;)cj lj — C// 2T'jkj2]€jdj(l—;) )
lj=—1

For the cases k; = 0 and k; = 1 analogous estimates hold true. With the help of the
crossnorm-property (see equation (1.4.10) and Remark 2.2.4) it follows

[(F R (@ = )| S5, BRY|| < c2" =), (2.3.63)

In particular, the constant c is independent of k and x. Inserting (2.3.63) into (2.3.62)
eventually yields

2—@(?4—3(1—%))||f—1gpg‘/—_-g}Loo<Rd)H <cllgll- (2.3.64)

If we now take the supremum with respect to & € NY, then this together with (2.3.61)
proves the assertion in the case 0 < ¢ < 1.

Step 3: Now let 1 < ¢ < oo. B
Let g € [S;qB(]Rd)]/. We choose points 2 € R?, such that

517 0T gl Lo RY]| < [(F 0T g) (@®)] < | F o g| Lo (R
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Thereby the estimate (2.3.64) shows, that the essential supremum is finite. Now let az
for |k| < n, n € Ny, be arbitrary complex numbers. Then we put

la) = Y ap(Fop) (@F — )2 TG,
[kl<n

Obviously, we have 1) € S(R?). Using the inequality (2.3.63) and similar arguments as in
the second step we further obtain for this function

0185, BER)]"

q
T T D) (-t _ ip(k+D)
=Y 2l Yy 2T g s oppr (e Lp(R?)
EGNéV ZG{*l,O,l}N,
[k+1|<n
o q
o TV (i _ iR
<c Yo 2t Ny o g F o o (—)e Ly(RY)
EENéV ZE{—].,O,].}N,
|k+l|<n
o _ q
<e ). 2( 2 \aw‘q) sup 20+ (47 ()| Lo(RY)
Teny le{-101}V, le{-1,0,1}V
[k+i|<n
=c 2( > \awf)uf—ws S BED)Y
EEN(])\] 26{71,0,1}N7
|k+1|<n
<0 R E( T ol Sl
keNYy le{—1,0,1}V, [kl<n
|k+i|<n

we remind on @' | = 0,7 =1,..., N. This last estimate then yields

Z aE2E.(_F+E(%—1)) (]_——1%7%]_—9) (x@))

[k|<n

Z GEQE.(_?JFE(%—Q)(Q N -7:_180%)@@)

|k|<n

R <clgll (Z w) Uq.

[k|<n

= lg()| < llgll-

Here the constant c is independent of g, n, and the numbers az. Letting n — oo
and (CLE)EeNN € {, this inequality can be re-interpreted in such a way, that the se-

quence (2 (T+dG-1) (.7-" o F g)(x(k )) ., generates a continuous linear functional on
ke,

{,, whose norm can be estimated by c||g|| (we remind on the fact that finite sequences are
dense in ¢,;, ¢ < 00). By the usual (isometric) identification (¢,)" = ¢, we then obtain

| glSea BRY| < 2| (276 (F 1 F) (o)) lgll-

keNY

Together with (2.3.61) this proves the case 1 < ¢ < oc. O
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3 The Peetre maximal operator and local means

This chapter is devoted to the investigation of an essential tool in the treatment of function
spaces of Besov and Triebel-Lizorkin type, that is a characterization of these spaces with
the help of local means. The basis of this discussion is an article of V. S. Rychkov [63]
about a theorem of Bui, Paluszynski and Taibleson, dealing with a characterization of the
isotropic spaces in terms of the Peetre maximal operator. His work in turn was based on
techniques presented in the book of Stromberg and Torchinsky [77]. The case of function
spaces with dominating mixed smoothness as in Definition 1.4.2 was treated by J. Vybral
in his dissertation [94]. Moreover, he extended Rychkov’s method to non-smooth kernels.
Similar results can be found in the work of D. B. Bazarkhanov [3] and H. Triebel [84].

3.1 Preliminaries

Before we introduce the Peetre maximal operator, we present two technical lemmata.
These correspond to Lemma 1 and 2 in [63] and Lemma 1.17 and 1.18 in [94], respectively.

Lemma 3.1.1. Let K € Ny, and let g, h € L;(R") with Fg, Fh € CEFL(R™). Moreover,
let —1 < M < K be a fixed integer, such that

(D*Fg)(0) =0 for all multiindices av € N} with |a| < M . (3.1.1)
Then it holds for every N € Ny with 0 < N < K

sup |(gs * h)(2)|(1 + |2]V) < CN0M*, 0<b<1, (3.1.2)
z€R"™

where g,(t) = b""g(t/b) and

Cy =cn|| Fg|CY T RY| ) > | eDFr|L®RY). (3.1.3)

IBISN+L [y[=(M+1-|8])+

Proof. For every function f € L;(R") we have
177 f | Lo )| < (2m) 2| £ [ Lo (R
From this and further elementary properties of the Fourier transform we obtain

sup [(g % 1)(2)|(1 -+ |=1") < sup [ (g« (|1 + |25
z€R™ z€R™

(2m) 2| F (g  h)(2) (1 + |21 )] | Lo (R |
¢ _max |[D%(g,* h)"][L(RM)]], (3.1.4)

0<|a|<N+1

<
<
and it holds Fg, = (Fg)(b-). Furthermore, the Leibniz-formula gives

ID[G(b R < ¢ Y DD (be)(D*FR)(E)l, €€ R, (3.1.5)

0<B<a
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where |a] < N +1 < K + 1. Since by assumption g € CETY(R") ¢ CM+HR") we can
apply Taylor’s theorem and obtain

(Dﬁﬁ)(bf) = Z M(hg)” + Z w(bg)v
a7 v
_ (D77G)(05) e vy
: |V|=MZ+1—I,3 TR

for some 6 € (0, 1), taking into account (3.1.1). We further conclude

o AL (R [(be)"]
[(DPg)(b¢)] < max || D g|Loo<R>HMA%_jl_w| S 0sIB= M,

for all b € Ry and £ € R™. Hence we have for 0 < [f| < M and £ € R
18| B a—B7 MA1|| = | ~AMA+1 pn a—pB7 |§7|
b7 D R < 8 F [T RO TR > 2
y=M+1-18] "

Incase M < |B] < K+ 1and 0 < b < 1 it holds blfl < bM*+! thus together with
DPg € C(R") we find for every ¢ € R" and all 8 < «

b7\ (DG) (b€)(DPh)(€))

< bM+1H §|C’M+1(R”)|H(Da7ﬁﬁ) ()] Z g , (3.1.6)
= -l

where we put " = 1if 7, = 0 or & = 0. Inserting (3.1.6) into (3.1.5) results in

~ -~ N Da_lgﬁ 5
Do) < e glotean| Y PTIEE
=8

<M gIevH RS (DR
0<|BI<N+1
[v[=(M+1-|8])+

for all ¢ € R". Integrating this estimate over R™, we obtain together with (3.1.4) the
assertion (3.1.2). O

Lemma 3.1.2. Let 0 < p,q < oo and 0 > 0. Moreover, let (QE)EGNgV be a sequence of
non-negative measurable functions on R?, and let
Gy(z) = Z 2_|U_E|‘Sgg(x) , xR TeN).
keNl
Then there is a constant C' = C(p, q, ), such that
| Grlta(Ly)| < C'|l g5 [€o(Ly)]|, and (3.1.7)
H GE ‘Lp(gq)H <C H 9% ‘Lp(gq)H .

Remark 3.1.1. A proof of this lemma can be found in Rychkov’s article [63], pages 6-7.
We merely note, that the “dimension” of the summation domain (in the above version
N) is not connected with the dimension d of the domain of the functions g;.
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3.2 The Peetre maximal operator

In this section we prove an analog of a theorem of Bui, Paluszynski and Taibleson in
a formulation given by Rychkov (Theorem BPT in [63]), an equivalent characterization
of the isotropic Besov and Triebel-Lizorkin spaces with the help of a maximal operator
originally defined by Peetre in [58]. Our result generalizes Theorem 1.23 in [94] as well.

3.2.1 Definition of the maximal operator for non-smooth kernels

By Theorem 2.3.1 the function spaces introduced in Definition 2.2.1 are independent of the
used decomposition of unity. Hence we may fix a special decomposition for the subsequent
considerations. We choose a system as described in Remark 1.2.2; i.e. fori =1,..., N
we choose (real-valued) non-negative functions ¢’ € S(R%), where go'( Y =1 for |{B | < E
and supp ¢’ C {t € R% : |t| < I}. Then we put ¢} = ¢', ¢i(2') = ¢'(z'/2) — ' (z) and

o, (') = pl(27% 2", keN, 2'eR%, i=1,...,N;
or(@) =gy, (@) op (@V), keN), zeR.

Next we want to transfer the definition of the maximal operator in [58] from the isotropic
spaces to our spaces of dominating mixed smoothness. To this purpose we assign to every
system (@/)E)EENN C S(RY), every distribution f € S§'(R?) and every vector @ € RY the
0
following quantities:
F\V

sup ; ; )
vema [T, (1+ |25 (y7 — o))

Since ¥ € S(R?) for every k € N} the product z/)Ef is well-defined for every f € S'(R%),
and by the Paley-Wiener-Schwartz theorem (see e.g. [83], Section 1.2.1, and the references
given there for further details) we conclude that (¢ f)" is an entire analytic function. In

particular, (@/}Ef)v(y) makes sense pointwise.

On the other hand eventually we aspire a characterization of the function spaces with
the help of Daubechies wavelets (see Section 4.3). Since these wavelets do not belong to
S(R?), hence we will consider non-smooth kernels as well. To that purpose we weaken the

definition of the Schwartz space in a rather natural way to obtain the scale of function
spaces X°(R% x - .- x RW) = X¥(R?). These spaces are defined for every S € N)’ by

XS = {v € SSWRY : || v [ xSRI < oo},

1/2
[ ] x5®RY| r=< > IIMD%(@\M(R%\\Q) '

0<@,B<S

That this definition is indeed well-chosen and adapted to our Fourier analytical methods
can be seen from the next lemma.

Lemma 3.2.1. For every S e NY the Fourier transform is an isomorphism from X5 (R¢)
onto itself, where X¥(R9) is interpreted as a subspace of S'(R9).
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Proof. The result follows from well-known facts for the Fourier transform on S’'(R?) and
Ly(RY),

D*(Ff) = Fl(-i6)"1], -
F(Df) = (iz)*Ff, ac NI feS(RY). o
By definition we have ¢ € X5(RY) if, and only if, 2°D*F (Fv) belongs to Ly(RY) for
all @, f < S. It obviously follows 2#~7D*"F (]—"w) € Ly(RY) for all multiindices v with
v<aandy<p.
Now we conclude by the Leibniz-rule D*(2°F [F1])€ Lo(R?), and from (3.2.1) we ob-
tain D*(F[DPFy])€ Ly(R?) and F[z*DP Fip] € Lo(R?). Finally, Plancherel’s equation
yields 2*DP F1p € Ly(R?) for all @, B < S, which in turn means just F1) € Xg(]Ra). The
boundedness of the Fourier transform follows along the same lines. Hence we have shown
Y € X5(RY) = Fip € X5(RY), and since F2f = f(—) and f € X5(RY) «— f(—) €
X §(IRE), this proves the asserted isomorphy. ]

Other facts which will be of importance later on are embeddings for these spaces. From
Theorem 2.1.1, Theorem 2.3.4 and Proposition 2.3.10 we conclude

XS(R?Y) — S§W(RY) = S§H(R?) = S5,F(RY) = S5, B(R?Y) — S5 92B(RY).

(one has to keep in mind S € NYY). Together with Proposition 2.3.7 and Corollary 2.3.2
we obtain for S > K + %l

X°(R?Y) — SE | B(R?) — S¥C(RY), (3.2.2)
Furthermore, on the one hand we obviously have S(R?) € X*(R?) for all S € N}'. On the
other hand, since by Theorem 2.3.3 S(RY) is dense in S;QB (R%), the embeddings yield
that this remains true for the spaces X (R%).

We now put w(z) = [[v,(1 + |2°[>)%/2. Due to w?(z) = > 5<g cpr®? it follows that
Y € X%(RY) if, and only if, wD*) € Ly(R?) for all 0 < @ < S. A simple calculation,
similar to those in the proof of Theorem 2.1.1, shows | D’w(z)| < ¢jw(x), and one obtains
from the Leibniz-rule D*(wi)) € Ly(R?) for all a with @ < S, if only wD?y € Ly(RY) for
all  with 8 < S.

Now let D*(wy)) € Ly(R?) for all o with @ < S. We show inductively, that under this
assumption wD?) belongs to Ly(R?) for all multiindices 3 with 3 < S. At first, we
have by assumption wi) € Lo(R?), which serves as the induction basis. Furthermore, let
B be a multiindex with 3 < S. Then the induction assumption can be formulated as
wDY € Ly(RY) for all 7, such that v < 3 (i.e. v < 3, and for at least one component we
have ~; < ;). Since |Dw(z)| < dw(z) it immediately follows that D*wD71) belongs to
Ly(R%) for every o with @ < S and all admissible y. Moreover, the Leibniz-rule implies

wDMp = DP(wip) = Y ¢,sD°w- DY,

<8

and hence we obtain wD% € Ly(R?).
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Eventually, the statement D*(wy)) € Ly(R?) for all 0 < @ < S can be rewritten as wy
belonging to Sy W (R?). Altogether we have shown

e X3(RY) < wip € SSW(RY). (3.2.3)

Thus the spaces X5(R%) turn out to be Banach spaces (this will be clear by the consider-
ations in the next section as well), and (3.2.3) enables us to characterize their dual spaces.
We obtain together with Proposition 2.3.15

fe (X*RY) = Llfe (SSW(RY) = (S5,B[RY)) = S;5BRY). (3.2.4)
In the style of the situation for &’(R%) we will not use the norm topology for those dual

spaces, but the strong topology. Hence by defining (Ff)(v) = f(Fu) for f € (Xg(RE))/
and ¢ € X5(R?) the Fourier transform becomes an isomorphism from (X 5 (]Rd)) onto
itself. This definition is consistent with the Fourier transform on &'(R?). As mentioned
before, it holds S(R?) ¢ X5(R%), and hence for f € (XE(RE))/ we have f‘S(Rd) € S'(RY).
Moreover, its Fourier transform F ( f } s Rd)) coincides with (Ff) ’ S(RY)"

Finally, we define the convolution of a function ¢ € X 5 (Rd) and a distribution f €
(X5(RT)) by

(f * )y /f —f(y—"). yeRrd

again similar to the situation for S(R?). To include the case of smooth kernels and the
space S(R?) in the subsequent considerations we put X*(R%) = S(R?) for S = oo.

Remark 3.2.1. Incase S > K +1+n the assumptions in Lemma 3.1.1 on the functions
g and h can be replaced by g,h € X¥(R"). Under this condition g and h as well as
Fg and Fh are (K + 1)-times continuously differentiable functions, and the constant Cx
in (3.1.3) can be estimated by cNHg‘XS (R™ H Hh}XS R™) ‘ In particular, the choice
of S and the embedding (3.2.2) imply || ¢ |C K+1 (RM)|| < ¢l g|X*®R")||. Moreover, for
v(z) =[]~ (1 + |a;|) we conclude from the Cauchy—Schwarz inequality

> Yo & DFR| LR

O0<IBISN+L |y|=(M+1-|8])+

< > Yo [0€ DPFR[ L] - o La(RY)

0<IBISN+L |y|=(M+1-|B])+

e Y Y [eeniEnje)

0<IBISN+1 |y|<M+1

</ Z Z |& DPFh|Ly(RM)||

OLIBIEN+L |y|£MA414n
<d ) Yo €D FR| LR < || [ X5 R

0<|BIKK+1+4n |y|<K+1+4n

The above considerations finally justify the following definition.
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Definition 3.2.1. For every system of functions (\IJE)EENN cX §(]RE), every distribution
0

fe (X §(Rg))/ and every vector @ € RY we define the Peetre maximal function by

* (W )W) (W )y — )
U> fz(z) = su ~ ; : = su N ,
W Jald) = S0 T (1 4 iy — o)) oo T, (1 4 (2 )

for every € R? and k € NYY.

3.2.2 Weighted Besov- and Triebel-Lizorkin spaces

Before we turn our attention to properties of the maximal function defined above, we
need a relation between the spaces (X (Rd))/ and the spaces Sy A(RY) for arbitrary
parameters. This will be done in the context of weighted Besov and Triebel-Lizorkin
spaces.

Definition 3.2.2. Let w € C°°(R%) be a non-negative function with the properties
|D"w(z)| < cyw(x) for all v € Nj and z € R?,
a/2
w() < cw(y)(1+ v —y*)*

for some o > 0 and constants ¢, ¢, > 0. In this case we write w € W?. For such weight
functions we define weighted function spaces by

Ly(RY w) = {f :RY — C : f is measurable, || f ‘Lp(Rd,w)H < oo}
as well as
7 AR w) = { f € S®RY + || 1]}, AR W), < o0}

The respective quasi-norms are given by

1/p
|12 B )] = [y 2 | = ( / d\f(w)!pwp(ar)dx> ,
1/q
H f“gqu(REv w)Hw = Z Qk.rqH}—_lSOka}Lp(Rd»w)Hq> )
keNY

Ly (R w)

?

(X e amnor) )

keNY

where ¢ = (@E)EeNéV is a smooth decomposition of unity as in Definition 2.2.1.

Remark 3.2.2. In the isotropic case, there exists a well-developed theory and extensive
literature for weighted function spaces, for smooth weights as above, as well as for non-
smooth weights, e.g. Muckenhoupt weights. We refer to [71], where the case of smooth
weights is treated extensively in the framework of ultradistributions. B

Though most of the treatment in the previous sections for the spaces Sy  A(R?) could be
transfered to weighted spaces with nearly no additional effort this will not be done here.
However, it is clear, that the spaces S;qA(]Rd, w) are quasi-Banach spaces independent of
the decomposition of unity.
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For our further proceedings we need the following lemma. Its counterpart for isotropic
spaces (which holds in far more generality than needed here) is one of the basic assertions
for weighted spaces. We refer to [25, Theorem 4.2.2(ii)] and the references given there.

Lemma 3.2.2. Let w; € W%, i =1,...,N, and 7 € RY. We define another weight
weWiby w=w ®---®wy. Then the operator J : f — wf is an isomorphism from
52B(R?Y w) onto S7,B(R?). In particular, we have

lwf S5 BRY| ~ | £]55.BR, w)].

Proof. Step 1: The proof relies on tensor product arguments for Hilbert spaces (we
remind on Section 1.3.2). At first we observe that the space By,(R%, w;) is a Hilbert
space with respect to the scalar product

o

<f7g>1; = Z22j”<wi};1<p§fdif,wiFJil@;fdig >L2(Rdi)’

J=0

where ' = ()2, € ®(R%), i = 1,...,N. Similarly S3,B(R%w) turns out to be a
Hilbert space with respect to the scalar product

<f , g> = Z 22E'F< w]:d_lg%}"df , w]-"d_lg%}"dg >L2(Rd) 5

keNY

where (@E)EGN(])\I is defined as in (2.2.1). We immediately find for arbitrary f;,g; €
By, (R% w;),i=1,...,N,

N
(e ®fvmo o) =[] {fi o),
=1

Hence we obtain that the tensor product 7 = By,(R™,w1) ® --- @ By (R, wy) is a
closed subspace of Sj ,B(R?, w).

We further note that S(R?) is dense in S7,B (R, w). The proof of this assertion is
completely analogous to the one of Theorem 2.3.3. One has to use a weighted counterpart
of Lemma 2.3.3, which can be found in [71, Theorem 1.7.2].

Now we conclude from Remark 1.3.4 and the density of S(R?) in ST ,B(R? w), that

the mentioned closed subspace is the space SQQB(RE,UJ) itself. Finally, since constant
functions belong to W% this argumentation applies to unweighted spaces as well.

Step 2: We now define linear operators J; : f —— w;f. The aforementioned theorem
in [25] now states that J; : Byy(R%, w;) — By,(R%) is an isomorphism (the respective
inverse is given by the mapping f —— w; ' f, since the assumption w; € W% implies that
weights w; #Z 0 are non-vanishing on R%). The assertion now follows from Lemma 1.3.2
and the observation J = J; ® - - - ® Jy. This identity in turn follows from the uniformness
of the Hilbert space tensor norm, i.e. the uniqueness of the extension from dyads to the
whole tensor product. [l
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We now consider the function w = [T, (1+]27[?)%/2 defined in the last section. Obviously,
we have w € W9 for all S € NY', and it can be written in the product form required
for Lemma 3.2.2. Hence due to that lemma we can reformulate (3.2.3) as X°(R%) =

S5,B(R% w) (this is to be understood in the sense of equivalent norms). Now we can
state the aspired relation between the considered scales of function spaces.

Proposition 3.2.1. LetT € RY and 0 < p,q < oo (p < oo for F-spaces). Then it exists
a vector S € NJ', such that it holds

STARY — (X5(RY))". (3.2.5)

Proof. We start with the case p < 2. At first, because of X°(R?) — SQSiQB(RE) it follows
Syy B(R?) = (ngB(Rg))/ — (Xg(RE))/. Now the asserted embedding follows directly
from the Propositions 2.3.7 and 2.3.10.

In case p > 2 and ¢ > 2 we apply Holder’s inequality twice with s and ¢ defined by
% + % =1 and % + % = 1, respectively. In this way, we obtain for every f € S} B (R9)

| 7125 BRE W)

o 1/2
— (Z 2 2k:S /Rd}.i’-"_lgok]:f(x)‘2w_2(x)dx>

keNYY
B U2 1/q ~ B 1/2s
< (Z ok Tq (/ ‘flwkff(x)|2w2(x)daz) ) (Z 223’“'(TS)>
Ny Re ey

_ a/p q/2t\ V4
krq -1 p —2t
< C<k€ENéV2 (/Rd’]-" (pk].‘f(:p)| dx) (/Rdw (m)dm) )

~ a/p\ V4 _
O P e N R e ]

keNY

The occurring geometric series is convergent, if S > —F. Moreover, we have to fulfil
2tS > d in order to assure the integrability of w—2. Both conditions can be satisfied by
choosing S sufficiently large.

If ¢ < 2, we can replace the first application of Holder’s inequality by the usage the
monotonicity of the f,-quasi-norms. Moreover, we once again choose S > —7. From this
it follows 27% < 287 and the rest of the calculation remains unchanged.

In all these case we have shown S} B(R?) — SQ_gB(Rd, w1, and by (3.2.4) and Lemma

3.2.2 the spaces (X5(R?))" and Sy S B(RY, w™) coincide in the sense of equivalent norms.
Altogether this proves (3.2.5).

The case of F-spaces can be traced back to the B-case with the help of Proposition
2.3.7. O

84



3.2.3 Essential properties of the maximal operator

Let functions 9}, 1 : R% — C, i =1,..., N, be given. We further put

Pty =277, teRY =23, (3.2.6)

zbk(x):ﬂz/)}cl(xz), reRY L eRY x= (..., 2N), ke Ny, (3.2.7)
i=1

U=, keN). (3.2.8)

To likewise given functions ¢}, ¢4, i = 1,..., N, we associate functions ¢, 7 in an analo-

gous way. Moreover, we assume that the functions ¢y and ¢ obtained in this way belong
to X9 (R?) for some S € NY.

Proposition 3.2.2. Let a,7 € RY R € NY, and 0 < p,q < oo, where @ > 0 and
7 < R+ 1. Furthermore, we suppose

DYi(0)=0, a€Nf, |o|<R;, i=1,...,N, (3.2.9)
as well as for every i =1,..., N and some € > 0

|9h(t)] >0 on {t€R% : |t| <e}, (3.2.10)

10t (1)| >0 on {teR% :e/2 < |t| < 2}. (3.2.11)

If S > R is large enough, then it holds

127 (W5 )z [ (Ly) || < e[| 257 (@5 )a o L)) (3.2.12)
|27 (W) |Loll) | < | 257 (@5 F)a |2t (3:2.13)
for all f € (Xg(RE))/.
Proof. Step 1: Formal calculations.
We define functions ()‘;);io’ i=1,...,N, by
N = {¢j<3t/za>/¢j<t>, t e supp (), (32.14)
0, else.

Here the functions goé are the smooth dyadic decompositions of unity on R% fixed at the
beginning of the section. The assumptions (3.2.10) and (3.2.11) ensure, that ¢} is non-
vanishing on supp ¢%(3), hence A} is well-defined. Moreover, the functions A’ have the
following properties:

dX(t)gi(t) =1, teR*, (3.2.15)
j=0

N(t) =X (2777), teR%,jeN, (3.2.16)
supp A, C {t € R% @ |t| <e}, (3.2.17)
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supp X, C {t e R% : 2% < |t| < 2e}, jeN. (3.2.18)

Eventually we define as usual A\g(z) = A (z!)---AY (aV) for every k € N, z =
(zt,...,2) € R% Then we obtain from (3.2.15)

> M@)gglr) =1, zeR’

keNY

Besides, we put Az = XE, k € NIY. This leads us to the following identities:

f=0@m" > ApxOpxf, (3.2.19)
keNl
Uy f=(2m)" Y Ups ApxPpx f, 7eN. (3.2.20)
keNY

The problems concerning convergence connected with these equations will be discussed
in the second step. For the moment, we further obtain

B Sreny | (W A« B %))
27 (W5 alw) < 5;1]15 HiNzl(l 4 |2vi (21 — yi)|ai)
|(V5 * Az O = [)(y)]

< sup — . (3.2.21)
Zvere T (L 2 (e — )
Moreover, it holds
(W7 x A 2 )< | 10 AR )] 1(@ )y = 2)ldz
N
< (5 )aly) /Rd (W A () [ [ (1 + 27271 d=
i=1
N
= (q)%f)a(y)]vﬁ = ((I)%f)a(y) H Izz/iki ) (3.2.22)
i=1
where
L= [ 100, A)E 1+ 24
R
From Lemma 3.1.1 (taking into account Remark 3.2.1) it follows
; 2(’%—%)(31‘4-1)7 if k; <u,
L, <cC {g(w—kixamm) Chaa (3.2.23)

This can be shown in complete analogy to [63], page 5, where S; is to be chosen large
enough, such that Lemma 3.1.1 is applicable with N > a; + d; + 1 and M > 2a; + |r;| or
M = R;, respectively. Furthermore, it holds

N

(@51)aly) < e (@3f)ale) [[(1+ 2% (" —y)

i=1

ai)
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“) max(1, 2(’“*’”)‘”) .

N
() [T+ 2 (" = o)
i=1

Inserting this into (3.2.22) and using (3.2.23) we obtain

(U5 % Ag * P f)(y)] < sup (®7.f)aly) Hi\;l L,
yeRd [T, (1 |27 (2 — yi)|™) ~ yere [T, (1+ \2’”(iﬁi —y')

ai)

< sup (Prf It max(1, 2ki—vai)
yER4 H ik
N
= (®%f)a Hllik max(1, 2(ki—viai)
i=1

N i—vi) (R i
* oki—vi)(Ritl) = if | <y,
S (q)Ef)E(x) H {2(Vlkz)(|”|+1) s lf k:z Z Vi .

i=1
Together with (3.2.21) and
d=min{l,R;+1—r;i=1,...,N} >0

this last estimate results in

2??(‘1’;]”)5(56) <c Z H 2(1{:1‘71/1‘)(Ri+171”i)2(’61'*1/1')7“1‘21/1‘7"2'

FeNY ihi<v;
ik >v;
Z H 2(kl vi)(Ri+1—r; 2k ri H 2 vi— 12k ri
kGNN ik <vy; ik >v;
<o Y (@if)ala) T 2 Mook T 2-Mewiloobn
EENé\f itk <v; itk >v;
=c Z 2-@—?\52%.?(@%]@)&(%)’ = Né\f’ = Rd )
keNYY

The asserted inequalities now follow directly with the help of Lemma 3.1.2.

Step 2: Concerning the identities (3.2.19) and (3.2.20).

At first we deal with the fact, that the expression Ay * @ x f is a well-defined function
for every k € NJ)'. We already have seen, that for the application of Lemma 3.1.1 we
have to ensure S > R+ 1+ d. Hence it follows from (3.2.2) that ¢z € X°(R?) is a
continuous function. This yields that the functions A; are measurable, bounded and

compactly supported. From this we conclude A\ € L;(R?) N Ly(RY). Thus Az = /)‘\E is
well-defined and continuous (it is even analytic). Moreover, it follows Az € Ly(RY), and
since @z € X¥(R?) — Ly(R?) we obtain from the Cauchy-Schwarz inequality that Az ®z
is a well-defined integrable function. Due to the choice of X! it holds Ay = ¢z(2), and

consequently \z¢r € S(R?) ¢ X¥(R?). This finally implies
Ag x O = (2m) "2 (M\pop) € XT(RY).
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Similar arguments apply to Wy * Az * Or. -
Next we consider the convergence of the series in (3.2.20) in (X* (]Rd)), for every f €
(x° (]Rd)), and every 7 € NJ. Due to the choice of the strong topology and since the

Fourier transform is an isomorphism from (Xg(RE))/ onto itself it is sufficient to show,
that

D g — Yo, (M —o0), TeENY,

[kl <M

in X5(RY) for every € X5(R%), compare with the corresponding arguments for S'(R%).
Hence we have to prove

an5< > Urdgopn— w)

[kl <M

Ly(RY|| — 0

for all multiindices o and 3, where 0 < @, 8 < S. For this we recall the fact, that for every
g € Ly(RY) we have gXo. — g and gXg\q, . — 0'in Lo(R?) for min;—;_nk; — oo,
k € NY, and Q; = {:)3 € RY: |2 < 2F i = 1,...,N}. In both cases this follows
immediately from Lebesgue’s dominated convergence theorem. Since 5 and Yz ¢y are
continuous and bounded, see (3.2.2), we find that ¥y \z¢ru and yu belong to Ly(R?)
for all 7,k € NJ'. But now the asserted convergence follows immediately from (3.2.15),
(3.2.17), (3.2.18), and the above mentioned fact. The convergence of the series in (3.2.19)
follows similarly.

Finally, for the step from (3.2.20) to (3.2.21) we need that

(W < Y (Tpx Apx Spx f)(y)] < o0 (3.2.24)

keNy

holds for all 7 € N’ and almost every y € RY, i.e. we need the pointwise convergence of
the series. For this fix 7 € N}y and put fz(y) := (¥ * A * ®z* f)(y). Then it follows
from (3.2.22)

e < (P5f). (W5 . yeR

From (3.2.23), the monotonicity of the £,-quasi-norms for ¢ < 1 or Holder’s inequality for
q > 1 we obtain

> el Lo®]| < e [[257 (@3 )| ea L]l

keNY

where ¢ may depend on 7. Hence, if the right hand side of (3.2.12) is finite, the series
deNév | fz| converges in L,(R?).

As a series of non-negative functions it converges also pointwise almost everywhere. In
those points, the series can be interpreted as an absolute convergent series of complex
numbers, which implies that ZEGN%V /7 converges pointwise almost everywhere. Together

with the convergence of this series in (Xg(RE))I it follows (3.2.24). Whereas if the right
hand side of (3.2.13) is finite then we use

127 (@ f) ol st (L) < (1257 (@) | L 80)]]-
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This follows for p > ¢ from the monotonicity of the ¢,-quasi-norm, and for p < ¢ it is
a consequence of Minkowski’s inequality (Theorem 2.3.2). With the help of the same
arguments of before we obtain again (3.2.24). O

Remark 3.2.3. The conditions (3.2.9) are usually called moment conditions, while
(3.2.10) and (3.2.11) are referred to as Tauberian conditions.

Proposition 3.2.3. Let a,7 € RY and 0 < p, ¢ < co. Further, let

o)) >0 on {teRY : |t <e}, (3.2.25)
i) >0 on {teR%:e/2<|t| <2} (3.2.26)
for every ¢ = 1,..., N for some ¢ > 0.

(i) If @ > d/p, and S is large enough, then it holds
| 257 (U2 f)a [6(Ly) || < || 25705 = £ 6,(Ly)| (3.2.27)
for all f € (XS-4-1@D/2A-T(RY))",
(ii) If @ > d/ min(p, q), p < 0o, and S is large enough, then it holds
| 257 (T2 ) [ Lo (L) || < || 25705 = £ L, (4) | (3.2.28)
for all f € (X5-4-1@+D/A-I(RA))",
Proof. Step 1: In analogy to (3.2.14) we once again define functions {)\;};‘;0, i =
1,...,N, 5 €Ny, by

Nj(t) = @5(3t/2¢) [5(t)-
These functions possess the properties (3.2.16)—(3.2.18) as well, and it holds

i Ntit)y=1, teR™. (3.2.29)
j=0

Instead of (3.2.19) we now obtain the identity

F=0m)" > ApxUpxf. (3.2.30)

keNYY
We now put
N o) = FINE TN A (6) = A(26), EmeNy .

In the same way Wz is to be understood. Here and in subsequent considerations we will

use the abbreviated notation 27¢ = (2"1¢1,...,2"¥¢N). Obviously we have for & > 1 and
arbitrary 7 € N} always Uz 5 = Yz,p- To simplify notation we put

wE(Q_Px)¢7 = UE7;($)¢E+;($) ) E,? € Név'
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We find at once by the tensor product structure of the functions 1

N . .
_ _ i i i i (@), if k; > 0,
@) =[]eotn @), oh, ) = {%( 27vigh), ifk; =0.

=1

With the help of a dilatation ¢ — 27"t in (3.2.29) we can rewrite (3.2.30) as follows:

Uy f = 2m) PF [y F 1 f] = (2m) P F [ D A2 F S

keNYY
2m) ™2 F @ (27 ) F ]
keNYY
= (2m)"2(2m) S F [Mp(277)] ¢ F [wr(277 )] * f
keNYY
(2m)%/? Z Ao * F [0750040) * |
keN)y
= 2m)P@m)*? Y Ny * Oy Vpypx [, TEN. (3.2.31)
keNYY

The issues concerning convergence, which occur in the above equations, can be treated as
in the second step of the proof of Proposition 3.2.2. We now discuss the case k; > 0 and
v; > 0 first. It holds

([N, (2779)] " % 53,0 (D)

= (N W) (1)) = 27 (A, (27 5 G, (27 (2520

= 2 (2] 5 2 (2] (2
= (NN ] (2)]7) (272 = 2727 % (A}, = Wi(5))(2"2")]
diopd, 27N
< ) —d;H)Via; .
< COpn,27%2 T DREIR

In the last line we used Lemma 3.1.1 with K = S;—d;,—1, M+1 =N = N;, b =27k ¢g=
A{ and h = W{(5). Due to its construction the function Fg = \{(—-) satisfies arbitrarily
many moment conditions (see (3.2.18)). Because of the tensor product structure we
further obtain
o Q—E-N
(A * 0rp) (2)] < OF2” : (3.2.32)
. UL (0

for every N < S —d—1, at first for k,7 € NV. In all the other cases one gets an estimate
similar to (3.2.32) with the help of analog arguments. Together with (3.2.31) we further
obtain

(T % ()] < Z/ (Mg # 35 — 2)] - |(Te o # £)(2)| d2

< Cx27d Z/ H2 il S0 dz . (3.2.33)

EGNN 7 1 1+ |2yl( _Zi)|Ni)
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Step 2: We define another maximal function by putting

TR Ur, %
M, 5 (z) := sup sup 27" — (Vhio f)(y)\
’ keNy yer [Tio (L + 27 (y’ — %)

)

Now we fix an arbitrary s € (0,1]. We replace 7 by 7 + [ in (3.2.33) and apply the
following inequalities:

(14 [24(y — =) M) > el (14 |24 — 2N, (3.2.34)

z) —S

12 =)

(P x )(2)] < [(Vppp = (= \H1+|2”’ )

’(qjﬁ-w*f)( )| .
Ni)l—s

sup - -
yera [ (1+ |24 (2t — y)

In this way we obtain

27| (Tyg + F)(w)]

—k-N _ ~
< Cy Z oI No@+)-d ]3 |(\I’k+v+l * f)(z)\ dz
e T (1 200 (g — 29))

keNl

_ CWZ o(F+)-d 27N | (Wi % f)(2))]
re T (14 20 (yi — 27)

N.
m>1 2)

—m-N
<Cy Y 20 27 | Wmip + f)(-Z)JV
meNY re [[m (1427 (yt — 2%) ™)
—m-N N Vi (0 i
< Cy Z 2(V+m)~d/ 2 N|( mtw * [)(2)]° Hizl(‘1+|'2 (" —2")
meNY R? H ( + |2vi(yt — 21)| M)
Viniw 1=s
+ sup — e D)
seso TI (L |20 (0t — ) %)
Z o(F+7m)- d/ 2N (Ui ) (2))° T, (1 + 2% (2 — ) |™)
Yy [T (1 (27 (@ — =)Moy
N(1—s) sup |(\Dm+u * f)( )Ilis
sess TIL (1 + 2% (at — )P

Ni>175

x 27

Dividing by [T~ (1 + [2” (2 — y*)|™) and taking the supremum over y € R and I € N},

we can further estimate
1—s
U+m)-d 2 Uimiw
@g%Z%M»GmN K+*M%>
mENY yere [Ty (1 + |2 (" — y) V)

27N (Wi # f)(2)°
ra [[L (14 |27 (a7 = 27)

dz
7,)5
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_ —m-Ns _ s
<O Y 2 (x)' 2N |(\I]”?+”.* ! )@'_ dz.  (3.2.35)
re [Timy (14 |27 (2f — 27)[Ne)s

meNY

In order to be allowed to divide by M, x(x)'~* we need to show, that this maximal
function is finite.

Step 3: We now assume f € (X T(RE))/, where T < S, and at first we have a closer look
on the convolution. We find for 7 > 1
(5 F)(@)| = [F((Waly = D] < LA IKTRY) - [ Foool = - +) | X R
=[] (XT D N2 Fer (2 = ) [XTRY])
For the last factor we further obtain
[l DA [Fr(27 (@ = )] | Lo (R) |
= 2708 2(DP Fopp) (27 (2 — y)) | Lo (RY) |
_ 2(54)-52(755)-8/2” (27552 + y)aDﬁ}"wﬂLg(]Rd) H
< Cz(vq).%(ﬁﬂ)-an Z HQ(JHWZVZ/QM’DB}—IDT‘Lz(Rd) H

<«
= 27 DTN 7 |y | 2TDT || DO Fg| L(RY |
<a
= 7 - ) N . . o _
< 20 DR T | o | X
'y<0¢ =1

< 2(1/ 1)52( U+1) d/2

I Fer XTRD

where o and /3 are multiindices with @, 8 < T. Combining these two estimates we end up
with

(U5 5 f)(2)| < 27T £ [(XTRY)| - || For | X7 (RY) IIHIy "

We further find

(Ve * [ )] e 2 THd2)
sup N . ; S f ol ;
yerd [ ;2 (L4 |27 (y? — 27)|™7) yeR? G (14 [27(y' — )

Ni)’

which is finite if, and only if, N > T. Moreover, the maximal function M, x(z) turns out

to be finite if, and only if, N > T +d/2. Though the constant does depend on f, the
condition on N does not, and this is sufficient at this point. Altogether we find

R 92— k-Ns /- s
M, y(2)" < C Y 274 Wiy f )(,y)]lv dy (3.2.36)
EeNy re TI (1 + |27 (2 — y?)|No)s
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for all N > T 4 d/2. Keeping in mind the condition N < .S —d — T from the beginning,
this leads to the restriction 7+ d/2 < S —d — T and hence f € (XS 4-(H+D/2A-T(R?))",
If now we apply (3.2.36) for N = max(N, T + d/2), then we further get

2~k N8|(\I/E+v * f) (y)l\j dy |
z)s

(U5 = f)(@)|” < O > 270
Rd

. (3.2.37)
= 15,1+ 24 (2 — )

and it follows that we can drop the lower condition on N. This follows from the observa-
tion, that the right hand side of (3.2.36) increases if the components of N decrease.

Moreover, we shall mention that (3.2.36) has a counterpart also in case s > 1, and indeed
with a much more direct proof. To see this we consider (3.2.33) with N 4 d instead of
N, divide by Hi]il(l + [2¥i (2% — ") |Mi), and apply Holder’s inequality, first for series and
afterwards for integrals, both times with respect to % + ﬁ = 1. In this way we obtain for

all N € NY

‘(\If s )z <CNZ/ H2V dyk | U * f)(z )|

dz
kGNN 1 _'_ ‘21}2 (xl - Zl) )

. N 1/s
21/-d527k-Ns U _ s
oy 2 (W s NN,
e [Ti2, (14 [2v(a7 — 2)[N0)s

keNYY

1/s
dz
X N Vi (At 2\ |d;\s’
me [ (1 + ]2 (zi — 2)|%)
- . s 1/s
i ( 22N (T N ) —
- YN v, 7 i\|N;\s o
keNYy Re Hi:l(l + [2vi (2t — 27)| i)
R Nso—Fdokd| s\
SCIN 2 27F 2N (W, * f)(2)] ds or-d/s
Ty \/R I (14 [2vi(a — 20)| Mo
5\

_ — = 1/5 1/5’
—k-Nso(k+v)-d _ s —

e TEL (4 P =)
1/s
(Z / 92— stZ(k—l—u d|(\PE+§ ) Z)|5d > /
z .
Teny VR [T (1 4 |27 (i — 20)[No)s

Step 4: First we remark, that (3.2.37) can immediately be strengthened by dividing by
Hij\il(l + [2%(2" — 2")|*), taking the supremum over x € R? and using the inequality
(3.2.34). We obtain for alla < N

| /\

27N (U ) (Y))°
v T O ) 2w - dy,, 3.2.38
‘( f) k%\] Rd Hi:1(1 + |2V1($7, _ yz) ai)s Y ( )

after renaming z — x. Now we choose some s > 0, such that d;/a; < s < p (or
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d;/a; < s < min(p, q) for F-spaces, respectively) for every i = 1,..., N. Then it holds
1

TTis, (1 + |27]e)e

and from Lemma 2.3.1 for the Hardy-Littlewood maximal operator M we obtain

(Wi f)ala)” < ey 3 2N MWy + 1) (@), (3.2:39)

keNyY

€ L(RY),

We now choose N > 0, such that N > —7. This is possible, if we ensure S to be large
enough, in particular S d—T1+7>0. Then we put

gz() = 25T M (| % f°) (2) .
Now it follows from (3.2.39)

Gy(z) = 27" (V5f )a(z)®

S Cﬁ V?s Z 2—k~LsM(|\I}E+§ % f|s)(l’> = cy Z 2?~Fs2—k~L52—(k+§)~?ng+§(x)
keNY keNYY
:CNZQIC —7— L)gk+y C*ZQSRV —L-7) ()
keNYY k>v

We choose some 9§, such that 0 < 6 < min{N; +r; : ¢ = 1,...,N}. Then it follows
(k —7)(=N —7) < —|k —p|§ for k > 7, and hence we obtain

v) <ey » 2 g r) <ep D 27 E g (a)

k>v keNl

An application of Lemma 3.1.2 for the ¢,/,(L,/s)-norms now results in

1257 (U2 F)a(2)] [ays(Lys) || < € ||257 M (195 % £1) ()| Cas(Lys) ||+ (3.2.40)
and for the L,/({,/s)-norms we find correspondingly
12575 (U F)a(@)] | Lo (Lays) || < || 28T M| W5 % £1°) ()] Ly (Cays) || - (3.2.41)

From these two estimates we obtain the assertion by standard arguments. In particular,
in the first case we rewrite the left hand side of (3.2.40), and use the classical Hardy-
Littlewood maximal inequality (see (2.3.1)) we remind on s < p). In this way we find

1257 (W2 (@) [6a(Ly) || < |28 (T % £)(2)] (L)) -

In the second case we rewrite the left hand side of (3.2.41) accordingly, and apply Propo-
sition 2.3.1 (here we remind on s < min(p, q)) to finally obtain

1257 (W5 Fa() [ Ly(Ca)]] < e [[2°7 (T + ) ()| Ly (L)

which completes the proof. O]
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Remark 3.2.4. Steps 2 and 3 differ essentially from the proofs in [63] and [94], since
both had a gap in their argumentation. Concerning the finiteness of the maximal function
they only referred to the order of the given distribution f. Though this referral is not
altogether wrong, the argument is far from being complete. This can be easily seen using
(ind=1) ¥y =¥, =e* e S(R) and the tempered distributions [t|* € S'(R), where
n > a. Then (V|t]"),(x) = oo for all x € R.

However, this oversight can be corrected using arguments as above. Though the case
S = oo is different from the case S < oo, we won't repeat the arguments. The crucial
estimates were presented in the proof, and for the arguments leading to the finiteness of
the maximal function we refer to [64] and [92]. While their setting is slightly different,
the arguments remain identical.

3.3 Local means

The following theorem is a direct consequence of the last two propositions. The charac-
terization of the Besov- and Triebel-Lizorkin spaces (in terms of the maximal operator
of Peetre) contained therein is the main result of this section. Thereafter we will discuss
reformulations of this theorem and state some corollaries.

Theorem 3.3.1. Let 0 < p,q <oo,7,a € RV, and R, S € NY, where 7 < R+ 1.

(i) Moreover, we assume @ > d/p. If S > R is large enough and

Di(0) =0, aeN&,

o <R;, i=1,...,N, (3.3.1)
and if additionally

[Yo(t)] >0 on {teR% : |t| <e},
[Wi(t)] >0 on {teR%:e/2<|t| <2}

is satisfied for some ¢ > 0, then it holds
1715, BED]| ~ | 27 (W )a (L) | ~ || 257 (g = ) 64(L,)] (3.3.4)
for all f € (XS-d-1@+D/2A-T(RI)),

(ii) Now we suppose p < oo and @ > d/ min(p,q). If S > R is large enough, and if the
conditions (3.3.1)—(3.3.3) are satisfied, then it holds

| £155, FE |~ | 270 ) Ly 0) ] ~ | 27 ) |6 39

for all f € (X5-4-1@D/2A-T(RY))",

Proof. We restrict ourselves to the B-case, the argumentation for F-spaces is identical.
The decomposition of unity ¢ = (QOE)EGNN fixed at the beginning of the section fulfills
0

arbitrarily many moment conditions due to its construction. On the other hand, we
cannot satisfy the Tauberian conditions with this system. Hence we consider another
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decomposition of the same type, where we require from the basic function @} € S(R%),
that

Go(t)=1 on {teR% : |t| <3},
0<@h(t)<1l on{teR%:3 <t <3},
supp gy C {t e R% : |t] < 3}

holds for ¢ = 1,..., N. Then we find that @j(—-) and @i(—-), ¢ = 1,..., N, satisfy the
Tauberian conditions for ¢ = 3.

The right hand side equivalence in (3.3.4) follows immediately from Proposition 3.2.3 and
the definition of the maximal function. For the left hand part we first apply Proposition
3.2.2 for ¢% = @i(—-), i.e. ®h = Fcfil@;, and obtain

1277 (Vo) el oL < e |27 (F 1) gl al L)

Now Proposition 3.2.3, used with ¢} = @ (—), yields

1277 (F ) alla(Lo) || < |27 F 8o = flE(Ly) | i
= c(2m) P2 F B F A L)l = ¢ || 155, BRI

On the other hand, by the definition of the maximal function and once more Proposition

o~ o~

3.2.2, this time applied with ¢! = @(—-) and ¢% = %, we have

1277 F G flla(Lp) || < (1277 (F G F)al ol L) || < |27 (W51 gl a(Lo) |-
This proves the assertion. [l

Remark 3.3.1. If we interpret the convolution appropriately,

(s 1)) = [ Wolo)fle = )y = () (o),
R

then the last theorem can be seen as a characterization of Besov and Triebel-Lizorkin

spaces with the help of local means, the above assumptions correspond to conditions of

the Fourier transform of the kernels. On this formulation of Theorem 3.3.1 the subsequent

decomposition theorems in Chapter 4 are based.

The rest of this section deals with the construction of suitable kernels of local means. This
will be done in two different ways. At first, we derive from Theorem 3.3.1 a statement on
a type of local means, which were considered before, e.g. in [84]. Later on, we follow up
with a second construction based on [85], Section 12.8.

Theorem 3.3.2. Let 0 < p,q < oo (p < oo for F-spaces) and 7 € RY. Furthermore, let
31,52 € N, where S5~ %3+T. Moreover, let M, R € N} vectors of non-negative
integers, where 2M > R > 7. Let k,... k', k', ... kN complex-valued functions, where
kb k' e X5 (R%) and supp ki, supp k' C {t € R% : |t| < 1}, which additionally satisfy

(Fak)(0) #0,  (Fuk)(0)#0, i=1,...,N. (3.3.6)
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We define for 2 = (2f,...,2%) and A; = 3%

J=1 81‘12
k(1) =2 (AMiEY(2m), i=1,...,N, meN, teR%.

As usual we denote by kp(x) = ki (a')--- k) (), 7 = (11,...,vn) € N, the tensor
product of these functions. The corresponding local means are defined by

Ef) () = /R Rty TENY z R, (3.3.7)

appropriately interpreted for arbitrary f € (Xgl(Rg))’ LIS s large enough, then it
holds

127 ko) [ Lo ()] ~ || £S5 F (BT

fe (X5 (RY), (3.3.8)
and

1277k (F) | 6a(Lo)]| ~ || £|ST,BRD|, fe (X5 (RY) (3.3.9)

Proof. We put fori=1,..., N
Vo =Fytky and gy = (FHAKD) (5) = 24 F  [(AFR) (2]

If S} > d;/2 then Fyk{ is a continuous function due to (3.2.2), and the condition (3.3.2)
follows from (3.3.6). The condition (3.3.3) can be obtained from

Wi = |7 AR @/2)] = (1t/2P) " [ (Fi k) ¢/2)]

The first factor is strictly positive outside of the origin, the second one is non-vanishing
in a (small) neighbourhood of t = 0 due to continuity. Hence the Tauberian conditions
are fulfilled for sufficiently small ¢ > 0. Finally, the moment condition (3.3.1) for o € N&,
la| < R;, follows from

Do3(0) = D° | FH (AN | (0) = D (—[¢2) ™ 751k (0)
= (=) 3 ca g DOt D270 | Fy ] 0).
BLa

On the one hand we have |3| < |a| < R;, on the other hand |¢t|*™ is a linear combination
of monomials of total degree 2M; > R;. Their derivatives are monomials of total degree
2M; — |B| > 0, hence all derivatives D?[[¢|**:] vanish for ¢ = 0.

If we now define ¢, 7 € NI, as in (3.2.6)—(3.2.8), we obtain

) ) ) = [ (F @iy = [ (Fow) iy

= /Rd (H(fdﬂvbzi/i)(yi)) flz+y)dy. (3.3.10)

=1
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Moreover, for v; = 0 we re-obtain (Fg1})(y") = ki(y"), and for v; > 1 we get

T

(Fath)(5) = (Fa g2 ) () = 20505 (Fy ) (27 1y)
= 2 (AN (2 = K (y').
1

Inserting this calculation into (3.3.10) results in

(o) () = (21)"2 / b)) f(@+y)dy, TENY xR,
Rd
The assertion of the theorem now follows immediately from Theorem 3.3.1. O

Before we proceed to other version of Theorem 3.3.1 we introduce some notation first
which will be of importance in the sequel. For 7 € N)Y and m € Z¢, m = (m!,...,m")
m; € 2%, we denote by @y, the rectangle with centre in 277m = (27"'m!, ..., 27" m™),
sides parallel to the coordinate axes and with side lengths 27, ... 27"V, Explicitly, this

means

Q m:{xERd et =27l <270 i=1,... N}, veNY mez?.

Y

An important observation about these rectangles is the fact that they can be written as
products of lower-dimensional cubes,

Qun = Qb X x QN x) QL o={teRY : [t—27"m|, <27 '}, (3.3.11)

Moreover, for ¥ > 0 we denote by 7@z, the rectangle concentric with )5, with side
lengths 11271, ..., yn27"~ and sides parallel to the coordinate axes. Finally, the notion
YQz.m refers to the case ¥ = 1, v > 0.

From the chosen definition of the Peetre maximal function we now conclude

: (T % £)(y)
D) = S T+ e — )
> sup (T % f)(y))] > sup (T % £)(y)]

T—yEYQw,0 Hl 1(1 + ’2”1 (l” - ) al) T—YE€YQv,0 Hfil(l + (%%\/d_l)a’)
=c(@7,d) sup  [(Upx f)(y)] > c(Tp* f)(2)]

T—yETQw,0

with some constant ¢ independent of z and 7. Thereby we used the observation x —y €
FQro = |2' — y'loo < 727!, and hence [2% (2" — y*)| < 1v;4/d;. This simple obser-
vation together with the Theorems 3.3.1 and 3.3.2 now yields the following proposition.

Proposition 3.3.1. Let 7 € RY and 0 < p,q < oo (p < oo for F-spaces). Furthermore,

let M, R € NY, where 2M > R > 7,, and let ?1,52 € N}¥ and k; be as in Theorem 3.3.2.
Then it holds for every v > 0

o 1/q _ -
< Z 277 sup |k;y(f)(y)|q> Lp(Rd ~ H f |S;"1F(Rd>H
" T—y€YQw,0
and
g\ V4 3
(Z 277 sup |kﬁ(f)<y)‘ LP(Rd) > ~ H f ’S;qB(Rd)‘ ’
PNy z—y€YQp,0

—92 =N/

respectively, for every f € (X% (R?))".
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Remark 3.3.2. If we keep in mind Remark 3.3.1, then this proposition holds true ac-
cordingly also for kernels which are not generated as in Theorem 3.3.2, but still satisfy
all the assumptions as in Theorem 3.3.1. In the sequel, we will not distinguish between
those two variants.

Theorem 3.3.3. Let 7 € RY and 0 < p,q < oo (p < oo for F-spaces). Moreover, let
M, R € N} be as in Theorem 3.3.2. Then it holds:

(i) There exist functions k, ... kY, k', ... kN, such that ki, k' € S(R%) and

supp k', supp kj C {t cR% : |t < 1}; (3.3.12)
(Fako)(0) = ¢ # 0; (3.3.13)
¢ = (Faki)(€) + 3 (Fak)(27€) (3.3.14)
(Fa, k") (€) = (Fako)(€) — (Fauko)(26) ; (3.3.15)
D*(Fi k") (0)=0, 0<a<R, (3.3.16)

each time for all £ € R% and i = 1,..., N, where ¢; # 0 may be given arbitrarily.

(ii) With the help of the functions k¢,..., k", kt,... kY we define functions k; for
7 € N}¥ as in Theorem 3.3.2. Then it holds for every v > 0

H(Z?"”"" sup \k,,<f><y>|q>l/q

r—yevv,
PENE’)\’ ) 'YQV,O

Ly | ~ || £155,,F (R

and, respectively,

veNy

sup ko (f)(y)] | Lp(R)

z—y€YQw,0

q 1/q B
) < 17185, BED).

Proof. Step 1: Construction of the kernels.

Obviously it suffices to present the construction for one pair ki, k' € S(R%), hence we
will drop the index i and consider the situation for R".

We start with a function kg € S(R™) with supprg C {t € R" : |t| < 1/2} and F,k0(0) =
¢ # 0. In particular, it follows that F, k¢ is an entire analytic function. Let

(Fuko)(§) =c+ > cal®, EER",

o >1

be its Taylor expansion. The construction will now be given iteratively. In each step we
will obtain functions, which are supported in {t € R™ : |t| < 1/2}. Hence, the sequence
of the Fourier transformed functions will be a sequence of entire analytic functions. Now
let k,, be the function we obtained after m steps, and let

(Fn/ﬁm>(€) =c+ Z Cglgav 5 S ]Rna

|a| >m+1
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be the Taylor expansion of the corresponding Fourier transformed function. Now there
exist real numbers \; and Ay, such that

M+X=1, M +27" N =0.

One easily verifies, that the coefficient matrix is invertible for every m € Ny. Then we
put

Km+1(2) = MEm(x) + X2 K (22) ,

thus we have supp k11 C supp k,, C suppkg C {t € R" : |t| < 1/2}. Consequently,
Fnkma1 is an entire analytic function as well. Indeed in its Taylor expansion all terms ¢
with 1 < |a] < m + 1 are vanishing. This follows directly from the choice of A\; and ..
We find

(Fakime1)(€) = A (Fakim) (€) + A2 (2" Fkim(2)) (€) = M (Fkim) (€) + Ao (Fukim ) (§/2)

:/\1<c+ 3 cg”ﬁa)Jr)\z(ch ) c$<5/2>a)

|a|>m+1 |a| >m—+1

=M+ X)et D> a2+ YT ar(a +2g) ¢
—— N ~ “

=1 |a|=m+1 =A14+2-m—=1)=0 || 2m+2 =: ol

=c+ Z cmttee

|ae|>m+-2

By this procedure we obtain a sequence of functions (/{m):j

_, n such a way that ¢’ =0
holds for all 1 < |a| < m, and hence

K™(x) = km(x) — 27"k (z/2), x€R"™,
has the property

(Fur™)(€) = (Fukim)(§) = (Furim)(26) = o(|E]™), £ € R". (3.3.17)

Hence ko = kopr and k = w*M satisfy the desired properties. The equation (3.3.17)

corresponds to (3.3.15), and the vanishing of the derivatives follows from this definition
as well, more precisely from the absence of according terms in the Taylor expansion.
Property (3.3.15) yields, that the series in (3.3.14) is a telescoping sum. Since from
(3.3.15) or (3.3.17), respectively, we conclude F,k(0) = 0, the pointwise convergence of
the series follows from the continuity of F,,k, and hence we obtain (3.3.14).

Step 2: Regarding the norm equivalences.

Similar to the proof of Theorem 3.3.2 these equivalences will be traced back to Theorem
3.3.1 by putting ¢} = Fli_ilk’é and ¥ = fd_ilki. Due to their construction in Step 1
these functions satisfy the conditions (3.3.1) and (3.3.2). Though by (3.3.15) we have
(Fa,k")(0) = 0, since this function is an analytic one different from the nullfunction there
is a neighbourhood of the origin containing no further zero. Hence we can always fulfil
condition (3.3.3) as well. O
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One last modification of Theorem 3.3.2 is rather technical. It refers to “directional” local
means. By this we mean means of the form (N = 2,d; = dy = 1)

/ kil (1) f (21 + 1, 22)dy -
R

To introduce the local means in general dimensions, we define for every index set [ =
{iy,...,iry Cc{l,..., N}, 1 <iy <---<ip <N, L=|I|, mappings

o7 R%1 x oo x Rbie —5 R% x ... x RIV or(z™, ..., 2") = (y', ..., y").

Thereby we put ¢/ = 0, if j € I, and ¢/ = 2%, if j = 4; € I. Then we define the directional
local means by

ko (f)(x) = /R B (H K, (yﬁ)) flx+or(y™,... ") (H dyij> . (3.3.18)

1
L \jer jeI

This means, we restrict the integration in (3.3.7) to the variables g, for which we have
1 € I, in all the other directions the function remains unchanged.

With the help of this notation we can present the announced modification of Theorem
3.3.2.

Lemma 3.3.1. Let 0 < p,q < o (p < oo for F-spaces), I C {i,..., N}, and v > 0.
Furthermore, let 7 € R? such that for i ¢ I we have 7; > d;/p in the B-case and
r; > d;/ min(p,q) in the F-case. Moreover, let M;, R; € Ny and k!, € S(R%) be as in
Theorem 3.3.2 or Theorem 3.3.3 for every i € I. Finally, let ky;(f) be defined as in
(3.3.18). Then it holds

H( > 27T sup !kyJ(f)(y)\q)l/q

r—yeyo
7eNY YEYQw,0
v;=0,1¢1

Ly(RY)|| < || £S5, FRY|

for every f € S} F(RY), and

(=

veNY
v; :O,IQI

277 sup ks (f)(v)]

T—y€YQw,0

1/q
LAR“(V) < || £S5, BED)|

for every f € S; B (RY).

Remark 3.3.3. The proof follows along the lines of the one of Theorem 3.3.1 (or Propo-
sition 3.3.1, respectively). Moreover, one uses

F=Y FHepFf)=0m* > Flep«f
keNy, keNy,
k=01 ki =0,3¢1

as an equation in S’(R%), and for the corresponding maximal functions (.F _1g0% f )E addi-
tionally r; > a; > d;/p for i & I is required. We omit details.
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4 Decomposition theorems

This chapter is devoted to characterizations of the spaces S A(R?) via certain types of
decompositions. After discussing the necessary adaptions of the sequence spaces a; , and
Sp.q@> We present a result for atomic decompositions. The main result of this chapter can
be found in Section 4.3, where we prove a characterization in terms of wavelets, which
will be the generalization of the corresponding results for the isotropic spaces A;AR”)
(Theorem 1.2.2) and the spaces of dominating mixed smoothness S A(R?) (Theorem
1.4.1).

4.1 Sequence spaces

Definition 4.1.1. Let 0 < p,q < oo and 7 € RY. For sequences
A={AmeC:veN mez} (4.1.1)

) /p) 1/q

we define

sp b =X [ A]s] b < oo},

= <Z 97 (T—d/p)a <Z A5,

veNy meZd

(RICA

and for p < co we put

s =N A s) ] < oo},
o 1/q
= ‘ (2 X 2N ()

veN) meZd
where A7, denotes the characteristic function of the rectangle (generalized cube) Qg .
Moreover, in case in case p and/or ¢ are infinite one has to use the usual modifications.

1A ]shaf L,(RY)

Remark 4.1.1. As before we shall use the notation s} a* for a € {b, f} to refer to both
scales of sequence spaces

The notation s, ,a is reserved for a slight modification of the spaces, which will be needed
in connection Wlth wavelet decompositions, see Definition 4.3.1.

Remark 4.1.2. For a given sequence A as in (4.1.1), we put go.m = A\pmdpm(z) and
G5 = D mezd "omXpm(x). Then the above quasi-norms can be rewritten as follows:

(RIE =H2W9v|4 ol
I |shaf” gum}L( (N > Z9) || = 12779 [ Ly (CZD)

In particular, we have
| 95 |LyRD) || = || (Ao )meza| G(Z)|| for all ¥ e NJ. (4.1.2)

Hence in view of Remark 2.2.1 these sequence spaces can be regarded as discrete coun-
terparts of the spaces S;qA(Rdl x -+ x R¥). This impression is amplified by the decom-
position theorems in the next sections.
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4.2 Atomic decomposition

We remind on the notation @ := (|a!|,...,]a"]) € N} for some multiindex o € N,

a=(al,...;a). With it we can specify the definition of the considered atoms.

Definition 4.2.1. Let K € NI, L+1 € N}/, and let v > 1. A K-times continuously
differentiable complex-valued function a € SKC(R?) is called [ K, L]-atom centred in

Q?,Tm lf
suppa C YQu,m ,

|D%a(z)| < 2%7 for all @ € N¢ with 0 <@ < K,z € R?,
and fori=1,..., N, ﬁeNgi with 0 < |f] < L; and v; > 1

/Rd' ()Pa(zt, ... 2% ..., 2N)da' =0 forall (z!,... 2") e R, (4.2.3)
Here L; = —1 means that no moment conditions are necessary.

Before we deal with atomic decompositions, we need an auxiliary result on the maximal
operator M.

Lemma 4.2.1. Let 7 € N) and m € Z4.
(i) It holds for all z € R?
2—?3

M.Xgm xT) ~ ) ;
( ) )( ) H£1<‘x1_2fyimlyoo+27w)di

b

where the equivalence constants depend on dy, ..., dy only.
(ii) Consider 7 Qp,, for real numbers v; > 1, i =1,..., N. Then it holds

with some constant ¢ > 0, depending only on dy, ..., dy.

Proof. Part (i) immediately follows from the known result for the characteristic function
of the interval [—1, 1],

1

(MX[_1,1])(I) ~ Tl Tl

from which we can derive for some cube Qg C R™ with sidelength 2R and centred at the
origin
Rﬂ,

(MXQR) (z) ~ M :

(4.2.4)

The assertion now follows at once using the product structure of the generalized cube
Qw.m, see (3.3.11).

103



For part (ii) it is sufficient to consider the isotropic case, i.e. N =1 and M instead of M,
again due to the product structure of the generalized cube Qy,,, . We obtain from (4.2.4)
for v > 1

(7271/71)11
(lz = 27"mlos +727771)"
27(1/+l)n

(MX’YQu,m) (QZ) <c

=7 (|x — 27vm|o 4+ 2717 = Y (MXg,,,)(x)

Since the constants in (4.2.4) only depend on n, this holds for ¢ as well. [l

Lemma 4.2.2. Let 0 < p,q < co and ¥ € RY. Moreover, let K € N} and L € Z" be
fixed, where

L+1eNy), Li>max(-1,[o,—r]), i=1...,N. (4.2.5)
(i) It holds

Tk T * T *
Spvqa/ = Spvoob ? H >\ |Spvoob

< [ Mspaall (4.2.6)
where p < oo for a = f.

(ii) For every sequence A € s, b* and every family (apm)peny meze Of [ K, L]-atoms
centred in @)y, the series

D D Aomm (4.2.7)

veN) mezd

converges unconditionally in &'(R%).

Proof. Step 1: We prove (4.2.6).

For b-spaces the assertion follows immediately from the monotonicity of the £,-spaces and
the corresponding quasi-norm estimates. In the f-case we use the functions gz,, from
Remark 4.1.2 and equation (4.1.2) and obtain

M spaf | = 127795 | Lo = 27| )meze | 6 |
for all 7 € NY¥. Taking the supremum over ¥ gives (4.2.6).

Step 2: We prove the convergence of (4.2.7) in §'(R?).
To this purpose, let p € S(R?). We use the Taylor expansion of ¢ with respect to the
first variables, i.e. with respect to z':

D(a1’07...’0)¢(2_ylm17 y27 s 7yN> y ol
)= Y (v =2 (125)

aleNgl: lat|<Lq

DY _Li;rl (5 — 27 m!)”
|a1 ‘=L1+1
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1
X / (Dalgp)(<1 - tl)z_ylml + tlyla 3127 s 7yN)<1 - t1>L1dt1 .
0

Moreover, we employ (4.2.3) to get

/R da;,m(y)w(y)dy (4.2.9)
ot X ey

oll
Oé:(Oé170 7777 O)ENg7
|a1 |=L1+1

1
x / (DY) (1 = t1)27"m! + tiy' g%, y™) (1 = 1) dty dy .
0

By iterated applications of Taylor expansions as in (4.2.8) and the moment condition
(4.2.3) to the other variables we obtain from the right hand side of (4.2.9)

N
1 ) [ ZN AV
Lot 3 ST+ 0l -2m)
a=(at,...,aM)eNg, =1
|al\:Li+1
X / (D%) (T =827 "m + ty) dt dy. (4.2.10)
[0,1]%

Here we used the abbreviations 277m = (271m!, ..., 27""m") and ty = (t1¢*, ..., tnyY).

Using the support property (4.2.1) of the atoms az ,,, we can further estimate the absolute
value of (4.2.10). We obtain from y € vQz

‘yz — 2_Vimi| < 72_111' and |(y2 _ 2—Vimi)ai’ < (,72—yi>Li+l :

hence it follows for the integrand in (4.2.10)

N

I_I(yz - 2iwmi)ai / (DY) (T —1)27"m + ty) dt

i=1 [0, 1]V

L —U- L+1 [0 = T —U - —M o
< AN (AD) gy <x)M|(D @)(x)| (I-1)27"m+1ty) — dt
$€’YQU,HL [071}]\7
< 2 ED )M sup ()M (D) ().
xe’YQ?,m

Here we used the shortened notation (x) = (1 + |z|?)'/? for z € R?, the parameter M is
still at our disposition and will be chosen later. The last estimate is a consequence of the
observation (277m) ~ (¢) for all £ € yQy,,, where the constants are independent of ¥
and m. This in turn follows from

N
O ST+R7m+1E—27ml3 < 1+ [277mf3+ ) dif27"m’ — &2
=1
N
<1+127ml+) di®27 7 S 14+ 27mf3 = (27m)?
=1
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S+ +127m =&)L S 1+El = (©)°.

Now we suppose at first p > 1, and use |apn(y)| < X,q,,.(y), which is a consequence of
(4.2.1) and (4.2.2) for o« = 0. We find

‘/ > Ao mom(y)e(y)dy
<c2r @ [ 35T (s @00 o () 0)

meZ¢ q:a=L+1 2€7C@rm

1/p
< C2y-(r+L+1)2y-(rd/p)<Z ’)\V’m|p> (sup <x>M Z ’(Da@)(ﬂfﬂ)

d —
mezd z€R :a=L41

< 2D | N 8T b (4.2.11)

e HM,EH—N'

The intermittently appearing integral can be estimated by using Holder’s inequality for
integrals with respect to 1 = = —i— L and choosing Mp' > d,

1/p
/ (Z | Azm| X Qy,m(y)> () Mdy < cypg 277 ( >y |/\V,m|p> :

€z meZd

where additionally the fact is of importance, that every € R? is contained in only finitely
many of the sets Yy ,,,, the count being bounded depending only on 7. Concerning the
full series (4.2.7) we finally arrive at

‘ L. ( 2.2 Au,may,mw)) Ply)dy

veN) mezd

<e 3 27T EDNS B e llazan
veN)
< C [ X|s) oob* -HQOHM’EHN. (4.2.12)

Hence the series (4.2.7) converges in &'(R?), if only 7 + L + 1 > 0, since then the 7-
summation results in a convergent geometric series. But this restriction is assured by the
assumption (4.2.5), as L; > max(—1, [0, — r]) implies L; + 1 > o}, — 73, and o}, = 0 due
top > 1.

In case p < 1 we obtain by similar arguments (this corresponds to the choice M = 0)

‘/ S Nomrm(9)(5)dy

p

mezZd
o p
<ea R S ( S osw (D)@ ) (/ ol X ( >dy)
meZd \ o:5=L41 “S197m
< 9P HLAT=d(/p- 1))pH © H0|L|+N2u-(7—8/p)p Z Am |

mezd
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< C 2~ 7-(F+L+1—d(1/p— 1)pH)\|S

H ¥ H0|L|+N

Adding finally the 7-summation, this results once more in a converging geometric series
due to the assumption on ;.

Step 3: Unconditional convergence.
Unconditional convergence of (4.2.7) in &'(R?) is equivalent to the unconditional conver-
gence of every series

Yo > omasm)@),  peSRY. (4.2.13)

veN) mezd

This follows immediately from the choice of the strong topology on S’'(R%). Hence we
only have to consider unconditional convergence of series of complex numbers.

For series of complex numbers it is well-known that absolute convergence implies uncon-
ditional convergence. In our case, a closer inspection of Step 2 shows, that we have in
fact proven the existence of

> Z‘(Av,mavm ‘—,}E&Z Z’ 7mzm) ( )] (4.2.14)

veN) mezd [7|<n meZzd

for all ¢ € S(R?), i.e. convergence as an iterated series, see (4.2.12). Thereby, the
convergence of the inner series is obvious from (4.2.11), at least for p < co. For p = o0
this convergence follows from

/ > Xy )‘Mdyécw/ | (y) Mdy =3 0.
iz il 22 =)

From (4.2.14) we obtain by Fubini’s theorem the absolute convergence of the series
(4.2.13), which implies its unconditional convergence. O

Theorem 4.2.1. Let 0 < p,qg < 0o (p < oo for F-spaces) and T € RY. Moreover, let
K e N and L +1 € N} be fixed, where for i = 1,..., N we assume

Ki > (1+[ri])+,

max(—1, [0}, — 1), for B-spaces, (4.2.15)
L;i > { max(—1, [0}, — 7)), for F-spaces, 0 < ¢ < 0o, o
max(—1,d; + [o], — 74]) , for F-spaces, ¢ = 0o

(i) For every sequence A € s, a* and every family (apm)yeny meze of [K, L]-atoms

centred in @y, the limit f of the series (4.2.7) belongs to the space S;qA(RE), and
it holds

: (4.2.16)

where ¢ > 0 is some universal constant, independent of all admissible A and az .
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(ii) For every tempered distribution f € S;qA(RE) exists a sequence A € s a* and
a family of [K, L]-atoms centred in Qy,, (with some sufficiently large v > 1),
denoted again by (azm)peny meze, such that the series (4.2.7) converges in &' (R%)
to f. Moreover, the sequence \ satisfies

[RyC ARY)[, (4.2.17)

where the constant ¢ > 0 is independent of f € S;qA(RE).

Proof. For most parts of this proof we shall only be concerned with the F-case, the one
for B-spaces is similar. The convergence of the series (4.2.7) for A € s7 f* follows from
Lemma 4.2.2(ii) combined with the embedding (4.2.6) in Lemma 4.2.2(i).

Step 1: A pointwise estimate for local means.

For the proof of the estimate (4.2.16) we intent to use the equivalent quasi-norms on
St A(RY), defined by (3.3.8) and (3.3.9). We choose R,S € NY with 25 > R > K,
and define functions k; € S(R?) for [ € NI as in Theorem 3.3.2. Then we obtain for all
[, 7 € NY and all m € Z4

2 ki ) () = 27 /d kLY kY (Y )agm(z + y)dy - (4.2.18)
R

The further calculations depend on the size of the supports of k; and ag,,. Thus we have

to distinguish between I; > v; and I; < v;, hence a total of 2V different cases. In the sequel

we will discuss first the case [ > 7 and afterwards the case [ < 7 in detail, and finally

sketch the “mixed” cases. For every [ € N} we put abbreviative A; := A}, x A2 x -+ x AN

and AL .= {y e R% : [y| <277}

Substep 1.1: [>7.

We assume [ > 0 to simplify the notation, the cases I; = v; = 0 can be treated similarly
and will be re-included afterwards. We apply the definition of /{Z and integrate partially
K;-times with respect to the variables y* to obtain

() () = 20 0HD / H AS k;l Y agm(z + y)dy
]Rd
- 2”/ H(Asik:i) () am(z" +271y" 2N 27Ny N)dy
Rd

R[S 5 (0 1) (Do) o+ 2

aa=3 "‘KB,B X,

B<L2a

Next, we use that & € S(R%); in particular, we have supp D2 A"k « gupp k' and all
partial derivatives are bounded. Moreover, we shall factor in the corresponding properties
of the atoms ag y,, i.e. properties (4.2.1) and (4.2.2). Then we can further estimate

22-?‘ki(aﬁ,m)(x)‘Sckiﬁfj( K KU/ (HXSUPPW ) 'yQum(x‘i‘Q y)dy (4.2.19)
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By the definition of the rectangle vQ)z ,, it holds
Xygpn (t + 270yt aN 27Ny N) 2 0

e |2t =27 (ml = 2v iyl o <427 i=1,... N.

Hence x has to belong to a moved rectangle. Since suppk? C {t € R% : [t| < 1},
i=1,...,N, wehave |2/7liyt| . < 1. This means the additional shift can be compensated
by enlarging the set vQ)y,,, by a factor 3, thus including all neighbouring rectangles. In
this way we find

Xygu (@ + 270y oV 427N < Xy, (2 o) (4.2.20)

for all y* € supp k’. Inserting this into (4.2.19) we obtain

27| ky(agm) (x)] < 2"0°F K”/ (H KXsupp v (Y )X?wam( Lo aN)dy
< e B Emgr=d/pgrd/v (). (4.2.21)
From Lemma 4.2.1(ii) we conclude
Xsron (1) € MXsrg, (2) < cMXy(z), xR (4.2.22)
Passing to L,-normalized characteristic functions this finally results in

QZ.F‘kZ(aﬁ,m)(x)‘ < 02_(K—F)~(l—§)29~(?—d/p) (MXC(QPJ )(x) . (4223>

v,m

Substep 1.2: [ <7.

The integration in (4.2.18) can be restricted to Afl_, since the smoothness and support
properties of k' imply suppk; C Aj. We apply the Taylor expansion to kf (y') with
respect to the points 27¥im’ — 2 up to the order L;,

2V ) = YD )y — 2 m 4 al)

0<|BY<L;
+ 2O (|2t + ¢ — 27%m

), (4.2.24)

where c’ﬁ are some coefficient functions, not depending on y’. Hence property (4.2.3)
yields

Li+1> dy .

N
2Z-sz(av’m)(x) — 2[-(F+d) / ay,m(l’ + y) H 21¢(L¢+1)O<‘xz’ + yi . 2fuimi
=1

Moreover, it holds [apm(z +y)| < X. Qym(a:—i—y) due to (4.2.1) and (4.2.2). In particular,
we have |x + gyt — 277imi| Lt < (y27vim Lt Hence we find

2[7’

ki) (z)] < c2MTHIHE 7(LAT) / O (T ) dy. (4.2.25)

109



The last integral is always at most |7Q97m| = ’yd2_”"7, and it even vanishes, if {y: x+y €
YQu.m} Ny : [y'] <275} = (). Hence it follows

/ Q@+ Y)dy < 277 ix r-1Qy, (z). (4.2.26)

This is a consequence of

|£Ci o 2—l/imi|oo S |l,’b +yl o 2—l/imi|oo + yl|oo S ,}/2—111'—1 +2—li
S (7 + 2)27[2'71 — 7/2%,%2,%,1’

ie. {z: 24+2€7Qum}N{z: |2'| <274} # @ implies z € ' 27 7'Qp,n. The characteristic
function on the right hand side of (4.2.26) can be estimated further by using the maximal
operator M and Lemma 4.2.1(ii). We obtain

27X g, (2) < ey (M) (2) . (4.2.27)

NOW let 0 < w < min(1,p,q). By inserting the (1/w)th power of (4.2.27) into (4.2.26), we

/ oun (4 y)dy < c277 RO (TR, N ). (4.2.28)

, and insert this into (4.2.25):

p)

Next, we replace &j,, in equation (4.2.28) by /K(

2].; ‘ k’i(aﬁ m) (l’) ‘ S c 2Z(F+8)2(Z—3)(Z+T) 2—?-82(9—2)3/0.)2—5'8/13 (M‘X.ﬁ(pn)lw) 1/w (ﬂf)
= Q=P (T Td-d/) g (r=d/p) (T 0 0)%) Ve ) (4.2.29)

From the restriction w < min(1, p,q) and the definition of 7, , it follows at once, that
d(1/w—1) > 7,,. Hence the assumption (4.2.15) implies that we can choose w, such that
F=r+L+1-d1/w—-1)>0,or 7+ L+1>d(l/w—1)>5,,, respectively.

Substep 1.3: Mixed cases.

Exemplary we treat the terms with [y > v and [; < v;, i = 2,..., N, for all other cases
the calculation is very similar and can be transferred correspondingly.

At first, we apply the expansion (4.2.24) for i = 2,..., N and use property (4.2.3) to get
rid of the terms with 8 < L. Afterwards we integrate K;-times partially with respect to
the variables y!, similar to Step 1.1. In the resulting expression we use once more the
support properties of the occurring functions together with (4.2.2). We finally obtain

N
21.?‘]477(0@ m) (LL’)‘ < 25-?2(11*1/1)&1 —Ki) H 2li(7‘i+di)+(li*l/i)(Li‘i’l)*’/iri
=2
X /~ Xoo, (@t +270y a® + o2 2N +yN)dy, (4.2.30)
A7

where EZ::A}] X A7 X - XA{YV.
Due to the tensor product structure of both the integrand (the set 7@z, is a product, see
(3.3.11)) and the integration domain we can use Fubini’s theorem to split the integral in
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a dj-dimensional one with respect to y! and a (d — d;)-dimensional integral with respect
toy?, ..., y".
The first one can be estimated by c X1 = ¢ X ji—a-vimi | <y 2 -13(x"), Where o/ =

v + 2. This can be seen as follows: On the one hand, due to the integration domain
we have that the integral is at most |A}| = cg,. Moreover, we obtain by a consideration
similar to the one leading to (4.2.26) for every |y!| <1 and 2! & v/ Q!

v1,mt

2l 2ty 27V1m1‘oo > “xl _ 27u1m1‘oo _ 2711|y1}oo)
> Jol 2| —2 0y

> 7/2—1/1—1 . 2—l1 Z (%’Y 4 1)2—1/1 - 2—1/1 — 72—1/1—1 '

In other words we have {y' € R" : ' + 27"yt € v Q) .} N {y" : [y'| < 1} = 0 for every
xt g il 1+ From this we deduce the announced estimate.

For the (d — dy)-dimensional integral, we use once more the estimates (4.2.26)(4.2.28)
and Lemma 4.2.1(ii) (or more precisely their respective isotropic counterparts). In this

way we find for every i =2,..., N

X’YQi ;

i v;,m?
Ali

(ZL‘i + yz)dyz < CQ_VidiX»y/ 2%_”@; o (xz)

<C 27V¢dz‘2(l/i*li)di/w (Mi‘)(‘yi,mi) 1/W(xi) ) (4.2.31)
Inserting both parts into the above estimate and using Lemma 4.2.1(ii) now yields

2'7 | ky(awm) ()]
< cQPTlTI KO o (i)

vi,m
4 Li(ri+di)+(li—vi) (Li+1) —vir; g —vid; o (vi—1;)d; fw 1w {

< I]2 9-vidig (MXm> ()
=2

N
S C 2??2—“1—1/1“[(1—7‘1) (MX§7m> 1/0-) (J)) H 2(li—l/i)(ri—l—di-‘rLi-i-l—di/w)
=2

e T |l —vi| (ri+di+Li+1—d; Jw)
(x) H2 i i |\T% i i i .

=2

=C 2?~(F—E/p)2—|ll—ul|(K1—r1) <MXU(I;);J>

As in Substep 1.2, the choice of w and assumption (4.2.15) imply r;+d;+ L; +1—d; /w > 0
for all ¢ = 2,..., N. Furthermore, the same assumption ensures K; — r; > 0, since
K; > (14 [ri])4 yields K; > 1+ [r;] and thus K; > r; for all i = 1,..., N. Altogether it
follows, that there exists a vector p > 0, such that for all z € R? holds

1/w N
(x) [ 27l (4.2.32)

=1

2Z~F ‘ ki(aﬁ,m) (l’) ‘ S c 2?'(7—8/1’) <Mxﬁ(,pr)nw>

Moreover, we find that the results of the Substeps 1.1 and 1.2, estimates (4.2.23) and
(4.2.29), can be rewritten in the same way. This can be achieved by taking the 1/wth
power of (4.2.22) and inserting this in (4.2.23). Additionally, one has to keep in mind
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K; > riforalli=1,..., N by assumption (4.2.15). Hence we conclude, that the estimate
(4.2.32) is valid for all [,7 € NY.

Step 2: We prove the estimate (4.2.16).

Subtep 2.1: The case ¢ < 1.
An application of (4.2.32) and the monotonicity of {,-quasi-norms yield

2l'rkl< Z Z )\l,7ma,,7m) (z)

q

veN) mezd
q/w N
<ec Z Z o7-(F—d/p) 9 Agm]? < y(m) (:c)HTq'l“”‘pi.
veN)Y mezd i=1
If we put gy, (z) = 270 a/p) Az, Xym, compare to Remark 4.1.2, we obtain
. q\ /4
H ( > 2”’%(2 > )\V,mau,m>‘ > Ly(R?)
leNly veN) mezd
~ " N 1/q
<c (Z Z 2?~(?—d/p)q|)\p’m|q<MX§(%U> Z Hg—qli—wlpi) Lp(]Rd)
veNY mezd JezN i=1
o 1/q
- e () ) ey
veNY meZd
q/w 1/ 1/w
<o) (S 5 ) o - e et
veNY mezd

Due to the choice of w we have p/w > 1 and ¢/w > 1, hence Proposition 2.3.1 is applicable.
This finally yields

1/w 1/w

1G5 | Ly (o) | < €| G2 [ B (o) || = €| gom [ Lo(la)| = e[| A0 f
Together with (3.3.8) this proves the estimate (4.2.16).

Substep 2.2: The case 1 < ¢ < o0.

Using (4.2.32) and applying Holder’s inequality yields for some arbitrary real number
withO<e<p;,,i=1,..., N,

2l'rkl< Z Z )\ij(l%m) ()

veNYY meZd

SC(Z Z 27'(F*E/p)|)\p7m|<MX(p > H2 i Vzp7,>

veN) mezd

N a/qd
(S flvw)

veNY i=1
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X (Z 2”-(rd/P)‘1<Z |A7m|< ) ) H2 o )q/q

veNY meZ?

- Z o7 (F=d/p)g (Z |>\,m|( X(P>w> w(x)>qﬂ2—|li—l’i|(/3i—5)q‘

veNY meZd i=1

By choice of w we have 1 < p/w < 00, 1 < ¢/w < o0 and 1 < 1/w < oo, hence we
can apply the maximal inequality for M in the version for mixed sequence S ace Norms
(Proposition 2.3.2). Together with the abbreviation gy, (z) = 27 T~4/7) )\, X - we finally
obtain

2”@( >y Ay,may,m> L,(0,)
veNYy mezd
_ 1/w q N 14
<c <Z 27’(7—01/10)‘1 < Z ‘)\v’m| <MX5(T’%‘”> > Z H 2—|li—l‘i(Pi—5)‘I> Lp(]Rd)
veNY mezZ? lenNy i=1
L 1/q
</ (Z o7 (T d/m(z o mI(MX@)“) ) ) Ly(RY)
eNyy mezZd
w 1/w
, — 1/w — 1/w
=c Z (Mgv,m> Ly(¢y) Z (Mgv,m> Lyy(lyyes)
meZd mecZd
'\ W 1/w " w Ljw
= || Mg5 | Ly (Coso(Cip)) || < | G | Lo (Coer(br10))

= [l gzm [Lo(la)]| = " [| A5

I

compare to Remark 4.1.2. This proves (4.2.16) for 1 < ¢ < 0.

Substep 2.3: The case ¢ = o0

Unfortunately, the method used above does not cover the case ¢ = oo, as no counterpart
for the maximal inequality is known. We return to the estimates (4.2.21), (4.2.25)—(4.2.26)
and (4.2.30)—(4.2.31). These can be summarized by

27 |ky(apm) ()| < c277 [ 20 fa, e (7)
i li>v;

> H oli—vi)(ri+d; +L1+1)X(7+2)2VL ZQZ (Cl:z)

il <v;

We are going to use this product structure, in order to trace the desired estimate back to
the isotropic case. To that end, we obtain for every fixed z € R?

(2 3 Aamian )@

veNY mezd

< ¥ 3 Z 2 g - |kilagm) ()] (4.2.33)

Ac{L,.., N}lENO veNY . mel, i(x)
v; <l; ZEA
I/i>li,l€A

sup 2!
1eNyY
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where the sets I;7(x) are defined by

L(x) = {meZd A m(x+7Qym)7é®}

Since the kernel of the local mean k; has compact support, we know that for every x € R¢
and 7,1 € N} the terms kj(ay,,)(x) are non-vanishing for finitely many m € Z¢ only, i.e.
these index sets I;j(a:) are always finite. Clearly, these sets are again cross products,

Iﬁz( ) = [1}1 ll( ) X X [li\]/v\l lN('TN) .

With this knowledge we now can estimate (4.2.33) iteratively, where the results of one
iteration serve as the coefficients in the next one, see below. Hence we treat the isotropic
situation (i.e. N = 1) first. In those considerations we will drop the indices i.

Substep 2.3.1: We begin with the case v <[. Here we have to consider

S“pz > 2R, LX), (1)

teNo v=0 me[}/l( )

<sup<sup sup 2"\, k| Xy 12)Q,. (2 )Z Z QU=¥)(r=K)

1eNg \ <l kel,, () V=0 mel, 1 (x)

<c (sup sup 2" | A k| Xy 12)Q,0 ( )supZQ” K)
neNp kezd leNo 75

= ¢y sup sup 2|\ | Xy42)Qu. (T) -
veNg meZd
When estimating the count of the elements of #1,,(z), we immediately find #1,,(x) < ¢,
where ¢y depends on « only. Moreover, we used the assumption (1 + [r])y < K, which
yields r < K.

Substep 2.3.2: Now consider v > [. Then we find #I,,(x) ~ 2v=Dd " and we further
estimate with the help of X{, 2210, (7) < (MX(WQ)Qu_zQVYm)I/ (z) for every x € RY,
where 0 < w < min(1, p), and Lemma 4.2.1

o

sup Z Z 2(Z—V)(T+d+L+1)2VT|>\V7T7’L|X('Y+2)2V_ZQV’M (@)
leNo , 7 mel, (z)

(e 9]

Comp 30N AL (0 g, )0

1€No v=I+1mel, ;(x)
< ¢ sup (sup sup 2“T|)\M7,€|(MX7+2)QM ) Z Z oU=v)(r+L+1+d—d/w)
1€Ng \ p>1 kel (x) VT me (@)
/ [ee]
< ¢ (s 50 2130l (M 10,,) () ) sup 3 2
neNy kezd leNo [~ 1
1 w —u(r w
(SUP sup 2 Ay, 1 (M Xy 1216, )Zz (r+Lt1—d/w)
neNy kezd
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vr 1/w
= C2 sup sup 2 |>‘v,m|(MX(7+2)Qu,m) / ()
vENy mEZd
At the end we used the assumption L > d + 0, — r, which yields that we can choose w

such that L+ 1+ r > d/w > d/min(1, p). This implies r + L + 1 — d/w > 0, hence the
geometrical series converges.

Substep 2.3.3: We finally prove the estimate (4.2.16). As announced above this
will be done iteratively. Moreover, we fix some set A C {1,...,N} and write it as
A= {i1,...,1,}. We will explicitly demonstrate the first iterative. With j = ¢; we find

sup Z Z |)\l,m|2WH21_”l i X(7+2)Q1 (")

1eNy peny . mel, (z) i€A
v; <l; ZEA
v >l; ,Z%A
(li—vi)(ri+d;+L;i+1) i
X H2 X(,Y+2)21/,L ZQ,ZJ i (.ZU)
igA
_ virio(li—v;) (ri—K;) _ i
EYD SEEED DR | (2 )
LENO T 1, i, in, miell | (a1),ij 1€Ai] v
l b
vi>li, ig A
x [ [armotm 0t b X g (@)
igA "

(Supz D P26 j(w)
v,

l;eN .
O v=0 mJGIJ lj(zﬂ)

<c sup Z Z H gvirig(li—vi)(ri— K)X( +2)QZ ( z)

LENOS AT <1, iz, in, miel] | (a'),i#] 1€A 2]
l/1>ll,’L

X H 2”’”2 i_”i)(”—"di—i_h_‘—l)X("/+2)2Vi*liQi. mi (xl)
i A .

v €No i ez

" (Sup sup 277 ol +2)Qij,ma' (:C]))'

At the end we used the isotropic estimate together with the assumption K; > r;. For the
next step, the terms in brackets serve as coefficients, they replace A, ,, in Substeps 2.3.1
or 2.3.2, respectively. The final result is given by

(2 3 Ao )0

veENY meZd

sup 217
1eNyY

<c sup sup 277 Dol [ X120 i )H(M)sz) )@

yeNN mezZd €A v iZA
< sup sup 277\ | (M X)) (2) .
veNY mezd

The last estimate is a consequence of Lemma 4.2.1. Due to (M X;,,,) (z) < 1 for all z € R?
we can replace the maximal function by (MX;ym)l/ Yl<w< min(1,p, q). Now we apply
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the L,(R?)-quasi-norm and use the maximal inequality for M in L,/,(¢x) (Proposition
2.3.1). Together with the abbreviation ¢y, = 2”7 Ay Xy, this results in

2l‘rkl( Z Z Avaava) LP(EOO) S C‘ QP.FAP,m (MXP,m>1/w LP(EOO)H
veN) mezd
— 1/w — W 1/w
= c||(7g2,.) " | Lalt)| = ¢ | Wt | L)
< |95 | Lpyo (U ||1/w |27 Ao X | Ly (Usc) || = € || A |5p o ]| -

This completes the proof of (4.2.16) for F-spaces.

Substep 2.4: The case p = oo for B-spaces.

The proof for the B-scale is based on the estimate (4.2.32) as well. In case 0 < p < o0,
one uses afterwards the triangle inequality to get the L, -norm inside the 7-summation
(observe p/w > 1). Finally, the maximal inequality for Ly, (¢1,,) (Proposition 2.3.1) is
applied to derive the desired estimate.

The case p = 0o has to be treated separately. The essential step here is the derivation of
a replacement for the (non-existing) maximal inequality in Lo (¢1/,). We will show the
estimate

Z (MXv,m) 1/w

meZzZ4

Loo(RY|| < Cy, (4.2.34)

where Cj is some positive constant independent of 7. At first from the tensor product
structure of the characteristic functions it follows

(MXpm)(x) = (MXgr  )(z') - (MXgy (™),

vy,ml VN ,M

where QV i = {y e RY |y —27vimi| < 2_”i_1}, 1=1,...,N.
Hence it is sufficient to prove (4.2.34) in the isotropic setting, i.e. N = 1. With the help
of Lemma 4.2.1(i) we obtain

L —n e
> (u5) " <e 3 (o) 0 G

mezm" meZ mezm

Here we substituted y = 2¥x. Since the last series defines a function which is 1-periodic
in every direction, we may assume |y|s, < % Then we find for every m # 0 by means of

the triangle inequality |y — m|o > |m|o — 3. Hence we can further estimate

—_

1 = (2k + 1 (2k —1)"
<1+ 1+

2k—1+20k” 1
Z 2-njw 2k+1 n/w C; 2k+1 n/w n+1

[e.e]

- CO .
k=1

In the first line we used, that the number of n-tuples from Z" with |m|. = k for £ > 1
is given by (2k + 1)" — (2k — 1)™. The second line follows from the mean value theorem
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for certain 0 € (0, 1), the last series being convergent due to w < 1. Furthermore, we
easily see that the constant Cj does depend on n and w only. Thus the estimate (4.2.34)
is verified.

With the help of similar arguments than before (at first using triangle inequality, and
afterwards either Holder’s inequality in case ¢ > 1 or the monotonicity of ¢,-quasi-norms
in case ¢ < 1 with respect to the 7-summation) we obtain from (4.2.32) and (4.2.34)

a\ /4
(Z 21'%(2 > ay,mxy,m> Loo(RY) )
leN}Y veNY mezd
e a\ 1/a
SC(Z (Z > 2W<MXW> m|H2 i=vilei| Lo (RY) ) )
1eNY \veN}Y llmezd

Loo(RY)

Z <M?€um> 1/w

meZ4

q\ 1/q
> (Z 27 52§d|xym|Hl2 = ”l'pl) )

1eN) \veN}Y

a\ 1/q
<! Z (Z 2" sup | A H2 i ”1”)

_ d
leN) \peNy meZ i=1

1/
(Z > 27 sup Ay, IqH2—li—wl<m—e>q) q

d
leNY veNy meZ i=1

1/q
<Z 2" sup \)\,,m\q) =C' || X|sL b

veNY me
This finally proves the estimate (4.2.16).
Step 3: It remains the proof of (ii).

We prove an important special case first. To this purpose let A C {1,..., N}. We assume
that additionally to (4.2.15) we have

Li=-1 forall 1€ A, ie 1r;> O'pq, and f € S?C'(RE). (4.2.35)
In case ¢ = oo this is complemented by r; > d;, i = 1,..., N. Moreover, let m € N} be a
vector with 2n > 7. Finally, we choose functions k2, ... kY, k', ... kY with properties as

in Theorem 3.3.3, where ¢; = (27r)~%/2 and M = 7. Let ki(x) and k;(f)(z) be defined as
in Theorem 3.3.2 as well as k; 4(f)(z) as in Lemma 3.3.1. Here we put k; 4(f)(x) = f(z)
if A =0, and the occurring sums and products have to be treated accordingly. We claim,
that under these assumptions it holds

f= Z kpa(f)(x) = hm Z ka(f (4.2.36)

leNly <P
1;=0,iZ A 1;=0,ig A

with convergence in &'(R%). To prove this, we fix ¢ € S(R?). From the definition of the
local means, we have

(i a()"(©) = (TTm™ 2 Fa (ki) (=€) Fl&).

€A
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As the Fourier transform is an isomorphic mapping from &'(R¢) onto itself, it suffices to
show

e©) Y ([l Fatki)(-€)) — &) inSEY). (4237)
Lok

The last sum can be rewritten using (3.3.15):

> (TTen " Fut)-¢))

<P i€A
1,=0,i¢A
P

= [[en)"? > Falki)(=¢)
€A 1;,=0

= [[em®*”? (J—"dl 0)(=€) +Z]—"d (2“1 k(2" ))( gi))
€A li=1

= [J2m)*” (fdl ko) (=€) + Z (Fa k) (=2~ ))
icA lfl

= [I1em” (fd, =3 +Z(fd ko(—27"¢") — fdiké<—2-2‘“f">))
1€EA l;=1

= [T (Faki)-27"¢)).
i€A

We denote the last expression by 1—®(27F¢), and fix M € N. Bearing in mind ¢ € S(R?)
we find

Pm (@(5)‘?(2’135))
—sup sup [De (o)) )|t

€ER? 0<|o| <M

<cswp s 2P| (og)(g)| |(DP@) 2o

§eR 0<]al,|B|<M

SCGW wpzﬂﬂ@ﬁﬂe*wgw)ew m)Km@@M@W“)

¢ERY 0<|B]<M €ERY 0<|a|<M

(Da)erolio).

<cd sup (2_P|ﬁ sup
0<|Bl<M écRd

where the constant ¢ does not depend on P (but on M). The functionals p,, are defined
by pu(9) = SUPyc|aj<rs SUPsera | D*@(2)][(x)™.  These are a another family of norms
generating the topology of S(R?).

In case f; > 0 for at least one f3;, i.e. |3| > 0, the term in brackets in the last expression
tends to 0 for P — oo (observe that because of ki € S(R%) the function ® and all its
derivatives are bounded, hence the supremum with respect to £ is finite and bounded
independent of P).
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For 5 = 0 we split the supremum in sup¢>,r and supj¢.or. The first one can be estimated
by ¢27F due to (¢)7! < 27F. To estimate the other one we remark, that from (3.3.13)
follows ®(0) = 0, and hence the mean value theorem yields |®(&)| < ¢|¢] in {& : [€] < 1}.
Thus it holds

sup [@(277E)(6) ™ < e sup [277€|(€) T < 2 P sup [¢l(e) T < 27"
lgl<2” lg|<2P cer?

Altogether, this shows py, (gp(&)@@’Pg)) < C2F — 0for P — co. Consequently

(4.2.37) is proved as well as (4.2.36).
Next we choose a compactly supported non-negative function ¢ € S(R?) with the property

Z Y(x—m)=1 forall =€ R? . (4.2.38)

mezZd

Furthermore, for every 7 € NY and m € Z? we define 15 ,,(z) := ¥(2”2 —m). Then there
exists some v > 1, such that

Supp Ypm C YQpm forall e Ny ,m € Z%. (4.2.39)

We multiply equation (4.2.36) with these decompositions of unity to obtain

f=> kN = > kz,A(f)(ﬂf)(Z %,m(ﬂf))

leNyY leNy mezZd

1;i=0,ig A 1;i=0,ig A

= Z Z kl/A 2/}Ijm Z Z >\1/ maum ; (4240)

veN) mezd veN) mezd

Vi:0,i¢A V¢=0,’i¢A

where
Ao = Z sup | D[kz ()] ()|, (Ka), = Xa(i)K;,
0<a<K 4 yErQwm

(%) = Ay W () kv a(f) (@) -

In case Ay, = 0 we define az,, = 0. On the other hand, these coefficients are always finite
since ‘D"‘[kp,A(f)](yﬂ < c|lkp,allas1,jalll F1STC(R)||. Moreover, we put for every 7 € NYY
with v; # 0 for some 7 € A just Ay, = 0 and az,, = 0. It follows, that the functions az
are [ K, L]-atoms centred at Q.

The required differentiability follows from smoothness properties of the convolution and
from the assumption f € SEC(R?). The support property (4.2.1) is an immediate conse-
quence of the choice of 95 ,,. Furthermore, by assumption (4.2.35) we always have either
Li=-1,1€ A andv; =0,7 & A, or ap,, = 0. Hence, no moment conditions need to be
checked. Eventually, property (4.2.2) follows from the definition of the coefficients Ay,
up to some constant C' independent of 7, m and x:

‘Do‘aum(m ‘ Z)\EMDG (koa(f @/’vm) |
<X > D (ko a(H) @) | (D5 m) (@)]

B+y=a
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</ Z { (D”Qﬁ;,m) (x)‘ = Z {D”’ (¢(25_ —m))(:v)|

y<a Yo
=c Z 277|(D) (2" — m)| < ¢ 2% Z (D7) (27z — m)|
v<a v<a
<277 N sup (D7) (2)] = ¢ 2779l ) -
<R <

In order to prove that this decomposition indeed fulfills (4.2.17), we estimate

— H < Z Z 2V‘Tq|XV7m)\l/7m|q> ’

veN) meZd
I/L:077,€A

<c ( S Y () sup |Da[k,,7A<f>1<y>\‘I>

veNé\] mGZd ye’YQU,m
yl:O,ng

1A lspaf" Ly(RY)

Ly(R)

<c ), (Z > 27 X (x)  sup \D“[ku,A(f)](y)lq) Ly(RY)
0<a<Kall \ meNl mezd T—Y€7'Qr.0
yl:O,ng
= ) <Z 27T sup \Da{kV,A<f>]<y>\q> L,(RY)
0<a<Ka veNY ey Qro
VL:07Z€A

and apply Lemma 3.3.1 with D* ki and Dk’ instead of ki and k.

On the one hand these new kernels do no longer satisfy the Tauberian conditions (3.3.6),
but by Proposition 3.2.2 these are not necessary for the proof of (4.2.17), compare also
with the proof of Theorem 3.2.2 (observe that at this point we only need a one-sided
estimate). We obtain

1/q
[Msur e 3 (Z 77 sup |[Daku,A]<f><y>|q> L,(RY
o<a<Kll \ pend 2=Y€Y'Qro
v;=0,i¢A
<o S el IsgEE) =l |8, FED)

OSESF A

Step 4: The general case.

We now prove the existence of an optimal decomposition for all 7 € RY and all L satisfying
(4.2.15). At first we remark, that instead of the lifting operator from Definition 2.3.2 we
can define another operator upon replacing the Fourier multiplier [T~ (1 4 |%]?)#/2 by
Hij\il(l + |2]P?) for some p € RY. Using Proposition 2.3.5 twice we obtain a counterpart
of Proposition 2.3.11. We shall use the abbreviations

- o _ ki, €A
AAZZHAi’ A]XIA:HAZM‘, kENéV:>(kA>z_{O ZQA
€A €A ’
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for some set A C {1,...,N}. Then we can decompose f as

f=g+ > A= 3 Ay, (4.2.41)

where M € 2NY is still at our disposal and can be chosen arbitrarily large. Moreover, we
have g = I 57 f € S;;QMF(RE), and by Proposition 2.3.11 it holds H g |SZ’Z2MF(RE)H ~
| f ’S;QF(]RE) |- We now decompose every summand in (4.2.41). To begin with, we choose
M, such that it holds for some € > 0

lg|SEC®N|| < [|g]sZ, BRI < cllg] S5 "7 BRY)|
<c HQ}SKM/Z)HEF Rd H <c "g}STZ2MF(RE)

compare with Corollary 2.3.2, Proposition 2.3.10 and Proposition 2.3.7. For an arbitrary
set A with ) € AC {1,..., N} we use the decomposition

Z Z ¢P,m(x)kﬂ,A< ) Z Z )\Vm Vm

veNY mezd veN) mezd
v;=0,i¢A Vi:0,i§ZA

as in (4.2.36) and (4.2.40), respectively. Here, it is

Ma=cr Y s [0 (kale)) ).

BSFA+2MA yECQQ?,m
1
a’?,m('x) = ()\é,m) wv,m(x)kv,A(g)(x) .

For the remaining 7, i.e. those with v; # 0 for some i € A, we put )\g‘,m = 0 and
a’;m = 0. We now further assume M to be large enough, such that r; + 2M; > J;;,q for all
1=1,..., N, and for ¢ = oo additionally r; +2M; > d;. Choosing also ¢y, ¢5 large enough,
then the functions a2, are [K + 2M, —1]-atoms, and we obtain by Step 3 the estimate

H)\A| iZ+2M

S MR < | £ 55, FRY|

Moreover, it follows that the functions 2-27Ma A4 i, are [K,2M — T]-atoms, where
L =2M — 1 satisfies (4.2.15).

The support and differentiability properties follow as in Step 3. The moment conditions
for AM 4aZ  can be obtained from

o | <2M; —1, i€ A.

/ (xi)o‘Dwaif’m(:p) de'=0, BeN! B=M,, acN¥,
R%

This in turn follows by partial integration together with the compact support of the
functions af . Since for ¢ € A we either have v; = 0, or v; # 0 and hence aA =0, no
further moment conditions need to be checked. Moreover, property (4.2.2) for a3, and
2_2§'MAA5\4/[ACL£m, respectively, follows by a calculation similar to the one in Step 3. Due
to the continuity of the differential operators on S'(R?) together with Lemma 4.2.2 this

yields an atomic decomposition for A%A g
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Finally, because of (4.2.41) the sum of all these (finitely many) decompositions gives a
decomposition of f. In order to see that this one has the desired properties we put

M =2 Myt and A= >0 N
0cAc{1,...N}
Then we immediately find || 2 B ’"+2M
(RE Yoo I s FRY|.
#cAc{1,..,N}
This completes the proof. n

Remark 4.2.1. The proof uses essentially the same methods as the according results
for atomic decompositions of spaces A? (R") in [85] and for spaces S; A(R?) in [94].
However, the estimates in Substeps 2.2-2.4 differ slightly from those proofs, because both
contained a minor gap in their argumentation which could be closed here. For finite
parameters this was done with very little additional effort, but for F-spaces and ¢ = oo
this happened at the cost of additional moment conditions.

Another way to circumvent such difficulties is the investigation of molecules. In contrast
to atoms these possess only polynomial decay (instead of compact support), but they
allow similar decomposition theorems, see e.g. [30] (the p-transform yields a particular
molecular decomposition), [9] or [66]. In that framework one would prove part (i) of
Theorem 4.2.1 for molecules, while the proof of part (ii) remains the same. This strategy
then would yield both, an atomic and a molecular characterization, simultaneously, see
also [43] for a realization of that approach.

Corollary 4.2.1. Under the assumptions of Theorem 4.2.1
715 AR = inf[| A] s}, 0

defines an equivalent quasi-norm is S; qA(Rg). Here the infimum is taken over all sequences

A € s a* and all families (azn)

(4.2.16) converges in S'(R?) to f.

DeNY mezd of admissible atoms, such that the series

4.3 Wavelets

We remind of the constructions of wavelet bases in Sections 1.2.2 and 1.4.4. In this
section we will combine these constructions to obtain further bases adapted to the splitting
R? =R x ... x RN, Let

W:{QQ%EN@mEZWE@}CCWRﬂ,j:L“wM

be wavelet bases according to Proposition 1.2.1. We then define functions

Vi pm () = 2Py (28 — m) = 2+ d/2¢ll<:117m1( I @Dllc]jv ]:zN( M), (4.3.1)
where
r= (2. 2Y) e R, ) e RY
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m=(m',..., m") ez, mi € 7%

i=(iy,...,in) €{0,...,2 =1} x - x {0,...,2% —1} =: [,
k= (ki,....k,) €NY with k;=0 if 4;,=0.

This results in the following proposition.

Proposition 4.3.1. For arbitrary sq,...,sy € N there exist real-valued and compactly
supported functions %7 ¢ € C%(R), j =1,..., N, with property (1.2.5), such that

U= {\IJM i€k e NY with k; > 0if i; > 0,m € Zd} , (4.3.2)

is an orthonormal basis in Ly(R?), where W; 7 1 defined as in (4.3.1).

For the characterizations of the Besov and Triebel-Lizorkin spaces the indices ¢ and m
play only a minor role. Hence we will combine them to one index by putting

Dm0 2 1) x 25, Tl {L...2% 1} xZ% jeN,
Ipi=T) x--xTy , keNy.

The elements v € I'; will simply be written as 7 = (5, m), where (i;,m?) € F{cj, ] =
1,...,N. Then the wavelet system (4.3.2) can be rewritten as

w={u;, :yeTken, (4.3.3)

where we used the abbreviation Wy = W;¢  for every v = (Z, m) eIy
To formulate the theorem on the wavelet decomposition, we need to modify the sequence
spaces introduced in Definition 4.1.1.

Definition 4.3.1. Let 0 < p,q < oo and 7 € RY. For sequences
A :{)\M €eC:veN),ye 1}}
we define

sabi={N ¢ Al < oo}

a/p\ 1/a
H A ‘ Sz,qu — <Z 2u'(T+d/2d/P)Q<Z ‘)\V,”p) >

veNy €l

as well as for p < oo

Sz,qf = {)‘ : HA}SZ,qf” < oo},

~ 1/q
( Z Z |2§~(?+d/2)/\§ﬁxﬁﬁ(_) ‘q)

veN} 7€l

175t =| £ @)

with the usual modifications in case p and/or ¢ are infinite. Here it is A5, = A5, for
v = (i, m). We use the notation s;qa as before.
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Remark 4.3.1.  For atomic decompositions of the form } Sz v >~ sery Ak 0% » together
with sequences as in Definition 4.3.1 and according sequence spaces, an analogue of The-
orem 4.2.1 holds true. Replacing the m-summation by the y-summation has no conse-
quence for the used arguments, only the constants involved are altered. Hence, if we refer
to Theorem 4.2.1 in the sequel this modification is meant.

Remark 4.3.2. Besides the modified summation domain for the inner sum the sequence
spaces s;qa from Definition 4.3.1 and the spaces szqa* differ also in their normalization,
i.e. in the exponent of the weight. This is caused by the different normalizations of atoms
and wavelets. On the one hand the atoms are L.,-normalized bounded functions due to
property (4.2.2), on the other hand the wavelets are Ly-normalized since they are assumed
to form an orthonormal basis. B B

Moreover, for these sequence spaces the fact S3,F(R?) = Ly(R?) (compare to Proposition

2.3.13) has its counterpart in the observation sgz [ =10

Now we have the necessary definitions to state the result on the wavelet-decomposition.
The decomposition described in the theorem and the succeeding corollary on the dis-
cretization of the function spaces SZ’QA(Rd) are the main results of the first part of this
thesis.

Theorem 4.3.1. Let 7 € R, 0 < p,q < oo (p < oo for F-spaces), and 5 € Ny. Then
the following assertions hold true:

(i) Let A € s7 ,a, and let

s; > max(r;, (TI]; — ;) for B-spaces,
s; > max(rj, o). Tj) for F-spaces,0 < g < o0, (4.3.4)
55 > max(rj, dj + o) — rj) for F-spaces,q = 0o,

respectively, for all 7 =1,..., N. Then it holds:

(a) The series

S T, (4.3.5)

keN) v€lg

converges in S'(RY) to some distribution f.

(b) The distribution f belongs to S7  A(R?), and we have
17155 AR < e[| Al 50l (4:3.6)

where the constant ¢ does not depend on A.
(c¢) The series (4.3.5) converges unconditionally in S;;EA(RE) for every ¢ > 0.

(d) If additionally we have max(p, q) < oo, then (4.3.5) converges unconditionally
in ST A(R?) as well.
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(ii) Let f € .S) qA(]RE). We define the sequence X\ by
Moy = ([, 9%,) keN),yerl;. (4.3.7)
If 5 € N} is large enough, then it follows:

(a) The sequence A belongs to s} ,a, and it holds
X spqe [l < e[l £ 1S5, ARD],

where the constant ¢ does not depend on f.

(b) The series (4.3.5) converges to f in S'(R?).

(c) If the series ZEEN{)V > ver, My Vg, CONVErges in S'(R%) to f for some sequence
n € s, ,a, then we have n = A.

Remark 4.3.3. Before we turn to the proof of this theorem we have to remark on the
problems caused by the limited smoothness of the functions Wy _.

With limited smoothness we refer to the fact, that all functions Wz _ do not belong to
S(R?). According to Theorem 1.2.1 and the constructions in (1.2.8) and (4.3.1) we only
have Wy € SSCR?Y), 5 = (s1,...,sy) € NY. Hence, the expressions (f, \I’E,y) in (ii)
cannot be interpreted in the distributional sense as a dual pairing (S(R?), S'(R?)) right
from the beginning, at least not for arbitrary f € S’(RY). To give the symbol (f, \I/E,'y) a

meaning anyhow, we use the assertions on the dual spaces of S;’QB (R4) in Propositions
2.3.15 and 2.3.16 in Section 2.3.8.

The functions D*Wy _, 0 < @ <5, are bounded, continuous, and compactly supported.
Hence it follows at once

DV |Ls(RY|| < o0, 0<a<s 0<p<oo.
kP

In particular, this yields (see Theorems 2.1.1 and 2.3.4)

Uy € SSW(RY) = S2,F(RY) forall 1<p<oo.

Together with Proposition 2.3.7, the Sobolev embedding (Proposition 2.3.10), and the
assumption (4.3.4) we obtain for a suitably chosen p

S2,F(RY) — SEEIB(RY) s 57T B(RY) = [S7TB(RY)],

for some £ > 0. Thus, for every f € S] qA(RE) — S;;JB (R%) (compare to Proposition
2.3.7) we can interpret Wy, as a bounded linear functional defined on a space containing
f. The expression ( f, \IIE,'y) then means the value of this functional upon inserting f.

We can reverse these arguments. As before, the functions Wz belong to S5, F (R,
1 < p < oo, and SgZF(RE) — S;%ETB(RE). On the other hand, we have S;’qB(]Rg) —
[SE«ETB(]RE)}/ for some suitably chosen p. Hence we can interpret f as a bounded linear

functional defined on a space containing Wz . Then ( f, \I’E,y) means the value of this
functional for Wy .
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Proof of Theorem 4.3.1(i). Let A € s f. The functions 2—%8/2\1,%’7 are [, s]-atoms
centred at Qf,, (possibly up to some normalizing constant), where v = (E, m) and § =
(51,...,8n) € N)Y. Moreover, the condition (4.3.4) implies

sz max{ (1+ ), [oh, —ml} j=1.. N,

thus all assumptions of Lemma 4.2.2 and Theorem 4.2.1 are fulfilled. From Lemma 4.2.2
we conclude the convergence of the series (4.3.5) in &'(R?). We denote its limit by f.

Observe, that A € sj f implies (ZE'E/ QAM)M
Theorem 4.2.1 yields f € S} I (RY) and the estimate (4.3.6). Thus the assertions (a) and
(b) are already proven. Analog arguments apply to the B-case.

Now let at first p < co. For every sequence A € s) a and a natural number y we define
sequences \* by

VD R k| > p,
ky 0 else .

€ sy ,f* with equal norm. Moreover,

In case ¢ < oo, we find for these sequences

i | 4] 0] = 0.
This is immediately clear for b-spaces, the f-case follows from Lebesgue’s theorem on
dominated convergence. Moreover, the sequences )\%, defined by

X

(6m) else,

_ {)\k,(l,m) if ‘m| >
0

converge to 0 in s} .a (or in £, respectively) for u — oo for every k. Together with the
previously proven estimate (4.3.6) this yields the convergence of (4.3.4) in S]  A(R?).
With the same argument as before together with an additional application of Holder’s
inequality we obtain (also in the case ¢ = 00)
; T—el || _
HILDQOH A¥ ‘Sp,q‘E a” =0.
As before, this implies the convergence of (4.3.4) in S;;ETA(Ra). The statements con-

cerning the unconditional convergence of the series (4.3.4) follows now directly from the
unconditional convergence of the series

A= Z Z )\EﬁeE”,

keny v€ly

where the sequences e* are the canonical orthonormal basis vectors of ngb. This in turn
follows from the convergence of (AM),en and (A7) .en as stated above. We remind of the
fact, that ¢,-quasi-norms, 0 < u < 0o, always form unconditional convergent series. [

Unfortunately the above argumentation fails in case p = co. In this case there is only local
convergence, i.e. on given balls or bounded domains, which corresponds to a restriction
of the y-summation (compare with Section 7.1.1).
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Proof of Theorem 4.3.1(ii). The meaning of the expressions ( f, \prﬁ) was discussed
before in Remark 4.3.3. In this proof, we treat only the F-case, the proof for B-spaces is
once more very similar.

As before, we can rewrite the quasi-norm in s;q f as

H A ‘S;qu = HQE.(Hg/z)gE,ﬂLp(eq)H ’
where

T6:1 (@) = ) Mo X () (4.3.8)

mezZd

Thereby, the (,-quasi-norm is formed with respect to k and i. If 2 € Qrm»> and A is
defined by (4.3.7), we use (4.3.8) to obtain

957(T) = Mg Gim) = /Rd U im y)dy —/ G (U)o (™) Fy)dy

We now insert the definitions (4.3.1) and (1.2.8) and substitute z* = y* — 2 %m?. This
results in

gm(x) = 1/1i1’1(2k1z1) e wiN’N(ZkNZN)f(Z_klml 422N ¢ zN)dz
= Kz:(/)(27Fm).

Here Kz ;(f)(27 ¥m) denote the local means

Kes£)(y) = / Kes(2)f(y + 2)dz,  yeR,

Rd

with respect to the kernels
]CE{(Z) — wh,l(zklzl) . 'l/JiN’N(2kNZN) .

We remark that all integrals have to be understood in the distributional sense. Thus it
follows for z € Qr,, (observe z € Qf,, == = — 27"m € Q)

973 (@) < sup [Kg(F) ()]

z’yeQE,o

If 5 is large enough, then the kernels satisfy the assumptions of Proposition 3.3.1. The
moment conditions follow from property (1.2.5) in Theorem 1.2.1, and the Tauberian
conditions are due to general results about scaling functions (in particular Fiy = % #0)
and the compact support of ¢;. Though F11(0) = 0, the Tauberian condition can
be fulfilled since this function is analytic by the Paley-Wiener-Schwartz theorem. The
compactness of the supports further implies, that the kernels belong to X*(R%). Now an
application of Proposition 3.3.1 or Lemma 3.3.1, respectively, results in

Mot ll < e 32112 gral Lol < € £ 157, FRA]
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where only those k € NY with ki =0ifi; =0,7=1,..., N, are considered. In particular,
for i = 0 there is in fact no {,-summation, and the estimate for g5y follows already from
the interpretation of W55, as linear functionals in Remark 4.3.3. This completes the
proof of (a).

For the proof of the second statement we define a new distribution g by

g= Z Z YR T (4.3.9)

keN) vel'g

where the coefficients A are given by (4.3.7). The convergence of this series is assured
by A € 57 f (which we just proved) and part (i) of the theorem. This even shows

7 d _ :
g €S, ,F(R?). Hence we have to show g = f, or equivalently

(g9,0) = (f,p) forall ¢eSRY).

To this purpose we consider the expressions (g, ‘Ifyﬁ,). Since \ € s;q f the series (4.3.9)
converges in S;;ETF (RY), where ¢ > 0 is arbitrary. By Remark 4.3.3 we have Vi, €
[SZ;IETF (Rd)]/. Hence it follows

(97\IJW77/) - JL%(Z Z Ao Vi qjk’w’)

k| <p~y=(i,m)€ly : |m|<p

=lm > > (%) (Ve Yry)

k| <p~=(i,m)ely : [m|<p
Using the orthonormality of the system (4.3.3) we obtain from this
(9. 9% ,) = (f, %) forall keNy,yely.

This argument can be extended to arbitrary linear combinations of functions Wy . For
a general function ¢ € S(RY) — Ly(R?) we consider its Fourier series expansion with
respect to the system (4.3.3):

o= D (v ¥5,) ¥, (4.3.10)

kenNy vely

Since S(R?) is a subset of all (Fourier-analytic) Besov and Triebel-Lizorkin spaces, it
follows from the previously proven assertions (ii.a) and (i.c), that (4.3.10) converges in
[SrTF(R?)]" as well. Thus we find

(9.9) = Jlim > > (. 9%,) (9. U5,

k| <py=(i,m)€ly: |m|<p

- uh—>r20 Z Z ((‘0’ \IJE,V) (f7 \I]E,'y) = (f7 SO) .

k| <py=(i,m)€ly: |m|<p

This shows that the series (4.3.5) converges to f.
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The last step, that is the proof of the third statement, follows now quite easily. We assume
that n satisfies the named assumptions. Furthermore, we define the coefficients A, once
more by (4.3.7). Then the same duality arguments as before and (i.c) yield

~(5) = (XX weatiy 5,) =
KeN) Vel
for all k € N) and v € I'z. The proof of Theorem 4.3.1 is now complete. O]
Corollary 4.3.1. Let 7, p,q,s be as in Theorem 4.3.1. Then the mapping

T Sp AR —s s, fe ((£95,))

— )
keN) yel'z

is an isomorphism from the function space S} qA(RE) onto the sequence space s; a. In
particular, it holds

ra AR~ 1((F95))g, el

Proof. That the mapping J is a bounded operator follows from Theorem 4.3.1(ii.a).
Likewise the operator J—!, given by
-1 . 7 T d
T spa— SpARY, A= > Y N Uy,
keNY velg

is bounded due to (i.b). Finally, the fact that J~! is indeed the inverse operator of J
follows from (ii.b) and (ii.c). O

4.4 Tensor products of Sobolev and Besov spaces

In the previous sections tensor product constructions were of exceptional importance, in
particular the constructions of local means and wavelets. We also remind on Proposition
1.4.1 and Theorem 1.4.2, where the spaces S;H(R?) and S; B(R?) were identified as
tensor product spaces. This section now is devoted to the study of the respective coun-
terparts for the spaces S;H(R?) and S} B(R?). This complements the results from the
proof of Lemma 3.2.2. ~ -

In Remark 2.1.2 we already mentioned, that the norms in SJH(R?) and SJH(R?) are
crossnorms. The next proposition is the counterpart of Proposition 1.4.1. Its proof is an
immediate corollary of [74, Proposition 3.1] as well.

Proposition 4.4.1. Let N > 2,1 < p < oo, and let 7 = (r1,...,ry) € RY. Then it
holds

S;H(Rdl X oo X RdN) H” (Rdl) Ra, 5(r2 ..... TN)H(RdQ .o RdN)
_ T1lyeens r d d r d
_Spl N— 1)H<R1 coox RIN- 1)®ap HpN(R N)
_ r d T d
= le(]R 1) Ray *** Pa, HpN(R N)

with coinciding norms. Similarly it holds for m € Né\’
m d d - m d m d
Sp W(R™ x - XRN)—WP (R 1)®ap"'®apwp N (RIN)

in the sense of equivalent norms.
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Next we turn to tensor products of Besov spaces. To this purpose we consider again tensor
products of the corresponding sequence spaces first.

Lemma 4.4.1. Let N >2, ry,...,7ry € R and let 0 < p < co. Then it holds

Tl TN 71 T2, TN — Tl N—1 N — }T1 . "N
Spp b= bp,p s, Spp b= Spp b ®s, bp,p - bp,p ®s, s, bp,p

with coinciding (quasi-)norms. The sequence spaces by, are those from Definition 1.2.4,
where n=d;,i=1,...,N.

This lemma is an immediate corollary of Proposition 1.3.3 for suitably chosen weight
sequences. Now let J; : B;jp(Rdi) —> by, i =1,..., N, be wavelet isomorphisms as in
Theorem 1.2.2(iii). Then Lemmas 1.3.2 and 1.3.6 yield that JY = J; ® -+ ® Jy is an
isomorphism from b}, ®s, - - ®;5, by onto B;}p(Rdl) ®s, - s, BN (R4~). Moreover, for
dyads this isomorphism obviously coincides with the isomorphism J from Corollary 4.3.1.
Hence after linear and (uniquely determined) continuous extension we find J» = J. Now

we conclude from Lemma 4.4.1 the following theorem.

Theorem 4.4.1. Let N >2 7= (ry,...,ry) € RY and let 0 < p < oo. Then it holds
Sy BR™M x -+ x R™Y) = Bl (R) @, -+ - @, ByY (R)

in the sense of equivalent quasi-norms.
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5 Embeddings of sequence spaces

In this chapter we shall investigate many of the basic properties of the sequence spaces
s;qa. A particular focus lies on embeddings. Besides directly calculating these embed-
dings, it is possible to transfer embedding results for the corresponding function spaces
to the sequence spaces using the wavelet isomorphism just proven. While for a certain
number of results this could be done (since we had to prove some of the embeddings to
obtain the wavelet characterization) we intend to use the wavelet isomorphism the other
way round: We prove embeddings (and properties thereof) on sequence space level, and
translate them afterwards into statements for function spaces.

5.1 Preliminary remarks

For our subsequent considerations we need another slight modification of the sequence
spaces introduced in Definition 4.1.1. Moreover, we shall discuss several conventions
which can be transformed easily into each other, and eventually fix our choice.

As mentioned in Section 4.3, the exact form of the inner summation is necessary only
when considering both function and sequence spaces in connection with the associated
isomorphism. Otherwise, one can always reduce the sequence of wavelet coefficients by
defining Ay, = 375 G myev, [Ap,Gm)|- This reduction leads to equivalent (quasi-)norms.
Moreover, the approximation results from Section 6 can be transferred immediately to
the full sequence, resulting only in additional constants.

We explained in Remark 4.3.2 that the exact form of the weight factors corresponds to the
normalization of the functions used in the decomposition. Besides L..- and Ls-normalized
basis functions some applications work with L,-normalization. In our calculations the
version as for atoms will be most convenient. However, all these normalizations can be
transformed into each other by simple lifting arguments (see Section 5.2, Proposition
5.2.1).

One last modification will be helpful. When discussing function spaces, and in particular
(local) means, the abbreviation Qp,, = 277" 1[—1,1]¢ + 277m is well adapted. On the
other hand, when concentrating on sequence spaces (as we will do in the sequel) @p,m =
277([0,1]¢ 4+ m) is better suited. The meaning of X, changes accordingly. However,
both variants lead to equivalent quasi-norms.

To see this, we observe

—114= | (0.1%=€) and [0,1)"= ] ([-3.3+e),

86{0,1}d 66{474}d

and consequently for all 7 € N)Y and m € Z?

U @UJrT,mfe and @?,m: U 2@?+§,m+e'

ec{0,1}4 ee{1,3}¢

The equivalence of the quasi-norms now follows directly from the triangle inequality,

the observations &7 ,,(2+) = A 1 ,, and X,,m(Z ) = Xyu1 o, the estimates Xag, ... <
ce(MX;jm)l/w and ??;m_e < ce(MXg‘jm) for some fixed 0 < w < min(1,p,q), and
eventually the maximal inequality in L/, (¢4/.,) (Proposition 2.3.1; we remind on p < oo

for f-spaces).
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Definition 5.1.1. Let 0 < p,q < co and 7 € RY. Moreover, let V = (Vg)zeyy be a
sequence of subspaces of Z%. For sequences

A={meC:veN) , meVy} (5.1.1)
we define
st b(V) ={X || X]s] (V)] < o0},
- a/p\ V1
Jale = (3 20 5 o))
veNy meVy
Furthermore, in case p < oo we put

s;qf(V) = {)\ : H A s;qf(V)H < oo},

( > > 2 (- W) "

peNé\’ meVy

1AL F )] = | L ®)

In case p and/or ¢ are infinite, one uses the usual modifications.

In the sequel we will drop the tilde and write again A% ,,. As usual, we will also use the
notation s7 a(V). In case Vi = Z¢ for all 7 € N{ we will simply write s, a.

In addition to it, another special case of sequences V is of great importance. For that
case, we will use the notation s} a((2), where the sequence V = V(Q) = (Vp)peyy is
defined by

Vo={meZ : QumnQ+#0}. (5.1.2)

Here €2 is an arbitrary open subset of R?. Later on, we will concentrate on bounded
domains. In case € is the Cartesian product of subsets of R%, then also V possesses an
according product structure. One particular example for such domains will be Q = [0, 1]%.
At first, the case Q = R? is allowed. Clearly, we have s} a(R?) = s] a.

The following lemma presents a significant property of these sequences V = V(Q) for
bounded domains ).

Lemma 5.1.1. Let Q be a bounded open subset of R? and define V = (Vg)yeNN as in
0
(5.1.2). Then there exist constants Cy, Cy > 0, such that it holds

Ch 279 < #V, < C527% forall 7eNY. (5.1.3)

Remark 5.1.1. The proof is obvious, we only mention that due to the boundedness
there exists a cube I's; D €2, and the openness implies the existence of another cube
'y € Q. More precisely, these cubes can be chosen such that

Iy C U Qom C Iy for all 7e N) . (5.1.4)

meVy

From this, the estimates of the count of the index set V5 follows easily.
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Additionally, with the help of appropriate shifting and rescaling we can always achieve
[0,1]¢ € Q. This will be a convenient assumption in several proofs.

In the upcoming calculations it will often be necessary to interchange summations and
integrations. This can always be justified by the following theorem on monotone conver-
gence, since all occurring functions are non-negative. In most instances we will apply the
theorem without further mentioning it.

Theorem 5.1.1. Let (f,)nen be a sequence of non-negative measurable functions, f, :
) — [0, 00|, defined on an arbitrary measure space (£2,.4, 1). Then it holds

[eS) N N -
;/Qf"d“:]}@oo;/gfnd”:LNhi,nw;fndﬂz/Q;fndu.

In particular, limits +o0 are admissible.

Remark 5.1.2. Further properties of the sequence spaces s;qa(V) will be proven over
the course of the next sections. At this point we shall only mention, that clearly these
spaces are quasi-Banach spaces, which can be shown as for weighted vector-valued ¢,- and
L,-spaces. Moreover, using Minkowski’s inequality (Theorem 2.3.2) we find that they are
u-Banach spaces (see Definition 1.3.2), where u = min(1, p, q).

Remark 5.1.3. As for the function spaces we did not define sequence spaces s, f(V).
Of course, the definition can be extended to that effect, on the other hand we no longer had
the wavelet isomorphism for these spaces. As mentioned, our aim is to study embeddings
and approximative properties for sequence spaces, as the arguments and calculations are
considerably simpler. Afterwards these results shall be transferred to the function spaces.
Hence, while many proofs could be carried over to that case we will not amplify this fact.
Moreover, the isotropic case suggests that the extended definition would not yield the
correct spaces s;q f for ¢ < oo, see the famous article of Frazier and Jawerth [30].

5.2 Lifting operator for sequence spaces

In Sectign 2.3.6 we deﬁne:d an operator I, which turned out to be an isomorphism from
Sy AR?) onto S] PA(R?), see Proposition 2.3.11. Of even greater importance for our
purposes will be the analogue for the sequence spaces s;qa(V), which shall be considered
next.

Definition 5.2.1. Let 5 € RY. Then we define the lifting operator Lz for sequences A
of the form (5.1.1) by

(LsA),  :=2"" Mg, veNY mevV,. (5.2.1)

v,m

The mapping properties of this operator are the content of the next proposition. Its proof
is obvious from the definition of the components of the lifted sequence in (5.2.1).

Proposition 5.2.1. Let 0 < p,q < oo (p < oo for f-spaces), 7,5 € RY, and let V
be a sequence of subsets of Z¢. Then the operator Lz is an isometric isomorphism from
sy ,a(V) onto 57" *a(V).

pq
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We only add that clearly we have L-' = L_;. The following corollary yields considerable
simplifications for investigations of embeddings.

Corollary 5.2.1. Let 0 < po, p1,q0, 1 < 00 (po, p1 < oo for f-spaces) and 7,35, € RY.
Then the continuous embedding s}*fa(V) < s7 af(V) holds if, and only if, it holds

sitta(V) = s al(V), where a,a’ € {b, f}.

pq

In other words, whenever one investigates the continuity or compactness of embeddings
and several related properties (like approximation by linear methods), rather than the
smoothness vectors themselves only their difference is a relevant parameter. This allows
us to choose 7 = 0 without loss of generality, i.e. we may restrict our investigations to
embeddings st a(V) < 9 al(V).

5.3 Continuous embeddings

In connection with sequence space defined over some index set I, the notation ¢, i € I,
is reserved for the corresponding canonical unit sequences, i.e. for the sequences whose
components are given by Kronecker symbols, (¢'); = 8;;, i,j € I. Accordingly, the
notations €’ and e’ are used for the canonical unit vectors in RY and R?, respectively.

5.3.1 Necessary conditions

Due to the next lemma we may restrict our considerations to sufficient conditions for
embeddings. The sequence spaces a; (V) occurring in the formulation of the lemma are
variants of the spaces a; , from Definition 1.2.4, modified according to the discussion in
the previous section.

Lemma 5.3.1. Let 0 < p, po, p1,q, qo, @1 < 00 (p, po, p1 < oo for f-spaces) and 7,5 € RY.

(i) Assume the sequence V to have product structure, i.e. let sequences V' = ( ) 0,
i=1,..., N, of subsets of Z% be given, and define for 7 € N}’ sets V; = Vl ><V
Z%. Then the quasi-norms of the spaces s;qa(V) are crossnorms. More premsely, 1f
Noeay (V), then A\ =M ®--- @\ €s) a(V), and it holds

1AM 5@ = [N [apy (VO] [AY [ a2 (V]

(ii) If the embeddmg 810 o

quences V' the embeddings a7
well.

(V) — sfn qu(V) is continuous, then for appropriate se-

(Vi) — (Vi),i=1,..., N, are continuous as

Po»q0 Pl q1

Proof. Part (i) is an immediate consequence of Fubini’s theorem and the factorization
o7 (F=d/p) — gui(ri—di/p) ... gun(rx—=dn/p) for the weight factor.

For sequences V with product structure part (ii) follows at once from the crossnorm-
property (tensorize sequences 1) € ai (V') with fixed sequences M € a,/4(V7), j #i). In
case of arbitrary sequences V we identify the spaces al’;fq(%i) with subspaces of szvqa(V)
with coinciding quasi-norms.
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We fix some i € {1,..., N} and put 6; = {k € Z% : k = m' for some m € Vj,}.
In case V = V(Q), these sets fulfil C,27% < #63 < (9294 j € Ny, similar to (5.1.3).

This follows as in Lemma 5.1.1 from (5.1.4). Now given a sequence \ € a;fq(ﬁi) we can
associate a sequence o;\ € s; a(V) by defining

<0¢)\) _ Ajk s 5Zj§i,m:m(k),jeNO7]{;Evz’
0, else,

where m(k) € Vg, is chosen such that (m(k))Z = k. If follows at once || o;A [T a(V)|| =
| A ‘a;q(%’)” Vice versa, to every given sequence 1 € s; a(V) we can associate a se-
quence ;N € a;fq(ﬁi) via restriction. The mapping o; o 7; is a projection which yields the
mentioned subspace. [

Part (ii) of the above lemma particularly states, that the necessary conditions for em-
beddings in the isotropic case are necessary (componentwise) for the dominating mixed
spaces as well. Since those conditions do not depend on the exact form of W (if at all
an estimate on #62 is needed), the chosen formulation suffices. For an overview about
embeddings in the isotropic situation we refer to [73].

In the next section we will show, that the necessary conditions obtained in this way are
also sufficient. This additionally implies, that as in the isotropic case we have continuous
embeddings if, and only if, it holds set theoretic inclusion.

5.3.2 Elementary embeddings

In Section 2.3.1, we introduced iterated sequence spaces ¢,(¢,). Using this notation we

find sg,/(f b ={,(l,). When dealing with spaces s} ,b(V) we shall need the following gener-
alization.

Definition 5.3.1. Let 0 < p,q < co. Let I be an arbitrary countable index set, and let
J = (J;)ier be a family of countable index sets. Then the space ¢,(1,¢,(.J)) is defined as
the collection of all sequences A = (\; j)ier jes;» such that

[ X |6 (L, 6,(1)) || == (Z (Z Mi,j‘p)q/p) 1/p

i€l jEJi
is finite (modification if p and/or ¢ is infinite).
As a consequence, we find the relation ¢,(NY, £,(V)) = L g/, (s ,6(V)), which will be
helpful numerous times. The abbreviations I x J and Nj x V have to be understood

according to €,(I,0,(J)) = l,(I x J),ie. IxJ={(i,j) : i€ l,jeJ:i}. Wenow begin
with some elementary embeddings.

Lemma 5.3.2. Let 0 < p,q < oo (p < oo for f-spaces) and 7 € RY. Then it holds
(i) sp,,0(V) = s ,a(V) for all ¢ < ¢’ < oo,

(il) s2,a(V) = s; ,a(V) for all 7 < € RV,
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(iii) Let A € s ,b(V), and consider X = L,_3,,A. Then it holds

15 ot (N5 D) < A1 b < 1K bt (85 D)

Proof. The assertion (i) follows at once from the monotonicity of the ¢,-quasi-norms.
(ii) is a trivial consequence of 2”7 < 272 for all 7 € NJ'. Finally, (iii) follows from the
mentioned relation £, (N{',¢,(V)) = L. 5 I (s7,b(V)) and again the monotonicity of the
{,~quasi-norms. O

Lemma 5.3.3. Let 0 < p < o0, 0<¢q<ooand7 € RY. Then it holds
35t < A O] < 17 0]

p,max(p,q

for all sequences as in (5.1.1). Accordingly, we have the embedding

S;min(p,q)b(v) — S;q (V) — S;max(p,q)b<v) :

Proof. As in Remark 4.1.2, the quasi-norms in s} ,a(V) can be reformulated using the

functions gy = 27 )" co. ApmAm, U € NJ'. In this way we obtain

M5 = (o), (Bl amd [ A5 )] = [ (o), Loteo)]

The embeddings now follow by exactly the same arguments as in the proof of Proposition
2.3.7 (Step 2). O

Remark 5.3.1. In case p = ¢ we re-obtain the obvious identity s7 f(V) = s7 b(V)
which holds with equality of quasi-norms. Moreover, together with Lemma 5.3.2(i) we
find s7 ,f(V) = s} b(V), the counterpart of Lemma 4.2.2(i).

The embeddings in Lemma 5.3.3 are sharp in the following sense.
Lemma 5.3.4. Let 0 <p < 00, 0 < qo,¢q,q1 < 00, and 7 € RY. Then it holds
$paob(Q) = s5) f(Q) = s, b(Q)

Psq0 p,q1

if, and only if, ¢y < min(p, ¢) and max(p,q) < ¢.

5.3.3 Embeddings of Sobolev-type

Proposition 5.3.1. Let 0 < py < p; < 00, 0 < qo,q1 < oo and 7, € RY. Then the
following assertions are equivalent:

(i) STH B(V) C T B(V)

Po,q0 P1,91

(ii) s7H B(V) <> 87 . b(V)

Po,90 P1,91

(iii) We have either

1 1
tl>d2<———>, 1=1,...,N,

Po D1
or
1 1 .
ti>di|l ———1, i=1,...,N, and ¢ <gq.
Po P
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Proof. At first, let g9 < ¢;. Then due to Lemma 5.3.2(ii) it suffices to treat the case
t= d(pi0 — pil) Then we obtain directly from the monotonicity of the ¢,-quasi-norms and
the assumptions py < p; and g9 < ¢

P1,q1b( H H Lr d/p1 }qu (NO ) Pl V)) H H LF+E—E/p0a |£q1 (Né\[’&n(v)) H
< | Loy agme | b (NG o (VD) || = [[ @[ 55006V -
This proves the embedding s7+* b(V) < s7

s T o b(V) in this case. In case T —d(+—L) >0
.. “\po  p1

we proceed similarly. For simplicity we assume 0 < py < p; < 00, otherwise one has to
use the usual modifications. To begin with we further assume 0 < ¢ < ¢1 < 00 = qp.
Then we obtain once more from the monotonicity of the £,-quasi-norms

a/po\ /9
H a ‘Spl . V)H < (Z 9—v(t— d(1/po— 1/p1))agp-(r+i— d/po)q( Z ‘aymlp()) >

veEN) meVy

lals;

1/q 1/po
(Z 97 {(t—d(1/po—1/p1))q ) sup 2>‘ (F+t—d/po) ( Z |CL)\ )
E m

1/po B
= ¢ sup 2A (T+t— d/Po)( Z ’a/\m ) — CH a ’3;:;b(v)H )

AeNy mevy
The general situation follows from the monotonicity of the ¢,-quasi-norms,

STH B(V) < s B(V) < 57 b(V) < 57 . b(V)

pO:‘]O Po,00 p1,9 P1,q1

for arbitrary 0 < qo,q1 < 00, 0 < q < ¢y. [l
For sequences V with further properties, the condition py < p; might not be necessary.

In particular, the sets V; have to be finite for every 7 € NY¥, compare to the situation for
p(I). In case of sequence spaces s b(€2), we obtain the following result.

Proposition 5.3.2. Let Q be a bounded open subset of R?. Furthermore, let 7,7 € R,
0<pr <po<ooand0 < qy,q < oo. Then the following assertions are equivalent:

(i) s+ b(Q) C 5T, b(Q)

po q0 p1,q1

() 55,60 < 5, H(9)

(iii) It either holds ¢ >0, or t >0 and ¢y < ¢ .

Proof. Let at first a € s+ _b(Q), 0 < p; < py < 0o and 0 < ¢ < co. Then we obtain

Po,00

from Holder’s inequality for B + PP =1 and (5.1.3)

o a/p\ VN
H a ‘Sp1,q1 Q)” _ (Z 2u.(7"—d/P1)Q1< Z |aV7m|p1) )

veN) meVy
P1 41 po—p1 a1\ 1/q1
— = po P1 Po pP1
5 (Z T ( 5 ,am,po> ( 3 1) )
PGN(])\, mev? mevg



a1 /a1

peNéV meVy
a\ /¢
7-(7—d/po)q po \ "
<c E 2v o)1 E |az m|P° :
vENéV meVy

Now we obtain the embedding by exactly the same arguments as in the proof of Propo-
sition 5.3.1, i.e. either one uses the assumption ¢y < ¢; and the monotonicity of the
(,-quasi-norms, or one uses the assumption ¢ > 0 and the convergence of Z%Név 2l
In case py = oo or ¢; = oo one has to use the usual modifications. [l

The treatment of embeddings between f-spaces is a little more involved. We start with
one more elementary result, which is the counterpart of (2.3.31) (Proposition 2.3.7) for
sequence spaces.

Lemma 5.3.5. Let 0 < p <00, 0< qo,q1 <ooand7,tcRY. If >0, then it holds

SHE(V) = 57 (V).

p;q0 p:q1

Proof. Let at first a € s7 f(V) and ¢; < co. As in Lemma 5.3.3 we use the functions
gy = Zmevg ap.mXom, V € NIV, to reformulate the sy of (V)-quasi-norm. The embedding

s;j;z (V) = s}, f(V) now follows by the same arguments as in the proof of the mentioned
Proposition 2.3.7.
In the general case, Lemma 5.3.2(i) yields for every 0 < g < ¢1 < o0

Spaod (V) = 5,5 F (V) = 53 f(V) = 57, F(V),

p;q0 p,q1

which completes the proof. n

Proposition 5.3.3. Let 0 < py < p; < 00, 0 < qo,q1 < 0o, and 7,7 € RY. Furthermore,
let V = (Vy)peny be a sequence of subsets of Z*. Then the following assertions are
equivalent:

(1) Spoeof (V) C 55, 0, (V)

Po,90 p1,91

(i) oo (V) = 85,0, F(V)

Po,q0 P1,q1

(iii) t; > di(£ — L) >0, i=1,...,N.

Po p1

Rer?arlk 5.3.2. This result is the counterpart of the classical Sobolev-type embedding
F;O(,Zg pl)(Rd) — F) . (R?), see eg. [39] or [83, Theorem 2.7.1(ii)]. The according
embedding for sequence spaces can either be proved using the wavelet isomorphisms from
Section 1.2.2, or it can be proved directly following the lines of the proof of the function
space result in [83] (essentially one has to replace f; = F 1o, Ff by g; = Zmevj jmXjm)-
The corresponding result for function spaces in the case N = 2, d; = dy = 1, can already
be found in [71], Proposition 2.4.1 and Theorem 2.4.1. From that proof we took the idea

for the proof below.
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Proof. In case t > Ei(pio — pil) the embedding (ii) already follows from Proposition 5.3.1
and Lemma 5.3.3. On the other hand, the condition ¢ > c_l(pio — pil) can always be reduced

tot = d(1/py — 1/p;) because of Lemma 5.3.2(ii). Finally, it is sufficient to consider the
case Vi = Z¢, since the spaces s;q f(V) can be identified with a closed subspaces of s;q f
with coinciding quasi-norms, and the restriction of the embedding operator is a mapping
between the respective subspaces.

We prove the result by induction over N. The induction basis N = 1 corresponds to
spaces f, .. In the induction step we write every N-tuple as in 7 = (v/,vy), similar for
d-tuples m = (m/,m"). Using the embedding liin(p,g) (Lp) = Lp(ly) = lmax(pq)(Lyp), see
Proposition 2.3.7, we find for a € spo w)

g5 | L (o) || < € ng,w),(mamfv) Lo (Enintona o (Lot Cagoran)) ) H

and

where gy (2) = 277 |ap m| pm(2), 7 € N, m € Z%. The notation £y, s ., indicates, that
the ¢,,-norm is applied to the indices v/ and m’, accordingly for the other norms. By the
{,-monotonicity it hence suffices to show

L (st o (Lt Caairan) ) | < €112 G | Lo ()|

-t
2 9@ wn),(m!,mN)

Lplle (gqllVN m& (Lpllx qv',m/ )H

LP0|IN (€OO|VN,mN (Lpo|a: oo|v’!,m’ )H (531)

ng N ), (m/ m)

-t
SC 2 g(l/’,l/N),(m’,mN)

i.e. we consider the case ¢; < p; < oo and gy = co. Furthermore, we put

, veN), mez.

huN,mN (LUN) — HQVI't/g(V/,VN),(m’,mN)‘LPO|$,(€OO|V/7W/>

These functions are constant on the interior of every cube @, ,~ C R | since it can be
seen easily that for 2V € int Q,,, ,,v we have h,, .~ (2™N) X, v (@) = kv (2). This
means we can identify these functions with the sequence 7, given by

mik=hix(t), JENy, keZ™, te27((0,1)™ +k).

The ﬁmteness of the right hand side of (5.3.1) then implies n € fpO (%75). From the

L,L)

embedding fpo, ey p1 4 We now conclude
H vt 9’ wn),(m!;mN) Lp1|xN <£q1\VN,mN (Lpo\x ool m? ) H
S C 2v.tg(y’,uN),(m’,mN) LPO|IN <€oo|z/N,mN (Lp0|x oolv!,m/ >H (532)

Moreover, for fixed 2V € R, mY € Z and vy € Ny the induction hypothesis implies

E

| 907 ). mr ¥ | Lo (£ " 0wty | Lo (Cocfur )
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since the families of functions (gq ), (mr.mm) (- ,xN))V/eNN—l wegi-a (defined on Re-dn)
0 s

. !
correspond to sequences in 5;30,00 f, where Xy mW (mN ) appears as a constant factor. Ap-

plying the Ly, ,~ (€q1|,,N mN)—quasi—norm further yields

Lo (Easton oo (Epufo (o) )|
21/ -t g(y’,uN)7(m/7mN) ‘Lpﬂa:N (éql\uN,mN (Lpo\x/ (gooh/’,m’))) H . (533)

Combining (5.3.2) and (5.3.3) proves (5.3.1). B
Finally, together with Lemma 5.3.2 we find for arbitrary ¢ > d(1/py — 1/p1) > 0

ng N ), (m/ mN)

SC‘

st (V) — S;Igl/po_l/pl)f(v) = Spl qf(v) = Sm q1f(v) !

Po,90

for arbitrary 0 < qo,q1 < oo and 0 < ¢ < min(py, q;) < 0o, which finally proves (ii). [

As before, we can overcome the condition py < p; by considering sequences V = V()
for bounded domains.

Proposition 5.3.4. Let Q be a bounded open subset of R?. Furthermore, let 7,7 € RY,
0<p1 <pg<oo,and 0 < gy, q1 < o0o. Then the following assertions are equivalent:

(i) Shaanf () C 5., /()

(i) soHL F(Q) = ) f(Q)

Po,90

(iii) It either holds ¢ >0, or t >0 and ¢y < ¢ .

Proof. As discussed in Remark 5.1.1 for every sequence V(£2) generated by a bounded
set () there exists a bounded set I', such that

SLH)p(Z Z ’au,m’qxu,m(')> cr

PGNé\’ meVy

for all sequences a € s f(€2) and all 0 < ¢ < oo. It is a well-known consequence of
Hélder’s inequality that for measurable sets with finite Lebesgue measure I' € R? it holds
| FIL(D)] < [L]/71/a] £ |Ly(D)]] for all 0 < p < g < oc.

The assumptions in (iii) ensure the embedding spit f() = 57 f(Q). This follows
either from Lemma 5.3.5 (in case ¢t > 0) or from the monotonicity of the ¢,-quasi-norms

(in case gy < ¢; see Lemma 5.3.2). Both times we can further conclude

lalsp, o f (D] < cllalsyief @)
1/q0
=c (Z 2 2”'“*“%|au,m|qwu,m<x>> Ly, (T)
veN)Y meVy
1/qo0
< ‘ ( 2 2 2”‘““*”%|au,m|%,m<x>> Ny ‘
veEN)Y meVy
= alspq (]
This proves the assertion (modification for ¢y = 00). ]
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To complete our overview on embeddings between the considered scales of Besov and
Triebel-Lizorkin spaces we cite the following result from [33], which deals with the mixed
cases. In that article one can find some further results and references.

Proposition 5.3.5. Let 0 < py <p < p1 <00, 0 < qo,q,q1 < oo and 7,7, 71 € RV,
such that

Fo—c_l/pozf—c_i/pzfl—a/pl.

Then it holds

St BRY) — ST F(RY) — ST B(RY)

Po,q0 P1,q1

if, and only if, g9 < p < ¢1.

Remark 5.3.3. We would like to point out that also in this situation we have a contin-
uous embedding if, and only if, it holds set theoretic inclusion. This follows immediately
from the counterexamples used in [33] to proof the “only if”-part.

The proof in [33] itself is done for sequence spaces, and a closer examination yields, that
the sufficiency of the above conditions remains valid even for arbitrary sequences V. This
can be seen either by direct arguments, or via interpreting the spaces s7 ,a(V) as subspaces
of s, ,a.

5.4 Compactness of embeddings

Our next aim is to investigate which of the embeddings of the last section are not
only continuous but compact. To this purpose we want to approximate the embedding
operator by a sequence of finite rank operators with respect to the operator norm in

L(s7+t a(Q),sh . af()).

po,90 7 TP1L,q1
We define operators re; by putting

)\:v,mEVU,

e A
(rer )5, {o, else. (5.4.1)

for every sequence 1 € 57 ,a(V). We find at once
25'(F_d/p)Hregn}€p(Név x V)|| = [[rezn|s; ,a(V)|| < || n]sh,a(V)]]- (5.4.2)
As a first step, we now collect some further properties of the operators re; .

Lemma 5.4.1. Consider sequences 7 as in (5.1.1), and define spaces
Rv(V)={nes bV):n, =0 forall X#7},
where 0 < p,qg < oo, 7€ RY, and 7 € N},

(i) The operator rey is the identical mapping on R7"(V) for all admissible parameters.
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(i) Let 0 < pg < p1 < 00, 0 < qo,q1 < o0, and 7,1 € RY. Furthermore, let 7 € NJ.
Then it holds

[rey © RIFEV(V) — REZ(V)]| = 277 (E=d0/mo=1/p0) (5.4.3)

Ppo,90 Pp1,91

(iii) Let ©Q be a bounded open subset of RY. Moreover, let 0 < p; < py < oo and
7,1 € RY. Then it holds for all 7 € NY

I < oy s REHR) — R @) <L

Po,q0 P1, q1

where the constants ¢y, co have the same meaning as in (5.1.3).

Proof. Step 1: Let py < py, and let n € RIZO*Z;’(V). Then it follows from (5.4.2) and the
monotonicity of the ¢,-quasi-norms

1|3 (V) = 15,0 BV = 270 6, (N % V)|

P1,91
= 97 =d/p0) g=7-E=dpo+d/m) | |, (N x V)
< 9 P Edpotd/on) g E=3m) | |, (NY x V)|
_ 275-@73(1/;9071/1)1))“ |Rr+t 7 ( H .

Po,q0

The estimate from below can be obtained from the sequences n = e”™ for arbitrary
m € V. It follows

H lxm‘Rru (V>H _ 23.(?78/;71) and Heﬁ,m‘Rrthu(v)H _ 25-(?%73/;)0)7

P1,91 Po,q0

hence their quotient yields the desired estimate. This proves (i).

Step 2: Let p; < po and 7 € RIT47(Q). Then it follows from Holder’s inequality with

Po,q0

respect to 1 =B 4 B and (5.1.3)

1/p1
IRyt @] =2 (3 )

meVy
<7t (3 ) ()
meVy
= (#95) " A | (R @)
<oy (R @)]

This yields the estimate from above in (5.4.4). The estimate from below now follows from
the constant sequence, i.e. the sequence 7° € R;(TZOV(Q) with 77 ,, = 1 for all m € V. For
that sequence we obtain

H ne |Rr+tu Q)H _ 25-(?+278/p0)(#vv) 1/po

Po,90

and on the other hand

I Rz 0] = 2 ()

P1,91
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Together, their quotient yields

erﬁ : RF+%,§(Q) LR (Q)H > 2—P~f2—9~8(1/p1—1/p0)<#v7)1/P1*1/P0 > Ci/pl—l/pOQ_p.f‘

Po,90 p1,91
This completes the proof of (ii). O

With the help of the operators re; we can decompose every sequence 7 € s;qa(V) into
pieces belonging to R}7(V). Likewise this can be seen as a decomposition of the identical
map (i.e. of embedding operators). This decomposition is the crucial step for proving
compactness of embedding operators.

Theorem 5.4.1. Let 0 < po,p1,qo, 1 < oo and 7, € RV,

(i) Let po < p1, and let the condition (iii) in Proposition 5.3.1 be satisfied. Moreover, we
assume that there exists some A € NY, such that #V5 = oo. Then the embedding
st b(V) = 57 D(V) is not compact.

(i) Let Q be a bounded open subset of R%. Then the continuous embedding s;;zoa(ﬂ) —

Ci. a’(Q) is compact for every combination of a,a’ € {b, f} if, and only if, it holds

- =(1 1
at-d(o- ) o (5.45)
+

where py < 0o if a = f, and p; < o0 if af = f.

Proof. Step 1: Let € NJ', such that #V5 = co. Then we obtain for the sequences
eM™ for every m € Vyx

HeX,m‘sﬂi b(V)H _ 2X-(?+¥fﬁ/po)

Po,q0 ’

independently of m € V5, and on the other hand we find

lerm = sy bV || = 22

Hence the sequence (exm)mevx C szoﬁob(V) is a bounded one, but one cannot pick a

subsequence convergent in 57 . b(V). This proves (i).

Step 2: We start with the case a = al = b. Let @ > 0. To prove the compactness we
decompose the identity id : s/ b(Q2) — so () in

Po,q0 P1,91

id=)" rey. (5.4.6)

veNy

We now want to use the properties of the operators re; proved in Lemma 5.4.1 to prove the

absolute convergence of this series in E(s;ﬂob(Q), sy ,0(€)). It follows at once, keeping

in mind the relation res(s3 b(Q)) = RE7(2),

p.q

[rer = shHE B(Q) — ) b(Q)|| = |rer + REEZ(Q) — R ()]

Po»q0 Po,q0 pP1,q1
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Now Lemma 5.4.1, equations (5.4.3) and (5.4.4), yield

Z |res ST p(Q) —» o7 b(Q)||

P0,90 P11
veN)

< Z |res RIE7(Q) — RIY ()] <c Z 277 < 00,

P0,90 P11
veNy veNY

where in the last estimate we used the assumption (5.4.5). Thus the series in (5.4.6)
converges in the operator norm, since absolute convergence implies norm convergence. On
the other hand, for every sequence n € sf?;rfmb(Q) the only possible limit for ZveNéV re; 1) is
7 itself, since for every component at most one summand is non-vanishing. This implies,
that the series (5.4.6) indeed converges to the identical mapping.

Finally, since we have dimRI"(Q2) = #V5 ~ 27¢ < oo for all parameters 7, p and ¢
(see (5.1.3)), the mappings re; have finite rank for all 7 € N}Y. Altogether we have

shown, that id :73;;2019(@) — 8. ,,0(2) can be approximated by finite rank operators

in E(s;:{f]ob(ﬁ), sy b(Q)), which yields the compactness of the embedding.

Step 3: The compactness of the embedding s;;jgoa(ﬁ) — 57 .0’ (Q) now will be traced

back to step 2 with the help of Lemma 5.3.2(i) and Lemma 5.3.3. It holds

T+t T+t T 3
Spo,qoa(Q) = Sp:,max(po,qo)b(Q) = Splvmin(phm)b(Q) = SmmaT(Q) )

where all embeddings are continuous, and the middle one is even compact. Hence their
composition is compact as well, which proves the assertion. [l

Remark 5.4.1. Similar non-compactness assertions as in (i) hold for the other con-
tinuous embeddings in Lemma 5.3.2, Lemma 5.3.3, Lemma 5.3.5, Proposition 5.3.3 and
Proposition 5.3.5, whenever at least one of the sets Vy is infinite.

5.5 Dual spaces of sequence spaces

In Section 2.3.8 we proved duality assertions for the Besov spaces of dominating mixed
smoothness. Using the wavelet isomorphism from Section 4.3, these results could be
transferred to the sequence spaces s7 b. Since we will need results for spaces s; b(V) for
more general V, we will give an alternative argument using the dual spaces of ¢,(I, ¢,(.J)).
Moreover, in this section we will characterize the dual spaces for s7  f(V). However,
throughout this section we will stick to the case of Banach spaces, i.e. we will consider
the case 1 < p,q < oo only. The restriction max(p,q) < oo has the same background as
in Section 2.3.8, because the counterpart of the density of S(R?) in ST  A(R?) consists in

the density of the finite sequences.
Lemma 5.5.1. Let 1 <p,q < oo and I, J as before. Then
(€q<[a£p(‘])))/ :Eq/(I,Ep/(J)), (5'5'1)

where i—l—i =1 and %—i—i = 1. More precisely, there is a canonical isometric isomorphism
T Ly (1, 0y (J)) — (L4(I, EP(J))),, which admits the representation

(Ta)(b) = > aisbiy (5.5.2)

i€l jEJi
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fora € Ly (I,0,(J)) and b € £,(1,0,(J)). If the sets J; are finite for all ¢ € I, then this
result extends to spaces £,(1, loo(J)).

Proof. The convergence of the series in (5.5.2) follows by using Holder’s inequality twice.
More precisely, it follows

[(Ta)(b)] < H awq’(]aep’(*]))H ) H b‘gq(jagp(J))

hence T is well-defined and || Ta | (¢,(1, ép(J)))/” < |la|ly(I,4y(J))||- That T is injective
follows from (T'a)(e™?) = a; ;.

It remains to show, that 7" is surjective and isometric. Let y € (¢4(1, Ep(J)))/ and define
z;; = y(e™?). Thus we shall show = € £,(I,¢y(J)), where z = (2;);, and y = Tz with
H X ‘Eq’Uagp’(J)) ’ < H Y { (éq(]afp(J)))IH'

For this purpose, let 1 < p, ¢ < oo first. Then, for some fixed ¢ € I consider the restriction
of y to sequences of the form a = ) e, a; je"7. We denote this restriction by y;. We
immediately find y; € (fp(Ji))/, if we interpret £,(J;) as a subspace of ¢,(I,¢,(J)). By the
well-known characterization of the spaces (Ep(Ji))/ we then know, that y; is generated by
some sequence z; € {(J;) in the usual way. But as (z;); = yi(e?) = y(e™/) = x;, this
can be rewritten as (z; ;) ey, € ¢y (J;) and

= Z'Ii,j|p/ < 0.

J€Ji

Next, put

! ! /
|4,517 |ai|7 /P
Bis ::{ T R

0, else , 0, else.

We now write the countable index set I as I = {ij,1i2,...}, and define further index sets
Iy :={iy,...,in} for N € N. This gives

l/
Z <Z ]x”| ) Z Vi Z |$z‘,j|p/ = Z i Zﬂzﬂz]
i€l “jed; i€lN jeJ; i€lN JjeJ;
=Y 7w Biye) = y< %> Bige” )
i€lN JjeJ; i€l JEJ;
< oIt )| (z% Sl )
i€lN JjEJ;
(60 ) (z% S o )
i€ln jed;

=Hy\(fqu,epu»)’u(Z(Zw) ) ,
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where we used p(p’ — 1) = p’ and %ﬁ -i= q(% —1). Hence

(Z(Zmﬂ.,p’)p’) q <||y|(t(,6,(7))||  forall NeN.

el “jeJd;

Letting N — oo (i.e. taking the supremum over N € N) yields = € £, (I,¢,(J)) and
| [ty (1, 6y ()| < | y‘(ﬁq(I,EP(J)))/H. Finally, Tx = y follows from the respective
definitions and the density of the finite sequences.

The case ¢ = 1 follows from ||yZ |(€p(JZ~))/H < Hy‘(éq(_f,ép((]))),ﬂ for all ¢« € I. For

the case p = 1 and ¢ > 1, we define for every i € I sets J~ = {jl,...,jN}, where
Ji = {34, 7%,...,}. Then we always find an index j!, such that |2 5t] = supje n [ziy]. I
we put
|z Sl
YR = Ji» T4 07
Bij =14 7 I = w7 and ;= sup |2/,
0, else jeanN

then we have 7 ;v 8;;%i; = supje;n [2i ], and the rest of the argument remains the
same.

If the sets J; are finite for every ¢ € I, then the finite sequences are dense in (,(1, (- (.])),
and the characterization of the dual space follows by the same arguments as in the case
1 < p < oo. We only note the necessary modifications in the proof of the surjectivity of
T. We put ;; = sgnz;; and v, = of ~*. Then we find

> (X ra:i,j|)ql =S S bl = S B

i€l “jed; i€lN jeJ; i€lN JjeJ;
= Z Vi Z Bijy(e™) =y (Z Vi Z @',jei’j)
i€lN jed; i€l jed;
1
q q
< 1y | (ol L)) I D (Sup!&,jl) >
el J€Ji
1
< |y | (€a(I, toc())) | Zfﬁ’)
icly
q %
~ et ) I (S bl ) ,
icln NjEJ;
and the rest remains the same. O

The following lemma is an immediate corollary of Lemma 5.5.1.

Lemma 5.5.2. Let 1 < p,q < oo and 7 € RY. Then it holds

(s7.,0(V)) = 5,7,b(V)

p.q
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in the sense that there is a canonical isometric isomorphism 7 : 5 0(V) — (squb(V)),,
which admits the representation

= > D 2 s (5.5.3)

veEN) keVy

for x € 5.7 ,b(V) and y € s}, b(V), where 11—7—1—1% =1 and %—1—? = 1. This characterization
remains true for spaces s7, b(€2), where Q is a bounded open subset of R.

Proof. We remind on the identification ¢, (N}, (,(V)) = L._ g/p( st ,b(V)). Together with
the operator T : £y/(NY, £y (V) — (£,(N', ¢, (V)))/ from Lemma 5.5.1 we obtain

Ti= (L a) TL sy 57 b(V) — (5,49

Pa P
Hence, it remains to determine the dual operator (Lﬁg /p) = L’, d/p of the lift-operator
L; 5, Inserting the respective definitions yields the following: if y' € (€,(NY, fp(V)))/ is
generated by y = (ypx)ox € by (N, £,y (V)), then L’Fia/py’ can be represented as

(Lo ,8) (=) =y (Lagp?) = D w2 Pz
v,keZ

where 2z = (251)5k € 5}, ,0(V).
As all operators involved are isometric isomorphisms, this also holds for 7', and we have
the representation

Z ZQl/rd/pQV —7—d/p) xukyl/k’_z 22 Z‘kayk,

veEN) keVy veEN) keVy
where x € 5.7 ,b(V) and y € s} b(V). O
Lemma 5.5.3. Let 1 <p<o00,1<g<ooand7&RY. Then it holds
T ! -7
(sp.af (V) = 5,70 F (V) (5.5.4)

T f(V) — (s, f(V)) with

in the sense that there is a canonical isomorphism 7" : s, b

operator norm at most 1, which admits the representation

/ DD anrbpsXop(x) de, (5.5.5)

*eNN keVy

—F 7 1,1 _ 11
fora € s, f(V)and b € s} f(V), where 5 + - =1and . + 5 =1

Proof. As X, x(z) = Xy x(x)? for all z € R?, the convergence of the right hand side of
(5.5.5) follows by using Holder’s inequality twice. More precisely, it follows

(Ta)®)] < [[a s, f V- [[0]sh0f (V)]
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hence T is well-defined and || T&!(s;qf(V))/H < ||al]s, " f(V)||. That T is injective
follows from (Ta)(e”*) = |Qvk|ape = 277 %ap .

For the proof of the surjectivity of T we begin with the case 7 = 0. Then it is clear,
that we can interpret s) . f(V) as a closed subspace of L, ({,) (the corresponding index set

being I = N)'), see Remark 4.1.2. Now let y € (sg’qf(V)),. Then by the Hahn-Banach
theorem there is an extension of y to a functional y on L,(¢,) with equal norm. By the
known characterization of the dual of L,(¢,), see Proposition 2.3.14, there is an element
9 = (9v)wer € Ly(Ly), such that for all f = (fp)per € L,(4,)

1) = [ 3 lelasla)ds.

vel

Furthermore, it holds

H g‘ (Lp(«%))’H = H 9 ‘LP/(EQ')” :

Now, put 2z = |Qp il "'y(e”*) = |Qu il 'J((055X5k)5¢;). Then we find

/ gw(s)ds
Qv.k

for every ¢ € (3. We remind on the directional maximal operators from Section 2.3.1.
From (5.5.6) we conclude ), ¢ |75x|A5) < Mgy for all 7, and by the vector-valued

<

o] = Qo] ™" <
Y Y |Q;vk| Q?,k

|g5(s)|ds < (Mgy) () (5.5.6)

maximal inequality for M, Proposition 2.3.1, we obtain

H X ‘Sg',q'f(v)” = H (Zkevg l‘v,k?‘(v,k%e[ ‘(Mgg)ﬁel Ly(4y)
Ly()|| = c || 1(Lo(te)) || = ¢ || w] (2, £ (V)] -

Lp’ (Eq’)

E

<c H (9v)ver

We only note 1 < ¢’ < co. This proves x € sg,’q,f(V), and as p and ¢ are finite by the

density of the finite sequences in 827(1 f(V) we easily find Tz = y.
Finally, the case of general 7 is traced back to the case 7 = 0 by lifting arguments analog

to the proof of Lemma 5.5.2. O

Remark 5.5.1. Since we proved the (absolute) convergence of the representations (5.5.3)
and (5.5.5) we can show that these two operators are identical using the density of finite
sequences and Lebesgue’s theorem on dominated convergence.
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6 Nonlinear approximation

The approximation of “complicated” functions by “easier” ones is a classical topic in
pure and applied analysis. Roughly this can be divided in linear and nonlinear methods.
Linear methods can be described as linear operators, and the approximative powers are
most often measured in certain operator norms.

This chapter is devoted to the study of one particular type of nonlinear approximation,
namely so-called m-term approximation. Nonlinearity means the approximant may de-
pend in a nonlinear or even discontinuous way on the given function (or sequence). The
precise definitions of this method and several related notions are given in Section 6.1. As
in the last chapter our considerations are done for sequence spaces, since these provide
some a priori simplifications of the problem.

When dealing with m-term approximation there are two quite different objectives. On the
one hand one is interested in the (asymptotic) behaviour of the error, preferably in terms
of parameters which characterize the (classes of) functions or sequences which are to be
approximated as well as the quasi-norm in which the error is measured. On the other
hand one looks for explicit constructions of near best approximants, i.e. approximants
which realize the best possible error up to some constant factor. Typically not for all
possible parameters both aims can be accomplished. Therefore our strategy consists in
providing explicit construction for a certain range of parameters (see Section 6.7), and
afterwards the obtained results for asymptotics are extended. The main tools in this
context are approximation spaces (Section 6.3) and real interpolation (Section 6.9). In
this way the asymptotic error behaviour for almost all possible parameter constellations
are established, see Section 6.10.

6.1 General definitions

Definition 6.1.1. A dictionary D is a countable subset of a complex-valued quasi-
normed space X, whose linear span is dense in X. For such sets D = {hl, ha, ...} we

define

zm:zm(p):{zcjhj : ACN,#A <m, ch(C,jEA}.

JEA

Remark 6.1.1. In general, the sets X,, are no linear sets. More precisely, it holds
Yom + X = Yo, if the dictionary consists of at least 2m linearly independent vectors.
Furthermore, we obtain the representation

Yo = U span{hil,...,him}.

Hence ¥, is the union over all subspaces spanned by at most m vectors from the dictionary
o.

Since we are mainly interested in the asymptotical error of approximation methods, we
henceforth assume that the considered quasi-Banach spaces are infinite-dimensional, and
® consists of infinitely many linearly independent vectors.
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Our main interest lies in approximation from such sets ¥,,,. This is called m-term approx-
imation. The quantities defined next measure the error of this approximation procedure.

Definition 6.1.2. Let X and Y be two quasi-normed spaces, and let D C X be a
dictionary. Then the quantity

om(a,Y) =on(a)y = opn(a, D)y = inf{“ a—ulY|:ue Zm}

is called the error of the best m-term approximation of a € X with respect to the quasi-
norm of the space Y. Moreover, we define the m-term width of X and Y with respect to
the dictionary D by

on(X,Y)=0,(X,Y;D) := Sup{am(a)y | X|| < 1}.

Though the assumed density of span D is not necessary in the above definition it ensures
that for every a € X we have 0,,(a)x — 0 for m — co. Our aim is to estimate the
rate of convergence of 0,,(a)y in terms of properties of the spaces X and Y.

Remark 6.1.2. Since the sets Y, are nonlinear, this approximation method is a spe-
cial case of nonlinear approximation. However, we will compare our results to linear
approximation widths, in particular to linear widths as in the next definition.

Definition 6.1.3. Let X and Y be two quasi-normed spaces, and let T' € L(X,Y) be a
bounded linear operator from X to Y. Then we put

an(T) :== inf{H T — A|L(X,Y)|| : rank(A) < n} .

a,(T) is called n-th approximation number of 7.

Of particular interest are embedding operators. In that case the approximation numbers
are often referred to as linear widths. Together with similar approximation quantities
they describe important properties of the embeddings and the spaces itself.

Remark 6.1.3. For a first comparison of the defined linear and nonlinear approximation
methods may serve the following reformulation of the m-term approximation:

om(a)y = inf{H a— Aa) [Y]| ’ A X — Em} .

In contrast to the situation for approximation numbers here arbitrary (i.e. nonlinear, and
even non-continuous) mappings A are allowed. Another difference between a,, and o, is
given by the order of infimum and supremum: For a,, the supremum over the unit ball of
X is taken first, and only then the infimum over all operators, conversely for o,,. Hence
the optimal approximation algorithm for o,, may be a different one for every a € X.

The following lemma will be quite useful in the sequel. We will use it mostly without
explicitly mentioning it.
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Lemma 6.1.1. Let X,Y be quasi-normed spaces.
(i) The quantity o,,(a)y is homogeneous, i.e. it holds

om(Aa)y = [Aop(a)y, a€e X, XeC.

(ii) Let Xy be a further quasi-normed space such that X < X,. Then it holds

on(X,Y) < [lid : X — Xo |[L(X, X0)| o (X0, Y).

(iii) Let Yy be a quasi-normed space such that Yy, < Y. Moreover, let & C Yj be a
dictionary for both Y, and Y. Then it holds

on(X,Y) < |[id : Yo — Y |L(Y0, V)| 0m(X, Vo).

Proof. All assertions are immediate corollaries of the respective definitions. In particular,
we have \Y,,, = X,, for all such sets ¥,, and all A € C. O

6.2 m-term approximation in sequence spaces: Preliminary re-
marks

In the sequel the spaces X and Y will be quasi-Banach sequence spaces of either (vector-
valued) £,-type or of s} a-type. The dictionary D will always be some set B = B,

B,:{e":iel}, (ei)j=5i,j7 i,jel,

i.e. By is the set of canonical sequences with respect to some suitable countable index set
I. For example, in case of sequence spaces s;qa we have [ = NY¥ x Z<.

In principle, the calculation of an optimal m-term approximation consists in two tasks:
On the one hand, one has to determine the right elements of the dictionary, from which
the approximant is formed, and on the other hand one has to determine the corresponding
coefficients. However, due to special properties of the quasi-norms in the sequence spaces
under consideration, one part of the problem is quite easy to solve.

Lemma 6.2.1. Let X be a sequence space either of /,-, Besov- or Triebel-Lizorkin-type.

(i) The space X is a Banach lattice, i.e. for any two sequences a and b with b € X and
la| < |b| (componentwise) it follows a € X and ||a|X|| < [|b|X]|.

ii) For every sequence a = (a;);c7 € X it holds
y j)ied

am(a,X,BJ):inf{Ha—Zajej XH cAC T, #Agm}.
jeA

So far when considering ,,(X,Y), the spaces X and Y were allowed to be arbitrary, as
long as they possessed a common dictionary D. However, since we are interested in its
decay rate we get a priori restrictions on the parameters for the sequence spaces s;qa just
by excluding the cases, where the m-term widths are infinite. To this end the following
lemma is helpful.
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Lemma 6.2.2. Let 0 < po,p1,q0,q1 < o0 (po,p1 < oo for f-spaces), and let 7,5 €

RY. Then the quantity am( a(V),ss . a'(V),B) is finite if, and only if, we have a
continuous embedding s”

PO q0

a(V) — s3

p1,

Po,q0 p1, lha (V), auaT € {b7 f}

Proof. Since it trivially holds

(A ’ Sm q1 (V) ) < H A ‘Sm q1 (V)H ’ Ac S;Zo,qoa(v) ’
the sufficiency of a continuous embedding is immediately clear. The necessity follows from
the observation, that for these sequence spaces a continuous embedding holds if, and only
if, it holds set theoretic inclusion. Hence, if we assume $po.a0(V) 4 55 al(V) there

exists a sequence A € s7 a(V), such that || A|s5 . af(V)|| = co. But for this sequence
it immediately follows from the triangle inequality that o,,(A,s5 . af(V),B) = co and
thus also oy, (s, a(V),s5 . al(V),B) = co. O

As a consequence of this lemma, we will always assume restrictions on the parameters
which ensure a continuous embedding, according to the results of the last sections.

The following lemma will considerably simplify the following calculations, since it allows
a reduction of parameters. The property described therein, the behaviour of the m-term
width in connection with the lifting operator, is the counterpart of well-known assertions
in the theory of s-numbers, see e.g. the monograph of Pietsch [61].

Lemma 6.2.3. Let 0 < pg,p1,q0, 1 < 00 (po, p1 < oo for f-spaces), and let 7,5, € RY.
Then it holds for every combination of a,a’ € {b, f}

Om (Szg—floa(v) 78217Q1GT<V) ’B) =Om (SZ:EO(I(V) S aT(V) ’B)

for all m € Ng.

In other words, the behaviour of the (nonlinear) m-term approximation depends only on
the difference of the smoothness vectors. Of course, for these quantities to be finite the

condition t > d (pio — p%) N is necessary.

Proof. According to Proposition 5.2.1 the lifting operator Ls is an isometry from s7 .a(V)
onto 57 *a(V) for all parameters p and ¢. In particular, it follows

X [s5r0a (D = [ L5 [ s355,a(V)

Po ,QO Po l]O

Y

hence Ls_ maps the unit ball of 55! a(V) onto the unit ball of s7+ a(V). Similarly we
have

[ A= Sud |55, (DI = ([ Z57 (A = ) |55, (D] = [[ L5722 = S [, 0" (V)]

pl:Ql pl Q1 pl»Ql

fﬁ)\r/ every approximation S,,A € X,,. Moreover, we obviously have Lg 7>, = X,,, i.e.
Sm>\ = L§,?<Sm)\> I~ Em ThlS ylelds

om(N, 85, a'(V),B) = on(Ls—sA, ) ,a (V),B). (6.2.1)

? U Pp1,q1 ’ T Pp1,q1
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Altogether we conclude

sup{am()\ 85 1@ (V) || A]si a(V)]| < 1}

7 Pp1,q1 Po,90

= sup{am(Lg,;)\ s" al(V) ,B) : H L ) ‘SF+E a(V)” < 1}

?TP1,q1 0,490

’ TP1,91 Po,90

:sup{am()\ s a(V),B) : Hx\‘sFJFE a(V)|| < 1},

which completes the proof. [l

According to this lemma, when considering the embedding si'! a(V) < s7 _ af(V) it is
sufficient to consider the case 7 = 0. This will be done in the subsequent sections.

Finally, since geometric series play an important role in the upcoming calculations, we
shall state the following lemma on estimates for polynomially perturbed geometric series.

It is proved by standard straightforward calculations, hence we omit the details.

Lemma 6.2.4. Let o, € R and L € N, where o > 0. Then it holds

ZjﬂQ—]a ~ LﬂQ—LOA ,
j=L

with equivalence constants independent of L.

6.3 Approximation spaces

Approximation spaces are a well-known tool in approximation theory. They proved partic-
ularly useful in connection with several types of approximation methods including m-term
approximation. Though they can be defined in the far more general context of approxi-
mation schemes, we are only interested in the approximation spaces relative to o,,.
Originally approximation spaces were introduced in the framework of interpolation theory,
see [11, 59]. The formulation which we will use in the sequel is due to Pietsch [60].
However, when dealing with spaces of dominating mixed smoothness, the spaces A3 (X, D)
defined there are not general enough, as they don’t reflect the behaviour of logarithmic
terms. Recently, Luther and Almira worked on generalizations of these approximation
spaces, which led to the notion of generalized approzimation spaces, cf. [52, 53]. In our
present situation, we only need one particular case of these generalizations.

Definition 6.3.1. Let s,t € R and 0 < u < oo, where s > 0. We define spaces
A5 (X, D) to be the collection of all elements a € X, such that

et oy o | (5 [0 o @ XD ) i 0 cucn
a ’ , = m=
u sup m® (1 + log m)t Om—1 (a,X, D) if uw=o00,
m=1,2,...

is finite. If we put ¢ = 0 in this definition, we re-obtain the classical approximation spaces,
which will be denoted by A% (X, D).
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In [52, 53] most properties of these approximation spaces can be found. At this point we
shall collect some of the basic properties which will be of use in the sequel. For proofs,
we refer to the mentioned literature.

We begin with some almost trivial facts. Since o¢(a, X, D) = ||a|X||, the functionals
| - A (X, D)|| are quasi-norms, and the spaces A?*(X, D) become quasi-Banach spaces
embedded in X. Moreover, for 0 < ug < u; < co we have the embedding

ASN(X, D) — A7N(X, D).

Furthermore, if X and Y are two quasi-Banach spaces with D C X and X — Y, then it
holds

AVH(X, D) = AV(Y, D) (6.3.1)

for all admissible parameters. The following lemma is the main reason for our interest in
approximation spaces.

Lemma 6.3.1. Let Y — X be quasi-Banach spaces, and let D C X. Moreover, let
s > 0 and t € R. Then the following assertions are equivalent:
(i) The Jackson-type inequality

n(f. X, D) < cm™(logm) || £]V ||

holds with some constant ¢ > 0 independent of f € Y and m > 2.
(ii) The m-term width satisfies

Om (Y, X, D) <ecm™*® (log m) -

with some constant ¢ > 0 independent of m > 2.
(iii) We have the continuous embedding

Y — AZ(X, D).

In other words, this lemma allows us to reformulate estimates from above for the error
of the best m-term approximation as embedding problems for quasi-Banach spaces. This
reformulation is particularly useful, because the following proposition shows that the
above approximation spaces are compatible with real interpolation. For the basics in real
interpolation we refer to [7, 82].

Proposition 6.3.1.

(i) Let 0 < u,g <o0,s>0,t € Rand 0 < © < 1. Let X be a quasi-Banach space and
D a subset of X. Then it holds

(X, 43X, D)), = AN X, D). (6.3.2)

(ii) Let 0 < u,up,u; < oo and 0 < © < 1. Further we assume sg,s; > 0, so # s1,
and tg,t; € R. Let X be a quasi-Banach space and D a subset of X. Then, with
s:=(1-0)sog+0s; and t:= (1 — O) 1ty + Oty, it holds

(A3 (X, D), A (X, D)) o, = A3 (X, D). (6:33)
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The counterparts of the above identities for classical approximation spaces are well-known.
Proves for those counterparts can be found in [18, 17] and [59, 11], respectively. A proof
of (a more general version of) the above proposition can be found in Luther [52].

We shall cite one last result. As one can easily check, we have D C A% (X, D) for all param-
eters s and u. Hence, it makes sense to consider approximation spaces A’ (AZ(X , D), D),
and the respective analogue for generalized approximation spaces.

Proposition 6.3.2. Let 0 < u,v < o0, s1,89 > 0, and t1,t, € R. Let X be a quasi-
Banach space and D a fixed subset of X. Then we have

Ail’tl (Af}z,tz (X, D),'D) _ AZ1+82,t1+t2 (X, D) (6.3.4)

in the sense of equivalent quasi-norms.

This proposition, known as the Reiteration theorem, can be found in its classical version
in [60, Section 3.2]. The general assertion (6.3.4) is due to Luther [52].

Remark 6.3.1. The idea of the Theorem is quite simple: If one can’t calculate the
approximation error of f € Y in the norm of X directly, then find some space Z between
Y and X, ie. Y — Z — X. Afterwards, the approximation consists of two steps: First
approximate f by S,,f in the norm of Z, and then approximate f — S,,f € Z in the
norm of the target space X. Of course, this procedure can be iterated involving several
intermediate spaces.

6.4 Building blocks

In Section 5.4 we decomposed sequences A as in (5.1.1) according to

A= Z re; A (convergence at least componentwise) .

veN)

This was used to prove compactness of embeddings. Now we shall consider another
decomposition,

/\:ireu)\:i Z reg A . (6.4.1)
p=0 p=07%.p.d=p

This section will be devoted to the study of properties of the modified restriction operators
re,, it € Ny, and their images, the building blocks re, \. We begin with a number theoretic
result.

Lemma 6.4.1. For every number p € Ny we put

} and S(,u,c_l) = #M(M,E) .

l

M(p,d) == {ﬁENéV S u=Uv-
Then it holds

S(pyd) < e p
Moreover, for every pu € diNy we find

S(pyd) > o™
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Proof. The estimate from above follows from the trivial observation that for every solu-
tion 7 of the equation g = 7 -d we have 0 < v; < pfor i = 1,...,N — 1, and for fixed
V1, ...,Vn_ there is only at most one choice possible for vy. Hence S(,u, 3) < (p+1)N-L
The estimate from below follows by an induction argument with respect to N. For the
induction basis N = 1 we have to consider the equation p = 11d;. Clearly, this one is
solvable if, and only if, x4 is divisible by d;, which is ensured by the assumption pu € d;N.
It follows S(u,d;) = 1 = u°, as we have claimed.

The induction step follows from the observation

i —Unt1dyyr = vidy + -+ vndy,
which yields the formula

[u/dn 1]

S(l% (E, dN-H Z S — Jdn+1, d) .

In other words, we sum over the counts of the solutions of corresponding N-dimensional
equations, and the index runs over all possible values for vy, since we have to keep in
mind 1qdi+- - -+vndy > 0. From this, more precise estimates from above could be derived,
but we will concentrate on estimates from below. Hence we suppose S (,u,c_i) > N1 for
all u € diNy to further obtain

[n/dN+1]
S(p. (d, dy1)) Z S(p—jdved) = Y S(u—jdy,d)
0<j<[pn/dN 1],
dilj
[n/drdn 1] _ [w/d1dN 1]
= > S(p—jdidyir,d) 2 Y (p— jdidy )N
=0 j=0
(#/d1dN 1] "
~ (rdy )V ~ / N Vg o i,
=0 0

We used that due to d; | we have also d; |(u—jdidn+1), thus it follows p—jdidy 1 € diNy
for all 0 < j < [/L/dldN+1]. ]

This lemma corresponds to the well-known result in the case d = 1, i.e. N = d. Then it
holds

d—1
S(/%d) S(p,d) = ('LH_M )N,ud_l forall peN,

which can be proved using the same induction argument as above.

Remark 6.4.1. Since the solvability and the number of solutions of the equation 1 = 7-d
obviously are independent from the numeration of the d;, the assumption d;|u for the
estimate from below can be weakened to d;|p for some i € {1,..., N}, which can be
reformulated as pu € Ufil d;Ng =: N. In particular, if d; = 1 for some index 7, then we
already obtain S(p,d) ~ pV=! for all p € N.

Of further interest will also be the special case pu € doNg, where dy = lem(dy, ..., dy).
Then it holds d%éi € M(u,a) foralli=1,..., N.

However, as one of the main corollaries of all these contemplations we conclude that the
set M (u, 3) is non-empty for sufficiently many pu.
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Remark 6.4.2. Since only solutions 7 € N} of the equation y = 7 - d are of interest to
us, the well-known condition ged(dy, ..., dy)|u for the solvability of diophantic equations
cannot be applied. In particular, even in the case ged(dy,...,dy) = 1 it does not auto-
matically follow M (,u, c_i) # () for all u € N (of course, in this situation solutions in Z" do
always exist).

As a next step we collect some properties of the building blocks. The following lemma
can be seen as a counterpart of Lemma 5.4.1.

Lemma 6.4.2. Consider sequences 1 as in (5.1.1), and let V = V() for some bounded
domain Q C R?. We define spaces

S;,an(Q) - {n < 827‘1@((2) : %,m =0 fOI" all 7 Q M(/L,E)} )
where 0 < p,q < 0o (p < oo for f-spaces), 7 € RN and v € N}.

(i) The operator re,, is the identical mapping on s7 ,a,(S2) for all admissible parameters.

(ii) For 0 < p,q < oo the spaces s; ,b,(€2) can be represented as

spabu(@) = L4 (6(M (1, 0),6,(V)) ).

Moreover, we have for 0 < p < oo
570 = 7, @) = LY (6,(M (. d) x V).

(iii) For 0 < pg,p1 < o0 and 0 < ¢ < oo it holds

Hre : s;mqau(ﬁ) — 3;7(1%(9) H ~ 9H(1/Po=1/p1)+

Here the equivalence constants are independent of 1 € Nj.

(iv) Let 0 < p < oo and 0 < g, 1 < 0o. Then we find for every u € N

We shall also use the notations

y2r p,q1

re : sh o a,(Q) — s a,() H = S(u,a)(l/ql_l/%)+.

Vi=M(ud) x V= {(#.k) : 7€ M),k € Vi),

as well as Dy = #Vy and D, = #V,, = dim s ,a,(Q).

Proof. For b-spaces the assertions (iii) and (iv) follow immediately from the representa-
tion in (ii), the known fact

. 1 0<po<p <0
. oM M| __ ) )

Hld ’ épo Kpl H - 1/p1—1/po
MY / , 0<p <pg <L o0,
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as well as Dy ~ 274 = 21 for every 7 € M (Ma C_Z).
In the f-case we obtain (iv) in the same way, keeping in mind

g q\ 14

veM (p,d) MEV veM (u,d) meVy

since the supports of the functions A, are pairwise disjoint for fixed 7 € NJ'.
For the proof of (iii) in the case p; < py we use the boundedness of 2 and Holder’s
inequality with respect to i—é + % = 1. We find

1/q
(5 5 rmmo)

veM (p,d) MEVT

1/q
( S (- >)

vEM (p,d) MEVE
=¢ H n ’Sgo,qfu(Q)

where I'y has the same meaning as in (5.1.4). The estimates from below follow for some
fixed A € M (,u,c_l) with the help of sequences n*, defined by

(1) g =

We immediately find

Ly, (R)

0150 fa)] = \

< ’FZ sm Lpo (Rd)

I

27??, ﬁ:X,mEVg,
0, else.

17 80,0 £ = [ 0" |}, 0 Lu (D] ~ 1O ~ 1.
In case py < p; we use the embedding from Proposition 5.3.3. The embedding operator
id : s d/po- d/plf(Q) f(Q) also maps shd/po= d/plfu( ) to s; fu(Q), and it holds

r
Spo,q P1,9

id s A () — 7 1(9)]| < ha

id : s/ () — 5T f(Q)H
for all 4 € Ny. From this we obtain

115 0 ful D < [0 |spua ™7 fu(@)] = c2 Wt |7, £

for all n € s7 . f.(2), which proves the estimate from above.
The corresponding estimates from below follow from 7”™ = 2777e”™ for arbitrary v €
M (,u, d) and m € V5. For those sequences we obtain

um’SqufH )H :2—?8/1)0 :2—11/170’ H77Vm‘3 )H — 9~ H/P1

Hn p1qfu

This proves the desired assertion. [l

Remark 6.4.3. The results of Lemma 6.4.2(iv) remain valid also for general sequences
V. The same holds true for (iii) in case py < p;.

We previously explained that we will not consider sequence spaces s;q f(V). However,
for later use it will be important that (iii) and (iv) remain valid (without changes in the
proof) for parameters 0 < p; < 0o < py = 0o and p = oo, i.e. for accordingly extended
definitions of the respective norms. We further mention at this point the identification

Sto00f (V) = 85 0b(V).

00,00
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We are not interested in any questions concerning the convergence of the decomposition
(6.4.1), apart from the obvious componentwise convergence. However, we need some
further estimates connecting the quasi-norm of the building blocks with the one of the
full sequence. We immediately find for 0 < g < oo

H a ‘s;qb(V)”q = Z Hreua‘s;qb(V)”q, (6.4.2)
n=0
and similarly for ¢ = oo
| a|sh b(V)|| = sup|reuals] b(V)]| - (6.4.3)
HENo
These equations have a counterpart for f-spaces as well. It holds

lalsp FOD" <D [renalsy  f(D", (6.4.4)

n=0

where u = min(p, ¢). In case p/q > 1 this follows from the triangle inequality in L, (R?).
With the functions g, = 3_ 1) ev, [a7k|? X, we find

> 9
pn=0
Similarly, from p/q < 1 we obtain by the monotonicity of the ¢,-quasi-norms

Jolfat O = [ (S oto) "t < [ S tanta) s = 3 [l T -

In particular, we have found (see also Lemma 6.2.1)

[rena sy, y(V)|| < [lalsp .yl yed{bf}, (6.4.5)

for all u € Ny.

lalshof (D" =

Loya 8| < X 190 LR = 3 eyl f O
=0 p=0

6.5 Estimates from below

We will begin our investigation of the behaviour of m-term approximation by discussing
several estimates from below, which can be applied to various combinations of spaces

st a(Q) and 0 af(Q).

Po,90 P1,91

Example 1: Define sequences a™ := (a7'y)px, m € N, by

2va/p1 ) v - _m ) A E A‘m b
amy = { r=v (6.5.1)

0 otherwise .

where 7, is chosen such that #V; > 2m and A,, is a subset of V5, satisfying #A,, =
2m. An easy calculation shows

) A=) 1 AGE—E)
| @™ |spolde " D(Q)|| = || @™ |spoie " S| = (2m)H /70
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Due to the special structure of the sequences, the best m-term approximation is easy to
determine. We obtain

o (a™ sO b(Q) ,B) =0, (a™ O F(Q) ,B) = ml/rr

7 7P1,91

Hence we find
qL_ 1 _
Om <SP(()?<100 & :B(Q),sghqu(ﬁ),8> > ¢mYpotl/en (6.5.2)

where z,y € {b, f} and ¢ is independent of m.

Example 2: This time the construction is a little bit more sophisticated. Let m € N be
fixed. We choose a sequence of pairwise disjoint cubes Qp, s, 7 = 1,...,2m, where the
vectors 7; are pairwise distinct. Now define sequences b™ = (b'y )5 x by

m.o__
DA =

(6.5.3)

orrdee 1< j<m, A=Kk,
0, otherwise .

Similarly b*™ is defined (taking the same sequence of cubes). As a consequence of this
construction we get

[0 [saie P p@)l| =m0 and |67 [se Q)] = mY

as well as

|62 — o™ [ FQ)|| =m"? and B — bS5 B(Q)|| = mte

p1,91 P1,91

Furthermore, b™ is a best m-term approximation for 4*™. This implies the estimates

qL_ 1 _

o (sl "), 8, F(Q), B) 2 i, (6.5.4)
qL_ 1 _

(s 1) (). B) = mYmn (655)
a1 _

am(spifgo b)), 0 b)), B) > mati/n, (6.5.6)

This proves the needed estimates from below for the widths o, related to most pairs of
spaces (sh . x(Q),s5 . y(Q)) with z,y € {b, f} and T — 5 = E(pio - pil) The required
sequence of disjoint cubes can always be found for appropriate 7;, which is a consequence
of the standard assumption that €2 is an open set. Of course, the same constructions work

for both bounded and unbounded domains, particularly for = R

When dealing with estimates for spaces associated to bounded domains we need further
constructions with slightly more complicated calculations. We remind on the notations
M (p,d), S(pu,d), V., Dy, Dy and N introduced in Section 6.4.

Proposition 6.5.1. Let 0 < pg,p1,qo, 1 < 0o and t € RN. We put ¢ = td. Moreover,
let 2 be bounded. Then we have

(87 5, () B) 2 m~ (togm) ¥ ) (657

Ppo,90

for all z,y € {b, f}, where py < oo if z = f and p; < o0 if y = f.
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Proof. Step 1: Due to the obvious monotonicity properties of g, it is sufficient to
consider m = 2™ for some M € N. Let 7 € N} be some arbitrary vector, such that 7-d =
M. Additionally let K be the smallest natural number such that C;25% > 2. Then we
have #V 5, xz1 > 2m (here C; and Cy are the constants in (5.1.3), and ' = (1,0,...,0)).
Now consider the sequence

= S (V) Mrop A ) K

kev?«kKs

Consequently for any 0 < gy < oo we find HOzM|sp0 0T Q)H = 1. On the other hand for
some arbitrary I' C V,,, ge1 with #I' = m and for all ¢; we get

(180, b(9), B)
Z #(VerKé ) 1/pog— (T+Keb)-d(t— 1/po) T+Kelk
kEVoy g1\l
= #(vﬁ-i-KEl)_1/p02_(§+KE1).E(t_1/p0+1/p1)#(vﬁ-i-KEl \F)l/pl
> (022M+Kd1)*1/1°0 (2M(012Kd1 _ 1))1/2712—(§+K§1).E(t_1/p0+1/p1)

P1,91

0 b(Q)H

> Oy /Pog  Kdi(l/mg=Mt — () Cy)ym ™

Moreover, since aj; has non-vanishing entries for only one level 7 we immediately see

Om (aM ? 81601,Q1f(Q) ’B) = Om (aM ? Sgl,thb(Q) ’B)

Step 2: Now let m = [%] for some p € N. Then we put

ﬁ,u = 9 —1/q0 Z d(t— 1/po)D—1/p0 uk
v,k)€E

We 1mmed1ately find H B ’sp 20(Q) H = 1, and with the help of (5.1.4) we further conclude

H ol ‘SPMO H ~ 1. On the other hand for any set I' C V,, with #I' = m we obtain
with the abbreviation v, = min(py, ¢1)

16 =508" |,y (D]

—vd(t— 71 — v,
:H Z o-7d(t 1/p°)5(u,d) /40 Vl/poe k plqu(Q)H
(T,k)eV\T
~ s ()] S D @)

(T,k)evV, \T'
>0 utS(M d) 1/q05(%3)*(1/7171/q1) Z Tk
(T,k)eV, \T
=2 () T (v, A D)

> Q—M(t‘*‘l/%)S(Iu,E)*l/QOfl/’Yl+1/(I1 (%Du) 1/m

> 2—u(t+1/yl)s(u,E)—l/CIO—l/’Yl-ﬁ-l/thS(M?8)1/712“/71 _ 2_“tS(M,8)_1/qO+1/Q1 .

Sglmyu(ﬂ) H

We applied the estimates from Lemma 6.4.2, parts (iii) and (iv), and the observation
9 yu(Q) = 2740, (V). If we further use S(p,d) < p¥ = (Lemma 6.4.1) and m ~

161



—(N-1)

S(u,a) 2+ i.e insert p ~ logm and 2* ~ m(logm) into the last estimate, we obtain

(00, B) = 87— 50, b0)]

> m=t (log m) (N=1)(t=1/gqo+1/q1) ‘

Eventually, for general m, the result again follows by monotonicity. [l

Remark 6.5.1. These estimates are indeed valid for all parameters, but of course
they are meaningful only when s . 2(Q) — sghqu(Q). Moreover, the same sequences
may be considered for arbitrary ¢ € RY. The outcome would be m™2 in Step 1 and

C)r— Lyl
m~T logm)(N Dr=g5tay)

in Step 2, Wheregzmin{% : izl,...,N} andT:max{% :

1

=1,..., N}. One only has to replace €! in ay; by €%, where iy is some index with

-~ =

dfo = p. However, since in that case our methods for estimates from above do not yield
20

matching results, those estimates from below are of minor interest and thus omitted here.

Finally, we add that the estimate from Step 2 remains valid for spaces s ,a(V) for every

sequence %, for which there is a sequence V = V() with Q C R? a bounded domain,
such that V; C Vi, 7 € NYY. Particularly this applies to V. = V(I'), where I is an
unbounded domain, and to V5 = Z¢.

6.6 m-term approximation for unbounded domains

In this section we will demonstrate the importance of approximation spaces to obtain

results on the behaviour of o,, (szwoa 85 aal ,B), where 0 < pg < p; < coand T —5 >
(L - 1),

Po p1
To begin with, we study the problem of m-term approximation in spaces ¢, (/) first, where
I is some fixed arbitrary countable index set. By ¢,,(I) we denote the Lorentz sequence

spaces. These are the collection of all sequences a = (a;);er, such that

11,
| a|lpu(D)] := H(np uan)neN Eu(N)H < 00, 0<pu<oo,
where a* = (a}), denotes the non-increasing rearrangement of a. Then we have the

following result, which gives a complete characterization for all approximation spaces
A2 (€,,(I),Br). The proposition goes back to Pietsch [60, Ex. 1].

Proposition 6.6.1. Let 0 < p;,u < co. Let I be a fixed index set. Then a € £, (1)
belongs to the approximation space A%(¢,, (1), B;), if and only if a € ¢,,,(I), where
1/po := s+ 1/p;. Furthermore,

| @] AS (6, (1), B) || = || @[ (T)

: (6.6.1)

where the constants of equivalence do not depend on I.

This proposition will be of use at various places when trying to characterize approximation
spaces. We note some immediate consequences of Pietsch’s result.
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Corollary 6.6.1. Let 0 < py < p; < oo and 7 € RY. Then it holds
1_ 1 r+d(——i

B (57 b (V) B) = sy T B(V)

in the sense of equivalent quasi-norms.

Proof. The obvious identification
G(NY x V) = sYPp(V) = s/P £(V) (6.6.2)

and Proposition 6.6.1 yield

1 1

8 (s (), B) = il b(V).

p1,p1 Ppo,po
The result now follows from a lifting argument, see Lemma 6.2.3 (equation (6.2.1)). [
A first application will be given in the following theorem.

Theorem 6.6.1. Let 0 < pp < p; < o0 and 0 < go,¢1 < o0, and let t € RY, where
t> d(pio - pil) Then it holds

1 1

P I —1l4l
0m<8pquoa Sprar @ B) ~moPo P, m 21,

where a,a’ € {b, f}, pop < 00 if a = f and p; < oo if al = f.

Remark 6.6.1. We wish to draw attention to several remarkable aspects of this result.
First of all, the approximation rate does not depend on ¢, hence increasing the smoothness
parameter does not improve the approximation properties. Secondly, the estimate is
independent of the microscopic parameters qg and ¢;. Lastly, we wish to emphasize that
the approximation error does tend to zero, though the embedding is non-compact. Hence
in this case nonlinear approximation is always superior to linear approximation. All these
aspects are in sharp contrast to the compact case, i.e. approximation in spaces associated
to functions on bounded domains.

Proof. We begin with the estimate from above, and define

_ 1/ =71 1 _
s g (1-3(o - 0)) >0,
2 Po DN
Now we apply Corollary 6.6.1, the embedding property (6.3.1), and the embeddings in
Proposition 5.3.1 and Lemma 5.3.5 to obtain

0,90 P0,P0 Po

- p_< bB)<—>A;’8_"11<s° o', B)

Pl b1 P1,91

_ - 1 1 ’__(i_i
st a=s st a= AN (splpl ) B>

Eventually, Lemma 6.3.1 is used to transform this embedding into the desired Jackson-
type inequality.

163



For the estimate from below, we use sequences a™ as in (6.5.1), where 7,, = 0 for all
m € N. One easily obtains

la™ |spaall = @m)!/7and - o (a™, s}, 4,0t B) = m!/"
with the same arguments as given there. O]

Remark 6.6.2. The used arguments clearly remain valid for spaces s; ,0(Q) for arbitrary
unbounded domains 2. This follows immediately, since the estimate from above is valid
even for arbitrary sequences V, and the estimate from below only uses # Vg = oc.

Remark 6.6.3. Instead of the above rather indirect proof of the Jackson-type inequality,
one can also give an explicit construction of an approximant which yields the optimal
approximation order.

Since the result is independent of ¢y and ¢, in view of Lemma 5.3.3 it is sufficient to
consider a = a' = b. We choose some @ > 0, such that (1 —po/pi)a@ < t—d(1/po — 1/p1),
and define

Ey = n—l/po2—ﬁ~(f—a/po—a) and Ag = {k’ c V; . |>\§7k| Z Eﬁ} s

where \ € Sf)mqob(Q), n € N, 7 € N). Then the approximant is given by

SpA = Z Z /\;Jgev’k.

veNY keAy

The estimate ZPGN{)V #A; < c¢n and the error estimate now use basically the same argu-
ments as the proof of Theorem 6.7.4 with slightly simpler calculations.

6.7 Estimates from above: Explicit constructions

In this section we consider explicit constructions for (order-optimal) m-term approxi-
mants. This will be done in two quite different situations. We begin with the limiting
case for Besov-type sequences spaces and afterwards for Triebel-Lizorkin-type sequence
spaces, i.e. we treat the case ¢ = c_l(pio — pil), po < p1. The final subsection is devoted
to the case of high smoothness, i.e. we consider a compact embedding with additional
assumptions on the smoothness vector t.

6.7.1 The limiting case for b-spaces

As discussed in Section 5.3.2, the sequence spaces s;qb(V) can be interpreted as lifted
versions of the iterated sequence spaces ¢,(NY', £,(V)). This formulation turns out to be
useful also in connection with certain situations for m-term approximation. Hence as
a first step, we investigate approximation in general spaces ¢,(I,¢,(J)) as introduced in
Definition 5.3.1. We will prove a result which is even slightly stronger than needed for
our purposes.

Proposition 6.7.1. Let I be a countable index set, and let J = (J;);c; be a family of
countable index sets. Moreover, let 0 < p,q < oo and r > 0. We define parameters p,
and ¢, by

1 1 1 1

— =74+ - and — =r4+—. (671)

Pr p dr q
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Then we can identify the approximation spaces A7, (Eq(f (), Brx J) as interpolation
spaces. For every 0 < © < 1 and 0 < u < oo it holds

AL (1 6(D) Bres) = (1 (D) by (16, (D)) (6.7.2)
and for 0 < ¢ < ¢ < 1 < ¢, 0 < pog < pr < P1 <pWithT0:]%O—%:qio—;,
ndobodoh o R R ok e

AT (0,(1,6,(.7)), B) = (zqo(z,epou)),qu(f,eplu)))@m. (6.7.3)
In particular, we obtain

A (L1, 6,(T) , Brxs) = Lo, (1, bp,.0,()) (6.7.4)

where the space £, (I Ay (J )) is defined as in Definition 5.3.1, replacing the ¢, -quasi-
norm by a Lorentz sequence space quasi-norm ¢, , . The identity (6.7.4) has to be
understood in the sense of equivalent quasi-norms, where the equivalence constants do
not depend on [ or J.

Remark 6.7.1. This proposition, particularly the identity (6.7.4), is a counterpart of a
result by Jawerth and Milman in [40] for sequence spaces instead of Besov spaces.

Proof. Step 1: Jackson-type inequality.
Under the above assumptions it holds

O (Eqr (1,0, 00(1)) £ (1, 0,(])) ,BIXJ) ~mT (6.7.5)

This result can be found in [35].

Step 2: Bernstein-type inequality.

In this step we will prove a further inequality, which is in some sense a reverse version of the
above Jackson-type inequality. Let a € X (Brxs), @ = D icr 2o icn, i€, 2ic  #Mi <
m. Then we obtain from Hélder’s inequality with respect to 1 = 2 E=P= and 1 = 444

ar /o Y
| a |ty (1,6,,(]))] = Z<Z |C”’j|pr) )

i€l “jEA;

() 0))

i€l ]'EA»L'

<(S(xer)”) (5e)

el “Njel; el

IN

We used the definition of p, and ¢,, in particular ’% = rp, and % = rq,. Consequently,
we have shown

lalte. (2.6 ()] < m[| a6, (1.6(D) -
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It is well-known, that this kind of inequality implies embeddings for approximation spaces.
Either using the embedding theorem in [60, Section 3.4], or using a direct calculation
similar to [45, Section 6] yields

Armin(l,p,q) (gq([’ gp(‘]))v leJ) — glb" (L ng(J)) ) (6-7-6)
since ¢,(1,¢,(J)) is a min(1, p, ¢)-Banach space (compare with Remark 5.1.2).

Step 3: Real interpolation.

The characterization (6.7.2) of the spaces A7, (€,(I,£,(J)), Brxs) now is a consequence of
Theorem 6.7.1 below.

For the proof of (6.7.3) we note that due to the assumptions on the parameters we
find r = (1 — O)rg + ©r;. Then we get from (6.7.5), Lemma 6.3.1 and (6.7.6) with
v =min(1,p,q)

(A (40 ,00). B). AT (4(1.6,(1)). B) )

> (lan 1 (D), s (16 (1)) (banl(T e (D), s (T, e () )

o (AR (6T, 6(0), B), AL (6 (1, 4,(1)), B) )

O,u O,u

O,u '

Proposition 6.3.1(ii) shows, that the first as well as the last interpolation space coincides
with A7 (¢,(1,¢,(J)),B). The identity (6.7.4) now follows by applying the interpolation
theorem of Peetre and Lions (see Section 6.9, Theorem 6.9.2) to either (6.7.2) (replace r
by 7/©) or (6.7.3).

Finally, the statement concerning the equivalence constants follows from the fact, that the
constant in the Jackson-type inequality is independent of I and J, and for the Bernstein-
type inequality we do not have any constant. O]

Remark 6.7.2. Under some light additional restrictions on the index set, both the
Jackson- and the Bernstein-type inequality can be seen to be optimal. We either have to
assume that either I or one of the sets J; is infinite. In both cases it follows

sup{ [, (1. (D] = 0 € SulBres), [[alty (1 G,0) | =1} = m"

Theorem 6.7.1. Let X and Y be two quasi-Banach spaces. Furthermore, we assume
the Jackson-type inequality

on(f, X, D) sem™|[ fIY][. feY,
and the Bernstein-type inequality
LYl semrIx],  feBa(D),

to be fulfilled for some r > 0. Then it holds
AY (X, D) = (X,Y),,
for every 0 < ® <1 and 0 < u < o0.
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This well-known theorem is due to DeVore and Popov [18], see also [17]. It remains valid
in the more general framework of approximation schemes, and a version for generalized
approximation spaces exists as well (see [52]).

Corollary 6.7.1. Let 0 < p,q < oo, r > 0, and define p, and ¢, as before. Then it holds

gQr ([7 ng<J)) — Arrnax(pmqr) (éf]<[7 fp(J)) ) BIXJ) .
The proof already uses interpolation arguments whose formulation will be given in Section
6.9.

Proof. We start with the case p, < ¢, i.e. p < ¢. Then we find by Theorem 6.9.1(i) and
the well-known monotonicity properties of Lorentz sequence spaces

Lo (1,63, () = g (I by, (1)) = (b1 6o (D) L (T 6 (7))

o (AL (61, 6(1)), B), AL (1 6,()), B)) = Ay (64(1,6,()), B)

qr
sqr

Where0<r0<r<r1<oo,0<@<1,r:(1—®)r0+@rl,qlozr0+%,qi1:7al+%,
i S 1 i B 1 1_10, 6 1 _1-0_, 6
o =To+ o and =Tt and hence also . o Ta and o o

In case ¢ < p, i.e. ¢ < p,, we proceed similarly, now using Theorem 6.9.2(iii). We get

Lo (1,65, () = (Lol (), (T, 6 ()

o (AR (G (), B), AL (L G (),B)) = A (£(1,6,(7)). B)

O,pr
where qo, q1, po, P1, 7o, 71 have the same meaning as before. [l

Proposition 6.7.1 and Corollary 6.7.1 now are the keys to the calculation of m-term widths
for Besov spaces in the limiting case.

Theorem 6.7.2. Let 0 < pg < p; < oo and 0 < ¢y < ¢ < 00, and define

. ( 1 1 1 1 )
r=mn(———, —— —|.
Po P11 G 1
(i) Let I be a countable index set, and let J = (J;);e; be a family of countable index
sets satisfying sup,.; #.J; = oo. Then it holds

Om <£P0 (Ia g(JO(‘])) ) gpl (L Eth(J)) ) BIXJ) ~m",
where the equivalence constants do not depend on I or J.

(ii) Let ¢ =d(+ — 1), and assume supgeny #Vy = 00. Then it holds

Ppo P1

oD (V) 55 D(V) By ) ~m ™"

t
P0,q ?7p1,q1

N

Om

where the equivalence constants do not depend on dy,...,dy or N.
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The prove coincides essentially with the proof of Theorem 4 in [34].

Proof. The identification ,(NJ,¢,(V)) = LF_E/p<S;qb(V)> mentioned at the start of
the section (see Section 5.3.2), the assumption # — d/py = —d/p; and Lemma 6.2.3 imply

T (5501l (V) + 550 H(V) By ) = (g (N, an (V) o (N €01 (V) , B )

Hence it suffices to prove (i). Moreover, the assumptions on the parameters ensure
Cpo (NY 040 (V) = £, (N}, £4,(V)) (which follows from the £,-monotonicity), where the
norm of the embedding operator equals one. Hence we can estimate the m-term width
by 1 as well. It remains to treat the case r > 0.

The 1nequahty (6.7.5) proves the case - pll = qio . Now let at first be r = pio — pil <
qo q1 . We then define g, by = = pLo_m +q1 < qio Hence ¢o < @x, and the ¢,-monotonicity
implies

1

gQO ([7 €p0<‘])) — gq* ([7 ng<J)) — Agigia (gth ([7 €p1 (J)) ) BIXJ) )

where the second embedding follows from Corollary 6.7.1.

In case r = + —i<i——1 Wedeﬁnep*by— —i———l—p—l<p—0 Hence py < ps, and

q
from the ¢,-monotonicity and Corollary 6.7.1 we conclude this time

1

Coo (1, Lpg () = Lo (1,65, (T)) = AL T (Lg (1,65,(])), Bixs) -
Thus the estimates from above are proved in view of Lemma 6.3.1. The estimates from
below follow from obvious modifications of the examples in (6.5.1) and (6.5.3). O
6.7.2 Some Bernstein-type inequalities

In this section we want to generalize an inequality for L,-normalized characteristic func-
tions which is due to Temlyakov [78] in the isotropic case and Wojtaszczyk [96] in the
tensor product case, originally proved for the Haar system.

We need some further notations. The set of all dyadic cubes will be denoted by D(n), i.e

D(n) = {C:2*j([0,1]”+k) : jeNO,keZ”}.

The following result is well-known, see the Lemmas 2.1 and 2.2 in [78], Lemma 1 in [19]
or Theorem 11.2 in [36].

Lemma 6.7.1. Let 0 < p < o0, and let Z C D(n) be a set with |Z| = m. Then it holds

> = ([ (o) as) " wme

cel cel

In case 1 < p < oo the functions Xép ) on the left hand side of this lemma can be replaced by
functions from a general L,-normalized wavelet system as in Proposition 1.2.1. Moreover,
the estimate remains true upon replacing the ¢;-summation in the middle term by an
¢4-quasi-norm, 0 < ¢ < oo.
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For our considerations we will need a tensorized version of the above lemma. We define
the set of dyadic rectangles D by

D:D(dl,...,dN):{Q:le---xQN : QZED(dZ),l:L...,N}.

In other words, the set D contains just the rectangles Qy 4, 7 € NY, k € Z4.
We then put for sequences a = (ag)gep of complex numbers

p/a \ P -
Jall= ([ (Sargor) ae) = ol

QeD

The first step toward the desired generalization of Lemma 6.7.1 is the following estimate
for finite sequences, i.e. sequences with only finitely many non-vanishing components ag.

Lemma 6.7.2. Let a be a finite sequence, a = sz aQeQ, I C D with #Z =m > 2.
Then it holds for 0 < p < ¢ < 0

1/p 1/p
(log m)N(l/q—l/P) (Z |aQ|p> < H a ”E < (Z |aQ|p> 7 (6.7.7)

Qe Q€T

and for 0 < ¢ < p < co we obtain

1/p 1/p
<Z \aQ]p) < |la HE < (log m)N(l/q_l/p) (Z ]aQ|p> : (6.7.8)

Qe QcT

All occurring constants depend on p, ¢ and d only.

Remark 6.7.3. The proofs of this lemma and the successive proposition follow closely
the arguments given in [96], Section 4.
Since the assumption on a can be reformulated as a € ;m(BD), these results can be

interpreted as Bernstein-type inequalities for the spaces sg,/qp f and ¢,(D), compare with
Theorem 6.7.1.

Proof. Step 1: We start with the case ¢ = 1.
The prove of the right hand side estimate in (6.7.7) for 0 < p < 1 follows immediately
from the monotonicity of £,-quasi-norms. We obtain

fol= ([ (oo o)

o » 1/p 1/p
s(/RdQZEI(|ang><s>|) ds) =(QZ€Z|aQ|P) .

For the prove of the right hand side inequality in (6.7.8) for 1 < p < oo we consider the
case N = 1 first. Let 7 : {1,...,m} — T be a bijection, such that |a,;| is a non-
increasing sequence. Furthermore, let M be the uniquely determined integer, such that
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2M=1 < m < 2™ and define g, = Z? o1 |an() 752)|, k =1,...,M. Then the triangle
inequality yields

M M oy 2k-1 A
all,= ng N <D | gr | LR Z 3 eV
k=1 k= j=2k—1 d
M 2k_1 M
Z Z a (Qkfl)eW(J) N Z z(k_l)/p’aﬁ(gkﬂ)’ .
—9ok—1 k=1
The last two estimates follow from the lattice structure of || - || and from Lemma 6.7.1.

On the other hand, we obtain from Holder’s inequality with respect to 1 = i + (1 - é)

p
Z|aQ|p—Z|a,, |p>sz Hagee_y|P > M~ p(sz DIP| o 1|>

QeI
M-1 M P
> 2 P[P (Z Q(k’l)/p‘a,r(zk)’ + |an(1)} + Z 2(k1)/p‘&7r(2k1)‘)
k=1 k=2

M p
Z 217pM17p <Z Q(kl)/p‘aﬂ-(gkl)‘) .

Combining both estimates eventually yields

1-1/ v 1-1/p i
lafly 20 Slagl) < ogm) ™ (T lagl )

QeI QeI

Step 2: Now the case N > 2 will be proven by induction over N. Given a finite set
of rectangles Z C D(dy,...,dy), we can rewrite every @ € Z as in @) = @' x Q" with
Q' € D(dy) and Q" € D(dy,...,dy), and accordingly X(gp) = Xc(g) ® X(p). Note that
for #7 = m > 2 there are at most m different cubes ' and at most m rectangles Q"
occurring in this way. Then we find

ez = /Rd /Rd . (Q p3y XS (1)) - 128 (s )|)pd3dt
/Rdl /Rd d1< ( > X )|>\X 0 (s )\)pdsdt.

Q/ : Q/XQNGZ
Now we can apply the induction hypothesis to the (d — d;)-dimensional integral (the
inner sums are treated as coefficients for fixed t € R%). In this way we obtain (observe
(N—1)(p—1) > 0)

ol Qom0 [ 5

Q"€D(dz,....dN)

Q//G'D(dg, ,dN)

< S lagxy (t)])pdt.

Q' :Q'xQ"eT
At this point we further apply the result for the case N = 1. We end up with

a7 < (ogm) ™" logm)™™" 37 > aof’

Q"eD(ds,....dy) Q' : Q' xQ"ET
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logm Z !aQ|p

Qe
This proves the right hand side of (6.7.8).

Step 3: Now consider general q.
We obtain for 0 < p < ¢ from Step 1, applied to 0 < p/q < 1,

([ (S kertror) ) - ([ (Savin) )

QeT

< (Z(mmq)p/q) = (Daw) Up.

Q€T Q€T

ST
Q=

SIS
Q=

Similarly we find for 0 < ¢ < p from Step 2, applied to 1 < p/q < oo,

</ (et Z“); . <<1°g )X (5 (Jaol") g>;

QeT Q€T

1/p
_ (lOg m) N(1/q—1/p) <Z |aQ|p> ]

QeT

Step 4: We prove the estimates from below in the case 1 < p,q < oc.
For every finite sequence a = ZQQ age?, #I = m, with ag # 0, Q € Z, define an-

other finite sequence b by by = |a“§ for ) € Z and zero otherwise. Then we have

fo= (aQXg))QGD € Ly(¢,) and f, = (bQXg/))er € Ly({y), where p/, ¢ are the usual
conjugated indices.

We begin with the case 1 < ¢ < p < oo and hence 1 < p’ < ¢’ < co. In view of Proposition
2.3.14 we find that f, generates a functional on L,(¢,). Applying the characterization of
these functionals we obtain

Z |aQ|p = ZaQbQ = ‘/d Z |Q|_1CLQbQXQ(S)dS

QeT Q€T Qe
_ (p) (»")
_ /R d C;D(%XQP () (b X" () ) ds

Moreover, Step 3 yields

’ q
:/ <Z‘bQXg’)(s)
R \Qez

where we used (p — 1)p’ = p. Combining both estimates we now obtain

It = [ (X leoxgo]!) )
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N\ P /d )
) ds <3 Pgl” =3 lagP .

QeT QcT

H fb |Lp’<£q ) !

1/p




> ” j% ‘Z;p’(gq’)

D= (Zw) N

QeT Q€T

For the estimate from above in (6.7.8), consider the same sequence b. Now the condition
1<p<g<ooimplies 1 < ¢ <p' < oo, and due to Step 3 we find this time

P < (log m)N(I/q’fl/p’)p’ Z |bQ|p’ _ (log m)N(l/pfl/q)p/ Z lag” |
Qe Q€T

[ fo | L (£e')

and consequently

oY) N(1/a-1/p) "
/IRd (Z ) agXy’ (s) ‘ ) ds > (logm) Z lag|P :
Qez

QeI

Step 5: The results for the case ¢ = 1 and 0 < p < oo now follow from Step 4 by choosing
parameters 1 < p,q < oo, such that p = p/q. Afterwards we use the same arguments as
in Step 3, but in a reversed way. Exemplary, in case p < 1 we find

o) (3 ) = (e 2 (3 ey )

Qe Q€T

< ( / d (Z(\aer/’q‘xg’%s))‘?) mds) "

Qe
— </Rd ((;mexé?p)(s))pds) Up.

Finally, the case of arbitrary parameters 0 < ¢ < oo follows once more from the arguments
in Step 3 with the help of the case ¢ = 1. This yields the lower estimates in (6.7.7) and
(6.7.8) for all parameters 0 < p < ¢ < oo and 0 < ¢ < p < oo, respectively. [l

Proposition 6.7.2. Let Z be a finite non-empty subset of N)Y x Z¢. Then it holds for
0<p<g< o0

(N-1)(1/a=1/p)_1/p < /
(1+logm) m'P S (Rd(z

(v,k)eT

1/p

L pr/q
2”’d‘Z/pr,k(s)) ds < ml/P,

and for 0 < ¢ < p < oo we find

1/p

v Pl (N=1)(1/q—1/p)
m'/P < /( g 2”'dq/p?(y7k(s)) ds < (1+1logm) TP
R\ °
(w,k)eT

Moreover, all estimates are order-optimal.
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Proof. We only treat the case ¢ = 1, the general case can be obtained as in Step 3 of
the proof of Lemma 6.7.2.

Step 1: The proof of the estimates from above follows by the same arguments (¢,-
monotonicity or induction, respectively) as in Steps 1-3 of the previous proof. The in-
duction basis now is given by Lemma 6.7.1, and at the end of the induction step when
applying the result for N = 1 one uses once more Lemma 6.7.1 instead of Step 1 of
that proof. Moreover, the proof of the estimates from below follows by the same duality
arguments as in Steps 4 and 5 of the proof of Lemma 6.7.2.

Step 2: Optimality. If the rectangles Q5 4, (7, k) € Z, are pairwise disjoint, then clearly

we have Hz(v,k)ez Xy(f’k? |L,(R%)|| = m!/P. For the other estimates, we define index sets Z,
by

T, = {(D,k) Qo C 0,17 € M(M,E)}, peN.

Then we find #7,, = S(pﬂ) 2# and Zk:(ﬁ,k)elu Xk = Xjpje for every fixed v € M(p,a).
Moreover, we now obtain

/( ST 2 (s) )ds:/( ST 2 )) ds = S (u, d)"2".

(7,k)eZ, 7€M (u,d)

If we additionally assume p € A, then it holds m = #Z, ~ 2*uN~! and hence

1/p
(/ ( Z 2ud/pX ) dS) ~ (logm)(N_l)(l_l/p)ml/p.

(w,k)eL,
Altogether this means that neither of the assertions can be improved. ]

Remark 6.7.4. The argument used in the induction step in the proof additionally shows,
that also the estimates in Lemma 6.7.2 are order-optimal, since improved estimates there
would imply better results in Proposition 6.7.2, in contradiction to the proven optimality.

Remark 6.7.5. The proof furthermore shows, that the result remains valid, if we replace
the characteristic functions by Haar functions (constructed in the same way as the wavelets
in Proposition 4.3.1), since the estimate only depends on the absolute value of these
functions. Though there is possibly more than one Haar function with the same support
() involved, their count is bounded independent of ), hence the asymptotic behaviour
remains unchanged.

Remark 6.7.6. If we slightly change the interpretation in Step 4 of the proof of Lemma
6.7.2, i.e. if we consider f, € L,(¢,) as the generator of a functional on L, (¢,) > f,, then
we see that the estimates from below in both, Lemma 6.7.2 and Proposition 6.7.2, remain
valid also for ¢ = 0o (where, as usual, the summation has to be replaced by a supremum).

Remark 6.7.7. Proposition 6.7.2 has some interesting consequences, apart from its
importance for our further considerations. If p # ¢ then the respective estimates are no
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longer purely determined by #Z, as it was in the isotropic case (Lemma 6.7.1), i.e. there
are two sequences of index sets (Z))n>2 and (Z2,),,>2 such that the associated sequences

(/( S vy, )) /qd8>1/p . i=1,2,

(v,k)ETs, m>2

are non-equivalent. The consequence of this observation is the fact that the best m-
term approximation in spaces sg,q f(V) generally is not given by simply selecting the m
largest coefficients (in a normalized sense). We refer to [41] and the survey [80] for more
information in that direction. In the terms of those references, the space 327(] f(V) is not
weakly rearrangement invariant, and the system B is not democratic. This behaviour of
tensor product systems had been investigated before in [44].

6.7.3 The limiting case for f-spaces

In this section we will consider estimates for the asymptotic behaviour of the m-term
width oy, (s, f(V), 80 . f(V) ,BNéva). Unfortunately, our method works only in some
special cases. Further ones will be treated with the help of real interpolation in Section
6.10. However, at the end of this section we will formulate a conjecture for the general

result.

Theorem 6.7.3. Let 0 < py < p1 < 00, 0 < qo,q1 < oo, and put ¢ = c_l(— — 1)
Furthermore, assume SUPgeny #V5 = o0.

(i) Let ¢1 < p; and pg < qp. Then it holds for m > 2

1 1 i S S

T (0o (V) 8 u F (V) By )~ 7755 (logom) o0 o7t

Po,490 ?P1,91

(ii) If go < po < p1 < ¢ then we find

1 1

O (S f (V) s 5800 F (V) Bugrug ) ~m 3050, meN,

Po,90 ’ T P1,91

Proof. Step 1: We begin with the case ¢; < p; and py < qo. Let a € spo of (V) with
H a ‘spo " V)” = 1. For j € Z we define

Ay ={@mk) €V, : 279 <277P|q,, | <2791} L eN.
In case j < 0 these sets are empty. This follows from Lemma 6.2.1 and

Q—V'Epo/p1|av7k|po — 27'(Z—E/p0)po|a?7k|po — / 23~fpo|ap7k‘po‘)(vy (z)dx < H a ’3 Hpo
Rd

po, qo

Furthermore, we put for M € N
M M
= U A, A = U A,;  aswellas  Tya:= Z ap e’ .
= =0
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We begin with estimates for the counts of the sets A; and AY. Using eventually Lemma
6.4.2 we find

#A,; = Z 1< Z (]al,k|2 Vd/p1>po

(Tk)EA, (T,k)EA, ;

QJpo/ Z 2vd(1/po 1/p1) p°|a k|p0X ( )

(T,k)EV,
JPo (1/po— 1/QO Po po pl PO
<2 S(u d) Hreua‘spo o f H < 00.

Thus also the sets A; are finite ones. Because of py < ¢o < oo it now follows from
Proposition 6.7.2

#Aj :#Aj(l+log(1+#Aj»(N*l)(l/qofl/po)po(1+log<1_{_#Aj))(N*l)(l*po/qo)

_ P0/q0
< (1 +log(1+ #A;)) "0 pO/q")/ ( 3 (2”'d/p°XV,k(x))q°) da
Rri

(Tk)EA;
Po

» ‘ _ q0 0
< (1+10g(1+#Aj))(N_1)(1_qg)2jpo/ ( > (2 55750 |y 1) A (2 )) > dx
Rd

(vk;)eA
< (14 log(1+ #A,) "R s ().

For gy = 0o one uses the usual modification, keeping in mind Remark 6.7.6. This means
for non-empty sets A; we have found

2jp0 Z #A](l + log(l + #Aj))(N—l)(pO/QO—l) ’
which trivially remains true for A; = (). Because
AM — {(g’ k) 273-3/p1|a§’k| > 27M’ 7.d< M},

this estimate also applies to AM. Moreover, the estimate for A; can be reformulated for
7> 2as

log(1+#A;) <j  and  #A; < 29p0j(N=D(=po/a0) (6.7.9)

Hence we conclude that Th;a is an m-term approximation of a, where m is given by
m = [ce2MPo M(N=D(=ro/@)]  Thus it is sufficient to show

1 Po

1 1
la = Tara |55, F(V)|| < e (22) om0 M > 1
As before, for the other m € N the result follows by monotonicity arguments.

Step 2: Initially, we get

p1/q
o= Tuals, o 1O = | (z 5 (leaita o)
>M+1 (v)k)e
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pi/q1
/( o> (@2 x(x)" ) dz .

J>M+1 (,k)eA;

Because of p; > ¢ there exists a § > 0, such that p1(q1 — d)/q1 > po. Applying Holder’s
inequality with respect to 1 = pl;lql + % to the integrand yields

Z Z 2Vd/p12 JX Z 9—30 Z o7da1 /p1o—j(a1— 5))(

Jj>M+1 (T,k)eA; j>M+1 (7,k)eA;
P1—41 pry L
P1 — o\ P1
Z o p1 Z Z . q1
J>M+1 JZM+1 N7.k)eA;

q1

P1
§c2—M5< > ( Yo 27igi@ ‘”Xy,k> m)pl.

J>M+1 NBk)eA;

Hence, with Proposition 6.7.2, (6.7.9) and by the choice of § we finally obtain

H a—Tya |Sp1 q1f v)Hm

p1/q
<2 M5p1/q1/ Z ( 2V~dq1/p12j(q15)‘)(y7k(x)> dx
(T,k)eA;

>M+1
pi/q
— 9—Mdpi/q1 9—ip1(q1— 5/(11/( 2Vdf11/p1_)(' ) dr
J%l (ukZeA ( )
< 9~Mopi/ar Z 9—ip1(a1—9) /q1<(#Aj)1/pl(1 +log #4,) Nfl)(l/(h*l/pl))pl
Jj>M+1
52—M5p1/q1 Z 2—jp1(q1—5)/q12jp0]'(N—1)(1—P0/q0)j(N—1)(P1/q1—1)
J>M+1
< 9 MO M@ U —po) (N -G-8 _ 9= M(pi—po) (NG =)

Step 3: The result extends to the case p; = ¢; with mostly the same arguments. For the
same approximant Tysa we now find from (6.7.9)

la=Tha |55, DI = | @ = Tasa] 55, ,,b(0)]|”

P1,p1
— Z Z 2~ Vd|a§7k|p1§ Z Z 9—ip
J>MA1 (B.R)eA,; FSMAL mR)EA,
< Z 2*]’(271*Po)j(Nfl)(lfpo/QO).

J>MA+1
Inserting the choice of m, we end up with

| a— Twa |sp ST S m Pt (log m) (N=1)(1/po—1/q0)
1 1 ~

Step 4: The case ¢y < po < p1 < ¢ follows simply by monotonicity arguments from
Corollary 6.6.1:

1 1 1 1

st F(V) = Ag ™ (50 f(V) >BN{)\’><V) — AZ " (50 f(V) 7BN(1]V><V) .

Po,q0 p1,p1 P1,91
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Remember s7 b(V) = 57 f(V) for all admissible parameters. In both cases, the estimates
from below follow from Proposition 6.5.1. O]

Conjecture 6.7.1. Let 0 < py < p; < oo and 0 < qg,¢q1 < co. Then it holds

0'm< z(();;H f( ), pl,q1f(Q>7B> <m Po (logm>( - )(po pll ‘110+i)+

for all m > 2.

6.7.4 Further results and mixed embeddings

In this section we shall deal with mixed-type embeddings (see Proposition 5.3.5). For
these, we will estimate the m-term width for several cases of the parameters. Moreover,
we will formulate conjectures for the remaining ones, which are immediate corollaries of
Conjecture 6.7.1 (upon its validity) and Lemma 5.3.3.

Proposition 6.7.3. Let 0 < py < p; < o0 and 0 < qp,¢1 < oo. Furthermore, let {2 be
an open subset of RY.

(i) Let go < po, and let - — = < = — - Then it holds

P1 — Qo

AL )
o (sl ")), F(Q),B) =m HH Lm0
(ii) Now let py < go. Then it holds

E(L_F _ 141
Tm <3po,qo (), s) Sp, qlf(Q) ,B) = m w0 e

for every natural number m € N.

Proof. Step 1: We shall begin with the case ¢y < pp and — — L = qi — qil. These
assumptions immediately imply ¢; < p;, and hence by Theorem 6. 7 2(ii), Lemma 6.3.1
and Lemma 5.3.3 we have the embeddings

g0 1 1 1 1 1 1

Spoe P b(V) — AR T (0 b(V),B) = AR (D f(V),B).

P1,q1 p1,91

Step 2: If - o T o <qi—q—wedeﬁneq* by—*:l +— Then we have gy < ¢,, and

D p
it holds ¢, < pp if, and only if, it holds ¢; < p;. In %hls (lzase we can conclude from Step 1

d(L_L 11
Spougy b(V) = Spoge b( ) = A " (30 f(V) 78) .

p1,q1

¢ 1 1 7(1 1 1 1

On the other hand, in case ¢y < py and p; < ¢y, the result follows from Corollary 6.6.1 as
in the fourth step of the proof of Theorem 6.7.3.

Step 3: We now assume py < gy < p1, and define

1 1 1 1
—=———+—>0.
& Do Go D1
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Then we obtain from Theorem 6.7.2 together with Lemma 6.2.3 and eventually the
Jawerth-Franke embedding (Proposition 5.3.5)

S0 PUB(V) Agigfa(si*giimb(V),B) N Aqo p1 (56 f(V),B)

P1,91

7L7L) 1 1 7( 1 1 1

In case V = V(Q), all the estimates from below are given by (6.5.2) and (6.5.4), respec-
tively. O]

Conjecture 6.7.2. Let 0 < py < p; < o0 and 0 < qo,q1 < 00, where gy < py. Further-
more, let ) be an open subset of R%. Then it holds

) Pl q1

Om (SZ((),;OPl b(Q) f(Q) ,B) = m7%+% (log m>(N_1)(p0 P1 490 41

for every natural number m > 2.

Similarly, we can treat the limiting situation for the other mixed embedding.

Proposition 6.7.4. Let 0 < pg < p; < o0 and 0 < qg,q; < 0o. Furthermore, let () be
an open subset of RY.

(i) Let po < ¢1 < p1. Then it holds

1 1

dL— L _ 1,1
o (sl " 1), 5, W) B) =m wE . meN.

(i) Now let p; < gy, and let pio — L <l qil. Then it holds

pP1 — Qo
1 1

d(+-x _
o (sl " 1), 5, D) B) = m

p1,91

for every integer m € N.

Proof. Step 1: We start with the case p; < ¢ and — - pll = qio — qil. Then we find

Po < qo, and hence by Theorem 6.7.2(ii), Lemma 6.3.1 and Lemma 5.3.3 we have the
embeddings
¢ 1 ¢ 1 1

d —
Sp0,d0 pl ( ) > Spordo pl b( ) APO " (30 b(V) aB) .
1

P1,91
Step 2: If - — - < q— — qil we define ¢, this time by - = qio o L4 —1 > 0. Then it
holds p; < g, if, and only if, it holds py < ¢o. In this case “we can conclude from Step 1
(pl H) p pll 0 p :v11 0
Spo.ay (V) — A (sgl,q*b(V) B) < AL (Sghqlb(V) ,B).

On the other hand, in case ¢y < py and p; < ¢y, the result once more follows from
Corollary 6.6.1 as in the fourth step of the proof of Theorem 6.7.3.

Step 3: Now let py < ¢; < p1, and define

11 1 1
== ——+—2>0.

P+ Po qQ b1
Then we obtain from the Franke-Jawerth embedding and Theorem 6.7.2

g1l 1 gr 1 1 1

no 1 v~ ar) b ar (0
Spo.q0 (V) = sp.lp b(V) = A (55,4,0(V), B).

p1,91

The estimates from below follow from (6.5.2) and (6.5.5), respectively. O
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Conjecture 6.7.3. Let 0 < py < p; < oo and 0 < qg,q1 < 00, where p; < ¢;. Further-
more, let {2 be an open subset of R%. Then it holds

d(2 1,1

d(----L = _11 (L1111
o (sl " F(), 5, , D) B) = m 75 (logm) DG ar )

for every natural number m > 2.

For completeness we shall add some last limiting cases.
Proposition 6.7.5.

(i) Let 7 € RY, 0 < p < o0 (p < oo for f-spaces) and 0 < qg,q; < oo. For every pair
of spaces s; , #(V) and s, y(V), z,y € {b, f}, such that s}  x(V) < s}  y(V) it
holds

Om <s;qox(V) 57 (V) ,B) =1, m € Ny.

(i) Let 7 € RY, 0 < p; < py < 00 (po,p1 < oo for f-spaces) and 0 < gy < q; < o0,
Furthermore, let 2 be a bounded open subset of R?. Then it holds

Po,490 ?UP1,91

0m<sF z(Q), s x(Q),B)xl, meNy, ze{bf}.

Proof. The conditions in (ii) ensure the embedding 57 x(Q) < s) . 2(52), see Propo-
sitions 5.3.2 and 5.3.4. Since 0,,(a,Y,D) < ||a]Y] for every m € Ny, every a € X — Y,
every two quasi-Banach spaces X and Y and every dictionary D C X, the estimate from
above follows directly from the boundedness of the embedding.

On the other hand, the estimates from below follow from (6.5.2) and Proposition 6.5.1,

respectively. O]

6.7.5 The case of high smoothness

In this section, we concentrate on the case f = td. The case of general f can be traced
back to this one using the elementary embedding from Lemma 5.3.2(ii). The decisive
parameter is 0 = min{g—i = 1,... ,N}, i.e. our estimates do not change as long as
o remains the same. In other words, additional smoothness in only some directions does
not improve the approximation quality. The notion “high smoothness” corresponds to the

fact that we have to impose certain additional restrictions on ¢, apart from t > (pio — pil) b
which is necessary for a compact embedding.
Theorem 6.7.4. Let t € R and 0 < pg, p1,qo, 1 < 00. Furthermore, let
1 1
min(po, go) < max(p1,q) and t > (6.7.10)

min(po, qo) a max(pr,q1)

Then for all combinations z,y € {b, f}, where py < o0 if z = f and p; < 00 if y = f,
every a € si)wom(Q) and every natural number m > 2 there exists an approximation

Sma € Yeym(B) of a, such that

= Sua |5, o 0@ < cxm~t(logm) > 53 oo 2]

p Po,q0

The constants ¢y and ¢; do not depend on a or m.
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Proof. Step 1. Let a € spo T
A € N. Furthermore we put

z(Q) with || al|st, ,2(Q)|| < 1 and m = A¥12* for some

po, qo

A, = {(v, k)eV,: |apg| > qb},

0, <A,
- _ €N,. 6.7.11
S {2ua2ws(A,d)", usN,  HETe (6.7.11)

The parameters «, § and 7 will be chosen later on. Moreover, we use the abbreviations
Yo := min(pg, go) and d; := max(py, ¢;). Then we find for p > A

|au k|’yo
= D, 1< )
(T,k)eA, (T,k)EA,
<5 Y0 Z 9—u(t=1/70)v097" d(t—1/70)70 Z }agk‘%

vEM (,d) keVy
_ ~—v09—u(t—=1/70) 'YOH | HVO
=€, 2- re,a s% 70

< 82702 p(t— 1/70)705(M7d)Wo(l/vo—l/qo H e#a‘sm W Q)Hvo

< 5;702—M(t—1/70)’705<1u73)70(1/'70*1/% H a |$p0 qox )H’Yo .

Here we used Lemma 6.4.2, (iii) and (iv), and the estimate (6.4.5). Now we put
St 1= Z Z ap re” (6.7.12)
u=0 (T,k)eA,

and show, that with suitably chosen parameters «, 3, and 7 the sequence S,,a is a near-
best m-term approximation of a.

Step 2. Summing up the result from Step 1 and inserting (6.7.11) we obtain

i#Au s Z #A, ZD + Z 5—702 p(t ’YOS(M d)V (55— 25)
pn=0

pn=A+1 p=+1

Il
=
> My

1 1

< S(u, d)2" + Z 2—p(a+t—%)’}’02—>\ﬁ'yos()\7c_l) 777705,(#73)70(%*%).
n=0 p=A+1
Now we choose
1 1 1 1
Oéz—t+,y—0+19, ﬁ(l—g—?)zi(t—,y—o—f—a),
B = —i—ﬁ = —fr =1+,
nz—q% = —mo=1-%(5 —5)-

In particular, we have ¢ > 0. Then we get from Lemmas 6.4.1 and 6.2.4

Z#A < SN, d)2) + 2200 g () ) Z 2700 g (1, d) 0 ")

pn=A+1
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S SN A2 + 285 (N,d) < AN T2

Hence, S,, is a com-term approximation of a. But for the investigation of the asymptotics
of o,,(a) this is sufficient.

Step 3. Now consider first T), := 3" v \a, apxe”* = re,(a — S,a). Due to the
assumption vy < 07, we find for d; < oo

|api|” = |ag ] 7 ap i < 521_70]a;,k]70 : (7, k) e V,\ Ay, (6.7.13)

Using this estimate, we now obtain with the help of Lemma 6.4.2, Remark 6.4.3 and
(6.4.5)

— L _ 1 A
Yy S S )| T s5,5, 02|

11 1/61
= S(M’d)ql_él2_y’/61< Z |aj7k|61)

(R)EVA\AL

17|

phm

1
o1

< S(M,E)i %2 p/o1 o > Wf( Z 2*#(75*%)7029 (t** 'YO|a |’yo)
(,k)

Tk)EV L \Ay
1.7
< S(Haa)‘lll_5112_#/512#(t«}O):s?gig?< 3 21/-d(t710)70|ay7k|70> 20
(7,k)EV,
— S(M,E)ﬁ‘%g Nt}?g; Hreﬂa|s% Wb Q H}*ﬁ’
S S(ud)iha e, 615(%65)("’ w51 ||real sty o2 ()|
< S(ud) BTG s, @)

In case 97 = oo we arrive at a similar result upon using the usual modifications and
replacing the estimate (6.7.13) by |az x| < €.
Now assume ¢; < oo and H a !5 Q)H =1. With 7, = 0 for s < X we find

= Z “Tﬂ‘8217Q1b<Q)|’ql

po, qo

|¢I1

|a — Swalsd

p1, Q1 phql
p=A+1
<3 (s - oy
p=A+1
7 J0 = L_ 70 g 70\ 91
— 2>\B(1—ﬁ)¢hs()\’a>n(1*§)m Z <S(M7E)E*m2—utﬁ2ua(l—§)>
p=A+1

=9 )‘(*Jrﬁ) (I1s(>\ d)_(l_*)ql

X Z (S(y,a)iﬁ%lg—#t%‘fy( —t+ +19)(1_f)>q1
p=A+1
1_70)(11

I T OW)

X Z (5(%8);1”3%2“@%*%19(139))“

p=A+1
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a1 1 70

< 2—/\(%%9)(1—}—(1’)!113()\,d)—(l—%?)% (S()\,d)a—m2—%)\(t—%+%))¢h
_ 2—A(%+ﬁ)(1—}—§’)q15()\’ d)l—g—;2—m9(1—}—f)q1

— 9 MGG (A, d) w2 TR — g Mg () d)

In case y = f, we replace the application of (6.4.2) at the beginning by (6.4.4). More-
over, the modification in case ¢ = oo is obvious. Finally, inserting A ~ logm, 2~
m(logm)~ V=1 and S(\,d) ~ AN, we obtain

@ = Swal 5, o b(Q)]| < em™ (logm) ¥ )

For all other m, the result now follows by monotonicity arguments. O]

Remark 6.7.8. The assumption (6.7.10) implies in particular ¢ > 1/py—1/py, and from

min(pg, go) < max(p1,q1) follows ¢ > 0. Hence we recover the condition ¢ > (pio — Pil)-l-
for the compact embedding. Moreover, we obtain t — 1/qy + 1/¢; > 0, so there is no

contradiction to the estimates from below in Proposition 6.5.1.

Remark 6.7.9. With a standard soft thresholding argument we can always find a modi-
fication S,,a of S,,a, such that the components depend continuously on a. More precisely,
one has to replace the numbers ayy in (6.7.12) by @y, where

0, §<0,
g = g(avy) g =< 20¢-1), 1<E<2,
£, §>2.

For this approximant one can prove the same error estimate even with the same constant
c1 by a slight modification of the estimate of H T, |sghqu(Q)H in the above proof.

Remark 6.7.10. The construction and the corresponding estimates are based on results
for the isotropic case in [12]. Moreover, the idea of using building blocks goes back to
[94].

Theorem 6.7.5. Let t € R and 0 < pg, p1,qo, q1 < 0o. Furthermore, let
min(po, go) > max(p1, q1) and t>0. (6.7.14)
Consider the operators Py, A € N/, defined by
A A
Pya = Z re,a = Z Z a;,keg’k , a= (av,k)geN(z)vykevg-
p=0 1=0 pe M (u,d) kEVw

Then for all combinations x,y € {b, f}, where py < o0 if x = f and p; < 0 if y = f, it
holds

1 1

Hid Py st a(Q) — sghqu(Q)H <M (A d) w0 (6.7.15)
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Proof. From Lemma 6.4.2, (iii) and (iv), Holder’s inequality and the assumption v :=
min(po, go) > max(py,q;) =: ; we obtain at first

11 11
[repalsp, g, u(S Hﬁswjﬁlém%ﬂ%wl () = S, d)s27% [re,alts"]|
< S(u, @)% 520 DI el |
T P T
1
< S(u,cl)i_%D,f1 0 0 g-Hlt=55 51)S(u d) 0 Hreua}spo qox(Q)H .

As D, =< S(p,d)2*, this simplifies to

Ireualsfy o v (@ S 5 (. d) 527 ash, (a(@)]

Summing up this estimate we find using (6.4.2) and Lemma 6.4.1

oo B q1 oo B
|a — P,\a‘sp1 o ||q1 = Z re,a 5214116(9)“ = Z Hreua‘sghqlb(Q)qu
p=A+1 p=A+1
S 2 (S w2 ) alsg, b))
p=A+1
S 27 (AD) W 6" [ash, b
In case y = f, we argue similarly using (6.4.4). O

Remark 6.7.11. The assumption (6.7.14) implies in particular gy > ¢;. Hence, the ex-
ponent of the logarithmic term is again positive, so there is no contradiction to Proposition
6.5.1.

Remark 6.7.12. Partial sum operators for wavelets and other basis systems are well-
studied objects in approximation theory. The operators defined in Theorem 6.7.5 corre-
spond to so-called hyperbolic cross approximation. This notion had been introduced in
connection with approximation by multivariate trigonometric polynomials, but it has a
non-periodic counterpart for tensor product systems. Previous results for tensor product
wavelet systems in L,(R?) can be found in [16].

We add a reformulation of the above theorems, which combines both results.

Corollary 6.7.2. Let t € R and 0 < pg, p1, g0, ¢1 < 00, where

1 1
t>(‘ - ) . (6.7.16)
min(pg, qo) max(pi, q1) +

Then for all combinations x,y € {b, f}, where py < cc if x = f and p; < 0 if y = f, it
holds

Om (3z 2(Q), 2 y(Q) ,B) < m~*(logm) (N_l)(t_%Jr%) , m>2.

) PMIly
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Notice, that we do not need any assumption on the relation of min(py, ¢o) and max(py, ¢1).

Proof. From #V, < cu™N~12# we obtain at once, that Pya is a linear combination of at
most chA\V 12} elements of B, and hence it is also suited for the estimate of the asymp-

totic behaviour of oy, (a, sghqlb(Q), B). The estimate for the m-term width now follows
immediately from the results in Theorems 6.7.4 and 6.7.5, where (6.7.15) is extended to

arbitrary m > 2 using monotonicity arguments. O

The following corollary re-interprets the result of Theorem 6.7.5 as an estimate for the
approximation numbers. We remind on their definition in Section 6.1.

Corollary 6.7.3. Let t € R and 0 < py, p1, qo, @1 < oo satisfying (6.7.14). Then it holds
for m > 2

o 9 — () S - (o) ).

Proof. As in the proof of the last corollary, we obtain from #V, < cuN"!2# that the
rank of Py is at most chAV"12*. The estimate for general m then follows once more by
monotonicity arguments. ]

Remark 6.7.13. Similar results as in the Theorems 6.7.4 and 6.7.5 can be obtained
without the additional restriction on ¢, i.e. for every t > (pio — pil) L On the other hand this
modification yields worse exponents for the logarithmic factor. The same approximants

S.,a and Pya show the error estimate

t 0 - (N_l) t— max . +min :
Om (8;07%:6(9), EA() ,B) < cm~ " (logm) ( (P0:90) “’1"11’) ,
for m > 2 and all 0 < pg, p1, qo, g1 < 00. An according result holds for the approximation

numbers in case p; < pg.

6.8 Gagliardo-Nirenberg-type inequalities

With the notion “Gagliardo-Nirenberg-type inequality” we refer to an estimate of the
form

7111 < el £ 1]

‘f|X1H®, JeXonXy,

for some 0 < © < 1. Here {Xj, X1} is an interpolation couple of quasi-Banach spaces and
X is an intermediate space, i.e. XgNX; — X — Xy + X;.

Proposition 6.8.1. Let 0 < pg,p1 < 00, 0 < qo,q1 < 00, 19,71 € Rand 0 < © < 1.
Furthermore, let Q be an open subset of R%. We put

1 1- ©6

+ JE—

p Do P1

and T=01-0)F"+0oer7r!,

where 7% = rod, 7' = rid and 7 = rd. Then the following assertions are equivalent for
N > 2:
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(i) It holds

1 1-6 6
- < +—, 0<qg<oo. (6.8.1)
q qo q1

(ii) There is some positive constant ¢y, such that

[ AN < e | Mg M2 36 @] (6.8.2)
holds for all A € 7" (NY) n 67" (NY).
(iii) There is some positive constant ¢y, such that
I (N (D))< e [IA fao (N3 6o (D) 7N s (N3 6, ()7 (6.8.3)
holds for all A € £, (N}, £,,,(V)) N Ly, (NY, £,,(V)).
(iv) There is some positive constant ¢z, such that
[ M spaf @] < e[| A ao N A 5500 £ (6.8.4)
holds for all X € s;;qof(Q) N sEiqlf(Q).
(v) There is some positive constant ¢4, such that
[ M s < e | A aob@ 7| A0, (6.8.5)

holds for all A € 57" b(Q) NsT' , b(Q).

Po,90 P1,91

Proof. We show two chains of implications, at first (i)==(iv)==-(ii)==(i) and then
(i)=(v)==(ii). Finally, we show (i) <= (iii).

Step 1: (i)==(ii) follows by using the monotonicity of the ¢,-spaces and applying Holder’s
inequality twice. Now let b = (b;)veNé\f be an arbitrary sequence of complex numbers.
Then define a by

bﬁv EGNéV,Q;,kC[O,l]d,
ag k. =
’ 0, else.

By suitable dilation and translation we can always achieve [0,1]¢ C €, because as an
open set ) contains a dyadic rectangle. A simple calculation shows || a ‘s;q f (Q)H =

| b }EZ(N(J)V )||, similarly for the other spaces under consideration, and hence (ii)==(iv).
Finally, consider sequences a”, defined by

(@) = 1, veN),v-d=n,
. 0, else.

An easy calculation shows ||a”|(7(N))|| = 2"S(n, d)*/?. Hence (6.8.2) implies S(n, d)"/4 <

clS(n,c_l)%S(n,a)%. Considering only n € A, we know S(n,d) ~ nV~!, and thus for
this inequality to hold the condition (6.8.1) is required.
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Step 2: The conclusion (i)==(v) is again a matter of Hélder’s inequality. For the same
sequence a as in Step 1 we also find || a |s;qb(Q)|| = H b MZ(NéV)” for all 7, p, ¢, and hence
(v)=(ii).

Step 3: Once more we immediately obtain (i)==-(iii) by applying Holder’s inequality
twice. The reverse implication follows by similar arguments as at the end of Step 1 for
sequences o' = oy, ek n € N, for arbitrary ky € Vy. O

Remark 6.8.1. If we assume (6.8.1), then the inequalities (6.
¢; = ¢ = c3 = ¢4 = 1, and this remains valid for spaces £,(N{',(,(V)), s} ,b(V) and

7 : : 0 =1 N
spqf (V) for arbitrary V and even arbitrary 7°, 7" € R™.

8.2)-(6.8.5) hold with
0

Remark 6.8.2. The statement (i) <= (iv) is in sharp contrast to the isotropic case (i.e.
N = 1), where the counterpart of (6.8.4) is valid for all parameters 0 < ¢, qo, 1 < 0. We
refer e.g. to Brezis and Mironescu [10].

The consequences of these Gagliardo-Nirenberg-type inequalities for real interpolation of
the sequence spaces under consideration as well as the problem of m-term approximation
will be discussed in the next sections.

6.9 Real interpolation of sequence spaces

Our aim for the remainder of this chapter is to weaken the restriction (6.7.16) in Corollary
6.7.2 for the estimate of the m-term approximation. One of the tools in this attempt will
be real interpolation. To this purpose we have to deal with interpolation assertions for
the various types of sequence spaces under consideration.

We first collect some known results on interpolation of weighted and vector-valued £,-
spaces. We refer to Triebel [82, Section 1.18] and Bergh/Lofstrom [7], for proofs and
further references.

Definition 6.9.1.

(i) Let I be a countable index set, and let A;, i € I, be Banach spaces. Then we define
l,(A;), 1 < p < oo, to be the collection of all sequences a = (a;);er, a; € A;, such
that

lalto(AD]] = || (1 @i 14l | 5

< 0.

(ii) Let 1 <p < oo and 5 € RY. Furthermore, let Ay, 7 € N}, be Banach spaces. Then
(,(Ap) is the collection of all sequences a = (az)yeny, az € Ay, such that

< 0.

|l = || @7l ax 4511

ly

veNy

(ili) If Ay = A for all 7 € Ny, we shall write £5(A). In particular, if A = C, then
(C) =15,
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(iv) Let A be a Banach space and 1 < p < oo. Let (2,8, 1) be a o-finite complete
measure space. Then L,(A) = L,(A, Q,B, ) is the space of all A-valued measurable
functions f on €2, such that

|—=

P

| £1Zo(A)] = [ Al Lo = (/QHf(x)|A||pdﬂ(x)> < o0,

Theorem 6.9.1.

(i) Let {A;, B;} be interpolation couples for all ¢ € I, where I is a countable index set.
Moreover, let 1 < pg,p; < 00, 0 < © < 1, and put

1 1-0©

C)
p Po D1

Then it holds

(%(Ai) 7€P1(Bi)> = ép((Aia Bi)evp> : (6.9.1)

O,p

(ii) Let A;, 7 € Ny, be Banach spaces, 0 < qo,q1,9 < 00, 9,51 € R, s9 # 51, and
0 < ©® < 1. Then we find

(fZS (45) 6, (Aj)> = (g(A4;), (6.9.2)

O,q

where s := (1 — 0)sg + Os;y.

Remark 6.9.1. In [82], part (i) is formulated only for I = N, whereas part (ii) can be
found in [83], where it is stated only in the case A; = A for all j. But both proofs can be
extended to the above generalizations.

Theorem 6.9.2.

(i) Let {A, B} be an interpolation couple of Banach spaces. Let 1 < po,p1 < 00,

0< O <1 and
1 1-© ©6
- — _I__

P Po 1
Then it holds

(Ln(A). L (B) = Ly((A Bley) (694)

(6.9.3)

(ii) Let additionally 1 < p < ¢ < oo. Then we have the embedding

Ly((4, B)og) = (Ly(4) ,Lpl(B))Qq . (6.9.5)
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(iii) Let {A;, B;} be interpolation couples for all i € I, where [ is a countable index set.
Moreover, let 1 < pg,p1 < 00, 0 < © < 1, and define p be as before. Then it holds
for every p < ¢ < o0

6 (A Blow) = (A1) 6 (BY)) (6.9.6)

O,q '

Proof. Part (i) is the famous interpolation theorem of Peetre and Lions [49]. A proof
for (ii) can be found in [34]. (iii) is some discrete version of (ii) and follows analogously
(where now the proof of Theorem 1.18.1 in [82] has to be modified in a similar way). O

After these preparations, we are able to formulate our results on interpolation of Besov-
and Triebel-Lizorkin-type sequence spaces.

Theorem 6.9.3.

i) Let Ay, 7 € NI, be Banach spaces, 0 < qo,q1 < 00, 7%, 71 €¢ RY, and 0 < © < 1.
0
Furthermore, let

1 1-—
- = © + © and 7:=(1-0)"+0or. (6.9.7)
q do 4
Then it holds
(e;f (Ay) ,egj(Ag))@ = li(40). (6.9.8)

(i) Let 0 < qo,q1 < 00,0 <p <00, 707! € R, and 0 < © < 1. Furthermore, let ¢
and 7 as in (6.9.7). Then

1

(s?" b(V), 5" b(V)) = 5 B(V). (6.9.9)

)
p,q0 p,q1 0.9

(iii) Let 0 < pg,p1 < 00, po # p1, 0 < qo,q1 < oo, and 7%, 7! € RY. Furthermore, let
0 < © <1 and define p as in (6.9.3), and ¢ and 7 as in (6.9.7). Then it holds

S;qb(v) = (stvqob(v) ) S;j,mb(v))@q <~ p S q, (6910)
(SZS,QOMV) ’S;;,qlb(v))e ‘ — SZ,qb(V) <~ q<p. (6.9.11)

Additionally, for ¢ < p we obtain the embedding

ST b(V) (J“ b(V), s b(V))

p,q P0,90 ’TP1,91

: 6.9.12
o0 (6.9.12)

(iv) Let 0 < po,p1,q0, 1 < 00, 70,71 € RY and 0 < © < 1. Furthermore, define p as in
(6.9.3), and ¢ and T as in (6.9.7). Then it holds

5af (V) = (S (V). 5500 (V) = a<p, (6.9.13)

(sl () 5 f (D)) = 5, (V) = p<a. (6.9.14)
and for p < g we obtain the embedding

50l (V) = (S0 (V)50 (V) (6.9.15)
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Slightly weaker versions of (i) and (ii) (for function spaces) in case N = 2 can be found
in [70].

Proof. Step 1: At first, we consider Banach spaces only, i.e. we additionally assume
1 < po,p1,P:Gos q1, ¢ < 0o. Then (6.9.8) follows from (f1+"™V(Ay) = £V (g™ (Ay))
and (6.9.1), we remind on the identities

K(t,a; 27X, 2751Y) = 290 K (2717900t : X V),  t>0,50,5 €R,
for the K-functional of Peetre, and hence
(270X, 2j51Y)®7q = 27°(X, Y)@,q’ s=(1-0)sy+ Osy,

for an arbitrary interpolation couple {X,Y} of Banach spaces. The identity (6.9.9) is a
special case of (i) for Ay = (,(Vy).

The identities (6.9.10) and (6.9.11) follow from (6.9.1) (with ¢ = p, g0 = po, 1 = p1) by an
argument similar to the one for (i), together with the well-known facts (€, (1), €y, (1))o.q =
lpo(I) and £,(I) — ,,(I) <= p < qas well as {,,(I) — (,(I) < q < p. The
embedding (6.9.12) follows as in the proof of (i) by iterated usage of (6.9.6).

The proof of (iv) follows by similar arguments. For ¢ < p we use the elementary embed-
ding (EZO Ly 1) (Ego A 11) op for interpolation spaces. Now the Peetre-Lions-formula
(6.9.4) together Wlth (6.9.8) imply (6.9.13), using the usual retraction-coretraction argu-
ments (for the general results, see e.g. [7, Theorem 6.4.2] or [82, Theorem 1.2.4]), since di-
rectly from the definition we conclude that S; of (V) is isometrically isomorphic to a closed

subspace of L,((7). Likewise (6.9.14) can be obtained from (E” o ) o (6” E’"ll) 6.4

q0 7 7q1 q0

for p < ¢. Finally, (6.9.15) follows from (6.9.5), using once more (6.9.8) with A, = C.

Step 2: We remove the restrictions on the parameters.
In this step the lattice property (see Lemma 6.2.1) of the sequence spaces will be crucial.
Given any sequence a = (ayk)yeny rev, We define

la| = (l%,k”veNéV,kevg and la|® = (\av,k‘s)veNéV’kevf'

These definitions together with the definitions of the respective quasi-norms immediately
yield

Hal |55,62(V)]| = || a]s;,2(V)]
as well as for every € > 0

Hal® |spieqrex (VI = [lal |2 (D" = [[a |2 (D]

p/ea/e
In [34], we derived identities for the K-functional with respect to two of the isotropic
sequence spaces on the basis of the lattice property. Since no other property of these
sequence spaces was used in that proof, the results can immediately be extended to the

spaces s, #(V), x € {b, f}. In this way we obtain
K(t a; S’p(())qom(v) ’ 81??11,(11"E(v)) (t |a| Spo, qox(v) ’ S;;mx(v))
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for every t > 0, and for every 0 < ¢ < 1 we find

70

€ € 7le
K(’a| ’t 3 Spo €7QO/E$(V) ’ Sp1/57QI/€x(V))
= K (t'¢, ]al; s;(?’qox(V) 5y (V)7 t>0.
Choosing 0 < € < min(1, p, po, p1, 9o, ¢1, ¢) and inserting the identities for the K-functional
into the definition of the quasi-norm of the respective interpolation spaces, the embedding
results in (ii)—(iv) for parameters 0 < p, po, p1, o, ¢1,q < 0o now follow from the results
of the first step for 1 < p/e,po/e,p1/e,q0/e, 01/, q/e < . H

Although Theorem 6.9.3 suffices for most purposes, its restriction to finite parameters is
often inconvenient. Hence we look for an embedding result, which will be only slightly
weaker than the previous theorem for finite parameters, but which will also admit in-
finite parameters. At this point the Gagliardo-Nirenberg-type inequalities (Proposition
6.8.1) come into play. We need two preparatory results first. The first one deals with
interrelations between interpolation theory and duality, see [82, Theorem 1.11.2].

Lemma 6.9.1. Let {Ap, A1} be an interpolation couple of Banach spaces, such that
Ag M Ay is dense in both Ay and A;. Moreover, let 0 < © < 1 and 1 < g < co. Then it
holds

((AO ) Al)@,q> - (A/l 7A6)1_@’q/ = (A6 ’ A/l)@,q’ ’

The next lemma is another well-known assertion in interpolation theory and can be found,
e.g., in [6, Proposition 5.2.10].

Lemma 6.9.2. Let {Xj, X7} be an interpolation couple of Banach spaces, and let X be
an intermediate space. Furthermore, let 0 < ©® < 1. Then the embedding

(XO’X1)®1 > X = X+ X4
holds if, and only if, for some constant ¢ > 0 the inequality

7111 < el £ 1]

£ 1%|° (6.9.16)

is fulfilled for all f € Xy N Xj.

Remark 6.9.2. Having a closer look at the proof of this lemma we also find, that the
estimate

I 1(X0, X0)e, | < el Flx) - e,

holds for exactly the same constant ¢ as in the Gagliardo-Nirenberg-type inequality

(6.9.16).

Lemma 6.9.2 is the key to further interpolation results.
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Theorem 6.9.4. Let 0 < po,p1,q,q0, 1 < oo and 7%, 71 € R. Moreover, let 0 < © < 1
and define
1 1- © 1 1-6 ©

= + =, T=(1-0)F"+er!, — = +—. (6.9.17)
p Po P1 de do q1

Then we have for ¢ < gg the embedding

=0 =1

58(V) = (50 002(V) 5 0(V)) o we{bf}. (6.9.18)
Thereby we assume 0 < pg,p; < oo if ¥ = f. Moreover, the norm of the embedding
operator for b-spaces does not depend on d.

Proof. By the monotonicity of the {,-spaces the case ¢ = geg is sufficient.

Step 1: First, we prove that s;qx(V) is an intermediate space with respect to the inter-

polation couple {spo wZ(V), s;l’qlx(V)}. In view of the intended application in Step 2,

we will do s0 only for parameters 1 < po,p1,q0,q1 < oo. We recall the definition of the
norm in s7x(V)Nsh x(V),

po, (IO p1, q1

z(V)Ns, \ll —max<||a|s

P1,91

lalsh, Nalshraz ™)

Ppo,q0 po, qox(

Due to (6.9.17) we find by Proposition 6.8.1

Ve 5502 ()]

- llalshnz(@)]).

and hence s;;) z(V) N Sp1 w2(V) = s x(V). Moreover, we note that from (6.9.9),
(6.9.10) and (6.9.12) (b-spaces), or (6.9. 13) nd (6.9.15) (f-spaces), respectively, follows

F
lalshz () < [l @] 5500 (¥

< max (|| a s, 4, #(V

st (V) = (sF '

Po,q0

z(V),s’ x(V > .
V) P 2 ©,max(p,q)
We remind on the assumed finiteness of all parameters. Since all interpolation spaces
particularly are intermediate spaces by definition, this proves the embedding s (V) <

S;(()) q0 (V) + Sp1 Q1 (V)

Step 2: Suppose now 1 < pg, p1,qo, @1 < 00. Then we find for the respective conjugated
indices 1 < o/, ppy, P, 45 44, ¢y < 00. By (6.9.17) and Proposition 6.8.1 we then obtain

alsy e (DI < Nlals (D a s,z ()7

Due to Lemma 6.9.2 this inequality is equivalent to the embedding

(s, w(V),s;,j;x(w)@l < 577 2(V).

Po-490

The lemma is applicable due to Step 1. From this embedding we obtain from Lemma
6.9.1 with the help of Lemmas 5.5.2 and 5.5.3 (the required density properties are valid
due to the density of the finite sequences) the assertion (6.9.18).
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Step 3: The additional restriction 1 < pg, p1,qo, (1 < 0o can be removed by the same
arguments as in the second step of the proof of Theorem 6.9.3.

Step 4: Finally, the statement concerning the d-dependence of the constants follows from
Remark 6.9.2, Lemma 5.5.2, Hid Y — X’H < Hid X — Y||, and the observation,
that the equivalence constants in the duality assertion Lemma 6.9.1 do not depend on the
interpolation couple. [l

Remark 6.9.3. The complex interpolation method represents an alternative approach
which yields (almost) the same result. It is well-known, see [82, Theorem 1.10.3], that
the embeddings

(X, V), = [X YV]g= (XY)g, . 0<O<L, (6.9.19)

hold for every interpolation couple {X,Y} of Banach spaces. For Banach lattices of
functions (and under some additional restrictions also for quasi-Banach spaces) these
complex interpolation spaces can be calculated as Calderén products X'~®Y®. This has
been done in [94] for sequence spaces s; (§2) in the case d; = --- = dy with the outcome

70 7l 70 -0 7! 7
[Spo,qox(Q) ) Sm,rhI(Q)}@ - SPO,QOx(Q)l 63[)17[]11‘(@)@ =S J](Q)
for the same set of parameters as in Theorem 6.9.4, where ¢ = go, Q2 C R? a bounded
domain, and additionally min(qp,q;) < oo. This means if we restrict ourselves first to
Banach spaces, we obtain the embedding (6.9.19), in particular we re-obtain (6.9.18).

Afterwards, the assertion is extended to quasi-Banach spaces in the same way as before.

6.10 Estimates from above: Closing some gaps

In this section we will apply the interpolation formulas and the Reiteration theorem to
obtain further estimates from above for the m-term approximation. Concerning compact
embeddings we want to get rid of the assumption (6.7.16). At least in the case of two
Besov-type spaces we achieve full generality, matching the estimate from below in Propo-
sition 6.5.1. Moreover, we shall deal with the case of two Triebel-Lizorkin-type spaces.
But to begin with we want to weaken the assumptions in the limiting case.

Theorem 6.10.1. Let 0 < pg < p; < oo and 0 < g, ¢1 < 00, and put ¢t = 3(%@ - p%)
(i) Let pio — p% < qio — qil and p; < ¢;. Then it holds
_ _ 1.
Om (S;JO,qof(v) ) Sgl,thf(v) ’BN{)VXV> ,S m” ko p , me&N.
(ii) Let io — p% > qio — qil and ¢; < p;. Then it holds
P 0 R e X (N-D(E-L-1+1)
O (S (9) Sy V) By ) S 35 (logrm) ™ a3

for every natural number m > 2.
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Proof. Step 1: We prove (i). Due to the assumptions we have py < p; and ¢y < ¢,
hence for every 0 < © < 1 we find parameters 0 < u < oo and 0 < v < 0o, such that
1 1-6 06 1 1-0 06

= + — + —

= and — = .
Do y4! U qo0 q1 v

d(L_1y
In order to apply Theorem 6.7.3(ii) to the space su({f . f (V) we have to ensure the
condition v < u < p;. Firstly, u < p; follows immediately from the definition of u and

Po < p1. Secondly, v < u is equivalent to

<

v Do P11 Qo Q1

0 0 1 1-6 1 1-6 1 1 1 1 1 1

= — < — @( ) <

U

thus the assumptions of Theorem 6.7.3(ii) can be fulfilled by choosing © sufficiently small.
We obtain in this way

7L_L) i_1

sup (V) = Ak (s f(V),B).

Now we conclude from Theorem 6.9.4 and Proposition 6.3.1

A=) 3 ai-1L)
ity ) = (55,0 F9) sud TRD))
- <Sgl’q1f(v) ! goia (Sghthf(v) ’B)>@ 00 - é’igia (Sghqlf(v) ’B) :

Step 2: We prove (ii). Suppose at first gy < ¢;. Then we can choose the parameters
u and v as above. This time we want to apply Theorem 6.7.3(i), hence we have to check
u < v. Similar than before we find

1 1 1 1 1 1

© _©
u§v<:>—§—<:>@<———)§—————+—,
v u a1 D1 Po P11 Go 1

which is satisfied for © sufficiently small. Now we conclude

d(y—2-) e (ND (==t )
suo " f(V) = AT " (s f(V).B),

and the result follows by the same interpolation argument as in Step 1.

Now assume ql < ¢o and ¢; < p;. We once more want to apply Theorem 6.7.3(i) to the

pair (si(v“ g f( )+ S, qlf(V)). Since 1 > 0, the definition of v implies © > 1 — &>0.
On the other hand, the condition v < v can be reformulated as before, which yields an
upper bound for ©. However, the assumptions pg < p; and ¢; < qg ensure the existence
of parameters © € (0, 1) which satisfy both inequalities simultaneously. This follows from

111 1
-4 __’?_"1_0+q_1 — i<l.
do P qoP1 Do
Now we obtain (ii) by interpolation as before. O

The following theorem deals with the case of two Besov-type sequence spaces.
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Theorem 6.10.2. Let 0 < pg, p1,q0,¢1 < oo and t € R, where ¢ > (pio — pil)+. We put
t = td. Furthermore, let 2 be a bounded open subset of R?. Then it holds
_ _ NP

Om (Sfao,qob(ﬁ)asgl,qlb(ﬁ)ﬁwxv) < m (logm) ™ D=z, (6.10.1)
for all natural numbers m > 2.
Proof. We shall distinguish several cases, according to the relations of t, pio — pil and
11
o @
Step 1: We start with the case + — L >¢> L — L TLet p, be defined by

q0 q1 po p1

1 1 - =(1 1

— =t+ —, ie. t:d(———>.

D« D1 D D1

Then by the assumption on ¢ we find p, > pg, and hence by Proposition 5.3.2 it holds

040l (D) = 5. 1 b(O).
Ast = pi — pil < qio - qi, from Theorem 6.7.2(ii) and Lemma 6.3.1 we conclude

sh_ b(Q) = AL (0, b(Q),B).

pP1,91
Combining both embeddings yields the desired estimate in view of Lemma 6.3.1.

Step 2: Now let t > L — L > L L 5 g putr =L - L and define uy by

qo0 q1 Po p1 Po p1’
L :T+qil < qio. Then choose 0 < ©® < 1 and 0 < u; < qp, such that q%:ﬂ+9

uQ uQ uy

Finally, define v’ € R by t = (1—0)r+0r’. By choosing u; (and hence also ©) sufficiently
small, in particular u; < min(pg, p1, 1), also the condition
1 1 1 1
> S a—— (6.10.2)

min(po, u1) a max(pi,q1) w; max(p,q)

_ 1

can be fulfilled. To see this, we have to check ' > uil -

, if p1 > q1. But this follows

from
1 1 1 1-06 S
r>——— <« t—-(1-0)r>—— ————
(51 b1 qo Ug b1
1-6 1-06 1 1-6 1-6 1-6 ©6
<— t— + > — — + — - —
Do P qo Do D1 q1 b1

1 1-© © 1 1 1 1
= t>—————=———4+0(———),
g1 D1

what is valid for sufficiently small ©. The case p; < ¢, can be obtained by a similar

calculation. More precisely, we find
, 1 1 1 1

P> — - = =t — — —
U q do 1

Now we know by Theorem 6.7.2(ii)
s b(Q) — A0 (2 b(Q),B),

Ppo,uo P1,q91
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and Corollary 6.7.2 yields

S p() o A VIR (D ) By

po u1l P1,91

Then we obtain by interpolation (Theorem 6.9.3(ii) is applicable, since ug < oo due to
r>0)

SZZvQOb(Q) = (s;;guob(g)’ S;;;C,lulb(ﬂ)> (S qo

- ~(N-D(' =3+ ) g
o (AL(SD,, b(62).B) AL D (ab.5),
t,—(N-1)(t +q11 =
Ay ) ). 5).
The last line follows from Proposition 6.3.1(ii).
Step 3: Lett > L o T qlo >O Putr—i—L nddeﬁneuoby——r—i——1 < 5
i

Then choose 0 < © < 1 and 0 < uy < po, such tha o = lqu + uel Finally, define ' € R

by t = (1 —©)r+ Or’. By choosing u; (and hence also ©) sufficiently small, in particular
uy < min(qo, p1, 1), also the condition
1 1 1 1

r > — — = — - — 6.10.3
min(ui,q) max(pi,q) wi  max(pi,qr) ( )

can be satisfied. This can be seen as in Step 2.
Now we know by Theorem 6.7.2

s b(Q) s A(s9 (), B) .

0,90 pl q1

Moreover, Corollary 6.7.2 (or Theorem 6.7.4, respectively) yields

' b ‘—>.A207(N D(r'—otar)

Ul »do

(2 ,,b(), B).

P1,91

From this we conclude in case py < gy from Theorem 6.9.3(iii) and Proposition 6.3.1(ii)

S;C(l),qob(Q) — (5227(]019(9), ulldqob<Q)>@qo

(N=1)(r'— L +

T, = q ‘H)
o (A2 (60, (). B) AL (s, ,000).8) )
t,—(N—1) t—qi+qi =
= Ag, (=5ar) (s9,.,0(2),B) .
On the other hand, if ¢y < pg, we get similarly
a ~W-D(t-2+2) 5
S??Jﬂob(g) = ‘APO oo (sgl,mb(Q)? B)
by interpolation with respect to the (.,.)g p,-functor. In both cases Theorem 6.9.3(iii) is

applicable, since the assumptions ensure r = qio — i > 0 and 0 < ug, uy, qo, po < Q.

Step 4: Now consider the case t > — — q— > 0 > o= p% and ¢; < oco. Then we choose
up > qo, ' >t,and 0 < O < 1, suchthat
I 1- @ o

t =06 and —
QO q1 Ul
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By taking u; and hence also © sufficiently small, particularly u; < pg, we can ensure

1 1 1 1

min(po, u1) a max(pr,q1) u max(p1, ¢1)

r >

as in Step 2, and 7’ > 0 follows from ¢ > 0. Thus we find by Corollary 6.7.2

r,—(N=1)(r' —i+

B0 > AL (0 b(Q),B) .

Po u1l P1,91

Then we obtain from Theorem 6.9.3(ii) and Proposition 6.3.1(i)

() = (5,00(2) . 0,0

5 r=(N-D)(r'-E2+1) , 5

(60, b(2) AL A (0, b(0).5) )
t—(N-1)(t-L+2) 5

= Ay © (), B)

Step 5: Finally, all cases left open so far (where we still assume ¢y < ¢;) could be treated

similarly by carefully choosing parameters and applying real interpolation. However, since

most cases would have to be treated separately, we choose a slightly different method

(which could have been applied also instead of Steps 2—4).

Let t > £ — L > 0. Consider first the case py < p;. Then we can choose 0 < u,v < 00,
r >0, and0<@<1 such that
1 1-6 06 1 1-06 06
t:@’l“, — = + —, — = + —.
Po D1 u qo0 01 v

This is possible due to ¢o < ¢; and py < py, i.e. these assumptions ensure % > 0 and
% > 0. Moreover, we still have © completely at our disposal. By choosing © sufficiently
small, also the condition

1 1
min(u,v)  max(p, q1)

>

can be fulfilled. This follows from

r>———<st>———=—————=— — —
u n Uu 4! Po P 4! Po M
1 1 e O 1 1—-0 O 1 1 1 1
r>——— <—t>———=—-——-——=———+406|—-—
u  q Uu q1 Do b1 q1 Po D1 4! q1
1 1 C) C) 1 1-0 S 1 1 (1 1)
r>——— <<= it>———=——-— - —=—— — —— —
v P v P qo q1 P qo q1 g P
1 1 S O 1 1—-0© O 1 1
r>——— &&= t>———=——— - —=— — —
v q1 v q1 qo q1 q1 qo q1

and the assumptions on ¢t. Now we know by Corollary 6.7.2

= r,—(N-—1 r—l4 L =
SAb(Q) o A TR (0

u,v



and we find by interpolation (Theorem 6.9.4)

Po,q0 P1,91 ? Tu,v

st b(Q)v—>(s§ b(Q), 574 b(Q))

0,00
= r—(N-1)(r—34+21) 5
> (8,0,0(0), AX (5, 0b(2).B))

_ At,—(N—l)(t‘%"qu)( b D(), B) .

Yo P1,q1
The last line follows from Proposition 6.3.1(ii) and the choice of the parameters.

Step 6: In case pg > p; and ¢y < ¢, we can argue similarly. By choosing v and r as

before, but now complemented by u = py, we end up with a similar system of conditions

for r. The condition for r > 1 — —L— remains the same, and r» > + — L follows
.. v max(p1,q1) po  max(p1,q1)

this time from ¢ > 0.

Hence, for © sufficiently small we obtain

st b(Q)<—>(36 b(Q), 572 b(Q)>

Po,90 Po,q1 ? T Ppo,v 0,00
= r—(N-1)(r—14L1) =
0 v 0
- (Sph(hb(Q) ’ ‘AOO " (Sp17q1b(Q)’ B) ) 0,00

S AL (g e 5,

p1,q1

where we additionally used s 5(Q) < 0 () from Proposition 5.3.2.

Po,q1 pP1,q1

Step 7: The Steps 1-6 can be summarized by

= ro—r1,—(N—1)(ro—r;— 1 4+L =
570l b)) = A boonsyvan), (s b(Q2), B), (6.10.4)
where ro,71 € R, rg — 11 > (pio — pll)-l- and 0 < qp < ¢1 < 00. We additionally applied a

lifting argument (see Lemma 6.2.3).

Step 8: Now consider the case 0 < ¢; < pyp < qo < oo. We choose v > 0, such that
1 1

t— (p—o — p—1)+ > «. Then we have the embeddings

s p(Q) < sUp() — 0 p().

Po,90 Po,4q1 p1,91

By choice, we have o — qio + qi1 > 0 and

1 1 1 1
a>0=— — — = — — ,
Po Do mln(Pm QO) maX(P()a Ch)

hence the assumptions of Corollary 6.7.2 are satisfied for the left hand embedding. Thus
we find by an additional lifting argument, see Lemma 6.2.3,

a,~(N-1)(a-A+1)

s p(Q) = Ao o (sadp(Q) B)

Po,90 Po,91

and on the other hand we obtain from (6.10.4)

SEI(O) o AT (G, 5(0), ).

Po,q1 p1,91
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Now the Reiteration theorem (Proposition 6.3.2) yields

a,—(N=1)(a 7+;)

S;Eo q0 ( ) AOO " (g) qolé db )
Azo (N-1)(a—E+L )(At o,— )(8217(11[)(9)78)75)
L=(N=D(t—3-+30) 5
= Ax (51,0, 0(2), B) .

The same type of argument can be applied in the case 0 < ¢; < p; < qgop < o0 to the
embedding

s p(Q) < 520 p(Q) — &

Po,90 p1,90

p1, thb(Q) :
Moreover, the cases pp < ¢1 < qo < p1 and p; < q¢1 < qo < po are covered by Corollary
6.7.2.

Step 9: It remains to treat the cases max(pg,p1) < ¢1 < qo and ¢; < qo < min(pg, p1).
For the first one, we consider the embeddings

s p(Q) < 520 p(Q) < 50

Po,90 P1,P1

b($2),

P1,91

where once more t— (io — 12_1) > «. Then the left hand embedding is covered by Corollary

6.7.2 due to py < qo and the choice of «, and the right hand embedding corresponds to
(6.10.4). More precisely, we find

t—a,—(N—1)(t— a——+1)

SZ?) qob( ) = Ao ( p17p1b(Q)’B) )
o a,~(N=1)(a=3-+) 5
pldJllb( ) ‘AOO (8217q1b(9)’ B) :

Applying the Reiteration theorem we end up with

t—a,—(N=1)(t—a— L +:1

s Q) = A

Po,q0

7 (sl (), B)

Pl’pl

(-

o AT (@ ) B).

P1,91
Finally, the case ¢; < qo < min(pg,p;) follows by the same arguments, applied to the
embeddings

s p(Q) < sUp(Q) < 0

Po,q0 Po,Po

b(2),

P1,91

whereas the left hand embedding now is covered by (6.10.4), and the result for right hand
embedding follows from Corollary 6.7.2. O

The result for f-spaces is similar, but not quite as satisfactory, since not for all parameters
the upper bounds for the m-term width match the lower ones in Proposition 6.5.1.

Theorem 6.10.3. Let 0 < po,p1 < oo and 0 < go,q1 < 0o. Moreover, let ¢ € R and put
t = td. Furthermore, let 2 be a bounded open subset of RY.
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(i) We assume
1 1 1 1
t>max{ —— —, ———,0]).
Po P1 4o ¢
Then it holds

7 ] _ N-1)(t—L+L
O (S [ ()58, F(Q) By ) S m~" (logm) ™70 a0

for all natural numbers m > 2.
(ii) Let now
1 1 1 1
max(———,O) <t< ———.
Po D1 o q1
Then it holds for all e > 0

Tm (Sf?quof(Q) ; sguql f) 7BN{)V><V> Sm™ (log m)s
for all natural numbers m > 2.

(iii) Now suppose either

1 1 1 1
max|{ —— —,0) <t<——— and »<aq,
Po D1 g ¢
or

1 1 1 1
max{ —— —,0) <t < — — — and PL=q -
Po M G @1

Then it holds

O (00 P 155, 0 S Bigos) Sm™. meN.

Po,q0 7 7Pp1,91

(6.10.5)

(6.10.6)

(6.10.7)

Proof. The proof of part (i) uses exactly the same methods as in the Steps 5-6 and Steps
8-9 of the proof of Theorem 6.10.2, where one has to replace applications of embedding

and interpolation results for b-spaces by their corresponding f-counterparts.

For the proof of part (ii) choose gy < g. < oo in such a way, that

1 1 1 1
t—— 4+ —<0<t——+—<e¢.
qo0 q1 qx q1

We then obtain from Lemma 5.3.2(i) and part (i)

(VD= L+ L) 5

Sliovqof(Q) = sf)mq*f(Q) = ’AOO (Splﬂlf(Q)’ B)

— AL VDY £(),B).

P1,91
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The last embedding follows from the trivial fact A27(X,D) < A27 (X,D) for every
7 > 7' and every scale of generalized approximation spaces. From these embeddings and
Lemma 6.3.1 we obtain the desired estimate, because ¢ > (0 was arbitrary.

Finally, for the proof of (iii) we use an embedding argument as in Step 1 of the proof of
Theorem 6.10.2, i.e. we use the embedding s, . f(Q) — s/ . f(€2), where i =i+ L Its

continuity is due to Proposition 5.3.4. Then we find 7 = d (— — p—l) hence we can apply
the results for the limiting case. Now (6.10.7) follows either from Theorem 6.7.3 in case
of (6.10.6), or from Theorem 6.10.1 for parameters as in (6.10.5). O

Remark 6.10.1. If Conjecture 6.7.1 holds true, the (logm)®-gap can be closed. In that
case, one uses the same embedding argument as in the above proof to obtain the upper
bound m~* for all parameters p;, ¢; and t < - i

Even more is true: If the conjectured result is Vahd then the limiting case completely
determines the result for the compact case, once more by exactly the same embedding
argument. This behaviour could already be observed for the isotropic spaces (compare
with the results in [34]), but it is in sharp contrast to other combinations for b and f-spaces
(we refer e.g. to the results obtained in case of two Besov-type sequence spaces).
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7 Conclusion

In the first four chapters of this thesis we dealt with the function spaces S;qA(Rd), which
were defined as subsets of §’(R). This investigation culminated in the characterization in
terms of wavelet decompositions in Section 4.3, establishing a connection between these
function spaces and certain sequence spaces s;qa. Sections five and six were devoted to
the study of these sequence spaces, in particular continuous and compact embeddings as
well as best m-term approximation with respect to the canonical basic system. In this
chapter finally we will once more use the wavelet isomorphisms to reformulate the results
obtained for sequence spaces into results for the associated function spaces.

In many applications one is also interested in functions and distributions which are not
defined on the whole R?, but on certain bounded or unbounded domains ). Since we
previously dealt with the slightly more general sequence spaces s7 ,a(V) and s a(€2), we
can formulate results for function spaces Sj  A(€2) as well.

Finally, we will compare our results with those to be found in the literature. Though
in most cases the setting is slightly different, particularly in the Russian school function
spaces on the torus are more popular, nevertheless they usually behave very similar as
far as approximative properties are concerned. Hence they are often called on for a
comparison of results.

7.1 Transfer to function spaces on domains

In this section we will define function and distribution spaces on domains {2, and establish
a connection to the previously discussed sequence spaces s;qa(Q). Moreover, we will
formulate the main results of this thesis.

7.1.1 Function spaces on domains

First, we define function spaces on domains by restriction of function spaces on R%. Let
D(Q2) denote the locally convex vector space of all infinitely differentiable functions with
compact support in 2, where € is an arbitrary non-empty open subset (domain) of R
Moreover, we denote by D’'(€2) its topological dual.

Definition 7.1.1. Let Q be an arbitrary domain in R% and let 0 < p,q < 0o (p < oo
for F-spaces) and 7 € R". Then the spaces S} ,A(€2) are defined as

Sy A = {f eD(Q) : f=ggqn forsome ge S;qA(RE)} ,
H f ’S;qA(Q)H = inf H g ‘S;qA(Rg>

)

where the infimum is taken over all g € ST A(R?), such that f = gjq.

As mentioned before we are interested in a connection between these spaces on domains
and sequence spaces with the help of wavelets. To this purpose, denote by £ f € S} qA(]Rd)
an extension of f € S7 A(Q), such that

17185, A@)| < [|€F |55, AR < 2| |5}, AR
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By Theorem 4.3.1 we know that £ f can be represented as
Ef = Z Z <gf> \IJE77>\DE,7 ) (<8f7 \IJE,7>)E,7 € qua
kenNy vely

Since the construction of the basis functions Wy is based on the scaling function ¢ and
the associated wavelet 1, and both were assumed to be compactly supported, say

supp o Usupp ¢y C [—M, M] for some M >0,
also the functions Wy, are compactly supported, and the distribution

Ef=Y > ({fI)¥

keNy vely:
supp \I/E,YOQ#Q

is an extension of f as well. The uniqueness of the wavelet-coefficients and the lattice
property of the sequence spaces sF @ further imply

HCEF W)z snaa || < [1CEL VD)5 L shaa Il
which in view of Theorem 4.3.1 yields
715 A@] ~ €7 f |57, ARD]

Immediately from the definition of £* f if follows that in this case the sequence of wavelet-
coefficients ((8* f, \IJE7’Y>)E7 may be interpreted as an element of s7 a(V), where

r=1{verly :supp\IlEﬁﬂQ#(Z)}. (7.1.1)

Moreover, from the support property of 1y and v, we conclude
suppEf CTl = {:B e RY : dist (z,Q) < QM}.

It follows that the mentioned space s} a(V) can be identified as a subspace of s a(I').
Both interpretations motivate in hindsight the definition of V(Q2) in (5.1.2).

We want to emphasize the point that, in contrast to the characterization in Theorem 4.3.1,
we no longer have an isomorphism mapping the function spaces onto sequence spaces.
This stems from the fact that in general the mappings f — £f and f —— E*f are
nonlinear. However, since these mappings are bounded we can derive sufficient conditions
for embeddings and estimates from above for the error of the best m-term approximation
in this way directly from the results for sequence spaces.

As pointed out before, the necessary conditions for embeddings can directly be obtained
from the ones in the isotropic setting by tensor product arguments, compare with Section
5.3.1. For estimates from below for m-term approximation we have to argue slightly
differently. We now define the sequence V by Vi = {’y €'z tsupp ¥y, C Q} Then we

find for every f = ZEeNN Zveﬁg Ny Vi, With A € s;qa(ﬁ)
1715 A@ ~ | £S5 AR ~ ([ A |55,

Though the sets Vk are p0881b1y empty, it can easily be seen that for some suitably chosen

set I we have V(I') C V. for every k € NI with k| > K. This follows from the assumed
openness of €.

The following lemma summarizes these constructions.
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Lemma 7.1.1. For every domain  in R? there are domains I and f, such that I' C
Q C T'. Moreover, there is a (nonlinear) bounded mapping Z : S} ,A(Q) — s7 ,a(I") and

a linear injective mapping J : s;qa(f) — 57 ,A(S2), such that
1S5 A ~ 12 [sp 00l ZF = (E°F ¥r))z,
where £* is defined as above, and

[T A@] ~ M eI TA= D0 3 A, ¥,

EENéV 766@

Note that this method does not yield intrinsic characterizations of the spaces S7  A(€2).
Concerning such intrinsic wavelet characterizations, at least for isotropic spaces A3 (€2),
we refer to the monograph [87]. However, this lemma is sufficient for our purposes, since
our results for the sequence spaces s; ,a(£2) do not depend directly on Q or V = V(Q), as
long as we have the properties (5.1.3) and (5.1.4).

7.1.2 m-term approximation in function spaces

After the preparations in the previous section we are now in the position to transfer our
results for the best m-term approximation from the sequence spaces s7  a(f2) to function
spaces. This is based on the following lemma, which itself is an immediate consequence
of Lemma 7.1.1.

Lemma 7.1.2. Let Q C R? be an arbitrary domain. Moreover, let 0 < pg, p1,qo, 1 < 00
(po, p1 < oo for F-spaces) and 7, 7! € RY be parameters, such that we have a continuous

embedding S;o 0 X (Q) — S;l 2 Y (), X,Y € {B, F'}. Then it holds
(S;O:QO (Q) 8;1 Q ) (SZ 0T ) p1,q1y( ) 7BN(J)V><V)

1

< (s Zo,qoas<r>, s an¥(D) Bgor) )
where V is defined as in (7.1.1), and the system Wg, is given accordingly by
Vg, :{\DE,V €W rsupp Vg, NQ# (Z)} .
On the other hand, it holds
(Sp 0 X(9) 83, V() 90) 2 (5500, 70) 50 0(F) By oqsy)

The sets I' and ' have the same meaning as in Lemma 7.1.1.

We now begin with the limiting case.

Theorem 7.1.1. Let 0 < py < p1 < o0 (po, p1 < oo for F-spaces), 0 < go,q1 < oo and
70,71 € RV, such that

—d/po=T"—d/p:.

Moreover, let Q be an arbitrary domain in R
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(i) Let additionally ¢o < ¢1, and put

,<1 1 1 1>
a=mn|———, — — —
Po P1 4o q1

Then it holds

0,90 ? 7 p1,q1

0m<SF0 B(Q), S B(Q),qfﬂ) ~mT, m>1,
where WU, is the wavelet system defined in Lemma 7.1.2.
(ii) Let po < p1 and either
(a) - _L>i—qiland(h§p1701”

Ppo p1 q0

1 _ 1 1 _ 1

(c) ¢1 =p1.
Then it holds for m > 2

T (S (), Spr g F(2) W)~ 5655 (log ) Voo oo )

Po,q90 ’ 7 Pp1,q1

(iii) Let pp < go < p;. Then it holds for m > 1

1 1

am<s?° B(Q), s F(Q),\I/Q> ~m TR

Po,q0 7P,

Moreover, in case ¢y < po let either + — L < L _ 1 L _ 151 _ L

. Po P — @ q1’ Po p1 q0 q1
¢1 < p1. Then it holds for m > 2

! (N-1)(E-L- L+

O (S BQ) 5}, P(Q) W) ~ m 707 (logm) V5w

Po,q0 T p1,q1

(iv) Let pg < ¢1 < p1. Then it holds for m > 1

1 1

o—m(SF(’ F(Q),s7" B(Q),\I/Q) ~mr

Po,q0 ’ T Pp1,91

Furthermore, in case p; < ¢; and ~ — L <L — Lt holds
Po p1 q0 q1

1 1

am<s?“ F(Q),s7 B(Q),xpg) ~mTHtE . m> 1.

0,90 ’ 7 Pp1,q1

Proof. Part (i) is the counterpart of Theorem 6.7.2. Moreover, part (ii) follows from
Theorems 6.7.3 and 6.10.1, and part (iii) is either a consequence of Proposition 6.7.3, or
of (i) and the elementary embedding SZOOHOB (Q) — S;OO7qOF (Q). Finally, (iv) corresponds

to Proposition 6.7.4. Those results are complemented by the Conjectures 6.7.1-6.7.3. We
shall add that in the above theorem the case ) = R? is admitted. O]

Now we turn to the non-limiting case. We begin with the result for spaces on the whole of

R?. The next theorem is the immediate counterpart of Theorem 6.6.1 using the wavelet
isomorphism from Corollary 4.3.1.
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Theorem 7.1.2. Let 0 < po < p; < oo and 0 < ¢, q1 < 00, and let 79, 7! € RY such
that

-1 1
P> d(— - ).
Do D1
Then it holds for all X,Y € {B, F'}

- 1 1

am<s?“ X(RY), 5T Y(Rd),\lf> ~mTHTE m> 1,

Po,q0 ’ 7 p1,q1

where pg < 0 if X = F and p; < o0 if Y = F.

The situation on bounded domains, i.e. for a compact embedding, is slightly more com-
plicated.

Theorem 7.1.3. Let 0 < pg, p1,qo, 1 < 0o, and let 7,71 € RN such that

= 1 1
707l =td for some ¢ € R with t><———> )
Po P17+

Finally, let  be a bounded domain in R?.
(i) Then it holds for m > 2

1 1

am<5?“ B(Q),S" B(Q),\IJQ> ~m " (logm) MV a A

Po,q0 7 Pp1,q1

(ii) Let po,p1 < oo, and let either

(a)t>qi0—qi1,or

1 1 1 1

(b) (p—o—p—l)+<t<q—0—q—1andp1<q1,or
1 1 1 1

(c) (p—o— )+<t<——q—13ndp1:q1.

P1 =

Then it holds for m > 2

Po»q0 7 Pp1,q1

Om (SFO F(Q),S"  F(Q), \IJQ> ~m " (logm) (=) (t7%+a>+ .
Moreover, in the remaining cases for ¢ < qio — qil it holds for every € > 0

m~ <o <SFO F(Q),57  F(Q), \IJQ> <m ' (logm)©.

Po,90 7 Pp1,q1

(iii) Now assume

1 1
(o )
min(po,qo) max(pi,q1)/+
Then it holds for all X,Y € {B, F} and m > 2

om<s?“ X(9Q), 8" Y(Q),\PQ> ~ m~t (logm) NN )

Po,q90 ’ 7 Pp1,q1

where pyg < 00 if X = F and p; < oo if Y = F. Moreover, for every f € S;OOHOX(Q)
a near best approximation can be constructed explicitly.
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To aid our comparisons in the next section, we shall specialize the above results to the most
interesting case in applications, approximation in L,. We remind on the Littlewood-Paley-
type assertion ST, F(R?) = STH(R?). If we define Sobolev spaces on domains, S} H (2),
likewise via restriction, this identity immediately carries over.

L) 4 Moreover, let €2

Theorem 7.1.4. Let 1 < py,p1 < oo and t € R, where ¢t > (pio o

be a bounded domain in R%. Then it holds for m > 2
om (SIH(Q), Ly (), Wa ) ~ m ™" (logm)'

N-1)t

1 1 )
min(po,q0) max(p1,2)

Furthermore, if additionally either ¢ > ( Lorp = 2, then it holds

Om (Sta B(Q),L, (), \IIQ> ~m~"(logm) (N=1)lt=35+2)+

Ppo,q0

7.2 Comparison to the literature

In this section we want to compare our results on m-term approximation with those ones
obtained by Temlyakov [79] and Dinh Dung [21, 22]. Unfortunately the classes of functions
studied by these authors differ slightly from our scales S}  A(€2). Though our approach via
decomposition techniques and henceforth discretizing the function spaces hides this effect,
the results on m-term approximation clearly depend heavily also on the dictionary used.
This is made obvious when comparing the results of m-term approximation for different
classes of periodic functions with so-called m-term trigonometric approximation, i.e. m-
term approximation with respect to the multivariate trigonometric system (e%%);cza.
To begin with we describe the setting used by Temlyakov in [79]. In this and related
articles he mainly considers two scales of spaces of periodic functions defined on the d-
dimensional torus T¢, which are denoted by M Hi and MW/, r > 0,1 < g < oo, with
the error of approximation being measured in the L,(T?)-norm, 1 < p < co. The Besov-
Nikol’skij-type spaces M H, are introduced via iterated differences, and are most closely
connected to (the unit ball of) S7  B([0,1]%), 7 = (r,...,r) € R%, d = (1,...,1), in our
notation. On the other hand, the Sobolev-type spaces MWW are defined via convolutions
with multivariate Bernoulli kernels. These spaces turn out to be closely related to (the
unit ball of) the Sobolev spaces 57 H ([0, 1]4) = ST, F([0, 1]4), where 7 and d are as before.
For a more detailed comparison of the spaces M H; and MW/ to the scale of periodic
Besov and Triebel-Lizorkin spaces with dominating mixed smoothness we refer to [91,
Section 2.7]. Finally, the basis U¢ which is considered consists of translates of tensor
products of Dirichlet kernels.

We now present the main results of [79]. With subsequent comparisons in mind we shall
use the notations ggmB (T?) and §g’2F (T?) instead of MH; and MW}, respectively.

Theorem 7.2.1 (Temlyakov [79]). Let 1 < ¢,p < oc.
(i) We put
T L max@/p2fa) =) e, p<2.

Then it holds for all » > r1(q, p)

O <§;,OOB(Td) ,L,(T%), Ud) ~m " (logm) D >0
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(ii) Now we put

r2(q,p) = {max(l/q’l/Q)_l/pv p=2,
’ (max(2/p,2/q) —1)/p,  p<2.

Then it holds for all r > ry(q, p)

Im <~g,2F(Td) , Ly(T%), Ud) ~m~"(logm) (dfl)r, m>2.

Comparing Temlyakov’s conditions r > ri(q,p) and r > ry(q, p) with our condition ¢ >
(min(;m’qo) — max(;l,th)) N for according parameters we find that they coincide for p > 2,
but for p < 2 the latter condition is the weaker one. In other words, Temlyakov’s results
correspond to the constructions in Section 6.7.5, but under more restrictive assumptions.
However, examining Temlyakov’s proofs it becomes clear that the imposed restrictions are
rather artificial and caused by the techniques applied. In [79] and other related articles
he concentrated on a particular class of explicit constructions of approximants, so-called
greedy-type approximations, and studied their efficiency in comparison to the best m-term

approximation, see also the recent survey [80].

Dinh Dung’s setting is similar, but there are also several important differences. He also
works with scales of Besov-type spaces By, and Sobolev-type spaces W, 0 < p,8 < oo,
r € R, which correspond to spaces S} ,B([0,1]%) and S;H([0,1]%) in our scale, where as
before 7 = (r,...,7) € RY and d = (1,...,1). Using Weyl-derivatives both scales of
spaces are defined as subsets of Lg, which consist of those periodic functions from L,
whose integrals with respect to every variable z;, 1 < ¢ < d, vanish, i.e. fT f(z)dz; = 0.
Hence these spaces differ from the ones used by Temlyakov as well. The dictionary V used
by Dinh Dung consists of translates of tensor products of de la Vallée Poussin kernels. In
contrast to all previously occurring dictionaries this one is linearly dependent. However,
it admits discretization techniques similar to wavelet-type bases.

We now state Dinh Dung’s results, first in the case of two Besov-type spaces, and after-
wards for approximation in L,. Similar than before, we denote the occurring spaces by

A;VGB and §;W instead of B} , and W, respectively.
Theorem 7.2.2 (Dinh Dung [21, 22]). Let 0 < p,q,0,7 < oo and r € R.

(i) Then it holds
Om <§;’(,B(Td) ,ggyTB(Td) ,V) > m~"(logm) (@D >0,
(ii)) Let 1 <7 <60 <ooandr > (1/p—1/q)+. Then it holds
O (§;93(Td) .S B(T?) ,V) ~ " (logm) IO s g
(iii) If 1 <7 < oo and r > 1/p, then it holds for m > 2

o o - (d=1)(r+1/7-1/ max(p.0)
o ($50B(TY), 55 BT, V) S m™"(logm) P
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The estimate in (ii) coincides with the one in Theorem 6.10.2, the restriction 7 < 6
corresponds to the case q; < qo. Since Dinh Dung constructs near best approximations
explicitly this complements our constructions from Section 6.7.5.

In case 6 > p the restriction r > 1/p in (iii) is stronger than (6.7.10), i.e. this result
corresponds to the case of high smoothness. On the other hand, in case 6 < p the result is
no longer sharp, and it corresponds once more to the case of high smoothness, combined
with the elementary embedding S? ,B(T?) < S; ,B(T?).

Theorem 7.2.3 (Dinh Dung [21, 22]). Let 1 <p,q<o0,0<6 <oocandreR.
(i) Then it holds

Om <§;’(,B(Td) , Ly(T?) ,V) > m~" (logm) (N0 > 9,

(ii) Let r > (1/p—1/q)+ and 6 > min(q, 2). Then it holds for m > 2

d—1)(r+1/min(q,2)—1/0)

Om <§;7BB(T‘1) , Ly(T?) ,V) <m " (log m)( :
(iii) Let r > max(0,1/p —1/¢,1/p —1/2,) and 2 < 6 < co. Then it holds

O (?;793(11“(1) ,L,(T%) ,V) ~ " (logm) IOy 5o

(iv) Let r > 1/p. Then it holds for m > 2

0 (S0 BT Ly (T) V) S m (log m) V11271 meste).

(v) Now let r > max(0,1/p—1/¢,1/p —1/2,1/2 —1/q). Then we have

O <§;72F(1I‘d) , L, (T ,V) ~m " (logm) TV m > 2.

In both theorems, the estimates from below coincide with the ones in Proposition 6.5.1

(at least the one in Step 2 of its proof).

The result in (ii) corresponds to Theorem 6.10.2, combined with the elementary embed-

ding L,(T?) — §;min( 22 B(T%). However, the resulting estimate is sharp only for ¢ > 2.

The condition on r in (iii) coincides with (6.7.10) in case p < 6. Only in case 2 < 6 < p,

the conditions in (iii) are weaker than those for Theorem 6.7.4. However, in that case one

can use the elementary embedding §;’79B (T9) — §;79F (T?), and the result is covered by

Theorem 6.10.3 (Theorem 7.1.3(ii)).

Part (iv) can be discussed as part (iii) of the preceding theorem. Finally, observe that
1 1

the condition in (v) can be reformulated as r > (2 ma(@d)’ which coincides with

the one for the explicit construction in Theorem 6.7.4.

Remark 7.2.1. We have to mention that the parts (ii) and (v) in Theorem 7.2.3 differ
slightly from the results formulated by Dinh Dung. The results in Theorem 7.2.3 are
consequences of Theorem 7.2.2 using elementary embeddings. However, an application of
these embeddings either leads to additional restrictions on r as in (v), or increases the
exponent of the logarithm as in (ii). In both cases this was not completely taken into
account.

208



Apart from the situation in the above theorems Dinh Ding further dealt with several
generalizations of the spaces §;,qB (T?), commonly denoted by B! (T%) and B! (T?) (we
will not give definitions here). Concerning those results we only want to mention that these
spaces cover the case S; B (']I‘E), which would be the immediate periodic counterpart of
Sy B (RE), even for general vectors 7 > 0. In the asymptotics r would have to be replaced
by p = min{ri/di ci=1,..., N} (with some lower bound for p), and N — 1 is replaced
by v=#{1<i<N :r;/d;=p} — 1. We refer to [21, 23].

In our situation the treatment of general smoothness vectors  # td remains an interesting
open problem.
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